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Abstract

The paper contains approximation guarantees for neural networks that
are trained with gradient flow, with error measured in the continuous
L2(Sd−1)-norm on the d-dimensional unit sphere and targets that are
Sobolev smooth. The networks are fully connected of constant depth
and increasing width. Although all layers are trained, the gradient flow
convergence is based on a neural tangent kernel (NTK) argument for the
non-convex second but last layer. Unlike standard NTK analysis, the con-
tinuous error norm implies an under-parametrized regime, possible by the
natural smoothness assumption required for approximation. The typical
over-parametrization re-enters the results in form of a loss in approxi-
mation rate relative to established approximation methods for Sobolev
smooth functions.
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1 Introduction

Direct approximation results for a large variety of methods, including neural
networks, are typically of the form

inf
θ
∥fθ − f∥ ≤ n(θ)−r, f ∈ K. (1)

I.e., a target function f is approximated by an approximation method fθ,
parametrized by some degrees of freedom or weights θ up to a rate n(θ)−r for
some n(θ) that measures the richness of the approximation method as width,
depth or number of weights for neural networks. Generally, the approximation
rate can be arbitrarily slow unless the target f is contained in some compact set
K, which depends on the approximation method and application and is typi-
cally a unit ball in a Sobolev, Besov, Barron or other normed smoothness space.
Such results are well established for a variety of neural network architectures
and compact sets K, however, these results rarely address how to practically
compute the infimum in the formula above and instead use hand-picked weights.
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On the other hand, the neural network optimization literature, typically
considers discrete error norms (or losses)

∥fθ − f∥∗ :=

(
1

n

n∑
i=1

|fθ(xi)− f(xi)|2
)1/2

,

together with neural networks that are over-parametrized, i.e. for which the
number of weights is larger than the number of samples n so that they can
achieve zero training error

inf
θ
∥fθ − f∥∗ = 0,

rendering the approximation question obsolete. In contrast, approximation the-
ory measures the error in continuous norms that emerge in the sample n → ∞
limit, where the problem is necessarily under-parametrized.

This paper contains approximation results of type (1) for fully connected
networks that are trained with gradient flow and therefore avoids the question
how to compute the infimum in (1). The outline of the proof follows the typical
neural tangent kernel (NTK) argument: We show that the empirical NTK is
close to the infinite width NTK and that the NTK does not change too much
during training. The main differences to the standard analysis are:

1. Due to the under-parametrization, the eigenvalues of the NTK are not
lower bounded away form zero. Instead we require that the NTK is coer-
cive in a negative Sobolev norm.

2. We show that the gradient flow networks are uniformly bounded in positive
Sobolev norms.

3. The coercivity in negative Sobolev smoothness and the uniform bounds
of positive Sobolev smoothness allow us to derive L2 error bounds by
interpolation inequalities.

4. All perturbation and concentration estimates are carried out in function
space norms. In particular, the concentration results need some careful
consideration and are proven by chaining arguments.

The NTK is a sum of positive matrices from which we only use the contribution
form the second but last layer to drive down the error, while all other layers are
trained but estimated only by a perturbation analysis. The coercivity assump-
tion on the NTK is not shown in this paper. It is known for ReLU activations,
but we require smoother activations and only provide a preliminary numerical
test while leaving a rigorous analysis of the resulting NTK for future work.

The proven approximation rates are lower than finite element, wavelet or
spline rates under the same smoothness assumptions. This seems to be a variant
of the over-parametrization in the usual NTK arguments: the networks need
some redundancy in their degrees of freedom to aid the optimization.
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Paper Organization The paper is organized as follows. Section 2.2 defines
the neural networks and training procedures and Section 2.3 contains the main
result. The coercivity of the NTK is discussed in Section 3. The proof is split
into two parts. Section 4 provides an overview and all major lemmas. The proof
the these lemmas and further details are provided in Section 5. Finally, to keep
the paper self contained, Section 6 contains several facts from the literature.

Literature Review

• Approximation: Some recent surveys are given in [53, 15, 69, 8]. Most of
the results prove direct approximation guarantees as in (1) for a variety of
classes K and network architectures. They show state of the art or even
superior performance of neural networks, but typically do not provide
training methods and rely on hand-picked weights, instead.

– Results for classical Sobolev and Besov regularity are in [25, 27, 50,
44, 64].

– [72, 73, 74, 14, 57, 47] show better than classical approximation rates
for Sobolev smoothness. Since classical methods are optimal (with
regard to nonlinear width and entropy), this implies that the weight
assignment f → θ must be discontinuous.

– Function classes that are specifically tailored to neural networks are
Barron spaces for which approximation results are given in [5, 37, 70,
46, 58, 59, 10].

– Many papers address specialized function classes [56, 54], often from
applications like PDEs [39, 52, 40, 48].

Besides approximation guarantees (1) many of the above papers also dis-
cuss limitations of neural networks, for more information see [20].

• Optimization: We confine the literature overview to neural tangent kernel
based approaches, which are most relevant to this paper. The NTK is
introduced in [32] and similar arguments together with convergence and
perturbation analysis appear simultaneously in [45, 2, 19, 18], Related
optimization ideas are further developed in many papers, including [75, 4,
43, 62, 76, 36, 13, 51, 49, 6, 61, 41]. In particular, [3, 63, 34, 12] refine
the analysis based on expansions of the target f in the NTK eigenbasis
and are closely related to the arguments in this paper, with the major
difference that they rely on the typical over-parametrized regime, whereas
we do solemnly rely on smoothness.

The papers [23, 28, 21, 42, 55, 68] discuss to what extend the lineariza-
tion approach of the NTK can describe real neural network training.
Characterizations of the NTK are fundamental for this paper and given
[9, 22, 35, 11]. Convergence analysis for optimizing NTK models directly
are in [65, 66].
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• Approximation and Optimization: Since the approximation question is
under-parametrized and the optimization literature largely relies on over-
parametrization there is little work on optimization methods for approx-
imation. The gap between approximation theory and practice is consid-
ered in [1, 26]. The previous paper [24] contains comparable results for 1d
shallow networks. Similar approximation results for gradient flow trained
shallow 1d networks are in [33, 31], with slightly different assumptions on
the target f , more general probability weighted L2 loss and an alternative
proof technique. Other approximation and optimization guarantees rely
on alternative optimizers. [60, 29] use greedy methods and [30] uses a
two step procedure involving a classical and subsequent neural network
approximation.

L2 error bounds are also proven in generalization error bounds for sta-
tistical estimation. E.g. the papers [17, 38] show generalization errors
for parallel fully connected networks in over-parametrized regimes with
Hölder continuity.

2 Main Result

2.1 Notations

• ≲, ≳, ∼ denote less, bigger and equivalence up to a constant that can
change in every occurrence and is independent of smoothness and number
of weights. It can depend on the number of layers L and input dimension d.
Likewise, c is a generic constant that can be different in each occurrence.

• [n] := {1, . . . , n}

• λ = ij; ℓ is the index of the weight Wλ :=W ℓ
ij with |λ| := ℓ. Likewise, we

set ∂λ = ∂
∂Wλ

.

• ⊙: Element wise product

• Ai· and A·j are ith row and jth column of matrix A, respectively.

2.2 Setup

Neural Networks We train fully connected deep neural networks without
bias and a few modifications: The first and last layer remain untrained, we use
gradient flow instead of (stochastic) gradient descent and the first layer remains
unscaled. For x in some bounded domain D ⊂ Rd, the networks are defined by

f1(x) =W 0V x,

f ℓ+1(x) =W ℓn
−1/2
ℓ σ

(
f ℓ(x)

)
, ℓ = 1, . . . , L

f(x) = fL+1(x),

(2)
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which we abbreviate by f ℓ = f ℓ(x) if x is unimportant or understood from
context. The weights are initialized as follows

WL+1 ∈ {−1,+1}1×nL+1 i.i.d. Rademacher not trained,

W ℓ ∈ Rnℓ+1×nℓ , ℓ ∈ [L] i.i.d. N (0, 1) trained,

V ∈ Rn0×d orthogonal columns V TV = I not trained,

all trained by gradient flow, except for the last layer WL+1 and the first matrix
V , which is pre-chosen with orthonormal columns. All layers have conventional
1/
√
nℓ scaling, except for the first, which ensures that the NTK is of unit size

on the diagonal and common in the literature [18, 9, 22, 11]. We also require
that the layers are of similar size, except for the last one which ensures scalar
valued output of the network

m := nL−1, 1 = nL+1 ≤ nL ∼ · · · ∼ n0 ≥ d.

Activation Functions We require comparatively smooth activation functions
that have no more that linear growth

|σ (x) | ≲ |x|, (3)

uniformly bounded first derivatives

|σ(i)(x)| ≲ 1 i = 1, 2, x ∈ R (4)

and continuous second and third derivative with at most polynomial growth

|σ(i)(x)| ≤ p(x), i = 0, 1, 2, 3, 4 (5)

for some polynomial p and all x ∈ R.

Training We wish to approximate a function f ∈ L2(D) by neural networks
and therefore use the L2(D) norm for the loss function

L(θ) := 1

2
∥fθ − f∥2L2(D).

In the usual split up into approximation and estimation error in the machine
learning literature, this corresponds to the former. It can also be understood
as an infinite sample limit of the mean squared loss. This implies that we
perform convergence analysis in an under-parametrized regime, different from
the bulk of the neural network optimization literature, which typically relies on
over-parametrization.

For simplicity, we optimize the loss by gradient flow

d

dt
θ = −∇L(θ) (6)

and not gradient descent or stochastic gradient descent.

6



Smoothness Since we are in an under-parametrized regime, we require smooth-
ness of f to guarantee meaningful convergence bounds. In this paper, we use
Sobolev spaces Hα(Sd−1) on the sphere D = Sd−1, with norms and scalar prod-
ucts denoted by ∥ · ∥Hα(Sd−1) and ⟨·, ·⟩Hα(Sd−1). We drop the explicit reference

to the domain Sd−1 when convenient. Definitions and required properties are
summarized in Section 6.4.1.

Neural Tangent Kernel The analysis is based on the neural tangent kernel,
which for the time being, we informally define as

Γ(x, y) = lim
width→∞

∑
|λ|=L−1

∂λf
L+1
r (x)∂λf

L+1
r (y). (7)

The rigorous definition is in (11), based on an recursive formula as in [32]. Our
definition differs slightly form the standard version because we only include
weights from layer |λ| = L− 1. We require that it is coercive in Sobolev norms〈

f,

∫
D

Γ(·, y)f(y) dy
〉
HS(Sd−1)

≳ ∥f∥HS−β (8)

for some 0 ≤ α ≤ β
2 , S ∈ {−α, α} and all f ∈ Hα(Sd−1). For ReLU activations

and regular NTK, including all layers, this property easily follows from [9, 22, 11]
as shown in Lemma 3.2. However, our convergence theory requires smoother
activations and therefore Section 3 provides some numerical evidence, while a
rigorous analysis is left for future research.

The paper [32] provides a recursive formula for the NTK, which in our sim-
plified case reduces to

Γ(x, y) = Σ̇L(x, y)ΣL−1(x, y),

where Σ̇L(x, y) and ΣL−1(x, y) are the covariances of two Gaussian processes

that characterize the forward evaluation of the networks WLn
1/2
L σ̇

(
fL
)
and

fL−1 in the infinite width limit, see Section 4.1.1 for their rigorous definition.
We require that

cΣ ≤ Σk(x, x) ≤ CΣ > 0, (9)

for all x, y ∈ D, k = 1, . . . , L and constants cΣ, CΣ ≥ 0. As we see in Section 3,
the kernels are zonal, i.e. they only depend on xT y. Hence, with a slight abuse
of notation (9) simplifies to Σk(x, x) = Σk(xTx) = Σ(1) ̸= 0. In fact, for ReLU
activation (which is not sufficiently differentiable for our results) the paper [11]
shows Σk(x, x) = 1.

2.3 Result

We are now ready to state the main result of the paper.
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Theorem 2.1. Assume that the neural network (2) - (5) is trained by gradient
flow (6). Let κ(t) := fθ(t) − f be the residual and assume:

1. The NTK satisfies coercivity (8) for some 0 ≤ α ≤ β
2 and the forward

process satisfies (9).

2. All hidden layers are of similar size: n0 ∼ · · · ∼ nL−1 =: m.

3. Smoothness is bounded by 0 < α < 1/2.

4. 0 < γ < 1 − α is an arbitrary number (used for Hölder continuity of the
NTK in the proof).

5. For τ specified below, m is sufficiently large so that

∥κ(0)∥
1
2
−α∥κ(0)∥

1
2
αm
− 1

2 ≲ 1,
cd

m
≤ 1,

τ

m
≤ 1.

Then with probability at least 1− cL(e−m + e−τ ) we have

∥κ(t)∥2L2(Sd−1) ≲

[
h

βγ
β−α ∥κ(0)∥

β
α

Hα(Sd−1)
+ ∥κ(0)∥

β
α

H−α(Sd−1)
e−ch

βγ
β−α β

2α t

]α
β

∥κ(0)∥Hα(Sd−1)

(10)

for some h with

h ≲ max


∥κ(0)∥ 1

2

H−α(Sd−1)
∥κ(0)∥

1
2

Hα(Sd−1)√
m


β−α

β(1+γ)−α

, c

√
d

m

 , τ = h2γm

and generic constant c ≥ 0, dependent on smoothness α, depth L and dimension
d, independent of width m and residual κ.

All assumptions are easy to verify, except for the coercivity of the NTK (8)
and the bounds (9) of the forward kernel, which we discuss in the next section.
The error bound (10) consists of two summands, only one of which depends on
the gradient flow time t. For large t, it converges to zero and we are left with the
first error term. This results in the following corollary, which provides a direct
approximation result of type (1) for the outcome of gradient flow training.

Corollary 2.2. Let all assumptions of Theorem 2.1 be satisfied. Then for m
sufficiently large, with high probability (both as in Theorem 2.1), we have

∥κ∥L2(Sd−1) ≲ max

{[
C(κ(0))

m

] 1
4

αγ
β(1+γ)−α

,

[
d

m

] 1
4

αγ
β−α

}
∥κ(0)∥Hα(Sd−1),

C(κ(0)) = ∥κ(0)∥H−α(Sd−1)∥κ(0)∥Hα(Sd−1)

where κ := fθ(t) − f is the gradient flow residual for sufficiently large time t.
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For traditional approximation methods, one would expect convergence rate
m−α/d for functions in the Sobolev space Hα. Our rates are lower, which seems
to be a variation of over-parametrization is disguise: In the over-parametrized
as well as in our approximation regime the optimizer analysis seems to require
some redundancy and thus more weights than necessary for the approximation
alone. Of course, we only provide upper bounds and practical neural networks
may perform better. Some preliminary experiments in [24] show that shallow
networks in one dimension outperform the theoretical bounds but are still worse
than classical approximation theory would suggest. In addition, the linearization
argument of the NTK results in smoothness measures in Hilbert spaces Hα and
not in larger Lp based smoothness spaces with p < 2 or even Barron spaces, as
is common for nonlinear approximation.

Remark 2.3. Although Theorem 2.1 and Corollary 2.2 seem to show dimen-
sion independent convergence rates, they are not. Indeed, β depends on the
dimension and smoothness of the activation function as we see in Section 3 and
Lemma 3.2.

3 Coercivity of the NTK

While most assumptions of Theorem 2.1 are easy to verify, the coercivity (8)
is less clear. This section contains some results for the NTK Γ(x, y) in this
paper, which only considers the second but last layer, as well as the regular
NTK defined by the infinite width limit

Θ(x, y) = lim
width→∞

∑
λ

∂fL+1(x)∂pf
L+1(y)

of all layers. Coercivity easily follows once we understand the NTK’s spectral
decomposition. To this end, first note that Γ(x, y) and Θ(x, y) are both zonal
kernels, i.e. they only depend on xT y, and as consequence their eigenfunctions
are spherical harmonics.

Lemma 3.1 ([22, Lemma 1]). The eigenfunctions of the kernels Γ(x, y) and
Θ(x, y) on the sphere with uniform measure are spherical harmonics.

Proof. See [22, Lemma 1] and the discussion thereafter.

Hence, it is sufficient to show lower bounds for the eigenvalues. These are
provided in [9, 22, 11] under slightly different assumptions than required in this
paper:

1. They use all layers Θ(x, y) instead of only the second but last one in
Γ(x, y). (The reference [18] does consider Γ(x, y) and shows that the eigen-
values are strictly positive in the over-parametrized regime with discrete
loss and non-degenerate data.)
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2. They use bias, whereas we don’t. We can however easily introduce bias
into the first layer by the usual technique to incorporate one fixed input
component x0 = 1.

3. The cited papers use ReLU activations, which do not satisfy the third
derivative smoothness requirements (4).

Anyways, with these modified assumptions, it is easy to derive coercivity from
the NTK’s RKHS in [9, 22, 11].

Lemma 3.2. Let Θ(x, y) be the neural tangent kernel for a fully connected
neural network with bias on the sphere Sd−1 with ReLU activation. Then for
any α ∈ R

⟨f, LΘf⟩Hα(Sd−1) ≳ ∥f∥2Hα−d/2(Sd−1),

where LΘ is the integral operator with kernel Θ(x, y).

The proof is given at the end of Section 6.4.3. Note that this implies β = d/2
and thus Theorem 2.1 cannot be expected to be dimension independent. In
fact, due to smoother activations, the kernel Γ(x, y) is expected to be more
smoothing than Θ(x, y) resulting in a faster decay of the eigenvalues and larger
β. This leads to Sobolev coercivity (Lemmas 6.18 and 3.2) as long as the decay
is polynomial, which we only verify numerically in this paper, as shown in Figure
1 for n = 100 uniform samples on the d = 2 dimensional sphere and L− 1 = 1
hidden layers of width m = 1000. The plot uses log-log axes so that straight
lines represent polynomial decay. As expected, ReLU and ELU activations show
polynomials decay with higher order for the latter, which are smoother. For
comparison the C∞ activation GELU seems to show super polynomial decay.
However, the results are preliminary and have to be considered carefully:

1. The oscillations at the end, are for eigenvalues of size ∼ 10−7, which is
machine accuracy for floating point numbers.

2. Most eigenvalues are smaller than the difference between the empirical
NTK and the actual NTK. For comparison, the difference between two
randomly sampled empirical NTKs (in matrix norm) is: ReLU: 0.280,
ELU: 0.524, GELU: 0.262 .

3. According to [9], for shallow networks without bias, every other eigenvalue
of the NTK should be zero. This is not clear from the experiments (which
do not use bias, but have one more layer), likely because of the large errors
in the previous item.

4. The errors should be better for wider hidden layers, but since the networks
involve dense matrices, their size quickly becomes substantial.

In conclusion, the experiments show the expected polynomial decay of NTK
eigenvalues and activations with singularities in higher derivatives, but the re-
sults have to be regraded with care.

10



Figure 1: Eigenvalues of the NTK Γ(x, y) for different activation functions.

