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Abstract

The goal of this survey is to present an explanatory review of the approximation properties
of deep neural networks. Specifically, we aim at understanding how and why deep neu-
ral networks outperform other classical linear and nonlinear approximation methods. This
survey consists of three chapters. In Chapter 1 we review the key ideas and concepts under-
lying deep networks and their compositional nonlinear structure. We formalize the neural
network problem by formulating it as an optimization problem when solving regression and
classification problems. We briefly discuss the stochastic gradient descent algorithm and the
back-propagation formulas used in solving the optimization problem and address a few issues
related to the performance of neural networks, including the choice of activation functions,
cost functions, overfitting issues, and regularization. In Chapter 2 we shift our focus to the
approximation theory of neural networks. We start with an introduction to the concept of
density in polynomial approximation and in particular study the Stone-Weierstrass theorem
for real-valued continuous functions. Then, within the framework of linear approximation,
we review a few classical results on the density and convergence rate of feedforward networks,
followed by more recent developments on the complexity of deep networks in approximating
Sobolev functions. In Chapter 3, utilizing nonlinear approximation theory, we further elabo-
rate on the power of depth and approximation superiority of deep ReLU networks over other
classical methods of nonlinear approximation.

keywords: artificial neural networks, approximation theory, power of depth, mathematics of
deep learning

Intended audience. The material in this survey should be accessible to undergraduate
and graduate students and researchers in mathematics, statistics, computer science, and
engineering, and to all those who wish to obtain a “deeper” understanding of “deep” neural
networks.
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Prologue: What this survey is and is not about

Three major questions about deep neural networks include:

1. Approximation theory/property: Given a target function space and a neural network
architecture, what is the best the network can do in approximating the target function?
Are there function spaces in which certain neural network architectures can outperform
other methods of approximation?

2. Learning process: Given a neural network architecture and a data set, how to effi-
ciently train a generalizable network? How/when/why optimization techniques (such
as stochastic gradient descent or random sampling) work?

3. Optimal experimental design: How to choose/sample and generate data? How to
achieve/construct the best (or close to best) approximation with the least amount of
data and work?

This survey focuses only on the first question and does not address/discuss the second
and third questions. The main goal of this survey is to present an explanatory review of the
approximation properties of deep (feedforward) neural networks.

The survey consists of three chapters. In Chapter 1 we review the key ideas and concepts
underlying deep networks and their compositional nonlinear structure. We formalize the
neural network problem by formulating it as an optimization problem when solving regression
and classification problems. We briefly discuss the stochastic gradient descent algorithm
and the back-propagation formulas used in solving the optimization problem and address a
few issues related to the performance of neural networks, including the choice of activation
functions, cost functions, overfitting issues, and regularization. In Chapter 2 we focus on the
approximation theory of neural networks. We start with an introduction to the concept of
density in polynomial approximation and in particular study the Stone-Weierstrass theorem
for real-valued continuous functions. Then, within the framework of linear approximation,
we review a few classical results on the density and convergence rate of feedforward networks,
followed by more recent developments on the complexity of deep networks in approximating
Sobolev functions. Finally, in Chapter 3, utilizing nonlinear approximation theory, we further
elaborate on the power of depth and approximation superiority of deep ReLU networks over
other classical methods of nonlinear approximation.
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Chapter 1: Neural networks: formalization and key concepts

In this chapter we introduce the key ideas and concepts underlying artificial neural net-
works in the context of supervised learning and with application to solving regression and
classification problems. We start with the compositional nonlinear structure of networks
and formulate the network problem as an optimization problem. We will further discuss the
(stochastic) gradient descent algorithm and will derive the backpropagation formulas used in
solving the optimization problem. Finally, we will briefly address a few topics related to the
performance of neural networks, including the choice of activation functions, cost functions,
overfitting issues, and regularization.

1 What is a neural network?

A neural network (NN) is a map
fθ : Rnin → Rnout ,

with a particular compositional structure; see (1)-(2)-(3) below. Here, nin ∈ N and nout ∈ N
are the dimension of the input and output spaces, respectively, and θ ∈ Rnθ is the vector of
network parameters. The network map is formed by the composition of L ≥ 1 maps

fθ(x) = fL ◦ · · · ◦ f1(x), x ∈ Rnin , (1)

where each individual map f ` : Rn`−1 → Rn` , with ` = 1, . . . , L, and n0 = nin, and nL =
nout, is given by the component-wise application of a nonlinear activation function σ` to a
multidimensional linear (or affine) transformation

f `(z) = σ`(W ` z + b`), z ∈ Rn`−1 , W ` ∈ Rn`×n`−1 , b` ∈ Rn` , ` = 1, . . . , L. (2)

The parameters W ` and b` that define the linear map transformation at level (or layer) ` are
referred to as the weights (or edge weights) and biases (or node weights) of the `-th level,
respectively. The parameter vector θ then consists of all weights and biases:

θ = {(W `,b`)}L`=1. (3)

The total number of network parameters nθ can then be obtained in terms of the number of
neurons and layers, given by nθ = ∑L

`=1 n`(n`−1 + 1).
A neural network with a given set of activation functions is uniquely determined by its

parameter vector θ. The marapeter vector is tuned during a process referred to as training
so that fθ does what it is supposed to do; we will discuss the training process in Sections 3-4.

The compositional structure (1)-(2) can be represented by an artificial neural network,
with one input layer consisting of n0 = nin neurons, one output layer consisting of nL = nout
neurons, and L − 1 ∈ N hidden layers consisting of n1, . . . , nL−1 ∈ N neurons, respectively.
Each layer represents an individual map (2). We refer to the number of layers, neurons,
and their corresponding activation functions as the “architecture” of the network. Note that
different layers of a network may have different number of neurons and may use different
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activation functions. Figure 1 shows a graph representation of the network, where each node
represents a neuron, and each edge connecting two nodes represents a multiplication by a
scalar weight. The input neurons (or nodes) take the nin components of the independent
variable vector x = (x1, . . . , xnin), and the output neurons produce the nout components of
fθ = (fθ,1, . . . , fθ,nout).

Figure 1: Graph representation of a feed-forward network with L = 3 layers (2 hidden layers
and 1 output layer).

The number of layers L in a network determines the “depth” of the network: the larger
L, the deeper the network. The number of neurons n` in each layer ` determines the “width”
of that layer and hence the width of the network: the larger the number of neurons in each
layer, the “wider” the network. We can increase the number of a network’s parameters, and
hence make it more complex, by either making it wider or deeper or both. The larger the
number of a network’s parameters, the more complex the network’s structure.

Let us fix a few notations:
• W `

j,k = weight of the connection from neuron k in layer `− 1 to neuron j in layer `

• b`j = bias of neuron j in layer `

• a`j = the output of neuron j in layer ` (i.e. after applying activation), defined as

a`j = σ`
(∑
k

W `
j,k a

`−1
k + b`j

)
, sum is taken over all neurons k in layer `− 1

• z`j = the input of neuron j in layer ` (i.e. before applying activation), defined as

z`j =
∑
k

W `
j,k a

`−1
k + b`j, sum is taken over all neurons k in layer `− 1.

Note: we have a`j = σ`(z`j).

• In vector-matrix form, if we introduce the following matrices and vectors,
W ` = (W `

j,k) ∈ Rn`×n`−1 ,

b` = (b`j) ∈ Rn` ,

a` = (a`j) ∈ Rn` ,

z` = (z`j) ∈ Rn` ,

6



then we can write
z` = W ` a`−1 + b`, a` = σ`(z`).

As an example, a simple network with nin = nout = 1 and L = 2 layers (1 hidden layer
and 1 output layer) with n1 = 1 neuron in the hidden layer reads

fθ(x) = f2(f1(x)) = σ2(W 2
1,1(σ1(W 1

1,1x+ b1
1)) + b2

1), x ∈ R.

• The first layer f1 takes the input x, linearly transforms it into W 1
1,1x+ b1

1, and applies
an activation function σ1 to return σ1(W 1

1,1x+ b1
1).

• The second (output) layer f2 takes the output of the first layer σ1(W 1
1,1x+ b1

1), linearly
transforms it into W 2

1,1σ1(W 1
1,1x + b1

1) + b2
1, and applies an activation function σ2 to

return σ2(W 2
1,1(σ1(W 1

1,1x+ b1
1)) + b1

1).

• If we collect the weights and biases in a parameter vector as θ = (W 1
1,1,W

2
1,1, b

1
1, b

2
1) =

(θ1, θ2, θ3, θ4), then we have

fθ(x) = σ2(θ2(σ1(θ1x+ θ3)) + θ4).

This is an interesting non-linear function with four parameters.

2 What is the use of a neural network?

Neural Networks (in supervised learning) are today widely used for solving two types of
problems: 1) multivariate regression, and 2) classification.
Regression: In multivariate regression, for a given set of input-output data

{(x(m),y(m))}nm=1 ∈ Rnin × Rnout ,

we want to construct a multivariate map fθ : Rnin → Rnout such that fθ(x(m)) ≈ y(m), without
overfitting; we will discuss overfitting in Section 7.
Classification. In classification the data are labeled into nout categories c1, . . . , cnout . Given
an input set of data {x(m)}nm=1 ∈ Rnin with their corresponding categories, say {c(m)}nm=1
where c(m) ∈ {c1, . . . , cnout}, we want to construct a map fθ : Rnin → [0, 1]nout that returns
the posterior probabilities of category membership for any observed pattern x ∈ Rnin

fθ(x) ≈ (Prob(c1|x), . . . ,Prob(cnout |x)).

3 Network training is an optimization problem

Network training is the process of finding (or adjusting) the parameters of a network. Given
n pairs of input-output training data points {(x(m),y(m))}nm=1, our goal is to train a network
with pre-assigned architecture that learns the data. That is, we want to find a parametric
map fθ : Rnin → Rnout , i.e. to find a set of network parameters θ = {(W `,b`)}L`=1, such that
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fθ(x) well approximates the target y. This is done by minimizing a prescribed loss (or cost
or misfit or risk) function, denoted by C, that measures the “distance” between fθ(x) and y
for the training data set. Training can therefore be formulated as an optimization problem:

Find θ as the solution of arg min
θ

1
n

n∑
m=1

Cm(θ), Cm(θ) = C(y(m), fθ(x(m))). (4)

Here, C(a,b) is a cost function that measures the distance between vectors a and b. For
instance, a typical cost function is the quadratic cost function C(a,b) = ||a− b||22, obtained
by squaring the L2 norm of differences.

We note that training is usually referred to as the process of finding θ, given training data,
network architecture, and the cost function. However, in practice the selection of training
data (if not given) and network architecture and cost function may also be considered as
parts of the training process.

4 Solving the optimization problem

The optimization problem (4) is often solved by a gradient-based method, such as stochastic
gradient descent [26, 16] or Adam [17]. In these methods the gradient of the cost function with
respect to the network parameters is usually computed by the chain rule using a differentiation
technique known as back propagation [27]. Refer to the review paper [4] for more details.

4.1 Gradient descent

Gradient descent (GD), or steepest descent, is an iterative method in optimization. Given
a data batch {(x(m),y(m))}nm=1 (in multivariate regression problems) and a fixed network
architecture with unknown parameters θ, we want to find θ that minimizes an “empirical”
risk

Rn(θ) := 1
n

n∑
m=1

Cm(θ), Cm(θ) = C(y(m), fθ(x(m))).

For example we may consider the quadratic cost

Cm(θ) = 1
2 ||y

(m) − fθ(x(m)))||22 = 1
2

nout∑
j=1

(y(m)
j − aLj (θ))2. (5)

where aLj is the output of j-th neuron at layer L (last layer) of the network, with input x(m).
GD finds the minimum of Rn(θ) through an iterative process as follows. We start with an

initial guess θ(0) for the minimizer of Rn(θ) and consecutively update it using the gradient
of the empirical risk. Specifically, suppose that θ(k) is the set of parameters at iteration level
k ≥ 0. We compute the gradient of the empirical risk function with respect to θ at θ(k), and
then update the parameter set by moving in the negative direction of the gradient:

θ(k+1) = θ(k) − η∇θRn(θ(k)), k = 0, 1, 2, . . . . (6)

Here, η > 0 is the “learning rate”. It is considered as a “hyper-parameter” to be either
selected in advance as a fixed value or tuned via a validation process; see Section 8. As we
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update θ(k), we monitor the value of Rn(θ(k)) that is to be decreasing as k increases. We
continue iterations until we reach a level, say K, at which Rn(θ(K)) is small enough (below
a desired tolerance). If Rn(θ(k)) is decreasing slowly or even worse if it is increasing, we will
need to consider a different learning rate η.

4.2 Backpropagation

Backpropagation is the main algorithm that computes the gradient of the empirical risk
∇θRn(θ(k)) used in GD formula (6). Recall that the parameter set θ consists of two sets of
parameters: the weights {W `}L`=1 and the biases {b`}L`=1. Given a set of parameters θ(k) at
iteration level k ≥ 0, for every single training set (x(m),y(m)), the backpropagation algorithm
computes ∇W `Cm(θ(k)) and ∇b`Cm(θ(k)) for all ` = 1, . . . , L. We may repeat this for all
m = 1, . . . , n, i.e. all training data points, and then we take the sample average to compute
the gradient of the empirical risk:

∇W `Rn(θ(k)) = 1
n

n∑
m=1
∇W `Cm(θ(k)), ∇b`Rn(θ(k)) = 1

n

n∑
m=1
∇b`Cm(θ(k)). (7)

Remark 1. In practice, we “approximate” the sample averages (7) by randomly selecting a
small batch of nb � n data points; see the mini-batch stochastic GD in Section 4.3.

We now discuss the backpropagation algorithm, in four steps, for computing the gradient
of Cm(θ(k)), i.e. ∇W `Cm(θ(k)) and∇b`Cm(θ(k)), for any fixedm. We will drop the dependence
on θ(k) for the ease of reading.
Step 1. We first introduce a useful quantity δ`j that will simplify the derivation:

δ`j := ∂Cm
∂z`j

, j = 1, . . . , n`, ` = 1, . . . , L, in vector form: δ` = (δ`j) ∈ Rn` .

This quantity represents the “sensitivity” of the cost function Cm to change with respect to
the j-th neuron in layer `.
Step 2. We compute δLj (at the last level ` = L) by the chain rule, noting that aLj = σL(zLj ):

δLj = ∂Cm
∂zLj

= ∂Cm
∂aLj

σ′L(zLj ).

The first term ∂Cm/∂a
L
j can be computed exactly. For instance for the quadratic cost (5)

we have ∂Cm/∂aLj = y
(m)
j − aLj . We also have analytic expression for σ′L, i.e. the derivative

of the activation function at the last level. Finally, zLj can be computed by a forward sweep,
given θ(k). In vector form we can write

δL = ∇aLCm � σ′L(zL),

where � denotes component-wise multiplication.
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Step 3. We compute δ`j for ` = L− 1, L− 2, . . . , 1, and hence the name “backpropagation”,
as follows. Using the chain rule, we first write

δ`j = ∂Cm
∂z`j

=
n`+1∑
i=1

∂Cm

∂z`+1
i

∂z`+1
i

∂z`j
=

n`+1∑
i=1

δ`+1
i

∂z`+1
i

∂z`j
.

This formula expresses δ` in terms of δ`+1. Here, the sum is taken over all neurons at layer
`+ 1. In order to compute ∂z`+1

i /∂z`j , we write

z`+1
i =

n∑̀
j=1

W `+1
i,j a`j + b`+1

i =
n∑̀
j=1

W `+1
i,j σ`(z`j) + b`+1

i .

Here, the sum is taken over all neurons in layer `. Note that we have used a`j = σ`(z`j), i.e.
the output of j-th neuron at layer ` is obtained by the application of σ` to the input of j-th
neuron at layer `. From the last equality, we get

∂z`+1
i

∂z`j
= W `+1

i,j σ′`(z`j).

Hence we obtain
δ`j =

n`+1∑
i=1

δ`+1
i W `+1

i,j σ′`(z`j),

where, all weightsW `+1
i,j are available via the given θ(k), and all neuron inputs z`j are computed

by the forward sweep. In vector form we can write

δ` =
(
W `+1> δ`+1

)
� σ′`(z`).

Step 4. After computing all sensitivity ratios δ1, . . . , δL, we can compute the gradients:

∂Cm
∂b`j

= ∂Cm
∂z`j

∂z`j
∂b`j

= ∂Cm
∂z`j

= δ`j ,

noting that ∂z`j/∂b`j = 1. In vector form we have

∇b`Cm = δ` ∈ Rn` , ` = 1, . . . , L.

Similarly, we can write
∂Cm
∂W `

j,k

= ∂Cm
∂z`j

∂z`j
∂W `

j,k

= δ`j a
`−1
k ,

noting that ∂z`j/∂W `
j,k = a`−1

k . In vector form we have

∇W `Cm = δ` a`−1> ∈ Rn`×n`−1 , ` = 1, . . . , L.

The pseudocode for backpropagation is given in Function 1. It is to be noted that the
backward movement in the algorithm is a natural consequence of the fact that the loss is a
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Function 1: Backpropagation algorithm

function {∇b`Cm, ∇W `Cm}L`=1 = BACKPRO(x(m), y(m), {(W `,b`)}L`=1, {σ`}L`=1, “Cm”)

1: Set a0 = x(m) for the input layer (we may call it layer zero)

2: Forward pass: for each ` = 1, . . . , L compute z` = W `a`−1 + b` and a` = σ`(z`).

3: Loss: Using the given function for loss “Cm” and y(m) and aL, compute ∇aLCm.

4: Output sensitivity: Compute δL = ∇aLCm � σ′L(zL).

5: Backpropagate: for each ` = L− 1, . . . , 1 compute δ` =
(
W `+1> δ`+1

)
� σ′`(z`).

6: Outputs: for each ` = L, . . . , 1 (together with steps 4 and 5) compute the gradients

∇b`Cm = δ`, ∇W `Cm = δ` a`−1>.

function of network’s output. Using the chain rule, we need to move backward to compute
all gradients.

It is also easy to derive the computational complexity (or cost) of the backpropagation
algorithm, i.e. the number of floating point operations needed to compute the gradients for
a given data point at a given set of parameters. The main portion of cost is due to steps 2
(forward pass) and step 5 (backward pass) of the algorithm, which depends on the number of
layers and neurons in each layer, and the cost of computing activation functions. Assuming
that each activation or its derivative applied to a scalar requires N operations, the number of
operations in steps 2 and 5 are ∑L

`=1 n`(n`−1 +N+1) and ∑L
`=1 n`(n`+1 +N+1), respectively.

If we further assume that the number of neurons in each layer is a fixed number W , and that
N is also of the order of W , then the total cost of the algorithm will be O(LW 2).
Efficiency of backpropagation. In order to better appreciate backpropagation, we com-
pare it with an alternative, simple approach for computing the gradient: numerical differen-
tiation. Suppose we want to compute ∂Cm/∂W `

j,k for one single weight. Suppose that this
weight takes the i-th place in the parameter vector θ, i.e W `

j,k = θi. Suppose we employ a
first-order accurate numerical differentiation and approximate the derivative

∂Cm
∂W `

j,k

= ∂Cm(θ)
∂θi

≈ Cm(θ + h ei)− Cm(θ)
h

,

where h > 0 is a small number, and ei is the vector with one component 1 and all other
components 0, where the 1 is in the i-th place. Although this approach is simple and easy
to implement (much simpler than the algebra involved in backpropagation), it is ridiculously
more expensive than backpropagation. Each single derivative involves two evaluations of the
loss function Cm, one at θ and one at a slightly different point θ+h ei. Assuming the network
has nθ parameters, we would need nθ + 1 evaluations of Cm to compute all nθ derivatives,
and this requires nθ + 1 forward passes through the network (for each training data point).
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Compare this huge cost with the cost of backpropagation where we simultaneously compute
all derivatives by just one forward pass followed by one backward pass. Assuming the cost
of a backward pass is comparable to the cost of a forward pass, the cost of backpropagation
is hence roughly proportional to the cost of two forward passes, while the cost of numerical
differentiation is proportional to the cost of nθ + 1� 2 forward passes.

