
ar
X

iv
:2

11
2.

09
18

1v
2 

 [
cs

.L
G

] 
 1

6 
M

ar
 2

02
3
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Abstract

The celebrated universal approximation theorems for neural networks roughly state that
any reasonable function can be arbitrarily well-approximated by a network whose parameters
are appropriately chosen real numbers. This paper examines the approximation capabilities of
one-bit neural networks – those whose nonzero parameters are ±a for some fixed a 6= 0. One
of our main theorems shows that for any f ∈ Cs([0, 1]d) with ‖f‖∞ < 1 and error ε, there is
a fNN such that |f(x) − fNN(x)| ≤ ε for all x away from the boundary of [0, 1]d, and fNN is
either implementable by a {±1} quadratic network with O(ε−2d/s) parameters or a {± 1

2
} ReLU

network with O(ε−2d/s log(1/ε)) parameters, as ε→ 0. We establish new approximation results
for iterated multivariate Bernstein operators, error estimates for noise-shaping quantization on
the Bernstein basis, and novel implementation of the Bernstein polynomials by one-bit quadratic
and ReLU neural networks.

Keywords: neural network, quantization, one-bit, Bernstein, polynomial approximation
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1 Introduction

1.1 Motivation

In this paper, we address the following question regarding the approximation capabilities of quan-
tized neural networks: what classes of functions can be approximated by neural networks of a given
size such that their weights and biases are constrained to be in a small set of allowable values, espe-
cially with regards to the extreme one-bit case? While this is an interesting mathematical question
by itself and warrants special attention given the growing importance of machine learning across
numerous scientific disciplines, here we illuminate two particularly important broader questions
that motivate this theoretical study.

Our first motivation comes from a practical problem. State-of-the-art neural networks often-
times contain a massive number of parameters and are trained on enormous computational ma-
chines. It appears that in regards to performance of neural networks, the “bigger is better” philos-
ophy largely holds true [7]. As higher resolution audio, image, and video data become increasingly
more common, the size of high performance networks will only continue to grow and require more
computational resources to utilize. This conflicts with the desire to use them on portable and
low power devices such as smartphones. Quantization is the process of replacing high resolution
floating point numbers with coarser ones. It is a natural solution to this issue, since simpler binary
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operations can help alleviate the costly computational burden that comes with using expensive
floating point operations.

Our second motivation is related to the over-parameterization phenomena. Since state-of-the-
art neural networks often contain many more parameters than both the number of training samples
and data dimensionality [5], it is widely believed that there is not a unique set of parameters that
can be used to represent a given function. If we imagine that the set of all parameters generating a
prescribed function is a manifold embedded in a high dimensional parameter space, then our main
question is closely related to whether this manifold is sufficiently close to some lattice point. Since
certain parameter choices may be more desirable than others, this is a central question in not only
quantization, but also in neural network compression and model reduction.

1.2 Quantized neural networks

In this paper, we exclusively examine strict neural networks. We use the adjective “strict” to
emphasize that such networks do not have any skip connections and apply the same activation
function to each node except for the final affine layer. More specifically, fix a function β : R → R,
and slightly abusing notation, for each m ≥ 1, we extend it to a map β : Rm → Rm defined as
β(x) := (β(x1), . . . , β(xm)).

Definition 1.1. A strict neural network with activation β is any function f : Rd → R
m of the form,

f(x) :=WLβ(WL−1 · · · β(W1(x))), Wℓ(u) := Aℓu+ bℓ for ℓ = 1, . . . , L.

In this definition, each Aℓ ∈ R
Nℓ×Nℓ−1 is referred to as a weight matrix, bℓ ∈ R

Nℓ is called a
bias vector, L is the number of layers, and N0 = d and NL = m. For each 1 ≤ ℓ ≤ L− 1, we refer
to uℓ := β(Wℓβ(· · · β(W1(x))) as the ℓ-th layer’s output. This network has L layers, and applies
the same activation function to each node except for the final linear layer. It has Nℓ nodes in layer
ℓ, hence has

∑L
ℓ=1Nℓ nodes in total, and we define the number of parameters as however many

nonzero entries in {Aℓ}Lℓ=1 and {bℓ}Lℓ=1 there are. Since we place no restrictions on the weight
matrices’ structures, our framework allows for fully connected and convolutional networks. We say
a function g can be implemented by neural network provided it can be written in the above form
with appropriate weights.

Other common definitions of a neural network allow for additional operations and flexibility. For
instance, some conventions allow for the use of skip connections whereby uℓ+1 is allowed to depend
on any previous layer’s outputs uℓ, . . . ,u1. Another example is the use of different activation
functions per node and possibly in each layer, including the identity function which effectively
bypasses an activation. Following the terminology from [19], to differentiate between the strict
notion we use versus less stringent notions, we refer to the latter as generalized neural networks.

We are interested in strict quantized neural networks. While it is convenient to treat the entries
of {Aℓ}Lℓ=1 and {bℓ}Lℓ=1 as real numbers for theoretical analysis, when used for computations, each
entry is traditionally stored as a 32-bit float in memory. To reduce the number of bits, we consider
a fixed finite A ⊆ R called the alphabet.

Definition 1.2. A strict A-quantized neural network is a strict neural network where all nonzero
entries of the weight matrices {Aℓ}Lℓ=1 and bias vectors {bℓ}Lℓ=1 belong to A.

An alphabet A that only consists of a small set of allowable values, such as the extreme one-bit
case, is theoretically interesting as it poses stringent constraints and is computationally relevant as
one can take advantage of special hardware and software for one-bit floating point operations. Since
the weights and biases are selected from the same alphabet A, this definition imposes a particular
scaling on the associated network, which can be altered by dilating the domain.
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1.3 The challenge: approximation by coarsely quantized networks

The problem of neural network quantization can be studied from an approximation theory perspec-
tive. LetN := N (A, β, L,N, P ) be the set of functions that can be expressed as a strictA-quantized
neural network with activation β and has at most L layers, N nodes, and P parameters. For a
prescribed function class F , and distortion measure E : F ×N → R, we study the

approximation error := sup
f∈F

inf
g∈N

E(f, g).

The approximation error achieved by generalized neural networks has been extensively studied
in the traditional case where there is no quantization. Well known classical universal approximation
theorems [10, 3] are qualitative statements for shallow networks. Modern versions [39, 34, 30, 12,
19] provide quantitative approximation rates in terms of the function class, number of layers,
parameters, etc. This is only a partial list of references, and additional ones can be found in the
bibliography of a recent comprehensive survey [13]. Perhaps this is a suitable place to mention that
the set of strict neural networks is a subset of their generalized counterparts, so any function class
that can be approximated by strict quantized neural networks can also be well-approximated by
generalized unquantized ones.

It is natural to wonder if these results or their proof strategies can be adapted to strict quantized
networks. If A is of sufficiently high resolution and covers a wide range of numbers, such as
A = δZ∩[−M,M ], for sufficiently largeM and small δ > 0, then the aforementioned approximation
results for unquantized generalized networks can be suitably adapted, such as in [6, Lemma 3.7].
However, this approach requires using an increasingly higher resolution alphabet (reducing δ) to
achieve smaller errors. Major difficulties come into play once we fix an alphabet A and a function
class F , and ask to approximate any f ∈ F up to any error ε by a A-quantized strict neural
network.

Many of the aforementioned papers employ the following ubiquitous strategy. For a prescribed
f ∈ F , we approximate f by a particular linear combination,

∑N
k=1 akφk, where the coefficients

{ak}Nk=1 depend on f and the span of {φk}∞k=1 is dense in F . Examples of {φk}∞k=1 include local
polynomials, ridge functions, and wavelets. While it is possible that φk is not implementable as
a generalized neural network, it is enough to find a ψk that is a close approximation of φk which
is implementable. After {ψk}Nk=1 are implemented, the summation

∑N
k=1 akψk is carried out by a

linear last layer whose weights are {ak}Nk=1.
However, this approximation and implementation strategy becomes problematic when A is a

small set, especially for the one-bit case. For example, if we were to closely follow the same strategy,
we need each ψk to be implementable by a A-quantized strict neural network, and require ak ∈ A
to perform the linear combination

∑N
k=1 akψk. From this point of view, it is natural to desire the

following three properties:

(P1) Approximation. Given a large function class F , finite linear combinations of {φk}∞k=1 with
real coefficients can efficiently approximate any f ∈ F .

(P2) Quantization. For any f ∈ F and its approximation
∑N

k=1 akφk, the real coefficients {ak}Nk=1

can be replaced with suitable ones from just A without incurring to much additional error.

(P3) Implementation. For each φk, there is a good approximant ψk that can be implemented by a
strict A-quantized neural network.

While there many satisfactory choices for (P1), it is not immediate if any of those can be made
compatible with (P2) and (P3). On the other hand, there are a few known choices of {φk}∞k=1 that
satisfy (P2). Some are for very restrictive function classes: when f is bandlimited and {φk}∞k=1
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contain shifts of a sinc-kernel [11, 20] or when f is a power series of a single complex variable and
{φk}∞k=1 is the standard polynomial power basis [21].

The approach taken in this paper builds upon our recent publication [22], and there, we showed
that any continuous function on [0, 1] can be approximated by a ±1 linear combination of Bernstein
polynomials. A Bernstein polynomial of order n and index k = (k1, . . . , kd) with 0 ≤ kℓ ≤ n is the
function pn,k : R

d → [0, 1] defined as

pn,k(x) =

(
n

k

)
xk(1− x)n−k =

d∏

ℓ=1

(
n

kℓ

)
xkℓℓ (1− xℓ)

n−kℓ .

Continuing with this line of research, we investigate the multivariate Bernstein system as a potential
candidate that satisfies all three of our desired properties.

1.4 Main contributions

The main theorems are proved by decomposing the total approximation error into three Bernstein
related terms,

f − fNN = f − fB︸ ︷︷ ︸
Bern. approx. error

+ fB − fQ︸ ︷︷ ︸
Bern. quan. error

+ fQ − fNN︸ ︷︷ ︸
Bern. implementation error

.

Here, fB is a linear combination of multivariate Bernstein polynomials whose coefficients are real
and appropriately bounded, fQ is a ±a linear combination of multivariate Bernstein polynomials
for appropriate a, and fNN is a function implementable by a strict {±a}-quantized neural network.

Our first main theorem concerns f − fQ = (f − fB) + (fB − fQ). It shows that any smooth
multivariate f can be approximated by a ±1 linear combination of Bernstein polynomials with a
quantitative rate that exploits smoothness of f . In the following, ‖ · ‖Cs is a norm on the space of
s-times continuously differentiable functions and ‖ · ‖C1Lip is a norm on the space of continuously
differentiable functions whose first order partial derivatives are Lipschitz.

Theorem A. Let s, d, n ≥ 1, µ ∈ (0, 1), and f ∈ Cs([0, 1]d) with ‖f‖∞ ≤ µ. If s ≥ 3, also assume

that n ≥
√
2s+1d

4(1− µ)
‖f‖C1Lip. Then for any 1 ≤ ℓ ≤ d, there exists a sequence {σk}0≤k≤n such that

σk ∈ {±1} for each k and for all x ∈ [0, 1]d,
∣∣∣f(x)−

∑

0≤k≤n

σkpn,k(x)
∣∣∣ .s,d,µ ‖f‖Cs min

(
1, n−s/2x−s

ℓ (1− xℓ)
−s

)
.

Theorem A is proved constructively by first approximating f with a suitable fB of the form∑
0≤k≤n akpn,k. Then secondly, the coefficients {ak}0≤k≤n are fed into an algorithm called Σ∆

quantization to produce the desired one-bit sequence {σk}0≤k≤n from which we get fQ of the form∑
0≤k≤n σkpn,k. The approximant fQ is a ±1 linear combination of Bernstein polynomials and

can be numerically computed, provided that we have point samples of f on a sufficiently dense
grid, as summarized in Algorithm 1. The Σ∆ algorithm falls under a general class of “noise-
shaping” methods, where the main idea is to compute the signs {σk}0≤k≤n so that the “noise”
{ak − σk}0≤k≤n, when fed into the synthesis operator c 7→ ∑

0≤k≤n ckpn,k, is small in a suitable
sense.

Our second main result deals with the implementation error fQ − fNN . It shows that any one-
bit linear combination of Bernstein polynomials is implementable by strict one-bit neural networks,
with either the quadratic ρ(t) = 1

2t
2 or ReLU σ(t) = max(t, 0) activation. The proof is constructive

and schematic diagrams for the constructed networks are shown in Figures 1a and 1b.
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(a) One-bit Bernstein neural network
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(b) Pascal-Bernstein triangle

Figure 1: Schematic diagrams of the constructed one-bit neural networks.

Theorem B. For any integers d, n ≥ 1 and function f =
∑

0≤k≤n σkpn,k where σk ∈ {±1} for
each k, the following hold.

• There is a {±1}-quantized quadratic neural network fNN,ρ that has O(n) layers and O(nd)
nodes and parameters, as n→ ∞, such that fNN,ρ = f .

• For each ε, there exists a {±1
2}-quantized ReLU neural network fNN,σ with O(n log(n/ε))

layers and O((n2 + nd) log(n/ε)) nodes and parameters, as n → ∞ and ε → 0, such that
‖f − fNN,σ‖∞ ≤ ε.

Combining the previous theorems, we obtain the final main theorem of this paper.

Theorem C. Let s, d, n ≥ 1, µ ∈ (0, 1), and f ∈ Cs([0, 1]d) with ‖f‖∞ ≤ µ. If s ≥ 3, also assume

that n ≥
√
2s+1d

4(1− µ)
‖f‖C1Lip. For any 1 ≤ ℓ ≤ d, there exist functions fNN,ρ and fNN,σ such that:

• for fNN ∈ {fNN,ρ, fNN,σ} and any x ∈ [0, 1]d,

|f(x)− fNN (x)| .s,d,µ ‖f‖Cs min
(
1, n−s/2x−s

ℓ (1− xℓ)
−s

)
.

• fNN,ρ is implementable by a strict {±1}-quantized quadratic neural network that has O(n)
layers and O(nd) nodes and parameters, as n→ ∞.

• fNN,σ is implementable by a strict {±1
2}-quantized ReLU neural network that has O(n log n)

layers and O((n2 + nd) log n) nodes and parameters, as n→ ∞.
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1.5 Why Bernstein? Other contributions

In this paper, we show that the multivariate Bernstein polynomials {pn,k}0≤k≤n of order n satisfy
the three important properties (P1), (P2), and (P3), which are then used to prove the main theorems.

(P1) Approximation. In Theorem 2.4, we use iterated Bernstein operators to approximate any f ∈
Cs([0, 1]d), with a rate of approximation that exploits smoothness of f , which generalizes the
one-dimensional results of Micchelli [32] and Felbecker [16]. This allows us to avoid a known
saturation result [14, Chapter 10, Theorem 3.1], which says that the usual Bernstein operator
is unable to exploit higher order derivatives of the target function. In Theorem 2.6, we convert
the resulting iterated approximant into a linear combination of Bernstein polynomials without
much amplification in the resulting coefficients.

(P2) Quantization. In Theorem 3.5, we show that any linear combination of Bernstein polynomials
with real coefficients can be replaced with a suitable sequence of ±1 linear combination,
without significant error. This step is done constructively through a directional Σ∆ algorithm.
This is perhaps surprising because previous applications of noise-shaping quantization utilize
some notion of redundancy in the generating system, whereas the Bernstein polynomials are
linearly independent. One explanation is that the Bernstein system of order n and of a single
variable span a subspace whose numerical rank is approximately

√
n.

(P3) Implementation. For both the ReLU and quadratic activation functions, our implementation
strategy exploits a natural Pascal triangle interpretation of the univariate Bernstein poly-
nomials, as shown in Figure 1b. This connection is vital in being able to implement the
Bernstein polynomials in a stable and efficient way. Since we exclusively employ strict neural
networks, our constructions are more constrained than those found in papers that employ
generalized neural networks. The constructions are found in A.

1.6 Additional related work

This paper addresses the universal approximation capabilities of coarsely quantized neural net-
works: whether they can arbitrarily well-approximate large function classes. Related work on
approximation by unquantized neural networks or with variable high resolution alphabets were
discussed in Section 1.3. There we also explain why the problem of universal approximation with
coarsely quantized networks is significantly different and requires novel technical developments.

On the other hand, several algorithms for neural network quantization have been developed and
their performances have been evaluated empirically, see the survey article [25]. In essence, existing
algorithms take a pre-trained network and replace each layer with a quantized approximant, and/or
directly train the network by quantizing the back-propagation vectors. While it has been empirically
observed that they can compress networks without sacrificing substantial accuracy, there is little
theory explaining why. Several recent works [2, 31] address this gap by proposing gradient-based
quantization methods with provable guarantees.

