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Abstract

It is shown that in a Banach space X satisfying mild conditions, for its in"nite, linearly
independent subset G, there is no continuous best approximation map from X to the
n-span, span

n
G. The hypotheses are satis"ed when X is an L

p
-space, 1(p(R, and G

is the set of functions computed by the hidden units of a typical neural network (e.g.,
Gaussian, Heaviside or hyperbolic tangent). If G is "nite and span

n
G is not a subspace of

X, it is also shown that there is no continuous map from X to span
n
G within any

positive constant of a best approximation. ( 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In a typical approximation scheme, the approximating functions are members of
a parametrized family; their complexity can be measured by the length of a parameter
vector. This corresponds, for example, to the degree of a polynomial or rational
function, the number of knots in a spline, or the number of hidden units in a neural
network.
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For a given length of parameter vector, the approximating functions often form
a linear subspace (as in the polynomial case). In contrast, the approximating functions
in neural network theory are members of unions of xnite-dimensional subspaces
generated by hidden unit functions. More precisely, if G"Mg(. , a) :DPR; a3AN,
DLRd, is a parametrized set of functions corresponding to a type of computational
unit, then a one-hidden-layer network with a single linear output unit and n hidden
units computing functions from G can generate as its input/output functions all linear
combinations of n elements of G. This set, denoted by span

n
G, is the union of all

subspaces spanned by n-tuples of elements of G.
In recent years, various authors derived upper bounds on rates of approximation by

neural networks. Some of these upper bounds were achieved using continuous
approximation operators on sets of functions de"ned by a smoothness condition
(see e.g. [17]).

Continuity of an approximation operator is a great advantage in the classical
(linear) theory since it allows one to estimate worst-case error using methods
of algebraic topology (see e.g. [12,16,18]). Extending these algebraic-topological
proof techniques to nonlinear approximation, DeVore et al. [4] utilized a concept
of continuous nonlinear width. They measured the worst-case error in approximation
of elements in a compact subset using a parametrized set of functions as the
approximants when the parameters are selected continuously. For neural
networks, however, the di!erence in the sort of subset determined by the families
of approximating functions constrains the domain of applicability of classical
methods.

In this paper we study the existence of continuous best approximation in
neural networks. We show that for certain standard types of neural networks,
such as Heaviside perceptrons or Gaussian radial-basis-functions, best approxi-
mation with n hidden units cannot be achieved in a continuous way. This
has important practical consequences; in particular, numerical stability of
computation is not guaranteed, even under `low amplitudea assumptions.
A theoretical consequence is that estimates of worst-case errors of approximation
that exploit continuity of the approximation operator cannot be applied to neural
networks.

The paper is organized as follows. In Section 2, we recall basic concepts
from approximation theory such as metric projection, best approximation, Chebyshev
set, and continuous selection. In Section 3, we investigate approximation from
subsets of normed linear spaces. It is shown that continuous best approximations
do not exist under some mild hypotheses on the norm and the subsets. If the
subsets are "nite unions of "nite-dimensional spaces, then it is not possible
to come within any positive constant of the best approximation in a continuous
way. Section 4 applies the results of Section 3 to parametrized sets of
functions corresponding to neural networks, and Section 5 brie#y summarizes the
implications.
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2. Preliminaries

Let R denote the set of real numbers. In the following, a linear space X always means
a linear space over R. The dimension of a linear space is the cardinality of any basis.

For x, y in a linear space X we denote by [x, y] the closed (line) segment connecting
x and y, i.e. [x, y] :"Mx#j(y!x): j3[0,1]N. Similarly, (x, y]"[x, y]!MxN. Recall
that a subset >-X is convex if [x, y]-> whenever x, y3X. A subset > is
called positively homogeneous if for all a'0, a> :"May: y3>N">. For G-X
we denote by spanG the linear span of G, and for n a positive integer span

n
G denotes

the set of all linear combinations of at most n elements of G, i.e.,
span

n
G :"Mx3X: x"+n

i/1
w
i
g
i
, w

i
3R, g

i
3GN. Thus span

n
G"6MspanMg

1
,2, g

n
N:

g
1
,2, g

n
3GN. By B[x, r] we denote the closed ball of radius r centered at x; i.e.,

B[x, r] :"My3X: DDx!yDD4rN.
A normed linear space (X, DD.DD) is said to be uniformly convex if for each e'0 there