4.3 Mini-batch stochastic GD and backpropagation

The backpropagation algorithm discussed above needs to be combined with an optimization
algorithm, e.g. GD or stochastic gradient descent (SGD). In order to compute the gradient
of the empirical risk ∇θRn(θ(k)) used in GD formula (6), one approach is to apply the
backpropagation algorithm n times, each for one training data point. Then one can take the
sample average of gradients for all n data points to obtain the gradient of the empirical risk
by (7). This leads to the standard GD:

W `(k+1) = W `(k) − η∇W `Rn(θ(k)), k = 0, 1, . . . , K − 1, ` = 1, . . . , L. (8)

b`(k+1) = b`(k) − η∇b`Rn(θ(k)), k = 0, 1, . . . , K − 1, ` = 1, . . . , L. (9)
In (mini-batch) SGD, we randomly select a mini-batch of nb � n training data points

and apply a gradient descent step based on that mini-batch:

• Divide the set of n training data points into bn/nbe mini-batches of size nb � n;

• Loop over all mini-batches containing nb data points (note that the last batch may
have fewer or larger number of points than nb);

◦ For each training data point in the mini-batch, i.e. for m = 1, . . . , nb, call the
backpropagation algorithm (BACKPRO) and compute {∇b`Cm, ∇W `Cm}L`=1;
◦ Approximate the gradients by taking the sample average of all nb gradients:

∇W `Rn(θ(k)) ≈ 1
nb

nb∑
m=1
∇W `Cm(θ(k)), ∇b`Rn(θ(k)) ≈ 1

nb

nb∑
m=1
∇b`Cm(θ(k));

◦ GD step: update the weights and biases according to the rules (8)-(9), using the
approximate gradients;

The above procedure is referred to as one-epoch SGD, that is, one run of SGD over all
n data points with one particular mini-batch selection. In practice, we repeat the above
process for multiple epochs of training. This would require an outer loop that goes through
ne epochs, where for each epoch we randomly shuffle the training data points before dividing
them into mini-batches.

Note that to implement the full SGD (either standard or multiple-epoch mini-batch) we
will need to start with an initial guess for the parameters, sayW `(0) and b`(0) for ` = 1, . . . , L.
This is usually done by pseudo-random generation of numbers.
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Remark 2. (Total number of SGD iterations) Each mini-batch will form one iteration of
SGD. One epoch of SGD involves bn/nbe mini-batches and hence bn/nbe iterations. The total
number of SGD iterations is therefore K = nebn/nbe.

5 Activation functions

The most important feature of activation functions σ (we drop the subscript ` for simplicity)
is their ability to add general, arbitrary “nonlinearity” into networks. They enable a network
to learn complex patters in the data, in both classification and regression problems. It is
to be noted that by just stacking multiple linear layers without σ (i.e. with σ being the
identity function) we can generate polynomial nonlinearity. But polynomials are not general
and complex enough to capture complex patterns and model complex functions.

Another feature of activation functions σ is their ability to limit and control a neuron’s
output, if needed. Without σ (i.e. with σ being the identity function) the value w x+ b can
become very large, especially in deep networks, leading to computational issues. Moreover,
in most cases, the network output needs to be restricted to a certain limit (e.g a positive
number or a value between 0 and 1, etc.). In such cases, the activation of the output layer
plays an important role in enforcing the limit.

5.1 Desirable properties of activation functions

Bside the above two features, an activation function should have a few desirable properties,
listed below.
Efficient computation. Activation functions are applied multiple times (∑L

`=1 n` times). In
deep networks they may be applied millions of times. Hence they should be computationally
cheap to calculate, e.g. involving just a few (maybe 1 or 2) operations.
Differentiability. Activation functions need to be (almost everywhere) differentiable for
computing the gradients of the loss function.
Avoiding vanishing gradients. The backpropagation algorithm in networks with multiple
layers involves multiple applications of the chain rule. Each time a σ′ gets multiplied by
another one, and we have δ` ∼ (σ′)L+1−`; see the final formulas in Steps 2-3 in Section 4.2.
If the values of σ′ at all layers is between 0 and 1, then δ` and hence the value of gradients
at initial layers (with small `) becomes very small. Consequently the weights and biases of
those initial layers would learn very slowly. Similarly, when σ′` at a layer ` is close to zero
(e.g. when σ is flat), then δ` and hence the value of gradients at the layer will become close
to zero. Consequently, the weights and biases of that layer would also learn very slowly.
Another situation is when σ`−1 is close to zero. In this case, the gradient with respect to
weights at layer ` will be close to zero and hence those weights will learn slowly. In all above
cases, the gradients become very small and the network learns very slowly. This problem
is known as the vanishing gradient problem. We would like to have an activation function
that does not shift the gradient towards zero, e.g. an increasing function whose derivative is
positive and almost never gets close to zero.
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5.2 Popular choices of activation functions

Different layers of a network may use different activation functions. In the output layer (i.e.
the last layer L) of networks, activation functions are often selected based on the type of
problem that we try to solve. Two common choices include:

• Identity function:
σL(x) = x.

This is usually used in regression problems. It is very fast to compute since it does not
involve any operation. It is also differentiable with derivative equal to 1 and does not
suffer from the vanishing gradient problem.

• Softmax (or normalized exponential):

σL(x1, . . . , xnL) = (p1, . . . , pnL), pj = exp(xj)∑nL
j=1 exp(xj)

, j = 1, . . . , nL.

This is usually used in classification problems. It converts the real-valued output of
networks into a set of pseudo-probabilities p1, . . . , pnL with∑nL

j=1 pj = 1. Each probabil-
ity pj is an approximation of the posterior probability Prob(cj|data), where cj denotes
the occurrence of the i-th class or category. Eventually, we will choose the class with
largest probability. Its computation is more expensive than the identity function, in-
volving exponentiation and addition operators. It is differentiable and does not suffer
from the vanishing gradient problem.

Two classical activation functions for hidden layers ` = 1, . . . , L− 1 include:

• Sigmoid function σ`(x) = 1/(1 + exp(−x))

• Hyperbolic tangent σ`(x) = tanh(x)

These two functions are rather expensive to compute and suffer from the vanishing gra-
dient problem. Note that both functions are rather flat in a wide range of their domains.
These two functions are hence no longer used in practice.

More practical types of activation functions that are widely used today include the recti-
fied linear unit (ReLU) family.

• ReLU function: σ`(x) = max(0, x); see Figure 3 (top).
This is the most commonly used activation function today. It is cheap and easy to
compute and does not cause the vanishing gradient problem. Its (weak) derivative is 0
when x < 0 and 1 when x ≥ 0; see the notion of weak derivatives in Chapter 2.
It also features a property known as “dying ReLU”: since it returns zero for negative
inputs, it causes some neurons to remain inactive (or dead). This in turn results in
“model sparsity”, which is often desirable. Intuitively, a biological neural network is
sparse: among billions of neurons in a human brain, only a portion of them fire (i.e.
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Figure 2: Sigmoid and hyperbolic tangent activation functions.

are active) at a time for a particular task. For example, in a classification problem,
there may be a set of neurons that can identify apples, which obviously should not be
activated if the image displays a car. But beside the resemblance to biological networks,
sparsity in artificial networks have two advantages. First, sparse networks are concise,
parsimonious models that often have better predictive power and less overfitting and
noise. Second, sparse networks are faster to compute than dense networks, as they
involve fewer number of operations.
The downside of a dying ReLU is that since its slope in the negative range is zero, once
a neuron gets negative, it does not learn anything and it may not recover at all, i.e.
the neuron may become permanently dead and hence useless. Recall that a single step
in SGD involves multiple data points. If for some of them the input to a neuron is not
negative, we can still get a slope out of ReLU. The dying problem may also occur when
the learning rate is too high, as it would amount to large variations in the weights,
turning a positive input into a negative value with a zero ReLU slope.

• Leaky ReLU function: σ`(x) = max(αx, x), with α ∈ (0, 1) fixed.
This activation function prevents the dying ReLU problem to some extent: it has a
small slope in the negative range. The parameter α is usually set to 0.01-0.05. Note
that if we set α = 0 then we get ReLU, and if we set α = 1 then we get the identity
function; see Figure 3 (middle).

• Parametric ReLU function: σ`(x) = max(αx, x), with variable parameter α ∈ (0, 1).
It is a type of leaky ReLU, with α being a hyper-parameter, rather than a predetermined
fixed value; see Figure 3 (middle).

• ReLU6 function: σ`(x) = min(max(αx, x), 6).

15



This is ReLU restricted on the positive side by value 6. It suppresses very large acti-
vations and hence prevents the gradient from blowing up; see Figure 3 (bottom).
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Figure 3: ReLU family of activation functions.

6 Loss functions

Quadratic loss. The quadratic loss function, given in (5),

Cm(θ) = 1
2

nout∑
j=1

(y(m)
j − aLj (θ))2,

is a very common loss function in regression problems.
Cross-entropy loss. The cross-entropy (or Kulback-Leibler) loss function is often used
in classification problems. Given a set of labeled training data {(x(m), c(m))}nm=1 with class
labels c(m) ∈ {c1, . . . , cnout}, the cross-entropy loss function reads

Cm(θ) = −
nout∑
j=1

δm,j log(aLj (θ)), aLj = pj = Prob(cj|x(m)), (10)

where
δm,j =

{
1 if c(m) = cj,
0 otherwise,

is a 0-1 binary variable that indicates the “true” distribution of class membership, and aLj is
the j-th output of the softmax activation function applied to the last layer of the network that
indicates the “predicted” distribution. The cross-entropy loss is indeed the Kulbacl-Leibler
divergence between the true and predicted distributions. It is easy to see that

Cm(θ) = − log(Prob(c(m)|x(m))),

that is, for each m, we find the output index j for which cj = c(m).
We note that adapting the backpropagation algorithm of Section 4.2 to either regressin

problems, e.g. with the quadratic loss and identity activation at the last layer, or classification
problems, e.g. with the cross-entropy loss and softmax activation at the last layer, will be
straightforward, and hence we leave it as an exercise.
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7 Overfitting and regularization

The training strategy discussed so far may suffer from overfitting (or overtraining), that is,
the trained network fθ(x) may not perform well in approximating y outside the set of training
data {(x(m),y(m))}nm=1.

The first step in avoiding overfitting is to detect overfitting. For this purpose, we usually
split the available data into two categories: training data and test data. While we train
the network using the training data and monitor how the loss on training data changes as
the network trains, we also keep track of the loss on the test data. This tells us if and how
the trained network generalizes to the test data. Figure 4 shows a case where we observe
a decrease in the loss on the training data, meaning that the network fits (or learns) the
training data well, while the loss on the test data starts increasing after an initial drop. This
is a sign of overfitting and lack of generalization.

Figure 4: The loss on training data versus test data as the number of epochs increases.

Obviously, increasing the amount of training data is one way of reducing overfitting.
Another trivial approach is to reduce the complexity of our network, i.e. to reduce the number
of network parameters. Unfortunately, both approaches are not very practical. Often, the
number of training data cannot be increased because either they are not available to us or
they are very expensive or difficult to obtain. Moreover, networks with larger number of
parameters (such as very deep networks) have the potential to be more powerful, and hence
reducing complexity of networks may not be a good option; we will discuss the power of
“depth” in more details in Chapters 2-3. Fortunately, there are other techniques, known as
regularization techniques, that can help reduce overfitting given a fixed number of data points
and a fixed number of network parameters. Examples include the addition of a regularization
(or penalty) term to the loss function, early stopping, and dropout [28].
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7.1 Adding penalty terms

In this approach, we modify the loss function by adding a regularizing (or penalty) term. We
consider two types of regularizers, namely L2 and L1 regularizers.
L2 regularizers. A common penalty term is the L2-norm of all weights (all parameters
excluding biases) scaled by a factor λ to the loss function. That is, we consider the L2-
regularized loss

Rn(θ) = 1
n

n∑
m=1

Cm(θ) + λ ||θw||22,

where θw denotes the vector of all weights excluding biases. The parameter λ > 0 is a
hyper-parameter known as the regularization parameter.

The main effect of this regularization term is to learn smaller weights unless large weights
substantially reduce the first part of the loss. It introduces a compromise between minimizing
the original (non-regularized) loss and finding small wights. The regularization parameter λ
determines the relative importance of each term: the large λ, the more emphasize is put on
the penalty term.

Why does such regularization help reduce overfitting? In fact, smaller weights amount
to smaller fluctuations in the output (more regularized outputs). When weights are small,
the network output would not change much if we make small changes in the input. This is
analogous to the behavior of simpler models which are more generalizable.

Beside reducing overfitting, smaller weights may help GD/SGD converge faster. When
we minimize a non-regularized loss, the size of weights is likely to grow. This may cause the
weights moving in pretty much the same direction and hence converging very slowly to the
global minimum as GD/SGD makes only small changes to the direction. Another advantage
of adding such a penalty term is that it makes the loss function more convex (and hence with
less local minima) and the GD/SGD more robust with respect to the initial guess. A non-
convex loss with multiple local minima may cause the weights to get stuck in local minima.
In this case, the learning process becomes sensitive to the initial guess. An initial guess that
is close to a local minima would converge much slower than an initial guess that happen to
be close to the global minimum.

It is to be noted that the main reason that biases are excluded in regularization is that
large biases would not make the network output sensitive to the input.
L1 regularizers. Another penalty term is the L1-norm (instead of L2 norm), which gives
the L1-regularized loss,

Rn(θ) = 1
n

n∑
m=1

Cm(θ) + λ ||θw||1.

Similar to the case of L2 regularization, the L1-regularized loss penalizes large weights, forcing
the network to learn small weights. There is however a difference between the two approaches
in the way the weights decrease at each iteration of GD/SGD. To see this, let us consider a
single weight, say w := W `

j,k for some fixed j, k, `. Then, a GD update of w reads

w(k+1) = w(k) − η ∂Rn

∂w
.
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With L1 regularization, we get

w(k+1) = w(k) − η

n

n∑
m=1

∂Cm
∂w
− η λ sgn(w(k)),

and with L2 regularization, we get

w(k+1) = w(k) − η

n

n∑
m=1

∂Cm
∂w
− η λw(k).

In both cases w decreases due to the penalty terms (i.e. the third terms in the right hand side
of the above two formulas). However, with L1 regularization w decreases by a fixed amount,
while with L2 regularization w decreases by an amount proportional to w. Consequently,
when |w| is large, L2 regularization reduces the weight much more than L1 regularization,
and when |w| is small, L2 regularization does not reduce it as much as L1 does. This amounts
to a more balanced distribution of weights in the case of L2 regularization (pretty much like
averaging), while L1 regularization tends to drive some weights toward zero keeping some
others of high importance (pretty much like median). Moreover, since L2 does not change
small weights much, and in particular it does not drive them to zero, it amounts to a dense
weight vector (with many non-zeros). However, L1 brings sparsity to the weights by making
small weights zero.

7.2 Early stopping

In this approach, we split the available data into three categories: training data, test data,
and validation data. We will monitor the loss on the validation data (instead of the test
loss) at the end of each epoch. Once we are confident that the validation loss does no longer
decrease, we stop training; see Section 8 for more details on the validation set.

7.3 Dropout

In this approach, we modify the network and its training process, rather than modifying
the loss function. The modification is as follows. Over a mini-batch of data points, we
randomly select a portion, usually half, of hidden neurons (i.e. neurons in the hidden layers,
excluding input and output layers). We then dropout the selected neurons, that is, we
temporarily remove those neurons from the network, along with their incoming and outgoing
connections. We perform all forward and backward passes in the mini-batch through the
modified network and update the weights and biases corresponding to active neurons. For
the next mini-batch, we restore the dropout neurons in the previous mini-batch and randomly
select a new set of dropout neurons. We repeat this process: for each mini-batch we select a
new set of dropout neurons and update the weights and biases for active neurons. In the end,
we have updated the weights and biases of the full network, but always using half the hidden
neurons. After training is over, dropout is no longer used when making a prediction with
the full network. Since the full network has twice as many active hidden neurons, we halve
the weights “outgoing” from hidden neurons. We can think of the network as one in which
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each hidden neuron is retained during training with a fixed probability p = 0.5 independent
of other neurons. If a neuron is retained with probability p during training, the outgoing
weights of that neuron are multiplied by p at the test time. We note that to effectively
remove a neuron from a network, we can simply multiply the value of its output weight by
zero. This is why only the output weights will be scaled by the selected rate, not biases.

Why would dropout help with regularization? Intuitively, we can think of dropout as a
method of training a large number of neural networks with different architectures in parallel.
This implies that we have trained multiple models and will be evaluating and averaging
multiple models on each test example. Regularization is a direct consequence of averaging.
In fact, different models may overfit in different ways, and averaging may help eliminate or
reduce overfitting.

8 Validation and hyper-parameter tuning

Each optimization/regularization technique involves a few hyper-parameters, such as learning
rates, number of epochs, mini-batch sizes, regularization parameters, dropout rates, and so
forth. The hyper-parameters are often tuned using a validation set, i.e. a set of data points
that are not directly used in the optimization process. A common practice is to select a
large portion of the available set of n data points as training data and a smaller portion of
the data as the validation data. Here, we will review a few heuristic strategies for selecting
hyper-parameters. We refer to [2, 14] for more details on the subject.
Learning rate η. Recall that GD/SGD tries to bring us down to the valley of the loss
function with steps proportional to η. If η is too large, the steps will also be large, and it is
likely that we overshoot the minimum getting to the other side of valley. If η is too small, the
steps will be very small, and it will slow down the convergence of GD/SGD. Usually, we start
with a small value, say η = 0.1, and monitor the training-validation losses for a few epochs.
Depending on the behavior of the loss we may need to increase or decrease the value of η.
After we find a “good” value for η, we can keep it fixed during the training process. However,
it is usually better to let η vary as we train, following the same strategy as early stopping.
That is, we hold the learning rate constant until the validation loss stops decreasing, and
then we decrease the learning rate by a factor, say 2-10, and continue this process.
Number of epochs ne. We usually use early stopping to determine the number of epochs.
At the end of each epoch, we monitor the validation loss. If it stops decreasing after a
few epochs, we stop and this automatically determines the number of epochs. Hence, early
stopping both prevents overfitting and provides a strategy to automatically take care of the
number of epochs and to terminate training.
Regularization parameter λ. Similar to η, we first determine a reasonable value for λ by
training over a few epochs. Then we monitor the validation loss and change and fine-tune λ
whenever needed.
Mini-batch size nb. In general, smaller batch sizes would give a faster GD/SGD conver-
gence, as we update the parameters more often, but at the same time may result in a slower
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learning, due to a poorer approximation of the sample gradient. There should be a com-
promise between the speed of learning and convergence. The mini-batch size is relatively
independent of other hyper-parameters and mainly affect the speed of learning. Usually, we
start with a reasonable set (not necessarily optimal) of other hyper-parameters. Then we use
validation data to select a pretty optimal mini-batch size that gives the fastest improvement
in performance (i.e. CPU-time). For this purpose we can plot the validation error versus
CPU-time (not versus the number of epochs) for several different batch sizes and then select
the mini-batch size that gives us the fastest decay in the validation loss. With the mini-batch
size fixed, we can proceed to fine-tune other hyper-parameters.

9 Procedure summary

We finally summarize the general procedure:

• Data preparation: We first decide (based on our available budget) about the quantity
and quality of data and collect the data. We then split the data into three non-
overlapping sets: 1) a training set; 2) a validation set; and 3) a test set. All data sets
should be representative of the problem in hand, and the usual size rule is to take the
size of training set larger than the size of validation set which is in turn larger in size
than the test set. As an example, we may consider a 70%− 20%− 10% split.

• Network architecture: We select the number of layers, neurons, and activation functions
for the problem in hand.

• Network training: We use the training set (for computing cost gradients) and the
validation set (for hyper-parameter tuning) to learn the network parameters.

• Network evaluation: We use the test set to evaluate (or test) the trained network. If
the network passes the test, it is ready to be used for predication.

• Network prediction: The trained network that has passed evaluation can now be used
to make predictions.
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Chapter 2: Deep neural networks and linear approximation

The goal of this chapter is to review a combination of classical ideas and more recent
developments on the approximation theory of deep neural networks within the framework
of linear approximation. We will start with an introduction to the concept of density in
polynomial approximation and in particular will study the Stone-Weierstrass theorem for
real-valued continuous functions. We will continue with a few classical results on the density
and convergence rate of two-layer feedforward networks (or perceptrons). We finally discuss
more recent developments on the complexity of deep networks in approximating Sobolev
functions and by comparing networks with linear approximation methods.

10 Introduction

Let X ⊂ Rd be a compact, convex domain in Rd. Let f : X → R be a real-valued function,
referred to as the target function, in some known function space F(X). Two particular
examples of F that we will consider include the set of continuous functions, denoted by C(X),
and the set of Sobolev functions, denoted byW k,p(X); see the definition of the Sobolev space
W k,p(X) in Section 13.2. We say f is a complicated function if its evaluation at any point
x ∈ X is computationally expensive, and our computational budget and resources allow only
a finite (and often small) number of evaluations of f . We therefore wish to approximate
the complicated target function f by a simpler approximant being a neural network (NN)
fθ : Rd → R that has nθ parameters.

In this context, where the approximant is a neural network, the main task of approx-
imation theory is to study the approximability of the target function by neural networks.
Specifically, by such studies we try to address three major questions:

• Density: if nθ →∞, is there fθ that can approximate f arbitrarily well?

• Convergence rate: if nθ <∞ fixed, how close can fθ be to f?

• Complexity: if we want ||f − fθ|| < ε, how large should nθ be?

The first question, i.e. the question of density, is a very important one concerning the
possibility of approximation: when does fθ have the theoretical ability to approximate f
arbitrarily well? In other words, can we approximate any traget function in the function space
as accurately as we wish by a function from the family of neural networks? Or equivalently,
is the family of neural networks “dense” in the target function space? For this reason, and in
order to better grasp the concept of density, we will start with density in a simpler case where
the approximants are algebraic polynomials, rather than neural networks (see Section 11).
We then discuss a few classical density results and convergence rates for two-layer feedforward
networks (see Sections 12-13). Finally, we study more recent developments on the complexity
of deep NNs in Sobolev spaces (see Section 14).

