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Approximation by Combinations of ReLU
and Squared ReLU Ridge Functions

With �1 and �0 Controls
Jason M. Klusowski , Student Member, IEEE, and Andrew R. Barron, Fellow, IEEE

Abstract— We establish L∞ and L2 error bounds for functions
of many variables that are approximated by linear combinations
of rectified linear unit (ReLU) and squared ReLU ridge functions
with �1 and �0 controls on their inner and outer parameters.
With the squared ReLU ridge function, we show that the
L2 approximation error is inversely proportional to the inner
layer �0 sparsity and it need only be sublinear in the outer layer
�0 sparsity. Our constructions are obtained using a variant of the
Maurey–Jones–Barron probabilistic method, which can be inter-
preted as either stratified sampling with proportionate allocation
or two-stage cluster sampling. We also provide companion error
lower bounds that reveal near optimality of our constructions.
Despite the sparsity assumptions, we showcase the richness and
flexibility of these ridge combinations by defining a large family
of functions, in terms of certain spectral conditions, that are
particularly well approximated by them.

Index Terms— Ridge combinations, rectified linear unit,
approximation error, spline, stratified sampling, sparse models.

I. INTRODUCTION

FUNCTIONS of many variables are approximated using
linear combinations of ridge functions with one layer of

nonlinearities, viz.,

fm(x) =
m�

k=1

bkφ(ak · x − tk), (1)

where bk ∈ R are the outer layer parameters and ak ∈ R
d

are the vectors of inner parameters for the single-hidden
layer of functions φ(ak · x − tk). The activation function
φ is allowed to be quite general. For example, it can be
bounded and Lipschitz, polynomials with certain controls on
their degrees, or bounded with jump discontinuities. When
the ridge activation function is a sigmoid, (1) is single-hidden
layer artificial neural network.

One goal in a statistical setting is to estimate a regression
function, i.e., conditional mean response, f (x) = E[Y |
X = x] with domain D � [−1, 1]d from noisy observations
{(Xi ,Yi )}n

i=1, where Y = f (X)+ ε. In classical literature [1],
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L2(P) mean squared prediction error of order (d/n)1/2,
achieved by �1 penalized least squares estimators1 over the
class of models (1), are obtained by optimizing the tradeoff
between approximation error and descriptive complexity rel-
ative to sample size. Bounds on the approximation error are
obtained by first showing how models of the form (1) with
φ(z) = 1{z > 0} can be used to approximate f satisfying�
Rd �ω�1|F( f )(ω)|dω < +∞, provided f admits a Fourier

representation f (x) = �
Rd eix ·ωF( f )(ω)dω on [−1, 1]d .

Because it is often difficult to work with discontinuous φ
(i.e., vanishing or exploding gradient issues), these step func-
tions are replaced with smooth φ such that φ(τ z) ∧ 1 →
1{z > 0} as τ → +∞. Thus, this setup allows one to work
with approximants of the form (1) with smooth φ, but at the
expense of unbounded �1 norm �ak�1.

Like high-dimensional linear regression [2], many applica-
tions of statistical inference and estimation require a setting
where d � n. In contrast to the aforementioned mean square
prediction error of (d/n)1/2, it has been shown [3] how models
of the form (1) with Lipschitz2 φ (reps. Lipschitz derivative φ�)
and bounded inner parameters �ak�0 and �ak�1 can be used
to give desirable L2(D) mean squared prediction error of
order ((log d)/n)1/3 (resp. ((log d)/n)2/5), also achieved by
penalized estimators.3 In fact, [4] shows that these rates are
nearly optimal. A few natural questions arise from restricting
the �0 and �1 norms of the inner parameters in the model:

• To what degree do the sparsity assumptions limit the
flexibility of the model (1)?

• What condition can be imposed on f so that it can
be approximated by fm with Lipschitz φ (or Lipschitz
derivative φ�) and bounded �ak�0 and / or �ak�1?

• How well can f be approximated by fm , given these
sparsity constraints?

According to classic approximation results [5], [6], if the
domain of f is contained in [−1, 1]d and f admits a Fourier
representation f (x) = �

Rd eix ·ωF( f )(ω)dω, then the spectral
condition v f,1 < +∞, where v f,s �

�
Rd �ω�s

1|F( f )(ω)|dω,
is enough to ensure that f − f (0) can be approximated

1That is, the fit minimizes (1/n)
�n

i=1( fm(Xi )− Yi )
2 + λ

�m
k=1 |bk | for

some appropriately chosen λ > 0.
2Henceforth, when we say a function is Lipschitz, we assume it has bounded

