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A B S T R A C T

To investigate neural network parameters, it is easier to study the distribution of parameters
than to study the parameters in each neuron. The ridgelet transform is a pseudo-inverse operator
that maps a given function 𝑓 to the parameter distribution 𝛾 so that a network 𝙽𝙽[𝛾] reproduces
𝑓 , i.e. 𝙽𝙽[𝛾] = 𝑓 . For depth-2 fully-connected networks on a Euclidean space, the ridgelet
transform has been discovered up to the closed-form expression, thus we could describe how
the parameters are distributed. However, for a variety of modern neural network architectures,
the closed-form expression has not been known. In this paper, we explain a systematic method
using Fourier expressions to derive ridgelet transforms for a variety of modern networks such
as networks on finite fields F𝑝, group convolutional networks on abstract Hilbert space , fully-
connected networks on noncompact symmetric spaces 𝐺∕𝐾, and pooling layers, or the 𝑑-plane
ridgelet transform.

. Introduction

Neural networks are learning machines that support today’s AI technology. Mathematically, they are nonlinear functions
etermined by a network of functions with learnable parameters (called neurons) connecting in parallel and series. Since the learning
rocess is automated, we do not fully understand the parameters obtained through learning. An integral representation is a powerful
ool for mathematical analysis of these parameters. One of the technical difficulties in analyzing the behavior of neural networks is
hat their parameters are extremely nonlinear. An integral representation is a method of indirectly analyzing the parameters through
heir distribution, rather than directly analyzing the parameters of each neuron. The set of all the signed (or probability) parameter
istributions forms a linear (or convex) space, making it possible to perform far more insightful analysis than directly analyzing
ndividual parameters.

For instances, characterization of neural network parameters such as the ridgelet transform (Murata, 1996; Candès, 1998; Sonoda
nd Murata, 2017) and the representer theorems for ReLU networks (Savarese et al., 2019; Ongie et al., 2020; Parhi and Nowak,
021; Unser, 2019), and convergence analysis of stochastic gradient descent (SGD) for deep learning such as the mean field
heory (Nitanda and Suzuki, 2017; Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Sirignano and
piliopoulos, 2020) and the infinite-dimensional Langevin dynamics (Suzuki, 2020; Nitanda et al., 2022), have been developed using
ntegral representations.
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1.1. Integral representation

The integral representation of a depth-2 fully-connected neural network is defined as below.

Definition 1.1. Let 𝜎 ∶ R → C be a measurable function, called activation function, and fix it. For any signed measure 𝛾 on R𝑚 ×R,
called a parameter distribution, we define the integral representation of depth-2 fully-connected neural network as

𝑆[𝛾](𝒙) = ∫R𝑚×R
𝛾(𝒂, 𝑏)𝜎(𝒂 ⋅ 𝒙 − 𝑏)d𝒂d𝑏, 𝒙 ∈ R𝑚. (1)

Here, for each hidden parameter (𝒂, 𝑏), feature map 𝒙 ↦ 𝜎(𝒂 ⋅ 𝒙 − 𝑏) corresponds to a single hidden neuron with activation
function 𝜎, weight 𝛾(𝒂, 𝑏) corresponds to an output coefficient, and the integration implies that all the possible neurons are assigned
in advance. Since the only free parameter is parameter distribution 𝛾, we can identify network 𝑆[𝛾] with point 𝛾 in a function space.

We note that this representation covers both infinite (or continuous) and finite widths. Indeed, while the integration may be
understood as an infinite width layer, the integration with a finite sum of point masses such as 𝛾𝑝 ∶=

∑𝑝
𝑖=1 𝑐𝑖𝛿(𝒂𝑖 ,𝑏𝑖) can represent a

finite width layer:

𝑆[𝛾𝑝](𝒙) =
𝑝
∑

𝑖=1
𝑐𝑖𝜎(𝒂𝑖 ⋅ 𝒙 − 𝑏𝑖) = 𝐶𝜎(𝐴𝒙 − 𝒃), 𝒙 ∈ R𝑚

where the third term is the so-called ‘‘matrix’’ representation with matrices 𝐴 ∈ R𝑝×𝑚, 𝐶 ∈ R1×𝑝 and vector 𝒃 ∈ R𝑝 followed by
component-wise activation 𝜎. Singular measures as above can be mathematically justified without any inconsistency if the class of
the parameter distributions are set to a class of Borel measures or Schwartz distributions.

There are at least four advantages to introducing integral representations:

1. Aggregation of parameters, say {(𝒂𝑖, 𝑏𝑖, 𝑐𝑖)}
𝑝
𝑖=1, into a single function (parameter distribution) 𝛾(𝒂, 𝑏),

2. Ability to represent finite models and continuous models in the same form,
3. Linearization of networks and convexification of learning problems, and
4. Presence of the ridgelet transform.

Advantages 1 and 2 have already been explained. Advantage 3 is described in the next subsection, and Advantage 4 is emphasized
throughout the paper. On the other hand, there are two disadvantages:

1. Extensions to deep networks are hard1, and
2. Advanced knowledge on functional analysis are required.

1.2. Linearization and convexification effect

The third advantage of the integral representation is the so-called linearization (and convexification) tricks. That is, while the
network is nonlinear with respect to the raw parameters 𝒂 and 𝑏, namely,

𝑆[𝛿(𝛼1𝒂1+𝛼2𝒂2 ,𝑏)] ≠ 𝛼1𝑆[𝛿(𝒂1 ,𝑏)] + 𝛼2𝑆[𝛿(𝒂2 ,𝑏)], 𝛼1, 𝛼2 ∈ C

(and similarly for 𝑏), it is linear with respect to the parameter distribution 𝛾, namely,

𝑆[𝛼1𝛾1 + 𝛼2𝛾2] = 𝛼1𝑆[𝛾1] + 𝛼2𝑆[𝛾2], 𝛼1, 𝛼2 ∈ C.

Furthermore, linearizing neural networks leads to convexifying learning problems. Specifically, for a convex function 𝓁 ∶ R → R,
the loss function defined as 𝐿[𝛾] ∶= 𝓁(𝑆[𝛾]) satisfies the following:

𝐿[𝑡𝛾1 + (1 − 𝑡)𝛾2] ≤ 𝑡𝐿[𝛾1] + (1 − 𝑡)𝐿[𝛾2], 𝑡 ∈ [0, 1].

It may sound paradoxical that a convex loss function on a function space has local minima in raw parameters, but we can
understand this through the chain rule for functional derivative: Suppose that a parameter distribution 𝛾 is parametrized by a raw
parameter, say 𝜃, then

𝜕𝐿[𝛾(𝜃)]
𝜕𝜃

=
⟨

𝜕𝛾(𝜃)
𝜕𝜃

,
𝜕𝐿[𝛾]
𝜕𝛾

⟩

.

n other words, a local minimum (𝜕𝜃𝐿 = 0) in raw parameter 𝜃 can arise not only from the global optimum (𝜕𝛾𝐿 = 0) but also from
he case when two derivatives 𝜕𝜃𝛾 and 𝜕𝛾𝐿 are orthogonal.

The trick of lifting nonlinear objects in a linear space has been studied since the age of Frobenius, one of the founders of the linear
epresentation theory of groups. In the context of neural network study, as well as the recent studies mentioned above, either the
ntegral representation by Barron (1993) or the convex neural network by Bengio et al. (2006) are often referred. In the context of

1 Good News: After the initial submission of this manuscript, the authors have successfully developed the ridgelet transform for deep networks in Sonoda
2

et al. (2023a,b).
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deep learning theory, this linearization/convexification trick has been employed to show the global convergence of the SGD training
of shallow ReLU networks (Nitanda and Suzuki, 2017; Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018;
Sirignano and Spiliopoulos, 2020; Suzuki, 2020; Nitanda et al., 2022), and to characterize parameters in ReLU networks (Savarese
et al., 2019; Ongie et al., 2020; Parhi and Nowak, 2021; Unser, 2019).

1.3. Ridgelet transform

The fourth advantage of the integral representation is the so-called the ridgelet transform 𝑅, or a right inverse operator of the
integral representation operator 𝑆. For example, the ridgelet transform for depth-2 fully-connected network (1) is given as below.

Definition 1.2. For any measurable functions 𝑓 ∶ R𝑚 → C and 𝜌 ∶ R → C,

𝑅[𝑓 ; 𝜌](𝒂, 𝑏) ∶= ∫R𝑚
𝑓 (𝒙)𝜌(𝒂 ⋅ 𝒙 − 𝑏)d𝒙, (𝒂, 𝑏) ∈ R𝑚 × R. (2)

In principle, the ridgelet function 𝜌 can be chosen independently of the activation function 𝜎 of neural network 𝑆. The following
theorem holds.

Theorem 1.1 (Reconstruction Formula). Suppose 𝜎 and 𝜌 are a tempered distribution ( ′) on R and a rapidly decreasing function () on
, respectively. Then, for any square integrable function 𝑓 , the following reconstruction formula

𝑆[𝑅[𝑓 ; 𝜌]] = ((𝜎, 𝜌))𝑓 in 𝐿2(R𝑚)

olds with the factor being a scalar product of 𝜎 and 𝜌,

((𝜎, 𝜌)) ∶= ∫R
𝜎♯(𝜔)𝜌♯(𝜔)|𝜔|−𝑚d𝜔,

where ♯ denotes the Fourier transform.

From the perspective of neural network theory, the reconstruction formula claims a detailed/constructive version of the universal
approximation theorem. That is, given any target function 𝑓 , as long as ((𝜎, 𝜌)) ≠ 0, the network 𝑆[𝛾] with coefficient 𝛾 = 𝑅[𝑓 ; 𝜌]
reproduces the original function, and the coefficient is given explicit.

From the perspective of functional analysis, on the other hand, the reconstruction formula states that 𝑅 and 𝑆 are analysis and
synthesis operators, and thus play the same roles as, for instance, the Fourier (𝐹 ) and inverse Fourier (𝐹−1) transforms respectively,
in the sense that the reconstruction formula 𝑆[𝑅[𝑓 ; 𝜌]] = ((𝜎, 𝜌))𝑓 corresponds to the Fourier inversion formula 𝐹−1[𝐹 [𝑓 ]] = 𝑓 .

Despite the common belief that neural network parameters are a blackbox, the closed-form expression (2) of ridgelet transform
clearly describes how the network parameters are distributed, which is a clear advantage of the integral representation theory (see
e.g. Sonoda et al., 2021b). Moreover, the integral representation theory can deal with a wide range of activation functions without
approximation, not only ReLU but all the tempered distribution  ′(R) (see e.g. Sonoda and Murata, 2017).

The ridgelet transform is discovered in the late 1990s independently by Murata (1996) and Candès (1998). The term ‘‘ridgelet’’
is named by Candès, based on the facts that the graph of a function 𝒙 ↦ 𝜌(𝒂 ⋅ 𝒙− 𝑏) is ridge-shaped, and that the integral transform
𝑅 can be regarded as a multidimensional counterpart of the wavelet transform.

In fact, the ridgelet transform can be decomposed into the composite of wavelet transform after the Radon transform, namely,

𝑅[𝑓 ; 𝜌](𝑎𝒖, 𝑏) = ∫R
𝑃 [𝑓 ](𝒖, 𝑡)𝜌(𝑎𝑡 − 𝑏)d𝑎d𝑏, (𝑎, 𝒖, 𝑏) ∈ R × S𝑚−1 × R,

𝑃 [𝑓 ](𝒖, 𝑡) ∶= ∫(R𝒖)⟂
𝑓 (𝑡𝒖 + 𝒚)d𝒚, (𝒖, 𝑡) ∈ S𝑚−1 × R,

where S𝑚−1 denotes the 𝑚-dimensional unit sphere, (R𝒖)⟂ ≅ R𝑚−1 denotes the orthocomplement of the normal vector 𝒖 ∈ S𝑚−1, d𝒚
denotes the Hausdorff measure on (R𝒖)⟂ or the Lebesgue measure on R𝑚−1, and 𝒂 ∈ R𝑚 is represented in polar coordinates 𝒂 = 𝑎𝒖
with (𝑎, 𝒖) ∈ R×S𝑚−1 allowing the double covering: (𝑎, 𝒖) = (−𝑎,−𝒖) (see Sonoda and Murata, 2017, for the proof). Therefore, several
authors have remarked that ridgelet analysis is wavelet analysis in the Radon domain (Donoho, 2002; Kostadinova et al., 2014; Starck
et al., 2010).

In the context of deep learning theory, Savarese et al. (2019), Ongie et al. (2020), Parhi and Nowak (2021) and Unser (2019)
investigate the ridgelet transform for the specific case of fully-connected ReLU layers to establish the representer theorem. Sonoda
et al. (2021b) have shown that the parameter distribution of a finite model trained by regularized empirical risk minimization
(RERM) converges to the ridgelet spectrum 𝑅[𝑓 ; 𝜌] in an over-parametrized regime, meaning that we can understand the parameters
at local minima to be a finite approximation of the ridgelet transform. In other words, analyzing neural network parameters can be
turned to analyzing the ridgelet transform.
3
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1.4. Scope and contribution of this study

On the other hand, one of the major shortcomings of ridgelet analysis is that the closed-form expression is known for relatively
mall class of networks. Indeed, until Sonoda et al. (2022a,b), it was known only for depth-2 fully-connected layer: 𝜎(𝒂 ⋅ 𝒙 − 𝑏). In
he age of deep learning, a variety of layers have become popular such as the convolution and pooling layers (Fukushima, 1980;
eCun et al., 1998; Ranzato et al., 2007; Krizhevsky et al., 2012). Furthermore, the fully-connected layers on manifolds have also
een developed such as the hyperbolic network (Ganea et al., 2018; Shimizu et al., 2021). Since the conventional ridgelet transform
as discovered heuristically in the 1990s, and the derivation heavily depends on the specific structure of affine map 𝒂 ⋅ 𝒙 − 𝑏, the

ridgelet transforms for those modern architectures have been unknown for a long time.
In this study, we explain a systematic method to find the ridgelet transforms via the Fourier expression of neural networks, and

obtain new ridgelet transforms in a unified manner. The Fourier expression of 𝑆[𝛾] is essentially a change-of-frame from neurons
𝜎(𝒂 ⋅ 𝒙 − 𝑏) to plane waves (or harmonic oscillators) exp(𝑖𝒙 ⋅ 𝝃). Since the Fourier transform is extensively developed on a variety of
omains, once a network 𝑆[𝛾] is translated into a Fourier expression, we can systematically find a particular coefficient 𝛾𝑓 satisfying
𝑆[𝛾𝑓 ] = 𝑓 via the Fourier inversion formula. In fact, the traditional ridgelet transform is re-discovered. Associated with the change-
of-frame in 𝑆[𝛾], the ridgelet transform 𝑅[𝑓 ] is also given a Fourier expression, but this form is known as the Fourier slice theorem
of ridgelet transform 𝑅[𝑓 ] (see e.g. Kostadinova et al., 2014). Hence, we call our proposed method as the Fourier slice method.

Besides the classical networks, we deal with four types of networks:

1. Networks on finite fields F𝑝 in Section 3,
2. Group convolution networks on Hilbert spaces  in Section 4,
3. Fully-connected networks on noncompact symmetric spaces 𝐺∕𝐾 in Section 5, and
4. Pooling layers (also known as the 𝑑-plane ridgelet transform) in Section 6.

The first three cases are already published thus we only showcase them, while the last case (pooling layer and 𝑑-plane ridgelet)
involves new results.

For all the cases, the reconstruction formula 𝑆[𝑅[𝑓 ]] = 𝑓 is understood as a constructive proof of the universal approximation
theorem for corresponding networks. The group convolution layer case widely extends the ordinary convolution layer with periodic
boundary, which is also the main subject of the so-called geometric deep learning (Bronstein et al., 2021). The case of fully-connected
layer on symmetric spaces widely extends the recently emerging concept of hyperbolic networks (Ganea et al., 2018; Gulcehre et al.,
2019; Shimizu et al., 2021), which can be cast as another geometric deep learning. The pooling layer case includes the original
fully-connected layer and the pooling layer; and the corresponding ridgelet transforms include previously developed formulas such
as the Radon transform formula by Savarese et al. (2019) and related to the previously developed ‘‘𝑑-plane ridgelet transforms’’
by Rubin (2004) and Donoho (2001).

1.5. General notations

For any integer 𝑑 > 0, (R𝑑 ) and  ′(R𝑑 ) denote the classes of Schwartz test functions (or rapidly decreasing functions) and
tempered distributions on R𝑑 , respectively. Namely,  ′ is the topological dual of . We note that  ′(R) includes truncated power
functions 𝜎(𝑏) = 𝑏𝑘+ = max{𝑏, 0}𝑘 such as step function for 𝑘 = 0 and ReLU for 𝑘 = 1.

Fourier transform. To avoid potential confusion, we use two symbols ⋅̂ and ⋅♯ for the Fourier transforms in 𝒙 ∈ R𝑚 and 𝑏 ∈ R,
respectively. For example,

𝑓 (𝝃) ∶= ∫R𝑚
𝑓 (𝒙)𝑒−𝑖𝒙⋅𝝃d𝒙, 𝝃 ∈ R𝑚

𝜌♯(𝜔) ∶= ∫R
𝜌(𝑏)𝑒−𝑖𝑏𝜔d𝑏, 𝜔 ∈ R

𝛾♯(𝒂, 𝜔) = ∫R
𝛾(𝒂, 𝑏)𝑒−𝑖𝑏𝜔d𝑏, (𝒂, 𝜔) ∈ R𝑚 × R.

