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Preface

Why study learning theory? Data have become ubiquitous in science, engineering,
industry, and personal life, leading to the need for automated processing. Machine learn-
ing is concerned with making predictions from training examples and is used in all of
these areas, in small and large problems, with a variety of learning models, from simple
linear models to deep neural networks. It has now become an important part of the
algorithmic toolbox.

How can we make sense of these practical successes? Can we extract a few principles
to understand current learning methods and guide the design of new techniques for new
applications or to adapt to new computational environments? This is precisely the goal of
learning theory. Beyond being already mathematically rich and interesting (as it imports
from many mathematical fields), most behaviors seen in practice can, in principle, be un-
derstood with sufficient effort and idealizations. In return, once understood, appropriate
modifications can be made to obtain even stronger success.

Why read this book? The goal of this textbook is to present old and recent results
in learning theory for the most widely used learning architectures. Doing so, a few
principles are laid out to understand the overfitting and underfitting phenomena, as well
as a systematic exposition of the three types of components in their analysis, estimation,
approximation and optimization errors. Moreover, the goal is not only to show that
learning methods can learn given sufficient amounts of data but to understand how fast
(or slow) they learn, with a particular eye towards adaptivity to specific structures that
make learning faster (such as smoothness of the prediction functions, or dependence on
low-dimensional subspace).

This book is geared towards theory-oriented students as well as students who want
to acquire a basic mathematical understanding of algorithms used throughout machine
learning and associated fields that are significant users of learning methods such as com-
puter vision or natural language processing. Moreover, it is well suited to students and
researchers coming from other areas of applied mathematics or computer science who
want to learn about the theory behind machine learning. Finally, since many simple
proofs have been put together, it can serve as a reference for researchers in theoretical
machine learning.

ix
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A particular effort will be made to prove many results from first principles while
keeping the exposition as simple as possible. This will naturally lead to a choice of
key results showcasing the essential concepts in learning theory in simple but relevant
instances. A few general results will also be presented without proof. Of course, the
concept of first principles is subjective, and I will assume a good knowledge of linear
algebra, probability theory, and differential calculus.

Moreover, I will focus on the part of learning theory that deals with algorithms that
can be run in practice, and thus, all algorithmic frameworks described in this book are
routinely used. Since many modern learning methods are based on optimization, a chapter
is dedicated to them. For most learning methods, some simple illustrative experiments
are presented, with accompanying code (Matlab for the moment, Python underway, Julia
in the future) so that students can see for themselves that the algorithms are simple and
effective in synthetic experiments. Exercises currently come with no solutions.

Finally, the third part of the book provides an in-depth discussion of moderne spe-
cial topics such as online learning, ensemble learning, structured prediction, and over-
parameterized models.

Note that this is not an introductory textbook on machine learning. There are al-
ready several good ones in several languages (see, e.g., Alpaydin, 2020; Lindholm et al.,
2022; Azencott, 2019; Alpaydin, 2022). This textbook focuses on learning theory, that is,
deriving mathematical guarantees for the most widely used learning algorithms, and char-
acterizing what makes a particular algorithmic framework successful. In particular, given
that many modern methods are based on optimization algorithms, we put a significant
emphasis on gradient-based methods.

A key goal of the book is to look at the simplest results to make them most accessible
to understand, rather than focusing on material that is more advanced but potentially
too hard at first and that provides marginally better understanding. Throughout the
book, we propose references to more modern work that goes deeper.

Book organization. The book comprises three main parts: introduction, core part,
and special topics. Readers are encouraged to read the first two parts to understand the
main concepts fully and can pick from the special topic chapters in a second reading or
if used in a two-semester class.

All chapters start with a summary of the main concepts and results that will be cov-
ered. All simulations experiments are available at https://www.di.ens.fr/~fbach/ltfp/

as Matlab code. Python code is currently being finalized.

Sections or more advanced exercises are denoted by �, ��, or ���. Comments or
suggestions are most welcome and should be sent to francis.bach@inria.fr.

Many topics are not covered, and many more are not covered in depth. There are many
good textbooks on learning theory that go deeper or wider (Christmann and Steinwart,
2008; Koltchinskii, 2011; Mohri et al., 2018; Shalev-Shwartz and Ben-David, 2014). See

https://www.di.ens.fr/~fbach/ltfp/
francis.bach@inria.fr
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also the nice notes from Alexander Rakhlin and Karthik Sridharan,1 as well as from
Michael Wolf.2

In particular, the book focuses primarily on real-valued prediction functions, as it has
become the de-facto standard for modern machine learning techniques, even when pre-
dicting discrete-valued outputs. Thus, although its historical importance and influence
are crucial, I choose not to present the Vapnik-Chervonenkis dimension (see, e.g., Vapnik
and Chervonenkis, 2015), and instead based our generic bounds on Rademacher com-
plexities. This focus on real-valued prediction functions makes least-squares regression a
central part of the theory, which is well appreciated by students. Moreover, this allows
drawing links with the related statistical literature.

Some areas, such as online learning or probabilistic methods, are described in a single
chapter to draw links with the classical theory and encourage readers to learn more about
them through dedicated books. I have also included a chapter on over-parameterized
models, which presents modern topics in machine learning. More generally, the goal in
the third part of the book (special topics) was to cover most parts, which are a “few
steps” away from the core material.

A book is always a work in progress. In particular, there are still typos and almost
surely places where more details are needed; readers are most welcome to report them to
me (and then get credit for it). I am convinced that more straightforward mathematical
arguments are possible in many places in the book. Please let me know if you know of
elegant and simple ideas I have overlooked.

Mathematical notations. Throughout the textbook, I will try to provide unified
notations:

• Random variables: given a set X, we will use the lower-case notation for a random
variable with values in X, as well as for its observations. Probability distributions
will be denoted µ or p and expectations as E[f(x)] =

∫
X
f(x)dp(x). This is slightly

ambiguous but will not cause major problems (and is standard in research papers).
In this book, following most of the learning theory literature, we will gloss over mea-
surability issues to avoid over-formalizations. For a detailed treatment, see Devroye
et al. (1996); Christmann and Steinwart (2008).

• Norms on Rd: we will consider the usual ℓp-norms on Rd, defined through ‖x‖pp =∑d
i=1 |xi|p for p ∈ [1,∞), with ‖x‖∞ = maxi∈{1,...,d} |xi|.

• For a symmetric matrix A ∈ Rn×n, A < 0 means that A is positive semi-definite
(that is, all of its eigenvalues are non-negative), and for two symmetric matrices A
and B, A < B means that A−B < 0.

• For a differentiable function f : Rd → R, its gradient at x is denoted f ′(x) ∈ Rd,
and if it is twice differentiable, its Hessian is denoted f ′′(x) ∈ Rd×d.

1http://www.mit.edu/~rakhlin/courses/stat928/stat928_notes.pdf
2https://mediatum.ub.tum.de/doc/1723378/1723378.pdf

http://www.mit.edu/~rakhlin/courses/stat928/stat928_notes.pdf
https://mediatum.ub.tum.de/doc/1723378/1723378.pdf
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How to use this book? The first 9 chapters (in sequence, without the diamond parts)
are adapted for a one-semester upper-undergraduate or graduate class, if possible, after
an introductory course on machine learning. The following 6 chapters can be read mostly
in any order and are here to deepen the understanding of some special topics; they can
be read as homework assignments (using the exercises) or taught within a longer (e.g.,
2-semester) class. The book is intended to be adapted to self-study, with the first 9
chapters being read in a sequence and the last 6 in a random order. In all situations,
the first chapter on mathematical preliminaries can be read quickly and studied more in
detail when relevant notions are needed in subsequent chapters.

Acknowledgements. This textbook is extracted from lecture notes from a class that I
have taught (unfortunately online, but this gave me an opportunity to write more detailed
notes) during the Fall 2020 semester, with an extra pass during the class I taught in the
Spring 2021, Fall 2021, Fall 2022, and Fall 2023 semester.
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Chapter 1

Mathematical preliminaries

Chapter summary
– Linear algebra: a bag of tricks to avoid lengthy and faulty computations.
– Concentration inequalities: for n independent random variables, the deviation be-

tween the empirical average and the expectation is of order O(1/
√
n). What is in

the big O, and how does it depend explicitly on problem parameters?

The mathematical analysis and design of machine learning algorithms require spe-
cialized tools beyond classic linear algebra, differential calculus, and probability. In this
chapter, I will review these non-elementary mathematical tools used throughout the book:
first, linear algebra tricks, then concentration inequalities. The chapter can be safely
skipped since relevant results will be referenced when needed.

1.1 Linear algebra and differentiable calculus

This section reviews basic linear algebra and differential calculus results that will be used
throughout the book. Using these may usually greatly simplify computations. Matrix
notations will be used as much as possible.

