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ABSTRACT

Let Ω ⊂ Rd be a bounded domain. We consider the problem of how efficiently shallow neu-
ral networks with the ReLUk activation function can approximate functions from Sobolev spaces
W s(Lp(Ω)) with error measured in the Lq(Ω)-norm. Utilizing the Radon transform and recent re-
sults from discrepancy theory, we provide a simple proof of nearly optimal approximation rates in a
variety of cases, including when q ≤ p, p≥ 2, and s ≤ k+(d+1)/2. The rates we derive are optimal
up to logarithmic factors, and significantly generalize existing results. An interesting consequence
is that the adaptivity of shallow ReLUk neural networks enables them to obtain optimal approxi-
mation rates for smoothness up to order s = k +(d + 1)/2, even though they represent piecewise
polynomials of fixed degree k.

1 Introduction

We consider the problem of approximating a target function f : Ω → R, defined on a bounded domain Ω ⊂ Rd , by
shallow ReLUk neural networks of width n, i.e. by an element from the set

Σk
n(R

d) :=

{
n

∑
i=1

aiσk(ωi · x+ bi), ai,bi ∈ R,ωi ∈ Rd

}
, (1.1)

where the ReLUk activation function σk is defined by

σk(x) =

{
0 x ≤ 0

xk x > 0.
(1.2)

We remark that when d = 1, the class of shallow ReLUk neural networks is equivalent to the set of variable knot
splines of degree k. For this reason, shallow ReLUk neural networks are also called ridge splines and form a higher
dimensional generalization of variable knot splines. The approximation theory of shallow ReLUk neural networks has
been heavily studied due to their relationship with neural networks and their success in machine learning and scientific
computing (see for instance [2, 3, 7, 11, 19, 23, 25, 29, 40, 47, 54] and the references therein). Despite this effort, many
important problems remain unsolved. Notably, a determination of sharp approximation rates for shallow ReLUk neural
networks on classical smoothness spaces, in particular Sobolev and Besov spaces, has not been completed except when
d = 1 (the theory of variable knot splines in one dimension is well known and can be found in [10, 22], for instance).

http://arxiv.org/abs/2408.10996v1
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Let Ω ⊂ Rd be a bounded domain. To simplify the presentation, we will only consider the case where

Ω := {x : |x|< 1} (1.3)

is the unit ball in Rd , although we remark that our techniques give the same results for any domain Ω with smooth
boundary by utilizing appropriate Sobolev and Besov extension theorems [1, 10, 20, 56].

We define the Sobolev spaces W s(Lq(Ω)) for integral s via the norm

‖ f‖W s(Lq(Ω)) = ‖ f‖Lq(Ω)+ ∑
|α |=s

‖ f (s)‖Lq(Ω), (1.4)

where the sum is over multi-indices α with weight s. When s is not an integer, we write s = k+ θ with k an integer
and 0 < θ < 1, and define the fractional Sobolev spaces (see for instance [15]) via

| f |
q

W s(Lq(Ω))
:= ∑

|α |=k

∫

Ω×Ω

|Dα f (x)−Dα f (y)|q

|x− y|d+θq
dxdy (1.5)

and
‖ f‖q

W s(Lq(Ω))
:= ‖ f‖q

Lq(Ω)
+ | f |q

W s(Lq(Ω))
, (1.6)

with the standard modifications when q=∞. Sobolev spaces are central objects in analysis and the theory of PDEs (see
for instance [20]). We remark also that when q = 2 and Ω = Rd , the Sobolev norm can be conveniently characterized
via the Fourier transform, specifically

| f |2
W s(L2(Rd))

h

∫

Rd
|ξ |2s| f̂ (ξ )|dξ , (1.7)

where f̂ denotes the Fourier transform of f defined by (see [?, 1])

f̂ (ξ ) :=

∫

Rd
eiξ ·x f (x)dx. (1.8)

The Besov spaces may be defined using the modulus of smoothness (see for instance [10,13,59]), which for a function
f ∈ Lq(Ω) is given by