This paper’s material builds upon our previous work [23]. There we analyzed the approximation
properties of one-bit linear combinations of univariate Bernstein polynomials, and Theorem C is
a multivariate generalization of [23, Theorem 7]. While [23, Appendix B] briefly touches upon
implementation by quadratic neural networks, it only pertained to a single dimension and did not
provide quantitative bounds for the size of such networks. On the other hand, the results in this
paper deal with arbitrary dimensions, and for both the quadratic and ReLU activation functions.
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This version improves upon the first draft of this paper in two ways: we implement the ap-
proximation strategy given in Theorem A with strict neural networks, and the ReLU case only
necessitates a one-bit alphabet.

1.7 Organization

The organization of subsequent sections follow the ordering (P1), (P2), and (P3). The Bernstein
approximation error f − fB is treated in Section 2. The quantization error in the Bernstein basis
fB − fQ is dealt with in Section 3. The implementation error of these one-bit approximations
fQ − fNN for both the quadratic and ReLU activation functions is studied in Section 4, while the
constructions of fNN are carried out in Appendix A. Proofs of Theorems A, B, and C are provided
in Sections 3.4, 4.3, and 4.4, respectively. Final remarks and other aspects of this paper, including
the computational method and entropy considerations, are contained in Section 5.

1.8 Basic notation

We let R be the reals and N be the natural numbers including zero. For reasons that will become
evident, we let log denote the base 2 logarithm. The ceiling and floor functions are denoted ⌈·⌉ and
⌊·⌋, respectively. We use the notation A . B to mean that there is a universal constant C such
that A ≤ CB. When we write A .a,b,c B, we mean that there is a C > 0 that possibly depends on
a, b, c for which A ≤ CB.

Let e1, . . . ,ed denote the canonical orthonormal basis for R
d. For any p ∈ [1,∞], let ‖ · ‖p be

the usual p-th norm on vectors in R
d. We also use the same notation for the ℓp-norm of a function

defined on a countable set, and the Lp norm of a function.
We denote multi-indices and tuples with boldface letters. For k, ℓ ∈ N

d and m ∈ N, we define
the following. We write k ≤ ℓ as shorthand for kj ≤ ℓj for each j. Likewise, we let k ≤ m (or

m ≤ k) to mean that kj ≤ m (or m ≤ kj) for each j. For any x ∈ R
d, let xk := xk11 · · · xkdd , and

|k| = k1 + · · ·+ kd. The degree of xk is defined to be |k|. For any t ∈ R, we let tk = (tk1, . . . , tkd).
We follow standard convention for dealing with combinatorial factors:

(
k

ℓ

)
:=

d∏

j=1

(
kj
ℓj

)
, and

(
m

k

)
:=

d∏

j=1

(
m

kj

)
.

2 Approximation error

In this section, we concentrate on the error incurred by approximating a smooth f with fB =∑
0≤k≤n akpn,k, a linear combination of Bernstein polynomials of order n, where each coefficient

ak can be suitably controlled in terms of f . For reasons that will become apparent later on when
we discuss the quantization error, we will construct a fB whose coefficients in the Bernstein basis
are not much larger than ‖f‖∞. More specifically, the results of this section will provide us with
upper bounds on the approximation error by Bernstein polynomials,

Eapprox
n,c (f) := inf

{ak}0≤k≤n, |ak|≤c

∥∥∥f −
∑

0≤k≤n

akpn,k

∥∥∥
∞
.

A famous theorem of Bernstein showed that Bn(f) converges uniformly to f on [0, 1] provided
that f is continuous, which generalizes to higher dimensions, see [27] for the two-dimensional case.
While Bn(f) may appear to be a natural candidate for fB, there is a well known saturation result
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which says that, even for infinitely differentiable f , the fastest rate of decay is 1/n, see [14, Chapter
10, Theorem 3.1].

To circumvent this saturation, we follow an approach of Micchelli [32], and show in Theorem 2.4,
that appropriate iterates of multivariate Bernstein operators achieve improved convergence rates
that exploit smoothness of f . Theorem 2.5 allows us to convert these iterated approximations to a
linear combination of Bernstein polynomials and Theorem 2.6 provides us with the existence of a
suitable fB.

2.1 Background on Bernstein polynomials

For a fixed integer n ≥ 1, we denote the set of univariate Bernstein polynomials by Bn := {pn,k}nk=0.
Each pn,k : [0, 1] → [0, 1] is a polynomial of degree n and

pn,k(x) :=

(
n

k

)
xk(1− x)n−k.

The Bernstein polynomials are nonnegative, form a partition of unity for [0, 1], and form a basis for
the vector space of n degree algebraic polynomials. They can be used to give a constructive proof
of the classical Weierstrass theorem, by showing that any continuous f on [0, 1] can be uniformly
approximated by the Bernstein polynomial of f ,

Bn(f)(x) :=
n∑

k=0

f
(k
n

)
pn,k(x).

For reasons that will be apparent later, it will be convenient for us to extend the index k beyond
n in the definition of pn,k. If k < 0 or k > n, then we define pn,k := 0.

The Bernstein polynomials can also be viewed from a probabilistic perspective. For any x ∈
[0, 1], the quantity pn,k(x) is the probability that k successes occur in n independent Bernoulli trials
each with probability of success x. Since the expected value is nx, for each integer s ≥ 0, the s-th
central moment is

Tn,s(x) :=

n∑

k=0

(k − nx)spn,k(x).

It is known that Tn,s is a polynomial in x of degree at most s and in n of degree at most ⌊s/2⌋. We
will employ a few specific formulas for small s. For each x ∈ [0, 1], with the short hand notation
X := x(1− x), we have

Tn,0(x) = 1, Tn,1(x) = 0, Tn,2(x) = nX,

Tn,3(x) = n(1− 2x)X, Tn,4(x) = 3n2X2 + n(X − 6X2).
(2.1)

For each integer s ≥ 0, there is a constant As such that for all n ≥ 1 and x ∈ [0, 1], we have

0 ≤ Tn,2s(x) ≤ Asn
s. (2.2)

See [14, Chapter 10] for proofs of the above results. Although we will not need explicit upper
bounds for As, some can be found in [1, 33].

For dimension d ≥ 1 and integer n ≥ 1, Bernstein polynomials are defined to be tensor products
of single variable Bernstein polynomials.

8



Definition 2.1. The multivariate Bernstein polynomials of order n is Bn := {pn,k}0≤k≤n, where
each pn,k : [0, 1]

d → [0, 1] is defined as,

pn,k(x) := pn,k1(x1) · · · pn,kd(xd) =
(
n

k

)
xk(1− x)n−k.

Whenever there is a 1 ≤ ℓ ≤ d such that either kℓ < 0 or kℓ > n, then we define pn,k = 0. It is
important to mention that we exclusively use multivariate Bernstein polynomials that are formed
as tensor products. They are significantly different from Bernstein polynomials on the canonical
d-dimensional simplex.

Several properties of multivariate Bernstein polynomials can be deduced by exploiting their
tensor product structure. They form a partition of unity for [0, 1]d, and in particular,

n∑

kℓ=0

pn,kℓ(xℓ) = 1 for all 1 ≤ ℓ ≤ d and x ∈ [0, 1]d. (2.3)

The Bernstein polynomial of a multivariate f is defined similar to before,

Bn(f)(x) :=
∑

0≤k≤n

f
(k
n

)
pn,k(x) =

n∑

k1=0

· · ·
n∑

kd=0

f
(k1
n
, · · · , kd

n

)
pn,k1(x1) · · · pn,kd(xd).

Central moments of multivariate Bernstein polynomials can be readily extracted. For any α ∈ N
d,

we define
Tn,α(x) :=

∑

0≤k≤n

(k − nx)αpn,k(x) = Tn,α1
(x1) · · · Tn,αd

(xd).

Letting Aα := Aα1
· · ·Aαd

, it follows from (2.2) that

0 ≤ Tn,2α(x) ≤ Aαn
|α|. (2.4)

2.2 Approximation by the Bernstein operator

We start by investigating the approximation properties of the Bernstein operator. We say a function
f : [0, 1]d → R is Lipschitz continuous if there is a L ≥ 0 for which |f(x)− f(y)| ≤ L‖x − y‖2 for
all x,y ∈ [0, 1]d. We let |f |Lip be the smallest such L for which this inequality holds. The following
is an elementary observation regarding the approximation of Lipschitz functions by the Bernstein
operator, see also [26].

Proposition 2.2. For any Lipschitz continuous f on [0, 1]d, we have

‖f −Bn(f)‖∞ ≤ |f |Lip
2

√
d

n
.

Proof. Fix any x ∈ [0, 1]d. By the partition of unity property (2.3), we have

∣∣∣f(x)−
∑

0≤k≤n

f
(k
n

)
pn,k(x)

∣∣∣ =
∣∣∣

∑

0≤k≤n

(
f(x)− f

(k
n

))
pn,k(x)

∣∣∣.

We use the Lipschitz condition on f to see that

∣∣∣
∑

0≤k≤n

(
f(x)− f

(k
n

))
pn,k(x)

∣∣∣ ≤ |f |Lip
n

∑

0≤k≤n

‖nx− k‖2 pn,k(x).

9



By Cauchy-Schwarz, partition of unity property (2.3), and moments identity (2.1), we have

∑

0≤k≤n

‖nx− k‖2 pn,k(x) ≤
( ∑

0≤k≤n

‖nx− k‖22 pn,k(x)
)1/2( ∑

0≤k≤n

pn,k(x)
)1/2

=
( d∑

ℓ=1

∑

0≤k≤n

(nxℓ − kℓ)
2 pn,k(x)

)1/2
=

( d∑

ℓ=1

Tn,2(xℓ)
)1/2

≤
√
nd

2
.

For the one dimensional case, if the target function is twice differentiable, then it is possible to
obtain a faster rate of decay in n, see [14, Chapter 10]. We proceed to derive an analogous result
for the multivariate case. Before we state it, for concreteness, let us introduce some notation.

For a α ∈ N
d, we use the shorthand notation ∂αx := ∂α := ∂α1

x1
· · · ∂αd

xd
. For any integer s ≥ 1,

we let Cs([0, 1]d) be the set of continuous real functions f defined on a [0, 1]d such that ∂αf is
continuous for all |α| ≤ s. We define the semi-norm |f |Ċs := sup|α|=s ‖∂αf‖∞ and equip Cs(U)
with the norm,

‖f‖Cs = max
{
‖f‖∞, max

1≤k≤s
|f |Ċk

}
.

We also define CsLip to be the set of functions that are s times differentiable and whose s-th order
partial derivatives are Lipschitz continuous, and we equip CsLip with the norm

‖f‖CsLip = max
{
‖f‖Cs , max

|α|=s
|∂αf |Lip

}
.

Proposition 2.3. For any f ∈ C1Lip([0, 1]d), we have

‖f −Bn(f)‖∞ ≤ d

8n
‖f‖C1Lip.

Proof. Fix any x ∈ [0, 1]d. For each 0 ≤ k ≤ n, by Taylor’s theorem,

f
(k
n

)
= f(x) +

d∑

ℓ=1

∂ℓf(x)
(kℓ
n

− xℓ

)

+

d∑

ℓ=1

(kℓ
n

− xℓ

) ∫ 1

0

[
∂ℓf

(
x+ t

(kℓ
n

− xℓ

)
eℓ

)
− ∂ℓf(x)

)]
dt.

This equation, the partition of unity property (2.3), and the moments identity (2.1) (in particular
that Tn,1(xℓ) = 0 for each ℓ), we deduce

Bn(f)(x)− f(x) =
∑

0≤k≤n

(
f
(k
n

)
− f(x)

)
pn,k(x)

=
∑

0≤k≤n

d∑

ℓ=1

(kℓ
n

− xℓ

)
pn,k(x)

∫ 1

0

[
∂ℓf

(
x+ t

(kℓ
n

− xℓ

)
eℓ

)
− ∂ℓf(x)

)]
dt.

From this equation, that the Bernstein polynomials are nonnegative, the Lipschitz assumption on
the partial derivatives of f , and partition of unity (2.3), we see that

|f(x)−Bn(f)(x)| ≤
‖f‖C1Lip

2n2

∑

0≤k≤n

d∑

ℓ=1

(kℓ − nxℓ)
2pn,k(x) =

‖f‖C1Lip

2n2

d∑

ℓ=1

Tn,2(xℓ).

Applying the moments identity (2.1) completes the proof.
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There are other properties of Bernstein operators, such as convergence of partial derivatives
[17] that we will not use in this paper.

2.3 Approximation of smooth functions with iterated Bernstein

As mentioned earlier, due to the saturation phenomenon for the Bernstein operator, there is no hope
of improving the decay rate of 1/n in Proposition 2.3 even under additional regularity assumptions
on the target function. To overcome this, iterated univariate Bernstein operators were developed
by Micchelli [32] and Felbecker [16] as alternative means of approximation. By viewing Bn as an
operator on C([0, 1]d), for any integer r ≥ 1, we define the following iterated Bernstein operator

Un,r := I − (I −Bn)
r =

r∑

j=1

(−1)j−1

(
r

j

)
Bj

n.

Note that Un,1 = Bn coincides with the usual Bernstein operator. The following theorem generalizes
the core results of Micchelli-Felbecker to higher dimensions.

Theorem 2.4. For any integers s, d ≥ 1 and any f ∈ Cs([0, 1]d), it holds that

‖f − Un,⌈s/2⌉(f)‖∞ .s,d ‖f‖Csn−s/2.

Proof. It suffices to prove that, for all s ≥ 1 and f ∈ Cs([0, 1]d), we have

‖f − Un,⌈s/2⌉(f)‖∞ = ‖(I −Bn)
⌈s/2⌉(f)‖∞ .s,d ‖f‖Csn−s/2. (2.5)

We proceed by strong induction. The s = 1, 2 cases hold by Propositions 2.2 and 2.3. Hence,
assume that inequality (2.5) holds for s = 1, 2, . . . , r for some r ≥ 2. Now we will prove that the
statement holds for s = r + 1.

To this end, fix a f ∈ Cr+1([0, 1]d) and any x ∈ [0, 1]d. For each 0 ≤ k ≤ n, there is a ξk,x such
that

f
(k
n

)
= f(x) +

∑

0<|α|≤r

∂αf(x)

α!

(k
n
− x

)α

+
∑

|α|=r+1

∂αf(ξk,x)

α!

(k
n
− x

)α

.

From here, we see that

(Bn − I)(f)(x)

=
∑

0<|α|≤r

∑

0≤k≤n

∂αf(x)

α!

(k
n
− x

)α

pn,k(x) +
∑

|α|=r+1

∑

0≤k≤n

∂αf(ξk,x)

α!

(k
n
− x

)α

pn,k(x)

︸ ︷︷ ︸
:=Gn,r+1(x)

.

To simplify the first term, notice that since the first central moment of Bernstein polynomials is
identically zero, Tn,1 = 0. Hence all terms for which |α| = 1 disappear. For each 2 ≤ |α| ≤ r and
2 ≤ m ≤ r, we define the functions,

Fn,α :=
∂αf Tn,α

n|α|/2α!
, and Fn,m :=

∑

|α|=m

Fn,α.

It follows that

(Bn − I)(f)(x) =
∑

2≤|α|≤r

Fn,α(x)

n|α|/2
+Gn,r+1(x) =

r∑

m=2

Fn,m(x)

nm/2
+Gn,r+1(x).

11



This identity holds for each x. Noting that ⌈(r + 1)/2⌉ ≥ 1 since r ≥ 2, We have

(Bn − I)⌈(r+1)/2⌉(f) =

r∑

m=2

(Bn − I)⌈(r+1)/2⌉−1Fn,m

nm/2
+ (Bn − I)⌈(r+1)/2⌉−1Gn,r+1. (2.6)

We concentrate on the primary term in (2.6) first. To apply the inductive hypothesis, we claim
that for each 2 ≤ m ≤ r, we have Fn,m ∈ Cr+1−m and

‖Fn,m‖Cr+1−m ≤ ‖f‖Cr+12r+1−m
∑

|α|=m

√
Aα. (2.7)

The key part of this assertion is that the upper bound for ‖Fn,m‖Cr+1−m does not depend on n.
Note that for each |α| = m, we have ∂αf ∈ Cr+1−m due to the initial assumption that f ∈ Cr+1.
Also Tn,α is infinitely differentiable since it is a multinomial, so we see that Fn,m ∈ Cr+1−m. By
Leibniz, for each |β| ≤ r + 1−m, we have

∂βFn,m =
∑

|α|=m

1

nm/2α!