exists d'0 such that for all x, y3X DDxDD"DDyDD"1 and DDx!yDD'e implies
DDx#yDD(2!d. It is strictly convex if for all x, y3X DDxDD"1, DDyDD"1 and DDx#yDD"2
implies x"y. Strict convexity is equivalent to the following condition: whenever
for three points x, y, z3X the triangle inequality becomes equality, i.e.
DDx!zDD"DDx!yDD#DDy!zDD, then y3[x, z] (see e.g. [16]). Uniform convexity implies
strict convexity and L

p
-spaces are uniformly convex for p3(1,R) (see [5]).

A Banach space X is a complete normed linear space. The set of continuous linear
functionals f : XPR is also a Banach space, called the dual and denoted by XH. X is
reyexive if it is isometrically isomorphic to XHH :"(XH)H under the canonical mapping
xPx@, where x@( f ) :"f (x). X is smooth if for each x such that DDxDD"1, there is a unique
f3XH such that f (x)"1 and f (y)(1 for all y3> with DDyDD(1.

Let X be a normed linear space and let> be a non-empty subset of X. For x3X, let
DDx!>DD"inf

y|Y
DDx!yDD. The functional xC DDx!>DD is uniformly continuous; see e.g.

[20, p. 391].
Let P(>) denote the set of all subsets of >. The set-valued mapping P

Y
:XPP(>)

de"ned by P
Y
(x) :"My3>: DDx!yDD"DDx!>DDN is called the metric projection or

projection of X onto Y and P
Y
(x) is called the projection of x onto Y. If > is closed, resp.

convex, then for all x3X, P
Y
(x) is closed, resp. convex. Note that we do not assume

that P
Y
(x) is non-empty.

When P
Y
(x) is non-empty for all x in X, then > is said to be proximinal (or an

existence set). > is called a Chebyshev set if for all x3X the projection P
Y
(x) is

a singleton. In this case we denote by p
Y

the unique projection mapping p
Y
:XP>.

We shall also write x
Y
"p

Y
(x).

Let F :XPP(>) be a set-valued function. A selection for F is a function f :XP>
such that for all x3X, f (x)3F(x). A function / :XP> is called a best-approximation
operator for Y if it is a selection for P

Y
. A set > is proximinal if and only it has

a best-approximation operator; it is Chebyshev if and only if it has a unique best
approximation operator. General references on best approximation are Singer [20]
and Vlasov [24]. A continuous selection for P

Y
is thus a best-approximation operator

for > which is continuous at each x3X. A best-approximation operator / has
/(x)3P

Y
(x) and satis"es DDx!/(x)DD"DDx!>DD for every x3X.
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3. Non-existence of continuous best approximations

In this section we study approximation from subsets of a normed linear space and
determine geometric conditions on the subset and the space which prevent the
existence of a continuous best approximation.

The following lemma says that metric projection acts as regularly as possible on
segments joining points in X to their nearest neighbors in a subset Z.

Lemma 3.1. Let X be a strictly convex normed linear space, and let Z be any subset of X.
Let x3X, x NZ, and z3P

Z
(x). Then P

Z
([z,x))"MzN.

Proof. If y3(x, z], then DDy!ZDD"DDy!zDD by the triangle inequality and the fact
that z is in P

Z
(x). Thus z3P

Z
(y). If z@3P

Z
(y), then DDx!z@DD4DDx!yDD#DDy!z@DD"

DDx!yDD#DDy!zDD"DDx!zDD. Hence, z@ belongs to P
Z
(x), the last inequality is an

equality, and by strict convexity y lies in (x, z@]. Since the intervals [x, z] and [x, z@]
have the same length and both contain [x, y], z"z@. Therefore, P

Z
(y)"MzN. h

Our "rst theorem shows that in a strictly convex normed linear space, existence of
a continuous best approximation implies its uniqueness. A point x in X is called
a splitting point if and only if the cardinality of P

Z
(x) is larger than 1. Such a point is

also called a point of nonuniqueness; see Rice [19].

Theorem 3.2. Let X be a strictly convex normed linear space, and let Z be any subset of X.
If Z is not Chebyshev, then P

Z
does not have a continuous selection.