Furthermore, with a slight abuse of notation, when 𝜎 is a tempered distribution (i.e., 𝜎 ∈  ′(R)), then 𝜎♯ is understood as the
Fourier transform of distributions. Namely, 𝜎♯ is another tempered distribution satisfying ∫R 𝜎

♯(𝜔)𝜙(𝜔)d𝜔 = ∫R 𝜎(𝜔)𝜙
♯(𝜔)d𝜔 for any

test function 𝜙 ∈ (R). We refer to Grafakos (2008) for more details on the Fourier transform for distributions.

2. Method

We explain the basic steps to find the parameter distribution 𝛾 satisfying 𝑆[𝛾] = 𝑓 . The basic steps is three-fold: (Step 1) Turn
the network into the Fourier expression, (Step 2) change variables inside the feature map into principal and auxiliary variables, and
(Step 3) put unknown 𝛾 in the separation-of-variables form to find a particular solution. In the following, we conduct the basic
steps for the classical setting, i.e., the case of the fully-connected layer, for the explanation purpose. However, the ‘‘catch’’ of this
4

procedure is that it is applicable to a wide range of networks as we will see in the subsequent sections.
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2.1. Basic steps to solve 𝑆[𝛾] = 𝑓

The following procedure is valid, for example, when 𝜎 ∈  ′(R), 𝜌 ∈ (R), 𝑓 ∈ 𝐿2(R𝑚) and 𝛾 ∈ 𝐿2(R𝑚 ×R). See Kostadinova et al.
(2014) and Sonoda and Murata (2017) for more details on the valid combinations of function classes.

Step 1. Using the convolution in 𝑏, we can turn the network into the Fourier expression as below.

𝑆[𝛾](𝒙) ∶= ∫R𝑚×R
𝛾(𝒂, 𝑏)𝜎(𝒂 ⋅ 𝒙 − 𝑏)d𝒂d𝑏

= ∫R𝑚
[𝛾(𝒂, ⋅) ∗𝑏 𝜎](𝒂 ⋅ 𝒙)d𝒂

= 1
2𝜋 ∫R𝑚×R

𝛾♯(𝒂, 𝜔)𝜎♯(𝜔)𝑒𝑖𝜔𝒂⋅𝒙d𝒂d𝜔.

Here, ∗𝑏 denotes the convolution in 𝑏; and the third equation follows from an identity (Fourier inversion formula) 𝜙(𝑏) =
1
2𝜋 ∫R 𝜙

♯(𝜔)𝑒𝑖𝜔𝑏d𝜔 with 𝜙(𝑏) = [𝛾(𝒂, ) ∗𝑏 𝜎](𝑏) and 𝑏 = 𝒂 ⋅ 𝒙.

Step 2. Change variables (𝒂, 𝜔) = (𝝃∕𝜔,𝜔) with d𝒂d𝜔 = |𝜔|−𝑚d𝝃d𝜔 so that feature map 𝜎♯(𝜔)𝑒𝑖𝜔𝒂⋅𝒙 splits into a product of a principal
actor (in 𝝃 and 𝒙) and an auxiliary factor (in 𝜔), namely

𝑆[𝛾](𝒙) = (2𝜋)𝑚−1 ∫R

[

1
(2𝜋)𝑚 ∫R𝑚

𝛾♯(𝝃∕𝜔,𝜔)𝑒𝑖𝝃⋅𝒙d𝝃
]

𝜎♯(𝜔)|𝜔|−𝑚d𝜔.

ow, we can see that the integration inside brackets [⋯] becomes the Fourier inversion with respect to 𝝃 and 𝒙.

Step 3. Because of the Fourier inversion, it is natural to assume that the unknown function 𝛾 has a separation-of-variables form as

𝛾♯𝑓 ,𝜌(𝝃∕𝜔,𝜔) ∶= 𝑓 (𝝃)𝜌♯(𝜔), (3)

with using an arbitrary function 𝜌 ∈ (R). Namely, it is composed of a principal factor 𝑓 containing the target function 𝑓 , and an
auxiliary factor 𝜌♯ set only for convergence of the integration in 𝜔. Then, we have

𝑆[𝛾𝑓,𝜌](𝒙) = (2𝜋)𝑚−1 ∫R

[

1
(2𝜋)𝑚 ∫R𝑚

𝑓 (𝝃)𝑒𝑖𝝃⋅𝒙d𝝃
]

𝜎♯(𝜔)𝜌♯(𝜔)|𝜔|−𝑚d𝜔

= ((𝜎, 𝜌)) 1
(2𝜋)𝑚 ∫R𝑚

𝑓 (𝝃)𝑒𝑖𝝃⋅𝒙d𝝃d𝜔

= ((𝜎, 𝜌))𝑓 (𝒙),

where we put

((𝜎, 𝜌)) ∶= (2𝜋)𝑚−1 ∫R
𝜎♯(𝜔)𝜌♯(𝜔)|𝜔|−𝑚d𝜔.

In other words, the separation-of-variables expression 𝛾𝑓,𝜌 is a particular solution to the integral equation 𝑆[𝛾] = 𝑐𝑓 with factor
𝑐 = ((𝜎, 𝜌)) ∈ C.

Furthermore, 𝛾𝑓,𝜌 is the ridgelet transform because it is rewritten as

𝛾♯𝑓 ,𝜌(𝒂, 𝜔) = 𝑓 (𝜔𝒂)𝜌♯(𝜔),

and thus calculated as

𝛾(𝒂, 𝑏) = 1
2𝜋 ∫R

𝑓 (𝜔𝒂)𝜌♯(𝜔)𝑒−𝑖𝜔𝑏d𝜔

= 1
2𝜋 ∫R𝑚×R

𝑓 (𝒙)𝜌♯(𝜔)𝑒𝑖𝜔(𝒂⋅𝒙−𝑏)d𝒙d𝜔

= ∫R𝑚×R
𝑓 (𝒙)𝜌(𝒂 ⋅ 𝒙 − 𝑏)d𝒙,

which is exactly the definition of the ridgelet transform 𝑅[𝑓 ; 𝜌].
In conclusion, the separation-of-variables expression (3) is the way to naturally find the ridgelet transform. We note that Steps 1

and 2 can be understood as the change-of-frame from the frame spanned by neurons {𝒙 ↦ 𝜎(𝒂 ⋅ 𝒙 − 𝑏) ∣ (𝒂, 𝑏) ∈ R𝑚 × R},
with which we are less familiar, to the frame spanned by (the tensor product of an auxiliary function and the) plane wave
{𝒙 ↦ 𝜎♯(𝜔)𝑒𝑖𝝃⋅𝒙 ∣ (𝝃, 𝜔) ∈ R𝑚 × R}, with which we are much familiar. Hence, in particular, the map 𝛾(𝒂, 𝑏) ↦ 𝛾♯(𝒂∕𝜔,𝜔)|𝜔|−𝑚
can be understood as the associated coordinate transformation.

3. Case I: NN on finite field F𝒑 ∶= Z∕Z𝒑

As one of the simplest applications, we showcase the results by Yamasaki et al. (2023), a neural network on the finite field
F𝑝 ∶= Z∕𝑝Z ≅ {0, 1,… , 𝑝 − 1 mod 𝑝} (with prime number 𝑝). This study aimed to design a quantum algorithm that efficiently
computes the ridgelet transform, and the authors developed this example based on the demand to represent all data and parameters
in finite qubits. To be precise, the authors dealt with functions on discrete space F𝑚𝑝 , as a discretization of functions on a continuous
space R𝑚.
5
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3.1. Fourier transform

For any positive integers 𝑛, 𝑚, let Z𝑚𝑛 ∶= (Z∕𝑛Z)𝑚 denote the product of cyclic groups. We note that the set of all real functions 𝑓
on Z𝑚𝑛 is identified with the (𝑛 × 𝑚)-dimensional real vector space, i.e. {𝑓 ∶ Z𝑚𝑛 → R} ≅ R𝑛×𝑚, because each value 𝑓 (𝑖, 𝑗) of function
𝑓 at (𝑖, 𝑗) ∈ Z𝑚𝑛 can be identified with the (𝑖, 𝑗)th component 𝑎𝑖𝑗 of vector 𝒂 = (𝑎𝑖𝑗 ) ∈ R𝑛×𝑚. In particular, 𝐿2(Z𝑚𝑛 ) = R𝑛×𝑚.

We use the Fourier transform on a product of cyclic groups as below.

Definition 3.1 (Fourier Transform on Z𝑚𝑛 ). For any 𝑓 ∈ 𝐿2(Z𝑚𝑛 ), put

𝑓 (𝝃) ∶=
∑

𝒙∈Z𝑚𝑛

𝑓 (𝒙)𝑒−2𝜋𝑖𝝃⋅𝒙∕𝑛, 𝝃 ∈ Z𝑚𝑛 .

Theorem 3.1 (Inversion Formula). For any 𝑓 ∈ 𝐿2(Z𝑚𝑛 ),

𝑓 (𝒙) = 1
|Z𝑚𝑛 |

∑

𝝃∈Z𝑚𝑛

𝑓 (𝝃)𝑒2𝜋𝑖𝝃⋅𝒙∕𝑛, 𝒙 ∈ Z𝑚𝑛 .

The proof is immediate from the so-called orthogonality of characters, an identity ∑

𝑔∈Z𝑛 𝑒
2𝜋𝑖𝑔(𝑡−𝑠)∕𝑛 = |Z𝑛|𝛿𝑡𝑠 (𝑡, 𝑠 ∈ Z𝑛), where 𝛿𝑡𝑠

eing the Kronecker’s 𝛿.
We note that despite the Fourier transform itself can be defined on any cyclic group Z𝑛, namely 𝑛 needs not be prime, a finite

ield F𝑝(= Z𝑝) is assumed to perform the change-of-variables step.

.2. Network design

Remarkably, the F𝑝-version of arguments is obtained by formally replacing every integration in the R-version of arguments with
ummation.

efinition 3.2 (NN on F𝑚𝑝 ). For any functions 𝛾 ∈ 𝐿2(F𝑚𝑝 × F𝑝) and 𝜎 ∈ 𝐿∞(F𝑝), put

𝑆[𝛾](𝒙) ∶=
∑

(𝒂,𝑏)∈F𝑚𝑝 ×F𝑝

𝛾(𝒂, 𝑏)𝜎(𝒂 ⋅ 𝒙 − 𝑏), 𝒙 ∈ F𝑚𝑝

Again, in Yamasaki et al. (2023), it is introduced as a discretized version of a function on a continuous space R𝑚.

.3. Ridgelet transform

heorem 3.2 (Reconstruction Formula). For any function 𝜌 ∈ 𝐿∞(F𝑝), put

𝑅[𝑓 ; 𝜌](𝒂, 𝑏) ∶=
∑

𝒙∈F𝑚𝑝

𝑓 (𝒙)𝜌(𝒂 ⋅ 𝒙 − 𝑏), (𝒂, 𝑏) ∈ F𝑚𝑝 × F𝑝

((𝜎, 𝜌)) ∶= 1
|F𝑝|𝑚−1

∑

𝜔∈F𝑝

𝜎♯(𝜔)𝜌♯(𝜔).

Then, for any 𝑓 ∈ 𝐿2(F𝑚𝑝 ),

𝑆[𝑅[𝑓 ; 𝜌]] = ((𝜎, 𝜌))𝑓.

In other words, the fully-connected network on finite field F𝑚𝑝 can strictly represent any square integrable function on F𝑚𝑝 .
Finally, the following proof shows that a new example of neural networks can be obtained by systematically following the same

hree steps as in the original arguments.

ketch Proof. Step 1. Turn to the Fourier expression:

𝑆[𝛾](𝒙) ∶=
∑

(𝒂,𝑏)∈F𝑚𝑝 ×F𝑝

𝛾(𝒂, 𝑏)𝜎(𝒂 ⋅ 𝒙 − 𝑏)

= 1
|F𝑝|

∑

(𝒂,𝜔)∈F𝑚𝑝 ×F𝑝

𝛾♯(𝒂, 𝜔)𝜎(𝜔)𝑒2𝜋𝑖𝜔𝒂⋅𝒙∕𝑝

Step 2. Change variables 𝝃 = 𝜔𝒂

= 1
|F𝑝|

∑

(𝝃,𝜔)∈F𝑚𝑝 ×F𝑝

𝛾♯(𝝃∕𝜔,𝜔)𝜎(𝜔)𝑒2𝜋𝑖𝝃⋅𝒙∕𝑝

Step 3. Put separation-of-variables form 𝛾♯(𝝃∕𝜔,𝜔) = 𝑓 (𝝃)𝜌♯(𝜔)
6
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⎛

⎜

⎜

⎝

|F𝑝|𝑚−1
∑

𝜔∈F𝑝

𝜎♯(𝜔)𝜌♯(𝜔)
⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
|F𝑝|𝑚

∑

𝝃∈F𝑚𝑝

𝑓 (𝝃)𝑒2𝜋𝑖𝝃⋅𝒙∕𝑝
⎞

⎟

⎟

⎠

= ((𝜎, 𝜌))𝑓 (𝒙),

nd we can verify 𝛾 = 𝑅[𝑓 ; 𝜌]. □

4. Case II: Group convolutional NN on Hilbert space 

Next, we showcase the results by Sonoda et al. (2022b). Since there are various versions of convolutional neural networks (CNNs),
their approximation properties (such as the universality) have been investigated individually depending on the network architecture.
The method presented here defines the generalized group convolutional neural network (GCNN) that encompasses a wide range of
CNNs, and provides a powerful result by unifying the expressivity analysis in a constructive and simple manner by using ridgelet
transforms.

4.1. Fourier transform

Since the input to CNNs is a signal (or a function), the Fourier transform corresponding to a naive integral representation is the
Fourier transform on the space of signals, which is typically an infinite-dimensional space  of functions. Although the Fourier
transform on the infinite-dimensional Hilbert space has been well developed in the probability theory, the mathematics tends to
become excessively advanced for the expected results. One of the important ideas of this study is to induce the Fourier transform of
R𝑚 in a finite-dimensional subspace 𝑚 of  instead of using the Fourier transform on the entire space . To be precise, we simply
take an 𝑚-dimensional orthonormal frame 𝐹𝑚 = {ℎ𝑖}𝑚𝑖=1 of , put the linear span 𝑚 ∶= span𝐹𝑚 = {

∑𝑚
𝑖=1 𝑐𝑖ℎ𝑖 ∣ 𝑐𝑖 ∈ R}, and identify

ach element 𝑓 =
∑

𝑖=1 𝑐𝑖ℎ𝑖 ∈ 𝑚 ⊂  with point 𝒄 = (𝑐1,… , 𝑐𝑚) ∈ R𝑚. Obviously, this embedding depends on the choice of 𝑚-frame
𝐹𝑚, yet drastically simplifies the main theory itself.

Definition 4.1 (Fourier Transform on a Hilbert Space 𝑚 ⊂ ). Let  be a Hilbert space, 𝑚 ⊂  be an 𝑚-dimensional subspace,
nd 𝜆 be the Lebesgue measure induced from R𝑚. Put

𝑓 (𝜉) ∶= ∫𝑚

𝑓 (𝑥)𝑒−𝑖⟨𝑥,𝜉⟩d𝜆(𝑥), 𝜉 ∈ 𝑚

Then, obviously from the construction, we have the following.

heorem 4.1. For any 𝑓 ∈ 𝐿2(𝑚),

1
(2𝜋)𝑚 ∫𝑚

𝑓 (𝜉)𝑒𝑖⟨𝑥,𝜉⟩d𝜆(𝜉) = 𝑓 (𝑥), 𝑥 ∈ 𝑚

4.2. Network design

Another important idea is to deal with various group convolutions in a uniform manner by using the linear representation of
groups.

Definition 4.2 (Generalized Group Convolution). Let 𝐺 be a group,  be a Hilbert space, and 𝑇 ∶ 𝐺 → 𝐺𝐿() be a group
epresentation of 𝐺. The (𝐺, 𝑇 )-convolution is given by

(𝑎 ∗ 𝑥)(𝑔) ∶= ⟨𝑇𝑔−1 [𝑥], 𝑎⟩ , 𝑎, 𝑥 ∈ .

As clarified in Sonoda et al. (2022b), the generalized convolution covers a variety of typical examples such as (1) classical
roup convolution ∫𝐺 𝑥(ℎ)𝑎(ℎ

−1𝑔)dℎ, (2) discrete cyclic convolution for multi-channel digital images, (3) DeepSets, or permutation
equivariant maps, (4) continuous cyclic convolution for signals, and (5) E(𝑛)-equivariant maps.

efinition 4.3 (Group CNN). Let 𝑚 ⊂  be an 𝑚-dimensional subspace equipped with the Lebesgue measure 𝜆. Put

𝑆[𝛾](𝑥)(𝑔) ∶= ∫𝑚×R
𝛾(𝑎, 𝑏)𝜎((𝑎 ∗ 𝑥)(𝑔) − 𝑏)d𝜆(𝑎)d𝑏, 𝑥 ∈ , 𝑔 ∈ 𝐺

Here, the integration runs all the possible convolution filters 𝑎. For the sake of simplicity, however, the domain 𝑚 of filters is
7
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4.3. Ridgelet transform

In the following, 𝑒 ∈ 𝐺 denotes the identity element.

efinition 4.4 ((𝐺, 𝑇 )-Equivariance). A (nonlinear) map 𝑓 ∶  → C𝐺 is (𝐺, 𝑇 )-equivariant when

𝑓 (𝑇𝑔[𝑥])(ℎ) = 𝑓 (𝑥)(𝑔−1ℎ), ∀𝑥 ∈ 𝑚, 𝑔, ℎ ∈ 𝐺

We note that the proposed network is inherently (𝐺, 𝑇 )-equivariant

𝑆[𝛾](𝑇𝑔[𝑥])(ℎ) = 𝑆[𝛾](𝑥)(𝑔−1ℎ), ∀𝑥 ∈ , 𝑔, ℎ ∈ 𝐺.