∑

0≤γ≤β

(
β

γ

)
∂α+β−γf ∂γTn,α.

Since Tn,α(x) is a polynomial in xℓ of degree at most αℓ, the inside summation can be taken over
0 ≤ γ ≤ min(α,β). Additionally, Bernstein’s inequality for algebraic polynomials and central
moment bounds (2.2) yield

‖∂γTn,α‖∞ ≤
d∏

ℓ=1

‖∂γℓTn,αℓ
‖∞ ≤

d∏

ℓ=1

αℓ!

(αℓ − γℓ)!
‖Tn,αℓ

‖∞

≤
d∏

ℓ=1

αℓ!

(αℓ − γℓ)!

√
‖Tn,2αℓ

‖∞ ≤ α!

(α− γ)!

√
Aα n

|α|/2.

From this and that |α+ β − γ| ≤ r + 1, it follows that

‖∂βFn,m‖∞ ≤
∑

|α|=m

√
Aα

∑

0≤γ≤min(α,β)

(
β

γ

)
1

(α− γ)!
‖∂α+β−γf‖∞

≤ ‖f‖Cr+1

∑

|α|=m

√
Aα

∑

0≤γ≤β

(
β

γ

)
= ‖f‖Cr+12|β|

∑

|α|=m

√
Aα.

This completes the proof of (2.7).
Returning back to the proof at hand, notice that for each 2 ≤ m ≤ r, if we define

q(m) :=
⌈r + 1

2

⌉
− 1−

⌈r + 1−m

2

⌉
,

then we have q(m) ≥ 0 since m ≥ 2, and q(m) ≤ (m−1)/2. It follows from the inductive hypothesis
that there exist constants Mr+1−m,d > 0 for each 2 ≤ m ≤ r such that

∥∥(Bn − I)⌈(r+1)/2⌉−1Fn,m

∥∥
∞

≤ ‖Bn − I‖q(m)
∞

∥∥∥(Bn − I)⌈(r+1−m)/2⌉Fn,m

∥∥∥
∞

≤ 2(m−1)/2Mr+1−m,d‖Fn,m‖Cr+1−qn−(r+1−m)/2.
(2.8)

12



We next control the remainder term involving Gn,r+1. We have the following upper bound for
‖Gn,r+1‖∞. By Cauchy-Schwarz, the partition of unity property (2.3), and central moment bounds
(2.4), we see that for each x,

|Gn,r+1(x)| ≤
|f |Ċr+1

nr+1

∑

0≤k≤n

∑

|α|=r+1

1

α!

∣∣(k − nx)α
∣∣ pn,k(x)

≤ |f |Ċr+1

nr+1

∑

|α|=r+1

1

α!

( ∑

0≤k≤n

(k − nx)2α pn,k(x)
)1/2

≤ |f |Ċr+1

n(r+1)/2

∑

|α|=r+1

√
Aα

α!
.

(2.9)

Moreover, ‖Bn − I‖∞ ≤ 2, and ⌈(r + 1)/2⌉ − 1 ≤ r/2. Hence we have

‖(Bn − I)⌈(r+1)/2⌉−1Gn,r+1‖∞ ≤ 2⌈(r+1)/2⌉−1‖Gn,r+1‖∞ ≤ 2r/2‖Gn,r+1‖∞. (2.10)

Now we are ready to complete the proof. Combining (2.6), (2.7), (2.8), (2.9), and (2.10), we
see that

‖(Bn − I)⌈(r+1)/2⌉(f)‖∞

≤
r∑

m=2

‖(Bn − I)⌈(r+1)/2⌉−1Fn,m‖∞
nm/2

+ ‖(Bn − I)⌈(r+1)/2⌉−1Gn,r+1‖∞

≤
r∑

m=2

2(m−1)/2Mr+1−m,d‖Fn,m‖Cr+1−m

n(r+1)/2
+

2r/2|f |Ċr+1

n(r+1)/2

∑

|α|=r+1

√
Aα

α!

.r+1,d
‖f‖Cr+1

n(r+1)/2
.

This completes the proof by induction.

Let us briefly discuss our result in the context of classical approximation results of Micchelli [32]
and Felbecker [16]. The main distinction is that our result holds for iterates of multivariate Bern-
stein polynomials (formed as tensor products), while the classical papers only treat the univariate
case. One small improvement we made deals the parity of s. Micchelli only treated the even case,
which loses a n−1/2 factor for the odd cases, whereas the odd case was satisfactorily derived by
Felbecker. In our proof, we combined the even and odd cases together seamlessly. The extension of
these classical results to higher dimensions was perhaps known by experts, though we were unable
to find a reference.

On the other hand, there are alternative generalizations of Bernstein polynomials to the canon-
ical simplex in R

d, as opposed to the unit cube. Such polynomials are significantly different from
the tensor product ones employed in this paper. For Bernstein polynomials on the simplex, ap-
proximation rates of Micchelli-Felbecker iterations have been studied, see [18, 15] and references
therein.

2.4 From iterated Bernstein to linear combinations

In the next section on quantization, we will show to quantize the coefficients of a function written
in the Bernstein basis. For this reason, we show how to relate the iterated Bernstein approximation
Un,r(f) to the Bernstein polynomial Bn(fn,r) of a possibly different function fn,r, which can be
found constructively via the formula,

fn,r :=
(
I +

r−1∑

m=1

(I −Bn)
m
)
(f). (2.11)
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Theorem 2.5. For any integers r, d ≥ 1, any f ∈ C([0, 1]d), and any n ≥ 1, we have

Un,r(f) = Bn(fn,r),

where fn,r is defined in (2.11). Further, it holds that

‖fn,r‖∞ ≤ ‖f‖∞ + (2r−1 − 1)‖f −Bn(f)‖∞.
Proof. [22, Theorem 5] proved this for d = 1 case, but the same argument extends to the Bernstein
operator on C([0, 1]d) without any modifications to the proof.

This theorem shows that not only Un,r(f) = Bn(fn,r), but it also implies that the coefficients
{ak}0≤k≤n in the following theorem are not much larger than ‖f‖∞. This will be important in the
next section, where the coefficients will be fed into a particular quantization algorithm called Σ∆,
which requires a ℓ∞ assumption on the coefficients.

Theorem 2.6. Let d, s, n ≥ 1, µ, δ ∈ (0, 1), and f ∈ Cs([0, 1]d) with ‖f‖∞ ≤ µ. If s ≥ 3, also

assume that n ≥
√
2s+1d

8δ
‖f‖C1Lip. There exist {ak}0≤k≤n such that ‖a‖∞ ≤ µ+ δ and

∥∥∥f −
∑

0≤k≤n

akpn,k

∥∥∥
∞

.s,d ‖f‖Csn−s/2. (2.12)

Proof. We consider different cases depending on s.
If s = 1, then we let ak = f(k/n), so ‖a‖∞ ≤ ‖f‖∞ ≤ µ. The conclusion follows from

Proposition 2.2. In this case, the implicit constant in (2.12) is
√
d/2.

If s = 2, then we let ak = f(k/n), so ‖a‖∞ ≤ ‖f‖∞ ≤ µ. The conclusion follows from
Proposition 2.3. In this case, the implicit constant in (2.12) is d2/8.

Suppose s ≥ 3. Consider the function h := Un,⌈s/2⌉(f). From Theorem 2.4, we have

‖f − h‖∞ .s,d ‖f‖Csn−s/2.

From Theorem 2.5 and Proposition 2.3, we have h = Bn(fn,⌈s/2⌉), where fn,⌈s/2⌉ is defined in (2.11),
and

‖fn,⌈s/2⌉‖∞ ≤ ‖f‖∞ + (2⌈s/2⌉ − 1) ‖f −Bn(f)‖∞ ≤ µ+

√
2s+1d

8n
‖f‖C1Lip.

Pick any n sufficiently large so that the right hand side is bounded above by µ + δ. We set
ak := fn,⌈s/2⌉(k/n) so that

h = Bn(fn,⌈s/2⌉) =
∑

0≤k≤n

akpn,k,

which completes the proof.

3 Quantization error

The goal of this section is to show that, given a polynomial whose coefficients in the Bernstein basis
is {ak}0≤k≤n where ‖a‖∞ ≤ µ, for a prescribed µ ∈ (0, 1), we can find a sequence {σk}0≤k≤n ⊆ {±1}
such that the quantization error induced on the Bernstein basis,

Equan
n,a (x) :=

∑

0≤k≤n

(ak − σk) pn,k(x),

is small in a suitable sense. Theorem 3.5 will provide us with an explicit algorithm that will convert
{ak}0≤k≤n into an appropriate {σk}0≤k≤n.
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3.1 Background on Σ∆ quantization

Σ∆ quantization (or modulation) refers to a large family of algorithms designed to convert any
given sequence y := {yk}k∈N of real numbers in a given set Y to another sequence q := {qk}k∈N
taking values in a prescribed discrete set A, typically selected as an arithmetic progression. This
is done in such a way that the quantization error is a “high-pass” sequence, in the sense that inner
products of q with slowly varying sequences are small.

A canonical way of ensuring this is to ask that for any y ∈ Y, there exist q and a “state”
sequence {uk}k∈Z that satisfy the r-th order difference equation

y − q = ∆ru, and (∆u)k := uk − uk−1. (3.1)

If this is possible, we then say that q is an r-th order noise-shaped quantization of y. When (3.1)
is implemented recursively, it means that each qk is found by means of a quantization rule of the
form

qk = F (uk−1, uk−2, . . . , yk, yk−1, . . . ),

and uk is updated via

uk =

r∑

j=1

(−1)j−1

(
r

j

)
uk−j + yk − qk.

Definition 3.1. A quantization rule is stable for Y if for each y ∈ Y, there is a sequence u satisfying
(3.1) such that ‖u‖∞ is bounded uniformly in y.

Stability is a desirable property for a quantization algorithm as it allows one to control the
error y − q uniformly in y ∈ Y. Establishing the existence of a stable r-th order scheme for fixed
and finite A, especially in the extreme one-bit case where A = {±a} for some a 6= 0, is difficult.
The first breakthrough on this problem was made in the seminal paper of Daubechies and DeVore
[11]. There it was shown for A = {±1}, any r ≥ 1, and any µ ∈ (0, 1), there exists a stable r-th
order Σ∆ quantizer such that whenever ‖y‖∞ ≤ µ, it holds that ‖u‖∞ ≤ Cr,µ. The constant Cr,µ

depends only on r and µ, and blows up as r → ∞ or µ → 1, except for when r = 1. For r = 1,
it suffices to take Cr,µ = 1 and µ ∈ (0, 1]. Another family of stable Σ∆ quantizers, but with more
favorable Cr,µ, was subsequently proposed in [20].

In this paper, r-th order Σ∆ quantization refers to either of the stable rules in [11] and [20] for
when A = {±1}. Except for Section 5, we will use Σ∆ solely as a method of approximation, and
will not need explicit descriptions of these rules or precise estimates for Cr,µ. If new stable r-th
order Σ∆ quantization methods are developed, those can be used instead of the ones mentioned
here, without changes to the remaining parts of this paper.

We will need to extend Σ∆ to sequences indexed by N
d. Let u be a function on N

d. For each
integer 1 ≤ ℓ ≤ d, we denote the finite difference operator in the ℓ-th coordinate by ∆ℓ, which acts
on u by the formula

(∆ℓu)k := uk1,...,kℓ−1,kℓ,kℓ+1,...,kd − uk1,...,kℓ−1,kℓ−1,kℓ+1,...,kd

The following shows that there exists a stable directional r-th order Σ∆ quantizer.

Proposition 3.2. For any µ ∈ (0, 1), and integers r, d ≥ 1, there exists a Cr,µ > 0 that depends

only on r and µ such that the following hold. For any function y defined on N
d such that ‖y‖∞ ≤ µ

and any integer 1 ≤ ℓ ≤ d, there exist a function q on N
d where qk ∈ {±1} for all k ∈ N

d and a

function u on Z
d supported in N

d, such that ‖u‖∞ ≤ Cr,µ and

y − q = ∆r
ℓu.

For r = 1, we only require that µ ∈ (0, 1] and the statement holds for C1,µ = 1.
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Proof. Fix an integer 1 ≤ ℓ ≤ d, and for each k ∈ N
d, we define

k′ = (k1, . . . , kℓ−1, kℓ+1, . . . , kd) ∈ N
d−1.

Now we form a sequence from y by setting all indices except for the ℓ-th one to be k′,

yk′ :=
{
yk1,...,kℓ−1,j,kℓ+1,...,kd

}
j∈N

.

Using either one of the two quantization rules pointed out in Section 3.1, we define a q on N
d such

that qk′ ∈ {±1} and is defined as a solution to the r-th order difference equation

yk′ − qk′ = ∆r(uk′).

This scheme is stable, in the sense that there exists Cr,µ > 0 such that for each k′, we have
‖uk′‖∞ ≤ Cr,µ. Hence ‖u‖∞ ≤ Cr,µ.

It follows from this proposition that any stable r-th order Σ∆ can be used to generate a stable
r-th order scheme in arbitrary dimensions.

Definition 3.3. A r-th order Σ∆ applied to the ℓ-th direction is a map that satisfies the conclusions
of Proposition 3.2.

3.2 Directional Σ∆ quantization on Bernstein polynomials

Going back to our original goal of quantizing the coefficients a = {ak}0≤k≤n of a polynomial in the
Bernstein basis, we process the coefficients with a r-th order Σ∆ applied to the ℓ-th direction, as in
Proposition 3.2. Letting {σk}0≤k≤n be the ±1 sequence produced by this algorithm and u denote
the state, the quantization error induced on the Bernstein basis is

Equan
n,a (x) =

∑

0≤k≤n

(∆r
ℓu)k pn,k(x) =

∑

0≤k≤n

uk
(
(∆∗

ℓ)
rpn,·(x)

)
k
. (3.2)

Here, we let ∆∗
ℓ be the adjoint of ∆ℓ, and

(∆∗
ℓ pn,·(x))k :=

(
pn,kℓ(xℓ)− pn,kℓ+1(xℓ)

) ∏

j 6=ℓ

pn,kj(xj).

Notice that with our convention that pn,k = 0 if there is a ℓ such that kℓ > n, all the boundary
terms are correctly included in (3.2). We are now ready to state the following result for first order
Σ∆ on the Bernstein basis.

Proposition 3.4. For any integers n, d ≥ 1, {ak}0≤k≤n with ‖a‖∞ ≤ 1, and 1 ≤ ℓ ≤ d, if

{σk}0≤k≤n is the output of a stable first order Σ∆ quantizer applied in the ℓ-th direction with input

a, then ∣∣∣
∑

0≤k≤n

(ak − σk) pn,k(x)
∣∣∣ ≤ min

(
2, n−1/2x

−1/2
ℓ (1− xℓ)

−1/2
)
.

Proof. It follows from the inequality ‖u‖∞ ≤ C1,µ = 1 and identity (3.2) for r = 1, we have

∣∣∣
∑

0≤k≤n

(ak − σk) pn,k(x)
∣∣∣ ≤

∑

0≤k≤n

∣∣(∆∗
ℓpn,·(x))k

∣∣.
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The consecutive differences of the pn,k, for the one dimensional case, satisfies the following identity:
for all x ∈ [0, 1] and 0 ≤ k ≤ n,

pn,k(x)− pn,k+1(x) =
(k + 1)− (n + 1)x

(n+ 1)x(1− x)
pn+1,k+1(x). (3.3)

See [14, Chapter 10] and [29] for this identity. When interpreting the right hand side of this
equation for x = 0 or x = 1, it should be observed that the polynomial ((k+1)−(n+1)x)pn+1,k+1(x)
is divisible by x(1 − x) for each k. We proceed to extend (3.3) to the multivariate case. For each
integer 1 ≤ ℓ ≤ d, we have

(
∆∗

ℓ pn,·(x)
)
k
=

((kℓ + 1)− (n+ 1)xℓ
(n+ 1)xℓ(1− xℓ)

pn+1,kℓ+1(xℓ)
)∏

j 6=ℓ

pn,kj(xj). (3.4)

By identity (3.4), the partition of unity property (2.3), Cauchy-Schwarz, and central moment
bounds (2.2), we have

∑

0≤k≤n

∣∣(∆∗
ℓpn,·(x))k

∣∣ =
∑

0≤k≤n

∣∣∣
(kℓ + 1)− (n+ 1)xℓ
(n+ 1)xℓ(1− xℓ)

∣∣∣ pn+1,kℓ+1(xℓ)
∏

j 6=ℓ

pn,kj(xj)

=
1

(n + 1)xℓ(1− xℓ)

n∑

kℓ=0

∣∣(kℓ + 1)− (n+ 1)xℓ
∣∣ pn+1,kℓ+1(xℓ)

≤
√
Tn+1,2(xℓ)

(n + 1)xℓ(1− xℓ)

( n∑

kℓ=0

pn+1,kℓ+1(xℓ)
)1/2

=
1√

(n+ 1)xℓ(1− xℓ)
.