ωk( f , t)q = sup
|h|≤t

‖∆k
h f‖Lq(Ωkh). (1.9)

Here ∆k
h f is the k-th order finite difference in the direction h and Ωkh = {x ∈ Ω, x+ kh ∈ Ω}, which guarantees that

all terms of the finite difference lie in Ω. For s > 0 and 1 ≤ r,q ≤ ∞ the Besov norm is defined by

| f |Bs
r(Lq(Ω)) :=

(∫ ∞

0

ωk( f , t)r
q

tsr+1
dt

)1/r

(1.10)

when r < ∞ and by
| f |Bs

∞(Lq(Ω)) := sup
t>0

t−sωk( f , t)q, (1.11)

when r = ∞. The Besov spaces are closely related to approximation by trigonometric polynomials, splines, and
wavelets, and have numerous applications in approximation theory, harmonic analysis, signal processing, and statistics
(see for instance [6, 9, 16–18]). We remark that it is known that the Sobolev spaces for non-integral values of s are
equivalent to Besov spaces (see [12, 13]), specifically

‖ f‖W s(Lq(Ω)) h ‖ f‖Bs
q(Lq(Ω)) (1.12)

for an appropriately smooth domain.

An important theoretical question is to determine optimal approximation rates for Σk
n(R

d) on the classes of Sobolev
and Besov functions. Specifically, we wish to determine minimax approximation rates

sup
‖ f‖Ws(Lq(Ω))≤1

inf
fn∈Σk

n(R
d)
‖ f − fn‖Lp(Ω) and sup

‖ f‖Bs
r(Lq(Ω))≤1

inf
fn∈Σk

n(R
d)
‖ f − fn‖Lp(Ω) (1.13)

for different values of the parameters s, p,q,r and k. When d = 1, the set of shallow neural networks Σk
n(R) simply

corresponds to the set of variable knot splines with at most n breakpoints. In this case a complete theory follows from
known results on approximation by variable knot splines [7, 8, 46]. When d > 1, this problem becomes considerably
more difficult and only a few partial results are known.
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We remark that when approximating functions from a Sobolev space W s(Lq(Ω)) or a Besov space Bs
r(Lq(Ω)) in

Lp there is a significant difference depending upon whether q ≥ p or q < p. In the former case, linear methods of
approximation are able to achieve an optimal approximation rate, while when q < p non-linear methods are required
[8, 30]. For shallow ReLUk neural networks, existing approximation results have exclusively been obtained in the
linear regime when q ≥ p. Fully understanding approximation by shallow ReLUk neural networks in the non-linear
regime when q < p appears to be a very difficult open problem.

In this work, we study approximation rates for shallow ReLUk neural networks on Sobolev spaces using existing
approximation results on variation spaces (we leave the more technical case of Besov spaces to future work). The
variation space corresponding to ReLUk neural networks is defined as follows. Let Ω ⊂ Rd be a bounded domain and
consider the dictionary, i.e. set, of functions

Pd
k := {σk(ω · x+ b), ω ∈ Sd−1, b ∈ [c,d]}, (1.14)

where the interval [c,d] depends upon the domain Ω (see [54, 55] for details and intuition behind this definition). The

set Pd
k consists of the possible outputs of each neuron given a bound on the inner weights. The unit ball of the variation

space is the closed symmetric convex hull of this dictionary, i.e.

B1(P
d
k ) =

{
n

∑
i=1

aidi, di ∈ Pd
k ,

n

∑
i=1

|ai| ≤ 1

}
, (1.15)

where the closure is taken for instance in L2 (it is known that the closure is the same when taken in different norms as
well [51, 62]). Given the unit ball, we may define the variation space norm via

‖ f‖
K1(P

d
k
) = inf{c > 0 : f ∈ cB1(P

d
k )}. (1.16)

The variation space will be denoted

K1(P
d
k ) := { f ∈ X : ‖ f‖

K1(P
d
k
) < ∞}. (1.17)

We remark that the variation space can be defined for a general dictionary, i.e. bounded set of functions, D (see for
instance [8, 27, 28, 41, 42, 54]). This space plays an important role in non-linear dictionary approximation and the
convergence theory of greedy algorithms [14, 50, 57, 58]. In addition, the variation spaces K1(P

d
k ) play an important

role in the theory of shallow neural networks and have been extensively studied in different forms recently [2, 19, 44,
45, 55].