Definition 4.5 (Ridgelet Transform). For any measurable functions 𝑓 ∶ 𝑚 → C𝐺 and 𝜌 ∶ R → C, put

𝑅[𝑓 ; 𝜌](𝑎, 𝑏) ∶= ∫𝑚

𝑓 (𝑥)(𝑒)𝜌(⟨𝑎, 𝑥⟩ − 𝑏)d𝜆(𝑥).

It is remarkable that the product of 𝑎 and 𝑥 inside the 𝜌 is not convolution 𝑎 ∗ 𝑥 but scalar product ⟨𝑎, 𝑥⟩. This is essentially
because (1) 𝑓 will be assumed to be group equivariant, and (2) the network is group equivariant by definition.

Theorem 4.2 (Reconstruction Formula). Suppose that 𝑓 is (𝐺, 𝑇 )-equivariant and 𝑓 (∙)(𝑒) ∈ 𝐿2(𝑚), then 𝑆[𝑅[𝑓 ; 𝜌]] = ((𝜎, 𝜌))𝑓 .

In other words, a continuous GCNN can represent any square-integrable group-equivariant function. Again, the proof is performed
by systematically following the three steps as below.

Sketch Proof. Step 1. Turn to a Fourier expression:

𝑆[𝛾](𝑥)(𝑔) = ∫𝑚×R
𝛾(𝑎, 𝑏)𝜎(⟨𝑇𝑔−1 [𝑥], 𝑎⟩ − 𝑏)d𝑎d𝑏

= 1
2𝜋 ∫𝑚×R

𝛾♯(𝑎, 𝜔)𝜎♯(𝜔)𝑒𝑖𝜔⟨𝑇𝑔−1 [𝑥],𝑎⟩ d𝑎d𝜔

Step 2. Change variables (𝑎, 𝜔) = (𝜉∕𝜔,𝜔) with d𝑎d𝜔 = |𝜔|−𝑚d𝜉d𝜔:

= 1
2𝜋 ∫𝑚×R

𝛾♯(𝜉∕𝜔,𝜔)𝜎♯(𝜔)𝑒𝑖⟨𝑇𝑔−1 [𝑥],𝜉⟩ |𝜔|−𝑚d𝜉d𝜔.

Step 3. Put separation-of-variables form 𝛾♯𝑓 ,𝜌(𝜉∕𝜔,𝜔) ∶= 𝑓 (𝜉)(𝑒)𝜌♯(𝜔)

= 1
2𝜋 ∫𝑚

𝑓 (𝜉)(𝑒)𝑒𝑖⟨𝑇𝑔−1 [𝑥],𝜉⟩ d𝜆(𝜉)∫R
𝜎♯(𝜔)𝜌♯(𝜔)|𝜔|−𝑚d𝜔

= ((𝜎, 𝜌))𝑓 (𝑥)(𝑔),

nd we can verify 𝛾𝑓,𝜌 = 𝑅[𝑓 ; 𝜌]. □

4.4. Literature in geometric deep learning

General convolution networks for geometric/algebraic domains have been developed for capturing the invariance/equivariance
to the symmetry in a data-efficient manner (Bruna and Mallat, 2013; Cohen and Welling, 2016; Zaheer et al., 2017; Kondor and
Trivedi, 2018; Cohen et al., 2019; Kumagai and Sannai, 2020). To this date, quite a variety of convolution networks have been
proposed for grids, finite sets, graphs, groups, homogeneous spaces and manifolds. We refer to Bronstein et al. (2021) for a detailed
survey on the so-called geometric deep learning.

Since a universal approximation theorem (UAT) is a corollary of a reconstruction formula, 𝑆[𝑅[𝑓 ; 𝜌]] = ((𝜎, 𝜌))𝑓 , the 3-steps
Fourier expression method have provided a variety of UATs for 𝜎(𝑎𝑥 − 𝑏)-type networks in a unified manner. Here, we remark that
the UATs of individual convolution networks have already shown (Maron et al., 2019; Zhou, 2020; Yarotsky, 2022). However, in
addition to above mentioned advantages, the wide coverage of activation functions 𝜎 is also another strong advantage. In particular,
we do not need to rely on the specific features of ReLU, nor need to rely on Taylor expansions/density arguments/randomized
assumptions to deal with nonlinear activation functions.

5. Case III: NN on noncompact symmetric space 𝑿 = 𝑮∕𝑲

Then, we showcase the results by Sonoda et al. (2022a). When the data is known to be on a certain manifold, it is natural to
consider developing NNs on the manifold, in order to explicitly incorporate the inductive bias. Since there are no such thing as the
standard inner products or affine mappings on manifolds, various NNs have been proposed based on geometric considerations and
implementation constraints. The main idea of this study is to start from the Fourier transform on a manifold and induce a NN on
the manifold and its reconstruction formula. On compact groups such as spheres S𝑚−1, the Fourier analysis is well known as the
Peter–Weyl theorem, but in this study, the authors focused on noncompact symmetric spaces 𝐺∕𝐾 such as hyperbolic space H𝑚

and space P𝑚 of positive definite matrices and developed NNs based on the Helgason–Fourier transform on noncompact symmetric
space.
8
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Fig. 1. Poincare Disk B2 is a noncompact symmetric space 𝑆𝑈 (1, 1)∕𝑆𝑂(2). Poincaré disk B2, boundary 𝜕B2, point 𝒙 (magenta), horocycle 𝜉(𝒚, 𝒖) (magenta)
hrough point 𝒚 tangent to the boundary at 𝒖, and two geodesics (solid black) orthogonal to the boundary at 𝒖 through 𝒐 and 𝒙 respectively. The signed composite
istance ⟨𝒚, 𝒖⟩ from the origin 𝒐 to the horocycle 𝜉(𝒚, 𝒖) can be visualized as the Riemannian distance from 𝒐 to point 𝒚0. Similarly, the distance between point

𝒙 and horocycle 𝜉(𝒚, 𝒖) is understood as the Riemannian distance between 𝒙 and 𝒚𝑥 along the geodesic, or equivalently, 𝒙0 and 𝒚0. See Appendix A for more
details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.1. Noncompact symmetric space 𝐺∕𝐾

We refer to Helgason (1984, Introduction) and Helgason (2008, Chapter III). A noncompact symmetric space is a homogeneous
space 𝐺∕𝐾 with nonpositive sectional curvature on which 𝐺 acts transitively. Two important examples are hyperbolic space H𝑚

(Fig. 1) and SPD manifold P𝑚. See also Appendices A and B for more details on these spaces.
Let 𝐺 be a connected semisimple Lie group with finite center, and let 𝐺 = 𝐾𝐴𝑁 be its Iwasawa decomposition. Namely, it is a

unique diffeomorphic decomposition of 𝐺 into subgroups 𝐾,𝐴, and 𝑁 , where 𝐾 is maximal compact, 𝐴 is maximal abelian, and 𝑁
is maximal nilpotent. For example, when 𝐺 = 𝐺𝐿(𝑚,R) (general linear group), then 𝐾 = 𝑂(𝑚) (orthogonal group), 𝐴 = 𝐷+(𝑚) (all
positive diagonal matrices), and 𝑁 = 𝑇1(𝑚) (all upper triangular matrices with ones on the diagonal).

Let d𝑔, d𝑘, d𝑎, and d𝑛 be left 𝐺-invariant measures on 𝐺,𝐾,𝐴, and 𝑁 respectively.
Let g, k, a, and n be the Lie algebras of 𝐺,𝐾,𝐴, and 𝑁 respectively. By a fundamental property of abelian Lie algebra, both a and

ts dual a∗ are the same dimensional vector spaces, and thus they can be identified with R𝑟 for some 𝑟, namely a = a∗ = R𝑟. We call
𝑟 ∶= dim a the rank of 𝑋. For example, when 𝐺 = 𝐺𝐿(𝑚,R), then g = gl𝑚 = R𝑚×𝑚 (all 𝑚×𝑚 real matrices), k = o𝑚 (all skew-symmetric
matrices), a = 𝐷(𝑚) (all diagonal matrices), and n = 𝑇0(𝑚) (all strictly upper triangular matrices).

Definition 5.1. Let 𝑋 ∶= 𝐺∕𝐾 be a noncompact symmetric space, namely, a Riemannian manifold composed of all the left cosets

𝑋 ∶= 𝐺∕𝐾 ∶= {𝑥 = 𝑔𝐾 ∣ 𝑔 ∈ 𝐺}.

Using the identity element 𝑒 of 𝐺, let 𝑜 = 𝑒𝐾 be the origin of 𝑋. By the construction of 𝑋, group 𝐺 acts transitively on 𝑋, and let
[𝑥] ∶= 𝑔ℎ𝐾 (for 𝑥 = ℎ𝐾) denote the 𝐺-action of 𝑔 ∈ 𝐺 on 𝑋. Specifically, any point 𝑥 ∈ 𝑋 can always be written as 𝑥 = 𝑔[𝑜] for
ome 𝑔 ∈ 𝐺. Let d𝑥 denote the left 𝐺-invariant measure on 𝑋.

xample 5.1 (Hyperbolic Space H𝑚 = 𝑆𝑂+(1, 𝑚)∕𝑂(𝑚)). It is used for embedding words and tree-structured dataset.

xample 5.2 (SPD Manifold P𝑚 = 𝐺𝐿(𝑚)∕𝑂(𝑚)). It is a manifold of positive definite matrices, such as covariance matrices.

.2. Boundary 𝜕𝑋, horosphere 𝜉, and vector-valued composite distance ⟨𝑥, 𝑢⟩

We further introduce three geometric objects in noncompact symmetric space 𝐺∕𝑋. In comparison to Euclidean space R𝑚, the
oundary 𝜕𝑋 corresponds to ‘‘the set of all infinite points’’ lim𝑟→+∞{𝑟𝒖 ∣ |𝒖| = 1, 𝒖 ∈ R𝑚}, a horosphere 𝜉 through point 𝑥 ∈ 𝑋 with
ormal 𝑢 ∈ 𝜕𝑋 corresponds to a straight line 𝝃 through point 𝒙 ∈ R𝑚 with normal 𝒖 ∈ S𝑚−1, and the vector distance ⟨𝑥, 𝑢⟩ between
rigin 𝑜 ∈ 𝑋 and horosphere 𝜉(𝑥, 𝑢) corresponds to the Riemannian distance between origin 𝟎 ∈ R𝑚 and straight line 𝝃(𝒙, 𝒖).

efinition 5.2. Let 𝑀 ∶= 𝐶𝐾 (𝐴) ∶= {𝑘 ∈ 𝐾 ∣ 𝑘𝑎 = 𝑎𝑘 for all 𝑎 ∈ 𝐴} be the centralizer of 𝐴 in 𝐾, and let

𝜕𝑋 ∶= 𝐾∕𝑀 ∶= {𝑢 = 𝑘𝑀 ∣ 𝑘 ∈ 𝐾}
9
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be the boundary (or ideal sphere) of 𝑋, which is known to be a compact manifold. Let d𝑢 denote the uniform probability measure
n 𝜕𝑋.

For example, when 𝐾 = 𝑂(𝑚) and 𝐴 = 𝐷+(𝑚), then 𝑀 = 𝐷±1 (the subgroup of 𝐾 consisting of diagonal matrices with entries
1).

efinition 5.3. Let

𝛯 ∶= 𝐺∕𝑀𝑁 ∶= {𝜉 = 𝑔𝑀𝑁 ∣ 𝑔 ∈ 𝐺}

e the space of horospheres.

Here, basic horospheres are: An 𝑁-orbit 𝜉𝑜 ∶= 𝑁[𝑜] = {𝑛[𝑜] ∣ 𝑛 ∈ 𝑁}, which is a horosphere passing through the origin 𝑥 = 𝑜 with
ormal 𝑢 = 𝑒𝑀 ; and 𝑘𝑎[𝜉𝑜] = 𝑘𝑎𝑁[𝑜], which is a horosphere through point 𝑥 = 𝑘𝑎[𝑜] with normal 𝑢 = 𝑘𝑀 . In fact, any horosphere
an be represented as 𝜉(𝑘𝑎𝑛[𝑜], 𝑘𝑀) since 𝑘𝑎𝑁 = 𝑘𝑎𝑛𝑁 for any 𝑛 ∈ 𝑁 . We refer to Helgason (2008, Ch.I, § 1) and Bartolucci et al.
2021, § 3.5) for more details on the horospheres and boundaries.

efinition 5.4. As a consequence of the Iwasawa decomposition, for any 𝑔 ∈ 𝐺 there uniquely exists an 𝑟-dimensional vector
(𝑔) ∈ a satisfying 𝑔 ∈ 𝐾𝑒𝐻(𝑔)𝑁 . For any (𝑥, 𝑢) = (𝑔[𝑜], 𝑘𝑀) ∈ 𝑋 × 𝜕𝑋, put

⟨𝑥, 𝑢⟩ ∶= −𝐻(𝑔−1𝑘) ∈ a ≅ R𝑟,

hich is understood as the 𝑟-dimensional vector-valued distance, called the composite distance, from the origin 𝑜 ∈ 𝑋 to the
orosphere 𝜉(𝑥, 𝑢) through point 𝑥 with normal 𝑢.

Here, the vector-valued distance means that the 𝓁2-norm coincides with the Riemannian length, that is, |⟨𝑥, 𝑢⟩| = |𝑑(𝑜, 𝜉(𝑥, 𝑢))|.
e refer to Helgason (2008, Ch.II, § 1, 4) and Kapovich et al. (2017, § 2) for more details on the vector-valued composite distance.

.3. Fourier transform

Based on the preparations so far, we introduce the Fourier transform on 𝐺∕𝐾, known as the Helgason–Fourier transform. Let
be the Weyl group of 𝐺∕𝐾, and let |𝑊 | denote its order. Let 𝒄(𝜆) be the Harish-Chandra 𝒄-function for 𝐺. We refer to Helgason

1984, Theorem 6.14, Ch. IV) for the closed-form expression of the 𝒄-function.

efinition 5.5 (Helgason–Fourier Transform). For any measurable function 𝑓 on 𝑋, put

𝑓 (𝜆, 𝑢) ∶= ∫𝑋
𝑓 (𝑥)𝑒(−𝑖𝜆+𝜚)⟨𝑥,𝑢⟩d𝑥, (𝜆, 𝑢) ∈ a∗ × 𝜕𝑋

ith a certain constant vector 𝜚 ∈ a∗. Here, the exponent (−𝑖𝜆 + 𝜚)⟨𝑥, 𝑢⟩ is understood as the action of functional −𝑖𝜆 + 𝜚 ∈ a∗ on a
ector ⟨𝑥, 𝑢⟩ ∈ a.

This is understood as a ‘‘Fourier transform’’ because 𝑒(−𝑖𝜆+𝜚)⟨𝑥,𝑢⟩ is the eigenfunction of Laplace–Beltrami operator 𝛥𝑋 on 𝑋.

heorem 5.1 (Inversion Formula). For any square integrable function 𝑓 ∈ 𝐿2(𝑋),

𝑓 (𝑥) = 1
|𝑊 |

∫a∗×𝜕𝑋
𝑓 (𝜆, 𝑢)𝑒(𝑖𝜆+𝜚)⟨𝑥,𝑢⟩ d𝜆d𝑢

|𝒄(𝜆)|2
, 𝑥 ∈ 𝑋.

We refer to Helgason (2008, Theorems 1.3 and 1.5, Ch. III) for more details on the inversion formula.

5.4. Network design

In accordance with the geometric perspective, it is natural to define the network as below.

Definition 5.6 (NN on Noncompact Symmetric Space 𝐺∕𝐾). For any measurable functions 𝜎 ∶ R → C and 𝛾 ∶ a∗ × 𝜕𝑋 × R → C, put

𝑆[𝛾](𝑥) ∶= ∫a∗×𝜕𝑋×R
𝛾(𝑎, 𝑢, 𝑏)𝜎(𝑎⟨𝑥, 𝑢⟩ − 𝑏)𝑒𝜚⟨𝑥,𝑢⟩d𝑎d𝑢d𝑏, 𝑥 ∈ 𝐺∕𝐾.

Remarkably, the scalar product 𝒂 ⋅ 𝒙 (or 𝑎𝒖 ⋅ 𝒙 in polar coordinate) in the Euclidean setting is replaced with a distance function
𝑎⟨𝑥, 𝑢⟩ in the manifold setting. In Sonoda et al. (2022a), the authors instantiate two important examples as below.

Example 5.3 (Continuous Horospherical Hyperbolic NN). On the Poincare ball model B𝑚 ∶= {𝒙 ∈ R𝑚 ∣ |𝒙| < 1} equipped with the
Riemannian metric g = 4(1 − |𝒙|)−2

∑𝑚
𝑖=1 d𝑥𝑖 ⊗ d𝑥𝑖,

𝑆[𝛾](𝒙) ∶= ∫R×𝜕B𝑚×R
𝛾(𝑎, 𝒖, 𝑏)𝜎(𝑎⟨𝒙, 𝒖⟩ − 𝑏)𝑒𝜚⟨𝒙,𝒖⟩d𝑎d𝒖d𝑏, 𝒙 ∈ B𝑚

𝜚 = (𝑚 − 1)∕2, ⟨𝒙, 𝒖⟩ = log
(

1−|𝒙|2𝐸
2

)

, (𝒙, 𝒖) ∈ B𝑚 × 𝜕B𝑚
10

|𝒙−𝒖|𝐸
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Example 5.4 (Continuous Horospherical SPD Net). On the SPD manifold P𝑚,

𝑆[𝛾](𝑥) ∶= ∫R𝑚×𝜕P𝑚×R
𝛾(𝒂, 𝑢, 𝑏)𝜎(𝒂 ⋅ ⟨𝑥, 𝑢⟩ − 𝑏)𝑒𝝔⋅⟨𝑥,𝑢⟩d𝒂d𝑢d𝑏, 𝑥 ∈ P𝑚

𝝔 = (− 1
2 ,… ,− 1

2 ,
𝑚−1
4 ), ⟨𝒙, 𝒖⟩ = 1

2 log 𝜆
(

𝑢𝑥𝑢⊤
)

, (𝑥, 𝑢) ∈ P𝑚 × 𝜕P𝑚 where 𝜆(𝑥) denotes the diagonal in the Cholesky decomposition of 𝑥.