Proof. Z must be proximinal or no best-approximation mapping from X to Z could
exist. If Z is not Chebyshev, there is a splitting point x3X with z

1
Oz

2
both in P

Z
(x).

Let < :"[z
1
, x]X[x, z

2
]. By Lemma 3.1 any selection must map <!MxN into Mz

1
, z

2
N.

Hence, the selection cannot be continuous on <. h

In particular, the selection fails to be continuous at the splitting point x and fails to
be directionally continuous along one of the two directions [x, z

1
] and [x, z

2
].

The above proof shows further that if for some e there is a continuous function
/ : XPZ satisfying DD/(x)!P

Z
(x)DD4e for all x in X, then supMdiameter(P

Z
(y)):

y3XN42e.
Continuity is not guaranteed even on neighborhoods of zero if Z satis"es an

additional condition. Recall that a neighborhood of zero means a set whose interior
contains zero.

Theorem 3.3. Let X be a strictly convex normed linear space, and let Z be any non-
Chebyshev subset of X that is positively homogeneous. Then in any neighborhood N of zero
the restriction of P

Z
to N has no continuous selection.

Proof. Note that for all a'0 and any positively homogeneous Z, P
Z
(ax)"aP

Z
(x).

Using the fact that, for a'0, DDax!ZDD"aDDx!ZDD for all x3X ([20, p. 148]), we
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show that P
Z
(ax)-aP

Z
(x). Indeed, suppose y3P

Z
(ax) or equivalently,

DDy!axDD"DDZ!axDD. We need to show that a~1y3P
Z
(x). But this follows from

DDa~1y!xDD"a~1DDy!axDD"a~1DDZ!axDD"DDZ!xDD. As x and a'0 were arbit-
rary, the reverse inclusion holds as well; hence, the equation holds.

If Z were not proximinal, then for some x
0
, P

Z
(x

0
)"0. So, for any neighbourhood

N of zero, we could choose a so that ax
0
3N and P

Z
(ax

0
)"0. Thus no selection could

exist for the restriction of P
Z

to N.
If Z is proximinal, let x be a splitting point with z

1
and z

2
in P

Z
(x), z

1
Oz

2
. For

a suitable scalar a, az
1
, az

2
, and ax are in a convex neighborhood of zero inside N.

Then [az
1
, ax] and [az

2
, ax] are in N, ax is a splitting point, and the argument in

Theorem 3.2 can be applied. h

The problem of convexity of Chebyshev sets in a general Banach space has been
studied extensively (see e.g. [10,8]). Closed convex sets in re#exive strictly convex
Banach spaces are Chebyshev (see, e.g., Singer [20, pp. 111, 364]). Bunt [2] showed
that the converse (Chebyshev implies convex) holds in "nite-dimensional Hilbert
spaces. It is an open question whether the converse is true in the in"nite-dimensional
Hilbert case.

Vlasov [22,23,20, p. 368] gave two useful su$cient conditions for convexity of
a Chebyshev subset of a Banach space. Recall that a subset Z is boundedly compact if
its intersection with every closed ball is compact.

(V1) In a Banach space with strictly convex dual, every Chebyshev subset with
continuous metric projection is convex.

(V2) In a smooth Banach space, any boundedly compact Chebyshev set is convex.

Theorem 3.4. Let X be a strictly convex Banach space with a strictly convex dual and let
Z be any non-convex subset of X. Then P

Z
:XPP(Z) does not have a continuous

selection.

Proof. If Z is not Chebyshev, by Theorem 3.2, no continuous selection exists. If Z is
Chebyshev with continuous projection, then by V1, Z would be convex. Hence, there
can be no continuous selection from P

Z
. h

Theorem 3.5. Let X be a strictly convex Banach space with a strictly convex dual and let
Z be any positively homogeneous subset that is not convex. Then in any neighborhood N of
zero, the restriction of P

Z
has no continuous selection.

Proof. If Z is not Chebyshev, Theorem 3.3 yields the conclusion. If Z is Chebyshev, by
V1, continuity of the metric projection P

Z
would imply that Z is convex. So P

Z
"p

Z
fails to be continuous at some point x. For some scalar a, ax is in N, and p

Z
is not

continuous at ax. h

In the important special case when Z is the union of "nitely many "nite-dimen-
sional subspaces, metric projection has a kind of `robusta non-continuity.