An important question regarding the variation spaces is to determine optimal approximation rates for shallow ReLUk

networks on the space K1(P
d
k ). This problem has been studied in a series of works [2,3,23,31,36,37], with the (nearly)

optimal rate of approximation,

inf
fn∈Σk

n(R
d)
‖ f − fn‖ ≤C‖ f‖

K1(P
d
k
)n

− 1
2−

2k+1
2d , (1.18)

recently being obtained for the L2-norm in [54] and in the L∞-norm in [51]. To be precise, this rate is optimal up
to logarithmic factors, which is shown in [54] under a mild restriction on the weights, while the general optimality
follows from the results proved in this work.

A promising approach to obtaining approximation rates for ReLUk neural networks on Sobolev and Besov spaces is to
use the approximation rate (1.18) obtained on the variation space to obtain rates on Sobolev and Besov spaces via an
interpolation argument, i.e. by approximating the target function f first by an element of the variation space and then
approximating via a shallow neural network. This type of argument was applied in [2], where an approximation rate
of

inf
fn∈Σ1

n(R
d)
‖ f − fn‖L∞(Ω) ≤C‖ f‖W 1(L∞(Ω))

(
n

logn

)−1/d

(1.19)

was proved for the class of Lipschitz functions W 1(L∞(Ω)). We remark that, due to a minor error, the proof in [2] is
only correct when d ≥ 4. This approach was extended in [63] (see also [38, 62]) to larger values of the smoothness s
and the logarithmic factor was removed, which gives the approximation rate

inf
fn∈Σk

n(R
d)
‖ f − fn‖L∞(Ω) ≤C‖ f‖W s(L∞(Ω))n

−s/d (1.20)

for all s < (d + 2k + 1)/2. Up to logarithmic factors, this rate is optimal, which solves the problem (1.13) when
p = q = ∞. Indeed, lower bounds on the approximation rates (1.13) can be obtained using either the VC-dimension or
pseudodimension of the class of shallow neural networks Σk

n(R
d) (see [4, 25, 35, 50]). This gives a lower bound of

sup
‖ f‖Ws(Lq(Ω))

inf
fn∈Σk

n(R
d)
‖ f − fn‖Lp(Ω) ≥C(n log(n))−s/d (1.21)

3
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for all s,d,k, p and q. Removing the remaining logarithmic gap here appears to be a very difficult problem.

We remark that there are also other approaches which do not utilize the variation space, such as the method developed
in [11, 47], where it is proved for Sobolev spaces that

inf
fn∈Σk

n(R
d)
‖ f − fn‖L2(Ω) ≤C‖ f‖W s(L2(Ω))n

−s/d (1.22)

for s ≤ (d + 2k + 1)/2. Again, this rate is optimal up to logarithmic factors, giving the solution to (1.13) when
p = q = ∞.

In this work, we utilize approximation rates for the variation space and an interpolation argument to extend the approx-
imation rates derived in previous work to a variety of new cases. The key component of our analysis is the following
embedding theorem, which is proved using a Radon space characterization of the variation space [43–45].

Theorem 1. Let s = (d+ 2k+ 1)/2. Then we have the embedding

W s(L2(Ω))⊂ K1(P
d
k ). (1.23)

This result shows that the L2-Sobolev space with a certain amount of smoothness embeds into the variation space
K1(P

d
k ), and has quite a few important consequences. First, combining this with the approximation rate (1.18), we

obtain the following corollary.