4 Proof Overview

4.1 Preliminaries

4.1.1 Neural Tangent Kernel

In this section, we recall the definition of the neural tangent kernel (NTK) and
setup notations for its empirical variants. Our definition differs slightly from
the literature because we only use the last hidden layer (weights WL−1) to
reduce the loss, whereas all other layers are trained but only estimated by a
perturbation analysis. Throughout the paper, we only need the definitions as
stated, not that they are the infinite width limit of the network derivatives as
stated in (7), although we sometimes refer to this for motivation.

As usual, we start with the recursive definition of the covariances

Σℓ+1(x, y) := Eu,v∼N (0,A) [σ (u) , σ (v)] , A =

[
Σℓ(x, x) Σℓ(x, y)
Σℓ(y, x) Σℓ(y, y)

]
, Σ0(x, y) = xT y,

which define a Gaussian process that is the infinite width limit of the forward
evaluation of the hidden layer f ℓ(x), see [32]. Likewise, we define

Σ̇ℓ+1(x, y) := Eu,v∼N (0,A) [σ̇ (u) , σ̇ (v)] , A =

[
Σℓ(x, x) Σℓ(x, y)
Σℓ(y, x) Σℓ(y, y)

]
,

with activation function of the last layer is exchanged with its derivative. Then
the neural tangent kernel (NTK) is defined by

Γ(x, y) := Σ̇L(x, y)ΣL−1(x, y). (11)

The paper [32] shows that all three definitions above are infinite width limits of
the corresponding empirical processes (denoted with an extra hat ·̂)

Σ̂ℓ(x, y) :=
1

nℓ

nℓ∑
r=1

σ
(
f ℓr (x)

)
σ
(
f ℓr (y)

)
=

1

nℓ
σ
(
f ℓ(x)

)T
σ
(
f ℓ(y)

)
,

ˆ̇Σℓ(x, y) :=
1

nℓ

nℓ∑
r=1

σ̇
(
f ℓr (x)

)
σ̇
(
f ℓr (y)

)
=

1

nℓ
σ̇
(
f ℓ(x)

)T
σ̇
(
f ℓ(y)

) (12)
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and
Γ̂(x, y) :=

∑
|λ|=L−1

∂λf
L+1
r (x)∂λf

L+1
r (y).

Note that unlike the usual definition of the NTK, we only include weights from
the second but last layer. Formally, we do not show that Σℓ, Σ̇ℓ and Γ arise as

infinite width limits of the empirical versions Σ̂ℓ, ˆ̇Σℓ and Γ̂, but rather concen-
tration inequalities between them.

The next lemma shows that the empirical kernels satisfy the same identity
(11) as their limits.

Lemma 4.1. Assume that WL
ij ∈ {−1,+1}. Then

Γ̂(x, y) = ˆ̇ΣL(x, y)Σ̂L−1(x, y).

Proof. By definitions of fL and fL−1, we have

∂WL−1
ij

fL+1
r =

nL∑
1=r

WL
·rn
−1/2
L ∂WL−1

ij
σ
(
fLr
)

=

nL∑
1=r

WL
·rn
−1/2
L σ̇

(
fLr
)
∂WL−1

ij
fLr

=

nL∑
1=r

WL
·rn
−1/2
L σ̇

(
fLr
)
δirn

−1/2
L−1 σ

(
fL−1j

)
=WL

·i n
−1/2
L n

−1/2
L−1 σ̇

(
fLi
)
σ
(
fL−1j

)
.

It follows that

Γ̂(x, y) =

nL∑
i=1

nL−1∑
j=1

∂WL−1
ij

fL+1
r (x)∂WL−1

ij
fL+1
r (y)

=
1

nL

nL∑
i=1

1

nL−1

nL−1∑
j=1

∣∣WL
·i
∣∣2 σ̇ (fLi (x)) σ̇ (fLi (y))σ (fL−1j (x)

)
σ
(
fL−1j (y)

)
= ˆ̇ΣL(x, y)Σ̂L−1(x, y),

where in the last step we have used that
∣∣WL
·i
∣∣2 = 1 by assumption and the

definitions of ˆ̇ΣL and Σ̂L−1.

The NTK and empirical NTK induce integral operators, which we denote
by

Hf :=

∫
D

Γ(·, y)f(y) dy, Hθf :=

∫
D

Γ̂(·, y)f(y) dy

The last definition makes the dependence on the weights explicit, which is hidden
in Γ̂.
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4.1.2 Norms

We use several norms for our analysis.

1. ℓ2 and matrix norms: ∥ · ∥ denotes the ℓ2 norm when applied to a vector
and the matrix norm when applied to a matrix.

2. Hölder norms ∥ · ∥C0;α(D;V ) for functions f : D ⊂ Rd → V into some
normed vector space V , with Hölder continuity measured in the V norm

∥f∥C0(D;V ) := sup
x∈D

∥f(x)∥V + sup
x̸=x̄∈D

∥f(x)− f(x̄)∥V
∥x− x̄∥αU

.

We drop V in ∥ · ∥C0;α(D) when V = ℓ2 and D in ∥ · ∥C0;α when it is un-
derstood from context. We also use alternate definitions as the supremum
over the finite difference operator

∆0
hf(x) = f(x), ∆α

hf(x) = ∥h∥−αU [f(x+ h)− f(x)], α > 0,

See Section 6.1 for the full definitions and basic properties.

3. Mixed Hölder norms ∥ · ∥C0;α,β(D;V ) for functions f : D ×D ⊂ Rd → V of
two variables. They measure the supremum of all mixed finite difference
operators ∆s

x,hx
∆t
y,hy

for any s ∈ {0, α} and t ∈ {0, β}, similar to Sobolev
spaces with mixed smoothness. As for Hölder norms for one variable, we
use two different definitions, which are provided in Section 6.1.

4. Sobolev Norms on the Sphere denoted by ∥ · ∥Hα(Sd−1). Definitions and
properties are provided in Section 6.4.1. The bulk of the analysis is carried
out in Hölder norms, which control Sobolev norms by

∥ · ∥Hα(Sd−1) ≲ ∥ · ∥C0;α+ϵ(Sd−1).

for ϵ > 0, see Lemma 6.15.

5. Generic Smoothness norms ∥ · ∥α, α ∈ R for associated Hilbert spaces
Hα. These are used in abstract convergence results and later replaced by
Sobolev norms.

6. Orlicz norms ∥ ·∥ψi for i = 1, 2 measure sub-gaussian and sub-exponential
concentration. Some required results are summarized in Section 6.2.

7. Gaussian weighted L2 norms defined by

∥f∥2N = ⟨f, f⟩N , ⟨f, g⟩ =
∫
R
f(x)2dN (0, 1)(x)

13



4.1.3 Neural Networks

Many results use a generic activation function denoted by σ with derivative
σ̇, which is allowed to change in each layer, although we always use the same
symbol for notational simplicity. They satisfy the linear growth condition

|σ (x) | ≲ |x|, (13)

are Lipschitz
|σ (x)− σ (x̄) | ≲ |x− x̄| (14)

and have uniformly bounded derivatives

|σ̇ (x) | ≲ 1. (15)

4.2 Abstract Convergence result

We first show convergence in a slightly generalized setting. To this end, we
consider neural networks as maps from the parameter space to the square inte-
grable functions f· : Θ ⊂ ℓ2(Rm) → L2(D) defined by θ → fθ(·). More generally,
for the time being, we replace L2(D) by an arbitrary Hilbert space H and the
network by an arbitrary Fréchet differentiable function

f : Θ = ℓ2(Rm) → H, θ → fθ.

For a target function f ∈ H, we define the loss

L(θ) =
1

2
∥fθ − f∥2H

and the corresponding gradient flow for θ(t)

d

dt
θ(t) = −∇L(θ), (16)

initialized with random θ(0). The convergence analysis relies on a regime where
the evolution of the gradient flow is governed by its linearization

Hθ := Dfθ(Dfθ)
∗,

where ∗ denotes the adjoint and Hθ is the empirical NTK if fθ is a neural
network. To describe the smoothness of the target and spectral properties of
Hθ, we use a series of Hilbert spacesHα for some smoothness index α ∈ R so that
H0 = H. As stated in the lemma below, they satisfy interpolation inequalities
and coercivity conditions. In this abstract framework, we show convergence as
follows.

Lemma 4.2. Let θ(t) be defined by the gradient flow (16), κ = fθ − f be
the residual and m be a number that satisfies all assumptions below, which is
typically related to the degrees of freedom. For constants c∞, c0, β, γ > 0 and
0 ≤ α ≤ β

2 , functions p0(m), p∞(τ), pL(m,h) and weight norm ∥·∥∗ assume
that:

14



1. With probability at least 1− p0(m), the distance of the weights from their
initial value is controlled by

∥θ(t)− θ(0)∥∗ ≤ 1 ⇒ ∥θ(t)− θ(0)∥∗ ≲
√

2

m

∫ t

0

∥κ(τ)∥0 dτ. (17)

2. The norms and scalar product satisfy interpolation and continuity

∥ · ∥b ≲ ∥ · ∥
c−b
c−a
a ∥ · ∥

b−a
c−a
c , ⟨·, ·⟩−α ≲ ∥ · ∥−3α∥ · ∥α, (18)

for all −α− β ≤ a ≤ b ≤ c ≤ α.

3. Let H : Hα → H−α be an operator that satisfies the concentration inequal-
ity

Pr

[
∥H −Hθ(0)∥α←−α ≥ c

√
d

m
+

√
c∞τ

m

]
≤ p∞(τ) (19)

for all τ with
√

c∞τ
m ≤ 1. (In our application H is the NTK and Hθ(0)

the empirical NTK.)

4. Hölder continuity with high probability:

Pr
[
∃ θ̄ ∈ Θ with

∥∥θ̄ − θ(0)
∥∥
∗ ≤ h and ∥Hθ̄ −Hθ(0)∥α←−α ≥ c0h

γ
]

≤ pL(m,h) (20)

for all 0 < h ≤ 1.

5. H is coercive for S ∈ {−α, α}

∥v∥2S−β ≲ ⟨v,Hv⟩S , v ∈ HS−β (21)

6. For τ specified below, m is sufficiently large so that

∥κ(0)∥
1
2
−α∥κ(0)∥

1
2
αm
− 1

2 ≲ 1,
cd

m
≤ 1,

τ

m
≤ 1.

Then with probability at least 1− p0(m)− p∞(τ)− pL(m,h) we have

∥κ∥2−α ≲

[
h

βγ
β−α ∥κ(0)∥

β
α
α + ∥κ(0)∥

β
α
−αe

−ch
βγ

β−α β
2α t

] 2α
β

∥κ∥2α ≲ ∥κ(0)∥2α

for some h with

h ≲ max


[
∥κ(0)∥

1
2
−α∥κ(0)∥

1
2
α√

m

] β−α
β(1+γ)−α

, c

√
d

m

 , τ = h2γm

and generic constants c ≥ 0 dependent of α and independent of κ and m.
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We defer the proof to Section 5.1 and only consider a sketch here. As for
standard NTK arguments, the proof is based on the following observation

1

2

d

dt
∥κ∥2 = −

〈
κ,Hθ(t) κ

〉
≈ −⟨κ,H κ⟩ (22)

which can be shown by a short computation. The last step relies on the ob-
servation that empirical NTK stays close to its initial Hθ(t) ≈ Hθ(0) and that
the initial is close to the infinite width limit Hθ(0) ≈ H. However, since we are
not in an over-parametrized regime, the NTK’s eigenvalues can be arbitrarily
close to zero and we only have coercivity in the weaker norm ⟨κ, H κ⟩ ≳ ∥κ∥−α,
which is not sufficient to show convergence by e.g. Grönwall’s inequality. To
avoid this problem, we derive a closely related system of coupled ODEs

1

2

d

dt
∥κ∥2−α ≲ −c∥κ∥2

2α+β
2α

−α ∥κ∥−2
β
2α

α + h
βγ

β−α ∥κ∥2−α
1

2

d

dt
∥κ∥2α ≲ −c∥κ∥2

β
2α
−α ∥κ∥2

2α−β
2α

α + hγ∥κ∥α∥κ∥−α.

The first one is used to bound the error in the H−α norm and the second ensures
that the smoothness of the residual κ(t) is uniformly bounded during gradient
flow. Together with the interpolation inequality (18), this shows convergence in
the H = H0 norm.

It remains to verify all assumption of Lemma 4.2, which we do in the fol-
lowing subsections. Details are provided in Section 5.5.

4.3 Assumption (20): Hölder continuity

We use a bar ·̄ to denote perturbation, in particular W̄ ℓ is a perturbed weight,

and
¯̂
Γ is the corresponding empirical neural tangent kernel. In order to obtain

continuity results, we require that the weight matrices and domain are bounded∥∥W ℓ
∥∥n−1/2ℓ ≲ 1,

∥∥W̄ ℓ
∥∥n−1/2ℓ ≲ 1, ∥x∥ ≲ 1 ∀x ∈ D. (23)

For the initial weightsW ℓ, this holds with high probability because its entries are
i.i.d. standard Gaussian. For perturbed weights we only need continuity bounds

under the condition that
∥∥θ − θ̄

∥∥
∗ ≤ 1 or equivalently that ∥W ℓ−W̄ ℓ∥n−1/2ℓ ≤ 1

so that the weight bound of the perturbation W̄ ℓ follow from the bounds for
W ℓ. With this setup, we show the following lemma.

Lemma 4.3. Assume that σ and σ̇ satisfy the growth and Lipschitz conditions
(13), (14) and may be different in each layer. Assume the weights, perturbed
weights and domain are bounded (23) and nL ∼ nL−1 ∼ · · · ∼ n0. Then for

16



0 < α < 1 ∥∥∥Γ̂∥∥∥
C0;α,α

≲ 1∥∥∥¯̂Γ∥∥∥
C0;α,α

≲ 1

∥∥∥Γ̂− ¯̂
Γ
∥∥∥
C0;α,α

≲
n0
nL

[
L−1∑
k=0

∥∥W k − W̄ k
∥∥n−1/2k

]1−α
.

The proof is at the end of Section 5.2. The lemma shows that the kernels∥∥∥Γ̂ℓ − ¯̂
Γℓ
∥∥∥
C0;α,α

are Hölder continuous (w.r.t. weights) in a Hölder norm (w.r.t.

x and y). This directly implies that the induced integral operators ∥Hθ −
Hθ̄∥α←−α are bounded in operator norms induced by Sobolev norms (up to ϵ
less smoothness), which implies Assumption (20), see Section 5.5 for details.

4.4 Assumption (19): Concentration

For concentration, we need to show that the empirical NTK is close to the
NTK, i.e. that ∥H −Hθ(0)∥α←−α is small in the operator norm. To this end, it

suffices to bound the corresponding integral kernels ∥Γ− Γ̂∥C0;α+ϵ,α+ϵ in Hölder
norms with slightly higher smoothness, see Lemma 6.16. Concentration is then
provided by the following Lemma. See the end of Section 5.3 for a proof and
Section 5.5 for its application in the proof of the main result.

Lemma 4.4. Let α = β = 1/2 and k = 0, . . . , L− 1.

1. Assume that WL ∈ {−1,+1} with probability 1/2 each.

2. Assume that all W k are are i.i.d. standard normal.

3. Assume that σ and σ̇ satisfy the growth condition (13), have uniformly
bounded derivatives (15), derivatives σ(i), i = 0, . . . , 3 are continuous and
have at most polynomial growth for x → ±∞ and the scaled activations
satisfy∥∥∂i(σa)∥∥N ≲ 1,

∥∥∂i(σ̇a)∥∥N ≲ 1, a ∈ {Σk(x, x) : x ∈ D}, i = 1, . . . , 3,

with σa(x) := σ(ax). The activation functions may be different in each
layer.

4. For all x ∈ D assume
Σk(x, x) ≥ cΣ > 0.

5. The widths satisfy nℓ ≳ n0 for all ℓ = 0, . . . , L.

Then, with probability at least

1− c

L−1∑
k=1

e−nk + e−uk (24)
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we have ∥∥∥Γ̂− Γ
∥∥∥
C0;α,β

≲
L−1∑
k=0

n0
nk

[√
d+

√
uk√

nk
+
d+ uk
nk

]
≤ 1

2
cΣ

for all u1, . . . , uL−1 ≥ 0 sufficiently small so that the rightmost inequality holds.

4.5 Assumption (17): Weights stay Close to Initial

Assumption (17) follows from the following lemma, which shows that the weights
stay close to their random initialization. Again, the estimates are proven in
Hölder norms, which control the relevant Sobolev norms, see Section 5.5 for
details.

Lemma 4.5. Assume that σ satisfies the growth and derivative bounds (13),
(15) and may be different in each layer. Assume the weights are defined by the
gradient flow (6) and satisfy

∥W ℓ(0)∥n−1/2ℓ ≲ 1, ℓ = 1, . . . , L,

∥W ℓ(0)−W ℓ(τ)∥n−1/2ℓ ≲ 1, 0 ≤ τ < t.

Then ∥∥W ℓ(t)−W ℓ(0)
∥∥n−1/2ℓ ≲

n
1/2
0

nℓ

∫ t

0

∥κ∥C0(D)′ dx dτ,

where C0(D)
′
is the dual space of C0(D).

5 Proof of the Main Result

5.1 Proof of Lemma 4.2: Generalized Convergence

NTK Evolution In this section, we prove the convergence result in Lemma
4.2. Let us first recall the evolution of the loss in NTK theory. The Fréchet
derivative of the loss is

DL(θ)v = ⟨κ, (Dfθ)v⟩ = ⟨(Dfθ)∗κ, v⟩ , for all v ∈ Θ

and the gradient of the loss is the Riesz lift of the derivative

∇L(θ) = (Dfθ)
∗κ. (25)

Using the chain rule, we obtain the evolution of the residual

dκ

dt
= (Dfθ)

dθ

dt
= −(Dfθ)∇L(θ) = −(Dfθ)(Dfθ)

∗κ =: Hθκ (26)

and the loss in any HS norm

1

2

d

dt
∥κ∥2S =

〈
κ,
dκ

dt

〉
S

= −⟨κ, (Dfθ)(Dfθ)∗κ⟩S = −⟨κ,Hθ κ⟩S , (27)

with
Hθ := (Dfθ)(Dfθ)

∗.
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Proof of Lemma 4.2

Proof of Lemma 4.2. For the time being, we assume that the weights remain
within a finite distance

h := max

{
sup
t≤T

∥θ(t)− θ(0)∥∗ , c
√
d

m

}
≤ 1 (28)

to their initial up to a time T to be determined below, but sufficiently small
so that the last inequality holds. With this condition, we can bound the time
derivatives of the loss ∥κ∥−α and the smoothness ∥κ∥α. For S ∈ {−α, α} and
respective S̄ ∈ {−3α, α}, we have already calculated the exact evolution in (27),
which we estimate by

1

2

d

dt
∥κ∥2S = −

〈
κ,Hθ(t)κ

〉
S

= −⟨κ,Hκ⟩S +
〈
κ, (H −Hθ(0))κ

〉
S
+
〈
κ, (Hθ(0) −Hθ(t))κ

〉
S
.