.5. Ridgelet transform

efinition 5.7 (Ridgelet Transform). For any measurable functions 𝑓 ∶ 𝑋 → C and 𝜌 ∶ R → C, put

𝑅[𝑓 ; 𝜌](𝑎, 𝑢, 𝑏) ∶= ∫𝑋
𝒄[𝑓 ](𝑥)𝜌(𝑎⟨𝑥, 𝑢⟩ − 𝑏)𝑒𝜚⟨𝑥,𝑢⟩d𝑥,

𝒄[𝑓 ](𝑥) ∶= ∫a∗×𝜕𝑋
𝑓 (𝜆, 𝑢)𝑒(𝑖𝜆+𝜚)⟨𝑥,𝑢⟩ d𝜆d𝑢

|𝑊 | |𝒄(𝜆)|4
,

((𝜎, 𝜌)) ∶=
|𝑊 |

2𝜋 ∫R
𝜎♯(𝜔)𝜌♯(𝜔)|𝜔|−𝑟d𝜔.

Here 𝒄[𝑓 ] is defined as a multiplier satisfying 𝒄[𝑓 ](𝜆, 𝑢) = 𝑓 (𝜆, 𝑢)|𝒄(𝜆)|−2.

heorem 5.2 (Reconstruction Formula). Let 𝜎 ∈  ′(R), 𝜌 ∈ (R). Then, for any square integrable function 𝑓 on 𝑋, we have

𝑆[𝑅[𝑓 ; 𝜌]](𝑥) = ∫a∗×𝜕𝑋×R
𝑅[𝑓 ; 𝜌](𝑎, 𝑢, 𝑏)𝜎(𝑎⟨𝑥, 𝑢⟩ − 𝑏)𝑒𝜚⟨𝑥,𝑢⟩d𝑎d𝑢d𝑏 = ((𝜎, 𝜌))𝑓 (𝑥).

In other words, the fully-connected network on noncompact symmetric space 𝐺∕𝐾 can represent any square-integrable function.
Again, the proof is performed by systematically following the three steps as below.

Sketch Proof. We identify the scale parameter 𝑎 ∈ a∗ with vector 𝒂 ∈ R𝑟. Step 1. Turn to a Fourier expression:

𝑆[𝛾](𝑥) ∶= ∫R𝑟×𝜕𝑋×R
𝛾(𝒂, 𝑢, 𝑏)𝜎(𝒂 ⋅ ⟨𝑥, 𝑢⟩ − 𝑏)𝑒𝜚⟨𝑥,𝑢⟩d𝒂d𝑢d𝑏

= 1
2𝜋 ∫R𝑟×𝜕𝑋×R

𝛾♯(𝒂, 𝑢, 𝜔)𝜎♯(𝜔)𝑒(𝑖𝜔𝒂+𝜚)⟨𝑥,𝑢⟩d𝒂d𝑢d𝜔

Step 2. Change variables (𝒂, 𝜔) = (𝝀∕𝜔,𝜔) with d𝒂d𝜔 = |𝜔|−𝑟d𝝀d𝜔:

= 1
2𝜋 ∫R

[

∫a∗×𝜕𝑋
𝛾♯(𝜆∕𝜔, 𝑢, 𝜔)𝑒(𝑖𝜆+𝜚)⟨𝑥,𝑢⟩d𝜆d𝑢

]

𝜎♯(𝜔)|𝜔|−𝑟d𝜔.

Step 3. Put separation-of-variables form 𝛾♯𝑓 ,𝜌(𝜆∕𝜔, 𝑢, 𝜔) = 𝑓 (𝜆, 𝑢)𝜌♯(𝜔)|𝒄(𝜆)|−2

=
(

|𝑊 |

2𝜋 ∫R
𝜎♯(𝜔)𝜌♯(𝜔)|𝜔|−𝑟d𝜔

)(

∫a∗×𝜕𝑋
𝑓 (𝜆, 𝑢)𝑒(𝑖𝜆+𝜚)⟨𝑥,𝑢⟩ d𝜆d𝑢

|𝑊 | |𝒄(𝜆)|2

)

= ((𝜎, 𝜌))𝑓 (𝑥),

nd we can verify 𝛾𝑓,𝜌 = 𝑅[𝑓 ; 𝜌]. □

5.6. Literature in hyperbolic neural networks

The hyperbolic neural network (HNN) (Ganea et al., 2018; Gulcehre et al., 2019; Shimizu et al., 2021) is another emerging
direction of geometric deep learning, inspired by the empirical observations that some datasets having tree or hierarchical structure
can be efficiently embedded into hyperbolic spaces (Krioukov et al., 2010; Nickel and Kiela, 2017, 2018; Sala et al., 2018). We
note that designing a FC layer 𝜎(⟨𝑎, 𝑥⟩− 𝑏) on manifold 𝑋 is less trivial, because neither scalar product ⟨𝑎, 𝑥⟩, bias subtraction −𝑏, nor
lementwise activation of 𝜎 is trivially defined on 𝑋 in general, and thus we have to face those primitive issues.

The design concept of the original HNN (Ganea et al., 2018) is to reconstruct basic operations in the ordinary neural networks
uch as linear maps, bias translations, pointwise nonlinearities and softmax layers by using the Gyrovector operations in a tractable
nd geometric manner. For example, in HNN++ by Shimizu et al. (2021), the Poincaré multinomial logistic regression (MLR) layer
(𝒙) and fully-connected (FC) layer  (𝒙), corresponding to the 1-affine layer 𝒂 ⋅ 𝒙 − 𝑏 and 𝑘-affine layer 𝐴⊤𝒙 − 𝒃 without activation
espectively, are designed as nonlinear maps 𝑣 ∶ H𝑚 → R and  ∶ H𝑚 → H𝑛 so that 𝑣(𝒙;𝒂, 𝑏) coincides with the distance between
utput 𝒚 =  (𝒙; {𝒂𝑖, 𝑏𝑖}𝑖∈[𝑛]) and Poincaré hyperplane 𝐻(𝑜, 𝒆𝒂,𝑏). Here, a Poincaré hyperplane 𝐻(𝒙, 𝒛) is defined as the collection of
ll geodesics through point 𝒙 and normal to 𝒛. Furthermore, they are designed so that the discriminative hyperplane coincides a
oincaré hyperplane. The nonlinear activation function 𝜎 ∶ R𝑚 → R𝑛 is cast as a map 𝜎 ∶ H𝑚 → H𝑘 via lifting 𝜎(𝒙) ∶= exp0 ◦ 𝜎◦ log0(𝒙)
or any 𝒙 ∈ H𝑚. However, in practice, activation can be omitted since the FC layer is inherently nonlinear.

In this study, on the other hand, we take 𝑋 to be a noncompact symmetric space 𝐺∕𝐾, which is a generalized version of the
yperbolic space H𝑚. Following the philosophy of the Helgason–Fourier transform, we regard the scalar product 𝒖 ⋅ 𝒙 of unit vector
∈ S𝑚−1 and point 𝒙 ∈ R𝑚 as the signed distance between the origin 𝒐 and plane 𝜉(𝒙, 𝒖) through point 𝒙 with normal 𝒖. Then,
11
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Fig. 2. The Euclidean fully-connected layer 𝜎(𝒂 ⋅ 𝒙 − 𝑏) is recast as the signed distance 𝑑(𝒙, 𝜉) from a point 𝒙 to a hyperplane 𝜉(𝒚, 𝒖) followed by nonlinearity
(𝑟∙), where 𝒚 satisfies 𝑟𝒚 ⋅ 𝒖 = 𝑏 and 𝜉(𝒚, 𝒖) passes through the point 𝒚 with normal 𝒖.

e recast it to the vector-valued distance, denoted ⟨𝑢, 𝑥⟩, between the origin 𝑜 and horocycle 𝜉(𝑥, 𝑢) through point 𝑥 with normal
. As a result, we can naturally define bias subtraction −𝑏 and elementwise activation of 𝜎 ∶ R → R because the signed distance is
dentified with a vector.

More geometrically, 𝒖 ⋅ 𝒙− 𝑏 in R𝑚 is understood as the distance between point 𝒙 and plane 𝜉 satisfying 𝒖 ⋅ 𝒙− 𝑏 = 0 (see Fig. 2).
imilarly, ⟨𝑢, 𝑥⟩ − 𝑏 is understood as the distance between point 𝑥 and horocycle 𝜉 satisfying ⟨𝑢, 𝑥⟩ − 𝑏 = 0. Hence, as a general
rinciple, we may formulate a versatile template of affine layers on 𝑋 as

𝑆[𝛾](𝑥) ∶= ∫R×𝛯
𝛾(𝑎, 𝜉)𝜎(𝑎𝑑(𝑥, 𝜉))d𝑎d𝜉. (4)

or example, in the original HNN, the Poincaré hyperplane 𝐻 is employed as the geometric object. If we have a nice coordinates
uch as (𝑠, 𝑡) ∈ R𝑚 ×R𝑚 satisfying 𝑑(𝑥(𝑡), 𝜉(𝑠)) = 𝑡− 𝑠, then we can turn it to the Fourier expression and hopefully obtain the ridgelet
ransform.

The strengths of our results are summarized as that we obtained the ridgelet transform in a unified manner for a wide class of
nput domain 𝑋 in a geometric manner, i.e., independent of the coordinates; in particular, that it is the first result to define the
eural network and obtained the ridgelet transform on noncompact space.

. Case IV: Pooling layer and 𝒅-plane ridgelet transform

Finally, we present several new results. Technically, we consider networks with multivariate activation functions 𝜎 ∶ R𝑘 → C. In
ll the sections up to this point, we have considered univariate activation function 𝜎 ∶ R → C (i.e. 𝑘 = 1). In the context of neural
etworks, it is understood as a mathematical model of pooling layers such as

𝜎(𝒃) = 1
𝑘

𝑘
∑

𝑖=1
𝑏𝑖 (average pooling),

𝜎(𝒃) = max
𝑖∈[𝑘]

{𝑏𝑖} (max pooling), and

𝜎(𝒃) = |𝒃|𝑝 (𝓁𝑝-norm).

Meanwhile, in the context of sparse signal processing in the 2000s such as Donoho (2001) and Rubin (2004) (see also Section 7.2),
it can also be understood as the ridgelet transform corresponding to the so-called 𝑑-plane transform (see also Section 6.1).

As mentioned in Section 1.3, the ridgelet transforms have profound relations to the Radon and wavelet transforms. In the language
of probability theory, a Radon transform is understood as a marginalization, and the traditional problem of Johann Radon is the
nverse problem of reconstructing the original joint distribution from several marginal distributions. Hence, depending on the choice
f variables to be marginalized, there are countless different Radon transforms. In other words, the Radon transform can also be
rich source for finding a variety of novel networks and ridgelet transforms. In this section, we derive the ridgelet transform

orresponding to the 𝑑-plane transform. (Nonetheless, the proofs are shown by the 3-steps Fourier expression method.)

dditional notations

Let 𝑚, 𝑑, 𝑘 be positive integers satisfying 𝑚 = 𝑑 + 𝑘; let 𝑀𝑚,𝑘 ∶= {𝐴 ∈ R𝑚×𝑘 ∣ rank 𝐴 = 𝑘} be a set of all full-column-rank
(i.e., injective) matrices equipped with the Lebesgue measure d𝐴 =

⋀

𝑖𝑗 d𝑎𝑖𝑗 ; let 𝑉𝑚,𝑘 ∶= {𝑈 = [𝒖1,… , 𝒖𝑘] ∈ R𝑚×𝑘 ∣ 𝑈⊤𝑈 = 𝐼𝑘} be
he Stiefel manifold of orthonormal 𝑘-frames in R𝑚 equipped with invariant measure d𝑈 ; let 𝑂(𝑘) ∶= {𝑉 ∈ R𝑘 ∣ 𝑉 ⊤𝑉 = 𝐼𝑘} be the
rthogonal group in R𝑘 equipped with invariant measure d𝑉 . In addition, let 𝐺𝑉 ∶= {𝐴 = 𝑎𝑈 ∈ R𝑚×𝑘 ∣ 𝑎 ∈ R , 𝑈 ∈ 𝑉 } be a
12

𝑚,𝑘 + 𝑚,𝑘
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similitude group equipped with the product measure d𝑎d𝑈 . For a rectangular matrix 𝐴 ∈𝑀𝑚,𝑘, we write | det 𝐴| ∶= | det 𝐴⊤𝐴|1∕2 for
short. In the following, we use ⋅̂ and ⋅♯ for the Fourier transforms in 𝒙 ∈ R𝑚 and 𝒃 ∈ R𝑘, respectively. For any 𝑠 ∈ R, let ▵𝑠∕2 denote
the fractional Laplacian defined as a Fourier multiplier: ▵𝑠∕2 [𝑓 ](𝒙) ∶= 1

(2𝜋)𝑚 ∫R𝑚 |𝝃|𝑠𝑓 (𝝃)𝑒𝑖𝝃⋅𝒙d𝝃.

.1. 𝑑-plane transform

The 𝑑-plane transform is a Radon transform that marginalizes a 𝑑-dimensional affine subspace (𝑑-plane) in an 𝑚-dimensional
pace. In the special cases when 𝑑 = 𝑚 − 1 (hyperplane) and 𝑑 = 1 (straight line), they are respectively called the (strict) Radon
ransform and the X-ray transform. The ridgelet transforms to be introduced in this section correspond to 𝑑-plane Radon transform,
nd the classical ridgelet transform corresponds to the strict Radon transform (𝑑 = 𝑚−1). We refer to Chapter 1 of Helgason (2010).

efinition 6.1 (𝑑-plane). A 𝑑-plane 𝝃 ⊂ R𝑚 is a 𝑑-dimensional affine subspace in R𝑚. Here, affine emphasizes that it does not always
ass through the origin 𝒐 ∈ R𝑚. Let 𝐺𝑚,𝑑 denote the collection of all 𝑑-planes in R𝑚, called the affine Grassmannian manifold.

A 𝑑-plane is parametrized by its orthonormal directions 𝑈 = [𝒖1,… , 𝒖𝑘] ∈ 𝑉𝑚,𝑘 and coordinate vector 𝒃 ∈ R𝑘 from the origin 𝒐
as below

𝝃(𝑈, 𝒃) ∶= 𝑈𝒃 + ker 𝑈 =
𝑘
∑

𝑖=1
𝑏𝑖𝒖𝑖 +

{ 𝑑
∑

𝑗=1
𝑐𝑗𝒗𝑗

|

|

|

|

|

𝑐𝑗 ∈ R

}

,

where [𝒗1,… , 𝒗𝑑 ] ∈ 𝑉𝑚,𝑑 is a 𝑑-frame satisfying 𝒗𝑗 ⟂ 𝒖𝑖 for any ∀𝑖, 𝑗. The first term 𝑈𝒃 is the displacement vector from the origin
, its norm |𝑈𝒃| is the distance from the origin 𝒐 and 𝑑-plane 𝝃, and the second term ker 𝑈 = (span𝑈 )⟂ is the 𝑑-dimensional linear
ubspace that is parallel to 𝝃.

Recall that for each direction 𝑈 ∈ 𝑉𝑚,𝑑 , the whole space R𝑚 can be decomposed into a disjoint union of 𝑑-planes as R𝑚 =
𝒃∈R𝑘𝝃(𝑈, 𝒃). In this perspective, the 𝑑-plane transform of 𝑓 at 𝝃 is defined as a marginalization of 𝑓 in 𝝃.

efinition 6.2 (𝑑-plane Transform). For any integrable function 𝑓 ∈ 𝐿1(R𝑚) and 𝑑-plane 𝝃 = (𝑈, 𝒃) ∈ 𝑉𝑚,𝑘 × R𝑘, put

𝑃𝑑 [𝑓 ](𝝃) ∶= ∫𝝃
𝑓 (𝒙)d𝖫𝑑 (𝒙) = ∫ker 𝑈

𝑓 (𝑈𝒃 + 𝒚)d𝒚,

here 𝖫𝑑 is the 𝑑-dimensional Hausdorff measure on 𝝃.

Particularly, the strict Radon transform corresponds to 𝑑 = 𝑚 − 1, and the 𝑋-ray transform corresponds to 𝑑 = 1.
The 𝑑-plane transform has the following Fourier expression.

emma 6.1 (Fourier Slice Theorem for 𝑑-plane Transform). For any 𝑓 ∈ 𝐿1(R𝑚),

𝑃𝑑 [𝑓 ]♯(𝑈,𝝎) = 𝑓 (𝑈𝝎), (𝑈,𝝎) ∈ 𝑉𝑚,𝑘 × R𝑘,

here ⋅̂ and ⋅♯ denote the Fourier transforms in 𝒙 and 𝒃 respectively. In other words,

∫R𝑘
𝑃𝑑 [𝑓 ](𝑈, 𝒃)𝑒−𝑖𝒃⋅𝝎d𝒃 = ∫R𝑚

𝑓 (𝒙)𝑒−𝑖𝑈𝝎⋅𝒙d𝒙.