Theorem 3.6. Let X be a smooth, strictly convex Banach space, and let Z be a xnite union
of xnite-dimensional subspaces that is not itself a subspace. Then for every e'0, there is
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no continuous function / : XPZ satisfying either of the following conditions:
(i) For all x3X, DD/(x)!P

Z
(x)DD4e;

(ii) For all x3X, DDx!/(x)DD4DDx!ZDD#e.

Proof. Let Z"6S, where S is a "nite family of "nite-dimensional subspaces of X.
Since X is strictly convex, each subspace ¹3S is Chebyshev and for each x in X there
is a unique nearest point x

T
in ¹. So DDx!ZDD"DDx!x

T
DD for one or more of the

members ¹ of S.
Since Z is a union of subspaces but not itself a subspace, Z cannot be convex.

However, Z is boundedly compact and hence, by Vlasov's second result (V2 above),
Z is not Chebyshev.

Any function / satisfying condition (i) above automatically satis"es (ii) for the same
e. Hence, it su$ces to "nd a point x and an e so that if / satis"es (ii), then / is not
continuous. Larger values of e are obtained by scaling up by a positive constant, using
the homogeneity of Z.

Choose a splitting point x, and let x
1
,2,x

n
be the distinct members of P

Z
(x)

corresponding to distinct subspaces ¹
1
,2,¹

n
in S, n'1. Choose e

1
'0 such that

MB[x
i
, e

1
]: i"1,2, nN is a disjoint family. Again using bounded compactness of Z, we

can choose e
2
'0 so that B[x, DDx!ZDD#e

2
]WZ-6n

i/1
B[x

i
, e

1
].

Assume / : XPZ satis"es condition (ii) with e"min(e
1
, e

2
). By Lemma 3.1,

/([x,x
i
])-B[x, DDx!ZDD#e]WZ. Since for each i /(x

i
)3B[x

i
, e] by condition (ii),

/ maps the connected set 6n
i/1

[x,x
i
] onto a disconnected set, and so / cannot be

continuous. h

Other types of nearly best approximation in addition to (i) and (ii) can also be
considered [4]. Suppose / : XPZ satis"es:

(iii) For all x3X, DDx!/(x)DD4(1#e)DDx!ZDD.
Then the argument of Theorem 3.6 will show that / cannot be continuous if e is

su$ciently small, but one can "nd such maps which are continuous and satisfy (iii) for
a large enough e. This is related to the idea of a retraction which is a continuous
function from a space to some subset which is the identity when restricted to the
subset. If / satis"es (iii), then /(x)"x for every x in Z.

Suppose X is two-dimensional Euclidean space, and let Z be the union of the two
coordinate axes. The retraction of X onto Z whose preimages are half-lines of slope

$1 satis"es (iii) with e"J2!1.
For e su$ciently small, however, the proof of Theorem 3.6 shows that such

retractions do not exist. For if x is a splitting point and DDy!/(y)DD4(1#e)DDy!ZDD
for all y in 6n

i/1
[x, x

i
], then DDy!/(y)DD4DDy!ZDD#eDDx!ZDD.

In contrast to Theorem 3.6, when Z is a "nite-dimensional linear manifold, DeVore
et al. [4, Theorem 2.1] showed that for any Banach space X and any e'0, there does
exist a continuous function / : XPZ satisfying (ii). Note also that the set-valued
function P

Z
is upper-semicontinuous whenever Z is boundedly compact ([20, p. 386],

[1, p. 39]).
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4. Application to neural networks

One-hidden-layer neural networks with a single linear output unit compute func-
tions of the form

n
+
i/1

w
i
g(x, a

i
), (1)

where n is the number of hidden units, w
i
are output weights and g : D]APR is the

function of the hidden units with parameters a
i
3A and input vectors x3D-Rd. For

example, perceptrons with an activation function t :RPR, have A"Rd`1

and g(x, (v, b))"t(v )x#b). For radial-basis-functions with radial function t,
A"Rd](0,R) and g(x, (v, b))"t(bDDx!vDD).

The set of functions of the form (1) with arbitrary output weights is equal to span
n
G,

where G"Mg( ) , a) :DPR, a3AN. Being a union of homogeneous spaces, span
n
G is

homogeneous. To apply Theorems 3.4 and 3.5, we investigate when span
n
G is convex.