We estimate the last two summands as

⟨κ, [. . . ]κ⟩S ≤ ∥κ∥S̄∥[. . . ]κ∥s ≤ ∥κ∥S̄∥[. . . ]∥α←−α∥κ∥−α,

where S̄ = α for S = α and S̄ = −3α for S = −α by Assumption 2. Then, we
obtain

1

2

d

dt
∥κ∥2S ≤ −⟨κ,Hκ⟩S + ∥H −Hθ(0)∥α←−α∥κ∥S̄∥κ∥−α + ∥Hθ(0) −Hθ(t)∥α←−α∥κ∥S̄∥κ∥−α

≤ −⟨κ,Hκ⟩S +

[
c

√
d

m
+

√
c∞τ

m
+ c0h

γ

]
∥κ∥S̄∥κ∥−α,

≲ −c∥κ∥2S−β + hγ∥κ∥S̄∥κ∥−α,

with probability at least 1 − p∞(τ) − pL(m,h), where the second but last in-
equality follows from assumptions (19), (20) and in the last inequality we have
used the coercivity, (28) and chosen τ = h2γm so that

√
c∞τ
m ≲ hγ . The left

hand side contains one negative term −∥κ∥2S−β , which decreases the residual
d
dt∥κ∥

2
S , and one positive term which enlarges it. In the following, we ensure

that these terms are properly balanced.
We eliminate all norms that are not ∥κ∥−α or ∥κ∥α so that we obtain a

closed system of ODEs in these two variables. We begin with ∥κ∥S̄ , which is
already of the right type if S̄ = α but ∥κ∥−3α for S̄ = −α. Since 0 < α < β

2 ,
we have −α− β ≤ −3α ≤ α so that we can invoke the interpolation inequality
from Assumption 2

∥v∥−3α ≤ ∥v∥
2α
β

−α−β∥v∥
β−2α

β

−α .
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Together with Young’s inequality, this implies

hγ∥κ∥S̄∥κ∥−α ≤ hγ∥κ∥
2α
β

−α−β∥κ∥
2β−2α

β

−α

≤ α

β

[
c∥κ∥

2α
β

−α−β

] β
α

+
β − α

β

[
c−1hγ∥κ∥

2β−2α
β

−α

] β
β−α

=
α

β
c

β
α ∥κ∥2−α−β + c

β
(β−α)h

γβ
β−α ∥κ∥2−α

for any generic constant c > 0. Choosing this constant sufficiently small and
plugging into the evolution equation for ∥κ∥−α, we obtain

1

2

d

dt
∥κ∥2−α ≲ −c∥κ∥2−α−β + h

γβ
β−α ∥κ∥2−α,

with a different generic constant c. Hence, together with the choice S = α, we
arrive at the system of ODEs

1

2

d

dt
∥κ∥2−α ≲ −c∥κ∥2−α−β + h

γβ
β−α ∥κ∥2−α,

1

2

d

dt
∥κ∥2α ≲ −c∥κ∥2α−β + hγ∥κ∥α∥κ∥−α.

Next, we eliminate the ∥κ∥2−α−β and ∥κ∥2α−β norms. Since 0 < α < β
2 implies

−α− β < α− β < −α < α the interpolation inequalities in Assumption 2 yield

∥κ∥−α ≤ ∥κ∥
2α

2α+β

−α−β∥κ∥
β

2α+β
α ⇒ ∥κ∥−α−β ≥ ∥κ∥

2α+β
2α
−α ∥κ∥−

β
2α

α

∥κ∥−α ≤ ∥κ∥
2α
β

α−β∥κ∥
β−2α

β
α ⇒ ∥κ∥α−β ≥ ∥κ∥

β
2α
−α∥κ∥

2α−β
2α

α ,

so that we obtain the differential inequalities

1

2

d

dt
∥κ∥2−α ≲ −c∥κ∥2

2α+β
2α

−α ∥κ∥−2
β
2α

α + h
βγ

β−α ∥κ∥2−α
1

2

d

dt
∥κ∥2α ≲ −c∥κ∥2

β
2α
−α ∥κ∥2

2α−β
2α

α + hγ∥κ∥α∥κ∥−α.

Bounds for the solutions are provided by Lemma 5.1 with x = ∥κ∥2−α, y = ∥κ∥2α
and ρ = β

2α ≥ 1 ≥ 1
2 : Given that

∥κ∥2−α ≳ h2
γα

β−α ∥κ(0)∥2α, (29)

i.e. the error ∥κ∥−α is still larger than the right hand side, which will be our
final error bound, we have

∥κ∥2−α ≲

[
h

βγ
β−α ∥κ(0)∥

β
α
α + ∥κ(0)∥

β
α
−αe

−ch
βγ

β−α β
2α t

] 2α
β

(30)

∥κ∥2α ≲ ∥κ(0)∥2α. (31)
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The second condition B(t) ≥ 0 in Lemma 5.1 is equivalent to axρ0 ≥ byρ0 (no-
tation of the lemma), which in our case is identical to (29) at t = 0. Notice
that the right hand side of (29) corresponds to the first summand in the ∥κ∥2−α
bound so that the second summand must dominate and we obtain the simpler
expression

∥κ∥2−α ≲ ∥κ(0)∥2−αe−ch
βγ

β−α t,

∥κ∥2α ≲ ∥κ(0)∥2α.
(32)

Finally, we compute h, first for the case h = supt≤T ∥θ(t)− θ(0)∥∗. For T
we use the smallest time for which (29) fails and temporarily also h ≤ 1. Then
by Assumption (17), interpolation inequality (18) and the ∥κ∥2−α, ∥κ∥2α bounds,
with probability at least 1− p0(m), we have

h = sup
t≤T

∥θ(t)− θ(0)∥∗ ≲
√

2

m

∫ T

0

∥κ(τ)∥0 dτ

≲

√
2

m

∫ T

0

∥κ(τ)∥
1
2
−α∥κ(τ)∥

1
2
α dτ

≲

√
2

m
∥κ(0)∥

1
2
−α∥κ(0)∥

1
2
α

∫ T

0

e−ch
βγ

β−α τ
4 dτ

≤ c

√
1

m

∥κ(0)∥
1
2
−α∥κ(0)∥

1
2
α

h
βγ

β−α

,

for some generic constant c > 0. Solving for h, we obtain

h1+
βγ

β−α ≲ ∥κ(0)∥
1
2
−α∥κ(0)∥

1
2
αm
− 1

2 ⇔ h ≲
[
∥κ(0)∥

1
2
−α∥κ(0)∥

1
2
αm
− 1

2

] β−α
β(1+γ)−α

.

Notice that by assumption m is sufficiently large so that the right hand side
is strictly smaller than one and thus T is only constrained by (29). In case
h = c

√
d/m there is nothing to show and we obtain

h ≲ max

{[
∥κ(0)∥

1
2
−α∥κ(0)∥

1
2
αm
− 1

2

] β−α
β(1+γ)−α

, c

√
d

m

}
.

Finally, we extend the result beyond the largest time T for which (29) is satisfied
and hence (29) holds with equality. Since ∥κ∥20 is defined by a gradient flow, it
is monotonically decreasing and thus for any time t > T , we have

∥κ(t)∥2−α ≤ ∥κ(T )∥2−α = ch2
γα

β−α ∥κ(0)∥2α = c

[
h

γβ
β−α ∥κ(0)∥

β
α
α

] 2α
β

≲

[
h

βγ
β−α ∥κ(0)∥

β
α
α + ∥κ(0)∥

β
α
−αe

−ch
βγ

β−α β
2α t

] 2α
β

so that the error bound (30) holds for all times up to an adjustment of the
constants. This implies the statement of the lemma with our choice of h and τ .
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Technical Supplements

Lemma 5.1. Assume a, b, c, d > 0, ρ ≥ 1
2 and that x, y satisfy the differential

inequality

x′ ≤ −ax1+ρy−ρ + bx, x(0) = x0 (33)

y′ ≤ −cxρy1−ρ + d
√
xy, y(0) = y0. (34)

Then within any time interval [0, T ] for which

x(t) ≥
(
d

c

) 2
2ρ−1

y0, (35)

with

A :=
b

a
yρ0 , B(t) :=

[
1− b

a

(
x0
y0

)−ρ]
e−bρt

we have

x(t) ≤ A (1−B(t))
−1
, y(t) ≤ y0.

If B(t) ≥ 0, this can be further estimated by

x(t) ≤
(
A+ xρ0e

−bρt) 1
ρ , y(t) ≤ y0.

Proof. First, we show that y(t) ≤ y0 for all t ∈ T . To this end, note that
condition (35) states that we are above a critical point for the second ODE
(34). Indeed, setting y′(t) = 0 and thus y(t) = y0 and solving the second ODE
(with = instead of ≤) for x(t), we have

x(t) =

(
d

c

) 2
2ρ−1

y0.

To show that y(t) ≥ y0, let ϵ ≥ 0 and define

Tϵ = sup

{
t ≤ T

∣∣∣∣∣x(t) ≥
(
d

c

) 2
2ρ−1

y0(1 + ϵ)

}
,

τϵ = inf {t ≤ Tϵ|y(t) ≥ y0(1 + ϵ)} ,

where the definition of Tϵ resembles the definition of T up to a safety factor of
1 + ϵ and τϵ is the smallest time when our hypothesis y(t) ≤ y0 fails up to a
small margin. Assume that τϵ < Tϵ. Since 2ρ− 1 ≥ 0, for all t < τϵ, we have

x(t)2ρ−1 ≥
(
d

c

)2

[y0(1 + ϵ)]
2ρ−1 ≥

(
d

c

)2

y(t)2ρ−1,
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which upon rearrangement is equivalent to

−cxρy1−ρ + d
√
xy ≤ 0,

so that the differential equation (34) yields y′(t) ≤ 0 and hence y(t) ≤ y0 for
all t < τϵ. On the other hand, for all t > τϵ we have y(t) > y0(1 + ϵ), which
contradicts the continuity of y. It follows that τϵ ≥ Tϵ and with limϵ→0 Tϵ = T ,
we obtain

y(t) ≤ y0, t < T.

Next, we show the bounds for x(t). For any fixed function y, the function x is
bounded by the solution z of the equality case

z′ = −az1+ρy−ρ + bz, z(0) = x0

of the first equation (33). This is a Bernoulli differential equation, with solution

x(t) ≤ z(t) =

[
e−bρt

(
aρ

∫ t

0

ebρτy(τ)−ρ dτ + x−ρ0

)]− 1
ρ

.

Since y(t) ≤ y0, in the relevant time interval this simplifies to

z(t)ρ ≤ ebρt
(
aρ

∫ t

0

ebρτy−ρ0 dτ + x−ρ0

)−1
= ebρt

(a
b

(
ebρt − 1

)
y−ρ0 + x−ρ0

)−1
=
(a
b
y−ρ0 −

(a
b
y−ρ0 − x−ρ0

)
e−bρt

)−1

=
b

a
yρ0︸︷︷︸

=:A

1−

(
1− b

a

(
x0
y0

)−ρ)
e−bρt︸ ︷︷ ︸

=:B(t)


−1

,

which shows the first bound for x(t). We can estimate this further by

z(t)ρ ≤ A

1−B(t)
=
A[1−B(t)]

1−B(t)
+

AB(t)

1−B(t)
= A+

A

1−B(t)
B(t).

In case B(t) ≥ 0, the function A/(1 − B(t)) is monotonically decreasing and
thus with A/(1−B(0)) = xρ0, we have

z(t)ρ ≤ A+
A

1−B(0)
B(t) = A+ xρ0B(t) ≤ A+ xρ0e

−bρt,

which shows the second bound for x(t) in the lemma.
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5.2 Proof of Lemma 4.3: NTK Hölder continuity

The proof is technical but elementary. We start with upper bounds and Hölder
continuity for simple objects, like hidden layers, and then compose these for
derived objects with results for the NTK at the end of the section.

Throughout this section, we use a bar ·̄ to denote a perturbation. In partic-
ular W̄ ℓ is a perturbed weight,

f̄ ℓ+1(x) = W̄ ℓn
−1/2
ℓ σ

(
f̄ ℓ(x)

)
, f̄1(x) = W̄ 0V x

is the neural network with perturbed weights and
¯̂
Σ,

¯̂
Σ̇, Γ̄ and

¯̂
Γ are the kernels of

the perturbed network. The bounds in this section depend on the operator norm

of the weight matrices. At initialization, they are bounded
∥∥W ℓ

∥∥n−1/2ℓ ≲ 1,
with high probability. All perturbations of the weights that we need are close∥∥W ℓ − W̄ ℓ

∥∥n−1/2ℓ ≲ 1 so that we may assume∥∥W ℓ
∥∥n−1/2ℓ ≲ 1 (36)∥∥W̄ ℓ
∥∥n−1/2ℓ ≲ 1 (37)

In addition, we consider bounded domains

∥x∥ ≲ 1 for all x ∈ D. (38)

Lemma 5.2. Assume that ∥x∥ ≲ 1.

1. Assume that σ satisfies the growth condition (13) and may be different in
each layer. Assume the weights are bounded (36). Then

∥∥f ℓ(x)∥∥ ≲ n
1/2
0

ℓ−1∏
k=0

∥∥W k
∥∥n−1/2k .

2. Assume that σ satisfies the growth and Lipschitz conditions (13) and (14)
and may be different in each layer. Assume the weights and perturbed
weights are bounded (36), (37). Then

∥∥f ℓ(x)− f̄ ℓ(x)
∥∥ ≲ n

1/2
0

ℓ−1∑
k=0

∥∥W k − W̄ k
∥∥n−1/2k

ℓ−1∏
j=0
j ̸=k

max
{∥∥W j

∥∥ , ∥∥W̄ j
∥∥}n−1/2j .

3. Assume that σ has bounded derivative (15) and may be different in each
layer. Assume the weights are bounded (36). Then

∥∥f ℓ(x)− f ℓ(x̄)
∥∥ ≲ n

1/2
0

[
ℓ−1∏
k=0

∥∥W k
∥∥n−1/2k

]
∥x− x̄∥.
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Proof. 1. For ℓ = 0, we have∥∥f1(x)∥∥ =
∥∥W 0V x

∥∥ ≤ n
1/2
0

∥∥W 0
∥∥n−1/20 ,

where in the last step we have used that V has orthonormal columns and
∥x∥ ≲ 1. For ℓ > 0, we have

∥∥f ℓ+1
∥∥ =

∥∥∥W ℓn
−1/2
ℓ σ

(
f ℓ
)∥∥∥ ≤

∥∥W ℓ
∥∥n−1/2ℓ

∥∥σ (f ℓ)∥∥ (13)

≲
∥∥W ℓ

∥∥n−1/2ℓ

∥∥f ℓ∥∥
induction

≲
∥∥W ℓ

∥∥n−1/2ℓ n
1/2
0

ℓ−1∏
k=0

∥∥W k
∥∥n−1/2k = n

1/2
0

ℓ∏
k=0

∥∥W k
∥∥n−1/2k ,

where in the first step we have used the definition of f ℓ+1, in the third the
growth condition and in the fourth the induction hypothesis.

2. For ℓ = 0 we have∥∥f1 − f̄1
∥∥ =

∥∥[W 0 − W̄ 0]V x
∥∥ = n

1/2
0

∥∥W 0 − W̄ 0
∥∥n−1/20 ,

where in the last step we have used that V has orthonormal columns and
∥x∥ ≲ 1. For ℓ > 0, we have∥∥f ℓ+1 − f̄ ℓ+1

∥∥ =
∥∥∥W ℓn

−1/2
ℓ σ

(
f ℓ
)
− W̄ ℓn

−1/2
ℓ σ

(
f̄ ℓ
)∥∥∥

≤
∥∥W ℓ − W̄ ℓ

∥∥n−1/2ℓ

∥∥σ (f ℓ)∥∥
+
∥∥W̄ ℓ

∥∥n−1/2ℓ

∥∥σ (f ℓ)− σ
(
f̄ ℓ
)∥∥

=: I + II

For the first term, the growth condition (13) implies
∥∥σ (f ℓ)∥∥ ≲

∥∥f ℓ∥∥ and
thus the first part of the Lemma yields

I ≲
∥∥W ℓ − W̄ ℓ

∥∥n−1/2ℓ n
1/2
0

ℓ−1∏
k=0

∥∥W k
∥∥n−1/2k .

For the second term, we have by Lipschitz continuity (14) and induction

II =
∥∥W̄ ℓ

∥∥n−1/2ℓ

∥∥σ (f ℓ)− σ
(
f̄ ℓ
)∥∥ ≲

∥∥W̄ ℓ
∥∥n−1/2ℓ

∥∥f ℓ − f̄ ℓ
∥∥

≲ n
1/2
0

ℓ−1∑
k=0

∥∥W k − W̄ k
∥∥n−1/2k

ℓ∏
j=0
j ̸=k

max
{∥∥W j

∥∥ , ∥∥W j
∥∥}n−1/2j .

By I and II we obtain

∥∥f ℓ+1 − f̄ ℓ+1
∥∥ ≲ n

1/2
0

ℓ∑
k=0

∥∥W k − W̄ k
∥∥n−1/2k

ℓ∏
j=0
j ̸=k

max
{∥∥W j

∥∥ , ∥∥W j
∥∥}n−1/2j ,

which shows the lemma.
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3. Follows from the mean value theorem because by Lemma 5.3 below the
first derivatives are uniformly bounded.

Lemma 5.3. Assume that σ has bounded derivative (15) and may be different
in each layer. Assume the weights are bounded (36). Then

∥∥Df ℓ(x)∥∥ ≲ n
1/2
0

ℓ−1∏
k=0

∥∥W k
∥∥n−1/2k .

Proof. For ℓ = 0, we have∥∥Df1(x)∥∥ =
∥∥W 0V Dx

∥∥ ≤ n
1/2
0

∥∥W 0
∥∥n−1/20 ,

where in the last step we have used that V has orthonormal columns and ∥Dx∥ =
∥I∥ = 1. For ℓ > 0, we have∥∥Df ℓ+1

∥∥ =
∥∥∥W ℓn

−1/2
ℓ Dσ

(
f ℓ
)∥∥∥

=
∥∥∥W ℓn

−1/2
ℓ

∥∥∥∥∥Dσ (f ℓ)∥∥ ≤
∥∥W ℓ

∥∥n−1/2ℓ

∥∥σ̇ (f ℓ)⊙Df ℓ
∥∥

(15)

≲
∥∥W ℓ

∥∥n−1/2ℓ

∥∥Df ℓ∥∥ induction

≲
∥∥W ℓ

∥∥n−1/2ℓ n
1/2
0

ℓ−1∏
k=0

∥∥W k
∥∥n−1/2k

= n
1/2
0

ℓ∏
k=0

∥∥W k
∥∥n−1/2k ,

where in the first step we have used the definition of f ℓ+1, in the fourth the
boundedness of σ̇ and in the fifth the induction hypothesis.

Remark 5.4. An argument analogous to Lemma 5.3 does not show that the
derivative is Lipschitz or similarly second derivatives

∥∥∂xi∂xjf
ℓ
∥∥ are bounded.