1.1.1 Minimization of quadratic forms

Given a positive definite (and hence invertible) symmetric matrix A ∈ Rn×n and a vector
b ∈ Rn, the minimization of quadratic forms with linear terms can be done in closed form
as:

inf
x∈Rn

1

2
x⊤Ax − b⊤x = −1

2
b⊤A−1b,

3
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with minimizer x∗ = A−1b obtained by zeroing the gradient f ′(x) = Ax−b of the function
f(x) = 1

2x
⊤Ax− b⊤x. Moreover, we have:

1

2
x⊤Ax− b⊤x =

1

2
(x− x∗)⊤A(x − x∗)− 1

2
b⊤A−1b.

If A was not invertible (simply positive semi-definite) and b was not in the column space
of A, then the infimum would be −∞.

Note that this result is often used in various forms, such as

b⊤x 6
1

2
b⊤A−1b +

1

2
x⊤Ax with equality if and only if b = Ax.

This form is exactly the Fenchel-Young inequality1 for quadratic forms (see Chapter 5),

and is often used in one dimension in the form ab 6 a2

2η + ηb2

2 , for any η > 0 (and equality

if and only if η = a/b).

1.1.2 Inverting a 2× 2 matrix

Solving small systems happens frequently, as well as inverting small matrices. This can

be easily done in two dimensions. Let M =
(
a b
c d

)
be a 2× 2 matrix. If ad− bc 6= 0, then

we may invert it as follows

M−1 =
1

ad− bc

(
d −b
−c a

)
.

This can be checked by multiplying the two matrices or using Cramer’s rule,2 and can be
generalized to matrices defined by blocks, as we present next.

1.1.3 Inverting matrices defined by blocks, matrix inversion lemma

The example above may be generalized to matrices of the form M =
(
A B
C D

)
, with blocks

of consistent sizes (note that A and D have to be square matrices). The inverse of M
may be obtained by applying directly Gaussian elimination3 done in block form. Given

the two matrices M =
(
A B
C D

)
and N =

(
I 0
0 I

)
, we may linearly combine lines (with the

same coefficients for the two matrices). Once M has been transformed into the identity
matrix, N has been transformed to the inverse of M .

We make the simplifying assumption that A is invertible; we use the notation (M/A) =
D − CA−1B for the Schur complement of the block A and also assume that (M/A) is

1See https://en.wikipedia.org/wiki/Convex_conjugate.
2See https://en.wikipedia.org/wiki/Cramer’s_rule.
3See https://en.wikipedia.org/wiki/Gaussian_elimination.

https://en.wikipedia.org/wiki/Convex_conjugate
https://en.wikipedia.org/wiki/Cramer's_rule
https://en.wikipedia.org/wiki/Gaussian_elimination
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invertible. We thus get by Gaussian elimination, referring to Li, i = 1, 2, as the two lines

of blocks, so that for the first matrix M =
(
L1

L2

)
:

Original matrices:

(
A B
C D

) (
I 0
0 I

)

L2 ← L2 − CA−1L1 :

(
A B
0 (M/A)

) (
I 0

−CA−1 I

)

L2 ← (M/A)−1L2 :

(
A B
0 I

) (
I 0

−(M/A)−1CA−1 (M/A)−1

)

L1 ← L1 −BL2 :

(
A 0
0 I

) (
I +B(M/A)−1CA−1 −B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)

L1 ← A−1L1 :

(
I 0
0 I

) (
A−1 +A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)
.

This shows that

M−1 =

(
A B
C D

)−1

=

(
A−1 +A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)
. (1.1)

Moreover, by doing the same operations but by putting to zero first the upper-right block,
and assuming D and (M/D) = A−BD−1C are invertible, we obtain:

M−1 =

(
A B
C D

)−1

=

(
(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1 +D−1C(M/D)−1BD−1

)
. (1.2)

By identifying the upper-left and lower-right blocks in Eq. (1.1) and Eq. (1.2), we ob-
tain the identities (sometimes referred to as Woodbury matrix identities, or the matrix
inversion lemma):

(
A−BD−1C

)−1
= A−1 +A−1B(D − CA−1B)−1CA−1

(
D − CA−1B

)−1
= D−1 +D−1C(A−BD−1C)−1BD−1.

Another classical formulation is:
(
A−BD−1C

)−1
B = A−1B(D − CA−1B)−1D.

These are particularly interesting when the blocks A and D have very different sizes, as
the inverse of a large matrix may be obtained from the inverse of a small matrix.

The lemma is often applied when C = B⊤, A = I and D = −I, which leads to

(I +BB⊤)−1 = I −B(I +B⊤B)−1B⊤,

and, once right-multiplied by B, this leads to the compact formula (which is easier to
rederive and remember):

(I +BB⊤)−1B = B(I +B⊤B)−1.

These equalities are commonly used both for theoretical and algorithmic purposes.
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Exercise 1.1 (�) Show that we can “diagonalize” by blocks the matrices M and M−1

as:

M =

(
A B
C D

)
=

(
I 0

CA−1 I

)(
A 0
0 (M/A)

)(
I A−1B
0 I

)

M−1 =

(
A B
C D

)−1

=

(
I −A−1B
0 I

)(
A−1 0

0 (M/A)−1

)(
I 0

−CA−1 I

)
.

Conditional covariance matrices for Gaussian vectors (�). The identities above
can be used to compute conditional mean vectors and covariance matrices for Gaussian
vectors (in this book, we will use the denominations “normal” and “Gaussian” inter-

changeably). If we have a Gaussian vector
(
x
y

)
with x ∈ Rm and y ∈ Rn, with mean

vector defined by block as µ =
(
µx

µy

)
, and covariance matrix Σ =

(
Σxx Σxy

Σyx Σyy

)
< 0 (defined

with blocks of appropriate sizes), then the joint density p(x, y) of (x, y) is proportional
to

exp

(
− 1

2

(
x− µx
y − µy

)⊤(
Σxx Σxy
Σyx Σyy

)−1(
x− µx
y − µy

))
.

By writing it as the product of a function of x and of a function of (x, y), we can get that x
is Gaussian with mean µx and covariance matrix Σx, and that given x, y is Gaussian with
mean µy|x = µy + ΣyxΣ−1

xx (x− µx) and covariance matrix Σy|x = Σyy − ΣyxΣ−1
xxΣxy.

Exercise 1.2 (�) Prove the identities µy|x = µy+ΣyxΣ−1
xx (x−µx) and covariance matrix

Σy|x = Σyy − ΣyxΣ−1
xxΣxy.

1.1.4 Eigenvalue and singular value decomposition

In this book, we will often use eigenvalue decompositions of symmetric matrices. If A ∈
Rn×n is a symmetric matrix, there exists an orthogonal matrix U ∈ Rn×n (that is, such
that U⊤U = UU⊤ = I), and a vector λ ∈ Rn of eigenvalues, such that A = U Diag(λ)U⊤.
If ui ∈ Rn denotes the i-th column of U , then we have A =

∑n
i=1 λiuiu

⊤
i , and Aui = λiui.

A symmetric matrix is said to be positive semi-definite if and only if all its eigenvalues
are non-negative.

Given a rectangular matrix X ∈ Rn×d, such that n > d, there exists an orthogonal
matrix V ∈ R

d×d (that is, such that V ⊤V = V V ⊤ = I), a matrix U ∈ R
n×d with or-

thonormal columns (that is, such that U⊤U = I), a vector s ∈ Rd+ of singular values,
such that X = U Diag(s)V ⊤; this is often called the “economy-size” singular value de-
composition (SVD) of the matrix X . If ui ∈ Rn and vi ∈ Rd denote the i-th columns

of U and V , then we have X =
∑d

i=1 siuiv
⊤
i , and Xvi = siui, X

⊤ui = sivi.

There are several ways of relating eigenvalues and singular values. For example, if si
is a singular value of X , then s2i is an eigenvalue of XX⊤ and X⊤X . Moreover, the

eigenvalues of the matrix
(

0 X
X⊤ 0

)
are zero, the singular values of X , and their opposites.
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For further properties of eigenvalues and singular values, see Golub and Loan (1996),
Stewart and Sun (1990) and Bhatia (2013).

Exercise 1.3 Express the eigenvectors of XX⊤ and X⊤X using the singular vectors
of X.

Exercise 1.4 Express the eigenvectors of
(

0 X
X⊤ 0

)
using the singular vectors of X.

1.1.5 Differential calculus

Throughout the book, we will compute gradients and Hessians of functions in almost all
cases in matrix notations. Here are some classic examples:

• Quadratic forms: assuming A = A⊤, with F (θ) = 1
2θ

⊤Aθ − b⊤θ, F ′(θ) = Aθ − b,
F ′′(θ) = A. If A is not symmetric, then we have F ′(θ) = 1

2 (A+A⊤)θ and F ′′(θ) =
1
2 (A+A⊤).

• Least-squares with X ∈ Rn×d and y ∈ Rn: F (θ) = 1
2n‖y − Xθ‖22. Then F ′(θ) =

1
nX

⊤(Xθ − y) and F ′′(θ) = 1
nX

⊤X .