On the other hand, we have the trivial bound for the quantization error,

∣∣∣
∑

0≤k≤n

(ak − σk) pn,k(x)
∣∣∣ ≤ ‖a− σ‖∞

∑

0≤k≤n

pn,k(x) = ‖∆ℓ u‖∞ ≤ 2.

For larger values of r, due to an increasing complexity in the formulas for (∆∗
ℓ)

rpn,·(x), we do
not provide explicit upper bounds. Our strategy for deriving an upper bound for the quantization
error builds upon a corresponding one-dimensional result in [22, Theorem 6].

Theorem 3.5. For any integers n, d, r ≥ 1, µ ∈ (0, 1), {ak}0≤k≤n with ‖a‖∞ ≤ µ, and 1 ≤ ℓ ≤ d,
if {σk}0≤k≤n is the output of a stable r-th order Σ∆ quantization applied in the ℓ-th direction with

input {ak}0≤k≤n, then

∣∣∣
∑

0≤k≤n

(ak − σk) pn,k(x)
∣∣∣ .r,µ min

(
1, n−r/2x−r

ℓ (1− xℓ)
−r

)
.

Proof. Since ∆∗
ℓ is applied to the ℓ-th direction and the multivariate Bernstein polynomials are

tensor products, we have

(
(∆∗

ℓ )
r pn,·(x)

)
k
=

(
(∆∗)rpn,·(xℓ)

)
kℓ

(∏

j 6=ℓ

pn,kj(xj)
)
.
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Employing (3.2), non-negativity of the Bernstein polynomials, and partition of unity (2.3),

∣∣∣
∑

0≤k≤n

(ak − σk) pn,k(x)
∣∣∣ ≤ ‖u‖∞

∑

0≤k≤n

∣∣((∆∗
ℓ )

r pn,·(x))k
∣∣ ≤ Cµ,r

n∑

kℓ=0

∣∣∣
(
(∆∗)rpn,·(xℓ)

)
kℓ

∣∣∣.

This quantity was upper bounded in [22, Theorem 6], and by the referenced bound, we have

n∑

kℓ=0

∣∣∣
(
(∆∗)rpn,·(xℓ)

)
kℓ

∣∣∣ .r n
−r/2x−r

ℓ (1− xℓ)
−r.

On the other hand, we have the trivial upper bound for the quantization error,

∣∣∣
∑

0≤k≤n

(ak − σk) pn,k(x)
∣∣∣ ≤ ‖a− σ‖∞

∑

0≤k≤n

pn,k(x) = ‖∆r
ℓ u‖∞ ≤ 2r‖u‖∞ ≤ 2rCr,µ.

3.3 Comments on the quantization results

In contrast to Theorem 3.5 for the Bernstein basis, we explain why {±1} linear combinations of
the power basis Pn := {x 7→ xk}nk=0, by which we mean any function of the form p(x) =

∑n
k=0 σkx

k

where σk ∈ {±1} for each k, cannot accurately approximate continuous functions on [0, 1]. We
provide two different set of explanations.

All possible real numbers that can be realized as an output of a {±1} linear combination in the
power basis up to degree n with input x is the set

Pn(x) =
{ n∑

k=0

σkx
k : σk ∈ {±1} for all k

}
.

A plot of P10 is shown in Section 3.3. It is straightforward to see that

Pn(x) ⊆ [1− rn(x), 1 + rn(x)] ∪ [−1− rn(x), −1 + rn(x)], where rn(x) = x
1− xn

1− x
.

Hence, Pn(x) is a strict subset of [−2, 2] whenever x ∈ (0, 1/2) and it becomes an increasingly
smaller subset as x→ 0. For any c ∈ (0, 1/2), all sufficiently small ε > 0, and all n ≥ 1, we have

sup
f∈C([0,1])

inf
σ0,...,σn∈{±1}

sup
x∈[0,c]

∣∣∣f(x)−
n∑

k=0

σkx
k
∣∣∣ > ε.

The key component of this statement is that c is fixed independent of n. In contrast to Theorem 3.5,
the regions for which the approximation error is large shrinks to zero as n→ ∞. For all sufficiently
large n, this region consists of two d-dimensional rectangles whose measures are O(1/

√
n).

Related to this discussion is the observation that P (x) :=
⋃∞

n=0 Pn(x) for x ∈ (0, 1/2) has a
fractal structure and is totally disconnected. Indeed, P (x) is the set of all real numbers that can
be written in base x with −1, 0,+1 digits and of length n. for any a, b ∈ P (x) with a < b, we can
express them as a sequence in base x, and let m be the first digit for which their base x expansions
disagree. Call their first m − 1 digits σ0, . . . , σm−1. Any c ∈ P (x) with a < c < b can be written
in base x as σ0, . . . , σm−1, εm, . . . , where εk ∈ {−1, 0, 1}. We recall the basic observation that
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Figure 2: Plot of P10 on [0, 12 ].

∑∞
k=m εkx

k ∈ (−xm/(1−x), xm/(1−x)) ⊆ (−xm−1, xm−1) since x ∈ (0, 1/2). Hence we can always
find a c such that a < c < b and c 6∈ P (x).

Of course, the previous discussion only pertains to the power basis’ inability to approximate
continuous functions near the origin. It was shown in [21] that {±1} linear combinations in the
power basis are able to approximate certain power series in the complex plane near the point z = 1,
so approximation is possible in other regions.

From a quantization perspective, Theorem 3.5 is perhaps surprising because previous appli-
cations of noise-shaping quantization (including Σ∆) [11, 20, 21, 8, 24], utilize some notion of
redundancy in the system. However, the multivariate Bernstein polynomials of order n forms a
basis for the space of multivariate polynomials whose degree in each variable is at most n, so it
does not exhibit redundancy in the traditional sense.

Instead, the Bernstein system exhibits a different type of redundancy. To make this notion
more precise, we define the synthesis operator Sn : R

n+1 → Pn by Snu :=
∑n

k=0 ukpn,k. Using the
usual inner products on both R

n+1 and Pn, a direct calculation shows that the frame operator
S∗
nSn : R

n+1 → R
n+1 is represented as the matrix B such that Bj,k :=

∫ 1
0 pn,j(x)pn,k(x) dx. The ε

numerical rank of a (n+ 1)× (n+ 1) matrix A by

dε(A) := max{0 ≤ m ≤ n : σm(A) ≥ ε0(A)}.
Then [22, Appendix B] showed that for fixed ε > 0, we have

dε(B) =
√
2 ln(1/ε)

√
n(1 + o(1)) as n→ ∞.

This partially explains why noise-shaping quantization in the Bernstein basis is possible and why
Theorems 2.4 and 3.5 exhibit decay rates of (

√
n)−s and (

√
n)−r respectively.

Continuing this line of discussion and to connect it with the prior comparison between the
Bernstein and power basis, notice that the synthesis operator for the power basis is Tn : R

n+1 → Pn

where Tnu =
∑n

k=0 ukx
k. Then the frame operator T ∗

nTn can be identified with the matrix H which

has entries Hj,k :=
∫ 1
0 x

jxk dx = 1/(j + k + 1). This is precisely the Hilbert matrix, and it follows
from [4, Corollary 4.2] that

dε(H) ≤
⌈ log(8n− 4) log(4/ε)

π2

⌉
.

Hence, the numerical rank for the power basis is roughly log(n) compared to that of
√
n for the

Bernstein basis.
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3.4 Proof of Theorem A

Proof. According to Theorem 2.6, using (1−µ)/2 as δ in the referenced theorem and the assumption

that n ≥
√
2s+1d

4(1− µ)
‖f‖C1Lip, if s ≥ 3, there exist {ak}0≤k≤n such that ‖a‖∞ ≤ (µ+ 1)/2 < 1 and

∥∥∥f −
∑

0≤k≤n

akpn,k

∥∥∥
∞

.s,d ‖f‖Csn−s/2.

For any 1 ≤ ℓ ≤ d, applying s-th order Σ∆ in the ℓ-th direction on {ak}0≤k≤n, noting that
‖a‖∞ ≤ (µ + 1)/2 < 1, we obtain {σk}0≤k≤n ⊆ {±1}. According to Theorem 3.5, the induced
quantization error satisfies for all x ∈ [0, 1]d,

∣∣∣
∑

0≤k≤n

akpn,k(x)−
∑

0≤k≤n

σkpn,k(x)
∣∣∣ .s,µ min

(
1, n−s/2x−s

ℓ (1− xℓ)
−s

)
.

Combining these inequalities completes the proof.

4 Implementation error

In this section, we concentrate on the implementation error by one-bit quantized neural networks.
That is, suppose for some {σk}0≤k≤n such that σk ∈ A, we would like find functions {bn,k}0≤k≤n

such that
∑

0≤k≤n σkbn,k is implementable by a strict A-quantized neural network with activation
β for which the implementation error

E imp
n,σ,A,β(x) :=

∑

0≤k≤n

σkpn,k(x)−
∑

0≤k≤n

σkbn,k(x),

is suitably controlled. We address two pairs of activation functions and one-bit alphabets.

(a) The first pair is the quadratic activation ρ : R → R defined as ρ(t) = 1
2t

2, together with the
one-bit alphabet A1 := {±1}.

(b) The second pair is the ReLU activation σ : R → R defined as σ(t) = max(t, 0), together with
the one-bit alphabet A1/2 := {±1

2}.

For both activation functions, the main mechanism behind our construction hinges on a Pascal
triangle interpretation of the Bernstein polynomials, which we proceed to explain in the univariate
case first. Each Bernstein polynomial of degree m + 1 can be made by multiplying at most two
pairs of Bernstein polynomials, with degrees m and 1, and adding them together. The key formulas
are, for each m ≥ 1,

pm+1,k(x) =





(1− x)pm,0(x) if k = 0,

xpm,k−1(x) + (1− x)pm,k(x) if 0 < k < m,

xpm,m(x) if k = m+ 1.

(4.1)

These recurrence relations are summarized in a Pascal-like network as shown in Figure 1b. Due to
the combinatorial factors that appear in the Bernstein polynomials, the Pascal triangle interpre-
tation is crucial when attempting to implement approximations of the Bernstein polynomials in a
stable way when using only parameters from a small set.
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Definitions of strict (unquantized and quantized) neural networks were provided in Definitions
1.1 and 1.2. As discussed earlier, strict neural networks do not use skip connections and all inter-
mediate layers use the same activation. Here, we introduce additional definitions and some basic
concepts that will help facilitate the subsequent proofs.

One cumbersome issue is that if F : Rd → R
m and G : Rm → R

n are both implementable by
strict neural networks, then their composition G ◦ F is not necessarily implementable because by
using the output of F as the input of G results in network with a layer without activation. For this
reason, we introduce the following definition.

Definition 4.1. An activated neural network with activation β is any function F : Rd → R
m of

the form,

F (x) := β(WLβ(WL−1 · · · β(W1(x)))), Wℓ(u) := Aℓu+ bℓ, for ℓ = 1, . . . , L.

Hence, an activated neural network also does not have skip connections, but each layer, including
the output layer, uses the same activation function β. We say the network is unquantized if the
weights and biases are allowed to use any real number, while it is A-quantized if they are selected
from A only. The number of layers, nodes, and parameters of an activated neural network are
defined in the same way as for strict neural networks. With this terminology in place, we make the
following basic observations.

(a) If F : Rd → R
m is implementable by an activated network of size (L1, N1, P1) and G : Rm → R

n

is implementable by a strict (resp., activated) neural network of size (L2, N2, P2), then G ◦ F
is implementable by a strict (resp., activated) network of size (L1 + L2, N1 + N2, P1 + P2).
Naturally, we say that the second network is appended to the first or that the networks are
composed.

(b) If F : Rd → R
m and G : Rd → R

n are both implementable by strict (resp., activated) networks
of size (L,N1, P1) and (L,N2, P2), then the function F ⊕G : Rd → R

m+n is implementable by
a strict (resp., activated) network of size (L,N1 + N2, P1 + P2). We say that these networks
are placed in parallel.

4.1 Overview for {±1}-quantized quadratic networks

In this subsection we provide a high level discussion of our constructions for A1-quantized neural
networks with quadratic activation ρ, and postpone the details for Appendix A.1. In the expository
portions, we just use the term “network” since the alphabet and activation do not change in this
subsection.

To turn the schematic diagrams shown in Figures 1a and 1b into a proper network, it suffices to
convert multiplications by 1−x and x into neural network operations. Our methodology is inspired
by the basic identity,

ab = ρ(a+ b)− ρ(a)− ρ(b). (4.2)

It is important to remark that this identity cannot be (directly) used for intermediate layers, since
strict neural networks require every node to be activated and hence such a node can only produce
ρ(ab), not ab itself. Hence, we cannot realize the product function as an activated neural network.

This technical issue can be circumvented under many situations in light of the following ob-
servation. If an intermediate layer’s nodes output ρ(a + b), ρ(a), ρ(b), and c, then a subsequent
intermediate layer can implement ρ(ab+ c) in view the identity

ρ(ab+ c) = ρ(ρ(a+ b)− ρ(a)− ρ(b) + c).
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Hence, although ab cannot be directly implemented in an intermediate layer, it can be used as an
input into a subsequent intermediate or final layer. This type of reasoning can be adapted to more
general situations beyond implementing ρ(ab+ c).

To see how this observation is relevant to Bernstein, we define the functions

U(x) := ρ(1− x), V (x) := ρ(x), X0,0(x) := ρ(1),

Y0,0(x) := ρ(1− x+ 1), Z0,0(x) := ρ(x+ 1).

For each integer m ≥ 1 and k = 0, . . . ,m, we define

Xm,k(x) = ρ(pm,k(x)), Ym,k(x) = ρ(1− x+ pm,k(x)), Zm,k(x) = ρ(x+ pm,k(x)).

It follows from the recurrence relation (4.1) and identity (4.2) that

pm,k =





Ym−1,0 − U −Xm−1,0 if k = 0,

Zm−1,k−1 − V −Xm−1,k−1 + Ym−1,k − U −Xm−1,k if 0 < k < m,

Zm−1,m−1 − V −Xm−1,m−1 if k = m.

(4.3)

These formulas show that each U, V,X, Y, Z can be realized as an intermediate layer’s output by
composing networks, e.g., Xm+1,k can be produced given Xm,j , Ym,j , Zm,j , U, V for each 0 ≤ j ≤ m.
While each Bernstein polynomial does not actually correspond to the output of a network used in
our final construction, it will be a node’s preactivation. This implies that any linear combination∑n

k=0 σkpn,k with σk ∈ {±1} for each k, is implementable by a network.
For the multivariate case, in view of (4.3), each pn,k is a sum of tensor products consisting of

various combinations from U, V,X, Y, Z. To implement tensor products, we need multiplication.
Similar to the bivariate case (4.2), a multivariate product cannot be realized as an activated network,
and it will instead be made implicitly in a subsequently layer. For example, to use the product abc
as an argument in a future intermediate layer, if one layer outputs

ρ(a), ρ(a+ b), ρ(b), ρ(c), ρ(c+ 1), ρ(1),

then it possible for the next layer to output ρ(ab+ c), ρ(ab), ρ(c), due to the identities

ρ(ab+ c) = ρ
(
ρ(a+ b)− ρ(a)− ρ(b) + ρ(c+ 1)− ρ(c)− ρ(1)

)
,

ρ(ab) = ρ(a+ b)− ρ(a)− ρ(b),

ρ(c) = ρ(c+ 1)− ρ(c) − ρ(1).

The significance here is that a {±1} linear combination of ρ(ab + c), ρ(ab), ρ(c), is abc which can
be implicitly formed in the layer afterwards. By continuing this process, it is possible to create the
terms necessary to produce multivariate multiplication. After these considerations, it is possible to
show that for any {σk}0≤k≤n with σk ∈ {±1}, the sum

∑
0≤k≤n σkpn,k is implementable.

4.2 Overview for {±1
2
}-quantized ReLU networks

In this subsection we provide a high level discussion of our constructions for A1/2-quantized neural
networks with ReLU activation σ, and postpone the details for Appendix A.2. In the expository
portions, we just use the term “network” since the alphabet and activation do not change in this
subsection.