Corollary 1. Let s = (d + 2k+ 1)/2. Then we have the approximation rate

inf
fn∈Σk

n(R
d)
‖ f − fn‖L∞(Ω) ≤C‖ f‖W s(L2(Ω))n

−s/d. (1.24)

Note that in (1.24) we have error measured in Lp with p = ∞ and smoothness measured in Lq with q = 2. In particular,
this result gives to the best of our knowledge the first approximation rate for ridge splines in the non-linear regime
when q < p. However, this only applies to one particular value of s, p and q, and it is an interesting open question
whether this can be extended more generally.

To understand the implications for the linear regime, we note that it follows from Corollary 1 that

inf
fn∈Σk

n(R
d)
‖ f − fn‖Lp(Ω) ≤C‖ f‖W s(Lp(Ω))n

−s/d (1.25)

for any 2 ≤ p ≤ ∞ with s = (d + 2k+ 1)/2. Standard interpolation arguments can now be used to give approximation
rates for Sobolev spaces in the regime when p = q and p ≥ 2.

Corollary 2. Suppose that 2 ≤ p ≤ ∞ and 0 < s ≤ k+ d+1
2

. Then we have

inf
fn∈Σk

n

‖ f − fn‖Lp(Ω) ≤C‖ f‖W s(Lp(Ω))n
−s/d. (1.26)

Corollary 2 extends the approximation rates obtained in [2, 38, 47, 62, 63] to all p ≥ 2. We remark that using interpo-
lation an analogous result can be proved for Besov spaces, but for simplicity we will not discuss this more technical
result in this paper.

Note that in Corollary 2, we required the index p ≥ 2. When d = 1, i.e. in the case of one-dimensional splines, it is
well-known that the same rate also holds when p < 2. In this case, Theorem 1 can actually be improved to (see [55],
Theorem 3)

W s(L1(Ω))⊂ K1(P
d
k ) (1.27)

for s = k+ 1 (the case d = 1 in Theorem 1), and approximation rates for all 1 ≤ p ≤ ∞ easily follow from this in an
analogous manner. However, we remark that this method of proof fails when d > 1, since the embedding (1.27) fails
in this case for the value of s in Theorem 1, which is required to obtain the approximation rate in Corollary 2. This
can be seen by noting that

K1(P
d
k )⊂ L∞(Ω),

and thus if (1.27) holds, then we must have W s(L1(Ω))⊂ L∞(Ω) which by the Sobolev embedding theory implies that
s ≥ d, which is not compatible with Theorem 1 unless

(d + 2k+ 1)/2≥ d,

i.e. k ≥ (d − 1)/2. For this reason the current method of proof cannot give the same approximation rates when d > 1
for all values of 1≤ p< 2 and k ≥ 0. Resolving these cases is an interesting open problem, which will require methods
that go beyond the variation spaces K1(P

d
k ), for instance by generalizing the analysis in [11, 47].

4
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Let us also remark that the embedding given in Theorem 1 is sharp in the sense of metric entropy. Recall that the
metric entropy numbers of a compact set K ⊂ X in a Banach space X is defined by

εn(K)X = inf{ε > 0 : K is covered by 2n balls of radius ε}. (1.28)

This concept was first introduced by Kolmogorov [24] and gives a measure of the size of compact set K ⊂ X . Roughly
speaking, it gives the smallest possible discretization error if the set K is discretized using n-bits of information. It has
been proved in [54] that the metric entropy of the unit ball B1(P

d
k ) satisfies

εn(B1(P
d
k ))L2(Ω) h n−

1
2−

2k+1
2d . (1.29)

Moreover, the results in [31,51] imply that the metric entropy decays at the same rate in all Lp(Ω)-spaces for 1≤ p≤∞
(potentially up to logarithmic factors). By the Birman-Solomyak theorem [5], this matches the rate of decay of the
metric entropy with respect to Lp(Ω) of the unit ball of the Sobolev space W s(L2(Ω)) for s = (d + 2k+ 1)/2. This
means that both spaces in Theorem 1 have roughly the same size in Lp(Ω).