Exercise 1.5 Show that for the logistic regression objective function defined as F (θ) =
1
n

∑n
i=1 log(1 + exp(−yi(Xθ)i) with X ∈ Rn×d and y ∈ {−1, 1}n, then F ′(θ) = 1

nX
⊤g,

where g ∈ Rn is defined as gi = −yiσ(−yi(Xθ)i), with σ(u) = (1 + e−u)−1 is the
sigmoid function. Show that the Hessian is 1

nX
⊤ Diag(h)X, with h ∈ Rn defined as

hi = σ(yi(Xθ)i)σ(−yi(Xθ)i).

1.2 Concentration inequalities

All results presented in this textbook rely on the simple probabilistic assumption that
data are independently and identically distributed (i.i.d.). The primary tool is then to
relate empirical averages to expectations.

The key (very classical) insight behind probabilistic inequalities used in machine learn-
ing is that when you have n independent zero-mean random variables, the natural “magni-
tude” of their average is 1/

√
n times smaller than their average magnitude. The simplest

instance of this phenomenon is that if Z1, . . . , Zn ∈ R are independent and identically
distributed with variance σ2 = E(Z − E[Z])2, then the variance of the sum is the sum of
variances, and

var
( 1

n

n∑

i=1

Zi

)
=

1

n2

n∑

i=1

var(Zi) =
σ2

n
.
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△! Be careful with error measures or magnitudes: some are squared, some are
not. Therefore, the 1/

√
n becomes 1/n after taking the square (this is trivial

but typically leads to confusion).

The equality above can be interpreted as

E

[( 1

n

n∑

i=1

Zi − E[Z]
)2]

=
σ2

n
, (1.3)

which provides the simplest proof of the law of large numbers when variances exist and
also highlights the convergence in squared mean of the random variable 1

n

∑n
i=1 Zi to the

constant E[Z].

From moments to deviation bounds. Given an (in)equality on the moments of a
random variable, deviation bounds can be derived. Markov’s inequality (see proof in
Exercise 1.6 below) states that

P(Y > ε) 6
1

ε
E[Y ], (1.4)

for all non-negative random variable Y with finite expectation and any scalar ε > 0.
Chebyshev’s inequality is obtained by applying Markov’s inequality to the random vari-
able Y = (X − E[X ])2 for a random variable X with finite mean E[X ] and variance
var[X ], leading to

P(|X − E[X ]| > ε) = P(|X − E[X ]|2 > ε2) 6
1

ε2
var[X ].

Thus, from the mean E[Z] and variance σ2

n of the random variable 1
n

∑n
i=1 Zi, computed

in Eq. (1.3), we obtain the deviation bounds

P

(∣∣∣ 1

n

n∑

i=1

Zi − E[Z]
∣∣∣ > ε

)
6

1

ε2
E

[( 1

n

n∑

i=1

Zi − E[Z]
)2]

=
σ2

nε2
,

which implies convergence in probability.4

To characterize the deviations more finely, there are two classical tools: the central
limit theorem, which states that 1

n

∑n
i=1 Zi is approximately Gaussian with mean E[Z]

and variance σ2/n. This is an asymptotic statement: formally
√
n( 1

n

∑n
i=1 Zi − E[Z])

converges in distribution to a Gaussian distribution with mean zero and variance σ2.
Although it gives the correct scaling in n, in this textbook, we will look primarily at

4See https://en.wikipedia.org/wiki/Convergence_of_random_variables for convergences of ran-
dom variables.

https://en.wikipedia.org/wiki/Convergence_of_random_variables
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non-asymptotic results that quantify the deviation for any n.

△! In what follows, we will always provide versions of inequalities for averages of
random variables (some authors equivalently consider sums).

Before describing various concentration inequalities, let us recall the classical union
bound : given events indexed by f ∈ F (which can have a countably infinite number of
elements), we have:

P

( ⋃

f∈F

Af

)
6

∑

f∈F

P(Af ).

It has (among many other uses in machine learning) a direct application in upper-
bounding the tail probability of the supremum of random variables:

P

(
sup
f∈F

Zf > t
)

= P

( ⋃

f∈F

{Zf > t}
)
6

∑

f∈F

P(Zf > t).

We will only cover the most useful inequalities for machine learning. For more ad-
vanced inequalities, see, e.g., Boucheron et al. (2013); Vershynin (2018).

Homogeneity. △! Random variables or vectors typically have a unit, and it is always
helpful to perform some basic dimensional analysis5 to spot mistakes. For example, when
performing linear predictions of the form y = x⊤θ, the unit of y is the one of x times
that of θ. Typically, these units are encapsulated in the constants describing the problem
(such as the noise standard deviation for y or bounds for x and θ).

Exercise 1.6 Let Y be a non-negative random variable with finite expectation, and ε > 0.
Show that ε1Y>ε 6 Y almost surely and proof Markov’s inequality in Eq. (1.4).

Exercise 1.7 Let Y be a non-negative random variable with finite expectation. Show
that E[Y ] =

∫∞
0 P(Y > t)dt.

1.2.1 Hoeffding’s inequality

The simplest concentration inequality considers bounded real-valued random variables.

Proposition 1.1 (Hoeffding’s inequality) If Z1, . . . , Zn are independent random vari-
ables such that Zi ∈ [0, 1] almost surely, then, for any t > 0,

P

( 1

n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi] > t
)
6 exp(−2nt2). (1.5)

Proof The usual proof uses standard convexity arguments and is divided into two parts.

5https://en.wikipedia.org/wiki/Dimensional_analysis

https://en.wikipedia.org/wiki/Dimensional_analysis
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(1) Lemma: If Z ∈ [0, 1] almost surely, then E
[

exp(s(Z − E[Z]))
]
6 exp(s2/8) for any

s > 0.

Proof: we can compute the first two derivatives of ϕ : s 7→ log(E
[

exp(s(Z−E[Z]))
]
),

which is a “log-sum-exp” function, often referred to as the “cumulant generating
function”, so that the second derivative is related to a certain variance. We can
compute the derivatives of ϕ as:

ϕ′(s) =
E
[
(Z − E[Z])es(Z−E[Z])

]

E
[
es(Z−E[Z])

]

ϕ′′(s) =
E
[
(Z − E[Z])2es(Z−E[Z])

]

E
[
es(Z−E[Z])

] −
[
E
[
(Z − E[Z])es(Z−E[Z])

]

E
[
es(Z−E[Z])

]
]2
.

We thus get ϕ(0) = ϕ′(0) = 0, and ϕ′′(s) is the variance of some random variable
Z̃ ∈ [0, 1], with distribution with density z 7→ es(z−E[Z]) with respect to µ, where µ
is the distribution of Z. We recall that the variance of Z̃ is the minimum squared
deviation to a constant and can thus bound this variance as

var(Z̃) = inf
ν∈[0,1]

E[(Z̃ − ν)2] 6 E[(Z̃ − 1/2)2] =
1

4
E[(2Z̃ − 1)2] 6

1

4
,

since 2Z̃ − 1 ∈ [−1, 1] almost surely. Thus, for all s > 0, ϕ′′(s) 6 1/4, and by

Taylor’s formula, ϕ(s) 6 s2

8 .

(2) We recall Markov’s inequality for any non-negative random variable X and a > 0,
which states P(X > a) 6 1

aE[X ]. For any t > 0, and denoting Z̄ = 1
n

∑n
i=1 Zi:

P
(
Z̄ − E[Z̄] > t

)

= P
(

exp(s(Z̄ − E[Z̄])) > exp(st))
)

by monotonicity of the exponential,

6 exp(−st)E
[

exp(s(Z̄ − E[Z̄]))
]

using Markov’s inequality,

6 exp(−st)
n∏

i=1

E

[
exp

( s
n

(Zi − E[Zi])
)]

by independence,

6 exp(−st)
n∏

i=1

exp
( s2

8n2

)
= exp

(
− st+

s2

8n

)
, using the lemma above,

which is minimized for s = 4nt. We then get the result.

Note the difference with the central limit theorem, which states that when n goes to
infinity, the probability in Eq. (1.5) is asymptotically equivalent to

1√
2πσ2/n

∫ ∞

t

exp
(
− nz2

2σ2

)
dz which can be shown to be less than exp

(
− nt2

2σ2

)
,

where σ2 = limn→+∞
1
n

∑n
i=1 var(Zi). The central limit theorem is more precise (as it

involves the variance of Zi’s and not an almost sure bound) but is asymptotic. Bernstein
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inequalities (see Section 1.2.3) will be in between as they use both the variance and an
almost sure bound.

Extensions. We get the following corollary by just applying the inequality to Zi’s and
1− Zi’s and using the union bound.

Corollary 1.1 (Two-sided Hoeffding’s inequality) If Z1, . . . , Zn are independent ran-
dom variables such that Zi ∈ [0, 1] almost surely, then, for any t > 0,

P
(∣∣∣ 1

n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi]
∣∣∣ > t

)
6 2 exp(−2nt2). (1.6)

We can make the following observations:

• Hoeffding’s inequality can be extended to the assumption that Zi ∈ [a, b] almost
surely, leading to

P

(∣∣∣ 1

n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi]
∣∣∣ > t

)
6 2 exp(−2nt2/(a− b)2).