Lipschitz parameter.
3With additional �0 inner sparsity, we might also consider an estimator that

minimizes (1/n)
�n

i=1( fm(Xi ) − Yi )
2 + λ0ψ

��m
k=1 |bk |�ak�0

�
for some

convex function ψ and appropriately chosen λ0 > 0.
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in L∞(D) by equally weighted, i.e, |b1| = · · · = |bm |,
linear combinations of functions of the form (1) with
φ(z) = 1{z > 0}. Typical L∞ error rates � f − fm�∞ of
an m-term approximation (1) are at most cv f,1

√
d m−1/2,

where c is a universal constant [5], [7], [8]. A rate of
c(p)v f,1m−1/2−1/(pd) was given in [9, Th. 3] for L p(D)
for nonnegative even integer p. Again, all these bounds are
valid when the step activation function is replaced by a
smooth approximant φ (in particular, any sigmoid satisfying
limz→±∞ φ(z) = ±1), but at the expense of unbounded �ak�1.

Towards giving partial answers to the questions we posed,
in Section II, we show how functions of the form (1) with
ReLU (also known as a ramp or first order spline) φ(z) =
(z)+ = 0 ∨ z (which is Lipchitz)4 or squared ReLU φ(z) =
(z)2+ (which has Lipschitz derivative) activation function can
be used to give desirable L∞(D) approximation error bounds,
even when �ak�1 = 1, 0 ≤ tk ≤ 1, and |b1| = · · · = |bm |.
Because of the widespread popularity of the ReLU activation
function and its variants, these simpler forms may also be of
independent interest for computational and algorithmic reasons
as in [10]–[14], to name a few.

Unlike the case with step activation functions, our analysis
makes no use of the combinatorial properties of half-spaces
as in Vapnik-Chervonenkis theory [15], [16]. The L2(D) case
for ReLU ridge functions (also known as hinging hyper-
planes) with �1-bounded inner parameters was considered
in [17, Th. 3] and our L∞(D) bounds improve upon that line
of work and, in addition, increase the exponent from 1/2 to
1/2+O(1/d). Our proof techniques are substantively different
than [17] and, importantly, are more amenable to empirical
process theory, which is the key to showing our error bounds.

These tighter rates of approximation, with ReLU and
squared ReLU activation functions, are possible under two
different conditions – finite v f,2 or v f,3, respectively. The
main idea we use originates from [9] and [18] and can be
seen as stratified sampling with proportionate allocation. This
technique is widely applied in survey sampling as a means of
variance reduction [19].

At the end of Section II, we will also discuss the degree to
which these bounds can be improved by providing companion
lower bounds on the minimax rates of approximation.

Section III will focus on how accurate estimation can be
achieved even when �ak�0 is also bounded. In particular,
we show how an m-term linear combination (1) with �ak�0 ≤√

m and �ak�1 = 1 can approximate f satisfying v f,3 < +∞
in L2(D) with error at most

√
2v f,3m−1/2. In other words,

the L2(D) approximation error is inversely proportional to the
inner layer sparsity and it need only be sublinear in the
outer layer sparsity. The constructions that achieve these error
bounds are obtained using a variant of the Maurey-Jones-
Barron probabilistic method, which can be interpreted as
two-stage cluster sampling.

Throughout this paper, we will state explicitly how our
bounds depend on d so that the reader can fully appreci-
ate the complexity of approximation. If a is a vector in

4It is perhaps more conventional to write (z)+ for 0 ∨ z, however, to avoid
clutter in the exponent, we use the current notation.

Euclidean space, we use the notation a(k) to denote its k-th
component.

II. L∞ APPROXIMATION WITH BOUNDED �1 NORM

A. Positive Results

In this section, we provide the statements and proofs of
the existence results for fm with bounded �1 norm of inner
parameters. We would like to point out that the results of
Theorem 1 hold when all occurrences of the ReLU or squared
ReLU activation functions are replaced by general φ which is
Lipschitz or has Lipschitz derivative φ�, respectively.

Theorem 1: Suppose f admits an integral representation

f (x) = v

�

[0,1]×{a:�a�1=1}
η(t, a)(a ·x − t)s−1+ d P(t, a), (2)

for x in D = [−1, 1]d and s ∈ {2, 3}, where P is a probability
measure on [0, 1] × {a ∈ R

d : �a�1 = 1} and η(t, a) is either
−1 or +1. There exists a linear combination of ridge functions
of the form

fm(x) = v

m

m�

k=1

bk(ak · x − tk)
s−1+ , (3)

with bk ∈ [−1, 1], �ak�1 = 1, 0 ≤ tk ≤ 1 such that

sup
x∈D

| f (x)− fm(x)| ≤ c
�

d + log m m−1/2−1/d, s = 2,

and

sup
x∈D

| f (x)− fm(x)| ≤ c
√

d m−1/2−1/d, s = 3,

for some universal constant c > 0. Furthermore, if the
bk are restricted to {−1, 1}, the upper bound is of
order

�
d + log m m−1/2−1/(d+2), s = 2

and
√

d m−1/2−1/(d+2), s = 3.
Theorem 2: Let D = [−1, 1]d. Suppose f admits a Fourier

representation f (x) = �
Rd eix ·ωF( f )(ω)dω and

v f,2 =
�

Rd
�ω�2

1|F( f )(ω)|dω < +∞.