Using the Fourier slice theorem, we can invert the 𝑑-plane transform.

emma 6.2 (Inversion Formula for 𝑑-plane Radon Transform). For any 𝑓 ∈ 𝐿1(R𝑚),

𝑓 (𝒙) = 1
(2𝜋)𝑚 ∫𝑉𝑚,𝑘×R𝑘

𝑓 (𝑈𝝎)|𝑈𝝎|𝑚−𝑘𝑒𝑖𝑈𝝎⋅𝒙d𝝎d𝑈, 𝒙 ∈ R𝑚.

Proof. By the Fourier slice theorem,

1
(2𝜋)𝑚 ∫𝑉𝑚,𝑘×R𝑘

(𝑃𝑑 [𝑓 ])♯(𝑈,𝝎)𝑒𝑖𝑈𝝎⋅𝒙
|𝑈𝝎|𝑚−𝑘d𝑈d𝝎

= 1
(2𝜋)𝑚 ∫𝑉𝑚,𝑘×R𝑘

𝑓 (𝑈𝝎)𝑒𝑖𝑈𝝎⋅𝒙
|𝑈𝝎|𝑚−𝑘d𝑈d𝝎

= 1
(2𝜋)𝑚 ∫R𝑚

𝑓 (𝝃)𝑒𝑖𝝃⋅𝒙d𝝃 = 𝑓 (𝒙).

Here, we change variable 𝝃 = 𝑈𝝎 and use the matrix polar integration formula Lemma C.1. □

Remark 1 (Relations to Marginalization of Probability Distributions). In short, a 𝑑-plane 𝝃 is a subset in R𝑚, it is identified with a
single variable as well, and 𝑑-plane 𝝃 (as a variable) is marginalized.

Let us consider a two-variables (or bivariate) case. The marginalization of a probability distribution 𝑓 (𝑥1, 𝑥2) in 𝑥1 (resp. 𝑥2) refers
∫ ∫
13

to an integral transform of 𝑓 into its first (resp. second) variable defined by 𝑓1(𝑥2) = R 𝑓 (𝑥1, 𝑥2)d𝑥1 (rep. 𝑓2(𝑥1) = R 𝑓 (𝑥1, 𝑥2)d𝑥2).
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On the other hand, the 𝑑-plane transform of an integrable function 𝑓 on R2 (i.e. 𝑓 ∈ 𝐿1(R2)) with 𝑑 = 1 (which is reduced to
he classical Radon transform) is given by

𝑃𝑑 [𝑓 ](𝑠, 𝒖) = ∫R
𝑓 (𝑠𝒖 + 𝑡𝒖⟂)d𝑡, (𝑡, 𝒖) ∈ R × S1

here S1 denotes the set of unit vectors in R2, i.e. S1 = {𝒖 ∈ R2 ∣ |𝒖| = 1}, and 𝒖⟂ denotes an orthonormal vector, or a unit vector
atisfying 𝒖 ⋅ 𝒖⟂ = 0 (there always exist two 𝒖⟂’s for each 𝒖). Each (𝑠, 𝒖) ∈ R × S1 indicates a 𝑑-plane 𝝃(𝑠, 𝒖) = {𝑠𝒖 + 𝑡𝒖⟂ ∣ 𝑡 ∈ R}.

In particular, by fixing an orthonormal basis {𝒖1, 𝒖2} ∈ R2, and identifying bivariate function 𝑓 (𝑥1, 𝑥2) with univariate function
(𝑥1𝒖1 + 𝑥2𝒖2), the marginalization of probability distributions is identified with the following specific cases:

𝑓1(𝑥2) = 𝑃𝑑 [𝑓 ](𝑥2, 𝒖1), 𝑓2(𝑥1) = 𝑃𝑑 [𝑓 ](𝑥1, 𝒖2).

6.2. Network design

We define the 𝑑-plane (or 𝑘-affine) layer. Here, 𝑘 is the co-dimension of 𝑑, satisfying 𝑑 + 𝑘 = 𝑚. In addition to the full-column-
matrices cases (𝐴, 𝒃) ∈ 𝑀𝑚,𝑘 × R𝑘, we consider the degenerated cases (𝐴 = 𝑎𝑈, 𝒃) ∈ 𝐺𝑉𝑚,𝑘 × R𝑘 and (𝐴 = 𝑈, 𝒃) ∈ 𝑉𝑚,𝑘 × R𝑘, which
orrespond to several previous studies.

efinition 6.3. Let 𝜎 ∶ R𝑘 → C be a measurable function. Let 𝑀 denote either 𝑀𝑚,𝑘, 𝐺𝑉𝑚,𝑘 or 𝑉𝑚,𝑘. For any function 𝛾 ∶𝑀×R𝑘 → C,
the continuous neural network with 𝑑-plane (or 𝑘-affine) layer is given by

𝑆[𝛾](𝒙) ∶= ∫𝑀×R𝑘
𝛾(𝐴, 𝒃)𝜎(𝐴⊤𝒙 − 𝒃)d𝐴d𝒃, 𝒙 ∈ R𝑚.

Since the null space ker 𝐴⊤ ∶= {𝒙 ∈ R𝑚 ∣ 𝐴⊤𝒙 = 0} is 𝑑-dimensional, each 𝑑-plane neuron 𝜎(𝐴⊤𝒙−𝒃) has 𝑑-dimensions of constant
irections. Therefore, 𝑑-plane networks are able to capture 𝑑-dimensional singularities in a target function 𝑓 .

.3. Ridgelet transforms and reconstruction formulas

We present three variants of solutions for 𝑑-plane networks. We note that typical pooling layers 𝜎 such as average pooling, max
ooling, and 𝓁𝑝-norm are contained in the class of tempered distributions ( ′) on R𝑘. The first and second theorems present dense
𝐴 ∈𝑀𝑚,𝑘) and sparse (𝐴 ∈ 𝐺𝑉𝑚,𝑘) solutions of parameters for the same class of activation functions. Since 𝐺𝑉𝑚,𝑘 is a measure-zero
ubset of 𝑀𝑚,𝑘, the second solution is much sparser than the first solution. The third theorem present the sparsest (𝐴 ∈ 𝑉𝑚,𝑘) solution,
y restricting the class of activation functions. It is supposed to capture characteristic solutions modern activation functions such as
eLU.

In the following, 𝑐𝑚,𝑘 ∶= ∫S𝑘−1×𝑉𝑚,𝑘−1 d𝑈d𝝎.

heorem 6.1. Let 𝜎 ∈  ′(R𝑘), 𝜌 ∈ (R𝑘), 𝑓 ∈ 𝐻𝑑 (R𝑚). Put

𝑅[𝑓 ; 𝜌](𝐴, 𝒃) ∶= 1
𝛿(𝐴) ∫R𝑚

▵𝑑∕2 [𝑓 ](𝒙)𝜌(𝐴⊤𝒙 − 𝒃)d𝒙, (𝐴, 𝒃) ∈𝑀𝑚,𝑘 × R𝑘

((𝜎, 𝜌)) ∶=
(2𝜋)𝑑

2𝑘𝑐𝑚,𝑘 ∫R𝑘
𝜎♯(𝝎)𝜌♯(𝝎)

𝑘
∏

𝑖=1
|𝜔𝑖|

−1d𝝎,

here 𝛿(𝐴) is defined as 2−𝑘
∏𝑑

𝑖=1 𝑑
𝑑
𝑖
∏

𝑖<𝑗 (𝑑
2
𝑖 − 𝑑

2
𝑗 ) with 𝑑1 > ⋯ > 𝑑𝑘 > 0 being the singular values of 𝐴. Then, for almost every 𝒙 ∈ R𝑚,

we have

𝑆[𝑅[𝑓 ; 𝜌]](𝒙) = ∫𝑀𝑚,𝑘×R𝑘
𝑅[𝑓 ; 𝜌](𝐴, 𝒃)𝜎(𝐴⊤𝒙 − 𝒃)d𝐴d𝒃 = ((𝜎, 𝜌))𝑓 (𝒙).

Theorem 6.2. Let 𝑠 be a real number; let 𝜎 ∈  ′(R𝑘), 𝜌 ∈ (R𝑘), 𝑓 ∈ 𝐻𝑠(R𝑚). Put

𝑅𝑠[𝑓 ; 𝜌](𝑎𝑈, 𝒃) ∶= 𝑎𝑚−𝑠−1 ∫R𝑚
▵𝑠∕2 [𝑓 ](𝒙)𝜌(𝐴⊤𝒙 − 𝒃)d𝒙, (𝑎𝑈, 𝒃) ∈ 𝐺𝑉𝑚,𝑘 × R𝑘

((𝜎, 𝜌))𝑠 ∶=
(2𝜋)𝑑

2𝑘𝑐𝑚,𝑘 ∫R𝑘
𝜎♯(𝝎)𝜌♯(𝝎)|𝝎|−(𝑑−𝑠+1)d𝝎,

Then, for almost every 𝒙 ∈ R𝑚, we have

𝑆[𝑅𝑠[𝑓 ; 𝜌]](𝒙) = ∫𝐺𝑉𝑚,𝑘×R𝑘
𝑅𝑠[𝑓 ; 𝜌](𝑎𝑈, 𝒃)𝜎(𝑎𝑈⊤𝒙 − 𝒃)d𝑎d𝑈d𝒃 = ((𝜎, 𝜌))𝑠𝑓 (𝒙).

Theorem 6.3. For any real number 𝑡, suppose that 𝜎 ∈  ′(R𝑘) satisfy 𝜎♯(𝝎) = |𝝎|𝑡 (i.e., 𝜎 is the Green function of ▵−𝑡∕2
𝒃 ). Let 𝑓 ∈ 𝐻𝑑 (R𝑚).

Put

𝑅[𝑓 ](𝑈, 𝒃) ∶=▵(𝑑−𝑡)∕2 𝑃 [𝑓 ](𝑈, 𝒃) = 𝑃 [▵(𝑑−𝑡)∕2 𝑓 ](𝑈, 𝒃), (𝑈, 𝒃) ∈ 𝑉 × R𝑘
14

𝒃 𝑑 𝑑 𝑚,𝑘
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where ▵𝒃 denotes the fractional Laplacian in 𝒃 ∈ R𝑘, and 𝑃𝑑 is the 𝑑-plane transform. Then, for almost every 𝒙 ∈ R𝑚, we have

𝑆[𝑅[𝑓 ]](𝒙) = ∫𝑉𝑚,𝑘×R𝑘
𝑅[𝑓 ](𝑈, 𝒃)𝜎(𝑈⊤𝒙 − 𝒃)d𝑈d𝒃 = 1

(2𝜋)𝑑𝑐𝑚,𝑘
𝑓 (𝒙).

As consequences, these reconstruction formulas are understood as constructive universality theorems for 𝑑-plane networks. We
ote (1) that, as far as we have noticed, the first result was not known, (2) that the second result extends the ‘‘𝑑-plane ridgelet
ransform’’ by Donoho (2001) and Rubin (2004) (see Section 6.4), and (3) that the third result extends the Radon formulas
Theorem 7.2) by Carroll and Dickinson (1989) and Ito (1991) as the special case 𝑘 = 1 and 𝑡 = −1, and recent results on ReLU-nets
uch as in Savarese et al. (2019), Ongie et al. (2020) and Parhi and Nowak (2021) as the special case 𝑘 = 1 and 𝑡 = −2.

The proof is performed by systematically following the three steps as below.

Sketch Proof. We present the first case. See Appendix D for full proofs.

Step 1 Turn to the Fourier expression:

𝑆[𝛾](𝒙) = 1
(2𝜋)𝑘 ∫ 𝛾♯(𝐴,𝝎)𝜎♯(𝝎)𝑒𝑖(𝐴𝝎)⋅𝒙 d𝐴d𝝎

𝛿(𝐴)

Step 2 Use singular value decomposition (SVD)

𝐴 = 𝑈𝐷𝑉 ⊤, (𝑈,𝐷, 𝑉 ) ∈ 𝑉𝑚,𝑘 × R𝑘+ × 𝑂(𝑘),

with d𝐴∕𝛿(𝐴) = d𝑈d𝐷d𝑉 to have

= 1
(2𝜋)𝑘 ∫ 𝛾♯(𝐴,𝝎)𝜎♯(𝝎)𝑒𝑖(𝑈𝐷𝑉 ⊤𝝎)⋅𝒙d𝑈d𝐷d𝑉 d𝝎.

Change variables 𝝎′ = 𝑉 ⊤𝝎 (𝑉 fixed) and 𝒚 = 𝐷𝝎′ (𝝎′ fixed)

= 1
(2𝜋)𝑘 ∫ 𝛾♯(𝐴, 𝑉 𝝎′)𝜎♯(𝑉 𝝎′)𝑒𝑖(𝑈𝒚)⋅𝒙

𝑘
∏

𝑖=1
|𝜔′

𝑖|
−1d𝑈d𝒚d𝑉 d𝝎′.

Step 3 Put a separation-of-variables form (note: 𝐴𝝎 = 𝐴𝑉 𝝎′ = 𝑈𝒚)

𝛾♯𝑓 ,𝜌(𝐴, 𝑉 𝝎′) = 𝑓 (𝑈𝒚)|𝑈𝒚|𝑚−𝑘𝜌(𝑉 𝝎′)

Then, 𝛾𝑓,𝜌 turns out to be a particular solution because

𝑆[𝛾𝑓,𝜌](𝒙) =
𝑐𝑚,𝑘
(2𝜋)𝑘

(

∫𝑂(𝑘)×R𝑘
𝜎♯(𝑉 𝝎′)𝜌♯(𝑉 𝝎′)

𝑘
∏

𝑖=1
|𝜔′

𝑖|
−1d𝑉 d𝝎′

)(

∫𝑉𝑚,𝑘×R𝑘
𝑓 (𝑈𝒚)|𝑈𝒚|𝑚−𝑘𝑒𝑖(𝑈𝒚)⋅𝒙d𝑈d𝒚

)

= ((𝜎, 𝜌))𝑓 (𝒙).

inally, the matrix ridgelet transform can be calculated as below

𝛾𝑓,𝜌(𝐴, 𝒃) =
1

(2𝜋)𝑘 ∫R𝑘
|𝐴𝝎|𝑚−𝑘𝑓 (𝐴𝝎)𝜌(𝝎)𝑒𝑖𝝎⋅𝒃d𝝎

= 1
(2𝜋)𝑘 ∫R𝑘

[

∫R𝑚
▵(𝑚−𝑘)∕2 [𝑓 ](𝒙)𝑒−𝑖𝐴𝝎⋅𝒙d𝒙

]

𝜌♯(𝝎)𝑒𝑖𝝎⋅𝒃d𝝎

= ∫R𝑚
▵(𝑚−𝑘)∕2 [𝑓 ](𝒙)

[

1
(2𝜋)𝑘 ∫R𝑘

𝜌♯(𝝎)𝑒𝑖𝝎⋅(𝐴⊤𝒙−𝒃)d𝝎
]∗

d𝒙

= ∫R𝑚
▵
𝑚−𝑘
2 [𝑓 ](𝒙)𝜌(𝐴⊤𝒙 − 𝒃)d𝒙

=∶ 𝑅[𝑓 ; 𝜌](𝐴, 𝒃) □

6.4. Literature in 𝑑-plane ridgelet transform

In the past, two versions of the 𝑑-plane ridgelet transform have been proposed. One is a tight frame (i.e., a discrete transform)
by Donoho (2001), and the other is a continuous transform by Rubin (2004). The 𝑑-plane ridgelet by Donoho can be regarded as
the discrete version of the 𝑑-plane ridgelet transform by Rubin.

Theorem 6.4 (Continuous 𝑑-plane Ridgelet Transform by Rubin (2004)).

𝑈𝑎[𝑓 ](𝝃) ∶= ∫R𝑚
𝑓 (𝒙)𝑢𝑎 (|𝒙 − 𝝃|) d𝒙, 𝝃 ∈ 𝐺𝑚,𝑑

𝑉 ∗
𝑎 [𝜙](𝒙) ∶= 𝜙(𝝃)𝑣𝑎 (|𝒙 − 𝝃|) d𝝃, 𝒙 ∈ R𝑚
15

∫𝐺𝑚,𝑑
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∫

∞

0
𝑉 ∗
𝑎 [𝑈𝑎[𝑓 ]]

d𝑎
𝑎1+𝑑

= 𝑐𝑓 ,

where |𝒙 − 𝝃| denotes the Euclidean distance between point 𝒙 and 𝑑-plane 𝝃, 𝑢𝑎(⋅) = 𝑢(⋅∕𝑎)∕𝑎𝑑 and 𝑣𝑎(⋅) = 𝑣(⋅∕𝑎)∕𝑎𝑑 .

Recall that an affine 𝑑-plane 𝝃 ∈ 𝐺𝑚,𝑘 is parametrized by an orthonormal 𝑘-frame 𝑈 ∈ 𝑉𝑚,𝑘 and a coordinate vector 𝒃 ∈ R𝑘 as
(𝑈, 𝒃) ∶= {𝒙 ∈ R𝑚 ∣ 𝑈⊤𝒙 = 𝒃} = 𝑈𝒃 + ker 𝑈 . Because |𝒙 − 𝝃(𝑈, 𝒃)| = |𝑈⊤𝒙 − 𝒃| for any point 𝒙 ∈ R𝑚, the quantity 𝑈⊤𝒙 − 𝒃 is
nderstood as the Euclidean vector-distance between point 𝒙 and 𝑑-plane 𝝃. Therefore, the 𝑑-plane ridgelet transform by Rubin is
nderstood as a special case of 𝜎(𝑎𝑈⊤𝒙 − 𝒃) as in Theorem 6.2 where both 𝜎 and 𝜌 are radial functions. We remark that a more
edundant parametrization 𝜎(𝐴⊤𝒙− 𝒃) as in Theorem 6.1 is natural for the purpose of neural network study, simply because neural
etwork parameters are not strictly restricted to 𝜎(𝑎𝑈⊤𝒙 − 𝒃) during the training.