• Such an inequality is often used “in the other direction”, starting from the proba-
bility and deriving t from it as follows. For any δ ∈ (0, 1), with probability greater
than 1− δ, we have:

∣∣∣ 1

n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi]
∣∣∣ < |a− b|√

2n

√
log

(2

δ

)
.

Note the dependence in n as 1/
√
n and the logarithmic dependence in δ (corre-

sponding to the exponential tail bound in t).

Exercise 1.8 Show the one-sided inequality: with probability greater than 1 − δ,
1

n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi] <
|a− b|√

2n

√
log

(1

δ

)
.

• When Zi ∈ [ai, bi] almost surely, with potentially different ai’s and bi’s, the probabil-
ity upper-bound can be replaced by 2 exp(−2nt2/c2), where c2 = 1

n

∑n
i=1(bi− ai)2.

• The result extends to martingales with essentially the same proof, leading to Azuma’s
inequality (see the exercise below).

Exercise 1.9 (Azuma’s inequality (�)) Assume that the sequence of random
variables (Zi)i>0, satisfies E(Zi|Fi−1) = 0 for an increasing sequence of increasing
“σ-fields” (Fi)i>0.

6, and |Zi| 6 ci almost surely, for i > 1. Then

P

( 1

n

n∑

i=1

Zi > t
)
6 exp

( −n2t2

2(c21 + · · ·+ c2n)

)
.

6See more details in https://en.wikipedia.org/wiki/Azuma’s_inequality.

https://en.wikipedia.org/wiki/Azuma's_inequality
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• Hoeffding’s inequality is often applied to so-called “sub-Gaussian” random variables,
that is, random variables X for which there exists τ ∈ R+ such that the following
bound on the Laplace transform of X holds:

∀s ∈ R, E
[

exp(s[X − E[X ])
]
6 exp(

τ2s2

2
),

which is exactly what we used in the proof. In other words, a random variable
with values in [a, b] is sub-Gaussian with constant τ2 = (b − a)2/4. For these sub-
Gaussian variables, we have similar concentration inequalities (see next exercise).
Moreover, for such sub-Gaussian random variables, we have the usual two versions
of the tail bound:

∀t > 0, P(|Z − E[Z]| > t) 6 2 exp
(
− t2

2τ2
)

(1.7)

⇔ ∀δ ∈ (0, 1], |Z − E[Z]| 6 τ

√
2 log

(2

δ

)
with probability 1− δ. (1.8)

Exercise 1.10 Show that a Gaussian random variable with variance σ2 is sub-
Gaussian with constant σ2.

Exercise 1.11 If Z1, . . . , Zn are independent random variables which are sub-Gaus-

sian with constant τ2, then, P
(∣∣ 1
n

∑n
i=1 Zi − 1

n

∑n
i=1 E[Zi]

∣∣ > t
)
6 2 exp(− nt2

2τ2 ) for
any t > 0.

• Sub-Gaussian random variables can be defined in several other ways, equivalent to
constants with the bound on the Laplace transform. See the exercises below.

Exercise 1.12 (�) Let Z be a random variable which is sub-Gaussian with con-

stant τ2. Then, by using the tail bound P(|Z−E[Z]| > t) 6 2 exp(− t2

2τ2 ) in Eq. (1.7),
show that for any positive integer q, E[(Z − E[Z])2q] 6 (2q)q!(2τ2)q.

Exercise 1.13 (��) Let Z be a random variable such that for any positive inte-
ger q, E[(Z − E[Z])2q] 6 (2q)q!(2τ2)q. Then show that Z is sub-Gaussian with
parameter 24τ2.

Exercise 1.14 Assume the random variable Z has almost surely non-negative values and

finite second-order moment. Show that for any s > 0, log
(
E[e−sZ ]

)
6 −sE[Z] + s2

2 E[Z2].

1.2.2 McDiarmid’s inequality

Given n independent random variables, it may be useful to concentrate other quantities
than their average. What is needed is that the function of these random variables has
“bounded variation”.

Proposition 1.2 (McDiarmid’s inequality) Let Z1, . . . , Zn be independent random
variables (in any measurable space Z), and f : Zn → R a function of “bounded variation”,
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that is, such that for all i ∈ {1, . . . , n}, and all z1, . . . , zn, z
′
i ∈ Z, we have

|f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| 6 c.

Then
P
(∣∣f(Z1, . . . , Zn)− E[f(Z1, . . . , Zn)]

∣∣ > t
)
6 2 exp(−2t2/(nc2)).

Proof (�) The proof generalizes the formulation of Hoeffding’s inequality in Eq. (1.6),
which corresponds to f(z) = 1

n

∑n
i=1 zi− 1

n

∑n
i=1 E[Zi] and c = 1

n . We will only consider
the one-sided inequality

P
(
f(Z1, . . . , Zn)− E[f(Z1, . . . , Zn)] > t

)
6 exp(−2t2/(nc2)),

which is sufficient to get the two-sided inequality using the union bound.

We introduce the random variables, for i ∈ {1, . . . , n}:

Vi = E[f(Z1, . . . , Zn)|Z1, . . . , Zi]− E[f(Z1, . . . , Zn)|Z1, . . . , Zi−1],

with V1 = E[f(Z1, . . . , Zn)|Z1] − E[f(Z1, . . . , Zn)]. We have E[Vi|Z1, . . . , Zi−1] = 0.
Moreover, given Z1, . . . , Zn, the maximal value of Vi minus the minimal value of Vi is
almost surely less than c as a consequence of the bounded variation assumption since it
is the difference of two terms that are conditional expectations of values of f taken at
arguments that only differ in the i-th variable. Moreover, through a telescoping sum, we
have f(Z1, . . . , Zn)−E[f(Z1, . . . , Zn)] =

∑n
i=1 Vi. Using the same argument as in part (1)

of the proof of Hoeffding’s inequality, we get for any s > 0, E
(
esVi |Z1, . . . , Zi−1) 6 es

2c2/8,
and we can obtain a proof with the same steps as part (2) of Hoeffding’s inequality by
being careful with conditioning, for any s > 0:

P

( n∑

i=1

Vi > t
)

6 exp(−st) · E
[

exp
(
s

n∑

i=1

Vi

)]
using Markov’s inequality,

= exp(−st) · E
[

exp
(
s

n−1∑

i=1

Vi

)
E
[

exp(sVn)
∣∣Z1, . . . , Zn−1

]]
,

since V1, . . . , Vn−1 are in the σ-algebra generated by Z1, . . . , Zn−1,

6 exp(−st+ s2c2/8) · E
[

exp
(
s

n−1∑

i=1

Vi

)]
,

using the bound above on E
(
esVn |Z1, . . . , Zn−1). Applying the same reasoning n times,

we get a probability less than exp(−st+ ns2c2/8) and the desired result by minimizing
with respect to s (leading to s = 4t/(nc2)).

This inequality will be used to provide high-probability bounds on the estimation
error in empirical risk minimization in Section 4.4.1.
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Exercise 1.15 (�) Use McDiarmid’s inequality to prove a Hoeffding-type bound for vec-
tors, that is, if Z1, . . . , Zn ∈ Rd are independent centered vectors such that ‖Zi‖2 6 c
almost surely, then with probability greater than 1− δ, we have

∥∥∥ 1

n

n∑

i=1

Zi

∥∥∥
2
6

c√
n

(
1 +

√
2 log

1

δ

)
.

1.2.3 Bernstein’s inequality (�)

As mentioned earlier, Hoeffding’s inequality only uses an almost sure bound, but not
explicitly the variance, as the central limit theorem is using (but only with an asymptotic
result). Bernstein’s inequality allows the use of variance to get a finer non-asymptotic
result.

Proposition 1.3 (Bernstein’s inequality) Let Z1, . . . , Zn be n independent random
variables such that |Zi| 6 c almost surely and E[Zi] = 0. Then, for t > 0,

P

(∣∣∣ 1

n

n∑

i=1

Zi

∣∣∣ > t
)
6 2 exp

(
− nt2

2σ2 + 2ct/3

)
, (1.9)

where σ2 = 1
n

∑n
i=1 var(Zi). Moreover, for δ ∈ (0, 1), with probability greater than 1− δ,

we have:

∣∣∣ 1

n

n∑

i=1

Zi

∣∣∣ 6
√

2σ2 log(2/δ)

n
+

2c log(2/δ)

3n
. (1.10)

Proof The proof is also divided into two parts, with first a lemma on the Laplace
transform.

(a) Lemma: if |Z| 6 c almost surely, E[Z] = 0, and E[Z2] = σ2, then for any s > 0, we

have E[esZ ] 6 exp
(
σ2

c2 (esc − 1− sc)
)
.