Finally, let use relate these results to the existing literature on ridge approximation. Ridge approximation is concerned
with approximating a target function f by an element from the set

Rn :=

{
n

∑
i=1

fi(ωi · x), fi : R→R, ωi ∈ Sd−1

}
, (1.30)

Here the functions fi can be arbitrary one-dimensional functions and the direction ωi lie on the sphere Sd−1. There
is a fairly extensive literature on the problem of ridge approximation (see for instance [25, 48] for an overview of the
literature). In the linear regime optimal approximation rates are known for Sobolev and Besov spaces (see [32, 34])
and we have for instance

inf
fn∈Rn

‖ f − fn‖Lp(Ω) ≤C‖ f‖W s(Lp(Ω))n
− s

d−1 (1.31)

for all 1 ≤ p ≤ ∞. This result is proved by first approximating f by a (multivariate) polynomial of degree m, and then
representing this polynomial as a superposition of md−1 polynomial ridge functions. This construction applies to neural
networks provided we use an exotic activation function σ whose translates are dense in C([−1,1]) (see [33]). Using
an arbitrary smooth non-polynomial activation function we can also reproduce polynomials using finite differences to

obtain an approximation rate of O(n−s/d) (see [39]).

On the other hand, shallow ReLUk neural networks always represent piecewise polynomials of fixed degree k, and our
results do not proceed by approximating with a high-degree polynomial. One would expect that such a method could
only capture smoothness up to order k+1. Interestingly, as shown in Corollary 2, the non-linear nature of ReLUk neu-
ral networks allow us to capture smoothness up to degree k+(d+ 1)/2. This shows that in high dimensions, suitably
adaptive piecewise polynomials can capture very high smoothness with a fixed low degree, providing a Sobolev space
analogue of the results obtained in [53]. We remark that this is a potential advantage of shallow ReLUk networks for
applications such as solving PDEs [52, 61].

The paper is organized as follows. In Section 2 we give an overview of the relevant facts regarding the Radon transform
[49] that we will use later. Then, in Section 3 we provide the proof of Theorem 1. Finally, in Section 4 we deduce
Corollary 2.

2 The Radon Transform

In this Section, we recall the definition and several important facts about the Radon transform that we will use later.
The study of the Radon transform is a large and active area of research and we necessarily only cover a few basic
facts which will be important in our later analysis. For more detailed information on the Radon transform, see for
instance [21, 26, 60]. We also remark that the Radon transform has recently been extensively applied to the study of
shallow neural networks in [43, 44].

Given a Schwartz function f ∈ S (Rd) defined on Rd , we define the Radon transform of f as

R( f )(ω ,b) =
∫

ω·x=b
f (x)dx, (2.1)

where the above integral is over the hyerplane ω · x = b. The domain of the Radon transform is Sd−1 ×R, i.e. |ω |= 1
and b ∈R.

5
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Using Fubini’s theorem, we easily see that for each ω ∈ Sd−1 we have

‖R( f )(ω , ·)‖L1(R) =

∫

R
|R( f )(ω ,b)|db =

∫

R

∣∣∣∣
∫

ω·x=b
f (x)dx

∣∣∣∣db ≤

∫

R

∫

ω·x=b
| f (x)|dxdb = ‖ f‖L1(Rd). (2.2)

Integrating this over the sphere Sd−1 we get

‖R( f )‖L1(Sd−1×R) ≤ ωd−1‖ f‖L1(Rd),

where ωd−1 denotes the surface area of the sphere Sd−1, so that the Radon transform extends to a bounded map from

L1(R
d)→ L1(S

d−1 ×R). In fact, the bound (2.2) gives even more information.

A fundamental result relating the Radon transform to the Fourier transform is the Fourier slice theorem (see for instance
Theorem 5.10 in [26]).

Theorem 2 (Fourier Slice Theorem). Let f ∈ L1(R
d) and ω ∈ Sd−1. Let gω(b) = R( f )(ω ,b). Then for each t ∈ R

we have
ĝω(t) = f̂ (ωt). (2.3)

Note that by (2.2) we have gω ∈ L1(R) and so the Fourier transform in Theorem 2 is well-defined. For completeness,
we give the simple proof.