Since ReLU is the conventional activation used in practice, the approximation properties of
unquantized ReLU networks have been thoroughly studied. We use some standard ideas popularized
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by [39]. The starting point is the tent function φ : [0, 1] → [0, 1], where φ(x) := 2x for x ∈ [0, 12 ]
and φ(x) := 2− 2x for x ∈ [12 , 1], and the identity,

x(1− x) =

∞∑

k=1

φ◦k(x)

4k
, (4.4)

where the series converges uniformly in x and φ◦k refers to the composition of φ with itself k-times,
with the convention that φ◦1 := φ. Since φ can be implemented, this identity provides a natural
method for implementation of the squaring function and hence multiplication via the basic identity

ab =
1

2
(a+ b)2 − 1

2
a2 − 1

2
b2. (4.5)

Let us make some comments about how this strategy can be modified in order to account for
the lack of skip connections and one-bit quantization. For technical reasons, we observed that
approximation of the squaring function is insufficient as it leads to requiring additional bits. We
instead approximate x2 from both above and below by nonnegative S+

ε and S−
ε respectively, with

error ε uniformly in x. The implementations of S+
ε and S−

ε are also further complicated by the
constraint of not being able to use skip connections. Although we use “duplication” networks to
pass values down a specified number of layers, exaggerated use results in bloated networks and
care is taken to use them sparingly. By using S±

ε and mimicking (4.5), we define the approximate
multiplication function

Pε(x, y) = σ
(
2S−

ε/6

(x+ y

2

)
− 2S+

ε/6

(x
2

)
− 2S+

ε/6

(y
2

))
.

Not only does Pε approximate the product function uniformly with error ε, it also satisfies the
inequalities 0 ≤ Pε(x, y) ≤ xy. This is important since we use strict neural networks and the ReLU
function is the identity on nonnegative real numbers.

With approximate bivariate multiplication at hand, approximations of univariate Bernstein
polynomials can be constructed mimicking recurrence (4.1). That is, we define {bm,k}0≤k≤n recur-
sively starting with b1,0(x) = 1− x and b1,1(x) = x and for m ≥ 1,

bm+1,k(x) =





Pε(1 − x, bm,0(x)) if k = 0,

Pε(x, bm,k−1(x)) + Pε(1− x, bm,k(x)) if 0 < k < m,

Pε(x, bm,m(x)) if k = m+ 1.

These can be approximately multiplied together to yield a collection {bn,k}0≤k≤n that approximate
the multivariate Bernstein polynomials {pn,k}0≤k≤n uniformly on [0, 1]d. Finally, we approximate
any f =

∑
0≤k≤n σkpn,k by

∑
0≤k≤n σn,kbn,k, which is implementable under the assumption that

σk ∈ {±1
2}.

4.3 Proof of Theorem B

Proof. Quadratic case and {±1} alphabet. From identity (4.3), we see that each univariate Bern-
stein polynomial pn,k is a ±1 linear combination of at most six functions in the set

{U, V,Xn−1,k, Yn−1,k, Zn−1,k : k = 0, . . . , n − 1}.

To simplify the notation, denote this set of 3n + 2 functions by {ψj}3n+2
j=1 . Then for each 0 ≤

k ≤ n, there exists {εk,j}3n+2
j=1 such that εk,j ∈ {0, 1} with at most six that are nonzero, and

pn,k =
∑3n+2

j=1 εk,jψj.
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To handle the multivariate case, we set ψj(x) := ψj1(x1) · · ·ψjd(xd) and εk,j := εk1,j1 · · · εkd,jd .
Then we have

∑

0≤k≤n

σkpn,k =
∑

0≤k≤n

∑

1≤j≤3n+2

σkεk,jψj =
∑

1≤j≤3n+2

( ∑

0≤k≤n

σkεk,j

)
ψj . (4.6)

It is important to remark that this is not necessarily a ±1 combination of ψj ’s because it is possible
for a ψj to repeat. In fact, there will be many repetitions as U(x1)U(x2) · · ·U(xd) appears (n− 1)d

times. However, it is possible to express the right side of (4.6) as a ±1 sum of ψj ’s if we allow for
repetitions, and that this ±1 sum only requires at most 6d(n+1)d terms, in view of the observation
that |{j : εk,j 6= 0}| ≤ 6d uniformly in k. Hence, there is a finite sequence I with |I| ≤ 6d(n + 1)d

and {σ̃j}j∈I with σ̃j ∈ {±1} such that
∑

0≤k≤n

σkpn,k(x) =
∑

j∈I

σ̃jψj(x).

We are now ready to implement this approximation strategy as a neural network. If d = 1,
notice that

n∑

k=0

σkpn,k = σ0Yn−1,0 − σ0U − σ0Xn−1,0

+

n−1∑

k=1

(σkZn−1,k−1 − σkV − σkXn−1,k−1 + σkYn−1,k − σkU − σkXn−1,k)

+ σn−1Zn−1,n−1 − σn−1U − σn−1Xn−1,n−1.

Notice that each Xn−1,k appears twice. We use two networks described in Lemma A.1 placed
parallel with each other, so that they outputs all terms on the right hand side, and a linear layer
produces the final summation. This network has size O(n).

For d ≥ 2, we use Lemma A.1 to generate d networks in parallel, so that layer n+ 1 produces,
for each 1 ≤ ℓ ≤ d, the outputs

U(xℓ), V (xℓ), {Xn−1,k(xℓ)}n−1
k=0 , {Yn−1,k(xℓ)}n−1

k=0 , {Zn−1,k(xℓ)}n−1
k=0 . (4.7)

Doing so requires a network of size O(n). Let us momentarily fix a j ∈ I. Since ψj(x) =
ψj1(x1) · · ·ψjd(xd) and each ψjℓ(xℓ) is a ±1 summation of terms in (4.7) due to identity (4.3),
we use the network constructed in Lemma A.2 that outputs the quantities

ρ
( ∏

ℓ≤d∗

ψj(xℓ) +
∏

ℓ>d∗

ψj(xℓ)
)
, ρ

( ∏

ℓ≤d∗

ψj(xℓ)
)
, ρ

( ∏

ℓ>d∗

ψj(xℓ)
)
.

We do this for each j ∈ I and place these networks in parallel, hence further requiring a network
with O(1) layers and O(nd) nodes and parameters. The final linear layer produces

∑
j∈I σ̃jψj(x)

since σ̃j ∈ {±1} and ψj(x) is a ±1 linear combination of the above terms.

ReLU case and {±1
2} alphabet. Let ε > 0. As shown in Lemma A.7, there is an activated

{±1
2}-quantized ReLU neural network that implements a set of functions {bn,k}0≤k≤n such that

‖pn,k− bn,k‖∞ ≤ ε for each 0 ≤ k ≤ n. This network has O(n log(n/ε)) layers and O(n2 log(n/ε)+
nd log(1/ε)) nodes and parameters, as n → ∞ and ε → 0. We use two copies of these networks
placed in parallel, so that the function

fNN,σ :=
∑

0≤k≤n

σkbn,k =
∑

0≤k≤n

σk
2
bn,k +

∑

0≤k≤n

σk
2
bn,k
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is still implementable by a {±1
2}-quantized neural network after placing a linear layer with weights

given by two copies of {σk/2}0≤k≤n. This last layer has size (1, 1, 2(n + 1)d). In total, fNN,σ is
implementable by a {±1

2}-quantized neural network with O(n log(n/ε)) layers and O(n2 log(n/ε)+
nd log(1/ε)) nodes and parameters. Since |σk| = 1, we have

∥∥∥
∑

0≤k≤n

σkpn,k −
∑

0≤k≤n

σkbn,k

∥∥∥
∞

≤
∑

0≤k≤n

‖pn,k − bn,k‖∞ ≤ (n+ 1)dε.

4.4 Proof of Theorem C

Proof. Quadratic case and {±1} alphabet. It follows from Theorem A that for any f ∈ Cs([0, 1]d)

with ‖f‖∞ ≤ µ, there exist {σk}0≤k≤n ⊆ {±1} such that for all x ∈ [0, 1]d,

∣∣∣f(x)−
∑

0≤k≤n

σkpn,k(x)
∣∣∣ .s,µ ‖f‖Cs min

(
1, n−s/2x−s

ℓ (1− xℓ)
−s

)
.

Using Theorem B for the quadratic case completes the proof.
ReLU case and {±1

2} alphabet. We apply Theorem A to obtain there exist {σk}0≤k≤n ⊆ {±1}
such that for all x ∈ [0, 1]d,

∣∣∣f(x)−
∑

0≤k≤n

σkpn,k(x)
∣∣∣ .s,µ ‖f‖Cs min

(
1, n−s/2x−s

ℓ (1− xℓ)
−s

)
.

Using Theorem B for the ReLU case with ε = ‖f‖Csndn−s/2 completes the proof.

5 Final Remarks

5.1 Algorithm for computing the one-bit coefficients and stability to noise

The binary sequence {σk}0≤k≤n that appears in Theorem A, which is also used in the neural
network constructions in Theorem C, can be numerically computed from samples of f on the lattice
{k/n}0≤k≤n without any other additional information about f , and is summarized in Algorithm 1.

Algorithm 1 Binary Bernstein algorithm

Require: smoothness of the target function s, direction ℓ for Σ∆, samples {f(kn)}0≤k≤n.

1. Calculate {ak}0≤k≤n defined to be ak := fn,⌈s/2⌉(
k
n ).

2. Abort if ‖a‖∞ ≥ 1.
3. Apply s-th order Σ∆ in direction ℓ on {ak}0≤k≤n.

Ensure: One-bit coefficients {σk}0≤k≤n and approximant
∑

0≤k≤n σkpn,k(x).

Tracing through the proof of Theorem A, the first step of our approximation scheme is to
compute the real coefficients

ak := fn,⌈s/2⌉

(k
n

)
:=

( ⌈s/2⌉−1∑

m=0

(I −Bn)
m(f)

)(k
n

)
.
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We explain how to compute these from the samples {f(k/n)}0≤k≤n. Fix any bijection from

{k : 0 ≤ k ≤ n} to {1, . . . , (n + 1)d}, such as the lexicographic ordering. Let f ∈ R
(n+1)d be the

vector such that fk = f(k/n), where the subscript on f should be understood as the image of k
under whichever ordering was selected. Let P be the (n+1)d × (n+1)d matrix whose (j,k) entry
is pn,k(j/n). It follows from a direct calculation that Bn(f)(k/n) = (Pf)k. Furthermore, it holds
that for each m ≥ 1,

Bm
n (f)

(k
n

)
= (Pmf)k.

This can be shown by induction since by linearity of the Bernstein operator,

Bm+1
n (f)

(k
n

)
=

∑

0≤ℓ≤n

Bm
n (f)

( ℓ

n

)
pn,ℓ

(k
n

)
=

∑

0≤ℓ≤n

(Pmf)ℓPk,ℓ = (Pm+1f)k.

It follows from the above that

ak = fn,⌈s/2⌉

(k
n

)
=

( ⌈s/2⌉−1∑

m=0

(I − P )mf
)
k
.

Hence computation of {ak}0≤k≤n amounts to matrix vector operations.
It follows from Theorem 2.5 that for sufficiently large n, we can guarantee that ‖a‖∞ < 1.

From here, calculation of {σk}0≤k≤n just requires feeding them into a stable s-th order Σ∆ quan-
tization scheme applied to the ℓ-th direction, for any ℓ chosen beforehand. Since directional Σ∆
follows directly from its corresponding one-dimensional version, we drop the dependence on ℓ in
this expository portion.

For the reader’s convenience, let us fully describe the scheme introduced in [20]. Instead of
solving (3.1) directly, one considers the equation (where y, q, h, v are sequences indexed by Z),

yk − qk = vk − (h ∗ v)k, where (h ∗ v)k =

k∑

j=1

hjvk−j. (5.1)

Let µ ∈ (0, 1), which will serve as an upper bound for ‖y‖∞, and fix an integer r ≥ 1. Pick any
natural number γ > 6 such that µ ≤ 2 − cosh(πγ−1/2). Define the integers zk := γ(k − 1)2 + 1 for
k = 1, . . . , r, and let h be a sequence supported in {z1, . . . , zr} with hzk = dk, where {d1, . . . , dr}
are found as solutions to the Vandermonde system,




1 1 · · · 1
z1 z2 · · · zr
...

...
...

zr−1
1 zr−1

2 · · · zr−1
r







d1
d2
...
dr


 =




1
0
...
0


 .

Hence h is readily computed by solving a linear system. Given input y, we compute the {±1}
sequence q recursively by

qk := sign((h ∗ v)k + yk), and vk := yk − qk + (h ∗ v)k.

Here, we use the convention that sign(0) = 1. As for computations, this is enough since we are
only interested in computing q, which serves as the {σk}nkℓ=0 for fixed k′ = (k1, . . . , kℓ−1, kℓ+1, kd).

For theoretical purposes, in order to control the quantization error, it was shown in the refer-
enced paper that there exists an auxiliary sequence g for which vk − (h ∗ v)k = ∆r(g ∗ v), so (5.1)
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is in fact a Σ∆ scheme as in (3.1) with u = g ∗ v instead. With this transformation in place, it was
shown that

‖u‖∞ ≤ 3√
2πr

(γe)rrr.

Hence, the right hand side term serves as the implicit constant Cµ,r that controls the stability of
this particular quantization scheme.

Next, we examine the stability of our approximation scheme to perturbations of the input
function f . Since the approximation method only depends on the samples {f(k/n)}0≤k≤n, we
consider noisy samples of the form,

ỹk = f
(k
n

)
+ ηk,

where {ηk}0≤k≤n represents any unknown perturbation. We measure the noise level in via the
ℓ∞ norm ‖η‖∞. The following theorem evaluates the resulting approximation error if we use the
perturbed samples of f in Algorithm 1.

Theorem 5.1. Let s, d, n ≥ 1, ε > 0, and f ∈ Cs([0, 1]d) such that

β := ‖f‖∞ +
√
2s+1ε+

√
2s−1d

8n
‖f‖C1Lip < 1. (5.2)

For any 1 ≤ ℓ ≤ d and {ηk}0≤k≤n such that ‖η‖∞ ≤ ε, let {σ̃k}0≤k≤n ⊆ {±1} be the output of

Algorithm 1 given inputs ỹk = f(k/n) + ηk for each 0 ≤ k ≤ n. Then we have

∣∣∣f(x)−
∑

0≤k≤n

σ̃kpn,k(x)
∣∣∣ .s,d,β ‖f‖Cs min

(
1, n−s/2x−s

ℓ (1− xℓ)
−s

)
+ ε.

Proof. Let {ãk}0≤k≤n be the real coefficients produced by the first step of Algorithm 1 given input

{ỹk}0≤k≤n. It will be helpful to produce a function f̃ for which f̃(k/n) = yk. Let ϕ be any C∞

function compactly supported in [−1
4 ,

1
4 ]

d such that ϕ(0) = 1 and 0 ≤ ϕ ≤ 1. Define

f̃(x) := f(x) +
∑

0≤k≤n

ηkϕ(nx− k),

so that f̃ ∈ Cs([0, 1]d) and f̃(k/n) = ỹk. Note that the set of functions {ϕ(n · −k)}0≤k≤n have
disjoint supports, and consequently,

‖f̃ − f‖∞ =
∥∥∥

∑

0≤k≤n

ηkϕ(n · −k)
∥∥∥
∞

≤ ‖η‖∞ ≤ ε.

To simplify the following notation, let r = ⌈s/2⌉. Define the function

f̃n,r =

r−1∑

m=0

(I −Bn)
m(f̃).

By Theorem 2.5, we have that Bn(f̃n,⌈s/2⌉) = Un,⌈s/2⌉(f) and

‖f̃n,r‖∞ ≤ ‖f̃‖∞ + (2r−1 − 1)‖f̃ −Bn(f̃)‖∞
≤ ‖f‖∞ + ‖η‖∞ + (2r−1 − 1)

(
‖f̃ − f‖∞ + ‖f −Bn(f)‖∞ + ‖Bn(f)−Bn(f̃)‖∞

)

≤ ‖f‖∞ + (2r − 1)‖η‖∞ +
(2r−1 − 1)d

8n
‖f‖C1Lip,
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where the final inequality follows from Proposition 2.3.
Note that ãk = f̃n,r(k/n). Hence, under assumption (5.2), we see that ‖ã‖∞ ≤ ‖f̃n,⌈s/2⌉‖∞ ≤

β < 1. This permits us to employ a stable s-th order Σ∆ scheme in direction ℓ to generate signs
{σ̃k}0≤k≤n from {ãk}0≤k≤n, which satisfy the difference equation ã − σ̃ = (∆ℓ)

rũ, for a bounded
ũ. We proceed to compare {ãk} with {ak}0≤k≤n, which are coefficients generated by Algorithm 1
given noiseless samples. Note that ak := fn,r(k/n) and

|ak − ãk| =
∣∣∣f̃n,r

(k
n

)
− fn,r

(k
n

)∣∣∣ ≤
∥∥∥

r−1∑

m=0

(I −Bn)
m(f̃ − f)

∥∥∥
∞

≤ 2r‖f̃ − f‖∞ ≤ 2rε.