Proof: using the power series expansion of the exponential, we get:

E[esZ ] = 1 + E[sZ] +

∞∑

k=2

sk

k!
E[Zk] = 1 +

∞∑

k=2

sk

k!
E[Zk] because Z has zero mean,

6 1 +

∞∑

k=2

sk

k!
E[|Z|k−2|Z|2] 6 1 +

∞∑

k=2

sk

k!
ck−2σ2 = 1 +

σ2

c2
(
esc − 1− sc

)
.

Using the bound 1 + α 6 eα valid for all α ∈ R leads to the desired result.
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(b) With σ2
i = var(Zi), we have the one-sided inequality:

P

( 1

n

n∑

i=1

Zi > t
)

= P

(
exp

(
s

n∑

i=1

Zi

)
> exp(nst)

)

by monotonicity of the exponential,

6 E

[
exp

(
s

n∑

i=1

Zi

)]
e−nst using Markov’s inequality,

6 e−nst
n∏

i=1

exp
(σ2

i

c2
(esc−1−sc)

)
=e−nst exp

(nσ2

c2
(esc−1−sc)

)
,

using the lemma above. We now need to find an upper-bound on the minimal

value (with respect to s) of −nst+ nσ2

c2 (esc−1−sc) = nσ2

c2

(
esc−1−sc− αsc), with

α = ct/σ2. We first bound for u = sc, eu−1−u =
∑∞

k=0
uk+2

(k+2)! 6
∑∞

k=0
uk+2

2·3k , since

(k + 2)! = 2 · 3 · · · (k + 2) > 2 · 3k. Thus, for u ∈ (0, 3), we get

eu − 1− u 6
u2

2

∞∑

k=0

(u/3)k =
u2

2

1

1− u/3 .

Using the candidate u = α
1+α/3 , we get 1− u/3 = 3

α+3 , and thus:

eu− 1−u−αu 6
u2

2

1

1− u/3 −αu =
α2

2(1 + α/3)2
α+ 3

3
− α2

1 + α/3
= − α2

2(1 + α/3)
.

This exactly leads to the one-sided version of Eq. (1.9).

To get Eq. (1.10) from the two sided-version of Eq. (1.9), we solve in t the equation

2 exp
( −nt2
2σ2+2ct/3

)
= δ ⇔ log 2

δ = nt2

2σ2+2ct/3 . Solving the quadratic equation in t

leads to (using (a+ b)1/2 6 a1/2 + b1/2):

t =
1

2

[ 2c

3n
log

2

δ
+
(( 2c

3n
log

2

δ

)2

+
8σ2

n
log

2

δ

)1/2]
6

2c

3n
log

2

δ
+

1

2

(8σ2

n
log

2

δ

)1/2

,

which leads to Eq. (1.10).

Note here that we get the same dependence as for the central limit theorem for small
deviations t (and a strict improvement on Hoeffding because the variance is essentially
bounded by the squared diameter of the support). In contrast, for large t, the dependence
in t is worse than Hoeffding’s inequality.

Beyond zero mean random variables. Bernstein’s inequality can also be applied
when the random variables Zi do not have zero means. Then Eq. (1.9) is replaced by

P

(∣∣∣ 1

n

n∑

i=1

Zi −
1

n

n∑

i=1

E[Zi]
∣∣∣ > t

)
6 2 exp

(
− nt2

2σ2 + 2ct/3

)
.

.
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Exercise 1.16 (�) Prove the inequality above.

1.2.4 Expectation of the maximum

Concentration inequalities bound the deviation from the expectation. Often, computing
the expectation is tricky, particularly for maxima of random variables. In a nutshell,
taking the maximum of n bounded random variables leads to an extra factor of

√
logn.

Note here that we do not impose independence. We will consider other tools such as
Rademacher complexities in Section 4.5. See Figure 1.1 for an illustration.

△! This logarithmic factor appears many times in this textbook and can often be traced
back to the expectation of a maximum and to the Gaussian decay of tail bounds.

△! The variables do not need to be independent.

Proposition 1.4 (Expectation of the maximum) If Z1, . . . , Zn are (potentially de-
pendent) zero-mean real random variables which are sub-Gaussian with constant τ2, then

E[max{Z1, . . . , Zn}] 6
√

2τ2 logn.

Proof We have:

E[max{Z1, . . . , Zn}] 6
1

t
logE[etmax{Z1,...,Zn}] by Jensen’s inequality,

=
1

t
logE[max{etZ1 , . . . , etZn}]

6
1

t
logE[etZ1 + · · ·+ etZn ] bounding the max by the sum,

6
1

t
log(neτ

2t2/2)=
logn

t
+τ2

t

2
=
√

2τ2 logn with t=τ−1
√

2 logn,

using the definition of sub-Gaussianity in Section 1.2.1 (and the fact that the variables
have zero means).

While we consider a direct proof using Laplace transforms above, we can prove a
similar result using Gaussian tail bounds together with the union bound

P(max{U1, . . . , Un} > t) 6 P(U1 > t) + · · ·+ P(Un > t),

for well-chosen random variables U1, . . . , Un. In other words, the dependence in the

probability δ as
√

log(2δ ) in Eq. (1.8) is directly related to the term
√

logn above (see

exercise below). We will see a different dependence in n in Section 8.1.2 for the maximum
of squared norms of Gaussians.

Exercise 1.17 Assume Z1, . . . , Zn are random variables that are sub-Gaussian with con-
stant τ2 and have zero means. Show that E[max{|Z1|, . . . , |Zn|}] 6

√
2τ2 log(2n). Prove
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Figure 1.1: Expectation of the maximum of n independent standard Gaussian randoms
variables. Left: illustration of the cumulative maximum max{Z1, . . . , Zn}. Middle: 10
samples of the cumulative maximum as a function of

√
logn. Right: mean and standard

deviations from 1000 replications. Notice the linear growth in
√

logn compatible with
our bounds.

the same result up to a universal constant using the tail bounds P(|Zi| > t) 6 2 exp(− t2

2τ2 )

together with the union bound, and the property E[|Y |] =
∫ +∞
0

P(|Y | > t)dt for any ran-
dom variable Y such that E[|Y |] exists.

Exercise 1.18 (��) Assume Z1, . . . , Zn are independent Gaussian random variables
with mean zero and variance σ2. Provide a lower bound for E[max{Z1, . . . , Zn}] of the
form c

√
logn for c > 0.

Exercise 1.19 (��) We consider a convex function f : Rd → R such that f(0) = 0 and
f is L-smooth with respect to the norm Ω, that is, f is continuously differentiable and
for all θ, η ∈ Rd, f(θ) 6 f(η) + f ′(η)⊤(θ − η) + L

2 Ω(θ − η)2. Let Zi ∈ Rd be independent
zero-mean random vectors with E[Ω(Zi)

2] 6 σ2, for i = 1, . . . , n. Show by induction in n

that E[f(Z1 + · · ·+ Zn)] 6 nLσ
2

2 .

Exercise 1.20 Assume Z1, . . . , Zn are sub-Gaussian random variables with common sub-
Gaussianity parameter τ , and potentially different means µ1, . . . , µn. For a fixed set of
non-negative weights π1, . . . , πn that sum to one, and δ ∈ (0, 1), show that with probability
greater than 1 − δ, for all i ∈ {1, . . . , n}, |zi − µi| 6 τ

√
2 log(1/πi) + τ

√
2 log(2/δ). If

î ∈ arg mini∈{1,...,n}
{
zi + τ

√
2 log(1/πi)

}
, show that with probability greater than 1− δ,

µî 6 mini∈{1,...,n}
{
µi + τ

√
2 log(1/πi)

}
+ 2τ

√
2 log(2/δ).

1.2.5 Estimation of expectations through quadrature (�)

In machine learning, the generalization error is an expectation of a function (the loss as-
sociated with a specific prediction function) of a random variable (the pair input/output).
This generalization error is naturally approximated by an empirical average given some
independent and identically distributed (i.i.d.) samples, with a convergence rate of
O(1/

√
n) from n samples (as shown, for example, from Hoeffding’s inequality).
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In this section, we briefly present quadrature methods whose aim is to estimate the
same expectation but with potentially non-random observations. For simplicity, we con-
sider a random variable X uniformly distributed in [0, 1], and the task of computing the

expectation of a function f : [0, 1] → R, that is, I = E[f(X)] =
∫ 1

0
f(x)dx, noting that

there are many variants of such methods (see, e.g., Davis and Rabinowitz, 1984; Brass
and Petras, 2011), and that these techniques extend to higher dimensions (Holtz, 2010).
Moreover, while we focus on equally spaced data in the interval, “quasi-random” methods
lead to better convergence rates (Niederreiter, 1992).

We consider uniformly spaced grid points on [0, 1], as it can serve as an idealization
of random sampling when studying regression models, in particular in Chapter 6 and
Chapter 7. That is, we consider xi = i

n for i ∈ {0, . . . , n} (with n + 1 points). The
classical trapezoidal rule considers the approximation

Î =
1

n

[1

2
f(x0) +

n−1∑

i=1

f(xi) +
1

2
f(xn)

]
.