Indeed, the argument uses that∥∥∂xi
σ
(
f ℓ
)∥∥ =

∥∥σ̇ (f ℓ)⊙ ∂xi
f ℓ
∥∥ ≤

∥∥σ̇ (f ℓ)∥∥∞ ∥∥∂xi
f ℓ
∥∥ ,

where we bound the first factor by the upper bound of σ̇ and the second by
induction. However, higher derivatives produce products∥∥∂xi

∂xj
σ
(
f ℓ
)∥∥ =

∥∥∥σ̇ (f ℓ)⊙ ∂xi
∂xi

f ℓ + σ(2)
(
f ℓ
)
⊙ ∂xi

f ℓ ⊙ ∂xj
f ℓ
∥∥∥

≤
∥∥σ̇ (f ℓ)∥∥∞ ∥∥∂xi

∂xj
f ℓ
∥∥+ ∥∥∥σ(2)

(
f ℓ
)∥∥∥
∞

∥∥∂xi
f ℓ ⊙ ∂xj

f ℓ
∥∥

With bounded weights (36) the hidden layers are of size
∥∥∂xif

ℓ
∥∥ ≲ n

1/2
0 but a

naive estimate of their product by Cauchy Schwarz and embedding
∥∥∂xi

f ℓ ⊙ ∂xj
f ℓ
∥∥ ≤

∥∂xi
f ℓ∥ℓ4∥∂xi

f ℓ∥ℓ4 ≤ ∥∂xi
f ℓ∥∥∂xi

f ℓ∥ ≲ n0 is much larger.
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Given the difficulties in the last remark, we can still show that f ℓ is Hölder
continuous with respect to the weights in a Hölder norm with respect to x.

Lemma 5.5. Assume that σ satisfies the growth and Lipschitz conditions (13),
(14) and may be different in each layer. Assume the weights, perturbed weights
and domain are bounded (36), (37), (38). Then for 0 < α < 1∥∥σ (f ℓ)∥∥

C0;α ≲ n
1/2
0 .∥∥σ (f̄ ℓ)∥∥

C0;α ≲ n
1/2
0 .

∥∥σ (f ℓ)− σ
(
f̄ ℓ
)∥∥
C0;α ≲ n

1/2
0

[
ℓ−1∑
k=0

∥∥W k − W̄ k
∥∥n−1/2k

]1−α
.

Proof. By the growth condition (13) and the Lipschitz continuity (14) of the
activation function, we have∥∥σ (f ℓ)∥∥

C0 ≲
∥∥f ℓ∥∥

C0 ,
∥∥σ (f ℓ)∥∥

C0;1 ≲
∥∥f ℓ∥∥

C0;1 .

Thus the interpolation inequality in Lemma 6.3 implies∥∥σ (f ℓ)∥∥
C0;α ≲

∥∥σ (f ℓ)∥∥1−α
C0

∥∥σ (f ℓ)∥∥α
C0;1 ≲

∥∥f ℓ∥∥1−α
C0

∥∥f ℓ∥∥α
C0;1 ≲ n

1/2
0 ,

where in the last step we have used the bounds form Lemma 5.2 together with∥∥W ℓ
∥∥n−1/2ℓ ≲ 1 and

∥∥W̄ ℓ
∥∥n−1/2ℓ ≲ 1 from Assumptions (36), (37). Likewise,

by the interpolation inequality in Lemma 6.3 we have∥∥σ (f ℓ)− σ
(
f̄ ℓ
)∥∥
C0;α ≲

∥∥σ (f ℓ)− σ
(
f̄ ℓ
)∥∥1−α
C0

∥∥σ (f ℓ)− σ
(
f̄ ℓ
)∥∥α
C0;1

≲
∥∥σ (f ℓ)− σ

(
f̄ ℓ
)∥∥1−α
C0 max

{∥∥σ (f ℓ)∥∥α
C0;1

∥∥σ (f̄ ℓ)∥∥α
C0;1

}
.

≲
∥∥f ℓ − f̄ ℓ

∥∥1−α
C0 max

{∥∥f ℓ∥∥α
C0;1

∥∥f̄ ℓ∥∥α
C0;1

}
.

≲ n
1/2
0

[
ℓ−1∑
k=0

∥∥W k − W̄ k
∥∥n−1/2k

]1−α
,

where in the third step we have used that σ is Lipschitz and in the last step

the bounds from Lemma 5.2 together with the bounds
∥∥W ℓ

∥∥n−1/2ℓ ≲ 1 and∥∥W̄ ℓ
∥∥n−1/2ℓ ≲ 1 from Assumptions (36), (37).

Lemma 5.6. Assume that σ satisfies the growth and Lipschitz conditions (13),
(14) and may be different in each layer. Assume the weights, perturbed weights
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and domain are bounded (36), (37), (38). Then for 0 < α, β < 1∥∥∥Σ̂ℓ∥∥∥
C0;α,β

≲
n0
nℓ
,∥∥∥ ¯̂Σℓ∥∥∥

C0;α,β
≲
n0
nℓ
,

∥∥∥Σ̂ℓ − ¯̂
Σℓ
∥∥∥
C0;α,α

≲
n0
nℓ

[
ℓ−1∑
k=0

∥∥W k − W̄ k
∥∥n−1/2k

]1−α
.

Proof. Throughout the proof, we abbreviate

f ℓ = f ℓ(x), f̄ ℓ = f̄ ℓ(x), f̃ ℓ = f ℓ(y), ˜̄f ℓ = f̄ ℓ(x),

for two independent variables x and y. Then by definition (12) of Σ̂ℓ∥∥∥Σ̂ℓ∥∥∥
C0;α,β

=
1

nℓ

∥∥∥σ (f ℓ)T σ (f̃ ℓ)∥∥∥
C0;α,β

≤ 1

nℓ

∥∥σ (f ℓ)∥∥
C0;α

∥∥∥σ (f̃ ℓ)∥∥∥
C0;β

≲
n0
nℓ
,

where in the second step we have used the product identity Item 3 in Lemma 6.3

and in the last step Lemma 5.5. The bound for
∥∥∥ ¯̂Σℓ∥∥∥

C0;α,β
follows analogously.

Likewise for α = β∥∥∥Σ̂ℓ − ¯̂
Σℓ
∥∥∥
C0;α,α

=
1

nℓ

∥∥∥σ (f ℓ)T σ (f̃ ℓ)− σ
(
f̄ ℓ
)T
σ
(
˜̄f ℓ
)∥∥∥

C0;α,α

=
1

nℓ

∥∥∥[σ (f ℓ)− σ
(
f̄ ℓ
)]T

σ
(
f̃ ℓ
)
− σ

(
f̄ ℓ
)T [

σ
(
f̃ ℓ
)
− σ

(
˜̄f ℓ
)]∥∥∥

C0;α,α

≤ 1

nℓ

∥∥∥[σ (f ℓ)− σ
(
f̄ ℓ
)]T

σ
(
f̃ ℓ
)∥∥∥

C0;α,α
+
∥∥∥σ (f̄ ℓ)T [σ (f̃ ℓ)− σ

(
˜̄f ℓ
)]∥∥∥

C0;α,α

=
2

nℓ

∥∥∥[σ (f ℓ)− σ
(
f̄ ℓ
)]T

σ
(
f̃ ℓ
)∥∥∥

C0;α,α
,

where in the last step we have used symmetry in x and y. Thus, by the product
identity Item 3 in Lemma 6.3, we obtain∥∥∥Σ̂ℓ − ¯̂

Σℓ
∥∥∥
C0;α,α

≤ 2

nℓ

∥∥σ (f ℓ)− σ
(
f̄ ℓ
)∥∥
C0;α

∥∥∥σ (f̃ ℓ)∥∥∥
C0;α

≲
n0
nℓ

[
ℓ−1∑
k=0

∥∥W k − W̄ k
∥∥n−1/2k

]1−α
,

where in the last step we have used Lemma 5.5.

Lemma 5.7 (Lemma 4.3 restated form overview). Assume that σ and σ̇ satisfy
the growth and Lipschitz conditions (13), (14) and may be different in each
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layer. Assume the weights, perturbed weights and domain are bounded (23) and
nL ∼ nL−1 ∼ · · · ∼ n0. Then for 0 < α < 1∥∥∥Γ̂∥∥∥

C0;α,α
≲ 1∥∥∥¯̂Γ∥∥∥

C0;α,α
≲ 1

∥∥∥Γ̂− ¯̂
Γ
∥∥∥
C0;α,α

≲
n0
nL

[
L−1∑
k=0

∥∥W k − W̄ k
∥∥n−1/2k

]1−α
.

Proof. By Lemma 5.6 and nℓ ∼ n0, we have

∥∥∥Σ̂ℓ∥∥∥
C0;α,α

,
∥∥∥ ¯̂Σℓ∥∥∥

C0;α,α
≲ 1,

∥∥∥Σ̂ℓ − ¯̂
Σℓ
∥∥∥
C0;α,α

≲
n0
nℓ

[
ℓ−1∑
k=0

∥∥W k − W̄ k
∥∥n−1/2k

]1−α
.

Since σ̇ satisfies the same assumptions as σ, the same lemma provides

∥∥∥ ˆ̇Σℓ∥∥∥
C0;α,α

,

∥∥∥∥ ¯̂Σ̇ℓ∥∥∥∥
C0;α,α

≲ 1,

∥∥∥∥ ˆ̇Σℓ − ¯̂
Σ̇ℓ
∥∥∥∥
C0;α,α

≲
n0
nℓ

[
ℓ−1∑
k=0

∥∥W k − W̄ k
∥∥n−1/2k

]1−α
.

Furthermore, by Lemma 4.1, we have

Γ̂(x, y) = ˆ̇ΣL(x, y)Σ̂L−1(x, y).

Thus, since Hölder spaces are closed under products, Lemma 6.3 Item 4, it
follows that∥∥∥Γ̂− ¯̂

Γ
∥∥∥
C0;α,α

=

∥∥∥∥ ˆ̇ΣL(x, y)Σ̂L−1(x, y)− ¯̂
Σ̇L(x, y)

¯̂
ΣL−1(x, y)

∥∥∥∥
C0;α,α

≤
∥∥∥∥[ ˆ̇ΣL(x, y)− ¯̂

Σ̇L(x, y)

]
Σ̂L−1(x, y)

∥∥∥∥
C0;α,α

+

∥∥∥∥ ¯̂Σ̇L(x, y) [Σ̂L−1(x, y)− ¯̂
ΣL−1(x, y)

]∥∥∥∥
C0;α,α

≤
∥∥∥∥ ˆ̇ΣL(x, y)− ¯̂

Σ̇L(x, y)

∥∥∥∥
C0;α,α

∥∥∥Σ̂L−1(x, y)∥∥∥
C0;α,α

+

∥∥∥∥ ¯̂Σ̇L(x, y)∥∥∥∥
C0;α,α

∥∥∥Σ̂L−1(x, y)− ¯̂
ΣL−1(x, y)

∥∥∥
C0;α,α

≲
n0
nℓ

[
ℓ−1∑
k=0

∥∥W k − W̄ k
∥∥n−1/2k

]1−α
,

where in the last step we have used Lemma 5.6 and nL ∼ nL−1.
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5.3 Proof of Lemma 4.4: Concentration

Concentration for the NTK

Γ(x, y) := Σ̇L(x, y)ΣL−1(x, y)

is derived from concentration for the forward kernels Σ̇L and ΣL−1. They are
shown inductively by splitting off the expectation Eℓ [·] with respect to the last
layer W ℓ in∥∥∥Σ̂ℓ+1 − Σℓ+1

∥∥∥
C0;α,β

≤
∥∥∥Σ̂ℓ+1 − Eℓ

[
Σ̂ℓ+1

]∥∥∥
C0;α,β

+
∥∥∥Eℓ [Σ̂ℓ+1

]
− Σℓ+1

∥∥∥
C0;α,β

.

Concentration for the first term is shown in Section 5.3.1 by a chaining argument
and bounds for the second term in Section 5.3.2 with an argument similar to
[18]. The results are combined into concentration for the NTK in Section 5.3.3.

5.3.1 Concentration of the Last Layer

We define
Λ̂ℓr(x, y) := σ

(
f ℓr (x)

)
σ
(
f ℓr (y)

)
as the random variables that constitute the kernel

Σ̂ℓ(x, y) =
1

nℓ

nℓ∑
r=1

Λ̂ℓr(x, y) =
1

nℓ

nℓ∑
r=1

σ
(
f ℓr (x)

)
σ
(
f ℓr (y)

)
.

For fixed weights W 0, . . . ,W ℓ−2 and random W ℓ−1, all Λ̂ℓr, r ∈ [nℓ] are random
variables dependent only on the random vector W ℓ−1

r· and thus independent.
Hence, we can show concentration uniform in x and y by chaining. For Dudley’s
inequality, one would bound the increments∥∥∥Λ̂ℓr(x, y)− Λ̂ℓr(x̄, ȳ)

∥∥∥
ψ2

≲ ∥x− x̄∥α + ∥y − ȳ∥α,

where the right hand side is a metric for α ≤ 1. However, this is not sufficient
in our case. First, due to the product in the definition of Λ̂ℓr, we can only
bound the ψ1 norm and second this leads to a concentration of the supremum
norm ∥Λ̂ℓr∥C0 , whereas we need a Hölder norm. Therefore, we bound the finite
difference operators∥∥∥∆α

x,hx
∆β
y,hy

Λ̂ℓr(x, y)−∆α
x,h̄x

∆β

y,h̄y
Λ̂ℓr(x̄, ȳ)

∥∥∥
ψ1

≲ ∥x− x̄∥α + ∥hx − h̄x∥α + ∥y − ȳ∥β + ∥hy − h̄y∥β ,

which can be conveniently expressed by the Orlicz space valued Hölder norm∥∥∥∆α
x∆

β
y Λ̂

ℓ
r

∥∥∥
C0;α,β(∆D×∆D;ψ1)

≲ 1,

with the following notations:
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1. Finite difference operators ∆α : (x, h) → h−α[f(x+ h)− f(x)], depending
both on x and h, with partial application two variables x and y denoted
by ∆α

x and ∆α
y , respectively. See Section 6.1.

2. Domain ∆D consisting of all pairs (x, h) for which x, x+ h ∈ D, see (48).
Likewise the domain ∆D ×∆D consists of all feasible x, hx, y and hy.

3. Following the definitions in Section 6.1, we use the Hölder space C0;α,β(∆D ×∆D;Lψi),
i = 1, 2 with values in the Orlicz spaces Lψi of random variables for
which the ∥ · ∥ψi

norms are finite. For convenience, we abbreviate this by
C0;α,β(∆D ×∆D;ψi).

Given the above inequalities, we derive concentration by chaining for for mixed
tail random variables in [16] summarized in Corollary 6.12.

Lemma 5.8. Assume for k = 0, . . . , ℓ−2 the weights Wk are fixed and bounded

∥W k∥n−1/2k ≲ 1. Assume that W ℓ−1 is i.i.d. sub-gaussian with ∥W ℓ−1
ij ∥ψ2

≲ 1.
Let r ∈ [nℓ].

1. Assume that σ satisfies the growth condition (13) and may be different in
each layer. Then ∥∥σ (f ℓr (x))∥∥ψ2

≲

(
n0
nℓ−1

)1/2

.

2. Assume that σ has bounded derivative (15) and may be different in each
layer. Then

∥∥σ (f ℓr (x))− σ
(
f ℓr (x̄)

)∥∥
ψ2

≲

(
n0
nℓ−1

)1/2

∥x− x̄∥.

Proof. 1. Since for frozen W 0, . . . ,W ℓ−2

W ℓ−1
r· n

−1/2
ℓ−1 σ

(
f ℓ−1

)
=

nℓ−1∑
s=1

W ℓ−1
rs n

−1/2
ℓ−1 σ

(
f ℓ−1s

)
is a sum of independent random variablesW ℓ−1

rs n
−1/2
ℓ−1 σ

(
f ℓ−1s

)
, s ∈ [nℓ−1],

by Hoeffding’s inequality (general version for sub-gaussian norms, see e.g.
[67, Proposition 2.6.1]) we have∥∥∥W ℓ−1

r· n
−1/2
ℓ−1 σ

(
f ℓ−1

)∥∥∥
ψ2

≲ n
−1/2
ℓ−1

∥∥σ (f ℓ−1)∥∥ .
Thus∥∥σ (f ℓr)∥∥ψ2

≲
∥∥f ℓr∥∥ψ2

=
∥∥∥W ℓ−1

r· n
−1/2
ℓ−1 σ

(
f ℓ−1

)∥∥∥
ψ2

≤ n
−1/2
ℓ−1

∥∥σ (f ℓ−1)∥∥ ≤ n
−1/2
ℓ−1

∥∥f ℓ−1∥∥ ≲

(
n0
nℓ−1

)1/2

,
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where in the first step we have used the growth condition and Lemma 6.7,
in the fourth step the growth condition and in the last step the upper
bounds from Lemma 5.2.

2. Using Hoeffding’s inequality analogous to the previous item, we have∥∥∥W ℓ−1
r· n

−1/2
ℓ−1

[
σ
(
f ℓ−1(x)

)
− σ

(
f ℓ−1(x̄)

)]∥∥∥
ψ2

≲ n
−1/2
ℓ−1

∥∥σ (f ℓ−1(x))− σ
(
f ℓ−1(x̄)

)∥∥
and∥∥σ (f ℓr (x))− σ

(
f ℓr (x̄)

)∥∥
ψ2

≲
∥∥f ℓr (x)− f ℓr (x̄)

∥∥
ψ2

=
∥∥∥W ℓ−1

r· n
−1/2
ℓ−1

[
σ
(
f ℓ−1(x)

)
− σ

(
f ℓ−1(x̄)

)]∥∥∥
ψ2

≲ n
−1/2
ℓ−1

∥∥σ (f ℓ−1(x))− σ
(
f ℓ−1(x̄)

)∥∥
≲ n

−1/2
ℓ−1

∥∥f ℓ−1(x)− f ℓ−1(x̄)
∥∥

≲

(
n0
nℓ−1

)1/2

∥x− x̄∥,

where in the first step we have used the Lipschitz condition and Lemma
6.7, in the fourth step the Lipschitz condition and in the last step the
Lipschitz bounds from Lemma 5.2.

Lemma 5.9. Let U and V be two normed spaces and D ⊂ U . For all 0 ≤ α ≤ 1
2 ,

we have
∥∆αf∥C0;α(∆D;V ) ≤ 4 ∥f∥C0;2α(D;V ) ,

with ∆D defined in (48).

Proof. Throughout the proof, let C0;2α = C0;2α(D;V ) and | · | = ∥ · ∥U or | · | =
∥ ·∥V depending on context. Unraveling the definitions, for every (x, h), (x̄, h̄) ∈
∆D, we have to show∣∣∆α

hf(x)−∆α
h̄f(x̄)

∣∣ ≤ 4∥f∥C0;2α max{|x− x̄|, |h− h̄|}α.