. Literature overview

.1. Ridgelet transform in the 1990s

One of the major problems in neural network study in the 1990s was to investigate the expressive power of (fully-connected)
hallow neural networks, and the original ridgelet transform was discovered in this context independently by Murata (1996),
nd Candès (1998). Later in the 2010s, the classes of 𝑓 and 𝜎 have been extended to the distributions by Kostadinova et al. (2014)
nd Sonoda and Murata (2017) to include the modern activation functions such as ReLU.

The idea of using integral transforms for function approximation is fundamental and has a long history in approximation
heory (see, e.g. DeVore and Lorentz, 1993). In the literature of neural network study, the integral representation by Barron (1993) is
ne of the representative works, where the so-called Barron class and Maurey–Jones–Barron (MJB) approximation error upperbound
ave been established, which play an important role both in the approximation and estimation theories of neural networks. We refer
o Kainen et al. (2013) for more details on the MJB theory.

One obvious strength of the ridgelet transform is the closed-form expression. Before the ridgelet transform, two pioneering results
ere proposed. One is the Fourier formula by Irie and Miyake (1988) and Funahashi (1989):

heorem 7.1. For any 𝜎 ∈ 𝐿1(R) and 𝑓 ∈ 𝐿2(R𝑚),

𝑓 (𝒙) = 1
(2𝜋)𝑚𝜎♯(1) ∫R𝑚×R

𝑓 (𝒂)𝜎(𝒂 ⋅ 𝒙 − 𝑏)𝑒𝑖𝑏d𝒂d𝑏.

The other is the Radon formula by Carroll and Dickinson (1989) and Ito (1991):

Theorem 7.2. For 𝜎(𝑏) ∶= 𝑏0+ (step function) and any 𝑓 ∈ (R𝑚),

𝑓 (𝒙) = 1
2(2𝜋)𝑚−1 ∫S𝑚−1×R

𝜕𝑡(− ▵𝑡)(𝑚−1)∕2𝑃 [𝑓 ](𝒖, 𝑡)𝜎(𝒖 ⋅ 𝒙 − 𝑡)d𝒖d𝑡,

where 𝑃 denotes the Radon transform.

Both results clearly show the strong relationship between neural networks and the Fourier and Radon transforms. We note that
our result Theorem 6.3 includes the Radon formula (Theorem 7.2) as the special case 𝑘 = 1 and 𝑡 = −1.

7.2. Ridgelet transform in the 2000s

In the context of sparse signal processing, the emergence of the ridgelet transform has motivated another direction of research:
Exploring a high-dimensional counterpart of the 1-dimensional wavelet transform. Indeed, the wavelet transform for 𝑚-dimensional
signals such as images and videos does exist, and it is given as below

𝑊 [𝑓 ;𝜓](𝑎, 𝒃) ∶= ∫R𝑚×R𝑚
𝑓 (𝒙)𝜓𝑎(𝒙 − 𝒃)d𝒙, (𝑎, 𝒃) ∈ R+ × R𝑚

𝑓 (𝒙) = ∫R𝑚×R+

𝑊 [𝑓 ;𝜓]𝜓𝑎(𝒙 − 𝒃) d𝒃d𝑎
𝑎

, 𝒙 ∈ R𝑚

for 𝑓 ∈ 𝐿2(R𝑚), where 𝜓𝑎(𝒃) ∶= 𝜓(𝒃∕𝑎)∕𝑎𝑚 and 𝜓 ∈ (R𝑚) is a wavelet function. However, it is considered to be unsatisfied in its
localization ability, because it is essentially a tensor product of 1-dimensional wavelet transforms.

More precisely, while the 1-dimensional wavelet transform is good at localizing the point singularities such as jumps and kinks in
the 1-dimensional signals such as audio recordings, the 2-dimensional wavelet transform is not good at localizing the line singularities
in 2-dimensional signals such as pictures except when the singularity is straight and parallel to either 𝑥- or 𝑦-axes. Here, the singularity
of dimension 𝑑 is the term by Donoho (2001). For example,

𝑓 (𝒙) ∶= |𝑥21 +⋯ + 𝑥2𝑘|
−𝛼∕2 exp(−|𝒙|2), 0 < 𝛼 < 𝑘∕2

is a singular square-integrable function 𝑓 on R𝑚 that attains ∞ along the hyperplane 𝑥 = ⋯ = 𝑥 = 0.
16
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On the other hand, the ridgelet transform is good at localizing the (𝑚−1)-dimensional singularities in any direction because the
eature map 𝒙 ↦ 𝜎(𝒂 ⋅ 𝒙 − 𝑏) is a constant function along the (𝑚 − 1)-dimensional hyperplane normal to 𝒂. Similarly, the 𝑑-plane
or 𝑘-affine) ridgelet transform presented in this study is good at localizing the 𝑑-dimensional singularities because the feature map
↦ 𝜎(𝐴⊤𝒙 − 𝒃) is a constant function along the 𝑑-dimensional subspace ker 𝐴⊤ = {𝒙 ∈ R𝑚 ∣ 𝐴⊤𝒙 = 0}.

In search for better localization properties, a variety of ‘‘X-lets’’ have been developed such as curvelet, beamlet, contourlet,
nd sheerlet under the slogan of geometric multiscale analysis (GMA) (see e.g. Donoho, 2002; Starck et al., 2010). Since ridgelet
nalysis had already been recognized as wavelet analysis in the Radon domain, a variety of generalizations of wavelet transforms and
adon transforms were investigated. In a modern sense, the philosophy of general Radon transforms is to map a function 𝑓 on a
pace 𝑋 = 𝐺∕𝐾 of points 𝑥 to a function 𝑃 [𝑓 ] on another space 𝛯 = 𝐺∕𝐻 of shapes 𝜉 (see e.g. Helgason, 2010). In the context of
ingularity localization, the shape 𝜉 such as 𝑑-plane determines the shape of singularities, namely, a collection of constant directions
n 𝑋, and thus the general Radon domain 𝛯 is understood as the parameter space of the singularities. In this perspective, we can
estate the functionality of the ridgelet transform as wavelet localization in the space 𝛯 of singularities in 𝑋.

.3. Ridgelet transform in the 2020s

In the context of deep learning study, the idea of ridgelet transforms have regained the spotlight for the representer theorem that
haracterizes (either deep or shallow) infinitely-wide ReLU networks that minimizes a ‘‘representational cost’’ (Savarese et al., 2019;
ngie et al., 2020; Parhi and Nowak, 2021; Unser, 2019). Here, the representational cost for function 𝑓 is defined as the infimum
f the total variation (TV) norm of the parameter distribution:

𝐶[𝑓 ] ∶= inf
𝛾∈

‖𝛾‖TV, s.t. 𝑆[𝛾] = 𝑓,

here  is the collection of all signed measures. The TV-norm is a fundamental quantity for the MJB bounds (see e.g. Kainen et al.,
013).

According to Sonoda et al. (2021a), when the class  of parameter distributions is restricted to 𝐿2(R𝑚 ×R), then any 𝛾 satisfying
[𝛾] = 𝑓 is uniquely written as a series of ridgelet transforms: 𝛾 = 𝑅[𝑓 ; 𝜎∗] +

∑∞
𝑖=1 𝑅[𝑓𝑖; 𝜌𝑖] where 𝜎∗ is a certain unique function

atisfying ((𝜎, 𝜌0)) = 1, yielding 𝑆[𝑅[𝑓 ; 𝜎∗]] = 𝑓 ; {𝜌𝑖}𝑖∈N is an orthonormal system satisfying ((𝜎, 𝜌𝑖)) = 0, yielding 𝑆[𝑅[𝑓𝑖; 𝜌𝑖]] = 0;
and {𝑓𝑖}𝑖∈N is 𝐿2-functions that is uniquely determined for each 𝛾. We note that 𝜎∗ and 𝜌𝑖 are independent of 𝛾. Hence, the cost is
rewritten as a constraint-free expression:

𝐶[𝑓 ] = inf
{𝑓𝑖}

‖

‖

‖

𝑅[𝑓 ; 𝜎∗] +
∞
∑

𝑖=1
𝑅[𝑓𝑖; 𝜌𝑖]

‖

‖

‖𝐿1 .

As a result, we can conjecture that the minimizer of 𝐶[𝑓 ] is given by ridgelet transform(s). In fact, Ongie et al. (2020) have
shown that under some assumptions, the minimizer is given by a derivative of the Radon transform: ▵(𝑚+1)∕2 𝑃 [𝑓 ], which is exactly
he special case of the ridgelet transform in Theorem 6.3 when 𝑘 = 1 and 𝑡 = −1.

Update: At the same time as the initial submission, Parhi and Unser (2023a) have obtained a representer theorem for multivariate
ctivation functions under more careful considerations on the regularization and function spaces based on an extended theory of
he 𝑑-plane transforms for distributions (Parhi and Unser, 2023b). Their result suggests our conjecture was essentially true (modulo
inite-order polynomials).

. Discussion

In the main text, we have seen a variety of examples, but what is essential behind the Fourier expression, changing variables and
ssuming the separation-of-variables form? In a nutshell, it is coefficient comparison for solving equations. Namely, after appropriately

changing variables, the network 𝑆[𝛾] is rewritten in the Fourier basis, which is thus the coordinate transform from the basis
{𝜎(𝑎𝑥 − 𝑏)}𝑎,𝑏 to the Fourier basis {exp(𝑖𝜉𝑥)}𝜉 . Since we (are supposed to) know the Fourier coefficient 𝑓 (𝜉), we can obtain the
unknown function 𝛾 by comparing the coefficients in the Fourier domain. From this perspective, we can now understand that the
Fourier basis is just a one choice of frames, and the solution steps are summarized as below:

Let 𝜙 ∶ 𝑉 × 𝑋 → R and 𝜓 ∶ 𝛯 × 𝑋 → R be two feature maps on 𝑋 parametrized by 𝑉 and 𝛯 respectively, and consider their
associated integral representations:

𝑆[𝛾](𝑥) ∶= ∫𝑉
𝛾(𝑣)𝜙(𝑣, 𝑥)d𝑣, 𝑇 [𝑔](𝑥) ∶= ∫𝛯

𝑔(𝜉)𝜓(𝜉, 𝑥)d𝜉.

Here, 𝑆 and 𝑇 correspond to the continuous neural network and the inverse Fourier transform respectively. Given a function
𝑓 ∶ 𝑋 → R, suppose that 𝑔 of 𝑇 [𝑔] = 𝑓 is known as, say 𝑔 = 𝑓 , but 𝛾 of 𝑆[𝛾] = 𝑓 is unknown. Then, find a coordinate transform 𝐻
satisfying 𝐻[𝜙](𝜉, 𝑥) = 𝜓(𝜉, 𝑥) so that

𝑆[𝛾](𝑥) = ∫𝛯
𝐻 ′[𝛾](𝜉)𝜓(𝜉, 𝑥)d𝜉,

where 𝐻 ′ is a dual transform of the coefficients 𝛾 associated with the coordinate transform. Then, we can find 𝛾 by comparing the
coefficients:

𝐻 ′[𝛾] = 𝑓.

In other words, the mapping 𝐻 that matches the neuron 𝜎(𝒂 ⋅𝒙−𝑏) and Fourier basis exp(𝑖𝝃 ⋅𝒙) corresponds to the Fourier expression
and change of variables in the main text, yielding 𝐻 ′[𝛾](𝝃) = 𝛾♯(𝝃∕𝜔,𝜔).
17
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Table 1
List of layer types 𝜎(𝑎𝑥−𝑏) covered in this study. See corresponding sections for the definitions of symbols such as F𝑝 ,𝑚 , 𝐺∕𝐾, 𝜕𝑋
and a∗.
Layer type Input 𝑥 Parameter (𝑎, 𝑏) Single neuron

Sections 1–2. fully-connected (FC) layer R𝑚 R𝑚 × R 𝜎(𝒂 ⋅ 𝒙 − 𝑏)
Section 3. FC layer on finite fields F𝑚𝑝 F𝑚𝑝 × F𝑝 𝜎(𝒂 ⋅ 𝒙 − 𝑏)
Section 4. group convolution layer 𝑚 𝑚 × R 𝜎((𝑎 ⋆ 𝑥)(𝑔) − 𝑏)
Section 5. FC layer on manifolds 𝐺∕𝐾 a∗ × 𝜕𝑋 × R 𝜎(𝑎⟨𝑥, 𝑢⟩ − 𝑏)
Section 6. pooling (𝑑-plane ridgelet) R𝑚 R𝑚×𝑘 × R𝑘 𝜎(𝐴⊤𝒙 − 𝒃)

9. Conclusion

The ultimate goal of this study is to understand neural network parameters. While the ridgelet transform is a strong analysis
ool, one of the major short-comings is that the closed-form expression has been known only for small class of neural networks.
n this paper, we propose the Fourier slice method, and have shown that various neural networks and their corresponding ridgelet
ransforms, listed in Table 1, can be systematically obtained by following the three steps of the Fourier slice method.

Needless to say, it is more efficient to analyze networks uniformly in terms of ridgelet analysis than to analyze individual networks
anually one by one. As demonstrated in this paper, the coverage of ridgelet analysis is gradually expanding. With the strength of
closed-form expression of the pseudo-inverse operator, the ridgelet transform has several applications. For example, we can/may

1. present a constructive proof of the universal approximation theorem,
2. estimate approximation error bounds by discretizing the reconstruction formula using numerical integration schemes

(e.g. MJB theory),
3. describe the distribution of parameters obtained by gradient descent learning (Sonoda et al., 2021b),
4. obtain the general solution to the learning equation 𝑆[𝛾] = 𝑓 (Sonoda et al., 2021a), and
5. construct a representer theorem (Unser, 2019).

The Fourier expression further allows us to view neural networks from the perspective of harmonic analysis and integral
eometry. By recasting neural networks in these contexts, we will be able to discover further varieties of novel networks. On the
ther hand, after the initial submission of this manuscript, the authors have also developed an alternative method of discovery
hat uses group invariant functions instead of the Fourier expression (Sonoda et al., 2023a,b). The characterization of the networks
btained by the Fourier slice method would be an interesting direction of this study.
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ppendix A. Poincaré disk

Following Helgason (1984)[Introduction, § 4] and Helgason (2008)[Ch.II, § 1], we describe the group theoretic aspect of the
oincaré disk. Let 𝐷 ∶= {𝑧 ∈ C ∣ |𝑧| < 1} be the unit open disk in C equipped with the Riemannian metric 𝑔𝑧(𝑢, 𝑣) = (𝑢, 𝑣)∕(1 − |𝑧|2)2

or any tangent vectors 𝑢, 𝑣 ∈ 𝑇𝑧𝐷 at 𝑧 ∈ 𝐷, where (⋅, ⋅) denotes the Euclidean inner product in R2. Let 𝜕𝐷 ∶= {𝑢 ∈ C ∣ |𝑢| = 1} be
he boundary of 𝐷 equipped with the uniform probability measure d𝑢. Namely, 𝐷 is the Poincaré disk model of hyperbolic plane H2.
n this model, the Poincaré metric between two points 𝑧,𝑤 ∈ 𝐷 is given by 𝑑(𝑧,𝑤) = tanh−1 |(𝑧 −𝑤)∕(1 − 𝑧𝑤∗)|, and the volume
lement is given by d𝑧 = (1 − (𝑥2 + 𝑦2))−2d𝑥d𝑦.

Consider now the group

𝐺 ∶= 𝑆𝑈 (1, 1) ∶=

{

(

𝛼 𝛽
𝛽∗ 𝛼∗

)

|

|

|

|

|

(𝛼, 𝛽) ∈ C2, |𝛼|2 − |𝛽|2 = 1

}

,

hich acts on 𝐷 (and 𝜕𝐷) by

𝑔 ⋅ 𝑧 ∶=
𝛼𝑧 + 𝛽
𝛽∗𝑧 + 𝛼∗

, 𝑧 ∈ 𝐷 ∪ 𝜕𝐷.

The 𝐺-action is transitive, conformal, and maps circles, lines, and the boundary into circles, lines, and the boundary. In addition,
consider the subgroups

𝐾 ∶= 𝑆𝑂(2) =

{

𝑘𝜙 ∶=
(

𝑒𝑖𝜙 0
0 𝑒−𝑖𝜙

)

|

|

|

|

|

𝜙 ∈ [0, 2𝜋)

}

,

𝐴 ∶=

{

𝑎𝑡 ∶=
(

cosh 𝑡 sinh 𝑡
)

|

|

|

|

𝑡 ∈ R

}

,

18

sinh 𝑡 cosh 𝑡
|
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𝑁 ∶=

{

𝑛𝑠 ∶=
(

1 + 𝑖𝑠 −𝑖𝑠
𝑖𝑠 1 − 𝑖𝑠

)

|

|

|

|

|

𝑠 ∈ R

}

,

𝑀 ∶= 𝐶𝐾 (𝐴) =
{

𝑘0 =
(

1 0
0 1

)

, 𝑘𝜋 =
(

−1 0
0 −1

)}

he subgroup 𝐾 ∶= 𝑆𝑂(2) fixes the origin 𝑜 ∈ 𝐷. So we have the identifications

𝐷 = 𝐺∕𝐾 = 𝑆𝑈 (1, 1)∕𝑆𝑂(2), and 𝜕𝐷 = 𝐾∕𝑀 = S1.