Remark 3. (An open problem) One important problem that will not be addressed here con-
cerns the selection and preparation of training data {(x(i), f(x(i)))}ni=1. Precisely, to achieve
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a desired accuracy constraint ||f − fθ|| < ε, we would wish to know how to optimally select
the number n of data points, the location (or distribution) of support points {x(i)}ni=1 in X,
and the quality of the output data points, i.e. how accurately to compute {f(x(i))}ni=1. This is
still an open problem, and we simply assume that we have as many high-quality data points
as needed.

Remark 4. (Approximation theory and numerical analysis) Both approximation theory and
numerical analysis are branches of analysis. They share similar goals. In general, more accu-
rate approximations of a target function can be achieved only by increasing the complexity of
the approximants. The understanding of such a trade-off between accuracy and complexity is
the main goal of “constructive approximation”: how the approximation can be constructed. In
this sense, the goals of approximation theory (and in particular constructive approximation)
and numerical analysis are similar. Approximation theory is however less concerned with
computational issues than numerical analysis. Also, in numerical computation, the target
functions are often implicitly available, for instance through differential equations, integral
equations, or integro-differential equations. Those interested in the field of approximation
theory (not in the context of neural networks) may refer to [30, 25, 9, 8].

11 Density in polynomial approximation

In 1885 Karl Weierstrass, a German mathematician and the “father of modern analysis”,
proved that algebraic polynomials are dense in the set of real-valued continuous functions
on closed intervals. Later, in 1937 Marshall Stone, an American mathematician, proved the
Stone–Weierstrass theorem that generalizes Weierstrass’s theorem on the uniform approxi-
mation of continuous functions by polynomials to higher dimensions. Here, we will review
the key concepts in such density results.

11.1 Uniform convergence

For studying density (e.g. in the space of continuous functions) we will need to introduce a
notion of “distance” that measures the “closeness” of the target function to the approximant.
Here, we will consider uniform norms and hence review the notion of uniform convergence.
A sequence {fm}∞m=1 of functions is said to converge uniformly to a limiting function f on a
set X if given any ε > 0, there exists a natural number N such taht |f(x)− fm(x)| < ε for
all m ≥ N and for all x ∈ X, and we write

fm → f uniformly. (11)

An equivalent formulation for uniform convergence can be given in terms of the supremum
norm (also called infinity norm or uniform norm). Let the supremum norm of f be

||f ||∞ := sup
x∈X
|f(x)|.

Then the uniform convergence (11) is equivalent to

||f − fm||∞ m→∞−−−→ 0. (12)
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It is to be noted that uniform convergence is stronger than pointwise convergence (defined
by limm→∞ fm(x) = f(x), ∀x ∈ X) in the sense that in uniform convergence N = N(ε) is
independent of the point x ∈ X. That is, the rate of convergence of fm(x) to f(x) is uniform
throughout the domain X, independent of where x ∈ X is. On the contrary, pointwise
convergence implies that for every point x ∈ X given in advance, there exists N = N(ε,x)
such that |f(x)− fm(x)| < ε for all m ≥ N and for that particular x, and we write

fm
m→∞−−−→ f, ∀x ∈ X.

In other words, uniform convergence implies pointwise convergence, but the converse is not
necessarily true. A counter example is fm(x) = xm on X = [0, 1]; show that while the
sequence converges pointwise to f(x) = 0 when x ∈ [0, 1) and f(x) = 1 when x = 1, it does
not converge uniformly to f(x) at e.g. x = (3/4)1/m < 1 when e.g. ε = 1/2, because if it
converges uniformly, it would converge to the limit (i.e. f(x) = 0 for x < 0) and we would
get 3/4 = |xm−0| < ε = 1/2 which is a contradiction. Note that in this example the limiting
function f(x) is discontinuous, and recall the uniform limit theorem that states if a sequence
of a sequence of continuous functions converges uniformly to a limiting function, the limiting
function must be continuous as well.

11.2 Weierstrass approximation theorem

Let C([a, b]) denote the space of real-valued continuous functions on the closed interval [a, b]
on the real line, where a < b < ∞. Note that here we have X = [a, b] ⊂ R. The Weier-
strass approximation theorem states that the set of real-valued algebraic polynomials on
[a, b] is dense in C([a, b]) with respect to the supremum norm. That is, given any function
f ∈ C([a, b]), there exists a sequence of algebraic polynomials {pm}∞m=1 such that pm → f
uniformly. We say that f ∈ C([a, b]) can be uniformly approximated as accurately as desired
by an algebraic polynomial. The precise statement of the theorem follows.
Weierstrass Theorem. Given a function f ∈ C[a, b] and an arbitrary ε > 0, there exists
an algebraic polynomial p such that |f(x) − p(x)| < ε for all x ∈ [a, b], or equivalently
||f − p||∞ < ε.
Proof. A constructive proof of the Weierstrass theorem can be given using Bernstein poly-
nomials; see the next two sub-sections.

We also note that a similar result holds for 2 π-periodic continuous functions and trigono-
metric polynomials, also due to Karl Weierstrass. That is, trigonometric polynomials are
dense in the class of 2π-periodic continuous functions. Recall that the space of algebraic
polynomials of degree at most m is Pm = span{1, x, . . . , xm}, while the space of trigonomet-
ric polynomials of degree at most m is Tm = span{1, sin x, cosx . . . , sinmx, cosmx}.

11.3 Bernstein polynomials

A Bernstein polynomial of degree m is a linear combination of Bernstein basis polynomials:

Bm(x) =
m∑
k=0

αk bk,m(x),
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where b0,m, . . . , bm,m are m+ 1 Bernstein basis polynomials of degree m,

bk,m(x) =
(
m

k

)
xk (1− x)m−k, x ∈ [0, 1], k = 0, 1, . . . ,m.

with the binomial coefficients defined as(
m

k

)
= m!
k!(m− k)! .

Figure 5 displays Bernstein basis polynomials of degree m = 2 (left) and m = 3 (right).
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Figure 5: Bernstein basis polynomials of degree m = 2 (left) and m = 3 (right).

Bernstein basis polynomials have several interesting properties.

1. Bernstein basis polynomials of degree m form a basis for the vector space Pm of poly-
nomials of degree at most m with real coefficients,

Pm = span{1, x, . . . , xm} = span{b0,m, b1,m, . . . , bm,m}, ∀m ∈ N0 := {0, 1, 2, . . . }.

2. Bernstein basis polynomials of degree m form a partition of unity,
m∑
k=0

bk,m(x) = 1. (13)

This easily follows from the binomial theorem

(x+ y)m =
m∑
k=0

(
m

k

)
xk ym−k,

and setting y = 1 − x. However, since the support of all basis functions is the whole
interval [0, 1], we obtain a partition of unity with a set of functions that are not locally
supported on [0, 1]. That is, at each point x ∈ [0, 1] we cannot find a neighborhood of
x where all but a finite number of basis functions in the set are 0.
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3. There is an interesting connection between Bernstein basis polynomials and binomial
random variables. To illustrate this, fix a point x ∈ [0, 1] and a degree m. Consider
a random experiment where we carry out a sequence of m independent (Bernoulli)
experiments, each with a Boolean-valued outcome: success with probability x and
failure with probability 1 − x. Then the probability of observing k successes in m
independent Bernoulli trials, denoted by Pr(k), is given precisely by the Bernstein basis
polynomial bk,m(x) =

(
m
k

)
xk (1− x)m−k. In other words, a Bernstein basis polynomial

bk,m(x) is the probability mass function of a discrete random variable k that follows a
binomial distribution, taking values 0, 1, . . . ,m.

4. One can show that the expectation and variance of the discrete random variable k
m

are
given by:

E[ k
m

] =
m∑
k=0

k

m
Pr(k) = 1

m

m∑
k=0

k

(
m

k

)
xk (1− x)m−k = x,

V[ k
m

] = E[( k
m
− x)2] =

m∑
k=0

( k
m
− x)2

(
m

k

)
xk (1− x)m−k = x(1− x)

m
. (14)

This can be shown either by the binomial theorem or simply by the rules of probability.
For instance, let k ∼ B(m,x) be a binomially distributed random variable. Noting that
k = k1 + . . . + km is the sum of m independent Bernoulli random variables each with
expected value E[ki] = x, i = 1, . . . ,m, we can write

E[k] = E[k1 + . . .+ km] = E[k1] + . . .+ E[km] = mx.

The formula for variance follows similarly, noting that the variance of the sum of m
independent variables is the sum of m variances, each equal to V[ki] = E[k2

i ]−E[ki]2 =
x− x2 = x(1− x), i = 1, . . . ,m.

11.4 A constructive proof of Weierstrass theorem

Consider a target function f ∈ C([0, 1]). We construct a Bernstein polynomial of degree at
most m using a linear combination of Bernstein basis polynomials with coefficients f(k/m):

pm(x) =
m∑
k=0

f( k
m

) bk,m(x).

Then by (13), we can write

pm(x)− f(x) =
m∑
k=0

(
f( k
m

)− f(x)
)
bk,m(x).

By triangle inequality, we then obtain

|pm(x)− f(x)| ≤
m∑
k=0

∣∣∣f( k
m

)− f(x)
∣∣∣ bk,m(x). (15)
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Continuity of f implies that there exists δ > 0 such that

|f(x1)− f(x2)| < ε whenever |x1 − x2| < δ. (16)

Continuity of f over a bounded set (here the interval [0, 1]) also implies that the function is
bounded, that is,

M := sup |f | <∞. (17)
We now split the sum in (15) into two parts and write

|pm(x)− f(x)| ≤
∑

k: |x−k/m|<δ

∣∣∣f( k
m

)− f(x)
∣∣∣ bk,m(x) +

∑
k: |x−k/m|≥δ

∣∣∣f( k
m

)− f(x)
∣∣∣ bk,m(x). (18)

The first sum in the right hand side of (18) is bounded by ε, thanks to (13) and (16) (with
x1 = x and x2 = k/m). In order to bound the second sum, we note that

∣∣∣f( k
m

)− f(x)
∣∣∣ ≤ 2 sup |f | = 2M.

We then write
∑

k: |x−k/m|≥δ

∣∣∣f( k
m

)− f(x)
∣∣∣ bk,m(x) ≤ 2M

∑
k: |x−k/m|≥δ

bk,m(x)

≤ 2M
∑
k

(x− k/m)2

δ2 bk,m(x)

= 2M
δ2

x(1− x)
m

≤ 2M
δ2m

,

where the equality in the third step above follows from (14), and the inequality in the fourth
step follows from 0 ≤ x(1− x) ≤ 1. We finally obtain

|pm(x)− f(x)| ≤ ε+ 2M
δ2m

.

Hence, since by (17) M < ∞, and ε > 0 can be selected arbitrarily small, we get pm → f
uniformly. The proof will be complete by simply extending Bernstein polynomials from [0, 1]
to [a, b].

11.5 Stone-Weierstrass theorem

Stone generalized and proved the Weierstrass approximation theorem by replacing the closed
interval [a, b] by an arbitrary compact Hausdorff space X and considering the space C(X) of
real-valued continuous functions on X. We note that a Hausdorff space X is a topological
space where for every two distinct points x, y ∈ X there exists a neighborhood U of x and a
neighborhood V of y such that U ∩ V = ∅. That is, any two points in X are separated by
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their neighborhoods that are disjoint. For example, all metric spaces (such as the Euclidean
space Rd) are Hausdorff.

A particular case of Stone-Weierstrass theorem is when X = [a1, b1]× . . .× [ad, bd] ⊂ Rd.
This case can be easily proved by generalizing 1D Bernstein basis polynomials to higher
dimensions

bk,m(x) =
d∏
i=1

bki,mi(xi) = bk1,m1(x1) . . . bkd,md(xd), x = (x1, . . . , xd) ∈ X,

where k = (k1, . . . , kd) and m = (m1, . . . ,md) are two d-dimensional multi-indices.

12 Density of two-layer networks

In this section we will discuss the main density result for two-layer (i.e. shallow) feedforward
networks.

12.1 Two-layer feedforward networks

We will consider the family of two-layer feedforward networks with d input neurons, one
hidden layer consisting of r neurons, where all r neurons use the same activation function
σ : R→ R, and one output neuron without any activation function and without any bias. A
schematic representation of the network with d = 2 inputs and r = 3 neurons in the hidden
layer is displayed in Figure 6.

Multilayer Perceptron (MLP)

Hidden
layer

Input
layer

Output
layer

Assumptions for approx. theory

- one hidden layer with r neurons
- xj := x0j j-th input, j = 1, ..., d
- � 2 C0(R) activation function
- wij weight xj ! x1i

- #i shift of neuron x1i

- ci weight x1i ! y

Feed forward
x1i = �(

Pd
j=1 wijxj � #i ),

Output (no activation)
y =

Pr
i=1 cix1i

Vector notation

y =
rX

i=1

ci�(wi · x � #i ),

where x = (xj)
d
j=1, wi = (wij)

d
j=1 2 Rd , ci , #i 2 R.

2 / 22

Figure 6: A representation of a feed-forward network with one hidden layer.

Let x = (x1, . . . , xd) ∈ Rd be the input variable. Then, the output y ∈ R of the network
can be written as

y =
r∑
i=1

W 2
1,i σ(

d∑
j=1

W 1
i,jxj + bi),

where W 1 ∈ Rr×d and W 2 ∈ R1×r are the weight matrices of the two layers, and b =
(b1, . . . , br) ∈ Rr is the bias in the hidden layer; see the notation in Chapter 1. Note that
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there is no output bias here. Setting w(i) := (W 1
i,1, . . . ,W

1
i,d) ∈ Rd, i.e. the i-th row of the

weight matrix W 1, and ci := W 2
1,i, i.e. the i-th column of the weight matrix W 2, we can

write the network’s output more succinctly as

y =
r∑
i=1

ci σ(w(i) · x + bi),

where a · b := ∑d
j=1 aj bj is the inner product of a ∈ Rd and b ∈ Rd.

12.2 Pinkus theorem

We will consider the density question with such networks. Precisely, we consider the network
space (corresponding to the case r →∞),

M(σ) := span{σ(w · x + b) : w ∈ Rd, b ∈ R},

and ask for which class of activation functions the network spaceM(σ) is dense in the space
C(Rd) of continuous functions with respect to the supremum norm (i.e. in the topology of
uniform convergence on compact sets). Equivalently, we would like to know for what σ, given
a target function f ∈ C(Rd) and a compact subset X ⊂ Rd and an arbitrary ε > 0, there
exists g ∈M(σ) such that

sup
x∈X
|f(x)− g(x)| < ε.

Formally, we state the main density result as follows; see Theorem 3.1 in [23].
Pinkus Theorem. Let σ ∈ C(R). Then M(σ) is dense in C(Rn) with respect to the
supremum norm on compact sets, if and only if σ is not a polynomial.
An intuitive example. Let d = 1 and assume that X = [a, b] is a closed interval on R.
Consider a cosine activation function σ(x) = cos x, which satisfies the conditions of the above
theorem, i.e. it is continuous and not a polynomial. Then g(x) = ∑

i≥1 ci cos(wi x + bi),
which reminds us of Fourier series. In fact this is the so called amplitude-phase form of
Fourier series from which we can recover the more familiar sine-cosine form by the identity
cos(α + β) = cosα cos β − sinα sin β. Recall that if we have a continuous function, we can
expand it in Fourier series, and hence it follows that g is dense in the space of continuous
functions.

12.3 Proof sketch of Pinkus theorem

First, we need to show that ifM(σ) is dense, then σ is not a polynomial. Suppose σ ∈ Pm(R)
is a polynomial of degree m, then for every choice of w ∈ Rd and b ∈ R, σ(w · x + b)
is a multivariate polynomial of total degree at most m, and thus M(σ) is the space of all
polynomials of total degree at most m, that isM(σ) = Pm(Rd), which does not span C(Rd),
contradicting the density. We next show the converse result: if σ is not a polynomial, then
M(σ) is dense. This is done in four steps:
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• Step 1. Consider the 1D case (i.e. d = 1) and the 1D counterpart ofM(σ):

N (σ) = span{σ(w x+ b), w, b ∈ R}.

• Step 2. Show that for σ ∈ C∞(R) and not a polynomial, N (σ) is dense in C(R).

• Step 3. Weaken the smoothness demand on σ, using convolution by mollifiers, and
show that for σ ∈ C(R) and not a polynomial, N (σ) is dense in C(R).

• Step 4. Extend the result to multiple dimensions: show that if N (σ) is dense in C(R)
thenM(σ) is dense in C(Rd).

Proof of step 2. We will use a very interesting theorem asserting that if a smooth function
(i.e. C∞) on an interval is such that its Taylor expansion about every point of the interval
has at least one coefficient equal to zero, then the function is a polynomial.

Lemma 1. Let σ ∈ C∞((α, β)), where (α, β) ⊂ R is an open interval on the real line. If
for every point x ∈ (α, β) on the interval there exists an integer k = k(x) such that the k-th
derivative of σ vanishes at x, i.e. σ(k)(x) = 0, then σ is a polynomial.

Proof. For a proof of this lemma see page 53 in [10].

Lemma 1 implies that since σ is smooth and not a polynomial, there exists a point b0 ∈ R
at which σ(k) 6= 0, k = 0, 1, 2, . . . . Now we note that

σ((w + h)x+ b0)− σ(w x+ b0)
h

∈ N (σ), ∀h 6= 0,

where w ∈ R. Taking the limit (as h→ 0), it follows that the derivative of σ with respect to
w is in N (σ), which is the closure of N (σ). In particular, for w = 0 we get

d

dw
σ(w x+ b0)

∣∣∣∣
w=0

= x σ′(b0) ∈ N (σ),

Similarly (by considering k + 1 terms of σ and taking the limit h→ 0) we can show that

dk

dwk
σ(w x+ b0)

∣∣∣∣
w=0

= xk σ(k)(b0) ∈ N (σ).

Since σ(k) 6= 0, k = 0, 1, 2, . . . , the set N (σ) contains all monomials. By the Weierstrass
Theorem this implies that N (σ) and hence N (σ) is dense in C(R), because if the closure
of a function space is dense, the function space will be dense too: we can approximate any
function in the closure space by functions in the space as accurately as we wish.

Proof of step 3. The proof utilizes the classical technique of convolution by mollifiers to
weaken the smoothness requirement of σ. In this technique we consider a mollified activation
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function σφ(x) obtained by convolving σ ∈ C(R) with a smooth and compactly supported
mollifier φ ∈ C∞0 (R),

σφ(x) =
∫
R
σ(x− y)φ(y) dy.

Since both σ and φ are continuous and φ has compact support, the above integral exists for
all x ∈ R. We also have σφ ∈ C∞(R). Moreover, taking the limit of Riemann sums, one can
easily show that σφ and N (σφ) are contained in N (σ). Now since σφ ∈ C∞(R), provided
we choose φ such that σφ is not a polynomial (also note that σ is not a polynomial), then
by the method of proof of Step 2, all monomials are contained in N (σφ). Hence N (σφ) and
therefore N (σ) and N (σ) are dense in C(R).

Proof of step 4. One interesting technique to “reduce dimension” (here we want to reduce d to
1) is to utilize ridge functions, also known as plane waveforms in the context of hyperbolic
PDEs. A ridge function g : R→ R is a multivariate function f : Rd → R of the form

f(x) = g(w · x), w ∈ Rd \ {0}.

Figure 7 displays an example of a ridge function g(w ·x) = sin w ·x, where x = (x1, x2) ∈ R2,
with three choices w = (0, 1) (left), w = (1, 0) (middle), and w = (1/

√
2, 1/
√

2) (right).

sin(0.x1 + 1.x2) sin(1.x1 + 0.x2) sin( 1√
2 .x1 + 1√

2 .x2)

Figure 7: An example of a ridge function g(w · x) = sin w · x in two dimensions, where
x = (x1, x2) ∈ R2, and for three different direction vectors w = (0, 1) (left), w = (1, 0)
(middle), and w = (1/

√
2, 1/
√

2) (right).

As we observe, the vector w ∈ Rd \ {0} determines the direction of the plane wave. Impor-
tantly, for each w ∈ Rd \ {0} and b ∈ R, the function σ(w · x + b) that is the building block
ofM(σ) is also a ridge functions. Now let

R := span{g(w · x) : w ∈ Rd, ||w||2 = 1, g ∈ C(R)}.

We first note that R is dense in C(Rd), because it contains all functions of the form cos(w ·x)
and sin(w · x) which are dense on any compact subset of C(Rd). Of course, this does not
directly imply thatM(σ) will also be dense, because g in R can be any continuous function
of w · x, while σ is a fixed, given continuous function. However, if ridge functions in R were
not dense in C(Rd), then it would not be possible for M(σ) to be dense in C(Rd). Now
let f ∈ C(X) be a given target function on some compact set X ⊂ Rd. Since R is dense
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in C(X), then given ε > 0 there exist {gi}ri=1 ∈ C(R) and w(i) ∈ Rd with ||w(i)||2 = 1,
i = 1, . . . , r (for some r) such that

|f(x)−
r∑
i=1

gi(w(i) · x)| < ε

2 , ∀x ∈ X.