There exists a linear combination of ReLU ridge functions of
the form

fm(x) = b0 + a0 · x + v

m

m�

k=1

bk(ak · x − tk)+ (4)

with bk ∈ [−1, 1], �ak�1 = 1, 0 ≤ tk ≤ 1, b0 = f (0),
a0 = ∇ f (0), and v ≤ 2v f,2 such that

sup
x∈D

| f (x)− fm(x)| ≤ cv f,2
�

d + log m m−1/2−1/d,

for some universal constant c > 0. Furthermore, if the bk are
restricted to {−1, 1}, the upper bound is of order

v f,2
�

d + log m m−1/2−1/(d+2).
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Theorem 3: Under the setup of Theorem 2, suppose

v f,3 =
�

Rd
�ω�3

1|F( f )(ω)|dω < +∞.

There exists a linear combination of squared ReLU ridge
functions of the form

fm(x) = b0 + a0 ·x + xT A0x + v

2m

m�

k=1

bk(ak · x − tk)
2+ (5)

with bk ∈ [−1, 1], �ak�1 = 1, 0 ≤ tk ≤ 1, b0 = f (0),
a0 = ∇ f (0), A0 = ∇∇T f (0), and v ≤ 2v f,3 such that

sup
x∈D

| f (x)− fm(x)| ≤ cv f,3
√

d m−1/2−1/d,

for some universal constant c > 0. Furthermore, if the bk are
restricted to {−1, 1}, the upper bound is of order

v f,3
√

d m−1/2−1/(d+2).
The key observation for proving Theorem 2 and Theorem 3

is that f modulo linear or quadratic terms with finite v f,s

can be written in the integral form (2). Unlike in [17, Th. 3]
where an interpolation argument is used, our technique of
writing f as the mean of a random variable allows for more
straightforward use of empirical process theory to bound the
expected sup-error of the empirical average of m independent
draws from its population mean. Our argument is also more
flexible than [17] and can be readily adapted to the case of
squared ReLU activation function. We should also point out
that our L∞(D) error bounds immediately imply L p(D) error
bounds for all p ≥ 1. In fact, using nearly exactly the same
techniques, it can be shown that the results in Theorem 1,
Theorem 2, and Theorem 3 hold verbatim in L2(D), sans
the

√
d + log m or

√
d factors, corresponding to the ReLu

or squared ReLU cases, respectively.
Remark 1: In [18], it was shown that the standard order

m−1/2 L∞(D) error bound alluded to earlier could be
improved to be of order

√
log m m−1/2−1/(2d) under an alter-

nate condition of finite v
f,1 � supu∈Sd−1

�∞
0 rd |F( f )(ru)|dr ,

but with the requirement that �ak�1 be unbounded. In general,
our assumptions are neither stronger nor weaker than this
since the function f with Fourier transform F( f )(ω) =
e−�ω−ω0�/�ω − ω0� for ω0 �= 0 and d ≥ 2 has infinite v
f,1
but finite v f,s for s ≥ 0, while the function f with Fourier
transform F( f )(ω) = 1/(1 + �ω�)d+2 has finite v
f,1 but
infinite v f,s for s ≥ 2.

Proof of Theorem 1:
Case I: s = 2. Let B1, . . . ,BM be a partition of the space

� = {(η, t, a)� : η ∈ {−1,+1}, 0 ≤ t ≤ 1, �a�1 = 1} such
that

inf
(	η,	t,	a)�∈Bk , k=1,...,M

sup
(η,t,a)�∈�

�h(	η,	t,	a)− h(η, t, a)�∞ < �,

(6)

where h(η, t, a)(x) = h(x) = η(a · x − t)s−1+ . It is not hard to
show that M � �−d . For k = 1, . . . ,M define

d Pk(t, a) = d P(t, a)1{(η(t, a), t, a)� ∈ Bk}/Lk,

where Lk is chosen to make Pk a probability measure.
A very important property we will use is that VarPk [h] ≤ �,

which follows from (6). Let m be a positive integer and
define a sequence of M independent random variables
{mk}1≤k≤M as follows: let mk equal �mLk� and �mLk�
with probabilities chosen to make its mean equal to mLk .
Given, m = {mk}1≤k≤M , take a random sample a =
{(t j,k, a j,k)

�}1≤ j≤nk, 1≤k≤M of size nk = mk + 1{mk = 0}
from Pk . Thus, we split the population � into M “strata”
B1, . . . ,BM and allocate the number of within-stratum sam-
ples to be proportional to the “size” of the stratum m1, . . . ,mM

(i.e., proportionate allocation). The within-stratum variability
of h (i.e., VarPk [h]) is now smaller than the population level
variability (i.e., VarP [h]) by a factor of � as evidenced by (6).