Proof. Expanding out the definition of the Fourier transform and Radon transforms and using Fubini gives

ĝω(t) =

∫

R
e−itb

∫

ω·x=b
f (x)dxdb =

∫

R

∫

ω·x=b
e−itω·x f (x)dxdb =

∫

Rd
e−itω·x f (x)dx = f̂ (ωt), (2.4)

since ω · x = b.

Utilizing the Fourier slice theorem and Fourier inversion, we can invert the Radon transform as follows (see for
instance Section 5.7 in [26]).

f (x) =
1

(2π)d

∫

Rd
f̂ (ξ )eiξ ·xdξ =

1

2(2π)d

∫

Sd−1

∫ ∞

−∞
f̂ (ωt)|t|d−1eitω·xdtdω

=
1

2(2π)d

∫

Sd−1

∫ ∞

−∞
ĝω(t)|t|

d−1eitω·xdtdω .

(2.5)

The inner integral above is the inverse Fourier transform of ĝω(t)|t|
d−1 evaluated at ω · x. This gives the inversion

formula

f (x) =

∫

Sd−1
HdR f (ω ,ω · x)dω , (2.6)

where the operator Hd acts on the b-coordinate and is defined by the (one-dimensional) Fourier multiplier

Ĥdg(t) =
1

2(2π)d
|t|d−1ĝ(t). (2.7)

The inversion formula (2.6) is typically called the filtered back-projection operator and is often applied to invert the
Radon transform in medical imaging applications (see for instance [26]). It is valid provided that the Fourier inversion
formula is valid, for instance whenever f is a Schwartz function.

3 Embeddings of Sobolev Spaces into ReLUk Variation Spaces

Our goal in this section is to prove Theorem 1 on the embedding of Sobolev spaces into the neural network variation
space.

Proof of Theorem 1. By a standard density argument and the Sobolev extension theory (see for instance [?, 1, 20, 56])
it suffices to prove that

‖ f‖
K1(P

d
k
) ≤C‖ f‖W s(L2(Rd)) (3.1)

for s = (d + 2k+ 1)/2 and every function f ∈ C∞
c (B

d
2). Here the norm on the left-hand side is the variation norm of

f restricted to Ω, the constant C is independent of f , and Bd
2 denotes the ball of radius 2 in Rd (any bounded domain

containing Ω will also do).

6
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Since f is a Schwartz function, we may use the Radon inversion formula (2.6) to write

f (x) =

∫

Sd−1
Fω(ω · x)dω , (3.2)

where Fω(t) = HdR f (ω , t). We remark also that since f ∈C∞
c (B

d
2), we have Fω ∈C∞(R) for each ω ∈ Sd−1 (it is not

necessarily compactly supported due to the Hilbert transform in the filtered back-projection operator).

Next, we use the Peano kernel formula to rewrite (3.2) for x in the unit ball as

f (x) = p(x)+
1

k!

∫

Sd−1

∫ ω·x

−1
F
(k+1)
ω (b)(ω · x− b)kdbdω

= p(x)+
1

k!

∫

Sd−1

∫ 1

−1
F
(k+1)
ω (b)σk(ω · x− b)dbdω ,

(3.3)

where p(x) is a polynomial of degree at most k given by

p(x) =
∫

Sd−1

k

∑
j=0

F
( j)
ω (−1)

j!
(ω · x+ 1) jdω . (3.4)

Now Hölder’s inequality implies that

∫

Sd−1

∫ 1

−1
|F

(k+1)
ω (b)|dbdω ≤C

∫

Sd−1

(∫ 1

−1
|F

(k+1)
ω (b)|2db

)1/2

dω ≤C

∫

Sd−1

(∫

R
|F

(k+1)
ω (b)|2db

)1/2

dω

=C

∫

Sd−1

(∫

R
|tk+1F̂ω(t)|

2dt

)1/2

dω .