On this model, the following are known (1) that 𝑚 = dim a = 1, |𝑊 | = 1, 𝜚 = 1, and |𝒄(𝜆)|−2 = 𝜋𝜆
2 tanh( 𝜋𝜆2 ) for 𝜆 ∈ a∗ = R, (2)

that the geodesics are the circular arcs perpendicular to the boundary 𝜕𝐷, and (3) that the horocycles are the circles tangent to the
boundary 𝜕𝐷. Hence, let 𝜉(𝑥, 𝑢) denote the horocycle 𝜉 through 𝑥 ∈ 𝐷 and tangent to the boundary at 𝑢 ∈ 𝜕𝐷; and let ⟨𝑥, 𝑢⟩ denote
the signed distance from the origin 𝑜 ∈ 𝐷 to the horocycle 𝜉(𝑥, 𝑢).

In order to compute the distance ⟨𝑧, 𝑢⟩, we use the following fact: The distance from the origin 𝑜 to a point 𝑧 = 𝑟𝑒𝑖𝑢 is
𝑑(𝑜, 𝑧) = tanh−1 |(0 − 𝑧)∕(1 − 0𝑧∗)| = 1

2 log
1+𝑟
1−𝑟 . Hence, let 𝑐 ∈ 𝐷 be the center of the horocycle 𝜉(𝑧, 𝑢), and let 𝑤 ∈ 𝐷 be the closest

oint on the horocycle 𝜉(𝑧, 𝑢) to the origin. By definition, ⟨𝑧, 𝑢⟩ = 𝑑(𝑜,𝑤). But we can find the 𝑤 via the cosine rule:

cos 𝑧𝑜𝑢 =
|𝑢|2 + |𝑧|2 − |𝑧 − 𝑢|2

2|𝑢| |𝑧|
= cos 𝑧𝑜𝑐 =

|𝑧|2 + |

1
2 (1 + |𝑤|)|

2
− |

1
2 (1 − |𝑤|)|

2

2|𝑧| | 12 (1 + |𝑤|)|
,

which yields the tractable formula:

⟨𝑧, 𝑢⟩ = 1
2
log

1 + |𝑤|
1 − |𝑤|

= 1
2
log

1 − |𝑧|2

|𝑧 − 𝑢|2
, (𝑧, 𝑢) ∈ 𝐷 × 𝜕𝐷.

Appendix B. SPD manifold

Following Terras (2016, Chapter 1), we introduce the SPD manifold. On the space P𝑚 of 𝑚×𝑚 symmetric positive definite (SPD)
matrices, the Riemannian metric is given by

g𝑥 ∶= tr
(

(𝑥−1d𝑥)2
)

, 𝑥 ∈ P𝑚

where 𝑥 and d𝑥 denote the matrices of entries 𝑥𝑖𝑗 and d𝑥𝑖𝑗 .
Put 𝐺 = 𝐺𝐿(𝑚,R), then the Iwasawa decomposition 𝐺 = 𝐾𝐴𝑁 is given by 𝐾 = 𝑂(𝑚), 𝐴 = 𝐷+(𝑚), 𝑁 = 𝑇1(𝑚); and the centralizer

𝑀 = 𝐶𝐾 (𝐴) is given by 𝑀 = 𝐷±1 (diagonal matrices with entries ±1). The quotient space 𝐺∕𝐾 is identified with the SPD manifold
P𝑚 via a diffeomorphism onto, 𝑔𝐾 ↦ 𝑔𝑔⊤ for any 𝑔 ∈ 𝐺; and 𝐾∕𝑀 is identified with the boundary 𝜕P𝑚, another manifold of all
singular positive semidefinite matrices. The action of 𝐺 on P𝑚 is given by 𝑔[𝑥] ∶= 𝑔𝑥𝑔⊤ for any 𝑔 ∈ 𝐺 and 𝑥 ∈ P𝑚. In particular, the
metric g is 𝐺-invariant. According to the spectral decomposition, for any 𝑥 ∈ P𝑚, there uniquely exist 𝑘 ∈ 𝐾 and 𝑎 ∈ 𝐴 such that
= 𝑘[𝑎]; and according to the Cholesky (or Iwasawa) decomposition, there exist 𝑛 ∈ 𝑁 and 𝑎 ∈ 𝐴 such that 𝑥 = 𝑛[𝑎].

When 𝑥 = 𝑘[exp(𝐻)] = exp(𝑘[𝐻]) for some 𝐻 ∈ a = 𝐷(𝑚) and 𝑘 ∈ 𝐾, then the geodesic segment 𝑦 from the origin 𝑜 = 𝐼 (the
dentity matrix) to 𝑥 is given by

𝑦(𝑡) = exp(𝑡𝑘[𝐻]), 𝑡 ∈ [0, 1]

atisfying 𝑦(0) = 𝑜 and 𝑦(1) = 𝑥; and the Riemannian length of 𝑦 (i.e., the Riemannian distance from 𝑜 to 𝑥) is given by 𝑑(𝑜, 𝑥) = |𝐻|𝐸 .
o, 𝐻 ∈ a is the vector-valued distance from 𝑜 to 𝑥 = 𝑘[exp(𝐻)].

The 𝐺-invariant measures are given by d𝑔 = | det 𝑔|−𝑚
⋀

𝑖,𝑗 d𝑔𝑖𝑗 on 𝐺, d𝑘 to be the uniform probability measure on 𝐾, d𝑎 = ⋀

𝑖 d𝑎𝑖∕𝑎𝑖
n 𝐴, d𝑛 = ⋀

1<𝑖<𝑗≤𝑚 d𝑛𝑖𝑗 on 𝑁 ,

d𝜇(𝑥) = | det 𝑥|−
𝑚+1
2

⋀

1≤𝑖≤𝑗≤𝑚
d𝑥𝑖𝑗 on P𝑚,

= 𝑐𝑚
𝑚
∏

𝑗=1
𝑎
− 𝑚−1

2
𝑗

∏

1≤𝑖<𝑗≤𝑚
|𝑎𝑖 − 𝑎𝑗 |d𝑎d𝑘,

where the second expression is for the polar coordinates 𝑥 = 𝑘[𝑎] with (𝑘, 𝑎) ∈ 𝐾 × 𝐴 and 𝑐𝑚 ∶= 𝜋(𝑚2+𝑚)∕4 ∏𝑚
𝑗=1 𝑗

−1𝛤−1(𝑗∕2), and d𝑢
to be the uniform probability measure on 𝜕P𝑚 ∶= 𝐾∕𝑀 .

The vector-valued composite distance from the origin 𝑜 to a horosphere 𝜉(𝑥, 𝑢) is calculated as

⟨𝑥 = 𝑔[𝑜], 𝑢 = 𝑘𝑀⟩ = 1
2
log 𝜆(𝑘⊤[𝑥]),

where 𝜆(𝑦) denotes the diagonal vector 𝜆 in the Cholesky decomposition 𝑦 = 𝜈[𝜆] = 𝜈𝜆𝜈⊤ of 𝑦 for some (𝜈, 𝜆) ∈ 𝑁𝐴.

roof. Since ⟨𝑥, 𝑘𝑀⟩ ∶= −𝐻(𝑔−1𝑘) = ⟨𝑘⊤[𝑥], 𝑒𝑀⟩, it suffices to consider the case (𝑥, 𝑢) = (𝑔[𝑜], 𝑒𝑀). Namely, we solve 𝑔−1 = 𝑘𝑎𝑛
or unknowns (𝑘, 𝑎, 𝑛) ∈ 𝐾𝐴𝑁 . (To be precise, we only need 𝑎 because ⟨𝑥, 𝑒𝑀⟩ = − log 𝑎.) Put the Cholesky decomposition
= 𝜈[𝜆] = 𝜈𝜆𝜈⊤ for some (𝜈, 𝜆) ∈ 𝑁𝐴. Then, 𝑎 = 𝜆−1∕2 because 𝑥−1 = (𝜈−1)⊤𝜆−1𝜈−1, while 𝑥−1 = (𝑔𝑔⊤)−1 = 𝑛⊤𝑎2𝑛. □
19
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The Helgason–Fourier transform and its inversion formula are given by

𝑓 (𝒔, 𝑢) = ∫P𝑚
𝑓 (𝑥)𝑒𝒔⋅⟨𝑥,𝑢⟩d𝜇(𝑥),

𝑓 (𝑥) = 𝜔𝑚 ∫ℜ𝒔=𝝆 ∫𝜕P𝑚
𝑓 (𝒔, 𝑢)𝑒𝒔⋅⟨𝑥,𝑢⟩d𝑢 d𝒔

|𝒄(𝒔)|2
,

for any (𝒔, 𝑢) ∈ a∗C × 𝑂(𝑚) (where a∗C = C𝑚) and 𝑥 ∈ P𝑚. Here, 𝜔𝑚 ∶=
∏𝑚

𝑗=1
𝛤 (𝑗∕2)

𝑗(2𝜋𝑖)𝜋𝑗∕2
, 𝝆 = (− 1

2 ,… ,− 1
2 ,

𝑚−1
4 ) ∈ C𝑚, and

𝒄(𝒔) =
∏

1≤𝑖≤𝑗<𝑚

𝐵( 12 , 𝑠𝑖 +⋯ + 𝑠𝑗 +
𝑗−𝑖+1

2 )

𝐵( 12 ,
𝑗−𝑖+1

2 )
,

where 𝐵(𝑥, 𝑦) ∶= 𝛤 (𝑥)𝛤 (𝑦)∕𝛤 (𝑥 + 𝑦) is the beta function.

Appendix C. Matrix calculus

We refer to Rubin (2018) and Díaz-García and González-Farías (2005) for matrix calculus.
Let 𝑚, 𝑘 be positive integers (𝑚 ≥ 𝑘). Let 𝑀𝑚,𝑘 ⊂ R𝑚×𝑘 be the set of all full-column-rank matrices equipped with the volume

measure d𝑊 =
∏

𝑖,𝑗 d𝑤𝑖𝑗 . Let 𝑉𝑚,𝑘 be the Stiefel manifold of orthonormal 𝑘-frames in R𝑚 equipped with the invariant measure d𝑈
normalized to ∫𝑉𝑚,𝑘 d𝑈 = 2𝑘𝜋𝑚𝑘∕2∕𝛤𝑘(𝑚∕2) =∶ 𝜎𝑚,𝑘 where 𝛤𝑘 is the Siegel gamma function. Let S𝑘 ⊂ R𝑘×𝑘 be the space of real
symmetric matrices equipped with the volume measure d𝑆 =

∏

𝑖≤𝑗 d𝑠𝑖𝑗 , which is isometric to the euclidean space R𝑘(𝑘+1)∕2. Let
P𝑘 ⊂ R𝑘×𝑘 be the cone of positive definite matrices in S𝑘 equipped with the volume measure d𝑃 =

∏

𝑖≤𝑗 d𝑝𝑖𝑗 .

emma C.1 (Matrix Polar Decomposition). For any 𝑊 ∈𝑀𝑚,𝑘, there uniquely exist 𝑈 ∈ 𝑉𝑚,𝑘 and 𝑃 ∈ P𝑘 such that

𝑊 = 𝑈𝑃 1∕2, 𝑃 = 𝑊 ⊤𝑊 ;

nd for any 𝑓 ∈ 𝐿1(𝑀𝑚,𝑘),

∫𝑀𝑚,𝑘

𝑓 (𝑊 )d𝑊 = 1
2𝑘 ∫𝑉𝑚,𝑘×P𝑘

𝑓 (𝑈𝑃 1∕2)| det 𝑃 |
𝑚−𝑘−1

2 d𝑃 d𝑈, 𝑃 = 𝑊 ⊤𝑊 .

See Rubin (2018, Lemma 2.1) for more details. We remark that while Lemma C.1 is an integration formula on Stiefel manifold,
he Grassmannian manifold version is the Blaschke–Petkantschin formula.

emma C.2 (Matrix Polar Integration). For any 𝑓 ∈ 𝐿1(R𝑘),

𝑐𝑚,𝑘 ∫R𝑚
𝑓 (𝒙)d𝒙 = ∫𝑉𝑚,𝑘×R𝑘

𝑓 (𝑈𝒃)|𝑈𝒃|𝑚−𝑘d𝑈d𝒃,

where 𝑐𝑚,𝑘 ∶= ∫S𝑘−1×𝑉𝑚,𝑘−1 d𝑈d𝝎.

Proof. Recall that 𝑈𝒃 =
∑𝑘
𝑖=1 𝑏𝑖𝒖𝑖 ∈ R𝑚 and thus |𝑈𝒃|2 = 𝒃⊤𝑈⊤𝑈𝒃 = |𝒃|2. Hence, using the polar decomposition 𝒃 = 𝑟𝝎 with

d𝒃 = 𝑟𝑘−1d𝑟d𝝎,

∫𝑉𝑚,𝑘×R𝑘
𝑓 (𝑈𝒃)|𝑈𝒃|𝑚−𝑘d𝑈d𝒃

= ∫𝑉𝑚,𝑘×S𝑘−1×R+

𝑓 (𝑈𝝎𝑟)𝑟𝑚−𝑘𝑟𝑘−1d𝑟d𝝎d𝑈

then letting 𝒖𝝎 ∶=
∑𝑘
𝑖=1 𝜔𝑖𝒖𝑖, which is a unit vector in span 𝑈 = [𝒖1,… , 𝒖𝑘], and letting 𝑈−𝝎 be a rearranged 𝑘 − 1-frame in span 𝑈

that excludes 𝒖𝝎,

= ∫S𝑘−1

[

∫𝑉𝑚,𝑘−1×S𝑘−1×R+

𝑓 (𝑟𝒖𝝎)𝑟𝑚−1d𝑟d𝒖𝝎d𝑈−𝝎

]

d𝝎

= ∫S𝑘−1×𝑉𝑚,𝑘−1
d𝑈𝑘−1d𝝎∫R𝑚

𝑓 (𝒙)d𝒙, 𝒙 = 𝑟𝒖𝝎. □

Lemma C.3 (SVD). For any column-full-rank matrix 𝑊 ∈ 𝑀𝑚,𝑘, there exist (𝑈,𝐷, 𝑉 ) ∈ 𝑉𝑚,𝑘 × R𝑘+ × 𝑂(𝑘) satisfying 𝑊 = 𝑈𝐷𝑉 ⊤ with
𝑑1 >⋯ > 𝑑𝑘 > 0; and for any 𝑓 ∈ 𝐿1(𝑀𝑚,𝑘),

∫𝑀𝑚,𝑘

𝑓 (𝑊 )d𝑊 = 2−𝑘 ∫𝑉𝑚,𝑘×R𝑘+×𝑂(𝑘)
𝑓 (𝑈𝐷𝑉 ⊤)| det𝐷|

𝑚−𝑘
∏

𝑖<𝑗
(𝑑2𝑖 − 𝑑

2
𝑗 )d𝐷d𝑉 d𝑈,

here d𝐷 =
⋀𝑘
𝑖=1 d𝑑𝑖 and d𝑈, d𝑉 denote the invariant measures.
20
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Appendix D. Proofs

D.1. Solution via singular value decomposition

Step 1. We begin with the following Fourier expression:

𝑆[𝛾](𝒙) = ∫𝑀𝑚,𝑘×R𝑘
𝛾(𝐴, 𝒃)𝜎(𝐴⊤𝒙 − 𝒃)d𝐴d𝒃

= 1
(2𝜋)𝑘 ∫𝑀𝑚,𝑘×R𝑘

𝛾♯(𝐴,𝝎)𝜎♯(𝝎)𝑒𝑖(𝐴𝝎)⋅𝒙d𝐴d𝝎. (D.1)

Here, we assume (D.1) to be absolutely convergent for a.e. 𝒙 ∈ R𝑚, so that we can change the order of integrations freely. But this
assumption will be automatically satisfied because we eventually set 𝛾 to be the ridgelet transform.

Step 2. In the following, we aim to turn the integration ∫ ⋯ 𝑒𝑖(𝐴𝝎)⋅𝒙d𝐴d𝝎 into the Fourier inversion ∫ ⋯ 𝑒𝑖𝑈𝝃⋅𝒙
|𝑈𝝃|𝑑d𝑈d𝝃 in the

atrix polar coordinates. To achieve this, we use the singular value decomposition.

emma D.1 (Singular Value Decomposition, Lemma C.3). The matrix space 𝑀𝑚,𝑘 can be decomposed into 𝑀𝑚,𝑘 = 𝑉𝑚,𝑘 × R𝑘+ × 𝑂(𝑘) via
ingular value decomposition

𝐴 = 𝑈𝐷𝑉 ⊤, (𝑈,𝐷, 𝑉 ) ∈ 𝑉𝑚,𝑘 × R𝑘+ × 𝑂(𝑘)

atisfying 𝐷 = diag[𝑑1,… , 𝑑𝑘] (𝑑1 >⋯ > 𝑑𝑘 > 0) (distinct singular values); and the Lebesgue measure d𝐴 is calculated as

d𝐴 = 𝛿(𝐷)d𝐷d𝑈d𝑉 , 𝛿(𝐷) ∶= 2−𝑘| det𝐷|

𝑑𝛥(𝐷2),

here d𝐷 =
⋀𝑘
𝑖=1 d𝑑𝑖; d𝑈 and d𝑉 are invariant measures on 𝑉𝑚,𝑘 and 𝑂(𝑘) respectively; and 𝛥(𝐷2) ∶=

∏

𝑖<𝑗 (𝑑
2
𝑖 − 𝑑2𝑗 ) denotes the

andermonde polynomial (or the products of differences) of a given (diagonalized) vector 𝐷 = [𝑑1,… , 𝑑𝑘].