Note that the nk sum to be at most m + M because

M�

k=1

nk =
M�

k=1

mk1{mk > 0} +
M�

k=1

1{mk = 0}

≤
M�

k=1

(mLk + 1)1{mk > 0} +
M�

k=1

1{mk = 0}

= m
M�

k=1

Lk1{mk > 0} + M

≤ m + M, (7)

where the last inequality follows from
�M

k=1 Lk ≤ 1. For
j = 1, . . . ,mk , let h j,k = h(η(t j,k, a j,k), t j,k, a j,k) and
fk = vmk

mnk

�nk
j=1 h j,k . Also, let f m = �M

k=1 fk . A sim-
ple calculation shows that the mean of f m is f . Write�M

k=1( fk(x)− E fk(x)) = v
m


�M
k=1(mk − Lkm)EPk h(x)

�
+

v
m


�M
k=1
�nk

j=1
mk
nk
(h j,k(x)− EPk h(x))

�
. By the triangle

inequality, we upper bound

E sup
x∈D

| f m(x)− f (x)| = E sup
x∈D

|
M�

k=1

( fk(x)− E fk(x))|

by

v

m
Em sup

x∈D
|

M�

k=1

(mk − Lkm)EPk h(x)|

+ v

m
EmEa|m sup

x∈D
|

M�

k=1

nk�

j=1

mk

nk
(h j,k(x)− EPk h(x))|. (8)

Now

Ea|m sup
x∈D

|
M�

k=1

nk�

j=1

mk

nk
(h j,k(x)− EPk h(x))|

≤ 2Ea|m sup
x∈D

|
M�

k=1

nk�

j=1

σ j,k
mk

nk
[h j,k(x)− μ j,k(x)]|, (9)

where {σ j,k} is a sequence of independent identically dis-
tributed Rademacher variables and {x �→ μ j,k(x)} is any
sequence of functions defined on D [see for example Lemma
2.3.6 in [20]]. For notational brevity, we define 	h j,k(x) =
mk
nk

[h j,k(x) − μ j,k(x)]. By Dudley’s entropy integral method
(see [21, Corollary 13.2])], the quantity in (9) can be bounded
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by

24
� δ/2

0

�
N(u, D)du, (10)

where N(u, D) is the u-metric entropy of D with respect to
the norm κ(x, x �) (i.e., the logarithm of the smallest u-net that
covers D with respect to κ) defined by

κ2(x, x �) �
M�

k=1

nk�

j=1

(	h j,k(x)−	h j,k(x
�))2

≤ (m + M)�x − x ��2∞, (11)

and δ2 = supx∈D
�M

k=1
�nk

j=1 |	h j,k(x)|2. If we set μ j,k to
equal mk

nk
h(η(tk, ak), tk, ak), where (ηk , tk, ak)

� is any fixed
point in Bk , it follows from (6) and (7) that δ ≤ √

m + M� and
from (11) that N(u, D) ≤ d log(3

√
m + M/u). By evaluating

the integral in (10), we can bound the second term in (8) by

24v
√

d m−1/2�
�− log � + 1

�
1 + M/m. (12)

For the first expectation in (8), we follow a similar approach.
As before,

Em sup
x∈D

|
M�

k=1

(mk − Lkm)EPk h(x)|

≤ 2Em sup
x∈D

|
M�

k=1

σk(mk − Lkm)EPk h(x)|, (13)

where {σk} is a sequence of independent identically distrib-
uted Rademacher variables. For notational brevity, we write
	hk(x) = (mk −Lkm)EPk h(x). We can also bound (13) by (10),
except this time N(u, D) is the u-metric entropy of D with
respect to the norm ρ(x, x �) defined by

ρ2(x, x �) �
M�

k=1

(	hk(x)−	hk(x
�))2

≤ M�x − x ��2∞, (14)

where the last line follows from |mk − Lkm| ≤ 1 and
|EPk h(x)−EPk h(x �)| ≤ �x − x ��∞. The quantity δ is also less
than

√
M , since supx∈D |	hk(x)| ≤ 1 and moreover N(u, D) ≤

d log(3
√

M/u). Evaluating the integral in (10) with these
specifications yields a bound on the first term in (8) of

48v
√

d
√

M

m
. (15)

Adding (15) and (12) together yields a bound on
E supx∈D | f m(x)− f (x)| of

48v
√

dm−1/2(
�

M/m + �
�

1 + M/m
�− log � + 1). (16)

Choose

M = m
�2(− log � + 1)

1 − �2(− log � + 1)
. (17)

Consequently, E supx∈D | f m(x)− f (x)| is at most

96v
√

dm−1/2 �
√− log � + 1�

1 − �2(− log � + 1)
. (18)

We stated earlier that M � �−d . Thus (17) determines �
to be at most of order m−1/(d+2). Since the inequality (17)
holds on average, there is a realization of f m for which
supx∈D | f m(x) − f (x)| has the same bound. Note that f m
has the desired equally weighted form.