Using this bound on ‖a − ã‖∞ and that the Bernstein polynomials are nonnegative and form a
partition of unity, we have

∣∣∣f(x)−
∑

0≤k≤n

σ̃kpn,k

∣∣∣ ≤
∣∣∣f(x)−

∑

0≤k≤n

akpn,k

∣∣∣+
∣∣∣

∑

0≤k≤n

(
(∆ℓ)

rũ
)
k
pn,k

∣∣∣+
∣∣∣

∑

0≤k≤n

(ak − ãk) pn,k

∣∣∣

≤
∣∣∣f(x)−

∑

0≤k≤n

akpn,k

∣∣∣+
∣∣∣

∑

0≤k≤n

(
(∆ℓ)

rũ
)
k
pn,k

∣∣∣+ 2rε.

Notice that the first term is the approximation error by iterated Bernstein operators and can be
controlled using Theorem 2.6. The second term is the quantization error on the Bernstein basis
and is upper bounded using Theorem 3.5. Doing so completes the proof.

Several comments about this theorem are in order. First, notice that the error bound in Theo-
rem 5.1 is that of Theorem A plus a contribution from the noise. This theorem holds for arbitrary
(hence deterministic and adversarial) perturbations and perhaps could be improved if additional
assumptions are made, such as a statistical model. Moreover, the upper bound does not increase in
n, which is not obvious since the noise energy ‖η‖2 may grown in n without additional assumptions
on the noise. Second, condition (5.2) ensures that the samples {f̃n,r(k/n)} have absolute value
strictly less than 1, which is only used to guarantee that a s-th order directional Σ∆ scheme is
stable. Such a condition is not always necessarily since it may be plausible that Σ∆ is stable for
a larger class of sequences, especially those generated from uniformly sampling smooth functions
which have significant correlation between samples. Third, notice that condition (5.2) becomes
easier, not more difficult, to satisfy for fixed s and increasing n. Again, it is not obvious that such
a behavior is possible since the noise energy ‖η‖2 increases in n.

5.2 Bits and minimax code length

In this subsection, we discuss our main results on approximation by quantized neural networks in
the context of codes. Any function that can be implemented by a strict quantized neural network
can be identified by its parameters and topology. Due to Theorem C, every smooth function can
be encoded with small loss of information, and then approximately reconstructed by mapping back
to its associated network. We must first explain what we mean by the number of bits.

We define the minimax code length in an abstract setting before returning back to neural
networks. Let (X, dX ) be a metric space and F ⊆ X a class of functions. Suppose that for any
ε > 0, there is an integer Bε ≥ 0 and maps E : F → {±1}Bε and D : {±1}Bε → X, for which

sup
f∈F

dX
(
f,D(E(f))

)
≤ ε.
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In which case, we call (E,D) as an ε-approximate encoder-decoder pair and Bε the number of bits
required for this ε-approximate encoder-decoder pair. Usually the quantity of interest is the growth
rate of Bε as ε→ 0. To examine the optimality of a given pair, the smallest Bε for which the above
holds is defined to be the minimax code length,

B∗
ε := min

{
B : ∃ (E,D) for which sup

f∈F
d
(
f,D(E(f))

)
≤ ε

}
.

Of course Bε ≥ B∗
ε , but to determine B∗

ε , it is well known that the minimax code length is precisely
the smallest natural number that upper bounds the Kolmogorov ε-entropy of F .

Let us now discuss how this is connected to quantized neural networks, in an abstract setting.
Let A be finite, and for each ε > 0, suppose Nε ⊆ X is a finite set of A-quantized neural networks,
where A is assumed to be finite, for which we have the approximation property that: for each
f ∈ F , there is a g ∈ Nε such that dX(f, g) ≤ ε. Since A is finite and any g ∈ Nε can be
identified by its network parameters and topology, there is a Bε and injective E : Nε → {±1}Bε .
By definition, there is a decoder D such that D ◦ E is the identity map on Nε. We extend E to
F by first mapping f to an ε approximation g and then using the bit representation of g. Hence
(E,D) is an ε-approximate encoder-decoder pair, and we call Bε the number of bits used by the
neural network.

When one refers to the “number of bits”, perhaps an immediate inclination is to envision the
number of nonzero bits required to store the weights of a single network into memory. This is
usually the perspective taken if the goal is to quantize a particular network to reduce its memory
cost, see [9]. The number of bits to specify a single neural network is (often significantly) smaller
than the minimax code length, which we proceed to explain below.

For each A-quantized neural network g ∈ Nε, we can list out the parameters and topology
of the network as a finite sequence y(q) in A ∪ {0}, where ‘0’ is used to specify that a weight or
bias is not being used from one node to another. Since A is a finite set, it can be encoded with
⌈log |A|⌉ bits. Discarding each 0 in y and replacing each nonzero term in y with its corresponding
±1 representation, we obtain a finite sequence q(g) ∈ {±1}Bε(g). This quantity Bε(g) is sometimes
referred to as the number of bits required to store the network g. However, if we compare B◦

ε :=
supg∈Nε

Bε(g) to the number of bits Bε, it is possible that B◦
ε = o(Bε) as ε → 0. The short

explanation is that the map Nε 7→ {±1}B◦
ε given as g 7→ q(g) is not necessarily injective because

‘0’ is required to specify the network’s topology, which has been omitted from the quantity Bε(g).
In this case, if Nε contains networks with vastly different topologies, then additional bits may
be required to distinguish between the networks’ topologies and it may not be feasible to simply
discard all zeros.

Going back to the content of this paper, our strategy is to approximate f ∈ Cs([0, 1]d) by a
one-bit linear combination of (possibly approximate) Bernstein polynomials. The latter set only
depends on the function class and prescribed error, and not on a particular f . Hence the networks
used to approximate Cs([0, 1]d) all have the same topology, and for this reason, we do not need to
include ‘0’ as a bit. The following theorem quantifies the number of bits.

Theorem 5.2. For any s, d ≥ 1 and sufficiently small µ > 0, the following hold. There exist

an encoder E : Cs([0, 1]d) → {±1}B and decoder D : {±1}B → N ({±1}, ρ, L,N, P ) such that L =
O(ε−2/s) and max(B,N,P ) = O(ε−2d/s) as ε→ 0, and

sup
‖f‖∞≤µ, ‖f‖Cs≤1

‖f −D(E(f))‖∞ ≤ ε.

Proof. For any f ∈ Cs([0, 1]d), Whitney’s extension theorem provides us with a F ∈ Cs(Rd) such
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that F = f on [0, 1]d and ‖F‖Cs(Rd) .d,s ‖f‖Cs([0,1]d), where importantly, the implicit constant that
appears in this inequality does not depend on f , see [38] and also [36, Chapter 6, Theorem 4].

Consider the set U := [−1
2 ,

3
2 ]× [0, 1]d−1. We will only consider Whitney extensions f of that are

compactly supported in U – this is possible since given any Whitney extension of f , which might
not necessarily be compactly supported, we can multiply it by a smooth function that is compactly
supported in U and identically equal to 1 on [0, 1]d.

Hence, let W0 and W2 be the best possible constants for which ‖F‖L∞(E) ≤ W0‖f‖∞ and
‖F‖C2(E) ≤ W2‖f‖C2 , where F is a Whitney extension of f that is compactly supported in U .
Note that W0 and W2 only depend on d, s, U .

For now, fix a f ∈ Cs([0, 1]d) such that ‖f‖∞ ≤ µ and ‖f‖Cs ≤ 1. Let F ∈ Cs(Rd) be a
Whitney extension of f that is compactly supported in U . Consider the function F̃ ∈ Cs([0, 1]d)
defined as F̃ (x) := F (2x1 − 1

2 , x2, . . . , xd). Notice that ‖F̃‖∞ = ‖F‖∞ ≤W0‖f‖∞ ≤W0µ and that

‖F̃‖C2([0,1]d) ≤ 4‖F‖C2 ≤ 4W2‖f‖C2 .
From here onward, assume that µ is sufficiently small so that W0µ ≤ 1/2, and note that µ only

needs to be sufficiently small depending on s, d since W0 only depends on these quantities. For any
integer n ≥ 2sd2W2, so that n ≥ sd2W2/(1−W0µ), we apply Theorem A to F̃ with ℓ = 1. Hence,
there exists {σk}0≤k≤n ⊆ {±1} such that for all x ∈ [0, 1]d with 1

4 ≤ x1 ≤ 3
4 , we have

∣∣F̃ (x)− H̃(x)
∣∣ .s,d n

−s/2, where H̃(x) :=
∑

0≤k≤n

σkpn,k(x). (5.3)

Define H : [0, 1]d → R by H(x) := H̃(12x1 +
1
4 , x2, . . . , xd). For each x ∈ [0, 1]d,

|f(x)−H(x)| =
∣∣∣F̃

(1
2
x1 +

1

4
, x2, . . . , xd

)
− H̃

(1
2
x1 +

1

4
, x2, . . . , xd

)∣∣∣ .s,d n
−s/2, (5.4)

where the final inequality follows from (5.3). Hence, for any ε sufficiently small, by making n large
enough depending only on ε, d, and s, the right hand side of (5.4) can be made smaller than ε. We
see that n = O(ε−2/s) as ε→ 0 suffices.

We next show that H can be implemented by a neural network and we determine the number
of bits used in this encoding. Recall that

H(x) =
∑

0≤k≤n

σkpn,k

(1
2
x1 +

1

4
, x2, . . . , xd

)
.

The function x1 7→ 1
2x1 +

1
4 can be made by a neural of size (4, 4, 9) because we first make 1

2 =
ρ(0·x1+1), then 1

4 = ρ(12), then ρ(x1+
1
4) and ρ(x1− 1

4), and finally 1
2x1+

1
4 = ρ(x1+

1
4)−ρ(x1− 1

4 )+
1
4 .

As shown in Theorem B, the multivariate Bernstein polynomials {pn,k}0≤k≤n are implementable
by a {±1}-quantized quadratic neural network that does not depend on the target function f , and
it has O(n) layers and O(nd) nodes and parameters as n → ∞. Hence, we can implement the
functions {

x 7→ pn,k

(1
2
x1 +

1

4
, x2, . . . , xd

)}
0≤k≤n

using a {±1}-quantized quadratic network that only depends on n (which is selected in terms of
s, d) and not on f . Hence the number of bits to encode this part is O(2ds log(1/ε)). By incorporating
a linear last layer of size (1, 1, (n + 1)d), whose weights are specified by {σk}0≤k≤n, we see that H
is implementable. The signs {σk}0≤k≤n depend on f and σk ∈ {±1}, so the total number of bits
used to encode this part is (n+ 1)d = O(ε−2d/s) as ε→ 0.
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To put Theorem 5.2 in context, Kolmogorov entropy tells us that the minimum number of bits
necessary to encode the unit ball of Cs([0, 1]d) with error at most ε measured in the uniform norm
is O(ε−d/s), regardless of which encode-decoder pair is used, see [35, Chapter 7.5] and [28] for the
one-dimensional version and [37, page 86] for a full proof the multidimensional case. Although our
approximation strategy via Bernstein polynomials does not attain the entropy rate, it has several
other desirable features that are not captured by entropy considerations. Our method only uses a
one-bit alphabet (which is not enforced by bit counting considerations), can be readily computed
from queries, and is stable to perturbations of the unknown function.

5.3 Beyond directional Σ∆?

One unsatisfying aspect of the quantization schemes employed and analyzed in Section 3 is that they
are inherently one-dimensional. It is due to this that the quantization error bound in Theorem 3.5
contains the x−r

ℓ (1 − xℓ)
−r term which blows up at the boundaries xℓ = 0 and xℓ = 1. This term

is then propagated to Theorems A and C.
On one hand, the inability to approximate the target function at the endpoints is unavoidable.

To see why, pn,k(0) = δ0,k and pn,k(1) = δn,k, and consequently, if σk ∈ {±1} for each k, then∑n
k=0 σkpn,k can only be equal to ±1 at the endpoints. This means that a {±1} linear combination

of Bernstein polynomials cannot possibly approximate any continuous function uniformly on [0, 1],
without additional assumptions on the target function near the endpoints.

On the other hand, one may wonder if it is possible to spread the error out to other faces of
the d-dimensional cube, instead of concentrating all it to the faces where xℓ = 0 and xℓ = 1. More
precisely, perhaps one could replace the term x−r

ℓ (1− xℓ)
−r with

x−r(1− x)−r =

d∏

ℓ=1

x−rℓ
ℓ (1− xℓ)

−rℓ , for any |r| = r.

The main bottleneck of carrying out the more general case stems from difficulties with Σ∆
quantization. Currently, there is no such available stable one-bit multidimensional higher order
Σ∆ scheme, beyond the directional one used in this paper. More precisely, we define a stable
one-bit r-th order Σ∆ quantizer with alphabet A to be a map that takes any sequence y with
‖y‖∞ ≤ µ < 1 and outputs q, such that qk ∈ A and there is an associated u with ‖u‖∞ ≤ Cµ,r,A

(that does not depend on y) satisfying the equation

y − q = ∆ru, where ∆r = ∆rd
d ∆

rd−1

d−1 · · ·∆r1
1 .

We say this scheme is truly multidimensional if there are j 6= k such that rj, rk ≥ 1.
If a stable r-th order Σ∆ scheme exists, then it is straightforward to modify the analysis given in

the proof of Theorem 3.5. Indeed, let {σk}0≤k≤n with σk ∈ A be the output given input {ak}0≤k≤n.
Since a− σ = ∆ru for some ‖u‖∞ ≤ Cµ,r,A, a summation by parts yields

∣∣∣
∑

0≤k≤n

(ak − σk) pn,k(x)
∣∣∣ =

∣∣∣
∑

0≤k≤n

(∆ru)k pn,k(x)
∣∣∣ .µ,r,A

∑

0≤k≤n

∣∣((∆r)∗pn,·(x)
)
k

∣∣.

Note that (∆r)∗ = (∆∗
d)

rd(∆∗
d−1)

rd−1(∆∗
1)

r1 . The Bernstein polynomials are tensor products, so

∑

0≤k≤n

∣∣((∆r)∗pn,·(x)
)
k

∣∣ =
d∏

ℓ=1

n∑

kℓ=0

∣∣∣
(
(∆∗)rℓpn,·(xℓ)

)
kℓ

∣∣∣ .r1,...,rd

d∏

ℓ=1

n−rℓx−rℓ
ℓ (1− xℓ)

−rℓ ,
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where we used the one dimensional result in [22, Theorem 6]. Together with the trivial estimate
that the quantization error is bounded by 2, we have proved that for all x ∈ [0, 1]d,

∣∣∣
∑

0≤k≤n

(ak − σk) pn,k(x)
∣∣∣ .µ,r,A min

(
1, n−|r|/2x−r(1− x)−r

)
.

With this at hand, Theorem Theorem A can be modified as follows. Under the same assumptions
on d, s, n, µ, f , for any s with |s| = s, there exist {σk}0≤k≤n with σk ∈ A such that

∣∣∣f(x)−
∑

0≤k≤n

σkpn,k(x)
∣∣∣ .s,d,µ,A ‖f‖Cs min

(
1, n−s/2x−s(1− x)−s

)
.

In the second step of Algorithm 1, one can use a s-th order Σ∆ scheme instead of a directional
one. It is important to emphasize again that there is no known stable one-bit Σ∆ quantizer, so
this discussion cannot be extended to the one-bit case.

A Neural network constructions

This appendix constructs the desired one-bit neural networks. In the subsequent proofs, we just use
the term “network” since the alphabet and activation do not vary in each subsection. To visualize
the topology of network, we typically draw a schematic diagram. Nodes belonging to the same
layer are placed horizontally, layers are stacked vertically, with the input nodes on top and output
nodes on bottom. We say the k-th node in layer ℓ − 1 is connected to the j-th node in layer ℓ if
either (Aℓ)j,k or (bℓ)j is nonzero. Two connected nodes are represented in a schematic diagram by
a line segment adjoining them.