The error |I − Î| then depends on the regularity of f . We have a decomposition of the
error as the integral between f and its piecewise affine interpolant:

I − Î =

n∑

i=1

(∫ xi

xi−1

f(x)dx− xi − xi−1

2

[
f(xi) + f(xi−1)

])

=

n∑

i=1

(∫ xi

xi−1

f(x)dx−
∫ xi

xi−1

{ xi − x
xi − xi−1

f(xi−1) +
x− xi−1

xi − xi−1
f(xi)

}
dx

)
.

If f is twice differentiable and has a second-derivative bounded by L uniformly in absolute
value, then we have the bound (which can be obtained by Taylor’s formula):

|I − Î| 6

n∑

i=1

L

2

∫ xi

xi−1

(xi − x)(x − xi−1)dx =

n∑

i=1

L

12
(xi − xi−1)3dx =

L

12n2
.

We thus have an error bound in O(1/n2) if we assume two bounded derivatives. We
typically get an error of O(1/ns) for such numerical integration methods if we assume s
bounded derivatives (with the appropriate rule, such as Simpson’s rule, which makes a
piecewise quadratic interpolation). See the exercises below.

Exercise 1.21 Show that the trapezoidal rule leads to an error in O(1/n) if we only
assume one bounded derivative.

Exercise 1.22 (�) Show that for 1-periodic functions, the trapezoidal rule leads to an
error in O(1/ns) if we assume s bounded derivatives.

1.2.6 Concentration inequalities for matrices (��)

It turns out the concentration inequalities that have been presented in this chapter apply
equally well to matrices with the positive semi-definite order. The following bounds are
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adapted from Tropp (2012) and presented without proofs, with the following notations:
λmax(M) denote the largest eigenvalue of the symmetric matrix M . In contrast, ‖M‖op
denotes the largest singular value of a potentially rectangular matrix M , and A 4 B if
and only if B −A is positive semi-definite.

Proposition 1.5 (Matrix Hoeffding bound) (Tropp, 2012, Theorem 1.3) Given
n independent symmetric matricesMi ∈ Rd×d, such that for all i ∈ {1, . . . , n}, E[Mi] = 0,
M2
i 4 C2

i almost surely. Then for all t > 0,

P

(
λmax

( 1

n

n∑

i=1

Mi

)
> t

)
6 d · exp

(
− nt2

8σ2

)
,

for σ2 = λmax

(
1
n

∑n
i=1 C

2
i

)
.

Proposition 1.6 (Matrix Bernstein bound) (Tropp, 2012, Theorem 1.4) Given
n independent symmetric matricesMi ∈ Rd×d, such that for all i ∈ {1, . . . , n}, E[Mi] = 0,
λmax(Mi) 6 c almost surely. Then for all t > 0,

P

(
λmax

( 1

n

n∑

i=1

Mi

)
> t

)
6 d · exp

(
− nt2/2

σ2 + ct/3

)
,

for σ2 = λmax

(
1
n

∑n
i=1 E[M2

i ]
)
.

We can make the following observations:

• Note the similarity with the corresponding bounds for scalar random variables when
d = 1. McDiarmid’s inequality can also be extended (Tropp, 2012, Corollary 7.5).

• These bounds apply as well to rectangular matrices Mi ∈ Rd1×d2 by considering

the symmetric matrices M̃i =

(
0 Mi

M⊤
i 0

)
∈ R(d1+d2)×(d1+d2), whose eigenvalues

are plus and minus the singular values of Mi; see Section 1.1.4 and Stewart and
Sun (1990, Theorem 4.2).

Exercise 1.23 Assume the matrices Mi ∈ R
d1×d2 are independent, have zero mean, and

such that ‖Mi‖op 6 c almost surely for all i ∈ {1, . . . , n}. Show that

P

(∥∥∥ 1

n

n∑

i=1

Mi

∥∥∥
op

> t
)
6 (d1 + d2) · exp

(
− nt2

8c2

)
.

Moreover, with σ2 = max
{
λmax

(
1
n

∑n
i=1M

⊤
i Mi

)
, λmax

(
1
n

∑n
i=1MiM

⊤
i

)}
, show that

P

(∥∥∥ 1

n

n∑

i=1

Mi

∥∥∥
op

> t
)
6 (d1 + d2) · exp

(
− nt2/2

σ2 + ct/3

)
.

Infinite-dimensional covariance operators (��). As used within Chapter 7, we
will need to extend the results above, which depend on the underlying dimension, to the
notion of “intrinsic dimension”, which can still be finite if the underlying dimension is
infinite. That is, we have this bound from Minsker (2017, Eq. (3.9)):



20 CHAPTER 1. MATHEMATICAL PRELIMINARIES

Proposition 1.7 (Matrix Bernstein bound - intrinsic dimension) Given n inde-
pendent random bounded self-adjoint operators Mi on a Hilbert space, such that for all
i ∈ {1, . . . , n}, E[Mi] = 0, λmax(Mi) 6 c almost surely, and 1

n

∑n
i=1 E[M2

i ] 4 V . Then
for all t > 0,

P

(
λmax

( 1

n

n∑

i=1

Mi

)
> t

)
6 d ·

(
1 +

6

n2t4
(σ2 + ct/3)2

)
exp

(
− nt2/2

σ2 + ct/3

)
,

for σ2 > λmax(V ) and d = tr(V )
σ2 . When t > c

3n + σ√
n
, then we get the upper-bound

7d exp
(
− nt2/2

σ2+ct/3

)
.



Chapter 2

Introduction to supervised
learning

Chapter summary
– Decision theory (loss, risk, optimal predictors): what is the optimal prediction and

performance given infinite data and infinite computational resources?
– Statistical learning theory: when is an algorithm “consistent”?
– No free lunch theorems: learning is impossible without making assumptions.

X input space
Y output space
p joint distribution on X× Y

(x1, y1, . . . , xn, yn) training data
f : X→ Y prediction function
ℓ(y, z) loss function between output y and prediction z
R(f) = E[ℓ(y, f(x))] expected risk of prediction function f

R̂(f) = 1
n

∑n
i=1 ℓ(yi, f(xi)) empirical risk of prediction function f

f∗(x′) = arg minz∈Y E[ℓ(y, z)|x = x′] Bayes prediction at x′

R∗ = Ex′∼p infz∈Y E[ℓ(y, z)|x = x′] Bayes risk

Table 2.1: Summary of notions and notations presented in this chapter and used through-
out the book.

21
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2.1 From training data to predictions

Main goal. Given some observations (xi, yi) ∈ X × Y, i = 1, . . . , n, of inputs/outputs,
features/labels, covariates/responses (which are referred to as the training data), the
main goal of supervised learning is to predict a new y ∈ Y given a new previously unseen
x ∈ X. The unobserved data are usually referred to as the testing data.

△! There are few fundamental differences between machine learning and the branch of
statistics dealing with regression and its various extensions, particularly when providing
theoretical guarantees. The focus on algorithms and computational scalability is arguably
stronger within machine learning (but also present in statistics). At the same time, the
emphasis on models and their interpretability beyond their predictive performance is
more prominent within statistics (but also present in machine learning).

Examples. Supervised learning is used in many areas of science, engineering, and in-
dustry. There are thus many examples where X and Y can be very diverse:

• Inputs x ∈ X: they can be images, sounds, videos, text, proteins, sequences of DNA
bases, web pages, social network activities, sensors from industry, financial time
series, etc. The set X may thus have a variety of structures that can be leveraged.
All learning methods that we present in this textbook will use at one point a vector
space representation of inputs, either by building an explicit mapping from X to a
vector space (such as Rd) or implicitly by using a notion of pairwise dissimilarity
or similarity between pairs of inputs. The choice of these representations is highly
domain-dependent. However, we note that (a) common topologies are encountered
in many diverse areas (such as sequences, two-dimensional or three-dimensional
objects), and thus common tools are used, and (b) learning these representations is
an active area of research (see discussions in Chapter 7 and Chapter 9).

In this textbook, we will primarily consider that inputs are d-dimensional vectors,
with d potentially large (up to 106 or 109).

• Outputs y ∈ Y: the most classical examples are binary labels Y = {0, 1} or
Y = {−1, 1}, multicategory classification problems with Y = {1, . . . , k}, and classical
regression with real responses/outputs Y = R. These will be the main examples we
treat in most of the book. Note, however, that most of the concepts extend to the
more general structured prediction set-up, where more general structured outputs
(e.g., graph prediction, visual scene analysis, source separation) can be considered
(see Chapter 13).