Since X is compact, then for each i = 1, . . . , r, we have {w(i) · x : x ∈ X} ⊆ [ai, bi] for some
bounded interval [ai, bi]. We next utilize the fact that N (σ) is dense in C([ai, bi]), for all
i = 1, . . . , r, which implies that there exist ci,j, wi,j, bi,j ∈ R, with j = 1, . . . ,mi for some mi,
such that

|gi(t)−
mi∑
j=1

ci,j σ(wi,j t+ bi,j)| <
ε

2 r , ∀t ∈ [ai, bi], i = 1, . . . , r.

Hence, combining the above two inequalities, we get

|f(x)−
r∑
i=1

mi∑
j=1

ci,j σ(wi,j w(i) · x + bi,j)| =

|f(x)−
r∑
i=1

gi(w(i) · x) +
r∑
i=1

gi(w(i) · x)−
r∑
i=1

mi∑
j=1

ci,j σ(wi,j w(i) · x + bi,j)| ≤

|f(x)−
r∑
i=1

gi(w(i) · x)|+
r∑
i=1
|gi(w(i) · x)−

mi∑
j=1

ci,j σ(wi,j w(i) · x + bi,j)| <

ε

2 + r
ε

2 r = ε, ∀x ∈ X.

Clearly, this implies that there exist c`, b` ∈ R and w(`) ∈ Rd, with ` = 1, . . . ,m for some m,
such that

|f(x)−
m∑
`=1

c` σ(w(`) · x + b`)| < ε, ∀x ∈ X.

This in turn means that there exist fθ ∈M(σ), given by fθ(x) = ∑m
`=1 c` σ(w(`) · x + b`) for

some m, such that
|f(x)− fθ(x)| < ε, ∀x ∈ X.

Hence,M(σ) is dense in C(X).

13 Convergence rate of approximation by two-layer networks

So far we have discussed the concept of density. We have seen that density addresses only
the ability of approximation. It does not tell us anything about the rate of approximation.
In particular, density does not imply that one can approximate well by an approximant from
the set

Mr(σ) := {
r∑
i=1

ci σ(w(i) · x + bi), : w(i) ∈ Rd, ci, bi ∈ R},

with a fixed r < ∞. This is similar to the case of algebraic polynomials: the space of
polynomials is dense in C(X), but polynomials of any fixed degree are rather sparse (not
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dense). In other words, density assumes that the number of parameters in the approximant
(such as the number r of neurons and the degree of polynomials) is infinite, and not fixed
and finite. When r is fixed and finite, the rate question asks: is there γ > 0 such that

inf
g∈Mr(σ)

sup
x∈X
|f(x)− g(x)| < C r−γ,

for some constant C > 0? Such estimates would tell us the rate (how fast/slow) at which the
error converges to zero. The infimum is taken because we want to know the “best” possible
convergence rate that can be achieved by the functions in Mr(σ) (the best case scenario).
This question will be discussed in this section for the same family of single hidden-layer
feedforward networks considered in Section 12.1.

Of course, similar to density, the rate of approximation has its own limitations. For
instance, rate of approximation does not tell us how to find that “best” approximant. It also
does not tell us if there are (efficient) methods/algorithms for finding “good” approximants.
Nevertheless, it gives us more information than density.

We also note that when r →∞, thenMr(σ) spans the wholeM(σ). In fact, the density
question in terms of the setMr(σ) reads: given f ∈ C(X), is there gr ∈Mr(σ) for which

lim
r→∞ sup

x∈X
|f(x)− gr(x)| = 0.

Clearly, this question does not address the convergence rate of approximation.
Finally, we note that the setMr has the property

Mr1 +Mr2 =Mr1+r2 ,

where the sumset is defined as Mr1 +Mr2 := {g1 + g2 : g1 ∈ Mr1 , g2 ∈ Mr2}. This
property will be used later to prove the main convergence result. The reason for this property
is that Mr1 and Mr2 do not necessarily share basis functions σ(w(i) · x + bi) with the
very same (w(i), bi) parameters. In general we have Mr1 = span{σ(w(i) · x + bi)}r1

i=1 and
Mr2 = span{σ(w(i) ·x + bi)}r1+r2

i=r1+1. In other words, the spaceMr is a nonlinear space. Note
that this will make the neural networks in our setup nonlinear methods of approximation.

13.1 Target functions of interest

Throughout Section 13 we let the domain X be the unit ball

X := {x : ||x||2 ≤ 1} ⊂ Rd, d ≥ 2.

Moreover, instead of continuous target functions that we considered earlier, we will consider
Sobolev target functions (see the definition of Sobolev function spaces in Section 13.2),

f ∈ W k,p(X), k ≥ 1, 1 ≤ p ≤ ∞, ||f ||Wk,p(X) ≤ 1.

A major importance of Sobolev functions is that they often appear in the study of PDEs. We
want to study the rate of approximation of f ∈ W k,p(X) by g ∈Mr(σ) with fixed r <∞.
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13.2 Sobolev spaces

Here we will briefly review Sobolev spaces. For a more detailed discussion see Sec. 5 in [13].
Strong derivatives. Suppose f ∈ Ck(X), for some non-negative integer k. Denote by
α = (α1, . . . , αd) a multi-index of d non-negative integers of order |α| = α1 + . . . + αd ≤ k.
The (strong) α-th partial derivative of f is defined as

Dαf(x) := ∂|α|f(x)
∂xα1

1 . . . ∂xαnn
= ∂α1

x1 . . . ∂
αn
xn f(x), x ∈ X.

Moreover, for every test function φ ∈ C∞0 (X), the following integration by parts formula
holds ∫

X
f Dαφ dx = (−1)|α|

∫
X
Dαf φ dx.

Note that there is no boundary terms involved in the above formula because tests functions
have compact support on X, and hence all boundary terms vanish.
Weak derivatives. Sometimes (actually often), for example in the context of PDEs, we
need to deal with functions f that have low regularity/smoothness. For instance, they may
not belong to Ck(X), i.e. they are not k-times continuously differentiable and hence Dαf(x)
would not exist in the above sense. For such functions we use a “weaker” notion of derivatives
utilizing the integration by parts formula. Precisely, suppose f ∈ L1(X) (this is why we
assume p ≥ 1). We say that u is the weak α-th partial derivative of f provided for all test
functions φ ∈ C∞0 (X) the following holds∫

X
f Dαφ dx = (−1)|α|

∫
X
uφ dx.

In this case, we often use the same notation as in the case of strong derivatives and write

Dαf = u,

and say Dαf is the α-th partial derivative of f in the weak sense.
As an example, it is easy to see that the weak derivative of the ReLU activation function

σ(x) = max{0, x} on X = [−1, 1] is given by

u(x) =
{

0 −1 ≤ x < 0,
1 0 ≤ x ≤ 1.

Definition of Sobolev spaces. Fix 1 ≤ p ≤ ∞, and let k be a nonnegative integer. The
Sobolev space W k,p(X) consists of all functions f ∈ L1(X) for which the derivatives Dαf for
all α with |α| ≤ k exist in the weak sense and belong to Lp(X). We write

W k,p(X) := {f : X → R; Dαf ∈ Lp(X), |α| ≤ k},
where we understand Dαf in the weak sense. In the particular case when p = 2, we usually
use the letter H and omit p = 2, and write

Hk(X) := W k,2(X),

which is a Hilbert space. Obviously, H0(X) = W 0,2(X) = L2(X), which is the space of
square-integrable functions on X.
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Remark 5. Recall that the Lp space (sometimes called Lebesgue space) is defined as

Lp(X) := {f : X → R; ||f ||Lp(X) <∞},

where
||f ||Lp(X) :=

(∫
X
|f |p dx

)1/p
, 1 ≤ p <∞,

and
||f ||L∞(X) := ess supX |f | := inf{v ∈ R| µ({x ∈ X : |f | > v}) = 0}.

Here, for any subset A ⊂ X in Rd, µ(A) denotes the d-dimensional Lebesgue measure of A,
which determines the size or d-dimensional volume of the subset A. Informally, ||f ||L∞(X) is
the “almost everywhere” supremum of |f | over X, that is, the supremum of |f | everywhere
on X except on a set of measure zero.

Definition of Sobolev norm. If f ∈ W k,p(X), we define its norm as

||f ||Wk,p(X) :=
( ∑
|α|≤k
||Dαf ||pLp(X)

)1/p
, 1 ≤ p <∞,

and
||f ||Wk,∞(X) :=

∑
|α|≤k
||Dαf ||L∞(X).

13.3 A typical convergence rate result

Error of interest. To study the convergence rate, we will first need to define an error that
we call the error of interest. We will consider the following error

sup
f∈Wk,p(X)

inf
g∈Mr(σ)

||f − g||Lp(X).

Clearly W k,p is a subspace of Lp. Moreover, since X is compact and C(X) is dense in Lp(X),
then by the density result in Section 12,Mr(σ) will also be dense in Lp(X) for each σ ∈ C(R)
that is not a polynomial. Hence, the Lp space contains both W k,p andMr(σ), and therefore
||f−g||Lp(X) in the above error is well defined. The infimum over g ∈Mr(σ) is taken because
fixing f we want to know how close the spaceMr(σ) can be to f (best case scenario). The
supremum over f ∈ W k,p(X) is taken because we want to consider the worst function f to
be approximated (worst case scenario).
A Convergence Theorem. (Theorem 6.8 in [23]; also see Theorem 2.1 in [21]) Let σ ∈
C∞(I) be a smooth function on some open interval I ⊆ R, and suppose that it is not a
polynomial on I. Then, for each p ∈ [1,∞], k ≥ 1, and d ≥ 2, there is a constant C > 0
independent of r such that

sup
f∈Wk,p(X)

inf
g∈Mr(σ)

||f − g||Lp(X) ≤ C r−k/d.
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Remark 6. Note that, as stated above, we are also assuming that ||f ||Wk,p(X) ≤ 1. In the
general case when the norm of f is bounded by another finite number, e.g. ||f ||Wk,p(X) ≤ a <
∞, the constant C may also depend on a (i.e. the size of f). See Section 14 for this more
general case.

The proof of convergence theorem utilizes homogeneous polynomials, and hence here we
quickly review them.
Homogeneous polynomials. A homogeneous polynomial of degree m in d ≥ 2 variables
in Rd is a polynomial whose non-zero terms all have the same degree m. For example,
x5

1 − 2x3
1 x

2
2 + x1 x

4
2 is a homogeneous polynomial of degree m = 5 in two variables with

d = 2. Let us denote by Qm the linear space of such polynomials, i.e. the set of all terms
xα := ∏d

i=1 x
αi
i such that |α| = α1+. . .+αd = m. A few interesting properties of homogeneous

polynomials relevant to our convergence problem follows.

1. The dimension of Qm is the maximal number of non-zero terms xα with |α| = m, or
equivalently the cardinality of the set {α = (α1, . . . , αd) : |α| = m}, which is

s := dimQm =
(
m+ d− 1

m

)
≤ C md−1,

where C = C(d) is a constant that may depend only on d. The binomial formula
can easily be shown by the method of stars and bars, which is a well-known tech-
nique in combinatorics. We skip its interesting proof here. The inequality is a simple
consequence of

(
m+d−1
m

)
≤
(
e (m+d−1)

d−1

)d−1
and (a+ b)d−1 ≤ 2d−2 (ad−1 + bd−1), for d ≥ 2.

2. For a w ∈ Rd with unit norm ||w||2 = 1, we have (w · x)m ∈ Qm. This can easily be
seen by the multinomial theorem (which is a generalization of the binomial theorem),

(x1 + . . .+ xd)m =
∑
|α|=m

(
m

α

)
xα,

(
m

α

)
:= m!∏d

i=1 αi!
, xα :=

d∏
i=1

xαii .

3. Consequently, there exist s = dimQm points w(i) ∈ Rd with ||w(i)||2 = 1, i = 1, . . . , s,
such taht {(w(i) · x)m}si=1 spans Qm. This in particular implies that

Q` = span{(w(i) · x)` : i = 1, . . . , s}, ` = 0, 1, . . . ,m.

Hence, for the linear space Pm of multivariate polynomials of degree at most m,

Pm = ∪m`=0Q`,

we have
Pm = span{(w(i) · x)` : i = 1, . . . , s, ` = 0, 1, . . . ,m}.

This last formula can aslo be written as

Pm = {
s∑
i=1

pi(w(i) · x) : pi ∈ πm, i = 1, . . . , s},

where πm denotes the linear space of univariate polynomials of degree at most m.
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Proof Sketch of Convergence Theorem. Let Q` denote the linear space of homogeneous
polynomials of degree ` in Rd, and let Pm := ∪m`=0Q` be the linear space of multivariate poly-
nomials of degree at most m. By the third property of Homogeneous polynomials discussed
above, there exists s = dimQm points w(1), . . . ,w(s) ∈ Rd with ||w(i)||2 = 1, i = 1, . . . , s,
such that

Pm = {
s∑
i=1

pi(w(i) · x) : pi ∈ πm, i = 1, . . . , s},

where πm denotes the linear space of univariate algebraic polynomials of degree at most m.
Now, if we consider the 1D counterpart ofMr(σ):

Nr(σ) = {
r∑
i=1

ci σ(wi x− bi), ci, wi, bi ∈ R},

by the method of proof of step 2 in Section 12.3, under the conditions stated in the above
theorem, Nm+1(σ), which is the closure of Nm+1(σ), contains the space πm of univariate
algebraic polynomials of degree at most m. Note that in this method to show a monomial of
degree up to m is in the network space, we will need up to the m-th derivative of σ. Using
divided differences, this would need a linear combination ofm+1 terms (e.g. we need 2 terms
for first derivative, three terms for second derivative, etc.), and this amounts to a network
space Nm+1(σ) with m+ 1 basis functions. Now from pi ∈ πm, it follows that pi ∈ Nm+1(σ).
Hence, using the propertyMr1 +Mr2 =Mr1+r2 , we obtain

Pm ⊆Ms (m+1)(σ).

By setting r = s (m+ 1), where s = dimQm, we get Pm ⊆Mr(σ), which implies

sup
f∈Wk,p(X)

inf
g∈Mr(σ)

||f − g||Lp(X) = sup
f∈Wk,p(X)

inf
g∈Mr(σ)

||f − g||Lp(X)

≤ sup
f∈Wk,p(X)

inf
g∈Pm

||f − g||Lp(X).

It is also well known (see e.g. Section 5 in [6]) that for every f ∈ W k,p(X), there exists a
polynomial g ∈ Pm such that

||f − g||Lp(X) ≤ C m−k ||f ||Wk,p(X).

Noting ||f ||Wk,p(X) ≤ 1, this implies that

sup
f∈Wk,p(X)

inf
g∈Pm

||f − g||Lp(X) ≤ C m−k.

The desired estimate then follows noting that s = dimQm ≤ C(d)md−1.

13.4 A short discussion on curse of dimension

Suppose that we want to construct an approximation g ∈Mr(σ) of a target function f ∈ W k,p

with an error at most ε > 0. Suppose further that the approximation error is proportional to

37



r−k/d, as the above theorem suggests. This means that we need r = O(ε−d/k) neurons, which
demonstrates the curse of dimension: the computational cost (encoded in r) increases
exponentially with the dimension d.

One of the main reasons for current interest in deep neural networks is their outstanding
performance in high-dimensional problems, i.e. when d is large. However, the convergence
rate O(r−k/d) in the theorem in Section 13.3 depends strongly on the dimension d of the input
space. Indeed, the theorem suggests that the rate of approximation fromMr(σ) with r ∼ md

(note: r = s(m + 1) ∼ md) may not be better than the rate of polynomial approximation
from the polynomial space Pm (which is ∼ m−k). This makes one wonder whether it is
really worthwhile using neural networks (at least in the case of a single hidden layer). One
may think that the upper bound in the above theorem may not be sharp. However, there
are lower bounds that confirm this is not the case; see e.g. [21, 23, 18]. For instance, with
σ(x) = 1/(1+exp(−x)) being the logistic sigmoid (which in particular satisfies the conditions
of the theorem in Section 13.3), we get [18]

sup
f∈Wk,p(X)

inf
g∈Mr(σ)

||f − g||Lp(X) ≥ C (r log r)−k/d.

Therefore, we cannot expect to circumvent the curse of dimension, at least in the setting
considered here.

An interesting approach to obtaining the rate of approximation from the setMr(σ) was
initiated by Barron [1] and generalized by Makovoz [19]. Barron (and later Makovoz) started
with a givenMr(σ), with a bounded sigmoidal σ, and tried to find classes of functions which
are well approximated by Mr(σ) with minimal dependence on the dimension d. Without
going into details, here, we summarize their results.
Barron-Makovoz Theorem. Let B(X) be the set of all functions f : Rd → R defined
on the unit ball X ⊂ Rd that can be extended to all of Rd such that some shift of f by a
constant has a Fourier transform f̂ satisfying

∫
Rd ||ξ||2 |f̂(ξ)| dξ ≤ γ for some 0 < γ < ∞,

where ||ξ||2 = (ξ · ξ)1/2. Then for any bounded sigmoidal function σ,

sup
f∈B(X)

inf
g∈Mr(σ)

||f − g||L2(X) ≤ C r−(d+1)/2d,

where the constant C > 0 is independent of r.
It is to be noted that this result cannot be quite compared to the results of Section 13.3,

because, unlike in the case of the Sobolev space W k,p, the condition defining the function
set B, known as Barron space, cannot be restated in terms of the number of derivatives.
Nevertheless, Barron has shown that on the unit ball X the following embeddings hold:

W bd/2c+2,∞(X) ⊆ spanB(X) ⊆ W 1,∞(X).

In particular, it tells us that functions f with sufficiently high orders k = bd/2c + 2 of
derivatives are in the set B. In other words, and roughly speaking, in order to achieve a rate
O(r−(d+1)/2d) that is almost independent of the dimension d when d is large, the function
f would need to have many (k = bd/2c + 2) derivatives. Putting this in the main result
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of Section 13.3 we would obtain a comprable rate O(r−k/d) = O(r−(d+4)/2d). This in turn
implies that in such smooth function spaces with a large number of derivatives available, then
both ReLU networks with one hidden layer and polynomials achieve a rate that minimally
depends on the dimension (i.e. −(d+ 4)/2d which approaches −1/2 in the limit).

Remark 7. The original estimate of Barron [1] was (mistakenly) of the form C r−1/2. This
initiated an unfortunate discussion (and misconception) that Barron’s results have broken the
curse of dimension.

We close this discussion by pointing out that other network architectures, such as deep
convolutional neural network-type architectures that are invariant by construction and serve
as the state-of-the-art architectures for image/text/graph-related tasks, may perform better
in alleviating the curse of dimension when target functions have certain and a priori known
hierarchical/geometric properties. Examples include target functions that have hierarchically
local compositional structures, target functions that are invariant to transformations (i.e.
translations, permutations, rotations), and target functions that possess geometric stability
(or near invariance, smoothness) to small deformations. We refer to [20, 24, 3] and the
references therein for further details on the subject.

14 Complexity of deep ReLU networks

So far we have been discussing the density and convergence rate questions regarding the
approximation of continuous and Sobolev target functions by feedforward neural networks
with one single hidden layer and continuous or smooth non-polynomial activation functions.
In the remainder of this chapter we will consider the more practical case of “deep” feedforward
networks with “ReLU” activation functions and obtain an estimate of the complexity of the
network (i.e. number of layers, neurons, and non-zero parameters) needed for approximating
Sobolev target functions within a desired small tolerance ε ∈ (0, 1/2). We closely follow
[31] and [15] in the sense that we utilize the basic element used in those two references: the
“sawthooth” construction developed in [29]. Nevertheless, we will present some new results
(that are more general than the results in [31] and [15]) with a few changes in the proofs
presented in those two references. Other relevant references will be cited in the text whenever
an idea/formula/concept is used.

14.1 Target functions of interest

On the unit hypercube domain
X = [0, 1]d ⊂ Rd,

we consider Sobolev target functions (see Section 13.2)

f ∈ W k,p(X), k ≥ 1, 1 ≤ p ≤ ∞.

Unlike in [31, 15], we do not assume ||f ||Wk,p(X) ≤ 1 and will derive more general estimates,
i.e. estimates that also depend on ||f ||Wk,p(X) <∞.
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14.2 Main complexity result

Complexity Theorem. Let ε ∈ (0, 1/2). Consider a Sobolev target function f ∈ W k,p(X)
on X := [0, 1]d with k ≥ 1 and p ∈ [1,∞]. Then, there exists a standard ReLU neural
network Φε (see definition in Section 14.8) with d inputs and one output and complexity

L(Φε) ≤ C(d, k, p) log2(ε−1 ||f ||Wk−1,p(X)),
N(Φε), P (Φε) ≤ C(d, k, p) ε−d/k ||f ||d/kWk,p(X) log2

2(ε−1 ||f ||Wk−1,p(X)),

such that
||f − Φε||Lp(X) ≤ ε.