A.1 Implementation of {±1}-quantized quadratic networks

x

ρ(1) ρ(1) ρ(1) ρ(x) ρ(1 + x) ρ(1− x)

ρ(1) ρ(1) ρ(1) ρ(x) ρ(1 + x) ρ(1− x)

ρ(1) ρ(1) ρ(1) ρ(x) ρ(1 + x) ρ(1− x)

(a) ρ(1), ρ(x), ρ(1 + x), ρ(1 − x)

x

ρ(1) ρ(1) ρ(1) ρ(x) ρ(1 + x)

X0,0 Y0,0 Z0,0

ρ(1) ρ(1)

(b) X0,0, Y0,0, Z0,0

Figure 3: Helper activated one-bit quadratic networks
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Lemma A.1. For any integer n ≥ 1, there exists an activated A1-quantized quadratic neural

network with n+ 1 layers and O(n) nodes and parameters that implements the function

x 7→
(
U(x), V (x), {Xn−1,k(x)}n−1

k=0 , {Yn−1,k(x)}n−1
k=0 , {Zn−1,k(x)}n−1

k=0

)
.

Proof. We will create an activated network such that {Xm,k}mk=0, {Ym,k}mk=0 and {Zm,k}mk=0 are
outputs in layer m + 2. Throughout this proof, we will implicitly use the identity x = ρ(x + 1) −
ρ(x)− ρ(1) without explicit mention. To carry out this strategy, notice that (4.1) and (4.3) imply

Xm,k =





ρ(Ym−1,0 − U −Xm−1,0) if k = 0,

ρ(Zm−1,k−1 − V −Xm−1,k−1 + Ym−1,k − U −Xm−1,k) if 0 < k < m,

ρ(Zm−1,m−1 − V −Xm−1,m−1) if k = m.

Ym,k =





ρ(1− x+ Ym−1,0 − U −Xm−1,0) if k = 0,

ρ(1− x+ Zm−1,k−1 − V −Xm−1,k−1 + Ym−1,k − U −Xm−1,k) if 0 < k < m,

ρ(1− x+ Zm−1,m−1 − V −Xm−1,m−1) if k = m.

Zm,k =





ρ(x+ Ym−1,0 − U −Xm−1,0) if k = 0,

ρ(x+ Zm−1,k−1 − V −Xm−1,k−1 + Ym−1,k − U −Xm−1,k) if 0 < k < m,

ρ(x+ Zm−1,m−1 − V −Xm−1,m−1) if k = m.

(A.1)

To employ the recurrence (A.1), we first construct a network with n + 1 layers such that each
layer has six nodes that output ρ(1), ρ(1), ρ(1), ρ(x), ρ(1 + x), and ρ(1− x). For layer 1, these six
outputs are readily made from the input x. The same six outputs can be generated by ρ applied
to ±1 linear combinations of the same terms, since

ρ(1) = ρ(ρ(1) + ρ(1)), ρ(1− x) = ρ(ρ(1) + ρ(1) + ρ(1)− ρ(1 + x) + ρ(x)),

ρ(x) = ρ(ρ(1 + x)− ρ(x)− ρ(1)), ρ(1 + x) = ρ(ρ(1 + x)− ρ(x) + ρ(1)).

This is shown in Figure 3a. Since a constant number of nodes and parameters are added to increase
the depth by one, terminating at layer n+1, this network has size O(n). This establishes that U, V
are outputs of layer n+ 1.

We can produce X0,0, Y0,0, Z0,0 with a network of size (2, 10, 20), as shown in Figure 3b, since

X0,0 = ρ(1) = ρ(ρ(1) + ρ(1)),

Y0,0 = ρ(1− x+ 1) = ρ(ρ(1) + ρ(1) − ρ(x+ 1) + ρ(x) + ρ(1) + ρ(1) + ρ(1)),

Z0,0 = ρ(x+ 1) = ρ(ρ(x+ 1)− ρ(x) + ρ(1)).

It follows from recurrence (A.1) that if layer m outputs the quantities {Xm−1,k}m−1
k=0 , {Ym−1,k}m−1

k=0 ,
{Zm−1,k}m−1

k=0 and ρ(1), ρ(1), ρ(1), ρ(x), ρ(1 + x), then it is possible to generate the quantities
{Xm,k}mk=0, {Ym,k}mk=0, {Zm,k}mk=0 in the subsequent layer m+1 by adding only a constant number
of nodes and parameters.

Lemma A.2. For any d ≥ 2, there exist an integer d∗ and an activated A1-quantized quadratic

neural network with O(log d) layers and O(d) nodes and parameters, as d → ∞, that implements

the function

x = (x1, . . . , xd) 7→
(
ρ
( ∏

j≤d∗

xj +
∏

j>d∗

xj

)
, ρ

( ∏

j≤d∗

xj

)
, ρ

( ∏

j>d∗

xj

))
.
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x1

ρ(x1 + x2) ρ(x1) ρ(x2) ρ(1) ρ(x3) ρ(x3 + 1)

x2 x3

ρ(x1x2 + x3) ρ(x1x2) ρ(x3)

(a) Three terms

x1 x2 x3 x4 x5 x6 x7

T T T

T (x1, x2) T (x3, x4) T (x5, x6)

T

T (x7, 1)

T T

T (x1x2, x3x4) T (x5x6, x7)

T

T (x1x2x3x4, x5x6x7)

(b) Seven terms

Figure 4: Pseudo-multiplication networks

Proof. The d = 2 case is handled by (4.2) whereby d∗ = 1. For d = 3, we create a two layer
network of size (2,9,20) whose output is (ρ(x1x2+x3), ρ(x1x2), ρ(x3)), as shown in Figure 4a. This
is possible because x1x2 = ρ(x1 + x2)− ρ(x1)− ρ(x2) and x3 = ρ(x3 +1)− ρ(x3)− ρ(1), which are
±1 linear combinations of outputs from the first layer. Hence, d∗ = 2 when d = 3.

From now on, assume that d ≥ 4. The main idea is that each layer, we generate the three terms
on the right hand side (4.2) for ⌊d/2⌋ pairs of products, and then iterate the identity, which finally
terminates after O(log d) iterations. Each step of the iteration depends on the number theoretic
properties of d. The basic observation that allows for termination of this argument is that: if
abcd =

∏d
j=1 xj and there is a layer that outputs

ρ(a), ρ(a + b), ρ(b), ρ(c), ρ(c + d), ρ(d),

then by appending another network of size (1, 3, 12), we can implement ρ(ab), ρ(ab+cd), and ρ(cd),
which would complete the proof. To simplify the resulting argument, we introduce the shorthand
notation

T (a, b) := (ρ(a), ρ(a + b), ρ(b)).

Each step of the reduction depends on the factorization of d. For layer 1, if d is even, we create
3d/2 nodes whose outputs are

T (x1, x2), T (x3, x4), . . . , T (xd−1, xd).

If d is odd, in layer 1, we create 3⌈d/2⌉ + 1 nodes whose outputs are

T (x1, x2), T (x3, x4), . . . , T (xd−2, xd−1), T (xd, 1), ρ(1).

Let d1 := ⌈d/2⌉, and we can assume that d1 ≥ 4, otherwise we are finished by the above basic
operation. The construction of layer 2 depends on both the parities of d1 and d. If both d and d1
are even, we use (4.2) again to create 3d1/2 nodes whose outputs are

T (x1x2, x3x4), . . . , T (xd−3xd−2, xd−1xd).
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The remaining three cases are fairly similar except for when both d and d1 are odd. In which
case, we can simply reproduce T (xd, 1), ρ(1) in the next layer from the T (xd, 1), ρ(1) nodes in the
previous layer. Indeed, in layer 2, we have nodes that output

T (x1x2, x3x4), . . . , T (xd−4xd−3, xd−2xd−1), T (xd, 1), ρ(1).

We continue this strategy until we end with the situation expressed in the basic observation.
Notice that there are at most O(log d) iterations, and each iteration requires appending a network
with only a single layer. Furthermore, the number of nodes and parameters used in layer ℓ is
O(d/2ℓ), so there are at most O(d) many nodes and parameters in total.

Figure 4b displays the corresponding network constructed in Lemma A.2 for d = 7 whereby d∗ =
4. The next theorem shows that any ±1 linear combination of multivariate Bernstein polynomials
is implementable by a neural network. We remark that the following does not claim that the
Bernstein polynomials are implementable by an activated neural network.

A.2 Implementation of {±1
2
}-quantized ReLU networks

We begin with some basic properties of the ReLU function, which we will use without explicit
reference. For any t ≥ 0, s ∈ R, and x,y ∈ R

n, it holds that

σ(tx) = tσ(x), σ(σ(x)) = σ(x), σ(x+ y) ≤ σ(x) + σ(y), and |σ(s)− t| ≤ |s− t|.

We next describe a few functions that are implementable by an activated A1/2-quantized ReLU
network. For any input x ∈ R, the number 1/2 can be implemented by a network of size (1, 1, 1)
since 1/2 = σ(0x + 1/2). Implementation of the map x 7→ 2−mσ(x) for any integer m ≥ 1 can be
achieved by a network of size (m,m,m) by

x 7→ σ
(1
2
σ
(1
2
σ
(
· · · σ

(1
2
x
))))

=
1

2m
σ(x).

Summation of nonnegative numbers can be carried out by a A1/2-quantized network of size (2, 9, 16)
because for nonnegative a, b, we have

a+ b = σ
(1
2
σ
(1
2
a
)
+ · · · + 1

2
σ
(1
2
a
)
+

1

2
σ
(1
2
b
)
+ · · ·+ 1

2
σ
(1
2
b
))
.

Likewise, for nonnegative a, b, the quantity σ(a− b) is implementable as well.
For any integer L ≥ 2, there is a L layer activated A1/2-quantized ReLU network ζL with O(L)

nodes and parameters that implements the map x 7→ σ(x). For L = 2 and L = 3, this can be done
via the two networks shown in Figure 5a, which have size (2, 5, 8) and (3, 7, 14) respectively. For
any L ≥ 4, we can compose these maps so that the resulting ζL network has L layers and O(L)
nodes and parameters. We call ζL a L layer duplication network, and will be used to propagate
nonnegative numbers down an arbitrary number of layers without the use of skip connections.

The tent function φ can be implemented by a ReLU network with real parameters since φ(x) =
σ(2x)−2σ(2x−1). By making some adjustments, it is not difficult to see that φ can be implemented
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σ

(

1

2
x
)

σ(x)

x

x

σ

(

1

2
x
)

σ(x)

σ(x)

(a) Duplication networks

σ

(

1

2
x
)

x

1

2

σ(4x) σ(4x− 2) σ(4x− 2)

φ(x)

(b) φ-block

x

σ

(

1

2
x
)

4σ(x)

σ(x)

(c) ×4 network

σ
(

1

2
b
)

σ(b)σ(a)

σ
(

1

2
a
)

ba

ψ(a, b)

(d) ψ network

Figure 5: Implementations of basic functions

with an activated A1/2-quantized network of size (3, 36, 107) because of the identities

φ(x) = σ
(1
2
σ(4x) − 1

2
σ(4x− 2)− 1

2
σ(4x− 2)

)
,

σ(4x) = σ
( 1

2
σ
(1
2
x
)
+ · · · + 1

2
σ
(1
2
x
)

︸ ︷︷ ︸
16 times

)
,

σ(4x− 2) = σ
( 1

2
σ
(1
2
x
)
+ · · · + 1

2
σ
(1
2
x
)

︸ ︷︷ ︸
16 times

− 1

2
· 1
2
− · · · − 1

2
· 1
2︸ ︷︷ ︸

8 times

)
.

For convenience, we call this network a φ-block and it is shown in Fig. 5b.

Lemma A.3. For any ε > 0, there exist nonnegative functions S+
ε , S

−
ε : [0, 1] → R such that

for all x ∈ [0, 1], S−
ε (x) ≤ x2 ≤ S+

ε (x), |S+
ε (x)− x2| ≤ ε, |S−

ε (x)− x2| ≤ ε.

Furthermore, there exist two activated A1/2-quantized ReLU neural network both with the same

number of layers and each of size O(log(1/ε)) that implement S+
ε and S−

ε .
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Proof. Fix ε > 0 and m ≥ 1 will be an integer chosen later depending only on ε. We define

S+
ε (x) := σ

(
x−

m∑

k=1

φ◦k(x)

4k

)
and S−

ε (x) := σ
(
S+
ε (x)−

1

2

1

4m

)
.

Since φ◦k is nonnegative for all k ≥ 1, it follows from (4.4) that S+
ε (x) ≥ x2 and

|S+
ε (x)− x2| = S+

ε (x)− x2 =
∞∑

k=m+1

φ◦k(x)

4k
≤

∞∑

k=m+1

1

4k
=

1

3

1

4m
.

We first show that S−
ε (x) ≤ x2. This trivially holds if S+

ε (x) ≤ 1/(2 · 4m). Otherwise, for x ∈ [0, 1]
such that S+

ε (x) ≥ 1/(2 · 4m), we have

S−
ε (x) = S+

ε (x)−
1

2

1

4m
= x2 +

∞∑

k=m+1

φ◦k(x)

4k
− 1

2

1

4m
≤ x2,

where the last inequality follows from the observation that

∞∑

k=m+1

φ◦k(x)

4k
≤

∞∑

k=m+1

‖φ◦k‖∞
4k

≤
∞∑

k=m+1

1

4k
=

1

3

1

4m
<

1

2

1

4m
.

Moreover, since x2 ≥ 0, we have that

|S−
ε (x)− x2| =

∣∣∣σ
(
S+
ε (x)−

1

2

1

4m

)
− x2

∣∣∣ ≤ |S+
ε (x)− x2|+ 1

2

1

4m
≤ 1

4m
.

Thus, we pick any integer m ≥ log(1/ε)/2.
We proceed to discuss implementations of S+

ε and S−
ε by activated A1/2-quantized ReLU neural

networks, as shown in Figure 6. The network for S+
ε consists of only the black nodes and weights,

and has a two column structure. The network for S−
ε consists of all the nodes and weights, and

has a three column structure.
We focus on S+

ε first. The left column nodes implement the functions {φ◦k}mk=1, which can be
done by composing m many φ-blocks. Each φ◦k is produced in the 3k-th layer, so the left column
of the network has 3m layers and O(m) nodes and parameters. The layer 3 right node outputs
4x, which can be done by using the top network shown in Figure 5c, which has size (3, 12, 44).
Recall that the layer 3 left node outputs φ(x). We can implement the function ψ(a, b) := σ(4b− a)
on nonnegative a, b via a network of size (3, 19, 58), which is the bottom network in Figure 5d. If
4b− a ≥ 0, then ψ(a, b) = 4b− a. Using this ψ network, and that 16x− φ(x) ≥ 0 by identity (4.4),
we see that the layer 6 right node produces 16x − φ(x). Now we proceed a similar fashion. For
k = 2, . . . ,m−1, the left and right nodes in layer 3k output φ◦k(x) and 4k−1x−∑k−1

j=1 4
k−1−jφ◦j(x),

respectively. Using the ψ network and identity (4.4) again, the 3k + 3 layer right node outputs
4kx−∑k

j=1 4
k−jφ◦j(x). Thus, generating 4mx−∑m

j=1 4
m−jφ◦j(x) requires a network with 3m+ 3

layers and O(m) nodes and parameters. Finally, we divide by 4m, which can be done with a network
of size (2m, 2m, 2m) to produce S+

ε (x) in layer 5m + 3. We use a duplication network with two
layers to produce S+

ε (x) in layer 5m+ 5.
For S−

ε , we use the same network as for S+
ε and include a third column. The layer 1 rightmost

node outputs 1/2, which is implementable by a network of size (1, 1, 1). We carry down 1/2 another
3m+2 layers by a network of size O(m). Then we divide by 1/4m via a network of size (2m, 2m, 2m).
In layer 5m+ 3, the middle and right nodes output S+

ε (x) and 1/22m+1. From here, we can easily
generate S−

ε (x) using another two layer network that implements (a, b) 7→ σ(a− b).

37



x

φ
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ψ

4m−2x−

∑m−2

j=1 4m−2−jφ◦j(x)

4m−1x−

∑m−1

j=1 4m−1−jφ◦j(x)

4mx−

∑m
j=1 4

m−jφ◦j(x)

ψ

ψ

3m+ 3

5m+ 3

5m+ 5

S+
ε
(x)

S+
ε
(x)

×4

1

2

1

2

1

2

1

4m

S−

ǫ
(x)

ζ3m+2

/4m/4m

ζ2

Figure 6: Implementations of S+
ε and S−

ε

Lemma A.4. For any ε > 0, there exists an activated A1/2-quantized ReLU neural network of size

O(log(1/ε)) that implements a nonnegative function Pε : [0, 1]
2 → R such that

for any x, y ∈ [0, 1], Pε(x, y) ≤ xy, and |Pε(x, y)− xy| ≤ ε.