Why is it difficult? Supervised learning is difficult (and thus interesting) for a variety
of reasons:

• The label y may not be a deterministic function of x: given x ∈ X, the outputs are
noisy, that is, y is not a deterministic function of x. When y ∈ R, we will often make
the simplifying “additive noise” assumption that y = f(x)+ε with some zero-mean
noise ε, but in general, we only assume that there is a conditional distribution of y
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given x. This stochasticity is typically due to diverging views between labelers or
dependence on random external unobserved quantities (that is, y = f(x, z), with z
random and not observed).

• The prediction function f may be quite complex, highly non-linear when X is a
vector space, and even hard to define when X is not a vector space.

• Only a few x’s are observed: we thus need interpolation and potentially extrap-
olation (see below for an illustration for X = Y = R), and therefore overfitting
(predicting well on the training data but not as well on the testing data) is always
a possibility.

training data

testing data
interpolation

extrapolation

x

y

Moreover, the training observations may not be uniformly distributed in X. In
this book, they will be assumed to be random, but some analyses will rely on
deterministically located inputs to simplify some theoretical arguments.

• The input space X may be very large, that is, with high dimension when this is a
vector space. This leads to both computational issues (scalability) and statistical
issues (generalization to unseen data). One usually refers to this problem as the
curse of dimensionality.

• There may be a weak link between training and testing distributions. In other
words, the data at training time can have different characteristics than the data at
testing time.

• The criterion for performance is not always well defined.

Main formalization. Most modern theoretical analyses of supervised learning rely on
a probabilistic formulation, that is, we see (xi, yi) as a realization of random variables.
The criterion is to maximize the expectation of some “performance” measure with re-
spect to the distribution of the test data (in this book, maximizing the performance will
be obtained by minimizing a loss function). The main assumption is that the random
variables (xi, yi) are independent and identically distributed (i.i.d.) with the same distri-
bution as the testing distribution. In this course, we will ignore the potential mismatch
between train and test distributions (although this is an important research topic, as in
most applications, training data are not i.i.d. from the same distribution as the test data).
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A machine learning algorithm A is a function that goes from a dataset, i.e., an element
of (X× Y)n, to a function from X to Y. In other words, the output of a machine learning
algorithm is itself an algorithm!

Practical performance evaluation. In practice, we do not have access to the test
distribution but samples from it. In most cases, the data given to the machine learning
user are split into three parts:

• the training set, on which learning models will be estimated,

• the validation set, to estimate hyperparameters (all learning techniques have some)
to optimize the performance measure,

• the testing set, to evaluate the performance of the final chosen model.

training validation testing

available data

△! In theory, the test set can only be used once! In practice, this is unfortu-
nately only sometimes the case. If the test data are seen multiple times, the
estimation of the performance on unseen data is overestimated.

Cross-validation is often preferred to use a maximal amount of training data and
reduce the variability of the validation procedure: the available data are divided in k
folds (typically k = 5 or 10), and all models are estimated k times, each time choosing
a different fold as validation data (pink data below), and averaging the k obtained error
measures. Cross-validation can be applied to any learning method, and its detailed
theoretical analysis is an active area of research (see, Arlot and Celisse, 2010, and the
many references therein).

testingavailable data

“Debugging” a machine learning implementation is often an art: on top of commonly
found bugs, the learning method may not predict well enough on testing data. This is
where theory can be useful to understand when a method is supposed to work or not.
This is the primary goal of this book.
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Model selection. Most machine learning models have hyper-parameters (e.g., regular-
ization weight, size of the model, number of parameters). To estimate them from data,
the common practical approach is to use validation approaches like those highlighted
above. It is also possible to use penalization techniques based on generalization bounds.
These two approaches are analyzed in Section 4.6.

Random design vs. fixed design. What we have described is often referred to as
the “random design” set-up in statistics, where both x and y are assumed random and
sampled i.i.d. It is common to simplify the analysis by considering that the input data
x1, . . . , xn are deterministic, either because they are actually deterministic (e.g., equally
spaced in the input space X), or by conditioning on them if they are actually random.
This will be referred to as the “fixed design” setting and studied precisely in the context
of least-squares regression in Chapter 3.

In the context of fixed design analysis, the error is evaluated “within-sample” (that
is, for the same input points x1, . . . , xn, but over new associated outputs). This explic-
itly removes the difficulty of extrapolating to new inputs, hence a simplification in the
mathematical analysis.

2.2 Decision theory

Main question. In this section, we tackle the following question: What is the optimal
performance, regardless of the finiteness of the training data? In other words, what should
be done if we have a perfect knowledge of the underlying probability distribution of the
data? We will thus introduce the concept of loss function, risk, and “Bayes” predictor.

We consider a fixed (testing) distribution p(x,y) on X× Y, with marginal distribution
p(x) on X. Note that we make no assumptions at this point on the input space X.

△! We will almost always use the overloaded notation p, to denote p(x,y) and p(x), where
the context can always make the definition unambiguous. For example, when f : X→ R

and g : X×Y→ R, we have E[f(x)] =
∫
X
f(x)dp(x) and E[g(x, y)] =

∫
X×Y

g(x, y)dp(x, y).

△! We ignore on-purpose measurability issues. The interested reader can look at the
book by Christmann and Steinwart (2008) for a more formal presentation.

2.2.1 Loss functions

We consider a loss function ℓ : Y × Y → R (often R+), where ℓ(y, z) is the loss of
predicting z while the true label is y.

△! Some authors swap y and z in the definition above.

△! Some related research communities (e.g., economics) use the concept of “utility”,
which is then maximized.

The loss function only concerns the output space Y independently of the input space
X. The main examples are:
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• Binary classification: Y = {0, 1} (or often Y = {−1, 1}, or, less often, when seen
as a subcase of the situation below, Y = {1, 2}), and ℓ(y, z) = 1y 6=z (“0-1” loss),
that is, 0 if y is equal to z (no mistake), and 1 otherwise (mistake).

△! It is very common to mix the two conventions Y = {0, 1} and Y = {−1, 1}.

• Multicategory classification: Y = {1, . . . , k}, and ℓ(y, z) = 1y 6=z (“0-1” loss).

• Regression: Y = R and ℓ(y, z) = (y−z)2 (square loss). The absolute loss ℓ(y, z) =
|y − z| is often used for “robust” estimation (since the penalty for large errors is
smaller).

• Structured prediction: while this textbook focuses primarily on the examples
above, there are many practical problems where Y is more complicated, with asso-
ciated algorithms and theoretical results. For examples, when Y = {0, 1}k (leading

to multi-label classification), the Hamming loss ℓ(y, z) =
∑k
j=1 1yj 6=zj is commonly

used; also, ranking problems involve losses on permutations. See Chapter 13.

Throughout the textbook, we will assume that the loss function is given to us. Note
that in practice, the final user imposes the loss function, as this is how models will be
evaluated. Clearly, a single real number may not be enough to characterize the entire
prediction behavior. For example, in binary classification, there are two types of errors,
false positives and false negatives, which can be considered simultaneously. Since we now
have two performance measures, we typically need a curve to characterize the performance
of a prediction function. This is precisely what “receiver operating characteristic” (ROC)
curves are achieving (see, e.g., Bach et al., 2006, and references therein). For simplicity,
we stick to a single loss function ℓ in this book.

△! While the loss function ℓ will be used to define the generalization performance below,
for computational reasons, learning algorithms may explicitly minimize a different (but
related) loss function, with better computational properties. This loss function used
in training is often called a “surrogate”. This will be studied in the context of binary
classification in Section 4.1, and more generally for structured prediction in Chapter 13.

2.2.2 Risks

Given the loss function ℓ : Y×Y→ R, we can define the expected risk (also referred to as
generalization performance, or testing error) of a function f : X→ Y, as the expectation
of the loss function between the output y and the prediction f(x).

Definition 2.1 (Expected risk) Given a prediction function f : X→ Y, a loss function
ℓ : Y×Y→ R, and a probability distribution p on X×Y, the expected risk of f is defined
as:

R(f) = E
[
ℓ(y, f(x))

]
=

∫

X×Y

ℓ(y, f(x))dp(x, y).

The risk depends on the distribution p on (x, y). We sometimes use the notation Rp(f)
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to make it explicit. The expected risk is our main performance criterion in this textbook.

△!
Be careful with the randomness, or lack thereof, of f : when performing learn-
ing from data, f will depend on the random training data and not on the
testing data, and thus R(f) is typically random because of the dependence on
the training data. However, as a function on functions, the expected risk R is
deterministic.

Note that sometimes, we consider random predictions, that is, for any x, we output
a distribution on y, and then the risk is taken as the expectation over the randomness of
the outputs.

Averaging the loss on the training data defines the empirical risk, or training error.

Definition 2.2 (Empirical risk) Given a prediction function f : X → Y, a loss func-
tion ℓ : Y × Y → R, and data (xi, yi) ∈ X × Y, i = 1, . . . , n, the empirical risk of f is
defined as:

R̂(f) =
1

n

n∑

i=1

ℓ(yi, f(xi)).

Note that R̂ is a random function on functions (and is often applied to random functions,
with dependent randomness as both will depend on the training data).