(3.5)

Utilizing the Fourier slice theorem, the definition of the filtered back-projection operator Hd , and Jensen’s inequality,
we obtain the bound

∫

Sd−1

∫ 1

−1
|F

(k+1)
ω (b)|dbdω ≤C

∫

Sd−1

(∫

R
|tk+1F̂ω(t)|

2dt

)1/2

dω

=C

∫

Sd−1

(∫ ∞

−∞
|t|2s+d−1|R̂( f )(ω , t)|2dt

)1/2

dω

≤C

(∫

Sd−1

∫ ∞

−∞
|t|2s+d−1|R̂( f )(ω , t)|2dtdω

)1/2

=C

(
2

∫

Rd
|ξ |2s| f̂ (ξ )|2dξ

)1/2

=C| f |W s(L2(Rd)).

(3.6)

Setting

g(x) :=
1

k!

∫

Sd−1

∫ 1

−1
F
(k+1)
ω (b)σk(ω · x− b)dbdω (3.7)

the bound (3.6) implies that (see for instance Lemma 3 in [55])

‖g‖
K1(P

d
k
) ≤

∫

Sd−1

∫ 1

−1
|F

(k+1)
ω (b)|dbdω ≤C| f |W s(L2(Rd)). (3.8)

It also immediately follows from (3.6) that

‖g‖L2(Ω) ≤C

∫

Sd−1

∫ 1

−1
|F

(k+1)
ω (b)|dbdω ≤C| f |W s(L2(Rd)), (3.9)

since the elements of the dictionary Pd
k are uniformly bounded in L2. This implies that

‖p‖L2(Ω) = ‖ f − g‖L2(Ω) ≤ ‖ f‖L2(Ω)+ ‖g‖L2(Ω) ≤C‖ f‖W s(L2(Rd)). (3.10)

Since all norms on the finite dimensional space of polynomials of degree at most k are equivalent, we thus obtain

‖p‖
K1(P

d
k
) ≤C‖ f‖W s(L2(Rd)), (3.11)

which combined with (3.8) gives ‖ f‖
K1(P

d
k
) ≤C‖ f‖W s(L2(Rd)) as desired.
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4 Approximation Upper Bounds for Sobolev Spaces

In this section, we deduce the approximation rates in Corollary 2 from Theorem 1 and Corollary 1. This result follows
easily from the interpolation theory characterizing the interpolation spaces between the Sobolev space W s(Lp(Ω)) and
Lp(Ω) (see for instance [10], Chapter 6 for the one dimensional case), but for the reader’s convenience we give a simple
direct proof (which contains the essential interpolation argument). We remark that a similar, but more complicated
interpolation argument can be used to obtain approximation rates for Besov spaces as well.

Proof of Corollary 2. The first step in the proof is to note that by the Sobolev extension theorems (see for instance
[?,10,20,56]) we may assume that f is defined on all of Rd , f is supported on the ball of radius (say) 2 (or some other

domain containing Ω), and
‖ f‖W s(Lp(Rd)) ≤C‖ f‖W s(Lp(Ω)) (4.1)

for a constant C =C(Ω).

Let φ : Rd → [0,∞) be a smooth radially symmetric bump function supported in the unit ball and satisfying
∫

Rd
φ(x)dx = 1.

For ε > 0, we define φε : Rd →Rd by

φε(x) = ε−dφ(x/ε)

and form the approximant

fε (x) =
ρ

∑
t=1

(
ρ

t

)
(−1)t−1

∫

Rd
φε(y) f (x− ty)dy, (4.2)

where ρ > s is an integer. Using that
∫

φε (y)dy = 1, we estimate the error ‖ f − fε‖Lp by

‖ f − fε‖Lp(Rd) ≤

∥∥∥∥∥
∫

Rd
φε (y)

(
ρ

∑
t=0

(
ρ

t

)
(−1)t f (x− ty)

)
dy

∥∥∥∥∥
Lp(dx)

. (4.3)

Now, φε is supported on a ball of radius ε and
∥∥∥∥∥

(
ρ

∑
t=0

(
ρ

t

)
(−1)t f (x− ty)

)
dy

∥∥∥∥∥
Lp(dx)