We consider two cases. First, assume that |h| ≤ max{|x− x̄|, |h− h̄|} and h̄ is
arbitrary. Then |h̄| ≤ |h̄− h|+ |h| ≤ 2max{|x− x̄|, |h− h̄|} and thus∣∣∆α

hf(x)−∆α
h̄f(x̄)

∣∣ ≤ |∆α
hf(x)|+

∣∣∆α
h̄f(x̄)

∣∣
≤ ∥f∥C0;2α |h|α + ∥f∥C0;2α |h̄|α ≤ 3∥f∥C0;2α max{|x− x̄|, |h− h̄|}α.
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In the second case, assume that max{|x− x̄|, |h− h̄|} ≤ |h| and without loss of
generality that |h| ≤ |h̄|. Then∣∣∆α

hf(x)−∆α
h̄f(x̄)

∣∣ ≤ ∣∣[f(x+ h)− f(x)]|h|−α − [f(x̄+ h̄)− f(x̄)]|h̄|−α
∣∣

≤
∣∣f(x+ h)− f(x)− f(x̄+ h̄) + f(x̄)

∣∣ |h|−α
+ |f(x̄+ h̄)− f(x̄)|

∣∣|h|−α − |h̄|−α
∣∣

=: I + II.

For the first term, we have

I ≤
∣∣f(x+ h)− f(x)− f(x̄+ h̄) + f(x̄)

∣∣ |h|−α
≤ ∥f∥C0;2α

[
|x+ h− x̄− h̄|2α + |x− x̄|2α

]
|h|−α

≤ 3∥f∥C0;2α max
{
|x− x̄|2α, |h− h̄|2α

}
|h|−α

≤ 3∥f∥C0;2α max
{
|x− x̄|, |h− h̄|

}α
.

For the second term, since α ≤ 1, we have

II ≤ ∥f∥C0;2α |h̄|2α
∣∣|h|−α − |h̄|−α

∣∣
≤ ∥f∥C0;2α |h|α|h̄|α

∣∣|h|−α − |h̄|−α
∣∣

≤ ∥f∥C0;2α

∣∣|h̄|α − |h|α
∣∣

≤ ∥f∥C0;2α |h̄− h|α.

Combining all inequalities shows the result.

Lemma 5.10. Assume for k = 0, . . . , ℓ−2 the weightsWk are fixed and bounded

∥W k∥n−1/2k ≲ 1. Assume that W ℓ−1 is i.i.d. sub-gaussian with ∥W ℓ−1
ij ∥ψ2

≲ 1.
Assume that σ satisfies the growth condition (13), has bounded derivative (15)
and may be different in each layer. Let r ∈ [nℓ]. Then for α, β ≤ 1/2∥∥∥∆α

x∆
β
y Λ̂

ℓ
r

∥∥∥
C0;α,β(∆D×∆D;ψ1)

≲
n0
nℓ−1

,

with ∆D defined in (48).

Proof. Throughout the proof, we abbreviate

f ℓ = f ℓ(x), C0;α(ψi) = C0;α(∆D,ψi), i = 1, 2,

f̃ ℓ = f ℓ(y), C0;α,β(ψi) = C0;α,β(∆D ×∆D,ψi).

Since by Lemma 6.8 we have ∥XY ∥ψ1
≤ ∥X∥ψ2

∥Y ∥ψ2
by the product inequality

Lemma 6.3 Item 3 for Hölder norms we obtain∥∥∥∆α
x∆

β
y Λ̂

ℓ
r

∥∥∥
C0;α,β(ψ1)

=
∥∥∥∆α

xσ
(
f ℓr
)
∆β
yσ
(
f̃ ℓr

)∥∥∥
C0;α,β(ψ1)

≲
∥∥∆α

xσ
(
f ℓr
)∥∥
C0;α(ψ2)

∥∥∥∆β
yσ
(
f̃ ℓr

)∥∥∥
C0;β(ψ2)

.
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Next, we use Lemma 5.9 to eliminate the finite difference in favour of a higher
Hölder norm∥∥∥∆α

x∆
β
y Λ̂

ℓ
r

∥∥∥
C0;α,β(ψ1)

≲
∥∥σ (f ℓr)∥∥C0;2α(ψ2)

∥∥∥σ (f̃ ℓr)∥∥∥
C0;2β(ψ2)

.

Finally, Lemma 5.8 implies that
∥∥σ (f ℓr)∥∥C0;2α(D;ψ2)

≤ n
1/2
0 n

−1/2
ℓ−1 and likewise

for f̃ ℓr and thus ∥∥∥∆α
x∆

β
y Λ̂

ℓ
r

∥∥∥
C0;α,β(ψ1)

≲
n0
nℓ−1

.

Lemma 5.11. Assume for k = 0, . . . , ℓ−2 the weightsWk are fixed and bounded

∥W k∥n−1/2k ≲ 1. Assume that W ℓ−1 is i.i.d. sub-gaussian with ∥W ℓ−1
ij ∥ψ2

≲ 1.
Assume that the domain D is bounded, that σ satisfies the growth condition
(13), has bounded derivative (15) and may be different in each layer. Then for
α = β = 1/2

Pr

[∥∥∥Σ̂ℓ − E
[
Σ̂ℓ
]∥∥∥
C0;α,β(D)

≥ C
n0
nℓ−1

[√
d+

√
u

√
nℓ−1

+
d+ u

nℓ−1

]]
≤ e−u.

Proof. Since ∆α
x∆

β
y Λ̂

ℓ
r for r ∈ [nℓ] only depends on the random vectorW ℓ−1

r· , all

stochastic processes
(
∆α
x,hx

∆β
y,hy

Λ̂ℓr(x, y)
)
(x,hx,y,hy)∈∆D×∆D

are independent

and satisfy ∥∥∥∆α
x∆

β
y Λ̂

ℓ
r

∥∥∥
C0;α,β(∆D×∆D;ψ1)

≲
n0
nℓ−1

by Lemma 5.10. Thus, we can estimate the processes’ supremum by the chaining
Corollary 6.12

Pr

 sup
(x,hx)∈∆D
(y,hy)∈∆D

∥∥∥∥∥ 1

nℓ−1

nℓ−1∑
r=1

∆α
x∆

β
y Λ̂

ℓ
r − E

[
∆α
x∆

β
y Λ̂

ℓ
r

]∥∥∥∥∥ ≥ Cτ

 ≤ e−u,

with

τ =
n0
nℓ−1

[(
d

nℓ−1

)1/2

+
d

nℓ−1
+

(
u

nℓ−1

)1/2

+
u

nℓ−1

]
.

Noting that
sup

(x,hx)∈∆D
(y,hy)∈∆D

∣∣∆α
x∆

β
y ·
∣∣ = ∥ · ∥C0;α,β(D)

and
1

nℓ−1

nℓ−1∑
r=1

∆α
x∆

β
y Λ̂

ℓ
r = ∆α

x∆
β
y

1

nℓ−1

nℓ−1∑
r=1

Λ̂ℓr = ∆α
x∆

β
y Σ̂

ℓ

completes the proof.
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5.3.2 Perturbation of Covariances

This section contains the tools to estimate∥∥∥Eℓ [Σ̂ℓ+1
]
− Σℓ+1

∥∥∥
C0;α,β

,

with an argument analogous to [18], except that we measure differences in Hölder

norms. As we will see in the next section, both Eℓ
[
Σ̂ℓ+1

]
and Σℓ+1 are of the

form
E(u,v)∼N (0,A) [σ(u)σ(v)] ,

with two different matrices A and Â and thus it suffices to show that the above
expectation is Hölder continuous in A. By a variable transform

A =

[
a11 a12
a21 a22

]
=

[
a2 ρab
ρab b2

]
and rescaling, we reduce the problem to matrices of the form

A =

[
1 ρ
ρ 1

]
.

For these matrices, by Mehler’s theorem we decompose the expectation as

E(u,v)∼N (0,A) [σ(u)σ(v)] =

∞∑
k=0

⟨σ,Hk⟩N ⟨σ,Hk⟩N
ρk

k!
,

where Hk are Hermite polynomials. The rescaling introduces rescaled activation
functions, which we denote by

σa(x) := σ(ax). (39)

Finally, we show Hölder continuity by bounding derivatives. To this end, we
use the multi-index γ to denote derivatives ∂γ = ∂γaa ∂γbb ∂

γρ
ρ with respect to the

transformed variables. Details are as follows.

Lemma 5.12. Let

A =

[
a2 ρab
ρab b2

]
=

[
a

b

] [
1 ρ
ρ 1

] [
a

b

]
.

Then

E(u,v)∼N (0,A) [σ(u)σ(v)] =

∞∑
k=0

⟨σa, Hk⟩N ⟨σb, Hk⟩N
ρk

k!
.

Proof. By rescaling, or more generally, linear transformation of Gaussian ran-
dom variables, we have

E(u,v)∼N (0,A) [σ(u)σ(v)] =

∫
σ(u)σ(v)dN

(
0,

[
a

b

] [
1 ρ
ρ 1

] [
a

b

])
(u, v)

=

∫
σ(au)σ(bv)dN

(
0,

[
1 ρ
ρ 1

])
(u, v).
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Thus, by Mehler’s theorem (Theorem 6.14 in the appendix) we conclude that

E(u,v)∼N (0,A) [σ(u)σ(v)] =

∫∫
σ(au)σ(bv)

∞∑
k=0

Hk(u)Hk(v)
ρk

k!
dN (0, 1)(u) dN (0, 1)(v)

=

∞∑
k=0

⟨σa, Hk⟩N ⟨σb, Hk⟩N
ρk

k!
.

Lemma 5.13. Assume A =

[
a2 ρab
ρab b2

]
is positive semi-definite and all deriva-

tives up to σ(γa+γρ) and σ
(γb+γρ)
b are continuous and have at most polynomial

growth for x→ ±∞. Then

∂γE(u,v)∼N (0,A) [σ(u)σ(v)] ≤
∥∥∂γa+γρ(σa)∥∥N ∥∥∂γb+γρ(σb)∥∥N .

Proof. By Lemma 5.12, we have

∂γE(u,v)∼N (0,A) [σ(u)σ(v)] = ∂γ
∞∑
k=0

⟨σa, Hk⟩N ⟨σb, Hk⟩N
ρk

k!

=

∞∑
k=0

∂γa ⟨σa, Hk⟩N ∂
γb ⟨σb, Hk⟩N ∂

γρ
ρk

k!
.

(40)

We first estimate the ρ derivative. Since 0 ⪯ A and a, b > 0, we must have

0 ⪯
[
1 ρ
ρ 1

]
and thus det

[
1 ρ
ρ 1

]
= 1−ρ2 ≥ 0. It follows that |ρ| ≤ 1. Therefore

∣∣∣∣∂γρ ρkk!
∣∣∣∣ = ∣∣∣∣ 1k! k!

(k − γρ)!
ρk−γρ

∣∣∣∣ ≤ 1

(k − γρ)!
. (41)

We eliminate the denominator (k − γρ)! by introducing extra derivatives into
∂γa ⟨σa, Hk⟩N . To this end, by Lemma 6.13, we decrease the degree of the
Hermite polynomial for a higher derivative on σa:

∂γa ⟨σa, Hk⟩N = ⟨∂γa(σa), Hk⟩N =
〈
∂γa+γρ(σa), Hk−γρ

〉
N
.

By Lemma 6.13, ∥ · ∥N normalized Hermite polynomials are given by

H̄k :=
1√
k!
Hk

and thus

∂γa ⟨σa, Hk⟩N =
〈
∂γa+γρ(σa), H̄k−γρ

〉
N

√
(k − γρ)!.
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Plugging the last equation and (41) into (40), we obtain

∂γE(u,v)∼N (0,A) [σ(u)σ(v)]

≤
∞∑
k=0

∣∣〈∂γa+γρ(σa), H̄k

〉
N

∣∣ ∣∣〈∂γb+γρ(σb), H̄k

〉
N

∣∣
≤

( ∞∑
k=0

〈
∂γa+γρ(σa), H̄k

〉2
N

)1/2( ∞∑
k=0

〈
∂γb+γρ(σb), H̄k

〉2
N

)1/2

,

=
∥∥∂γa+γρ(σa)∥∥N ∥∥∂γb+γρ(σb)∥∥N ,

where in the second step we have used Cauchy-Schwarz and in the last that H̄k

are an orthonormal basis.

Lemma 5.14. Let f(a11, a22, a12) be implicitly defined by solving the identity[
a11 a12
a12 a22

]
=

[
a ρab
ρab b

]
for a, b and ρ. Let Df be a domain with a11, a22 ≥ c > 0 and |a12| ≲ 1. Then

∥f ′′′∥C1(Df ) ≲ 1.

Proof. Comparing coefficients, f is explicitly given by

f(a11, a22, a12) =
[
a11 a22

a12
a11a22

]T
.

Since the denominator is bounded away from zero, all third partial derivatives
exist and are bounded.

Lemma 5.15. For D ⊂ Rd and x, y ∈ D, let

A(x, y) =

[
a11(x, y) a12(x, y)
a12(x, y) a22(x, y)

]
B(x, y) =

[
b11(x, y) b12(x, y)
b12(x, y) b22(x, y)

]
,

with

a11(x, y) ≥ c > 0, a22(x, y) ≥ c > 0, |a12(x, y)| ≲ 1,

b11(x, y) ≥ c > 0, b22(x, y) ≥ c > 0, |b12(x, y)| ≲ 1.

Assume the derivatives σ(i), i = 0, . . . , 3 are continuous and have at most
polynomial growth for x → ±∞ and for all a ∈ {a(x, y) : x, y ∈ D, a ∈
{a11, a22, b11, b22}} the scaled activation satisfies∥∥∂i(σa)∥∥N ≲ 1, i = 1, . . . , 3,
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with σa defined in (39). Then, for α, β ≤ 1 the functions

x→ E(u,v)∼N (0,A(x,y)) [σ(u)σ(v)] ,

x→ E(u,v)∼N (0,B(x,y)) [σ(u)σ(v)]

satisfy∥∥E(u,v)∼N (0,A) [σ(u)σ(v)]− E(u,v)∼N (0,B) [σ(u)σ(v)]
∥∥
C0;α,β(D)

≲ ∥A∥C0;α,β(D)∥B∥C0;α,β(D)∥A−B∥C0;α,β(D).

Proof. Define

F (a, b, ρ) = E(u,v)∼N (0,Ā) [σ(u)σ(v)] . Ā =

[
a ρab
ρab b

]
and f(a11, a22, a12) by solving the identity[

a11 a12
a12 a22

]
=

[
a ρab
ρab b

]
for a, b and ρ. Then

F ◦ f ◦A = x, y → E(u,v)∼N (0,A(x,y)) [σ(u)σ(v)] ,

F ◦ f ◦B = x, y → E(u,v)∼N (0,B(x,y)) [σ(u)σ(v)]

and∥∥E(u,v)∼N (0,A) [σ(u)σ(v)]− E(u,v)∼N (0,B) [σ(u)σ(v)]
∥∥
C0;α,β(D)

= ∥F ◦ f ◦A− F ◦ f ◦B∥C0;α,β(D) .

By Lemmas 6.4 (for ∆α and ∆β) and 6.5 (for ∆α∆β), we have

∥F ◦ f ◦A− F ◦ f ◦B∥C0;α,β(D)

≲ ∥F ◦ f∥C3(Df )∥A−B∥C0;α,β(D)

max{1, ∥A∥C0;α,β(D)}max{1, ∥B∥C0;α,β(D)},

with Df = A(D) ∪ B(D), so that it suffices to bound ∥F ◦ f∥C3(Df ) ≲ 1. This
follows directly from the assumptions, chain rule, product rule and Lemmas 5.13
and 5.14. Finally, we simplify

max{1, ∥A∥C0;α,β(D)} ≤ 1

c
∥A∥C0;α,β(D)

because
1

c
∥A∥C0;α,β(D) ≥

1

c
a11(·) ≥ 1

and likewise for B.
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5.3.3 Concentration of the NTK

We combine the results from the last two sections to show concentration in-
equalities, first for the forward kernels Σℓ and Σ̇ℓ and then for the NTK Γ.

Lemma 5.16. Let α = β = 1/2 and k = 0, . . . , ℓ.

1. Assume that all W k are are i.i.d. standard normal.

2. Assume that σ satisfies the growth condition (13), has uniformly bounded
derivative (15), derivatives σ(i), i = 0, . . . , 3 are continuous and have at
most polynomial growth for x→ ±∞ and the scaled activations satisfy∥∥∂i(σa)∥∥N ≲ 1, a ∈ {Σk(x, x) : x ∈ D}, i = 1, . . . , 3,

with σa defined in (39). The activation function may be different in each
layer.

3. For all x ∈ D assume
Σk(x, x) ≥ cΣ > 0.

4. The widths satisfy nℓ ≳ n0 for all ℓ = 0, . . . , L.

Then, with probability at least

1− c

ℓ−1∑
k=1

e−nk + e−uk

we have ∥∥Σℓ∥∥
C0;α,β ≲ 1∥∥∥Σ̂ℓ∥∥∥
C0;α,β

≲ 1∥∥∥Σ̂ℓ − Σℓ
∥∥∥
C0;α,β

≲
ℓ−1∑
k=0

n0
nk

[√
d+

√
uk√

nk
+
d+ uk
nk

]
≤ 1

2
cΣ

for all u1, . . . , uℓ−1 ≥ 0 sufficiently small so that the last inequality holds.

Proof. We prove the statement by induction. Let us first consider ℓ ≥ 1. We
split off the expectation over the last layer∥∥∥Σ̂ℓ+1 − Σℓ+1

∥∥∥
C0;α,β

≤
∥∥∥Σ̂ℓ+1 − Eℓ

[
Σ̂ℓ+1

]∥∥∥
C0;α,β

+
∥∥∥Eℓ [Σ̂ℓ+1

]
− Σℓ+1

∥∥∥
C0;α,β

= I + II,

where Eℓ [·] denotes the expectation with respect to W ℓ. We Estimate I, given
that the lower layers satisfy

∥W k∥n−1/2k ≲ 1, k = 0, . . . , ℓ− 1, (42)
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which is true with probability at least 1 − 2e−nk , see e.g. [67, Theorem 4.4.5].
Then, by Lemma 5.11 for uℓ ≥ 0

Pr

[∥∥∥Σ̂ℓ+1 − E
[
Σ̂ℓ+1

]∥∥∥
C0;α,β(D)

≥ C
n0
nℓ

[√
d+

√
uℓ√

nℓ
+
d+ uℓ
nℓ

]]
≤ e−uℓ . (43)

Next we estimate II. To this end, recall that Σ̂ℓ+1(x, y) is defined by

Σ̂ℓ+1(x, y) =
1

nℓ

nℓ+1∑
r=1

σ
(
f ℓ+1
r (x)

)
σ
(
f ℓ+1
r (y)

)
.