For the second conclusion, we set mk = mLk and
nk = �mk�. In this case, the first term in (8) is zero and
hence E supx∈D | f m(x)− f (x)| is not greater than (12). The
conclusion follows with M = m and � of order m−1/d .

Case II: s = 3. The metric κ(x, x �) is in fact bounded by a
constant multiple of

√
m + M��x −x ��∞. To see this, we note

that the function 	h j,k(x) has the form

±mk

nk
[(a · x − t)2+ − (ak · x − tk)

2+],
with �a − ak�1 + |t − tk | < �. Thus, the gradient of 	h j,k(x)
with respect to x has the form

∇	h j,k(x) = ±2mk

nk
[(a(a · x − t)+ − ak(ak · x − tk)+].

Adding and subtracting 2mk
nk

a(ak · x − tk)+ to the
above expression yields the bound of order � for
supx∈D �∇	h j,k(x)�1. Taylor’s theorem yields the desired
bound on κ(x, x �). Again using Dudley’s entropy integral,
we can bound E supx∈D | f m(x) − f (x)| by a universal con-
stant multiple of either v

√
dm−1/2(

√
M/m + �

√
1 + M/m)

or v
√

dm−1/2�
√

1 + M/m corresponding to the equally
weighted or non-equally weighted cases, respectively. The
corresponding results follow with M = m�2/(1 − �2) and
� of order m−1/(d+2) or M = m and � of order m−1/d .
Note that here the additional smoothness afforded by the
stronger assumption v f,3 < +∞ allows one to remove
the

√− log � + 1 factor that appeared in the final bound in
the proof of Theorem 2. This rate is the same as what was
achieved in Theorem 2, without a

�
(log m)/d + 1 factor. �

Proof of Theorem 2: If |z| ≤ c, we note the identity

−
� c

0
[(z−u)+eiu +(−z − u)+e−iu ]du = eiz − i z − 1. (19)

If c = �ω�1, z = ω · x , a = a(ω) = ω/�ω�1, and u = �ω�1t ,
0 ≤ t ≤ 1, we find that

−�ω�2
1

� 1

0
[(a · x − t)+ei�ω�1 t + (−a · x − t)+e−i�ω�1 t ]dt

= eiω·x − iω · x − 1.

Multiplying the above by F( f )(ω) = eib(ω)|F( f )(ω)|, inte-
grating over R

d , and applying Fubini’s theorem yields

f (x)− x · ∇ f (0)− f (0) =
�

Rd

� 1

0
g(t, ω)dtdω,

where

g(t, ω) = −[(a · x − t)+ cos(�ω�1t + b(ω))

+ (−a ·x − t)+ cos(�ω�1t−b(ω))]�ω�2
1|F( f )(ω)|.

Consider the probability measure on {−1, 1} × [0, 1] × R
d

defined by

d P(z, t, ω) = 1

v
| cos(z�ω�1t + b(ω))|�ω�2

1|F( f )(ω)|dtdω,

(20)
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where

v =
�

Rd

� 1

0
[| cos(�ω�1t + b(ω))|

+ | cos(�ω�1t − b(ω))|]�ω�2
1|F( f )(ω)|dtdω ≤ 2v f,2.

Define a function h(z, t, a)(x) that equals

(za · x − t)+ η(z, t, ω),

where η(z, t, ω) = −sgn cos(�ω�1zt + b(ω)). Note that
h(z, t, a)(x) has the form ±(±a · x − t)+. Thus, we see that

f (x)− x · ∇ f (0)− f (0)

= v

�

{−1,1}×[0,1]×Rd
h(z, t, a)(x)d P(z, t, ω). (21)

The result follows from an application of Theorem 1. �
Proof of Theorem 3: For the result in Theorem 3,

we will use exactly the same techniques. The function
f (x)− xT ∇∇T f (0)x/2 − x · ∇ f (0)− f (0) can be written as
the real part of

�

Rd
(eiω·x + (ω · x)2/2 − iω · x − 1)F( f )(ω)dω. (22)

As before, the integrand in (22) admits an integral represen-
tation given by

(i/2)�ω�3
1

� 1

0
[(−a ·x − t)2+e−i�ω�1 t − (a · x − t)2+ei�ω�1 t ]dt,

which can be used to show that f (x)− xT ∇∇T f (0)x/2 − x ·
∇ f (0)− f (0) equals

v

2

�

{−1,1}×[0,1]×Rd
h(z, t, a)(x)d P(z, t, ω), (23)

where

h(z, t, a) = sgn sin(z�ω�1t + b(ω)) (za · x − t)2+
and

d P(z, t, ω) = 1

v
| sin(z�ω�1t + b(ω))|�ω�3

1|F( f )(ω)|dtdω,

v =
�

Rd

� 1

0
[| sin(�ω�1t + b(ω))|

+ | sin(�ω�1t − b(ω))|]�ω�3
1|F( f )(ω)|dtdω ≤ 2v f,3.