If there is no risk of confusion, we write 𝑈𝐷𝑉 ⊤ as 𝐴 for the sake of readability.
Using SVD, the Fourier expression is rewritten as follows:

(D.1) = 1
(2𝜋)𝑘 ∫𝑀𝑚,𝑘×R𝑘

𝛾♯(𝐴,𝝎)𝜎♯(𝝎)𝑒𝑖(𝑈𝐷𝑉 ⊤𝝎)⋅𝒙𝛿(𝐷)d𝑈d𝐷d𝑉 d𝝎 (D.2)

Changing the variables as (𝝎, 𝑉 ) = (𝑉 𝝎′, 𝑉 ) with d𝝎d𝑉 = d𝝎′d𝑉 ,

= 1
(2𝜋)𝑘 ∫𝑀𝑚,𝑘×R𝑘

𝛾♯(𝐴, 𝑉 𝝎′)𝜎♯(𝑉 𝝎′)𝑒𝑖(𝑈𝐷𝝎′)⋅𝒙𝛿(𝐷)d𝑈d𝐷d𝑉 d𝝎′ (D.3)

Then, extending the domain of 𝐷 from R𝑘+ to R𝑘, changing the variables as (𝑑𝑖, 𝜔′
𝑖) = (𝑦𝑖∕𝜔′

𝑖 , 𝜔
′
𝑖) with d𝑑𝑖d𝜔′

𝑖 = |𝜔′
𝑖|
−1d𝑦𝑖d𝜔′

𝑖 , and
riting 𝒚 ∶= [𝑦1,… , 𝑦𝑘],

= 1
(4𝜋)𝑘 ∫𝑉𝑚,𝑘×R𝑘×𝑂(𝑘)×R𝑘

𝛾♯(𝐴, 𝑉 𝝎′)𝜎♯(𝑉 𝝎′)𝑒𝑖(𝑈𝒚)⋅𝒙𝛿(𝐷)
𝑘
∏

𝑖=1
|𝜔′

𝑖|
−1d𝑈d𝒚d𝑉 d𝝎′. (D.4)

Step 3. Therefore, it is natural to suppose 𝛾 to satisfy a separation-of-variables form

𝛾♯(𝐴, 𝑉 𝝎′)𝜎♯(𝑉 𝝎′)𝛿(𝐷)
𝑘
∏

𝑖=1
|𝜔′

𝑖|
−1 = 𝑓 (𝑈𝒚)|𝑈𝒚|𝑑𝜙♯(𝑉 ,𝝎′) (D.5)

with an auxiliary convergence factor 𝜙. Then, we have

(D.4) = 1
(4𝜋)𝑘

(

∫𝑂(𝑘)×R𝑘
𝜙♯(𝑉 ,𝝎′)d𝑉 d𝝎′

)

(

∫𝑉𝑚,𝑘×R𝑘
𝑓 (𝑈𝒚)|𝑈𝒚|𝑑𝑒𝑖𝑈𝒚⋅𝒙d𝒚d𝑈

)

=
𝑐𝜙

(2𝜋)𝑚 ∫R𝑚
𝑓 (𝒚)𝑒𝑖𝒚⋅𝒙d𝒚 = 𝑐𝜙𝑓 (𝒙).

Here, we put 𝑐𝜙 ∶= 2−𝑘(2𝜋)𝑑𝑐−1𝑚,𝑘 ∫𝑂(𝑘)×R𝑘 𝜙
♯(𝑉 ,𝝎′)d𝑉 d𝝎′, and used a matrix polar integration formula given in Lemma C.1.

Finally, the form (D.5) can be satisfied as below. Since 𝑉 𝝎′ = 𝝎 and 𝑈𝒚 = 𝑈𝐷𝝎′ = 𝐴𝝎, it is reduced to

𝛾♯(𝐴,𝝎)
𝜙♯(𝑉 ,𝝎′)

=
𝑓 (𝐴𝝎)|𝐴𝝎|𝑑

𝜎♯(𝑉 𝝎′)𝛿(𝐷)
∏𝑘

𝑖=1 |𝜔
′
𝑖|
−1
.

Hence we can put

𝛾♯(𝐴,𝝎) = 𝑓 (𝐴𝝎)|𝐴𝝎|𝑑𝜌♯(𝝎)
, (D.6)
21

𝛿(𝐷)
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𝜙♯(𝑉 ,𝝎′) = 𝜎♯(𝑉 𝝎′)𝜌♯(𝑉 𝝎′)
𝑘
∏

𝑖=1
|𝜔′

𝑖|
−1,

with additional convergence factor 𝜌. In this setting, the constant 𝑐𝜙 is calculated as

𝑐𝜙 ∶=
(2𝜋)𝑑

2𝑘𝑐𝑚,𝑘 ∫𝑂(𝑘)×R𝑘
𝜎♯(𝑉 𝝎′)𝜌♯(𝑉 𝝎′)

𝑘
∏

𝑖=1
|𝜔′

𝑖|
−1d𝑉 d𝝎′

=
(2𝜋)𝑑

2𝑘𝑐𝑚,𝑘 ∫R𝑘
𝜎♯(𝝎)𝜌♯(𝝎)

𝑘
∏

𝑖=1
|𝜔𝑖|

−1d𝝎 =∶ ((𝜎, 𝜌));

nd 𝛾 is obtained by taking the Fourier inversion of (D.6) with respect to 𝝎 as follows:

𝛾(𝐴, 𝒃) = 1
(2𝜋)𝑘𝛿(𝐷) ∫R𝑘

|𝐴𝝎|𝑑𝑓 (𝐴𝝎)𝜌♯(𝝎)𝑒𝑖𝝎⋅𝒃d𝝎,

= 1
(2𝜋)𝑘𝛿(𝐷) ∫R𝑘

[

∫R𝑚
▵𝑑∕2 [𝑓 ](𝒙)𝑒−𝑖𝐴𝝎⋅𝒙d𝒙

]

𝜌♯(𝝎)𝑒𝑖𝝎⋅𝒃d𝝎

= 1
𝛿(𝐷) ∫R𝑚

▵𝑑∕2 [𝑓 ](𝒙)
[

1
(2𝜋)𝑘 ∫R𝑘

𝜌♯(𝝎)𝑒𝑖𝝎⋅(𝐴⊤𝒙−𝒃)d𝝎
]∗

d𝒙

= 1
𝛿(𝐷) ∫R𝑚

▵𝑑∕2 [𝑓 ](𝒙)𝜌(𝐴⊤𝒙 − 𝒃)d𝒙

=∶ 𝑅[𝑓 ](𝐴, 𝒃).

To sum up, we have shown that

𝑆[𝑅[𝑓 ]](𝒙) = ∫𝑀𝑚,𝑘×R𝑘
𝑅[𝑓 ](𝐴, 𝒃)𝜎(𝐴⊤𝒙 − 𝒃)d𝐴d𝒃 = ((𝜎, 𝜌))𝑓 (𝒙).

D.2. Restriction to the similitude group

Let us consider the restricted case of the similitude group 𝐺𝑉𝑚,𝑘. Since it is a measure-zero subspace of 𝑀𝑚,𝑘, we can obtain the
different solution.

Step 1. The continuous network and its Fourier expression are given as

𝑆[𝛾](𝒙) ∶= ∫𝐺𝑉𝑚,𝑘×R𝑘
𝛾(𝐴, 𝒃)𝜎(𝐴⊤𝒙 − 𝒃)d𝜇(𝐴)d𝒃

= 1
(2𝜋)𝑘 ∫𝐺𝑉𝑚,𝑘×R𝑘

𝛾♯(𝐴,𝝎)𝜎♯(𝝎)𝑒𝑖(𝑎𝑈𝝎)⋅𝒙𝛼(𝑎)d𝑎d𝑈d𝝎 (D.7)

Step 2. (Skipping the matrix decomposition of 𝐴 and) turning 𝝎 into polar coordinates 𝝎 = 𝑟𝒗 with (𝑟, 𝒗) ∈ R+ × S𝑘−1 and
𝝎 = 𝑟𝑘−1d𝑟d𝒗, yielding

(D.7) = 1
(2𝜋)𝑘 ∫𝐺𝑉𝑚,𝑘×R+×S𝑘−1

𝛾♯(𝐴, 𝑟𝒗)𝜎♯(𝑟𝒗)𝑒𝑖(𝑎𝑟𝑈𝒗)⋅𝒙𝛼(𝑎)𝑟𝑘−1d𝑎d𝑈d𝑟d𝒗

Changing the variable (𝑎, 𝑟) = (𝑦∕𝑟, 𝑟) with d𝑎d𝑟 = 𝑟−1d𝑦d𝑟,

= 1
(2𝜋)𝑘 ∫𝐺𝑉𝑚,𝑘×R+×S𝑘−1

𝛾♯(𝐴, 𝑟𝒗)𝜎♯(𝑟𝒗)𝑒𝑖(𝑦𝑈𝒗)⋅𝒙𝛼(𝑦∕𝑟)𝑟𝑘−2d𝑦d𝑈d𝑟d𝒗

nd returning 𝑦𝒗 into the Euclidean coordinate 𝒚 with 𝑦𝑘−1d𝑦d𝒗 = d𝒚,

= 1
(2𝜋)𝑘 ∫𝐺𝑉𝑚,𝑘×R𝑘

𝛾♯(𝐴, 𝑟𝒚∕|𝒚|)𝜎♯(𝑟𝒚∕|𝒚|)𝑒𝑖(𝑈𝒚)⋅𝒙𝛼(|𝒚|∕𝑟)𝑟𝑘−2|𝒚|−(𝑘−1)d𝒚d𝑈d𝑟. (D.8)

Step 3. Since 𝑟𝒚∕|𝒚| = 𝑟𝒗 = 𝝎 and |𝒚|∕𝑟 = 𝑦∕𝑟 = 𝑎, supposing the separation-of-variables form as

𝛾♯(𝐴,𝝎)𝜎♯(𝝎)𝛼(𝑎)𝑎−𝓁|𝝎|𝑘−2−𝓁|𝒚|−(𝑘−1−𝓁) = 𝑓 (𝑈𝒚)|𝑈𝒚|𝑑𝜙♯(𝝎), (D.9)

for any number 𝓁 ∈ R, we have

(D.8) = 1
(2𝜋)𝑘

(

∫ ∫R+

𝜙♯(𝑟)d𝑟

)(

∫𝑉𝑚,𝑘×R𝑘
𝑓 (𝑈𝒚)|𝑈𝒚|𝑑𝑒−(𝑈𝒚)⋅𝒙d𝑈d𝒚

)

= 𝑐𝜙𝑓 (𝒙).

Note that in addition to 𝑈𝒚 = 𝐴𝝎, we have |𝒚| = |𝑈𝒚| = 𝑎|𝝎| and thus |𝑈𝒚|𝑑 = |𝐴𝝎|𝑛𝑎𝑑−𝑛|𝝎|𝑑−𝑛 for any number 𝑛 ∈ R. Hence
he condition is reduced to
22
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𝛾♯(𝐴,𝝎)
𝜙♯(𝝎)

=
𝑓 (𝐴𝝎)|𝐴𝝎|𝑛+(𝑘−1−𝓁)𝑎𝑑−𝑛+𝓁|𝝎|𝑚−2𝑘−𝑛+2+𝓁

𝜎♯(𝝎)𝛼(𝑎)

=
𝑓 (𝐴𝝎)|𝐴𝝎|𝑠𝑎𝑚−𝑠−1|𝝎|𝑑−𝑠+1

𝜎♯(𝝎)𝛼(𝑎)
,

where we put 𝑠 ∶= 𝑛 + (𝑘 − 1 − 𝓁), which can be an arbitrary real number. As a result, to satisfy (D.9), we may put

𝛾♯(𝐴,𝝎) = 𝑓 (𝐴𝝎)|𝐴𝝎|𝑠𝜌♯(𝝎),

𝛼(𝑎) = 𝑎𝑚−𝑠−1,

𝜙♯(𝝎) = 𝜎♯(𝝎)𝜌♯(𝝎)|𝝎|−(𝑑−𝑠+1);

which lead to

𝑅𝑠[𝑓 ] = ∫R𝑚
[▵𝑠∕2 𝑓 ](𝒙)𝜌(𝐴⊤𝒙 − 𝒃)d𝒙,

((𝜎, 𝜌))𝑠 ∝ ∫R𝑘
𝜎♯(𝝎)𝜌♯(𝝎)|𝝎|−(𝑑−𝑠+1)d𝝎,

𝑆[𝑅𝑠[𝑓 ]](𝒙) = ∫𝐺𝑉𝑚,𝑘×R𝑘
𝑅𝑠[𝑓 ](𝐴, 𝒃)𝜎(𝐴⊤𝒙 − 𝒃)𝑎𝑚−𝑠−1d𝑎d𝑈d𝒃 = ((𝜎, 𝜌))𝑓 (𝒙).

By matching the order of the fractional derivative ▵𝑠, 𝑠 = 𝑑 corresponds to the SVD solution. On the other hand, by matching the
weight |𝝎|−(𝑑−𝑠+1), 𝑘 = 1 and 𝑠 = 0 exactly reproduces the classical result.

D.3. Restriction to the stiefel manifold

Let us consider a further restricted case of the Stiefel manifold.

Step 1.

𝑆[𝛾](𝒙) ∶= ∫𝑉𝑚,𝑘×R𝑘
𝛾(𝑈, 𝒃)𝜎(𝑈⊤𝒙 − 𝒃)d𝑈d𝒃

= 1
(2𝜋)𝑘 ∫𝑉𝑚,𝑘×R𝑘

𝛾♯(𝑈,𝝎)𝜎♯(𝝎)𝑒𝑖(𝑈𝝎)⋅𝒙d𝑈d𝝎.

Namely, the weight matrix parameter 𝑈 ∈𝑀𝑚,𝑘 now simply lies in the Stiefel manifold 𝑉𝑚,𝑘, and thus it does not contain any scaling
factor. We show that this formulation still admit solutions, provided that 𝜎 is also appropriately restricted.

Step 3. Skipping the rescaling step (Step 2), let us consider the separation-of-variables form:

𝛾♯(𝑈,𝝎)𝜎♯(𝝎) = 𝑓 (𝑈𝝎)|𝑈𝝎|𝑑𝜙♯(𝝎); (D.10)

satisfied by

𝛾♯(𝑈,𝝎) = 𝑓 (𝑈𝝎)|𝑈𝝎|𝑠𝜌♯(𝝎),

𝜙♯(𝝎) = 𝜎♯(𝝎)𝜌♯(𝝎)|𝝎|𝑠−𝑑 ,

for any real number 𝑠 ∈ R. Here, we used |𝑈𝝎| = |𝝎|.
In order (D.10) to turn to a solution, it is sufficient when

𝜙♯(𝝎) = 𝑐−1𝑚,𝑘(2𝜋)
−𝑑 , (D.11)

because then

(D.10) = 1
(2𝜋)𝑘 ∫𝑉𝑚,𝑘×R𝑘

𝑓 (𝑈𝝎)|𝑈𝝎|𝑑𝜙♯(𝝎)𝑒𝑖(𝑈𝝎)⋅𝒙d𝑈d𝝎

= 1
(2𝜋)𝑚 ∫R𝑚

𝑓 (𝒚)𝑒𝑖𝒚⋅𝒙d𝒚 = 𝑓 (𝒙).

Compared to the previous results, (D.11) demands much more strict. Nonetheless, a few examples are such as

𝜎♯(𝝎) = |𝝎|𝑡, 𝜌♯(𝝎) = 𝑐−1𝑚,𝑘(2𝜋)
−𝑑

|𝝎|𝑑−(𝑠+𝑡);

or equivalently in the real domain,

▵
− 𝑡

2
𝒃 [𝜎](𝒃) = 𝛿(𝒃), ▵

− 𝑑−(𝑠+𝑡)
2

𝒃 [𝜌](𝒃) = 𝑐−1𝑚,𝑘(2𝜋)
−𝑑𝛿(𝒃).
23

In particular when 𝑘 = 1, then 𝜎 coincides with the Dirac delta (𝑡 = 0), step function (𝑡 = −1), and ReLU function (𝑡 = −2).
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𝑓

Interestingly, the ridgelet transform is reduced to the 𝑑-plane transform (𝑑 ∶= 𝑚 − 𝑘 is the codimension). Since 𝛾♯(𝑈,𝝎) =

(̂𝑈𝝎)|𝑈𝝎|𝑑−𝑡, we have

𝛾(𝑈, 𝒃) = 1
(2𝜋)𝑘 ∫R𝑘

𝑓 (𝑈𝝎)|𝑈𝝎|𝑑−𝑡𝑒𝑖𝝎⋅𝒃d𝝎

= 1
(2𝜋)𝑘 ∫R𝑘

̂▵(𝑑−𝑡)∕2 [𝑓 ](𝑈𝝎)𝑒𝑖𝝎⋅𝒃d𝝎,

but this is the Fourier expression (a.k.a. Fourier slice theorem) for the 𝑑-plane transform, say 𝑃𝑑 , of the derivative ▵(𝑑−𝑡)∕2 [𝑓 ]. In
other words, when the scaling parameter is removed, the reconstruction formula is reduced to the Radon transform:

𝑆[𝑅[𝑓 ]](𝒙) = ∫𝑉𝑚,𝑘×R𝑘
𝑃𝑑 [▵(𝑑−𝑡)∕2 [𝑓 ]](𝑈, 𝒃)𝜎(𝑈⊤𝒙 − 𝒃)d𝑈d𝒃.
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