For fixed lower layers W 0, . . . ,W ℓ−1, the inner arguments

f ℓ+1
r (x) =W ℓ

r·n
−1/2
ℓ σ

(
f ℓ(x)

)
f ℓ+1
r (x) =W ℓ

r·n
−1/2
ℓ σ

(
f ℓ(y)

)
are Gaussian random variables in W ℓ

r· with covariance

El
[
W ℓ
r·n
−1/2
ℓ σ

(
f ℓ(x)

)T
W ℓ
r·n
−1/2
ℓ σ

(
f ℓ(y)

)]
=

1

nℓ

nℓ∑
r=1

n
−1/2
ℓ σ

(
f ℓ(x)

)
n
−1/2
ℓ σ

(
f ℓ(y)

)
= Σ̂ℓ(x, y). (44)

It follows that

Eℓ
[
Σ̂ℓ+1(x, y)

]
= E(u,v)∼N (0,Â) [σ(u)σ(v)] , Â =

[
Σ̂ℓ(x, x) Σ̂ℓ(x, y)

Σ̂ℓ(y, x) Σ̂ℓ(y, y)

]
.

This matches the definition

Σℓ+1(x, y) = Eu,v∼N (0,A) [σ (u) , σ (v)] A =

[
Σℓ(x, x) Σℓ(x, y)
Σℓ(y, x) Σℓ(y, y)

]
of the process Σℓ+1 up to the covariance matrix Â versus A. Thus, we can

estimate the difference
∥∥∥Eℓ [Σ̂ℓ+1(x, y)

]
− Σℓ+1

∥∥∥
C0;α,β

by Lemma 5.15 if the

entries of A and Â satisfy the required bounds. To this end, we first bound the
diagonal entries away from zero. For A, this is true by assumption. For Â, by
induction, with probability at least 1− c

∑ℓ−1
k=1 e

−nk + e−uk we have

∥∥∥Σ̂ℓ − Σℓ
∥∥∥
C0;α,β

≲
ℓ−1∑
k=0

n0
nk

[√
d+

√
uk√

nk
+
d+ uk
nk

]
≤ 1

2
cΣ. (45)

In the event that this is true, we have

Σ̂ℓ(x, x) ≥ 1

2
cΣ > 0.
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Next, we bound the off diagonal terms. Since the weights are bounded (42),
Lemma 5.6 implies∥∥∥Σ̂ℓ∥∥∥

C0;α,β
≲
n0
nl

≲ 1,
∥∥Σℓ∥∥

C0;α,β ≲ 1,

where the last inequality follows from (45). In particular,

Σ̂ℓ(x, y) ≲ 1, Σℓ(x, y) ≲ 1

for all x, y ∈ D. Hence, we can apply Lemma 5.15 and obtain∥∥∥Eℓ [Σ̂ℓ+1
]
− Σℓ+1

∥∥∥
C0;α,β

≲
∥∥Σℓ∥∥

C0;α,β

∥∥∥Σ̂ℓ∥∥∥
C0;α,β

∥∥∥Σ̂ℓ − Σℓ
∥∥∥
C0;α,β

≲
∥∥∥Σ̂ℓ − Σℓ

∥∥∥
C0;α,β

. ≲
ℓ−1∑
k=0

n0
nk

[√
d+

√
uk√

nk
+
d+ uk
nk

]
,

where the last line follows by induction. Together with (42), (43) and a union
bound, this shows the result for ℓ ≥ 1.

Finally, we consider the induction start for ℓ = 0. The proof is the same,
except that in (44) the covariance simplifies to

El
[
f1(x)f1(y)

]
= El

[
(W 0

r·V x)(W
0
r·y)

]
= (V x)T (V y) = xT y = Σ0(x, y).

Hence, for ℓ = 1 the two covariances A and Â are identical and therefore

∥E0

[
Σ̂1(x, y)

]
− Σ1∥C0;α,β = 0.

Lemma 5.17 (Lemma 4.4, restated from the overview). Let α = β = 1/2 and
k = 0, . . . , L− 1.

1. Assume that WL ∈ {−1,+1} with probability 1/2 each.

2. Assume that all W k are are i.i.d. standard normal.

3. Assume that σ and σ̇ satisfy the growth condition (13), have uniformly
bounded derivatives (15), derivatives σ(i), i = 0, . . . , 3 are continuous and
have at most polynomial growth for x → ±∞ and the scaled activations
satisfy∥∥∂i(σa)∥∥N ≲ 1,

∥∥∂i(σ̇a)∥∥N ≲ 1, a ∈ {Σk(x, x) : x ∈ D}, i = 1, . . . , 3,

with σa(x) := σ(ax). The activation functions may be different in each
layer.

4. For all x ∈ D assume
Σk(x, x) ≥ cΣ > 0.

5. The widths satisfy nℓ ≳ n0 for all ℓ = 0, . . . , L.
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Then, with probability at least

1− c

L−1∑
k=1

e−nk + e−uk (46)

we have ∥∥∥Γ̂− Γ
∥∥∥
C0;α,β

≲
L−1∑
k=0

n0
nk

[√
d+

√
uk√

nk
+
d+ uk
nk

]
≤ 1

2
cΣ

for all u1, . . . , uL−1 ≥ 0 sufficiently small so that the rightmost inequality holds.

Proof. By definition (11) of Γ and Lemma 4.1 for Γ̂, we have

Γ(x, y) = Σ̇L(x, y)ΣL−1(x, y), Γ̂(x, y) = ˆ̇ΣL(x, y)Σ̂L−1(x, y)

and therefore∥∥∥Γ− Γ̂
∥∥∥
C0;α,β

=
∥∥∥Σ̇LΣL−1 − ˆ̇ΣLΣ̂L−1

∥∥∥
C0;α,β

=
∥∥∥[Σ̇L − ˆ̇ΣL

]
ΣL−1

∥∥∥
C0;α,β

+
∥∥∥ ˆ̇ΣL [ΣL−1 − Σ̂L−1

]∥∥∥
C0;α,β

=
∥∥∥Σ̇L − ˆ̇ΣL

∥∥∥
C0;α,β

∥∥ΣL−1∥∥
C0;α,β +

∥∥∥ ˆ̇ΣL∥∥∥
C0;α,β

∥∥∥ΣL−1 − Σ̂L−1
∥∥∥
C0;α,β

,

where in the last step we have used Lemma 6.3 Item 4. Thus, the result follows
from∥∥ΣL−1∥∥

C0;α,β ≲ 1,
∥∥∥Σ̂L−1∥∥∥

C0;α,β
≲ 1,

∥∥∥Σ̇L∥∥∥
C0;α,β

≲ 1,
∥∥∥ ˆ̇ΣL∥∥∥

C0;α,β
≲ 1

and

max
{∥∥∥ΣL−1 − Σ̂L−1

∥∥∥
C0;α,β

,
∥∥∥Σ̇L − ˆ̇ΣL

∥∥∥
C0;α,β

}
≲
L−1∑
k=0

n0
nk

[√
d+

√
uk√

nk
+
d+ uk
nk

]
≤ 1

2
cΣ,

with probability (46) by Lemma 5.16. For Σ̇L, we do not require the lower
bound Σ̇k(x, x) ≥ cΣ > 0 because in the recursive definition σ̇ is only used in
the last layer and therefore not necessary in the induction step in the proof of
Lemma 5.16.

5.4 Proof of Lemma 4.5: Weights stay Close to Initial

The derivative ∂Wkf ℓ(x) ∈ Rnℓ−1×(nk+1×nk) is a tensor with three axes for which
we define the norm∥∥∂Wkf ℓ(x)

∥∥
∗ := sup

∥u∥,∥v∥,∥w∥≤1

∑
r,i,j

urviwj∂Wk
ij
f ℓr (x)
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and the corresponding maximum norm ∥ · ∥C0(D;∗) for functions mapping x to a
tensor measured in the ∥ ·∥∗ norm. We use this norm for an inductive argument
in a proof, but later only apply it for the last layer ℓ = L + 1. In this case
nL+1 = 1 and the norm reduces to a regular matrix norm.

Lemma 5.18. Assume that σ satisfies the growth and derivative bounds (13),
(15) and may be different in each layer. Assume the weights are bounded

∥W k∥n−1/2k ≲ 1, k = 1, . . . , ℓ− 1. Then for 0 ≤ α ≤ 1

∥∥∂Wkf ℓ
∥∥
C0(D;∗) ≲

(
n0
nk

)1/2

.

Proof. First note that for any tensor T∥∥∥∥∥∥
∑
r,i,j

urviwjTrij

∥∥∥∥∥∥
C0

≤ C∥u∥∥v∥∥w∥

implies that ∥T∥C0(D;∗) ≤ C, which we use throughout the proof. We proceed

by induction over ℓ. For k ≥ ℓ, the pre-activation f ℓ does not depend on W k

and thus ∂Wkf ℓ(x) = 0. For k = ℓ− 1, we have

∂Wk
ij
fk+1
r (x) = ∂Wk

ij
W k
r·n
−1/2
k σ

(
fk(x)

)
= δirn

−1/2
k σ

(
fkj (x)

)
and therefore for any vectors u, v, w∥∥∥∥∥∥

∑
r,i,j

urviwj∂Wk
ij
fkr (x)

∥∥∥∥∥∥
C0

=
∥∥∥n−1/2k (uT v)

(
wTσ

(
fk
))∥∥∥

C0

≤ n
−1/2
k ∥u∥∥v∥∥w∥

∥∥σ (fk)∥∥
C0 ≲ ∥u∥∥v∥∥w∥

(
n0
nk

)1/2

,

where in the last step we have used Lemma 5.5. Thus, we conclude that∥∥∂Wkfk+1(x)
∥∥
C0(D;∗) ≲

(
n0
nk

)1/2

.

For k < ℓ− 1, we have

∂Wk
ij
f ℓ(x) = ∂Wk

ij
W ℓ−1n

−1/2
ℓ−1 σ

(
f ℓ−1

)
=W ℓ−1n

−1/2
ℓ−1

[
σ̇
(
f ℓ−1

)
⊙ ∂Wk

ij
f ℓ−1

]
and therefore∥∥∥∥∥∥
∑
r,i,j

urviwj∂W ℓ
ij
fkr

∥∥∥∥∥∥
C0

≤ ∥uTW ℓ−1n
−1/2
ℓ−1 ∥∥v∥∥w∥

∥∥∥σ̇ (f ℓ−1)⊙ ∂Wk
ij
f ℓ−1

∥∥∥
C0(D;∗)

≤ ∥u∥∥v∥∥w∥
∥∥σ̇ (f ℓ−1)∥∥

C0(D;ℓ∞)

∥∥∥∂Wk
ij
f ℓ−1

∥∥∥
C0(D;∗)

≲ ∥u∥∥v∥∥w∥
(
n0
nk

)1/2

,
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where in the second step we have used that ∥W ℓ−1∥n−1/2ℓ−1 ≲ 1 and in the last

step we have used that
∥∥σ̇ (f ℓ−1)∥∥

ℓ∞
≲ 1 because |σ̇(·)| ≲ 1 and the induction

hypothesis. It follows that

∥∥∂Wkf ℓ(x)
∥∥
C0(D;∗) ≲

(
n0
nk

)1/2

.

Lemma 5.19 (Lemma 4.5, restated from the overview). Assume that σ satisfies
the growth and derivative bounds (13), (15) and may be different in each layer.
Assume the weights are defined by the gradient flow (6) and satisfy

∥W ℓ(0)∥n−1/2ℓ ≲ 1, ℓ = 1, . . . , L,

∥W ℓ(0)−W ℓ(τ)∥n−1/2ℓ ≲ 1, 0 ≤ τ < t.

Then ∥∥W ℓ(t)−W ℓ(0)
∥∥n−1/2ℓ ≲

n
1/2
0

nℓ

∫ t

0

∥κ∥C0(D)′ dx dτ,

where C0(D)
′
is the dual space of C0(D).

Proof. By assumption, we have

∥W ℓ(τ)∥n−1/2ℓ ≲ 1, 0 ≤ τ < t, ℓ = 1, . . . , L.

With loss L and residual κ = fθ − f , because

d

dτ
W ℓ = −∇W ℓL =

∫
D

κ(x)DWℓ
fL+1(x) dx

we have ∥∥W ℓ(t)−W ℓ(0)
∥∥ =

∥∥∥∥∫ t

0

d

dτ
W ℓ(τ) dτ

∥∥∥∥
=

∥∥∥∥∫ t

0

∫
D

κ(x)DWℓ
fL+1(x) dx dτ

∥∥∥∥
≤
∫ t

0

∫
D

|κ(x)|
∥∥DWℓ

fL+1(x)
∥∥ dx dτ

≲

(
n0
nℓ

)1/2 ∫ t

0

∥κ∥C0(D)′ dx dτ,

where in the last step we have used Lemma 5.18. Multiplying with n
−1/2
ℓ shows

the result.
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5.5 Proof of Theorem 2.1: Main Result

Proof of Theorem 2.1. The result follows directly from Lemma 4.2 with the
smoothness spaces Hα = Hα(Sd−1). While the lemma bounds the residual
κ in the H−α and Hα norms, we aim for an H0 = L2(Sd−1) bound. This follows
directly from the interpolation inequality

∥ · ∥L2(Sd−1) = ∥ · ∥H0(Sd−1) ≤ ∥ · ∥1/2
H−α(Sd−1)

∥ · ∥1/2
Hα(Sd−1)

.

It remains to verify all assumptions. To this end, first note that the initial
weights satisfy

∥W (0)ℓ∥n−1/2ℓ ≲ 1, ℓ = 0, . . . , L, (47)

with probability at least 1 − 2e−cm since nℓ ∼ m by assumption, see e.g. [67,
Theorem 4.4.5]. Then, the assumptions are shown as follows.

1. The weights stay close to the initial (17): We use the scaled matrix norm

∥θ∥∗ := max
L∈[L]

∥W ℓ∥n−1/2ℓ

to measure the weight distance. Then, by (47) with p0(m) := 2Le−m

given that ∥θ(τ)− θ(0)∥∗ ≤ 1, Lemma 4.5 implies that

∥θ(t)− θ(0)∥∗ = max
ℓ∈[L]

∥∥W ℓ(t)−W ℓ(0)
∥∥n−1/2ℓ

≲
n
1/2
0

nℓ

∫ t

0

∥κ∥C0(Sd−1)′ dx dτ,≲ m−1/2
∫ t

0

∥κ∥H0(Sd−1) dx dτ,

where the last step follows from the assumption n0 ∼ · · · ∼ nL−1 =: m
and the embedding ∥ · ∥C0(Sd−1)′ ≲ ∥ · ∥H0(Sd−1)′ = ∥ · ∥H0(Sd−1), which
follows directly from the inverted embedding ∥ · ∥H0(Sd−1) ≲ ∥ · ∥C0(Sd−1).

2. Norms and Scalar Product (18): Both are well known for Sobolev spaces,
and follow directly from norm definition (52) with Cauchy-Schwarz.

3. Concentration of the Initial NTK (19): Since by (5) the first four deriva-
tives of the activation function have at most polynomial growth, we have

∥∂i(σa)∥=
∫
R
σ(i)(ax)ai dN (0, 1))(x) ≲ 1

for all a ∈ {Σk(x, x) : x ∈ D} contained in the set {cΣ, CΣ} for some
CΣ ≥ 0, by assumption. Together with α+ ϵ < 1/2 for sufficiently small ϵ,
hidden dimensions d ≲ n0 ∼ . . . ,∼ nL =: m and the concentration result
Lemma 4.4 we obtain, with probability at least

1− p∞(m, τ) := 1− cL(e−m + e−τ )
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the bound ∥∥∥Γ̂− Γ
∥∥∥
C0;α+ϵ,α+ϵ

≲ L

[√
d

m
+

√
τ

m
+
τ

m

]
for the neural tangent kernel for all 0 ≤ τ = u0 = · · · = uL−1 ≲ 1. By
Lemma 6.16, the kernel bound directly implies the operator norm bound∥∥H −Hθ(0)

∥∥
−α,α ≲ L

[√
d

m
+

√
τ

m
+
τ

m

]
for the corresponding integral operators H and Hθ(0), with kernels Γ and

Γ̂, respectively. If τ/m ≲ 1, we can drop the last term and thus satisfy
assumption (19).

4. Hölder continuity of the NTK (20): By (47) with probability at least

1− pL(m) := 1− Le−m

we have ∥θ(0)∥∗ ≲ 1 and thus for all perturbations θ̄ with
∥∥θ̄ − θ(0)

∥∥
∗ ≤

h ≤ 1 by Lemma 4.3 that∥∥∥Γ̂− ¯̂
Γ
∥∥∥
C0;α+ϵ,α+ϵ

≲ Lh1−α−ϵ

for any sufficiently small ϵ > 0. By Lemma 6.16, the kernel bound implies
the operator norm bound∥∥Hθ(0) −Hθ̄

∥∥
α←−α ≲ Lhγ

for any γ < 1 − α and integral operators Hθ(0) and Hθ̄ corresponding to

kernels Γθ(0) and Γ̂θ̄, respectively.

5. Coercivity (5): Is given by assumption.

Thus, all assumptions of Lemma 4.2 are satisfied, which directly implies the
theorem as argued above.

6 Technical Supplements

6.1 Hölder Spaces

Definition 6.1. Let U and V be two normed spaces.

1. For 0 < α ≤ 1, we define the Hölder spaces on the domain D ⊂ U as all
functions f : D → V for which the norm

∥f∥C0;α(D;V ) := max{∥f∥C0(D;V ), |f |C0;α(D;V )} <∞

is finite, with

|f |C0(D;V ) := sup
x∈D

∥f(x)∥V , |f |C0;α(D;V ) := sup
x ̸=x̄∈D

∥f(x)− f(x̄)∥V
∥x− x̄∥αU

.
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2. For 0 < α, β ≤ 1, we define the mixed Hölder spaces on the domain
D ×D ⊂ U × U as all functions g : D ×D → V for which the norm

∥f∥C0;α,β(D;V ) := max
a∈{0,α}
b∈{0,β}

|f |C0;a,b(D;V ) <∞,

with

|f |C0;0,0(D;V ) := sup
x,y∈D

∥f(x, y)∥V ,

|f |C0;α,0(D;V ) := sup
x ̸=x̄,y∈D

∥f(x, y)− f(x̄, y)∥V
∥x− x̄∥αU

,

|f |C0;0,β(D;V ) := sup
x,y ̸=ȳ∈D

∥f(x, y)− f(x, ȳ)∥V
∥y − ȳ∥βU

,

|f |C0;α,β(D;V ) := sup
x ̸=x̄,y ̸=ȳ∈D

∥f(x, y)− f(x̄, y)− f(x, ȳ) + f(x̄, ȳ)∥V
∥x− x̄∥αU∥y − ȳ∥βU

.

3. We use the following abbreviations:

(a) If D is understood from context and V = Rn, both equipped with the
Euclidean norm, we write

C0;α = C0;α(D) = C0;α(D; ℓ2(Rn)).

(b) If V = Lψi
, i = 1, 2 is an Orlicz space, we write

C0;α(D;ψi) = C0;α(D;Lψi
).

We use analogous abbreviations for all other spaces.