The result follows from an application of Theorem 1. �
Remark 2: By slightly modifying the definition of h from the

proofs of Theorem 2 and Theorem 3 (in particular, multiplying
it by a sinusoidal function of ω and t), it suffices to sample

instead from the density d P(t, ω) = �ω�s
1 |F( f )(ω)|
v f,s

dtdω on

[0, 1] × R
d .

Remark 3: For unit bounded x, the expression eiω·x − iω ·
x − 1 is bounded in magnitude by �ω�2

1, so one only needs
Fourier representation of f (x)− x ·∇ f (0)− f (0) when using
the integrability with the �ω�2

1 factor. Similarly, eiω·x + (ω ·
x)2/2 − iω · x − 1 is bounded in magnitude by �ω�3, so one
only needs Fourier representation of f (x)− xT ∇∇T f (0)x −
x ·∇ f (0)−1 when using the integrability with the �ω�3

1 factor.

Remark 4: Note that in Theorem 2 and Theorem 3, we work
with integrals with respect to the absolutely continuous mea-
sure dF( f )(ω). In general, a (complex) Fourier measure
dF( f )(ω) does not need to be absolutely continuous. For
instance, it can be discrete on a lattice of values of ω,
associated with a multivariate Fourier series representation
for bounded domains x (and periodic extensions thereof).
Indeed, for bounded domains, one might have access to both
Fourier series and Fourier transforms of extensions of f to R

d .
The best extension is one that gives the smallest Fourier norm�
Rd �ω�s

1|dF( f )(ω)|. For further discussion along these lines,
see [6].

Next, we investigate the optimality of the rates from
Section II.

B. Lower Bounds

Let Hs = {x �→ η(a · x − t)s−1+ : �a�1 ≤ 1, 0 ≤
t ≤ 1, η ∈ {−1,+1}} and for p ∈ [2,+∞] let F s

p
denote the closure of the convex hull of Hs with respect
to the � · �p norm on L p(D, P) for p finite, where P
is the uniform probability measure on D, and � · �∞ (the
supremum norm over D) for p = +∞. We let Cs

m denote the
collection of all convex combinations of m terms from Hs .
By Theorem 2 and Theorem 3, after possibly subtracting a
linear or quadratic term, f/(2v f,2) and f/v f,3 belongs to F2

p
and F3

p, respectively. For p ∈ [2,+∞] and � > 0, we define
the �-covering number Np(�) by

min{n : ∃ F ⊂ F s
p, |F |=n, s.t. inf

f �∈F
sup
f ∈F s

p

� f − f ��p ≤ �}.

and the �-packing number Mp(�) by

max{n : ∃ F ⊂ F s
p, |F | = n, s.t. inf

f, f �∈F
� f − f ��p > �}.

Theorem 1 implies that inf fm∈Cs
m

sup f ∈F s∞ � f − fm�∞
achieves the bounds as stated therein.

Theorem 4: For p ∈ [2,+∞] and s ∈ {2, 3},
inf

fm∈Cs
m

sup
f ∈F s

p

� f − fm�p ≥ (Amd2s+1 log(md))−1/2−s/d,

for some universal positive constant A.
Ignoring the dependence on d and logarithmic factors

in m, this result coupled with Theorem 1 implies that
inf fm∈C2

m
sup f ∈F2

p
� f − fm�p is between m−1/2−2/d and

m−1/2−1/d ; for large d , the rates are essentially the same.
Compare this with [9, Th. 4] or [5, Th. 3], where a lower
bound of c(δ, d) m−1/2−1/d−δ, δ > 0 arbitrary, was obtained
for approximants of the form (1) with Lipschitz φ, but with
inner parameter vectors of unbounded �1 norm.

We only give the proof of Theorem 4 for s = 2, since the
other case s = 3 is handled similarly. First, we provide a few
ancillary results that will be used later on. The next result is
contained in [22, Lemma 4.2] and is useful for giving a lower
bound on Mp(�).

Lemma 1: Let H be a Hilbert space equipped with a norm
�·� and containing a finite set H with the following properties.

(i) |H| ≥ 3,
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(ii)
�

h,h�∈H, h �=h� |�h, h��| ≤ δ2

(iii) δ2 ≤ minh∈H �h�2

Then there exists a collection � ⊂ {0, 1}|H| with car-
dinality at least 2(1−H(1/4))|H|−1, where H (1/4) is the
entropy of a Bernoulli random variable with success prob-
ability 1/4, such that each pair of elements in the set
F =

�
1

|H|
�

h∈H ωhh : (ωh : h ∈ H) ∈ �



is separated by at

least 1
2

�
minh∈H �h�2−δ2

|H| in � · �.