Here, L,N, P denote the number of layers, neurons, and non-zero parameters of the network,
respectively, and the constant C = C(d, k, p) > 0 is independent of ε.

14.3 Proof strategy

The general strategy is to first build a polynomial approximation of f and then approximate
the polynomial by a ReLU network, according to the following steps:

1. Part 1: build a polynomial approximation of f :

• Discretize X = [0, 1]d into a uniform grid of (n+ 1)d grid points.
• Construct a partition of unity as the collection of (n + 1)d functions, where each

function is supported around a grid point and is the product of d piecewise linear
univariate functions (that can be represented by ReLU networks).

• Around each grid point build a localized polynomial approximation of f by av-
eraged Taylor polynomials (see Section 14.4 for a short introduction to averaged
Taylor polynomials).

• Build a global polynomial approximation of f using the local polynomials and
partition of unity constructed in the previous two steps.

2. Part 2: Approximate the global polynomial by a ReLU network:

• Using the sawtooth function approximate x2 by a ReLU network.
• Utilizing xy = 1

2((x+ y)2 − x2 − y2), approximate xy by a ReLU network.
• Construct a ReLU network with d outputs such that the product of its outputs is

a function in the partition of unity.
• Construct a ReLU network such that the product of its outputs expresses each

term in the global polynomial.
• Approximate the products of the outputs of a ReLU network by a ReLU network

with one output.
• Construct the final ReLU network by a linear combination of the one-output

networks constructed in the previous step.

40



• Estimate the error in approximating the global polynomial by the constructed
ReLU network.

3. Part 3: Finally, select the number n of grid points such that the total error (i.e. the sum
of errors made in parts 1 and 2) remains below ε and compute the network complexity.

The remainder of this section will be devoted to the details of the proof. Part 1 will be
covered in Sections 14.4-14.6. Part 2 will be discussed through Sections 14.7-14.12. Finally,
Part 3 will be done in Section 14.13. Some very recent directions of research on the topic
with further reading suggestions will be provided in Section 14.14.

14.4 Averaged Taylor polynomial approximation

We will review an averaged version of the Taylor polynomial of calculus. Averaged Taylor
polynomials are particularly suitable for approximating Sobolev functions. A good reference
on the topic is Chapter 4 of [5].

Consider a Sobolev function f ∈ W k,p(X), where X ⊂ Rd is a bounded convex domain.
Let

B := B(x0, r) = {x ∈ X : ||x− x0||2 < r},
be the open ball centered at x0 ∈ X with radius r > 0 such that B ⊂ X. Consider a cut-off
function φ ∈ C∞0 (Rd) with the properties

φ ≥ 0, suppφ = B,
∫
Rd
φ(x) dx = 1.

The Taylor polynomial of order k of f averaged over B is defined as

Qkf(x) :=
∫
B
T kyf(x)φ(y) dy, x ∈ X,

where T kyf(x) is the familiar Taylor polynomial of order k − 1 about y:

T kyf(x) :=
∑

|α|≤k−1

1
α! D

αf(y) (x− y)α.

Here, we have used the standard multi-index notation for the multi-index α = (α1, . . . , αd).
Note that since f ∈ W k,p(X) with k ≥ 1, then f ∈ W k−1,p(X) and Dαf with |α| ≤ k − 1 is
bounded.

Remark 8. (Why do we use averaged Taylor polynomials for Sobolev functions?) In general,
for a Sobolev function f , the derivatives Dαf that appear in Taylor’s formula may not exist
in the usual pointwise (or strong) sense. One possibility to define a Taylor polynomial for
such a function is by taking a smoothed average of T kyf(x) over y ∈ B.

A few properties of averaged Taylor polynomials (without proofs) follow.
Linearity property. From the linearity of weak derivatives, we can conclude that averaged
Taylor polynomials are linear in f .
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Polynomial property. Let f ∈ W k,p(X), where X ⊂ Rd is a bounded convex domain. The
Taylor polynomial of order k of f averaged over a ball B ⊂ X is a polynomial of degree less
than k in x that can be written as

Qkf(x) =
∑

|α|≤k−1
cα xα, x ∈ X,

with
|cα| ≤ c(k, d) r−d/p ||f ||Wk−1,p(X). (19)

Bramble-Hilbert Lemma. (See Lemma 4.3.8 in [5]) Let f ∈ W k,p(X), where X ⊂ Rd is
a bounded convex domain. Let Qkf(x) be the Taylor polynomial of order k of f averaged
over a ball B ⊂ X. Then

|f −Qkf |W s,p(X) ≤ c(k, d)hk−s |f |Wk,p(X), h = diam(X), s = 0, 1, . . . , k.

where |f |Wk,p(X) := (∑|α|=k ||Dαf ||pLp(X))1/p is the Sobolev semi-norm.

Remark 9. We note that for the Taylor expansion of f on X about any point y ∈ X to
give an approximation of f at some points x = y + h, the whole path y + th, 0 ≤ t ≤ 1
from y to x must be within X. In case of the averaged Taylor polynomial the expansion
point y is replaced by a ball B, and hence we need the path (or the line segment) between
each y ∈ B and each x ∈ X to be within X. This requires a geometrical condition on X:
we say X is “star-shaped” (or star-convex) with respect to B. The original Bramble-Hilbert
Lemma (see Lemma 4.3.8 in [5]) assumes X is star-shaped with respect to B, and introduces
a parameter known as the “chunkiness” of X that appears in the constant of the estimate,
i.e. c = c(k, d, γ), with γ = chunkiness(X). We avoid all these details by simply assuming
X is convex, which implies that X is start-shaped and connected. Then the chunkiness will
be a bounded constant depending on diam(X), which in turn depend on d for bounded X.
For instance, in the particular case X = [0, 1]d we have γ = 2

√
d which is the ratio between

diam(X) =
√
d and the radius r = 1/2 of the ball inscribed in X.

14.5 Partition of unity

There are different ways to construct a partition of unity. Here, we will construct a partition
of unity as the product of piecewise linear functions. The main reason for a piecewise linear
construction is that such construction can be realized by a ReLU network.

We first define a function ψ : R→ R as

ψ(z) =


1 |z| < 1,
0 |z| > 2,
2− |z| 1 ≤ |z| ≤ 2.

Discretize X = [0, 1]d into a uniform grid of (n + 1)d grid points, where n ≥ 1, and let
m = (m1, . . . ,md) ∈ {0, 1, . . . , n}d be a d-tuple or multi-index corresponding to each grid
point. For instance m = (0, . . . , 0) and m = (n, . . . , n) correspond to the very first and the
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very last grid points, respectively. Clearly, there are (n+ 1)d multi-indices m corresponding
to (n+ 1)d grid points. To each multi-index m we assign a function

φm(x) =
d∏
`=1

ψ(3n (x` −
m`

n
)), x ∈ X, m ∈ {0, 1, . . . , n}d,

which is obtained by the product of d piecewise linear univariate functions of the form ψ.
The collection of all such functions for all (n + 1)d multi-indices forms a partition of unity,
denoted by

U := {φm : m ∈ {0, 1, . . . , n}d}.
Figure 8 (left) shows the function ψ, and Figure 8 (right) shows the partition of unity in the
case d = 1 and n = 5, i.e. a collection of n+ 1 = 6 functions φ0, φ1, . . . , φ5.

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Figure 8: Left: the function ψ. Right: the partition of unity (a collection of n + 1 = 6
functions) for the case d = 1 and n = 5.

The partition of unity U has the following properties:

1. 0 ≤ φm(x) ≤ 1, ∀φm ∈ U, ∀x ∈ Rd.

2. ∑φm∈U φm(x) = 1, ∀x ∈ X.

3. supp(φm) ⊂ {x : |x` − m`
n
| < 1

n
, ` = 1, . . . , d} =: B∞m , ∀φm ∈ U .

4. ||φm||W 1,∞(Rd) ≤ 4n.

The first three properties follow easily from the definition of U . To show the fourth property,
we note that ||φm||W 1,∞(Rd) = ||φm||L∞(Rd) + ||Dφm||L∞(Rd). The first term is bounded by
one (thanks to property no. 1). It is also straightforward to show that ∂φm/∂x` ≤ 3n,
by directly computing the derivative of φm with respect to each coordinate x`. Hence, the
second term is bounded by 3n. We therefore obtain ||φm||W 1,∞(Rd) ≤ 1 + 3n ≤ 4n.
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Remark 10. (On the boundary points) For the points on the boundary of X and to construct
averaged Taylor polynomials near the boundary of X one possibility is to use an extension
operator and extend the function f slightly outside the domain X. This would introduce
tedious technicalities in the exposition of formulas and proofs, and hence we avoid it here.
Instead, we assume that φm for m on the boundary vanishes outside X; see e.g. φ0 and φ5 in
Figure 8. Similarly, we assume that the definition of B∞m is modified by B∞m ∩X for any m on
the boundary. With such modifications, we will have ∪mB

∞
m = X. The same modification is

assumed to be applied to all balls near the boundary over which we compute averaged Taylor
polynomials.

14.6 Construction of a global polynomial approximant

Now, we will use averaged Taylor polynomials to build a local approximation (and obtain local
estimates) and then combine them using the partition of unity to build a global approximation
(and obtain a global estimate).
Local approximations. For each multi-index m ∈ {0, 1, . . . , n}d, corresponding to a grid
point, consider the ball

Bm := B(m
n
, r = 3

4n) ⊂ B∞m ,

where B∞m is defined in property no. 3 in Section 14.5 and contains the support of φm.
We note that B∞m is bounded and convex (and in particular star-shaped with respect to the
ball Bm). Hence, we can use the Bramble-Hilbert Lemma with h = diam(B∞m ) = 2

√
d/n.

Specifically, we let pm be the Taylor polynomial of order k of f averaged over Bm that (thanks
to the polynomial property of averaged Taylor polynomials in Section 14.4) can be written
as

pm(x) =
∑

|α|≤k−1
cm,α xα, x ∈ B∞m ,

where by (19) and noting r = 3
4n ,

|cm,α| ≤ c(k, d)nd/p ||f ||Wk−1,p(B∞m ).

Note that this is a local approximation of f , as pm(x) is the approximating polynomial defined
on B∞m , not on the whole domain X. By the Bramble-Hilbert Lemma with h = diam(B∞m ) =
2
√
d/n, we get the local estimate (with s = 0),

||f − pm||Lp(B∞m ) ≤ c(k, d) ( 1
n

)k |f |Wk,p(B∞m ) ≤ c(k, d) ( 1
n

)k ||f ||Wk,p(B∞m ).

A global approximation. We next combine the partition of unity with all local polynomials
to build a global polynomial approximation of f on X. Specifically, we define the global
approximating polynomial

fn(x) :=
∑
m
φm(x) pm(x), x ∈ X,
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where the sum is taken over all (n+ 1)d multi-indices m ∈ {0, 1, . . . , n}d and {φm} forms the
partition of unity defined in Section 14.5. We can now write

||f − fn||pLp(X) = ||
∑
m
φm (f − pm)||pLp(X) ≤

∑
m̃
||
∑
m
φm (f − pm)||pLp(B∞m̃ ), (20)

where the last inequality follows from the integral-definition of Lp-norm and thatX = ∪m̃B
∞
m̃ .

For each multi-index m̃ we have

||
∑
m
φm (f − pm)||Lp(B∞m̃ ) ≤

∑
m: ||m−m̃||∞≤1

||φm (f − pm)||Lp(B∞m̃ )

≤
∑

m: ||m−m̃||∞≤1
||φm (f − pm)||Lp(B∞m ),

where the first inequality is a result of the triangle inequality and noting that supp(φm) ⊂ B∞m ,
implying that we only need to consider multi-indices m that are adjacent to m̃, because only
φm corresponding to such multi-indices take values on B∞m̃ and hence contribute to the norm
over B∞m̃ . The second inequality is again a consequence of the support of φm, that is,

supp(g) ⊂ B∞m ⇒ ||g||Lp(B∞m̃ ) = ||g||Lp(B∞m̃∩B∞m ) ≤ ||g||Lp(B∞m ).

Each term in the sum in the last inequality above can further be bounded by,

||φm (f − pm)||Lp(B∞m ) ≤ ||φm||L∞(B∞m ) ||(f − pm)||Lp(B∞m ) ≤ c(k, d) ( 1
n

)k ||f ||Wk,p(B∞m ),

where we used the local estimates obtained above and the fact that φm ≤ 1 everywhere.
Combining the last two inequalities we get for each multi-index m̃,

||
∑
m
φm (f − pm)||Lp(B∞m̃ ) ≤ c(k, d) ( 1

n
)k

∑
m: ||m−m̃||∞≤1

||f ||Wk,p(B∞m ). (21)

Now, by (20) and (21), we get

||f − fn||pLp(X) ≤ cp(k, d) ( 1
n

)kp
∑
m̃

( ∑
m: ||m−m̃||∞≤1

||f ||Wk,p(B∞m )
)p
. (22)

Now, let us recall Hölder’s inequality
∑
m
|gm hm| ≤

(∑
m
|gm|p

)1/p (∑
m
|hm|q

)1/q
, gm, hm ∈ R, p ∈ (1,∞), 1

p
+ 1
q

= 1.

Setting gm := ||f ||Wk,p(B∞m ) and hm := 1, and raising both sides of Hölder’s inequality to
power p, we obtain( ∑

m: ||m−m̃||∞≤1
||f ||Wk,p(B∞m )

)p ≤ ∑
m: ||m−m̃||∞≤1

||f ||pWk,p(B∞m ) (3d)p/q, (23)
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where 3d = ∑
m: ||m−m̃||∞≤1 1 is the total number of indices m that are either adjacent or

identical to m̃. By the definition of Bm, it is also not difficult to see that (show this as an
exercise), ∑

m̃

∑
m: ||m−m̃||∞≤1

||f ||pWk,p(B∞m ) ≤ 3d
∑
m̃
||f ||pWk,p(B∞m̃ ). (24)

Moreover, by the definition of Bm and the integral-definition of W k,p-norm, one gets (show
this as an exercise),∑

m̃
||f ||pWk,p(B∞m̃ ) ≤ 2d ||f ||pWk,p(∪m̃B∞m̃ ) = 2d ||f ||pWk,p(X). (25)

Combining (22)-(25), we finally obtain the global estimate

||f − fn||Lp(X) ≤ c(k, d, p) ( 1
n

)k ||f ||Wk,p(X).

We summarize the results of Sections 14.4-14.6 in the following proposition.

Proposition 1. Let U = {φm : m ∈ {0, 1, . . . , n}d}, with supp(φm) ⊂ B∞m and ∪mB
∞
m = X,

be the partition of unity over X = [0, 1]d built in Section 14.5. Then, for every f ∈ W k,p(X),
with k ≥ 1 and p ∈ [1,∞], there exists a polynomial

fn(x) :=
∑
m
φm(x) pm(x), x ∈ X,

with

pm(x) =
∑

|α|≤k−1
cm,α xα, x ∈ B∞m , |cm,α| ≤ c(k, d)nd/p ||f ||Wk−1,p(B∞m ),

that satisfies
||f − fn||Lp(X) ≤ c(k, d, p) ( 1

n
)k ||f ||Wk,p(X). (26)

14.7 Expressive power of ReLU networks: an intuitive example

We consider the quadratic function on the interval [0, 1], displayed in Figure 9,

g(x) = x2, x ∈ [0, 1].

Our goal is to construct a ReLU network approximant, say g̃, of g with the error

||g − g̃||L∞([0,1]) ≤ ε, (27)

with minimal complexity, i.e. with the number of layers, neurons, and parameters as small as
possible. Indeed, we will show that this can be achieved with complexity L,N, P = O(ε−1).
Our construction will use the “sawtooth” function that (first) appeared in [29].
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Figure 9: The quadratic function g(x) = x2 on the interval [0, 1] to be approximated by a
ReLU network.
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Figure 10: The hat function h(x) on the interval [0, 1].

Sawtooth function made by the composition of hat functions. Consider the hat
function (also known as tent or triangle function), displayed in Figure 10,

h(x) =


2x, 0 ≤ x < 1/2,
2(1− x), 1/2 ≤ x ≤ 1,
0, elsewhere.

Now let
h0(x) = x, h1(x) = h(x),
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and denote by hs(x), with s ≥ 2, the s-fold composition of h with itself

hs(x) = h ◦ h ◦ . . . ◦ h︸ ︷︷ ︸
s times

(x), s ≥ 2.

Telgarsky [29] has shown that hs is a sawtooth function with 2s−1 evenly distributed teeth
(or tents), where each application of h doubles the number of teeth; see Figure 11.

0 0.25 0.5 0.75 1
0

0.5

1

1.5

Figure 11: The sawtooth function hs(x) on the interval [0, 1] with s = 1, 2, 3.

We make two observations and will discuss each in turn:

• g(x) = x2 can be approximated by linear combinations of h0, h1, h2, . . . .

• h0, h1, h2, . . . and hence their linear combinations can be expressed by a ReLU network.

Observation 1. We start with approximating g(x) = x2 by a piecewise-linear interpolation
gm of g on a uniform grid of 2m + 1 evenly distributed grid points { i

2m}2m
i=0; see Figure 12.

Note that by definition of interpolation, we have

gm(x) = x2, x = i

2m , i = 0, 1, . . . , 2m.

It is not difficult to see that refining the interpolation from gm−1 to gm amounts to
adjusting it by a function proportional to a sawtooth function,

gm−1(x)− gm(x) = hm(x)
22m .
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Figure 12: Piecewise-linear approximation gm(x) of g(x) = x2 at 2m + 1 evenly distributed
grid points on the interval [0, 1], with m = 0, 1, 2.

We hence obtain
gm(x) = x−

m∑
s=1

hs(x)
22 s . (28)

That is, the function g(x) = x2 can be approximated by linear combinations of h0, h1, h2, . . . .
It is to be noted that the construction of gm only involves O(m) linear operations and

compositions of h. This shows the “super power” of composition! For instance, to build
hm (and hence gm) without composition, we would need O(2m) operations. However, using
composition, we would only need O(m) operations, a huge reduction from an exponential
complexity down to a linear complexity. As we will see later, this is a major reason why
deep learning (which involves multiple applications of composition) has been so successful in
solving science and engineering problems.

We can also derive a clear formula for the approximation error ||g(x)−gm(x)||L∞([0,1]). For
this purpose, we will carry out a simple numerical experiment, and show how such numerical
experiments could help derive theoretical results. To this end, we will compute the error
|g(x) − gm(x)| versus x ∈ [0, 1] for the first three approximations gm with m = 0, 1, 2. The
result is depicted in Figure 13. Obviously, the initial maximum error is

max
x∈[0,1]

|g(x)− g0(x)| = max
x∈[0,1]

|x2 − x| = 1/4.

This can be easily shown by equating the derivative of x2−x to zero (i.e. 2x− 1 = 0), which
tells us that the maximum is at x = 1/2 and is equal to |(1/2)2−(1/2)| = 1/4. Figure 13 also
tells us that with increasing m by one, the maximum error gets multiplied by 1/4. Overall,
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the figure suggests that the maximum error is 2−2(m+1), that is,

||g(x)− gm(x)||L∞([0,1]) = 2−2(m+1), m = 0, 1, 2, . . . . (29)

This is indeed an example of the power of numerical experiments in deriving theoretical

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

X 0.25

Y 0.0625

X 0.13

Y 0.0156

X 0.5

Y 0.25

Figure 13: The error |g(x)− gm(x)| in the approximation of g(x) = x2 by a piecewise linear
interpolant gm at 2m+ 1 evenly distributed grid points on the interval [0, 1], with m = 0, 1, 2.
This suggests that with increasing m, the maximum error decays as 2−2(m+1).

results. Interestingly, the figure also tells us how to theoretically prove (29). For every m =
0, 1, 2, . . . , the error |g(x)− gm(x)| is identical on each subinterval between two consecutive
points of interpolation. In particular, we will have

max
x∈[0,1]

|g(x)− gm(x)| = max
x∈[0,1/2m]

|g(x)− gm(x)|.

It is now straightforward to show (29) using the right hand side of the above formula.
Observation 2. We start the second observation with noting that the hat function h = h(x)
can be realized (or expressed) by a ReLU network. To derive such a network, we first note
that h can be written as a linear combination of three ReLU functions (see Figure 14):

h(x) = 2σ(x)− 4σ(x− 1/2) + 2 σ(x− 1).

One can then easily see that h(x) is given by a ReLU network with L = 2 layers,

Φh(x) := A2 ◦ σ ◦ A1(x),
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Figure 14: The three ReLU functions (left) that combine to form the har function (right).

where

A1(x) =

 1
1
1

 x+

 0
−1/2
−1

 , A2(z) = (2 − 4 2)

 z1
z2
z3

 .
Figure 15 shows a graph representation of Φh(x) = h(x), with L = 2 layers, N = 5 neurons,
and P = 10 parameters (i.e. weights and biases).