Lemma 4.1. Let X be a linear space and G a linearly independent subset. If n is less than
the cardinality of G, then span

n
G is not convex.

Proof. Let Mg
1
,2, g

n`1
N be a subset of n#1 distinct elements of G. Choosing

x"(1/n#1)+n
j/1

g
j

and y"(1/n#1)+n`1
j/2

g
j
, we have x, y3span

n
G. Now,

u"(1/2)(x#y) is a non-trivial convex combination of n#1 elements of G. However,
by the independence of G, u is not in span

n
G. h

Since span
n
G is a union of subspaces, it is convex if and only if it is a subspace. The

following is an immediate consequence of Theorem 3.4 and Lemma 4.1.

Theorem 4.2. Let X be a measurable subset of Rd; let G be any inxnite, linearly
independent subset of L

p
(X), 1(p(R; and let N be a neighborhood of zero in L

p
(X).

Then for n a positive integer, there is no continuous best approximation from N to span
n
G.

In fact, many neural network architectures produce families of hidden unit func-
tions which satisfy the hypotheses of 4.2 or can be made to do so by restricting their
parameter sets in a natural way.

The question of linear independence of parametrized sets of functions representing
neural networks was "rst considered by Hecht-Nielsen [7] who investigated multiple
global minima in parameter spaces. He conjectured that for a perceptron network
with hyperbolic tangent as its activation, the neural network's resulting (input/output)
function would determine network parametrization uniquely, up to sign #ips and
permutations of hidden units. This was proved by Sussmann [21]. Thus, with
q denoting hyperbolic tangent, a parametrized family Fq"Mq(v )x#b); (v, b)3AN,
where ALRd]R contains for each pair of sign-#ipped hidden unit parameters (v, b)
and (!v,!b) only one element, is linearly independent.

For the Heaviside activation function 0 :RPR with 0(t)"0 for t(0 and 0 (t)"1
for t50, Chui et al. [3] proved linear independence of the set of functions on the
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d-cube computable by Heaviside perceptrons that contain for each pair of character-
istic functions of complementary half-spaces only one representative.

Ku> rkovaH and Neruda [15] proved the linear independence of Gaussian radial-
basis-functions Mc(bDDx!vDD): v3Rd, b'0N, where c(t)"exp(!t2). Characterization
of linearly independent families for di!erent types of activation functions was given by
Kainen et al. [9], while Ku> rkovaH and Kainen [14] developed some general theory for
corresponding functional equations.

In digital implementations of neural networks, one always has a "nite set G; hence,
span

n
G is a "nite union of "nite-dimensional subspaces.

Theorem 4.3. Let X be a measurable subset of Rd; let G be a linearly independent subset
of L

p
(X), 1(p(R; and let Z be a xnite union of xnite-dimensional subspaces

spanned by members of G, with Z not itself a subspace. Then, for each e'0, there is no
continuous function / :L

p
(X)PZ satisfying conditions (i) or (ii) above, and there is no

such continuous function satisfying condition (iii) for e suzciently small.

5. Discussion

The theory of neural networks overlaps, as the above arguments suggest, with
approximation theory. For example, in the uniform norm best approximation by
rational functions of a given degree fails to be continuous [1, p. 115], and we have
shown that continuity also fails for neural networks in the L

p
-case, 1(p(R.

Questions concerning existence of best approximation, with or without constraints
on the parameters, can be investigated by the methods used here. Relevant results
include those of Gurvits and Koiran [6] and Ku> rkovaH [13] on compactness and
closure of certain sets of Heaviside functions.

Suitability of an approximation scheme can be measured by the worst-case approx-
imation error. When K, the set of functions to be approximated, and >, the approxi-
mating set, are both subsets of a normed linear space (X,DD.DD), recall that the deviation of
K from > is de"ned as d(K,>)"sup

x|K
DDx!>DD.

Kolmogorov [11] de"ned the (linear) n-width of a (usually compact) subset K of
X to be the least possible deviation from any n-dimensional subspace of X, i.e.,
infMd(K,>): > is an n-dimensional subspace of XN.

We suggest corresponding `neural network n-widthsa of a set K: consider, for
example, a perceptron-n-width inftMd(K, span

n
Gt)N, where Gt is the parametrized

family associated with perceptrons with activation function t. To "nd good lower
bounds on these measures of complexity, arguments based on continuity will not
su$ce.
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