Lemma 2: If θ belongs to [R]d = {1, 2, . . . , R}d , R ∈ Z
+,

then the collection of functions

H = {x �→ sin(πθ · x)/(4π�θ�2
1) : θ ∈ [R]d}

satisfies the assumption of Lemma 1 with H = L2(D, P),
where P is the uniform probability measure on D. More-
over, |H| = Rd , δ = 0, minh∈H �h� = 1/(4

√
2πd2 R2),

and F ⊂ F1
p for all p ∈ [2,+∞]. Consequently,

if � = 1/(8
√

2πd2 R2+d/2), then

log Mp(�) ≥ (log 2)(1 − H (1/4))



8�
√

2πd2
�− 2d

4+d − 1

≥



c�d2
�− 2d

4+d
, (24)

for some universal constant c > 0.
Proof: We first observe the identity

sin(πθ · x)/(4π�θ�2
1)

= θ · x/(4π�θ�2
1)

+ π

4

� 1

0
[(−a · x − t)+ − (a · x − t)+] sin(π�θ�1t)dt,

where a = a(θ) = θ/�θ�1. Note that above integral can also
be written as an expectation of

−z sgn(sin(π�θ�1t)) (za · x − t)+ ∈ H2

with respect to the density

pθ (z, t) = π

4
| sin(π�θ�1t)|,

on {−1, 1} × [0, 1]. The fact that pθ integrates to one is a
consequence of the identity

� 1

0
| sin(π�θ�1t)|dt = 2/π.

Since
�

D | sin(πθ · x)|2d P(x) = 1/2, each member of H
has norm equal to 1/(4

√
2π�θ�2

1) and each pair of elements
is orthogonal so that δ = 0. Integrations over D involving
sin(πθ · x) are easiest to see using an instance of Euler’s for-
mula, viz., sin(α · x) = 1

2i (
�d

k=1 eiα(k)x(k)−�d
k=1 e−iα(k)x(k)).

�
Proof of Theorem 4: Let A > 0 be arbitrary. Suppose

contrary to the hypothesis,

inf
fm∈C2

m

sup
f ∈F2

p

� f − fm�p < (Amd5 log(md))−1/2−2/d

� �0/3.

Note that each element of C2
m has the form

�m
k=1 λkhk ,

where
�m

k=1 λk = 1 and hk ∈ Hs . Next, consider the subcol-
lection 	C2

m with elements of the form
�m

k=1
	λk	hk , where 	λk

belongs to an �0/3-net 	P of the m −1 dimensional probability
simplex Pm and 	hk belongs to an �0/3-net 	H of Hs . By a
stars and bars argument, there are at most |	P|�m+|H|−1

m

�
such

functions. Furthermore, since suph∈Hs
�h�∞ ≤ 1, we have

inf
fm∈	C2

m

sup
f ∈F2

p

� f − fm�2 ≤ inf
fm∈C2

m

sup
f ∈F2

p

� f − fm�2

+ inf
	h∈ 	H

sup
h∈Hs

�h −	h�2

+ inf
	λ∈	P

sup
λ∈Pm

�λ−	λ�1

< �0/3 + �0/3 + �0/3 = �0.

Since |	H| � �−d−1
0 and |	P| � �−m+1

0 , it follows that

log Np(�0) ≤ log |	C2
m |

≤ c0 log

�
�−m−1

0

�
m + c1�

−d−1
0 − 1

m

��

≤ c2dm log(1/�0)

≤ c3dm log(Adm), (25)

for some positive universal constants c0 > 0, c1 > 0, c2 > 0,
and c3 > 0.

On the other hand, using (24) from Lemma 2 coupled with
the fact that Np(�0) ≥ Mp(2�0), we have

log Np(�0) ≥ log Mp(2�0)

≥



2c�0d2
�− 2d

4+d

≥ c4 Adm log(dm), (26)

for some universal constant c4 > 0. Combining (25) and (26),
we find that

c4 Adm log(dm) ≤ c3dm log(Adm).

If A is large enough (independent of m or d), we reach a
contradiction. This proves the lower bound. �

III. L2 APPROXIMATION WITH

BOUNDED �0 AND �1 NORM

In Section II, we explored conditions for which good
approximation in L∞(D) could be achieved even with �1 con-
trols on the inner parameter vectors. In this section, we show
how similar statements can be made in L2(D), but with
control on the �0 norm as well. Note that unlike Theorem 1,
we see in Theorem 5 how the smoothness of the activation
function directly affects the rate of approximation. The proof
is obtained by applying the Maurey-Jones-Barron probabilistic
method in two stages (similar to two-stage cluster sampling),
first on the outer layer coefficients, and then on the inner layer
coefficients.