≤ ωρ( f , |y|)p ≤C|y|s‖ f‖W s(Lp(Ω)) (4.4)

for a constant C =C(s, p,d) by the definition of the Besov space Bs
∞(Lp(R

d)) (here ωρ( f ,r)p denotes the ρ-th order
modulus of smoothness). Thus the triangle inequality implies that

‖ f − fε‖Lp(Rd) ≤

∫

Rd
φε(y)

∥∥∥∥∥
ρ

∑
t=0

(
ρ

t

)
(−1)t f (x− ty)

∥∥∥∥∥
Lp(dx)

dy ≤Cεs‖ f‖W s(Lp(Rd)), (4.5)

since ‖φε‖L1(Rd) = 1.

The next step is to bound the W α(L2(R
d))-norm of fε , where α = (d + 2k + 1)/2. Observe that since ρ is fixed

depending upon s, it suffices to bound
∥∥∥∥
∫

Rd
φε (y) f (x− ty)dy

∥∥∥∥
W α (L2(Rd ,dx))

(4.6)

for each fixed integer t ≥ 1. To do this, we first make a change of variables to rewrite

fε,t(x) :=

∫

Rd
φε(y) f (x− ty)dy =

1

td

∫

Rd
φε

(y

t

)
f (x− y)dy =

∫

Rd
φtε (y) f (x− y)dy. (4.7)

Taking the Fourier transform, we thus obtain

f̂ε,t(ξ ) = f̂ (ξ )φ̂ (tεξ ). (4.8)

We now estimate the W α(L2(R
d))-norm of fε,t as follows

| fε,t |
2
W α (L2(Rd))

h

∫

Rd
|ξ |2α | f̂ε,t (ξ )|

2dξ =

∫

Rd
|ξ |2α | f̂ (ξ )|2|φ̂(tεξ )|2dξ . (4.9)

8
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Note that since f is supported on a ball of radius 2, we have (recall that p ≥ 2)
∫

Rd
|ξ |2s| f̂ (ξ )|2dξ h | f |2

W s(L2(Rd))
≤C‖ f‖2

W s(Lp(Rd))
. (4.10)

Thus Hölder’s inequality implies that

| fε,t |
2
Wα (L2(Rd))

≤

(∫

Rd
|ξ |2s| f̂ (ξ )|2dξ

)(
sup

ξ∈Rd

|ξ |2(α−s)|φ̂(tεξ )|

)

≤C‖ f‖2
W s(Lp(Rd))

(
sup

ξ∈Rd

|ξ |2(α−s)|φ̂ (tεξ )|

)
.

(4.11)

By changing variables, we see that
(

sup
ξ∈Rd

|ξ |2(α−s)|φ̂ (tεξ )|

)
= (tε)−2(α−s)

(
sup

ξ∈Rd

|ξ |2(α−s)|φ̂(ξ )|

)
≤Cε−2(α−s), (4.12)

since the supremum above is finite (φ is a Schwartz function). Hence, we get

| fε,t |W α (L2(Rd)) ≤C‖ f‖W s(Lp(Rd))ε
−(α−s). (4.13)

In addition, we clearly have from the triangle inequality that

‖ fε,t‖L2(Rd) ≤ ‖ f‖L2(Rd) ≤ ‖ f‖W2(L2(Rd)), (4.14)

so that if ε ≤ 1 we obtain (applying this for all t up to ρ)

‖ fε‖Wα (L2(Rd)) ≤C‖ f‖W s(Lp(Rd))ε
−(α−s) (4.15)

We now apply Corollary 1 to obtain an fn ∈ Σk
n(R

d) such that

‖ fn − fε‖Lp(Ω) ≤C‖ f‖W s(Lp(Rd))ε
−(α−s)n−α . (4.16)

Combining this with the bound (4.5), we get

‖ f − fn‖Lp(Ω) ≤C‖ f‖W s(Lp(Rd))

(
εs + n−αε−(α−s)

)
. (4.17)

Finally, choosing ε = n−1/d and recalling that α = (d + 2k+ 1)/2 completes the proof.
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