It is convenient to express Hölder spaces in terms of finite difference opera-
tors,

∆0
hf(x) = f(x), ∆α

hf(x) = ∥h∥−αU [f(x+ h)− f(x)], α > 0,

which satisfy product and chain rules similar to derivatives. We may also con-
sider these as functions in both x and h

∆αf : (x, h) ∈ ∆D → V, ∆αf(x, h) = ∆α
hf(x)

on the domain

∆D := {(x, h) : x ∈ D, x+ h ∈ D} ⊂ U × U. (48)

Then, the Hölder norms can be equivalently expressed as

|f |C0;α(D;V ) = sup
x̸=x+h∈D

∥∆α
hf∥V = ∥∆αf∥C0(∆D;V ) .
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If f = f(x, y) depends on multiple variables, we denote the partial finite differ-
ence operators by ∆α

x,hx
and ∆α

y,hy
defined by

∆0
x,hx

f(x, y) := f(x, y), ∆α
x,hx

f(x, y) := ∥hx∥−αU [f(x+ hx, y)− f(x, y)],

∆0
y,hy

f(x, y) := f(x, y), ∆β
y,hy

f(x, y) := ∥hy∥−βU [f(x, y + hy)− f(x, y)],

for α > 0, and likewise

∆α
xf(x, y, hx) = ∆α

x,hx
f(x, y), ∆α

y f(x, y, hy) = ∆α
y,hy

f(x, y).

Then, the mixed Hölder norms is

|f |C0;α,β(D;V ) = sup
x ̸=x+hx∈D
y ̸=y+hy∈D

∥∥∥∆α
x,hx

∆β
y,hy

f(x, y)
∥∥∥
V
=
∥∥∆α

x∆
β
yf
∥∥
C0(∆D×∆D;V )

for all α, β ≥ 0 and likewise for all other Hölder semi-norms.
In the following lemma, we summarize several useful properties of finite

differences.

Lemma 6.2. Let U, V andW be three normed spaces, D ⊂ U and 0 < α, β ≤ 1.

1. Product rule: Let f, g : D → R. Then

∆α
h [fg](x) = [∆α

hf(x)] g(x) + f(x+ h) [∆α
hg(x)] .

2. Chain rule: Let f : D → V and g : f(D) →W . Define

∆̄h(f, g)(x) :=

∫ 1

0

f ′(tg(x+ h) + (1− t)g(x)) dt.

Then
∆α
h(f ◦ g)(x) = ∆̄h(f, g)(x)∆

α
hg(x).

Proof. 1. Plugging in the definitions, we have

∆α
h [fg](x) = ∥h∥−αU [f(x+ h)g(x+ h)− f(x)g(x)]

= ∥h∥−αU [[f(x+ h)− f(x)]g(x) + f(x+ h)[g(x+ h)− g(x)]]

= [∆α
hf(x)] g(x) + f(x+ h) [∆α

hg(x)] .

2. Follows directly from the integral form of the Taylor remainder:

∆α
h(f ◦ g)(x) = ∥h∥−αU [f(g(x+ h))− f(g(x))]

= ∥h∥−αU
∫ 1

0

f ′(tg(x+ h) + (1− t)g(x)) dt[g(x+ h)− g(x)]

= ∆̄h(f, g)(x)∆
α
hg(x).
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In the following lemma, we summarize several useful properties of Hölder
spaces.

Lemma 6.3. Let U and V be two normed spaces, D ⊂ U and 0 < α, β ≤ 1.

1. Interpolation Inequality: For any f ∈ C1(D;V ), we have

∥f∥C0;α(D;V ) ≤ 2∥f∥1−αC0(D;V )∥f∥
α
C0;1(D;V ).

2. Assume σ satisfies the growth and Lipschitz conditions ∥σ (x) ∥V ≲ ∥x∥V
and ∥σ (x)− σ (x̄) ∥V ≲ ∥x− x̄∥V . Then

∥σ ◦ f∥C0;α(D;V ) ≲ ∥f∥C0;α(D;V ).

3. Let V1 and V2 be two normed spaces and f, g : D → V1. Let · : V1×V1 → V2
be a distributive product that satisfies ∥u · v∥V2

≲ ∥u∥V1
∥v∥V1

. Then

∥f · g∥C0;α,β(D;V2) ≲ ∥f∥C0;α(D;V1)∥g∥C0;β(D;V1).

4. Let V = R and f, g : D ×D → R. Then

∥fg∥C0;α,β(D) ≲ ∥f∥C0;α,β(D)∥g∥C0;α,β(D).

Proof. 1. The inequality follows directly from

|f |C0;α(D;V ) = sup
x,x̄∈D

∥f(x)− f(x̄)∥V
∥x− x̄∥αU

≤ sup
x ̸=x̄∈D

∥f(x)− f(x̄)∥1−αV sup
x ̸=x̄∈D

∥f(x)− f(x̄)∥αV
∥x− x̄∥αU

≤ 2∥f∥1−αC0(D;V )∥f∥
α
C0;1(D;V ).

2. Follows from

|σ ◦ f |C0;α(D;V ) = sup
x,x̄∈D

∥σ(f(x))− σ(f(x̄))∥V
∥x− x̄∥αU

≲ sup
x,x̄∈D

∥f(x)− f(x̄)∥αV
∥x− x̄∥αU

= ∥f∥C0;α(D;V ).

and likewise for the | · |C0(D;V ) norm.

3. Follows from

|f · g|C0;α,β(D;V2) = sup
x,x̄,y,ȳ∈D

∥f(x) · g(y)− f(x̄) · g(y)− f(x) · g(ȳ) + f(x̄) · g(ȳ)∥V2

∥x− x̄∥αU∥y − ȳ∥βU

= sup
x,x̄,y,ȳ∈D

∥[f(x)− f(x̄)] · [g(y)− g(ȳ)]∥V2

∥x− x̄∥αU∥y − ȳ∥βU

≲ sup
x,x̄,y,ȳ∈D

∥f(x)− f(x̄)∥V1
∥g(y)− g(ȳ)∥V1

∥x− x̄∥αU∥y − ȳ∥βU
= |f |C0;α(D;V1)|g|C0;β(D;V1)
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and analogous identities for the remaining semi norms |fg|C0;0,0(D;V2),
|fg|C0;α,0(D;V2), |fg|C0;0,β(D;V2).

4. We only show the bound for | · |C0;α,β(D). The other semi-norms follow
analogously. Applying the product rule (Lemma 6.2)

∆α
x,hx

[f(x, y)g(x, y)] =
[
∆α
x,hx

f(x, y)
]
g(x, y)+ f(x+hx, y)

[
∆α
x,hx

f(x, y)
]

and then analogously for ∆β
y,hy

∆β
y,hy

∆α
x,hx

[f(x, y)g(x, y)]

= ∆β
y,hy

{[
∆α
x,hx

f(x, y)
]
g(x, y) + f(x+ hx, y)

[
∆α
x,hx

f(x, y)
]}

=
[
∆β
y,hy

∆α
x,hx

f(x, y)
]
g(x, y) +

[
∆α
x,hx

f(x, y + hy)
] [

∆β
y,hy

g(x, y)
]

+
[
∆β
y,hy

f(x+ hx, y)
] [

∆α
x,hx

f(x, y)
]
+ f(x+ hx, y + hy)

[
∆β
y,hy

∆α
x,hx

f(x, y)
]
.

Taking the supremum directly shows the result.

The following two lemmas contain chain rules for Hölder and mixed Hölder
spaces.

Lemma 6.4. Let D ⊂ U and Df ⊂ V be domains in normed spaces U , V and
W . Let g : D → Df and f : Df →W . Let 0 < α, β ≤ 1. Then

∥∆α(f ◦ g)∥C0(∆D;W ) ≤ ∥f ′∥C0;0(Df ;L(V,W ))∥g∥C0;α(D;V )

and

∥∆α(f ◦ g)−∆α(f ◦ ḡ)∥C0(∆D;W )

≤ ∥f ′∥C0;1(Df ;L(V,W ))∥g − ḡ∥C0(D;V )∥ḡ∥C0;α(D;V )

+ ∥f ′∥C0;0(Df ;L(V,W ))∥g − ḡ∥C0;α(D;V ),

≤ 2∥f ′∥C0;1(Df ;L(V,W ))∥g − ḡ∥C0;α(D;V ) max{1, ∥ḡ∥C0;α(D;V )},

where L(V,W ) is the space of all linear maps V → W with induced operator
norm.

Proof. Note that

∆̄h(f, g)(x) :=

∫ 1

0

f ′(tg(x+ h) + (1− t)g(x)) dt

takes values in the linear maps L(V,W ) and thus ∥∆̄h(f, g)(x)v∥W ≤ ∥∆̄h(f, g)(x)∥L(V,W )∥v∥V ,
for all v ∈ V . Using the chain rule Lemma 6.2, it follows that

∥∆α
h(f ◦ g)(x)∥W =

∥∥∆̄h(f, g)(x)∆
α
hg(x)

∥∥
W

≤
∥∥∆̄h(f, g)(x)

∥∥
L(V,W )

∥∆α
hg(x)∥V
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and

∥∆α
h(f ◦ g)(x)−∆α

h(f ◦ ḡ)(x)∥W =
∥∥∆̄h(f, g)(x)∆

α
hg(x)− ∆̄h(f, ḡ)(x)∆

α
h ḡ(x)

∥∥
W

≤
∥∥∆̄h(f, g)(x)− ∆̄h(f, ḡ)(x)

∥∥
L(V,W )

∥∆α
hg(x)∥V

+
∥∥∆̄h(f, ḡ)(x)

∥∥
L(V,W )

∥∆α
hg(x)−∆α

h ḡ(x)∥V .

Hence, the result follows from∥∥∆̄h(f, ḡ)(x)
∥∥
L(V,W )

≤ ∥f ′∥C0(Df ;L(V,W )) (49)

and∥∥∆̄h(f, g)(x)− ∆̄h(f, ḡ)(x)
∥∥
L(V,W )

≤ ∥f ′∥C0;1(Df ;L(V,W ))

∫ 1

0

∥t(g − ḡ)(x+ h) + (1− t)(g − ḡ)(x)∥ dt

≤ ∥f ′∥C0;1(Df ;L(V,W ))∥g − ḡ∥C0(D;V ), (50)

where we have used that unlike ∆α
h , the integral ∆̄h does not have an inverse

∥h∥−αU factor.

Lemma 6.5. Let D ⊂ U and Df ⊂ V be domains in normed spaces U , V and
W . Let g : D → Df and f : Df →W . Let 0 < α, β ≤ 1. Then∥∥∆α∆β [f ◦ g − f ◦ ḡ]

∥∥
C0(∆D×∆D;W )

≤ ∥f∥C3(Df ,W )∥g − ḡ∥C0;α,β(D;V )

max{1, ∥g∥C0;α,β(D;V )}max{1, ∥ḡ∥C0;α,β(D;V )}.

Proof. In the following, we fix x and y, but only include it in the formulas if
necessary, e.g. f = f(x, y). By the chain rule Lemma 6.2, we have

∆β
y,hy

[f ◦ g − f ◦ ḡ] = ∆̄y,hy (f, g)∆
β
y,hy

g − ∆̄y,hy (f, ḡ)∆
β
y,hy

ḡ

=
[
∆̄y,hy

(f, g)− ∆̄y,hy
(f, ḡ)

]
∆β
y,hy

g

+ ∆̄y,hy (f, ḡ)
[
∆β
y,hy

g −∆β
y,hy

ḡ
]

=: I + II.

Applying the product rule Lemma 6.2 to the first term yields∥∥∆α
x,hx

I
∥∥
W

=
∥∥∥[∆α

x,hx
[∆̄y,hy (f, g)]−∆α

x,hx
[∆̄y,hy (f, ḡ)]

]
∆β
y,hy

g(x+ hx, y)

+
[
∆̄y,hy (f, g)− ∆̄y,hy (f, ḡ)

]
∆α
x,hx

∆β
y,hy

g
∥∥∥
W

≤
∥∥[∆α

x,hx
[∆̄y,hy

(f, g)]−∆α
x,hx

[∆̄y,hy
(f, ḡ)]

]∥∥
L(V,W )

∥∥∥∆β
y,hy

g(x+ hx, y)
∥∥∥
W

+
∥∥[∆̄y,hy

(f, g)− ∆̄y,hy
(f, ḡ)

]∥∥
L(V,W )

∥∥∥∆α
x,hx

∆β
y,hy

g
∥∥∥
W
.

51



Likewise, applying the product Lemma rule 6.2 to the second term yields∥∥∆α
x,hx

II
∥∥
W

=
∥∥∥∆α

x,hx
∆̄y,hy

(f, ḡ)
[
∆β
y,hy

g −∆β
y,hy

ḡ
]∥∥∥
W

+
∥∥∥∆̄y,hy

(f, ḡ)(x+ hx, y)
[
∆α
x,hx

∆β
y,hy

g −∆α
x,hx

∆β
y,hy

ḡ
]∥∥∥
W

≤
∥∥∆α

x,hx
∆̄y,hy

(f, ḡ)
∥∥
L(V,W )

∥∥∥∆β
y,hy

g −∆β
y,hy

ḡ
∥∥∥
W

+
∥∥∆̄y,hy

(f, ḡ)(x+ hx, y)
∥∥
L(V,W )

∥∥∥∆α
x,hx

∆β
y,hy

g −∆α
x,hx

∆β
y,hy

ḡ
∥∥∥
W
.

All terms involving only g and ḡ can easily be upper bounded by ∥g∥C0;α,β(D;V ),
∥ḡ∥C0;α,β(D;V ) or ∥g − ḡ∥C0;α,β(D;V ). The terms∥∥∆̄y,hy

(f, ḡ)(x+ hx, y)
∥∥
L(V,W )

≤ ∥f ′∥C0(Df ;L(V,W ))∥∥[∆̄y,hy
(f, g)− ∆̄y,hy

(f, ḡ)
]∥∥
L(V,W )

≤ ∥f ′∥C0;1(Df ;L(V,W ))∥g − ḡ∥C0(D;V )

are bounded by (49) and (50) in the proof of Lemma 6.4. For the remaining
terms, define

G(x) := tg(x, y + hy) + (1− t)g(x, y)

and likewise Ḡ. Then

∥G∥C0;α(D,V ) ≲ ∥g∥C0;α,β(D,V ), ∥G− Ḡ∥C0;α(D,V ) ≲ ∥g − ḡ∥C0;α,β(D,V ).

Thus, by Lemma 6.4, we have

∥∥∆α
x,hx

[
∆̄y,hy

(f, g)
]∥∥
L(V,W )

=

∥∥∥∥∫ 1

0

∆α
x,hx

(f ′ ◦G) dt
∥∥∥∥
L(V,W )

≤ ∥f ′′∥C0;0(Df ;L(V,L(V,W )))∥g∥C0;α,β(D;V )

and∥∥∆α
x,hx

[
∆̄y,hy

(f, g)− ∆̄y,hy
(f, ḡ)

]∥∥
L(V,W )

=

∥∥∥∥∫ 1

0

∆α
x,hx

[
f ′ ◦G− f ′ ◦ Ḡ

]
dt

∥∥∥∥
L(V,W )

≤ 2∥f ′′∥C0;1(Df ;L(V,L(V,W )))∥g − ḡ∥C0;α,β(D;V ) max{1, ∥ḡ∥C0;α,β(D;V )}.

Combining all inequalities yields the proof.

6.2 Concentration

In this section, we recall the definition of Orlicz norms, some basic properties
and the chaining concentration inequalities we use to show that the empirical
NTK is close to the NTK.
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Definition 6.6. For random variable X, we define the sub-gaussian and sub-
exponential norms by

∥X∥ψ2 = inf
{
t > 0 : E

[
exp(X2/t2)

]
≤ 2
}
,

∥X∥ψ1 = inf {t > 0 : E [exp(|X|/t)] ≤ 2} .

Lemma 6.7. Assume that σ satisfies the growth and Lipschitz conditions

|σ(x)| ≤ G|x|, |σ(x)− σ(y)| ≤ L|x− y|

for all x, y ∈ R and let X, Y be two sub-gaussian random variables. Then

∥σ (X) ∥ψ2 ≲ G∥X∥ψ2 , ∥σ (X)− σ (Y ) ∥ψ2 ≲ L∥X − Y ∥ψ2 .

Proof. For two random variables X and Y with X2 ≤ Y 2 almost surely, we have

∥X∥ψ2 = inf
{
t > 0 : E

[
exp(X2/t2)

]
≤ 2
}

≤ inf
{
t > 0 : E

[
exp(Y 2/t2)

]
≤ 2
}
= ∥Y ∥ψ2

.

Thus, the result follows directly form

σ(X)2 ≤ G2X2, [σ(x)− σ(y)]2 ≤ L2[x− y]2.

Lemma 6.8. Let X and Y be two sub-gaussian random variables. Then

∥XY ∥ψ1
≤ ∥X∥ψ2

∥Y ∥ψ2
.

Proof. Let

t = ∥X∥1/2ψ2
∥Y ∥1/2ψ2

=

∥∥∥∥∥
(
∥Y ∥ψ2

∥X∥ψ2

)1/2

X

∥∥∥∥∥
ψ2

=

∥∥∥∥∥
(
∥X∥ψ2

∥Y ∥ψ2

)1/2

Y

∥∥∥∥∥
ψ2

.

Ignoring a simple ϵ perturbation, we assume that the infima in the definition of
the ∥X∥ψ2 and ∥Y ∥ψ2 norms are attained. Then

exp

(
∥Y ∥ψ2

∥X∥ψ2

X2

t2

)
≤ 2, exp

(
∥X∥ψ2

∥Y ∥ψ2

Y 2

t2

)
≤ 2.

Thus, Young’s inequality implies

exp

(
|XY |
t

)
≤ exp

(
1

2

∥Y ∥ψ2

∥X∥ψ2

X2

t2
+

1

2

∥X∥ψ2

∥Y ∥ψ2

Y 2

t2

)
≤ exp

(
∥Y ∥ψ2

∥X∥ψ2

X2

t2
+

∥X∥ψ2

∥Y ∥ψ2

Y 2

t2

)1/2

≤
√
2
√
2 ≤ 2.

Hence
∥XY ∥ψ1

≤ t ≤ ∥X∥ψ2
∥Y ∥ψ2

.
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Theorem 6.9 ([16, Theorem 3.5]). Let X be a normed linear space. Assume
the X valued separable random process (Xt)t∈T , has a mixed tail, with respect
to some semi-metrics d1 and d2 on T , i.e.

Pr
[
∥Xt −Xs∥ ≥

√
ud2(t, s) + ud1(t, s)

]
≤ 2e−u

for all s, t ∈ T and u ≥ 0. Set

γα(T, di) := inf
T

sup
t∈T

∞∑
n=0

2n/ad(t, Tn), α ∈ {0, 1},

∆d(T ) := sup
s,t∈T

d(s, t),

where the infimum is taken over all admissible sequences Tn ⊂ T with |T0| = 1
and |Tn| ≤ 22

n

. Then for any t0 ∈ T

Pr

[
sup
t∈T

∥Xt −Xt0∥ ≥ C
[
γ2(T, d2) + γ1(T, d1) +

√
u∆d2(T ) + u∆d1(T )

]]
≤ e−u.

Remark 6.10. [16, Theorem 3.5] assumes that T is finite. Using separability
and monotone convergence, this can be extended to infinite T by standard
arguments.