1

1

1

0

-1/2

-1

2

-4

2
x

Figure 15: The two-layer ReLU network that realizes h(x) = 2σ(x)−4σ(x−1/2)+2σ(x−1).

It will now be straightforward to construct a ReLU network with L = s + 1 layers that
realizes hs(x), for any s ≥ 2. One such network is given by

Φhs(x) := As+1 ◦ σ ◦ As ◦ σ ◦ . . . ◦ A2 ◦ σ ◦ A1(x),

where

A1(x) =

 1
1
1

 x+

 0
−1/2
−1

 , As+1(z) = (2 − 4 2)

 z1
z2
z3

 ,
and

A`(x) =

 2 −4 2
2 −4 2
2 −4 2


 z1
z2
z3

+

 0
−1/2
−1

 , ` = 2, . . . , s.
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The complexity of such network is

L(Φhs) = s+ 1, N(Φhs) = 3 s+ 2, P (Φhs) = 12 s− 2.

Figure 16 shows the graph representation of Φh2(x) = h2(x), with L = 3 layers, N = 8
neurons, and P = 22 parameters.
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2-4
2

2
2

-4x

Figure 16: The three-layer ReLU network that realizes h2(x).

Finally, we can construct a ReLU network with L = m+ 1 layers that realizes gm(x), for
any m ≥ 1. One such network is given by

Φgm(x) := Am+1 ◦ σ ◦ Am ◦ σ ◦ . . . ◦ A2 ◦ σ ◦ A1(x),

where

A1(x) =


1
1
1
1

 x+


0
−1/2
−1
0

 , Am+1(z) = (−1/2 1 − 1/2 1)


z1
z2
z3
z4

 ,

and

A`(x) =


1/2 −1 1/2 0
1/2 −1 1/2 0
1/2 −1 1/2 0
−1/2 1 −1/2 1



z1
z2
z3
z4

+


0

−2−2 `+1

−2−2 `+2

0

 , ` = 2, . . . ,m.

The complexity of such network is

L(Φgm) = m+ 1, N(Φgm) = 4m+ 2, P (Φgm) = 20m− 7.

Figure 17 and Figure 18 show the graph representations of Φg1(x) = x− 1
4 h1(x) and Φg2(x) =

x− 1
4 h1(x)− 1

16 h2(x), respectively.
We can now state the final result on the approximation of the quadratic function by ReLU

networks.
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Figure 17: The two-layer ReLU network that realizes g1(x) = x− 1
4 h1(x).
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Figure 18: The three-layer ReLU network that realizes g2(x) = x− 1
4 h1(x)− 1

16 h2(x).

Lemma 2. The function g(x) = x2 on [0, 1] can be approximated within any small error
ε ∈ (0, 1/2) in the sense (27) by a ReLU network with complexity L,M,P = O(log2 ε

−1).

Proof. The proof follows directly by choosing m = d1
2 log2 ε

−1e.

Remark 11. We have discussed how the power of composition in neural networks makes
them efficient approximants in the sense that their complexity increases logarithmically with
the reciprocal of the approximation error. This is a very desirable approximation property of
neural networks. Note that the input dimension is one here, and hence this result does not
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address the effect of composition on dimension.

14.8 Connected and standard ReLU networks

We closely follow the setup used in [22, 15] and define two classes of feedforward ReLU
networks:

1) connected networks, where connection is allowed between all layers;

2) standard networks, where connection is allowed only between neighboring layers.

The latter, that we have been considering so far, is a particular case of the former. We will
also present an important result that states if a function can be realized by a connected
network, it can also be realized by a standard network with comparable complexity. In
this sense, any accuracy-complexity result obtained for connected networks will also hold for
standard networks with minor modifications.
Connected networks. A connected network with N0 = d inputs and L layeres, each with
N` neurons, ` = 1, . . . , L, is given by a sequence of matrix-vector tuples (or weight-bias
tuples)

Φ := {(W1, b1), . . . , (WL, bL)}, W` ∈ RN`×
∑`−1

i=0 Ni , b` ∈ RN` .

The weight matrices W` may be written in block matrix form

W` =
(
W`,0 | W`,1 | . . . | W`,`−1

)
∈ RN`×

∑`−1
i=0 Ni , W`,i ∈ RN`×Ni .

With a slight abuse of notation, we also use Φ to denote the function that the network
realizes, and write

Φ(x) = xL, Φ : Rd → RNL ,

where xL results from the following scheme:

x0 = x,
x` = σ(W`,0x0 + . . .+W`,`−1x`−1 + b`), ` = 1, . . . , L− 1,
xL = WL,0x0 + . . .+WL,L−1xL−1 + bL.

The distinction between Φ being a function or a set of matrix-vector tuples should be easily
made from the context.

As before, we consider ReLU activation function σ : R → R that acts componentwise
on all hidden layers. We do not apply any activation function on the output layer. The
complexity of a connected network Φ, represented by the number of layers L(Φ), number of
neurons N(Φ), and number of non-zero parameters P (Φ), is given by

L(Φ) = L, N(Φ) =
L∑
`=0

N`, P (Φ) =
L∑
`=1

(||W`||0 + ||b`||0), ||A||0 := nnz(A).
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Standard networks. A standard network with N0 = d inputs and L layers, each with N`

neurons, ` = 1, . . . , L, is given by a sequence of matrix-vector tuples (or weight-bias tuples)

Φ := {(W1, b1), . . . , (WL, bL)}, W` ∈ RN`×N`−1 , b` ∈ RN` .

We also denote by Φ the function that the network realizes, and write

Φ(x) = xL, Φ : Rd → RNL ,

where xL results from the following scheme:

x0 = x,
x` = σ(W` x`−1 + b`), ` = 1, . . . , L− 1,
xL = WL xL−1 + bL.

It is to be noted that a standard network is a particular type of connected network whose
weight matrices are in the block form

W` =
(

0 | . . . | 0 | W`,`−1
)
∈ RN`×

∑`−1
i=0 Ni , W`,`−1 ∈ RN`×N`−1 .

Identity ReLU network. Let Id ∈ Rd×d be the identity matrix, i.e. Idx = x. Consider the
two-layer standard ReLU network

ΦI := {(W1, b1), (W2, b2)},

with

W1 =
(

Id
−Id

)
∈ R2d×d, b1 = 0 ∈ R2d, W2 = (Id | − Id) ∈ Rd×2d, b2 = 0 ∈ Rd.

Then, using the identity relation σ(x)− σ(−x) = x, it can easily be shown that

ΦI(x) = Id x = x.

We hence call ΦI the identity ReLU network.
Composition of networks. Consider two (connected) networks

Φ1 = {(W 1
1 , b

1
1), . . . , (W 1

L1 , b
1
L1)}, Φ2 = {(W 2

1 , b
2
1), . . . , (W 2

L2 , b
2
L2)},

where the input dimension of Φ1 is equal to the output dimension of Φ2, and Φ2 takes
x ∈ Rd as input. Then, an efficient way of constructing a (connected) network that gives the
composition Φ1 ◦Φ2 is by utilizing the identity network as Φ1 ◦ΦI ◦Φ2. Such a composition
network is given by

Φ1�Φ2 :=
{

(W 2
1 , b

2
1), . . . , (W 2

L2−1, b
2
L2−1),

( W 2
L2

−W 2
L2

 ,
 b2

L2

−b2
L2

), (Ŵ 1
1 , b

1
1), . . . , (Ŵ 1

L1 , b
1
L1)
}
,
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where
Ŵ 1
` =

(
0 | W 1

`,0 | −W 1
`,0 | W 1

`,1 | . . . | W 1
`,`−1

)
, ` = 1, . . . , L1.

We have
Φ1 � Φ2(x) = Φ1 ◦ Φ2(x), x ∈ Rd.

Furthermore, we have
L(Φ1�Φ2) = L1+L2, N(Φ1�Φ2) ≤ 2N(Φ1)+2N(Φ2), P (Φ1�Φ2) ≤ 2P (Φ1)+2P (Φ2).

Combination (or concatenation) of networks. Consider two (connected) networks
Φ1 = {(W 1

1 , b
1
1), . . . , (W 1

L1 , b
1
L1)}, Φ2 = {(W 2

1 , b
2
1), . . . , (W 2

L2 , b
2
L2)},

which take the same input x ∈ Rd. We want to construct a network P (Φ1,Φ2) such taht it
takes the same input and gives the outputs of the two networks, that is,

Φ1 ‖ Φ2(x) = (Φ1(x),Φ2(x)), x ∈ Rd.

Assuming L1 ≤ L2, such a combination network is given by
Φ1 ‖ Φ2 := {(W̃1, b̃1), . . . , (W̃L2 , b̃L2)},

where

W̃` =
 W 1

`,0

W 2
`,0

 ∣∣∣∣∣∣
 W 1

`,1 0

0 W 2
`,1

 ∣∣∣∣∣∣ . . .
∣∣∣∣∣∣
 W 1

`,`−1 0

0 W 2
`,`−1

, b̃` =
 b1

`

b2
`

 , 1 ≤ ` < L1,

W̃` =
(
W 2
`,0 | (0 W 2

`,1) | . . . | (0 W 2
`,L1−1) | W 2

`,L1 | . . . | W 2
`,`−1

)
, b̃` = b2

` , L1 ≤ ` < L2,

W̃L2 =
 W 1

L1,0

W 2
L2,0

 ∣∣∣∣∣∣
 W 1

L1,1 0

0 W 2
L2,1

 ∣∣∣∣∣∣. . .
∣∣∣∣∣∣
 W 1

L1,L1−1 0

0 W 2
L2,L1−1

 ∣∣∣∣∣∣
 0

W 2
L2,L1

 ∣∣∣∣∣∣. . .
∣∣∣∣∣∣
 0

W 2
L2,L2−1

,
b̃L2 =

 b1
L1

b2
L2

 .
Furthermore, we have
L(Φ1‖Φ2) = max{L1, L2}, N(Φ1‖Φ2) = N(Φ1)+N(Φ2)−d, P (Φ1‖Φ2) = P (Φ1)+P (Φ2).

Connection between connected and standard networks. We will now present a result
that states if a function can be realized by a connected network, it can also be realized by a
standard network with comparable complexity.
Lemma 3. For any connected network Φc there is a standard network Φs with the same input
dimension such that

Φs(x) = Φc(x), x ∈ Rd,

and
L(Φs) = L(Φc) = L, N(Φs) ≤ C LN(Φc), P (Φs) ≤ C (LN(Φc) + P (Φc)),

where C > 0 is a constant.
Proof. For the proof refer to the proof of Lemma 2.11 in [15].

Lemma 3 enables us to switch between connected and standard networks as desired.
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14.9 Approximating product of two numbers by ReLU networks

Now consider two real numbers x ∈ R and y ∈ R, where max{|x|, |y|} ≤ D, with D ≥ 1.
Note that the case D < 1 can always be replaced by D = 1 and hence falls into the case
D ≥ 1 that we consider here. Utilizing the identity formula xy = 1

2((x + y)2 − x2 − y2) and
the approximation of the quadratic function by ReLU networks discussed in Section 14.7 we
show that the product xy can be well approximated by a ReLU network.

Lemma 4. The function g(x, y) = xy on the domain [−D,D]2, where D ≥ 1, can be
approximated by a ReLU network Φxy

ε within any small error ε ∈ (0, 1/2) in the sense

||Φxy
ε (x, y)− xy||L∞([−D,D]2) ≤ ε,

where the network has two input dimensions (one for x and one for y) and has the complexity
L,M,P = O(log2 ε

−1 + log2D). Moreover, if x = 0 or y = 0, then Φxy
ε (x, y) = 0.

Proof. Let Φδ be the network from Lemma 2 that approximates the quadratic function such
that

||Φδ(z)− z2||L∞([0,1]) ≤ δ, z ∈ [0, 1],
with complexity

L(Φδ), N(Φδ), P (Φδ) = O(log2 δ
−1).

Noting that xy = 1
2((x+ y)2 − x2 − y2), we write

xy = 4D2 x

2D
y

2D = 2D2((x+ y

2D )2 − ( x

2D )2 − ( y

2D )2),

and set
Φxy
ε (x, y) = 2D2

(
Φδ(
|x+ y|

2D )− Φδ(
|x|
2D )− Φδ(

|y|
2D )

)
.

With this setup, it easily follows that Φxy
ε (x, y) = 0 if x = 0 or y = 0. Moreover, we will have

||Φxy
ε (x, y)− xy||L∞([−D,D]2) ≤ 6D2C0||Φδ(z)− z2||L∞([0,1]) ≤ ε,

provided we choose δ = ε/(6D2C0). Here, C0 > 0 is the constant in the inequality

||f1 ◦ f2||L∞(Ω2) ≤ C0 ||f1||L∞(Ω1) ||f2||L∞(Ω2), f1 : Ω1 ⊂ R→ R, f2 : Ω2 ⊂ R2 → R,

where Ω1 and Ω2 are compact, convex sets. In our case, we have Ω1 = [0, 1] and Ω2 =
[−D,D]2. It remains to show that the complexity of Φxy

ε is of the same order as the complexity
of Φδ. We can do this in a constructive way by building the network. By the identity formula
|x| = σ(x) + σ(−x), the network Φxy

ε has the complexity (show this as an exercise),

L(Φxy
ε ) = L(Φδ) + 2, N(Φxy

ε ) = 3N(Φδ) + 9, P (Φxy
ε ) = 3P (Φδ) + 23.

Then we have

L(Φxy
ε ), N(Φxy

ε ), P (Φxy
ε ) = O(log2 δ

−1) = O(log2 ε
−1 + log2D),

which completes the proof of the lemma.
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14.10 ReLU networks and the product of their output components

Utilizing the result obtained in Section 14.9, we now discuss an interesting result on the
approximation of the product of the output components of a network by another network
with one output.

Lemma 5. Let ε ∈ (0, 1/2). Let Φ be a network with d inputs, m outputs, and complexity
L,N, P ≤M , and suppose its output components Φ1, . . . ,Φm are all bounded

||Φi||L∞([0,1]d) ≤ 1, i = 1, . . . ,m.

Then, there exists a network Ψε with d inputs, one output, and complexity L,N, P ≤M C(m) log2 ε
−1

such that
||Ψε(x)−

m∏
i=1

Φi(x)||L∞([0,1]d) ≤ mε.

Moreover, Ψε(x) = 0 if ∏m
i=1 Φi(x) = 0, for x ∈ [0, 1]d.

Proof. The proof is by induction. For m = 1, we clearly have Ψε = Φ. Suppose the theorem
holds for m ≥ 1. We show that it also holds for m+ 1. Let

Φ = {(W1, b1), . . . , (WL, bL)},

be a network with d inputs, m+ 1 ≥ 2 outputs, and complexity L,N, P ≤M . In particular,
it will be useful to note that we have

WL =

 W
(1:m)
L

W
(m+1)
L

 ∈ R(m+1)×
∑L−1

`=0 N` , W
(1:m)
L ∈ Rm×

∑L−1
`=0 N` , W

(m+1)
L ∈ R1×

∑L−1
`=0 N` ,

and

bL =

 b
(1:m)
L

b
(m+1)
L

 ∈ Rm+1, b
(1:m)
L ∈ Rm, b

(m+1)
L ∈ R.

Now set
Φ̂ = {(W1, b1), . . . , (WL−1,bL−1), (W (1:m)

L , b
(1:m)
L )},

be the network with d inputs and m outputs, formed by removing the last output neuron and
its corresponding weights of Φ. Note that the outputs of Φ̂ are precisely the first m outputs
of Ψ. By induction hypothesis, there exists a network with one output

Ψ̂ε = {(Ŵ1, b̂1), . . . , (ŴL̂, b̂L̂)}, L̂ ≥ L,

with the same first L − 1 layers as in Φ̂ and hence the same first L − 1 layers as in Φ such
that

||Ψ̂ε −
m∏
i=1

Φi||L∞([0,1]d) = ||Ψ̂ε −
m∏
i=1

Φ̂i||L∞([0,1]d) ≤ mε.
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We modify Ψ̂ε by adding the removed neuron and its corresponding weights to the last layer
of Ψ̂ε, and define a new network with two outputs

Ψ̃ε = {(Ŵ1, b̂1), . . . , (ŴL̂−1, b̂L̂−1), (W̃L̂, b̃L̂)}, W̃L̂ =

 ŴL̂

W
(m+1)
L 0

 , b̃L̂ =

 b̂L̂

b
(m+1)
L

 .
Note that the first output component of Ψ̃ε is the same as the only output component of Ψ̂ε.
We have

||(Ψ̃ε)1||L∞([0,1]d) = ||Ψ̂ε||L∞([0,1]d) ≤ ||Ψ̂ε −
m∏
i=1

Φi||L∞([0,1]d) + ||
m∏
i=1

Φi||L∞([0,1]d) ≤ mε+ 1,

and
||(Ψ̃ε)2||L∞([0,1]d) = ||Φm+1||L∞([0,1]d) ≤ 1.

We can hence use Lemma 4 with D = m+ 1 and construct the desired network as

Ψε : Φxy
ε � Ψ̃ε.

It is easy to see that the complexity of network is as desired (verify this). We now work out
the approximation error and write

||Ψε −
m+1∏
i=1

Φi||L∞([0,1]d) = ||Φxy
ε ◦ Ψ̃ε − Φm+1

m∏
i=1

Φi||L∞([0,1]d)

≤ ||Φxy
ε ◦ Ψ̃ε − Φm+1 Ψ̂ε||L∞([0,1]d) + ||Φm+1 (Ψ̂ε −

m∏
i=1

Φi)||L∞([0,1]d).

The first term in the right hand side of the above inequality is bounded by ε thanks to Lemma
4 with D = m+ 1. The second term can also be bounded as

||Φm+1 (Ψ̂ε −
m∏
i=1

Φi)||L∞([0,1]d) ≤ ||Φm+1||L∞([0,1]d) ||Ψ̂ε −
m∏
i=1

Φi||L∞([0,1]d) ≤ mε,

thanks to the induction hypothesis. It hence follows that

||Ψε −
m+1∏
i=1

Φi||L∞([0,1]d) ≤ (m+ 1) ε.

And this completes the proof.

14.11 ReLU networks and the partition of unity

We now return to the partition of unity and construct a two-layer network Φm with d inputs,
d outputs, and complexity N,P = O(d) such that the product of its output component
realizes a function φm ∈ U in the partition of unity; see Section 14.5, that is,

d∏
i=1

(Φm)i(x) = φm(x), x ∈ [0, 1]d.
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Step 1. Construct a two-layer network Φψ that realizes the function ψ over R, i.e. Φψ(z) =
ψ(z), for z ∈ R; see Figure 19. It is easy to verify that the output of the network is

Φψ(z) = σ(z + 2)− σ(z + 1)− σ(z − 1) + σ(z − 2) = ψ(z), z ∈ R.

The network Φψ has the complexity L = 2, N = 6, and P = 12.

1

2

-1

-2

1

1

-11

-1

1

1

1

z

Figure 19: The two-layer ReLU network that realizes ψ(z) for z ∈ R.

Step 2. By modifying the network in step 1, construct a two-layer network Φ(i)
ψ that realizes

ψ(3n (xi − mi
n

)); see Figure 20. It is easy to verify that

Φ(i)
ψ (xi) = ψ(3n (xi −

mi

n
)), xi ∈ [0, 1].

The network Φ(i)
ψ has the complexity L = 2, N = 6, and P = 12.

Step 3. Simply stack up the d networks Φ(1)
ψ , . . . ,Φ(d)

ψ constructed in Step 2 in a vertical
position (one below another) to build the desired two-layer network Φm, with complexity
N(Φm) = 6 d and P (Φm) = 12 d.

14.12 Approximating global polynomials by ReLU networks

We are now ready to complete Part 2 of the proof strategy in Section 14.3.
Specifically, we will construct a ReLU network that approximates the global polynomial

fn from Proposition 1, constructed in Section 14.6, and obtain an estimation for the error.

Proposition 2. Let fn(x) = ∑
m
∑
|α|≤k−1 cm,α φm(x) xα be the global polynomial from Propo-

sition 1 that approximates f ∈ W k,p(X), with k ≥ 1 and p ∈ [1,∞], where x ∈ X = [0, 1]d.
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1

1

-1

-1xi

3 n

3 n

3 n

3 n

−3mi + 2

− 3mi + 1

− 3mi − 1

− 3mi − 2

Figure 20: The two-layer ReLU network that realizes ψ(3n (xi − mi
n

)) for xi ∈ [0, 1].

Let ε ∈ (0, 1/2). Then, there exists a ReLU network Φε with d inputs, one output, and
complexity

L(Φε) ≤ C1(k, d) log2 ε
−1, N(Φε), P (Φε) ≤ C2(k, d) (n+ 1)d log2 ε

−1,

such that
||fn − Φε||Lp(X) ≤ C(k, d, p) ||f ||Wk−1,p(X) ε.