Proof. Let ε ∈ (0, 1), and S+
δ and S−

δ be the approximate squaring function from Lemma A.3,
where δ = ε/6. We define the functions

Pε,0(x, y) := 2
(
S−
δ

(x+ y

2

)
− S+

δ

(x
2

)
− S+

δ

(y
2

))
and Pε(x, y) := σ(Pε(x, y)).

Since xy = 2(x+y
2 )2 − 2(x2 )

2 − 2(y2 )
2 and xy ≥ 0, it follows from Lemma A.3 that

∣∣Pε(x, y) − xy
∣∣ =

∣∣σ(Pε,0(x, y))− xy
∣∣ ≤

∣∣Pε,0(x, y)− xy
∣∣ ≤ 6δ = ε.

Additionally, using that S+
ε (x) ≥ x2 and S−

ε (x) ≤ x2, we see that

Pε,0(x, y) ≤ 2
((x+ y

2

)2
−

(x
2

)2
−

(y
2

)2)
= xy.
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Figure 7: S+
ε − x2 and S−

ε − x2 for ε = 10−3

This inequality together implies Pε(x, y) ≤ xy as well, because either Pε,0(x, y) ≤ 0 in which case
Pε(x, y) = 0 ≤ xy, or Pε,0(x, y) > 0 and Pε(x, y) = Pε,0(x, y) ≤ xy.

Now we count the number of parameters. For inputs x, y ∈ [0, 1], we first generate x/2 = σ(x/2),
y/2 = σ(y/2), and (x+y)/2 = σ(x/2+y/2). This can be done with a A1/2-quantized ReLU network

of size (1, 3, 4). Next, we place three networks in parallel, one S−
δ network that takes (x+ y)/2 as

input, and two S+
δ networks that take x/2 and y/2 as input. Note the implementations of S+

δ and
S−
δ each has size O(log(1/ε)) and the same number of layers. Then we generate

σ
(1
2
S−
δ

(x+ y

2

)
− 1

2
S+
δ

(x
2

)
− 1

2
S+
δ

(y
2

))

with a network of size (1, 1, 3). Finally, we need a multiplication by 4, which can be implemented
by the top network shown in Figure 5c.

While S+
ε approximates the quadratic function from above, we also constructed S−

ε , which
approximates the quadratic function from below. An example of their approximation errors is
shown in Figure 7. We are not aware of other neural network papers that have used S−

ε , but it is
necessary to ensure that Pε is nonnegative, which is an important property in subsequent results.

Now we move onto the product of several real numbers. In many neural network approximation
papers, approximate multiplication is done sequentially, such as Pδ(a, Pδ(b, Pδ(c, d))) for four inputs
a, b, c, d. This strategy is inefficient without use of skip connections since a, b would need to be
brought down a considerable number of layers via duplication networks. We perform multiplication
of d numbers in a dyadic manner for improved efficiency.

Lemma A.5. For any integer d ≥ 2 and ε > 0, there exists an activated A1/2-quantized ReLU

neural network of size O(log(1/ε)) that implements a nonnegative function Pε,d : [0, 1]
d → R such

that

for all x ∈ [0, 1]d, 0 ≤ Pε,d(x) ≤ x1 · · · xd, and |Pε,d(x)− x1 · · · xd| ≤ ε.
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Proof. Let ε ∈ (0, 1), setm = ⌈log d⌉, and we will pick δ1, . . . , δm in terms of ε and d later. We let Pδk

be both the function and its network implementation from Proposition A.4, and Lk = O(log(1/δk))
be the number of layers in Pδk . Fix an arbitrary x ∈ [0, 1]d and for reasons that will become
apparent, let u0,ℓ = xℓ.

Every consecutive pair of input nodes x1, . . . , xd are fed into ⌊d/2⌋ approximate multiplication
networks Pδ1 placed in parallel. If d is odd, then we simply carry xd down L1 layers with a copy
network of size O(L1). In layer L1, there are n1 = ⌈d/2⌉ nodes whose outputs we call u1,1, . . . , u1,n1

.
For example, u1,1 = Pδ1(x1, x2).

Each consecutive pair of u1,1, . . . , u1,n1
are fed into at most ⌊n1/2⌋ networks Pδ2 placed in

parallel, and if n1 is odd, then u1,n1
is carried down L2 layers by a copy network of size O(L2).

In layer L1 + L2, we call the outputs u2,1, . . . , u2,n2
, where n2 = ⌈n1/2⌉. We continue this process

with Pδ3 , . . . , Pδm and denote the outputs following each Pδk or copy network by uk,1, . . . , uk,nk
.

The final output is um := Pε,d(x).
We first show how to pick the δ1, . . . , δm properly and quantify the approximation error. First

note that from Proposition A.4, for any a, b ∈ [0, 1] and δ > 0, we have 0 ≤ Pδ(a, b) ≤ ab ≤ 1, so by
induction, we have that 0 ≤ uk,ℓ ≤ 1. The quantities U := {uk,ℓ}k=0,...,m, ℓ=1,...,nk

that are created
have a tree structure with leaves x1, . . . , xd. For a u ∈ U , we let p(u) be product of all x1, . . . , xd
that are connected to u. We have that

u1,ℓ ≤ p(u1,ℓ) ≤ 1 and |u1,ℓ − p(u1,ℓ)| ≤ δ1 for ℓ = 1, . . . , n1.

Fix any uk,ℓ. If uk,ℓ is not generated as an output of a Pδk network, then it is created by copying
a uk−1,ℓ′ , in which case, |uk,ℓ − p(uk,ℓ)| = 0. If not, uk,ℓ = Pδk(uk−1,a, uk−1,b) for distinct 1 ≤ a, b ≤
nk−1. Then

|uk,ℓ − p(uk,ℓ)| = |Pδk(uk−1,a, uk−1,b)− p(uk,ℓ)|
= |Pδk(uk−1,a, uk−1,b)− uk−1,auk−1,b|+ |uk−1,auk−1,b − uk−1,ap(uk−1,b)|

+ |uk−1,ap(uk−1,b)− p(uk−1,a)p(uk−1,b)|
≤ δk + |uk−1,b − p(uk−1,b)|+ |uk−1,a − p(uk−1,a)|.

Hence, the error made by uk,ℓ is bounded above by δk plus the errors made in the previous two
uk−1,a and uk−1,b. Inducting on k, we see that

|um − p(um)| ≤ 2m−1δ1 + 2m−2δ2 + · · · + δm ≤ d
(
δ1 + 2−1δ2 + · · · + 2−m+1δm

)
,

where we noted that 2m−1 = 2⌈log d⌉−1 ≤ d. To make the final error bounded by ε, we pick
δk = ε/(2d) for each k = 1, . . . ,m. This proves that Pε,d(x)− x1 · · · xd| ≤ ε for all x ∈ [0, 1]d.

It remains to count the size of this network that implements Pε,d. Generating {uk,ℓ}ℓ=1,...,nk

from {uk−1,ℓ}ℓ=1,...,nk−1
requires nk networks each of size O(log(1/δk)) = O(log(1/ε)). Hence, the

number of layers in Pε,d is O(m log(1/ε)) = O(log(1/ε)). Since nk ≤ 2d/2k and

m∑

k=1

nk log(1/δk) ≤
m∑

k=1

2d

2k
log(2d/ε) ≤ 2d log(2d/ε),

the resulting network that implements Pε,d has O(log(1/ε)) nodes and parameters.

Lemma A.6. For any ε > 0 and integer n ≥ 1, there exists an activated A1/2-quantized ReLU

neural network with O(n log(n/ε)) layers and O(n2 log(n/ε)) nodes and parameters that implements

a function bn : [0, 1] → R
n+1 such that for each 0 ≤ k ≤ n,

0 ≤ bn,k ≤ pn,k, and ‖bn,k − pn,k‖∞ ≤ ε.
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Proof. This construction will be done recursively. Fix an ε > 0, and we will pick an appropriate
δ > 0 depending only on ε and n later. Let Pδ denote both the approximate binary multiplication
function and its network implementation from Proposition A.4 and Lδ = O(log(1/δ)) be the number
of layers.

Let x ∈ [0, 1] denote the input. We generate 1− x via the formula,

1− x = σ
(1
2
σ
(
− 1

2
x+

1

2

)
+

1

2
σ
(
− 1

2
x+

1

2

)
+

1

2
σ
(
− 1

2
x+

1

2

)
+

1

2
σ
(
− 1

2
x+

1

2

))
.

This is carried out by a network of size (2, 5, 12). We next use a copy network to produce x in the
second layer. Hence, the first degree Bernstein polynomials p1,0(x) = 1 − x and p1,1(x) = x are
exactly implementable, and are outputs of nodes in the second layer. We define

b1,0(x) := σ(x) and b1,1(x) := σ(1− x).

Since we will need to use x, 1 − x repeatedly throughout, we will use copy networks to bring
them down however many layers we need. The size of these networks will be proportional to the
total number of layers in bn. We will see that the size of these copy networks will be dominated by
the other portions of the final network.

Set L1 = 2. We recursively define the following. For each 1 ≤ m ≤ n− 1 and 1 ≤ k ≤ m, let

bm+1,k(x) := sum
(
Pδ

(
x, bm,k−1(x)

)
, Pδ

(
1− x, bm,k(x)

))
,

where sum(·, ·) refers to the two layer summation network. This shows that bm+1,k(x) can be
generated provided that bm,k−1(x), bm,k(x), x, 1 − x are all outputs of nodes that appear in layer
Lm. If so, bm+1,1(x), . . . , bm+1,m(x) as outputs of nodes in layer Lm+1 := Lm + Lδ + 2. For the
remaining two endpoint cases, let ζ2 be a two layer duplication network. We define

bm+1,0(x) := ζ2(Pδ(1− x, bm,0(x))) and bm+1,m+1(x) := ζ2(Pδ(x, bm,k−1(x))),

which are also outputs in layer Lm+1. Finally, we copy x, 1− x from layer Lm down to layer Lm+1

which requires a network of size O(Lδ).
We still need to show that these functions are well defined, because Pδ takes inputs in [0, 1]2.

To establish this, we prove the stronger statement that 0 ≤ bm,k ≤ pm,k for each 1 ≤ m ≤ n and
0 ≤ k ≤ m. We proceed by induction on m. For the base case, we have b1,0 = p1,0, and b1,1 = p1,1.
Assume that for some m, we have that bm,k ≤ pm,k for each 0 ≤ k ≤ m. Now, consider any
1 ≤ k ≤ m+ 1. By Lemma A.4, for all x ∈ [0, 1], we have

bm+1,k(x) = Pδ

(
x, bm,k−1(x)

)
+ Pδ

(
1− x, bm,k(x)

)

≤ xbm,k−1(x) + (1− x)bm,k(x)

≤ xpm,k−1(x) + (1− x)pm,k(x) = pm+1,k(x).

The remaining two cases k = 0 and k = m + 1 follow from an analogous argument. To sum-
marize, we have shown that for 1 ≤ m ≤ n − 1, layer Lm has m + 3 nodes whose outputs are
bm,0(x), . . . , bm,m(x), x, 1 − x.

We proceed to examine the approximation error. For convenience, let

αm,k := ‖bm,k − pm,k‖∞, and αm := max
0≤k≤m

αm,k.
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Hence α1 = 0. Using the recurrence relation (4.1), triangle inequality, and Lemma A.4, we have

αm+1,k ≤ sup
x∈[0,1]

(∣∣∣xpm,k−1(x)− xbm,k−1(x) + (1− x)pm,k(x)− (1− x)bm,k(x)
∣∣∣

+
∣∣∣Pδ(x, bm,k−1(x))− xbm,k−1(x) + Pδ(1− x, bm,k(x))− (1− x)bm,k(x)

∣∣∣
)

≤ sup
x∈[0,1]

(
δ + δ + |x|αm,k−1 + |1− x|αm,k

)

≤ sup
x∈[0,1]

(
2δ + xαm + (1− x)αm

)
= 2δ + αm.

(A.2)

Repeating the same argument for k = 0 and k = m+ 1 provides us with

max(αm+1,0, αm+1,m+1) ≤ δ + αm. (A.3)

Combining equations (A.2) and (A.3), we see that αm+1 ≤ 2δ+αm, for all 1 ≤ m ≤ n. A telescoping
argument shows that, αm = αm − α0 ≤ 2(m− 1)δ. Thus, we pick δ = ε/(2n) to see that

αm = max
0≤k≤m

‖bm,k − pm,k‖∞ ≤ ε for all m ≤ n.

Now, we proceed to count the number of parameters. For the first row of this Pascal triangle,
b1,0 and b1,1 can be made with a network of constant size. Computing each bm+1,k from the previous
row {bm,k}mk=0 requires at most two approximate multiplication networks Pδ with δ = ε/(2n) and
a summation, which requires a network of size O(log(n/ε)). Hence, computing {bm=1,k}m+1

k=0 from
{bm,k}mk=0 requires O(log(n/ε)) layers and O(m log(n/ε)) nodes and parameters. We do this from
m = 1 to m = n− 1.

Lemma A.7. For any ε > 0 and integers n, d ≥ 1, there exists an activated A1/2-quantized ReLU

neural network with O(n log(n/ε)) layers and O(n2 log(n/ε) + nd log(1/ε)) nodes and parameters,

as n→ ∞ and ε→ 0, that implements a function bn : [0, 1]
d → R

(n+1)d such that

for each 0 ≤ k ≤ n, bn,k ≥ 0 and ‖bn,k − pn,k‖∞ ≤ ε.

Proof. Fix ε ∈ (0, 1), and we will pick appropriate δ, γ ∈ (0, 1) later. Let x ∈ [0, 1]d be the input.
For each 1 ≤ ℓ ≤ d, we use Lemma A.6 to provide us with an activated network with O(n log(n/γ))
layers and O(n2 log(n/γ)) nodes and parameters that produces {bn,kℓ(xℓ)}nkℓ=0. Each of these d
networks have exactly the same number of layers, so placing all d of them in parallel, we obtain a
network that outputs {bn,kℓ(xℓ)}1≤ℓ≤d, 0≤kℓ≤n in the same layer. We also have

bn,kℓ ≤ pn,kℓ, and ‖pn,kℓ − bn,kℓ‖∞ ≤ γ.

For each 0 ≤ k ≤ n, we use a d-term approximate product ReLU neural network Pδ,d as in
Lemma A.5 and define

bn,k(x) := Pδ,d

(
bn,k1(x1), . . . , bn,kd(xd)

)
.

This is well-defined since bn,kℓ ≤ pn,kℓ ≤ 1.
We need (n+1)d many such Pδ,d networks placed in parallel, and each one has size O(log(1/δ)).

The entire implementation of {bn,k(x)}0≤k≤n can be done by a network with

O
(
n log(n/γ) + log(1/δ)

)
layers,

O
(
n2 log(n/γ) + nd log(1/δ)

)
nodes and parameters.

42



Next we compute the errors between pn,k and bn,k, and then optimize over the parameters. For
each 0 ≤ k ≤ n, we first apply Lemma A.5 to get

|pn,k(x)− bn,k(x)| ≤
∣∣∣Pδ,d

(
bn,k1(x1), . . . , bn,kd(xd)

)
− bn,k1(x1) · · · bn,kd(xd)

∣∣∣

+ |pn,k(x)− bn,k1(x1) · · · bn,kd(xd)|
≤ δ + |pn,k(x)− bn,k1(x1) · · · bn,kd(xd)|.

To control the right hand side, we use that pn,k(x) is a tensor product and peel off one term at a
time. Then

|pn,k(x)−bn,k1(x1) · · · bn,kd(xd)|
≤ |pn,k1(x1)− bn,k1(x1)||pn,k2(x2) · · · pn,kd(xd)|

+ |bn,k1(x1)||pn,k2(x2) · · · pn,kd(xd)− bn,k2(x2) · · · bn,kd(xd)|
≤ γ + |pn,k2(x2) · · · pn,kd(xd)− bn,k2(x2) · · · bn,kd(xd)|.

Continuing in this manner, we obtain the inequality

|pn,k(x)− bn,k(x)| ≤ δ + |pn,k(x)− bn,k1(x1) · · · bn,kd(xd)| ≤ δ + dγ.

We select γ = ε/(2d) and δ = ε/2 to complete the proof.
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