Theorem 5: Suppose f admits an integral representation

f (x) = v

�

[0,1]×{a:�a�1=1}
η(t, a) (a · x − t)s−1+ d P(t, a),

for x in D = [−1, 1]d and s ∈ {2, 3}, where P is a probability
measure on [0, 1] × {a ∈ R

d : �a�1 = 1} and η(t, a) is either
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−1 or +1. There exists a linear combination of ridge functions
of the form

fm,m0 (x) = v

m

m�

k=1

bk (ak · x − tk)
s−1+ ,

where �ak�0 ≤ m0, �ak�1 = 1, and bk ∈ {−1,+1} such that

� f − fm,m0�2 ≤ v

�
1

m
+ 1

ms−1
0

.

Furthermore, the same rates for s = 2 or s = 3 are achieved
for general f adjusted by a linear or quadratic term with
v = 2v f,2 < +∞ or v = v f,3 < +∞, respectively.

Remark 5: In particular, taking m0 = √
m, it follows that

there exists an m-term linear combination of squared ReLU
ridge functions, with

√
m-sparse inner parameter vectors,

that approximates f with L2(D) error at most
√

2vm−1/2.
In other words, the L2(D) approximation error is inversely
proportional to the inner layer sparsity and it need only be
sublinear in the outer layer sparsity.

Proof: Take a random sample a = {(tk, ak)
�}1≤k≤m

from P . Given a, take a random sample 	a =
{	a�,k}1≤�≤m0, 1≤k≤m , where P[	a�,k = sgn(ak( j))e j ] = |ak( j)|
for j = 1, . . . , d , ak = (ak(1), . . . , ak(d))�, and e j is the j -th
standard basis vector for R

d . Note that

E	a|a[	a�,k] = ak (27)

and

Var	a|a[	a�,k · x] ≤ E	a|a[	a�,k · x]2 =
d�

j=1

|ak( j)||x( j)|2

≤ �ak�1�x�2∞ ≤ 1. (28)

Define

f m,m0
(x) = v

m

m�

k=1

η(tk, ak)

�
1

m0

m0�

�=1

	a�,k · x − tk

�s−1

+
. (29)

By the bias-variance decomposition,

E� f − f m,m0
�2

2 = E� f m,m0
− E f m,m0

�2
2 + � f − E f m,m0

�2
2.

Note that E� f m,m0
− E f m,m0

�2
2 ≤ v2

m . Next, observe that

f (x)− E f m,m0
(x)

= v

m

m�

k=1

Ea

�
η(tk, ak)

× E	a|a

⎛

⎝(ak · x − tk)
s−1+ −

�
1

m0

m0�

�=1

	a�,k · x − tk

�s−1

+

⎞

⎠
�
,

which, by an application of the triangle inequality, implies that

| f (x)− E f m,m0
(x)|

≤ v

m

m�

k=1

Ea

������
(ak ·x −tk)

s−1+ −E	a|a

�
1

m0

m0�

�=1

	a�,k ·x − tk

�s−1

+

������
.

Next, we use the following two properties of (z)s−1+ : for all
z and z� in R,

|(z)+ − (z�)+| ≤ |z − z�|, (30)

|(z)2+ − (z�)2+ − 2(z − z�)(z�)+| ≤ |z − z�|2. (31)

If s = 2, we have by (30), (27), and (28) that

Ea

������
(ak · x − tk)+ − E	a|a

�
1

m0

m0�

�=1

	a�,k · x − tk

�

+

������

≤ EaE	a|a

�����ak · x − 1

m0

m0�

�=1

	a�,k · x

�����

≤ Ea

��� 
E	a|a

�����ak · x − 1

m0

m0�

�=1

	a�,k · x

�����

2

= Ea

�
Var	a|a[	a�,k · x]

m0
≤ 1√

m0
.

This shows that � f − E f m,m0
�2

2 ≤ v2

m0
. If s = 3, we have

from (31), (27), and (28) that

Ea

������
(ak · x − tk)

2+ − E	a|a

�
1

m0

m0�

�=1

	a�,k · x − tk

�2

+

������

≤ EaE	a|a

�����ak · x − 1

m0

m0�

�=1

	a�,k · x

�����

2

= Ea

�
Var	a|a[	a�,k · x]

m0

�
≤ 1

m0
.

This shows that � f − E f m,m0
�2

2 ≤ v2

m2
0
. Since these bounds

hold on average, there exists a realization of (29) for which
the bounds are also valid. Note that the vector 1

m0

�m0
�=1	a�,k

has �0 norm at most m0 and unit �1 norm.
The fact that the bounds also hold for f adjusted by a linear

or quadratic term (under an assumption of finite v f,2 or v f,3)
follows from (21) and (23). �
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