Proof. We first approximate the localized terms φm(x) xα for a fixed (m,α), where |α| ≤
k − 1, by a ReLU network Ψε,m,α as follows:

• There is a one-layer ReLU network Φα with d input, |α| outputs, and at most d+k−1
neurons and at most k − 1 weights such that

xα =
|α|∏
i=1

(Φα)i(x), ||(Φα)i||L∞(X) ≤ 1, x ∈ X = [0, 1]d.

• From Section 14.11, we know that there is a two-layer network Φm with d inputs, d
outputs, 6d neurons, and 12d parameters such that

φm(x) =
d∏
i=1

(Φm)i(x), ||(Φm)i||L∞(X) ≤ 1, x ∈ X = [0, 1]d.

• We concatenate the above two networks and build a network Φm,α := Φα ‖ Φm that
will have two layers, d inputs, d+ |α| outputs, at most 6d+k− 1 neurons, and at most
12d+ k − 1 parameters, such that

φm(x) xα =
|α|+d∏
i=1

(Φm,α)i(x), ||(Φm,α)i||L∞(X) ≤ 1, x ∈ X = [0, 1]d.
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• By Lemma 5, there is a ReLU network Ψε,m,α with d inputs, one output, and complexity

L(Ψε,m,α), N(Ψε,m,α), P (Ψε,m,α) ≤ Ĉ(k, d) log2 ε
−1,

such that

||Ψε,m,α −
|α|+d∏
i=1

(Φm,α)i||L∞(X) ≤ C ′(k, d) ε, (30)

and Ψε,m,α(x) = 0 if φm(x) xα = 0, for x ∈ X.

We next approximate the global polynomial, i.e. the sums of localized polynomials, by a
ReLU network Φε as follows:

• Let Λ := {(m,α) : m ∈ {0, 1, . . . , n}d, |α| ≤ k−1}, noting that |Λ| = C̃(k, d) (n+1)d.

• Let Φsum be the one-layer ReLU network that takes |Λ| inputs and gives their weighted
sum with the weights cm,α. That is, Φsum := {(W,0)}, where W ∈ R1×|Λ| is the matrix
with components cm,α ∈ Λ.

• Let Φε := Φsum�
(
‖(m,α)∈ΛΨε,m,α

)
, where ‖(m,α)∈Λ denotes network concatenation over

all elements of the set Λ. Clearly, Φε is a ReLU network with d inputs, one output,
number of layers

L(Φε) ≤ 1 + Ĉ(k, d) log2 ε
−1 ≤ C1(k, d) log2 ε

−1,

and number of neurons and parameters

N(Φε),M(Φε) ≤ 2|Λ|(1 + ĉ(k, d) log2 ε
−1) ≤ C2(k, d) (n+ 1)d log2 ε

−1,

satisfying
Φε(x) =

∑
m

∑
|α|≤k−1

cm,α Ψε,m,α(x).

It remains to derive the approximation error. We write

||fn − Φε||pLp(X) = ||
∑
m

∑
|α|≤k−1

cm,α

(
φm(x) xα −Ψε,m,α(x)

)
||pLp(X)

≤
∑
m̃
||
∑
m

∑
|α|≤k−1

cm,α

(
φm(x) xα −Ψε,m,α(x)

)
||pLp(B∞m̃ ),

where, similar to (20), the inequality follows from the integral-definition of Lp-norm and that
X = ∪m̃B

∞
m̃ . Now, for each multi-index m̃ we have

||
∑
m

∑
|α|≤k−1

cm,α

(
φm(x) xα −Ψε,m,α(x)

)
||Lp(B∞m̃ )

≤
∑

m: ||m−m̃||∞≤1

∑
|α|≤k−1

|cm,α| ||φm(x) xα −Ψε,m,α(x)||Lp(B∞m̃ )

≤ c(k, d)nd/p
∑

m: ||m−m̃||∞≤1

∑
|α|≤k−1

||f ||Wk−1,p(B∞m̃ ) ||φm(x) xα −Ψε,m,α(x)||Lp(B∞m̃ ),
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where the first inequality is a result of the triangle inequality and noting that supp(φm) ⊂ B∞m
and Ψε,m,α(x) = 0 if φm(x) xα = 0, which implies that we only need to consider multi-indices
m that are adjacent to m̃, because only φm corresponding to such multi-indices take values
on B∞m and hence contribute to the norm over B∞m . The second inequality is due to the bound
on |cm,α| in Proposition 1.

We next state and use a useful theorem on the inclusion of Lp spaces. Let Y be a finite
measure domain, such as B∞m̃ ⊂ Rd. Then for every 1 ≤ p < q ≤ ∞, we have Lq(Y ) ⊂ Lp(Y ).
Moreover, by Hölder’s inequality, we have

||f ||Lp(Y ) ≤ meas(Y )1/p−1/q ||f ||Lq(Y ).

In the particular case q =∞, the inequality reads

||f ||Lp(Y ) ≤ meas(Y )1/p ||f ||L∞(Y ).

Here, meas(Y ) is the finite Lebesgue measure of the finite measure domain Y . We will use
this last inequality for Y = B∞m̃ , where meas(B∞m̃ ) = c(d) (1/n)d, and write

||φm(x) xα −Ψε,m,α(x)||Lp(B∞m̃ ) ≤ c(d, p)n−d/p ||φm(x) xα −Ψε,m,α(x)||L∞(B∞m̃ )

≤ c(k, d, p)n−d/p ε,

where the last inequality follows from (30). Combining the last two inequalities, we obtain

||
∑
m

∑
|α|≤k−1

cm,α

(
φm(x) xα−Ψε,m,α(x)

)
||Lp(B∞m̃ ) ≤ c(k, d, p) ε

∑
m: ||m−m̃||∞≤1

∑
|α|≤k−1

||f ||Wk−1,p(B∞m̃ ).

Also noting that |{α : |α| ≤ k − 1}| ≤ (k − 1)d, we have

||
∑
m

∑
|α|≤k−1

cm,α

(
φm(x) xα −Ψε,m,α(x)

)
||Lp(B∞m̃ ) ≤ c(k, d, p) ε

∑
m: ||m−m̃||∞≤1

||f ||Wk−1,p(B∞m̃ ).

(31)
Now, with the very same arguments as those in (23)-(25), we get

||fn − Φε||Lp(X) ≤ c(k, d, p) ε ||f ||Wk−1,p(X).

The proof is complete.

14.13 Proof of Complexity Theorem

We are finally ready to complete the proof of the complexity theorem. From Proposition 1
we have

||f − fn||Lp(X) ≤ c(k, d, p)n−k ||f ||Wk,p(X).

From Proposition 2 with ε
2C(k,d,p) ||f ||

Wk−1,p(X)
instead of ε in the proposition, we have

||fn − Φε||Lp(X) ≤
ε

2 ,
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with

L(Φε) ≤ C1(k, d, p) log2(ε−1 ||f ||Wk−1,p(X)),
N(Φε), P (Φε) ≤ C2(k, d, p) (n+ 1)d log2(ε−1 ||f ||Wk−1,p(X)).

We now set
n =

⌈ (
ε

2 c ||f ||Wk,p(X)

)−1/k ⌉
,

where c = c(k, d, p) is the constant from Proposition 1. It follows that

||f − Φε||Lp(X) ≤ ||f − fn||Lp(X) + ||fn − Φε||Lp(X) ≤ c n−k ||f ||Wk,p(X) + ε

2 ≤ ε.

With this choice of n it also follows that (n+1)d ≤ C0(k, p, d) ε−d/k ||f ||d/kWk,p(X), which in turn
implies

N(Φε), P (Φε) ≤ C2(k, d, p) ε−d/k ||f ||d/kWk,p(X) log2(ε−1 ||f ||Wk−1,p(X)).
To complete the proof, it is enough to note that by Lemma 3 there exists a standard ReLU
network with the same input dimension as the connected network Φε with the same number
of layers and with number of neurons and parameters

N,P ≤ Ĉ(k, d, p) ε−d/k ||f ||d/kWk,p(X) log2
2(ε−1 ||f ||Wk−1,p(X)).

14.14 Further reading and nonlinear approximation

The results and approaches commonly found in the literature (including the results discussed
in this chapter) basically show that ReLU networks can approximate target functions with the
same complexity-accuracy as classical linear methods of approximation such as approximation
by polynomials and piecewise polynomials on prescribed partitions. Approximation by neural
networks is however a form of nonlinear approximation and as such should be compared with
other nonlinear methods. Two good references on the subject that interested readers are
encouraged to refer to include [7] and [12]. The first paper [7] studies the approximation
of univariate functions by deep ReLU networks and compares their approximation power
with that of other non-linear approximation methods such as free knot linear splines. Some
knowledge of non-linear approximation (see e.g. [8]) may be required. The second paper [12]
provides a comprehensive overview of the recently developed Kolmogorov-Donoho nonlinear
approximation, which relates the complexity of a given function class to the complexity of
a deep network within prescribed accuracy. Other useful references on the subject may be
found in [11]. We will summarize and discuss some of these results in Chapter 3.
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Chapter 3: Deep neural networks and nonlinear approximation

The goal of this chapter is to review a few recent developments on the approximation
theory of deep neural networks within the framework of nonlinear approximation. We follow
two specific goals. First we show that standard ReLU networks are at least as expressive
as other nonlinear approximation methods, such as free knot linear splines. Next, we will
mathematically justify the power of depth, giving a convincing reason for the success of
deep networks. Specifically, we show that there exists a large class of functions, spanning
from smooth/analytic functions to functions that are not smooth in any classical sense, that
possess self-similarity and can be well approximated by deep ReLU networks with exponential
accuracy.

15 Introduction

Let X = [0, 1] and consider a target function f : X → R in some known function space, e.g.
the space of continuous functions: f ∈ C(X). Suppose that we wish to approximate f by a
standard ReLU network with width W and depth L; see the precise definition in Section 16.
We will closely follow [7], focusing on two specific goals:

• Our first goal is to show that standard ReLU networks are at least as expressive as
other nonlinear approximation methods, such as free knot linear splines.

• The second goal is to mathematically justify the power of depth, giving a convincing
reason for the success of deep networks. Specifically, we show that there exists a large
class of functions, spanning from smooth functions to functions that are not smooth in
any classical sense, that possess self-similarity and can be approximated by deep ReLU
networks with exponential accuracy.

16 Standard ReLU networks and free knot linear splines

In this section we consider and introduce the approximation space of connected feed-forward
ReLU networks and their closest classical nonlinear approximation family of free know linear
splines.

16.1 Space of standard ReLU networks

We consider a connected feed-forward ReLU network with one input neuron, one output
neuron, and a fixed width W and a depth L. The depth here refers to the number of hidden
layers (excluding the input and output layers), and each hidden layer has W neurons with
ReLU activation function. No activation function will be applied on the output neuron. Such
a network will have L + 1 layers and can uniquely be represented by a collection of L + 1
weight matrices and bias vectors,

Φ := {(W (0), b(0)), (W (1), b(1)), . . . , (W (L), b(L))},
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where
W (0) ∈ RW×1, W (1), . . . ,W (L−1) ∈ RW×W , W (L) ∈ R1×W ,

and
b(0), . . . , b(L−1) ∈ RW×1, b(L) ∈ R.

As before, we also denote by Φ the univariate real-valued function that the network produces,

Φ(x) = A(L) ◦ σ ◦ A(L−1) ◦ . . . ◦ σ ◦ A(0)(x),

where
A(`)(z) = W (`)z + b(`), ` = 0, 1, . . . , L,

and

σ(z) = (σ(z1), . . . , σ(zm)) = (max{0, z1}, . . . ,max{0, zm}), z = (z1, . . . , zm) ∈ Rm.

The distinction between Φ being a network (a set of matrix-vector tuples) or a function that
the network realizes should be easily made from the context.

We denote byMW,L the set of all functions generated by standard ReLU networks,

MW,L = {Φ : [0, 1]→ R produced by all possible choices of weights and biases}.

Any function inMW,L is determined by

n(W,L) = W (W + 1)L− (W − 1)2 + 2 ∼ W 2L,

parameters (i.e. total number of network parameters). Here, the symbol ∼ stands for “com-
parable to”, that is, there exist constants c1, c2 such that c1W

2L ≤ n(W,L) ≤ c2W
2L. For

instance, when W,L ≥ 2 these inequalities hold with c1 = 1/2 and c2 = 2.
Throughout this chapter we keep W fixed and let L vary. This would in particular enable

us to study the effect of depth on the approximation power of standard ReLU networks.

16.2 Space of free knot linear splines

Every function inMW,L is a continuous piecewise linear function on X = [0, 1]. Hence, the
closest classical nonlinear approximation family toMW,L may be the set of free knot linear
splines,

Sn = {S : [0, 1]→ R continuous piecewise linear with at most n distinct breakpoints in (0, 1)}.

Any function in Sn is determined by at most 2n+ 2 parameters: at most 2n parameters for
the location of n breakpoints in (0, 1) and the values of the function at those breakpoints,
and 2 parameters for the values of the function at the two boundary points 0 and 1. Note
that when n(W,L) ∼ n, then MW,L and Sn have comparable complexity in terms of the
number of parameters.
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16.3 A comparison between one-layer ReLU networks and free knot linear
splines

It is easy to see that the space SW is essentially the same asMW,1. Precisely, the following
inclusion holds on [0, 1],

SW−1 ⊂MW,1 ⊂ SW .
That is, for largeW , the spaceMW,1 of one-layer networks is essentially the same as the space
SW of free knot linear splines. This is perhaps why practitioners at early stages of neural
network approximation focused more on shallow networks, and in particular on one-layer
networks.

We first show the second inclusion, noting that a network with one hidden layer (L = 1)
and width W generates a continuous piecewise linear function with at most W breakpoints,
where the number and location of breakpoints are determined by the network parameters.
This can easily be seen by,

A(1)◦σ◦A(0)(x) = b(1)+
[
w

(1)
1 w

(1)
2 · · · w

(1)
W

] 
σ(w(0)

1 x+ b
(0)
1 )

...
σ(w(0)

W x+ b
(0)
W )

 = b(1)+
W∑
j=1

w
(1)
j σ(w(0)

j x+b(0)
j ).

This means that if g ∈ MW,1 then g ∈ SW , and henceMW,1 ⊂ SW . As an example, Figure
21 displays four different outputs of a network with W = 3 and L = 1 corresponding to four
different sets of weight-bias parameters, generating four piecewise linear functions with 0, 1,
2, and WL = 3 break points.

0 1 0 1 0 1 0 1

Figure 21: Different outputs of four ReLU networks with a fixed architecture (W,L) = (3, 1)
and four different parameter sets. Network outputs are piecewise linear functions with up to
W = 3 breakpoints.

To see the first inclusion, we note that every continuous piecewise linear function on [0, 1]
with W − 1 interior breakpoints on (0, 1) is the restriction of a function fromMW,1 to [0, 1].
Indeed, every S ∈ SW−1 on [0, 1] with interior breakpoints x1, . . . , xW−1 can be represented
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by

S(x) = a x+ b+
W−1∑
j=1

mj σ(x− xj) =
[
a m1 · · · mW−1

]
σ




1
1
...
1

 x+


0
−x1
...

−xW−1


+ b,

which means S ∈MW,1. Hence SW−1 ⊂MW,1. As an example, the hat function H : [0, 1]→
[0, 1] that has one interior breakpoint belongs toM2,1,

H(x) = 2σ(x)− 4σ(x− 0.5).

Note that as we have sen before, H belongs to M3,1 on R, and only its restriction to [0, 1]
belongs toM2,1.

16.4 A comparison between deep ReLU networks and free knot linear splines

The composition of two continuous piecewise linear functions will be another continuous
piecewise linear function with the maximum number of breakpoints equal to the product
of the number of breakpoints of individual functions. That is, if f has n breakpoints and
g has m breakpoints, then f ◦ g will have at most nm breakpoints. This allows networks
with L hidden layers of width W to create roughly WL breakpoints by n(W,L) ∼ W 2L
special choices of parameters (weights and biases). This means that a “deep” network with
n(W,L) parameters can produce functions with many more breakpoints than the number of
parameters (WL � W 2L when L is large). On the other hand, the number of parameters of
a free knot spline is roughly double the number of breakpoints (2n+ 2 ∼ 2n). As we will see
in the remainder of this chapter, this gives deep networks approximation superiority over free
knot linear splines provided the target function has a special (compositional/self-similarity)
structure.

17 ReLU networks are at least as expressive as free knot linear splines

Throughout this section, we fix W ≥ 8 and let L ≥ 2 and consider MW,L. The goal is to
show that Sn ⊂MW,L where n(W,L) ≤ C n with an absolute constant C. Precisely, we will
show that for every fixed W ≥ 8, any function in Sn is the output of a (special) network with
the number of parameters comparable to n. We extensively use the following quantity

q :=
⌊
W − 2

6

⌋
, W ≥ 8. (32)

Theorem 1. Fix W ≥ 8 and let n ≥ 1. The set Sn of free knot linear splines with at
most n breakpoints is contained in the set MW,L, where L = 2 when n < q(W − 2) and
L = 2dn/q(W − 2)e when n ≥ q(W − 2). The complexity of such network space MW,L is
n(W,L) = W 2 + 4W + 1 when n < q(W − 2) and n(W,L) ≤ 61n when n ≥ q(W − 2).

The rest of this section will be devoted to the proof of Theorem 1. The proof is construc-
tive and utilizes a special type of ReLU networks.
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17.1 Special ReLU networks

For W ≥ 4 and L ≥ 2 we consider a special ReLU network as a “special” subset of a ReLU
network with the same width and depth, where special roles are reserved for the top and
bottom neurons of hidden layers. Specifically, we define three types of channels for special
ReLU networks:

• A source channel formed by top neurons that are assumed to be ReLU-free with unit
weights and without any bias. The neurons in a source channel do not take any input
from neurons in other channels and do not do any computation. This channel simply
carries forward the input x.

• A collation channel formed by bottom neurons that are also assumed to be ReLU-free.
This channel is used to collect all intermediate computations (i.e. outputs of hidden
layers). The neurons in a collation channel do not feed into subsequent calculations.
They only take outputs of neurons in previous layer and carry them over with unit
weight to subsequent bottom neurons.

• The rest of channels are regular computational channels.

Figure 22 displays the graph representation of a special ReLU network with W = 4 and
L = 3.

1

0

0

1

0

x

0

11

11

Figure 22: Graph representation of a special ReLU network in M̂4,3.

We denote by M̂W,L the set of all functions generated by special ReLU networks,

M̂W,L = {Φ : [0, 1]→ R produced by a special network of width W ≥ 4 and depth L ≥ 2}.

It is to be noted that since top and bottom neurons are ReLU free, special networks do
not form a direct subset of ReLU networks. However, we make the following observations:

• Since the input is non-negative, x ∈ [0, 1], then x = σ(x), and hence the assumption
that top neurons are ReLU free is not restrictive.

• The first bottom neuron in the first hidden layer (` = 0) is simply taking zero and since
0 = σ(0), the ReLU free assumption is not restrictive.
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• Any other bottom neuron in the remaining L − 1 hidden layers (` = 1, . . . , L − 1)
takes an input function, say g`(x) that depends continuously on x. Hence there is a
constant, say C`, such that g`(x) + C` ≥ 0 for every x ∈ [0, 1]. This implies that
g`(x) = σ(g`(x) + C`)− C`.

Consequently, given any function Φ ∈ M̂W,L, determined by the parameter set {Ŵ (`), b̂(`)}L`=0,
one can construct a ReLU network with the same complexity that produces the same function
Φ. The parameters {W (`), b(`)}L`=0 of such ReLU network are given in terms of the parameters
of the special network by

W (`) = Ŵ (`), ` = 0, . . . , L,
b

(`)
j = b̂

(`)
j , j = 1, . . . ,W − 1, b

(`)
W = b̂

(`)
W + C`, ` = 1, . . . , L− 1,

bL = b̂L −
L−1∑
`=1

C`.

This implies that given any Φ ∈ M̂W,L, there exists a standard ReLU network in MW,L

with the same complexity that produces Φ. Hence, although special networks are not direct
subsets of ReLU networks, in terms of sets of functions produced by them the following
inclusion holds,

M̂W,L ⊂MW,L.

Proposition 3. Special ReLU networks have the following properties:

(i) For every W,L1, L2 : M̂W,L1 + M̂W,L2 ⊂ M̂W,L1+L2.

(ii) For L < P : M̂W,L ⊂ M̂W,P .

Proof. We first prove (i). Fix two networks/functions Φ1 ∈ M̂W,L1 and Φ2 ∈ M̂W,L2 , and
construct a concatenated network as follows.

1. Start by placing the input and all L1 hidden layes of Φ1;

2. Continue with placing the first hidden layer of Φ2 with one change: in its collation
neuron place the output of Φ1 rather than zero;

3. Finally, place the remaining hidden layers and output layer of Φ2.

The output of such concatenated network, which has L1 + L2 hidden layers, will be Φ1 + Φ2
as desired, thanks to the concatenated collation channel that carries over Φ1 and adds it to
Φ2; see Figure 23.
Proof of (ii) follows from (i) with Φ2 ≡ 0 and L1 = L and L2 = P − L.
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1

x

Φ1

Φ1 + Φ2

1 1 1

1 1

1

Figure 23: Graph representation of the concatenated network that outputs the sum of Φ1 (in
blue) and Φ2 (in red).