Lemma 6.11. Let 0 ≤ α ≤ 1 and D ⊂ Rd be as set of Euclidean norm | · |-
diameter smaller than R ≥ 1. Then

γ1(D, | · |α) ≲
3α+ 1

α
R1+αd, γ2(D, | · |α) ≲

(
3α

4α

)1/2

Rα/2d1/2.

Proof. Let N(D, | · |α, u) be the covering number of D, i.e. the smallest number
of u-balls in the metric | · |α necessary to cover D. It is well known (e.g. [16,
(2.3)]) that

γi(D, | · |α) ≲
∫ ∞
0

[logN(D, | · |α, u)]1/i du ≲
∫ Rα

0

[logN(D, | · |α, u)]1/i du,

where in the last step we have used that N(D, | · |α, u) = 1 for u ≥ Rα and thus
its logarithm is zero. Since every u-cover in the | · | norm is a uα cover in the
| · |α metric, the covering numbers can be estimated by

N(D, | · |α, u) = N(D, | · |, u1/α) ≤
(

3R

u1/α

)d
=

(
(3R)α

u

)d/α
,

see e.g. [67]. Hence

γ1(D, | · |α) ≲
∫ Rα

0

log

(
(3R)α

u

)d/α
du =

d

α

∫ Rα

0

α log(3R)− log u du

≤ d

α

[
3αR1+α −Rα logRα +Rα

]
≤ d

α
(3α+ 1)R1+α
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and using log x ≤ x− 1 ≤ x

γ2(D, |·|α) ≲
(
d

α

)1/2 ∫ Rα

0

[
log

(3R)α

u

]1/2
du ≲

(
d

α

)1/2 ∫ Rα

0

[
(3R)α

u

]1/2
du

≲

(
3αdRα

α

)1/2 ∫ Rα

0

[
1

u

]1/2
du ≲

(
3αd

4α

)1/2

Rα/2.

The following is a rewrite of the chaining inequality [16, Theorem 3.5] or
Theorem 6.9, that is compatible with the terminology used in the NTK concen-
tration proof.

Corollary 6.12. For j ∈ [N ], let (Xj,t)t∈D be real valued independent stochastic
processes on some domain D with radius ≲ 1. Assume that the map t → Xj,t

with values in the Orlicz space Lψ1 is Hölder continuous

∥Xj,·∥C0;α(D;ψ1) ≤ L.

Then

Pr

sup
t∈T

∥∥∥∥∥∥ 1

N

N∑
j=1

Xj,t − E [Xj,t]

∥∥∥∥∥∥ ≥ CL

[(
d

N

)1/2

+
d

N
+
( u
N

)1/2
+
u

N

] ≤ e−u.

Proof. We show the result with Theorem 6.9 for the process

Yt :=
1

N

N∑
j=1

Xj,t − E [Xj,t] .

We first show that it has mixed tail. For all s, t ∈ D, we have

∥Xj,t −Xj,s∥ψ1
≤ L|s− t|α.

Hence, Bernstein’s inequality implies

Pr [|Yt − Ys| ≥ τ ] = Pr

∣∣∣∣∣∣ 1N
N∑
j=1

[Xj,t −Xj,s]− E [Xj,t −Xj,s]

∣∣∣∣∣∣ ≥ τ


≤ 2 exp

(
−cN min

{
τ2

L2|t− s|2α
,

τ

L|t− s|α

})
.

An elementary computation shows that

u := cN min

{
τ2

L2|t− s|2
,

τ

L|t− s|

}
⇒ τ = L|t− s|αmax

{√
u

cN
,
u

cN

}
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and thus

Pr

[
|Yt − Ys| ≥ L|t− s|αmax

{√
u

cN
,
u

cN

}]
≤ 2 exp(−u). (51)

I.e. the centered process Yt has mixed tail with

di(t, s) := (cN)−1/iL|t− s|α,

for i = 1, 2, which are metrics because α ≤ 1. Moreover the γi-functional are
linear in scaling

γi(D, di) = (cN)−1/iLγi(D, | · |α)

and thus by Lemma (6.11)

γ1(D, | · |α) ≲ L
d

N
, γ2(D, | · |α) ≲ L

(
d

N

)1/2

.

Thus, by chaining Theorem 6.9 we have

Pr

[
sup
t∈T

∥Yt − Yt0∥ ≥ CL

[(
d

N

)1/2

+
d

N
+
( u
N

)1/2
+
u

N

]]
≤ e−u,

which directly yields the corollary with supt∈D ∥Yt∥ ≤ supt∈D ∥Yt−Yt0∥+∥Yt0∥
and (51).

6.3 Hermite Polynomials

Hermite polynomials are defined by

Hn(x) := (−1)nex
2/2 d

n

dxn
e−x

2/2

and orthogonal with respect to the Gaussian weighted scalar product

⟨f, g⟩N := Eu∼N (0,1) [f(u)g(u)] =
1√
2π

∫
R
f(u)g(u)e−x

2/2 du.

Lemma 6.13. 1. Normalization:

⟨Hn, Hm⟩N = n! δnm.

2. Derivatives: Let f : R → R be k times continuously differentiable so that
all derivatives smaller or equal to k have at most polynomial growth for
x→ ±∞. Then

⟨f,Hn⟩ =
〈
f (k), Hn−k

〉
N
.
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Proof. The normalization is well known, we only show the formula for the

derivative. By the growth condition, we have
∣∣∣f (k)(x) dn−k−1

dxn−k−1 e
−x2/2

∣∣∣ → 0 for

x → ±∞. Thus, in the integration by parts formula below all boundary terms
vanish and we have

⟨f,Hn⟩ =
1√
2π

∫
R
f(u)Hn(u)e

−x2/2 du.

=
1√
2π

∫
R
f(u)

[
(−1)nex

2/2 d
n

dxn
e−x

2/2

]
e−x

2/2 du.

=
1√
2π

(−1)n
∫
R
f(u)

dn

dxn
e−x

2/2 du.

=
1√
2π

(−1)n−k
∫
R
f (k)(u)

dn−k

dxn−k
e−x

2/2 du.

=
1√
2π

∫
R
f (k)(u)

[
(−1)n−kex

2/2 d
n−k

dxn−k
e−x

2/2

]
e−x

2/2 du.

=
〈
f (k), Hn−k

〉
N
.

Theorem 6.14 (Mehler’s theorem). Let

A =

[
1 ρ
ρ 1

]
.

Then the multi- and uni-variate normal density functions satisfy

pdfN (0,A) =

∞∑
k=0

Hk(u)Hk(v)
ρk

k!
pdfN (0,1)(u) pdfN (0,1)(v).

Proof. See [71] for Mehler’s theorem in the form stated here.

6.4 Sobolev Spaces on the Sphere

6.4.1 Definition and Properties

We use two alternative characterizations of Sobolev spaces on the sphere. The
first is based on spherical harmonics, which are also eigenfunctions of the NTK
and thus establishes connections to the available NTK literature. Second,
we consider Sobolev Slobodeckij type norms, which are structurally similar to
Hölder norms and allow connections to the perturbation analysis in this paper.

The spherical harmonics

Y jℓ , ℓ = 0, 1, 2, . . . , 1 ≤ j ≤ ν(ℓ)

of degree ℓ and order j are an orthonormal basis on the sphere L2(Sd−1), com-
parable to Fourier bases for periodic functions. For any f ∈ L2(Sd−1), we
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denote by f̂ℓj =
〈
f, Y jℓ

〉
the corresponding basis coefficient. The Sobolev space

Hα(Sd−1) consists of all function for which the norm

∥f∥2Hα(Sd−1) =

∞∑
ℓ=0

ν(ℓ)∑
j=1

(
1 + ℓ1/2(ℓ+ d− 2)1/2

)2α ∣∣∣f̂ℓj∣∣∣2
is finite. We write Hα = Hα(Sd−1) if the domain is understood from context.
Since the constants in this paper are dimension dependent, we simplify this to
the equivalent norm

∥f∥2Hα(Sd−1) =

∞∑
ℓ=0

ν(ℓ)∑
j=1

(1 + ℓ)
2α
∣∣∣f̂ℓj∣∣∣2 . (52)

Another equivalent norm, similar to Sobolev-Slobodeckij norms, is given in [7,
Proposition 1.4] and defined as follows for the case 0 < α < 2. For the spherical
cap centered at x ∈ Sd−1 and angle t ∈ (0, π) given by

C(x, t) :=
{
y ∈ Sd−1 : x · y ≥ cos t

}
set

At(f)(x) := −
∫
C(x,t)

f(τ) dτ.

With

Sα(f)
2(x) :=

∫ π

0

|Atf(x)− f(x)|2 t−2α−1 dt

the Sobolev norm on the sphere is equivalent to

∥f∥Hα(Sd−1) ∼ ∥Sα(f)∥L2(Sd−1) . (53)

Using the definition (52) for a < b < c, the interpolation inequality

∥ · ∥Hb(Sd−1) ≲ ∥ · ∥
c−b
c−a

Ha(Sd−1)
∥ · ∥

b−a
c−a

Hc(Sd−1)
, ⟨·, ·⟩−α ≲ ∥ · ∥−3α∥ · ∥α, (54)

follows directly from Cauchy-Schwarz. Moreover, we have the following embed-
ding.

Lemma 6.15. Let 0 < α < 1. Then for any ϵ > 0 with α+ ϵ ≤ 1, we have

∥ · ∥Hα(Sd−1) ≲ ∥ · ∥C0;α+ϵ(Sd−1).

Proof. The proof is standard and similar to Lemma 6.16.
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6.4.2 Kernel Bounds

In this section, we provide bounds for the kernel integral

⟨f, g⟩k :=

∫∫
D×D

f(x)k(x, y)g(y) dx dy

on the sphere D = Sd−1 in Sobolev norms on the sphere. Clearly, for 0 ≤ α, β <
2, we have

⟨f, g⟩k ≤ ∥f∥H−α

∥∥∥∥∫
D

k(·, y)g(y) dy
∥∥∥∥
Hα

≤ ∥f∥H−α∥k∥Hα←H−β∥g∥H−β ,

where the norm of k is the induced operator norm. While the norms for f and
g are the ones used in the convergence analysis, concentration and perturbation
results for k are computed in mixed Hölder norms. We show in this section,
that these bound the operator norm.

Indeed, ⟨f, g⟩k is a bilinear form on f and g and thus is bounded by the
tensor product norms

⟨f, g⟩k ≤ ∥f ⊗ g∥(Hα⊗Hβ)′∥k∥Hα⊗Hβ ≤ ∥f∥H−α∥g∥H−β∥k∥Hα⊗Hβ ,

where ·′ denotes the dual norm. The Hα⊗Hβ norm contains mixed smoothness
and with Sobolev-Slobodeckij type definition (53) is easily bounded by corre-
sponding mixed Hölder regularity. In order to avoid rigorous characterization
of tensor product norms on the sphere, the following lemma shows the required
bounds directly.

Lemma 6.16. Let 0 < α, β < 1. Then for any ϵ > 0 with α + ϵ ≤ 1 and
β + ϵ < 1, we have∫∫

D×D
f(x)k(x, y)g(y) dx dy ≤ ∥f∥H−α(Sd−1)∥g∥H−β(Sd−1)∥k∥C0;α+ϵ,β+ϵ(Sd−1).

Proof. Since for any u, v∫
u(x)v(x) dx =

∫
u(x)

v(x)

∥v∥Hα

dx ∥v∥Hα

≤ sup
∥w∥Hα≤1

∫
u(x)w dx ∥v∥Hα ≤ ∥u∥H−α∥v∥Hα ,

with D = Sd−1 we have

⟨f, g⟩k =

∫∫
D×D

f(x)k(x, y)g(y) dx dy ≤ ∥f∥H−α

∥∥∥∥∫
D

k(·, y)g(y)
∥∥∥∥
Hα

so that it remains to estimate the last term. Plugging in definition (53) of the
Sobolev norm, we obtain∥∥∥∥∫

D

k(·, y)g(y)
∥∥∥∥2
Hα

=

∫
D

∫ π

0

∣∣∣∣(Axt − I)

(∫
D

k(·, y)g(y) dy
)
(x)

∣∣∣∣2 t−2α−1 dt dx,
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where Axt is the average in (53) applied to the x variable only and I the identity.
Swapping the inner integral with the one inside the definition of Axt , we estimate∥∥∥∥∫

D

k(·, y)g(y)
∥∥∥∥2
Hα

=

∫
D

∫ π

0

∣∣∣∣∫
D

[(Axt − I)(k(·, y))(x)] g(y) dy
∣∣∣∣2 t−2α−1 dt dx,

≤
∫
D

∫ π

0

∥(Axt − I)(k(·, y))(x)∥2Hβ ∥g∥2H−β t
−2α−1 dt dx,

=

∫∫
D×D

∫∫ π

0

|(Ays − I)(Axt − I)(k)(x, y)|2 t−2α−1s−2β−1 dst dxy ∥g∥2H−β .

Plugging in the definition of the averages Ays and Axt , the integrand is estimated
by the mixed Hölder norm

|(Ays − I)(Axt − I)(k)(x, y)| = −
∫
C(y,s)

−
∫
C(x,t)

|k(τ, σ)− k(x, σ)− k(τ, y) + k(x, y)| dτσ

≤ −
∫
C(y,s)

−
∫
C(x,t)

|x− τ |α+ϵ|y − σ|β+ϵ∥k∥C0;α+ϵ,β+ϵ dτσ.

The difference |x− τ |, and likewise |y − σ|, is bounded by the angle of the cap
C(x, t). Indeed

|x− τ |2 = |x|2 + |τ |2 − 2 ⟨x, τ⟩ = 2(1− ⟨x, τ⟩) ≤ 2(1− cos t) ≲ t2

for t ≤ T for some T ≥ 0. Since for all other t the difference |x − τ | ≤ 2 is
bounded, we obtain

|x− τ | ≲ min{t, T}, |y − σ| ≲ min{s, T}.

It follows that

|(Ays − I)(Axt − I)(k)(x, y)| ≲ min{t, T}α+ϵmin{s, T}β+ϵ∥k∥C0;α+ϵ,β+ϵ .

Putting all estimates together, we find that

⟨f, g⟩k ≲ ∥f∥H−α∥g∥H−β∥k∥C0;α+ϵ,β+ϵ

·
[∫∫

D×D

∫∫ π

0

[
min{t, T}α+ϵmin{s, T}β+ϵ

]2
t−2α−1s−2β−1 dst dxy

] 1
2

.

Since the integral is bounded, we conclude that

⟨f, g⟩k ≲ ∥f∥H−α∥g∥H−β∥k∥C0;α+ϵ,β+ϵ .
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6.4.3 NTK on the Sphere

This section fills in the proofs for Section 3. Recall that we denote the normal
NTK used in [9, 22, 11] by

Θ(x, y) = lim
width→∞

∑
λ

∂λf
L+1(x)∂λf

L+1(y),

whereas the NTK Γ(x, y) used in this paper confines the sum to |λ| = L − 1,
i.e. the second but last layer, see Section 3. We first show that the reproducing
kernel Hilbert space (RKHS) of the NTK is a Sobolev space.

Lemma 6.17. Let Θ(x, y) be the neural tangent kernel for a fully connected
neural network on the sphere Sd−1 with bias and ReLU activation. Then the
corresponding RKHS HΘ is the Sobolev space Hd/2(Sd−1) with equivalent norms

∥ · ∥HΘ
∼ ∥ · ∥Hd/2 .

Proof. By [11, Theorem 1] the RKHS HΘ is the same as the RKHS HLap of the
Laplacian kernel

k(x, y) = e−∥x−y∥.

An inspection of their proof reveals that these spaces have equivalent norms.
By [22, Theorem 2], the Laplace kernel has the same eigenfunctions as the NTK
(both are spherical harmonics) and eigenvalues

ℓ−d ≲ λℓ,j ≲ ℓ−d, ℓ ≥ ℓ0, j = 1, . . . , ν(ℓ),

for some ℓ0 ≥ 0, whereas the remaining eigenvalues are strictly positive. By
rearranging the constants, this implies

(ℓ+ 1)−d ≲ λℓ,j ≲ (ℓ+ 1)−d, ℓ ≥ 0, j = 1, . . . , ν(ℓ),

for all eigenvalues. With Mercer’s theorem and the definition (52) of Sobolev
norms, we conclude that

∥f∥2HΘ
∼ ∥f∥2Lap =

∞∑
ℓ=0

ν(ℓ)∑
j=1

λ−1ℓ,j |f̂ℓ,j |
2 ∼

∞∑
ℓ=0

ν(ℓ)∑
j=1

(ℓ+ 1)d|f̂ℓ,j |2 = ∥f∥2Hd/2(Sd−1).

Lemma 6.18. Let Θ(x, y) be the neural tangent kernel for a fully connected
neural network on the sphere Sd−1 with bias and ReLU activation. It’s eigen-
functions are spherical harmonics with eigenvalues

(ℓ+ 1)−d ≲ λℓ,j ≲ (ℓ+ 1)−d, ℓ ≥ 0, j = 1, . . . , ν(ℓ),
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Proof. This follows directly form the norm equivalence ∥ · ∥HΘ ∼ ∥ · ∥Hd/2 in
Lemma 6.17 and in Mercer’s theorem representation of the RKHS

∞∑
ℓ=0

ν(ℓ)∑
j=1

λ−1ℓ,j |f̂ℓ,j |
2 = ∥f∥2HΘ

∼ ∥f∥2Hd/2(Sd−1). =

∞∑
ℓ=0

ν(ℓ)∑
j=1

(ℓ+ 1)d|f̂ℓ,j |2,

choosing f = Y jℓ as a spherical harmonic.

With the knowledge of the full spectrum of the NTK, it is now straight
forward to show coercivity.

Lemma 6.19 (Lemma 3.2, restated). Let Θ(x, y) be the neural tangent kernel
for a fully connected neural network with bias on the sphere Sd−1 with ReLU
activation. Then for any α ∈ R

⟨f, LΘf⟩Hα(Sd−1) ≳ ∥f∥2Hα−d/2(Sd−1),

where LΘ is the integral operator with kernel Θ(x, y).

Proof. Plugging in f =
∑∞
ℓ=0

∑ν(ℓ)
j=1 f̂ℓjY

j
ℓ in eigenbasis, and using the estimate

λℓj ∼ (ℓ+ 1)−d of the eigenvalues in Lemma 6.18, we have

⟨f, LΘf⟩Hα(Sd−1) =

∞∑
ℓ=0

ν(ℓ)∑
j=1

(ℓ+ 1)2αf̂ℓjL̂θf ℓj

=

∞∑
ℓ=0

ν(ℓ)∑
j=1

(ℓ+ 1)2αλℓj |f̂ℓj |2

= ∥f∥2Hα−d/2(Sd−1).
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editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[5] F. Bach. Breaking the curse of dimensionality with convex neural networks.
Journal of Machine Learning Research, 18(19):1–53, 2017.

[6] Y. Bai and J. D. Lee. Beyond linearization: On quadratic and higher-order
approximation of wide neural networks. In International Conference on
Learning Representations, 2020.
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