17.2 Special ReLU networks that realize continuous piecewise linear functions

Consider a positive integer M = q(W −2), with q in (32). Note that since q is of order of W ,
the integer M will be of order of W 2 and may hence be a small number. We first show how
to construct a special ReLU network with only 2 hidden layers that generates continuous
piecewise linear functions with M (that may be small) breakpoints.

Let x1 < . . . < xM ∈ (0, 1) be anyM given breakpoints in the interior of [0, 1]. Let x0 = 0
and xM+1 = 1. Let further S0

M = S0
M(x0, x1, . . . , xM+1) denote the set of all continuous piece-

wise linear functions that vanish outside (0, 1) and with breakpoints only at x0, x1, . . . , xM+1.
The space S0

M is a linear space of dimension M (and not M + 2 because its elements vanish
at x0 and xM+1).

Lemma 6. For every M breakpoints x1 < . . . < xM ∈ (0, 1), where M = q(W − 2), with q
in (32), we have

S0
M ⊂ M̂W,2.

Proof. Step 1. We first create a particular basis for S0
M as follows. We introduce a set

{ξj = xjq}W−2
j=1 of W − 2 “principal breakpoints”, where each ξj is associated with q hat basis

functions Hi,j, i = 1, . . . , q, that take value 1 at ξj and are supported on [xjq−i, xjq+1]; see
Figure 24. We notice that the case q = 1 (when 8 ≤ W ≤ 13) simply coincides with the

xjqx(j−1)q x(j+1)qxjq+1

ξjξj−1 ξj+1

H1,jH2,jHq,j

Figure 24: Schematic representation of q basis hat functions H1,j, . . . , Hq,j associated to the
principle breakpoint ξj.

familiar finite element basis with Lagrange elements. There will be a total number ofM basis
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function, and we name them {φk}Mk=1, ordered in such a way that φk has leftmost breakpoint
xk−1. We say φk is associated with ξj if φk(ξj) = 1. Clearly, {φk}Mk=1 forms a basis for S0

M , as
φk’s are linearly independent. Indeed, if ∑M

k=1 ck φk = 0, then c1 = 0 because φ1 is the only
nonzero function on [x0, x1]. With a similar argument, considering φ2, we get c2 = 0, etc.
Step 2. Let S ∈ S0

M . By Step 1, we can write S(x) = ∑M
k=1 ck φk(x). Note that with

principal breakpoints ξ1, . . . , ξW−2, we have S(ξj) = ∑
k:φk(ξj)=1 ck, and there are q indices

in the summation associated to each principal breakpoint. We take the index set Λ =
{1, . . . ,M} and divide it into two sets Λ = Λ+ ∪ Λ−, where

Λ+ = {k ∈ Λ : ck ≥ 0}, Λ− = {k ∈ Λ : ck < 0}.

We then divide each of Λ+ and Λ− into at most 3q subsets. For instance, we split Λ+ into

Λ+
i,m = {s ∈ Λ+ : φs = Hi,j such that j mod 3 = m}, i = 1, . . . , q, m = 0, 1, 2.

More explicitly, we get three sets

Λ+
i,0 = {s ∈ Λ+ : φs = Hi,3 or φs = Hi,6 or φs = Hi,9 . . . }

Λ+
i,1 = {s ∈ Λ+ : φs = Hi,1 or φs = Hi,4 or φs = Hi,7 . . . }

Λ+
i,2 = {s ∈ Λ+ : φs = Hi,2 or φs = Hi,5 or φs = Hi,8 . . . }.

Similarly, we split Λ− into at most 3q subsets,

Λ−i,m = {s ∈ Λ− : φs = Hi,j such that j mod 3 = m}, i = 1, . . . , q, m = 0, 1, 2.

We can hence write Λ = {1, . . . ,M} as a disjoint union of K ≤ 6q ≤ W − 2 sets Λp:

Λ = ∪Kp=1Λp,

where each Λp has two properties: 1) all coefficients ck of S with k ∈ Λp have the same
sign, and 2) for every k, k′ ∈ Λp, the associated principle breakpoints ξj and ξj′ (associated
to φk and φk′) satisfy the separation/non-overlapping property |j − j′| ≥ 3. We note that
some of Λp’s may be empty, and hence we may get K < W − 2. In this case we set
ΛK+1 = . . . = ΛW−2 = ∅. We then write

S(x) =
W−2∑
p=1

Sp(x), Sp =
{ ∑

i∈Λp ci φi(x), Λp 6= ∅,
0, Λp = ∅. (33)

Because of the separation property, all φi’s with i ∈ Λp have disjoint supports, and hence
ci = Sp(ξj), where ξj is the principal breakpoint associated to φi.
Step 3. We next show that each Sp corresponding to a nonempty Λp is of the form ±σ(gp(x)),
where gp is a continuous piecewise linear function whose breakpoints are the principal break-
points ξ1, . . . ξW−2. We fix p and first consider the case where all ci’s in Λp are non-negative.
We let gp be the continuous piecewise linear function that takes the value ci at each principal
breakpoint ξj associated to i ∈ Λp. Note that each i ∈ Λp has a different associated ξj thanks
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x = 0 x = 1

ξ1 ξ4 ξ7

Figure 25: A simple example of constructing gp (thin red line) such that σ(gp(x)) = Sp(x).
The function Sp is displayed with thick blue line. Clearly, gp is a continuous piecewise linear
function whose breakpoints are the principal breakpoints ξ1, . . . ξW−2 (red circles). Note that
gp vanishes at the leftmost and rightmost breakpoints (black circles) of all φi’s with i ∈ Λp.

to the separation property. At the remaining principal breakpoints, we assign negative values
for gp such that gp vanishes at the leftmost and rightmost breakpoints of all φi’s with i ∈ Λp.
Again, this is possible thanks to the separation property. A simple example is depicted in
Figure 25. It follows that σ(gp(x)) = Sp(x). Similarly, when all ci’s in Λp are negative, we
will do a similar procedure noting that −σ(−gp(x)) = Sp(x).
Step 4. Finally, we construct a special ReLU network with two hidden layers that generates
S(x) = ∑W−2

p=1 Sp(x); see Figure 26. The W − 2 compute neurons labeled j = 1, . . . ,W − 2

1

x

1

1

1

p = 1

p = 2

p = W − 2

mp,1

mp,2

mp,W −1

mp,3

1
1

1

S1

S2

SW −2

σ(x − ξ1)

σ(x − ξ2)

σ(x − ξW −2)

w

w

w

Figure 26: A special ReLU network with two hidden layers that outputs S(x) = ∑W−2
p=1 Sp(x).

in the first hidden layer are used to generate σ(x− ξj), with j = 1, . . . ,W − 2. This can be

73



easily done by setting input weights to 1 and biases to ξ1, . . . , ξW−2. In the second hidden
layer, each compute unit, labeled p = 1, . . . ,W − 2, is used to take x and all σ(x− ξj)’s with
j = 1, . . . ,W−2 to output Sp. To find the corresponding weights and biases, we first note that
the index p = 1, . . . ,W −2 corresponds to a different labeling of the index set {(i,m,±), i =
1, . . . , q, m = 0, 1, 2}. Each p corresponds to a triplet (i,m,+) or (i,m,−). We take a fixed
p, say corresponding to (i,m,+), and this gives us the set Λ+

i,m which corresponds to the set
Λp which in turn contains indices i ∈ Λp in Sp(x) = ∑

i∈Λp ci φi(x) = σ(gp(x)). All we will
need to do is to find the weights {mp,1, . . . ,mp,W−1 and the bias bp in the second hidden layer
such that

gp(x) = mp,1x+
W−1∑
j=2

mp,j σ(x− ξj−1) + bp.

This can be easily done recalling that gp is a continuous piecewise linear function whose
breakpoints are the principal breakpoints ξ1, . . . ξW−2, and hence it can be represented by a
linear combination of {σ(x − ξj)}W−2

j=1 and x terms. To do this we start with noting that
bp = gp(0). Then we take the first principal breakpoints and write gp(ξ1) = mp,1 ξ1 + bp,
which gives us mp,1. Then we proceed with the second principal breakpoints and write
gp(ξ2) = mp,1 ξ2 +mp,2 (ξ2 − ξ1) + bp, which gives us mp,2, and so forth. We note that in this
particular setup, the source and collation channels are not used. Nevertheless we keep them
in case we would need to performa concatenation or other operations on the input-output.
This completes the proof.

We will now focus on the construction of deep special ReLU networks with many hidden
layers that generate continuous piecewise linear functions with a large number of breakpoints.

Lemma 7. For every N breakpoints x1 < . . . < xN ∈ (0, 1), where N = q(W − 2)L, with q
in (32), we have

SN ⊂ M̂W,2L.

Proof. We need to show that every S ∈ SN is the output of a special ReLU network with
width W and depth 2L. Let x1 < . . . < xN be the breakpoints of S in (0, 1), and set
x0 = 0 and xN+1 = 1. Let g(x) = ax + b be the linear function that interpolates S at
the two endpoints 0 and 1. Then T = S − g ∈ S0

N vanishes at the endpoints, and it will
be enough to show that T ∈ M̂W,2L. We first write T = T0 + T1 + . . . + TL−1, where
each Tj ∈ S0

N is a continuous piecewise linear function that agrees with T at the points
{xjq(W−2)+1, . . . , x(j+1)q(W−2)} and is zero at all other breakpoints of T ; see an example in
Figure 27. Since each Tj may be non-zero only at M = q(W − 2) breakpoints, we will have

x = 0 x = 1

T0 T1 T2 TL−1

Figure 27: Decomposition of T = T0 + T1 + . . .+ TL−1 ∈ S0
N into L functions Tj ∈ S0

M , with
j = 0, 1, . . . , L− 1, where N = ML.
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Tj ∈ S0
M for j = 0, 1, . . . , L−1. By Lemma 6 we have Tj ∈ M̂W,2, with j = 0, 1, . . . , L−1. We

can now simply concatenate these L networks as in Proposition 3 and construct a network
with 2L hidden layers that realizes T . Finally, in order to produce S = T + g, where
g(x) = ax+ b, we can simply use the source channel and assign weight a to the link the top
neuron of the last hidden layer and the output neuron (which was not used when generating
TL−1). We also assign bias b to the output neuron. This complete the proof.

17.3 Proof of Theorem 1

We need to show that Sn ⊂MW,L where n(W,L) ∼ n. By Lemma 7 and inclusion M̂W,2L ⊂
MW,2L, we have

SN ⊂MW,2L, N = ML, M = q (W − 2), (34)
with q given in (32). We consider two cases.

If n < M , then we have Sn ⊂ SM ⊂MW,2, where the second inclusion follows from (34)
with L = 1. Clearly we have n(W, 2) = 2W (W +1)− (W −1)2 +2 = W 2 +4W +1 as desired.

If n ≥M , we choose
L = d n

q(W − 2)e <
n

q(W − 2) + 1,

and hence
n(W, 2L) = 2LW (W + 1)− (W − 1)2 + 2

< 2W (W + 1)(1 + n/q(W − 2))− (W − 1)2 + 2

= 2W (W + 1)
q(W − 2) n+W 2 + 4W + 1

< 34n+W 2 + 4W + 1.
The last inequality is because 2W (W + 1)/q(W − 2) attains its maximum for W = 13 and
q = 1, and hence 2W (W + 1)/q(W − 2) ≤ 364/11 < 34. Moreover, it is easy to see that by
(32) we have W 2 + 4W + 1 < 27q(W −2) ≤ 27n. Hence we get n(W, 2L) < 34n+ 27n = 61n,
as desired. This completes the proof of Theorem 1.

18 The power of depth

So far we have seen that ReLU networks are at last as expressiv as free knot linear splines with
at most n breakpoints. Similar results also hold when comparing ReLU networks with other
nonlinear approximation methods; see e.g. Section 6 of [7] that comapres ReLU networks
with n-term approximation from a Fourier-like basis.

In this section we will discuss the power of depth. Precisely, we show that there exists a
large class of functions that possess self-similarity and hence can be approximated by ReLU
networks with approximation rates that far exceed the approximation rates of free knot linear
splines or any other classical approximation family.

We will first present a few additive and compositional properties of standard and special
ReLU networks (see Section 18.1) and then utilize them to discuss and exemplify the power
of depth for self-similar functions (see Section 18.2).
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18.1 Additive and compositional properties of ReLU networks

Proposition 4. Let W ≥ 2. For any Φj ∈MW,Lj with j = 1, . . . , J , the followings hold:

(i) ΦJ ◦ . . . ◦ Φ1 ∈MW,L1+...+LJ .

(ii) Φ1 + . . .+ ΦJ ∈ M̂W+2,L1+...+LJ .

Proof. To prove (i), we first concatenate the networks Φ1 and Φ2 as follows to construct a
network, say Φ2◦1, that outputs Φ2 ◦ Φ1:

1. The input and the first L1 hidden layers of Φ2◦1 will be the same as the input and L1
hidden layers of Φ1.

2. The (L1 + 1)-st hidden layer of Φ2◦1 the first hidden layer of Φ2.

3. The weights between hidden layers L1 and L1 + 1 (a W ×W matrix) will be the output
weights of Φ1 (a 1 ×W vector) multiplied from left by the input weights of the first
hidden layer of Φ1 (a W × 1 vector).

4. The bias of hidden layer L1 + 1 will be the bias of the first hidden layer of Φ2 plus the
product of the output bias of Φ1 and the input weights of the first hidden layer of Φ2.

5. The remaining hidden layers of Φ2◦1 will be the same as the remaining hidden layers of
Φ2.

The resulting network will have L1 + L2 hidden layers. This procedure can be applied J − 1
times to generate ΦJ◦...◦1 with L1 + . . .+ LJ hidden layers.
To prove (ii), we concatenate the standard ReLU networks Φ1 and Φ2 by adding a source and
a collation channel, as shown in Figure 28, to construct a special ReLU network, say Φ1+2,
with width W + 2 and depth L1 + L2, that outputs Φ1 + Φ2. Again this can be repeated
J − 1 times to build a network with width W + 2 and depth L1 + . . . + LJ that outputs
Φ1 + . . .+ ΦJ . This completes the proof.

In what follows, we denote by g◦k the k-fold composition of a function g with itself

g◦k(x) = g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
k times

(x), s ≥ 1.

Note that g◦1(x) = g(x).

Proposition 5. Let W ≥ 2. For any T ∈MW,L, then

Φ(x) =
m∑
i=1

ai T
◦i(x) ∈ M̂W+2,mL.
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x Φ1 + Φ2

Φ1

Figure 28: By adding source and collation channels we can concatenate two standard ReLU
networks Φ1 (in blue) and Φ2 (in red) and generate a special ReLU network that outputs
Φ1 + Φ2.

x

a1T (x) a1T (x) + a2T
◦2(x)

Φ(x)

1st output collation neuron 2nd output collation neuron

T T T

Figure 29: Concatenation of m standard ReLU networks, each generating the same function
T , and addition of a collation channel to output Φ(x) = ∑m

i=1 ai T
◦i(x).

Proof. We first generate T ◦m(x) as discussed in the proof of Proposition 4 (i), displayed
in blue and red in Figure 29. We add a collation channel and modify the input weights
(displayed in green) of every i-th output collation neuron so that it produces ai T ◦i(x). The
source channel is not needed in this case. Nevertheless, we include it in case we need to add
another function of x to Φ later on.

Proposition 6. Let W ≥ 2. For any T ∈MW1,L and g ∈MW2,L, then

Φg(x) =
m∑
i=1

ai g ◦ T ◦i(x) ∈ M̂W1+W2+2,(m+1)L.

Proof. The construction of Φg is similar to the construction of Φ in Proposition 5 with the
extra step of adding m copies of g to T ◦m as depicted in Figure 30.

77



x

1st output collation neuron 2nd output collation neuron

T T T T

g g g

Φg(x)

a1 g ◦ T (x) a1 g ◦ T (x) + a2 g ◦ T ◦2(x)

Figure 30: Concatenation of m standard ReLU networks, each generating the same function
g ◦ T , and addition of a collation channel to output Φg(x) = ∑m

i=1 ai g ◦ T ◦i(x).

18.2 A large class of functions with self-similarity

Consider target functions of the form

f(x) =
∑
k≥1

a−k g ◦ T ◦k(x), |a| > 1, g : [0, 1]→ R, T : [0, 1]→ [0, 1].

This is an example of a self-similar function. By Proposition 6, if

T ∈MW1,L, g ∈MW2,L,

then
Φm(x) =

m∑
k=1

a−k g ◦ T ◦k(x) ∈ M̂W,(m+1)L, W = W1 +W2 + 2.

We now define the (best) approximation error in approximating f by special ReLU networks
with a fixed width W and depth (m+ 1)L by

ε(m+1)L(f)C[0,1] := inf
Φ∈M̂W,(m+1)L

||f − Φ||C[0,1].

Assuming ||g||C[0,1] = 1 (this can easily be relaxed), then we will have

ε(m+1)L(f)C[0,1] ≤ ||f − Φm||C[0,1]

= ||
∑
k>m

a−k g ◦ T ◦k||C[0,1]

≤
∑
k>m

|a|−k ||g ◦ T ◦k||C[0,1]

= |a|−(m+1)

1 +
∑

k>m+1
|a|−k

 ≤ C |a|−(m+1),
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where C <∞ is a constant, noting that ∑k≥0 |a|−k = 1/(1−|a|−1). We note that the second
inequality is a simple consequence of triangle inequality. The above estimate implies that
the target function f can be approximated by a ReLU network with exponential accuracy
(i.e. the approximation error decays exponentially). Moreover, the deeper the network, that
is, the more terms m in the sum, the higher the exponential rate of decay.

We now consider a special class of such self-similar functions, known as Takagi functions,
and present two examples of Takagi functions showing that they form a large class of functions
that can be well approximated by deep ReLU networks.
Takagi functions. Consider continuous functions of the form

f(x) =
∑
k≥1

akH
◦k(x), (35)

where {ak}k≥1 is an absolutely summable sequence of real numbers, and H ∈ M2,1 is the
hat function. Note that this is a self-similar function with g(x) = x and T (x) = H(x). By
Proposition 4(i), we will have H◦k ∈M2,k. Following Proposition 5, a special ReLU network
approximating any Takagi function of the form (35) can be easily constructed; see Figure 31.

x

1

1 1 1

1 1 1

1

a1H(x) a1H(x) + a2H
◦2(x)

ΦL(x)

− 4a1 2a1 − 4a2 2a2

− 4aL

2aL

2

2
− 4

− 4

2

2
− 4

− 4

2

2
− 4

− 4

2aL−1− 4aL−1

Figure 31: A special ReLU network with width W = 4 and L hidden layers that outputs
ΦL(x) = ∑L

k=1 akH
◦k(x), approximating a Takagi function Φ(x) = ∑

k≥1 akH
◦k(x). The

deeper the network, the higher the rate of decay in approximation error.

The depth L of such special ReLU network, which is equal to the number of terms in the
approximant ΦL(x) = ∑L

k=1 akH
◦k(x), will determine the exponential decay rate of approxi-

mation error. We will give two specific examples.
Example 1. Consider a Takagi function (35) with ak = 2−k,

f1(x) =
∑
k≥1

2−kH◦k(x).

Let ΦL(x) = ∑L
k=1 2−kH◦k(x) be the ReLU network approximant of f1, with depth L ≥ 1.

Then, by the error estimate obtained above, we will have

εL(f1)C[0,1] ≤ C 2−L.
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This implies that theoretically f1 can be approximated with exponential accuracy by ReLU
networks with roughly W 2L ∼ L parameters (noting that W = 4 in the above construction).
This reveals an amazing power of deep networks, as f1 is nowhere differentiable and hence
has very little smoothness in classical sense. In fact, all traditional methods of approximation
would fail to approximate f1 well. The key to the success of deep network is however the
self-similarity feature of f1; it possesses a simple compositional/recursive pattern that can
be exploited by deep networks.
Example 2. Consider a Takagi function (35) with ak = 4−k,

f2(x) =
∑
k≥1

4−kH◦k(x) = x(1− x).

Unlike f1 which has very little smoothness, f2 is an analytic (very smooth) function. This
representation can be used to show that the quadratic function x2 can be approximated
with exponential accuracy by ReLU networks (as we did earlier). We can then show that all
monomials x3, x4, . . . can also be approximated with exponential accuracy by ReLU networks.
Using the additive property of ReLU networks, discussed in Section 18.1, we can conclude
that analytic functions (and Sobolev functions) can be approximated by ReLU networks with
the same accuracy as their approximation by algebraic polynomials (a result that we obtained
in previous chapter).
A concluding remark. The above two examples show that the approximation space of deep
ReLU networks is quite large. It contains many functions, spanning from smooth/analytic
functions to functions that are not smooth in any classical sense. This brings flexibility to
deep ReLU networks: they well approximate functions with little classical smoothness and
retain the good property of approximating smooth functions with comparable accuracy to
other methods of approximation.
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