Special cases. For the classical losses defined earlier, the risks have specific formula-
tions:

• Binary classification: Y = {0, 1} (or often Y = {−1, 1}), and ℓ(y, z) = 1y 6=z
(“0-1” loss). We can express the risk as R(f) = P(f(x) 6= y). This is simply the
probability of making a mistake on the testing data, while the empirical risk is the
proportion of mistakes on the training data.

△! In practice, the accuracy, which is one minus the error rate, is often reported.

• Multi-category classification: Y = {1, . . . , k}, and ℓ(y, z) = 1y 6=z (“0-1” loss).
We can also express the risk as R(f) = P(f(x) 6= y). This is also the probability of
making a mistake.

• Regression: Y = R and ℓ(y, z) = (y − z)2 (square loss). The risk is then equal to
R(f) = E

[
(y − f(x))2

]
, often referred to as mean squared error.

2.2.3 Bayes risk and Bayes predictor

Now that we have defined the performance criterion for supervised learning (the expected
risk), the main question we tackle here is: what is the best prediction function f (regard-
less of the training data)?

Using the conditional expectation and its associated law of total expectation, we have

R(f) = E
[
ℓ(y, f(x))

]
= E

[
E[ℓ(y, f(x))|x]

]
,
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which we can rewrite, for a fixed x′ ∈ X:

R(f) = Ex′∼p
[
E
[
ℓ(y, f(x′))|x = x′

]]
=

∫

X

E
[
ℓ(y, f(x))|x = x′

]
dp(x′).

△! To distinguish between the random variable x and a value it may take, we use the
notation x′.

Given the conditional distribution given any x′ ∈ X, that is y|x = x′, we can define
the conditional risk for any z ∈ Y (it is a deterministic function):

r(z|x′) = E
[
ℓ(y, z)|x = x′

]
,

which leads to

R(f) =

∫

X

r(f(x′)|x′)dp(x′).

To find a minimizing function f : X → R, let us first assume that the set X is finite: in
this situation, the risk can be expressed as a sum of functions that depends on a single
value of f , that is, R(f) =

∑
x′∈X r(f(x′)|x′)P(x=x′). Therefore, we can minimize with

respect to each f(x′) independently. Therefore, a minimizer of R(f) can be obtained by
considering for any x′ ∈ X, the function value f(x′) to be equal to a minimizer z ∈ Y of
r(z|x′) = E

[
ℓ(y, z)|x = x′

]
. This extends beyond finite sets, as shown below.

△! Minimizing the expected risk with respect to a function f in a restricted set does not
lead to such decoupling.

Proposition 2.1 (Bayes predictor and Bayes risk) The expected risk is minimized
at a Bayes predictor f∗ : X→ Y satisfying for all x′ ∈ X,

f∗(x′) ∈ arg min
z∈Y

E
[
ℓ(y, z)|x = x′

]
= arg min

z∈Y
r(z|x′). (2.1)

The Bayes risk R∗ is the risk of all Bayes predictors and is equal to

R∗ = Ex′∼p
[

inf
z∈Y

E
[
ℓ(y, z)|x = x′

]]
.

Proof We have R(f)−R∗ = R(f)−R(f∗) =

∫

X

[
r(f(x′)|x′)−min

z∈Y
r(z|x′)

]
dp(x′), which

shows the proposition.

Note that (a) the Bayes predictor is not always unique, but that all lead to the same Bayes
risk (for example, in binary classification when P(y = 1|x) = 1/2), and (b) that the Bayes
risk is usually non zero (unless the dependence between x and y is deterministic). Given
a supervised learning problem, the Bayes risk is the optimal performance; we define the
excess risk as the deviation with respect to the optimal risk.

Definition 2.3 (Excess risk) The excess risk of a function f : X → Y is equal to
R(f)− R∗ (it is always non-negative).

Therefore, machine learning is “trivial”: given the distribution y|x for any x, the
optimal predictor is known and given by Eq. (2.1). The difficulty will be that this
distribution is unknown.
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Special cases. For our usual set of losses, we can compute the Bayes predictors in
closed form:

• Binary classification: the Bayes predictor for Y = {0, 1} and ℓ(y, z) = 1y 6=z is
such that

f∗(x′) ∈ arg min
z∈{0,1}

P(y 6= z|x = x′) = arg min
z∈{0,1}

1− P(y = z|x = x′)

= arg max
z∈{0,1}

P(y = z|x = x′).

The optimal classifier will select the most likely class given x′. Using the notation
η(x′) = P(y = 1|x = x′), then, if η(x′) > 1/2, f∗(x′) = 1, while if η(x′) < 1/2,
f∗(x′) = 0. What happens for η(x′) = 1/2 is irrelevant.

The Bayes risk is then equal to R∗ = E
[

min{η(x), 1 − η(x)}
]
, which in general

strictly positive (unless η(x) ∈ {0, 1} almost surely, that is, y is a deterministic
function of x).

This extends directly to multiple categories Y = {1, . . . , k}, for k > 2, where we
have f∗(x′) ∈ arg max

i∈{1,...,k}
P(y = i|x = x′).

△! These Bayes predictors and risks are only valid for the 0-1 loss. Less symmetric
losses are common in applications (e.g., for spam detection) and would lead to
different formulas (see exercise below).

• Regression: the Bayes predictor for Y = R and ℓ(y, z) = (y − z)2 is such that1

f∗(x′) ∈ arg min
z∈R

E
[
(y − z)2|x = x′

]

= arg min
z∈R

{
E
[
(y − E[y|x = x′])2|x = x′

]
+ (z − E[y|x = x′])2

}
.

This leads to the conditional expectation f∗(x′) = E[y|x = x′].

Exercise 2.1 We consider binary classification with Y = {−1, 1} with the loss function
ℓ(−1,−1) = ℓ(1, 1) = 0 and ℓ(−1, 1) = c− > 0 (cost of a false positive), ℓ(1,−1) = c+ > 0
(cost of a false negative). Compute a Bayes predictor at x as a function of E[y|x].

Exercise 2.2 What is a Bayes predictor for regression with the absolute loss defined as
ℓ(y, z) = |y − z|?

Exercise 2.3 What is a Bayes predictor for regression with the “ε-insentive” loss defined
as ℓ(y, z) = max{0, |y − z| − ε}?

Exercise 2.4 (inverting predictions) We consider the binary classification problem with
Y = {−1, 1} and the 0-1 loss. Relate the risk of a prediction f and its opposite −f .

1We use the law of total variance: E[(y − a)2] = var(y) + (E[y] − a)2 for any random variable y and
constant a ∈ R, which can be shown by expanding the square.
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Exercise 2.5 (“chance” predictions) We consider binary classification problems with the
0-1 loss, what is the risk of a random prediction rule where we predict the two classes with
equal probabilities independently of the input x? Same question with multiple categories.

Exercise 2.6 (�) We consider a random prediction rule where we predict from the prob-
ability distribution of y given x′. When is this achieving the Bayes risk?

2.3 Learning from data

The decision theory framework outlined in the previous section gives a test performance
criterion and optimal predictors, but it depends on the full knowledge of the test dis-
tribution p. We now briefly review how we can obtain good prediction functions from
training data, that is, data sampled i.i.d. from the same distribution.

Two main classes of prediction algorithms will be studied in this textbook:

(1) Local averaging (Chapter 6).

(2) Empirical risk minimization (Chapters 3, 4, 7, 8, 9, 11, 12, 13).

Note that there are prediction algorithms that do not fit precisely into one of these
two categories, such as boosting or ensemble classifiers (see Chapter 10). Moreover,
some situations do not fit the classical i.i.d. framework, such as in online learning (see
Chapter 11). We consider probabilistic methods in Chapter 14, which rely on a different
principle.

2.3.1 Local averaging

The goal here is to try to approximate/emulate the Bayes predictor, e.g., f∗(x′) =
E(y|x = x′) for least-squares regression, from empirical data. This is often done by
explicit/implicit estimation of the conditional distribution by local averaging (k-nearest
neighbors, which is used as the primary example for this chapter, Nadaraya Watson, or
decision trees). We briefly outline here the main properties for one instance of these
algorithms; see Chapter 6 for details.

k-nearest-neighbor classification. Given n observations (x1, y1), . . . , (xn, yn) where
X is a metric space and Y ∈ {0, 1}, a new point xtest is classified by a majority vote
among the k-nearest neighbors of xtest.

Below, we consider the 3-nearest-neighbor classifier on a particular testing point
(which will be predicted as 1).
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Class 0

Class 1

Testing point

• Pros: (a) no optimization or training, (b) often easy to implement, (c) can get
very good performance in low dimensions (in particular for non-linear dependences
between x and y).

• Cons: (a) slow at query time: must pass through all training data at each testing
point (there are algorithmic tools to reduce complexity, see Chapter 6), (b) bad
for high-dimensional data (because of the curse of dimensionality, more on this in
Chapter 6), (c) the choice of local distance function is crucial, (d) the choice of
“width” hyperparameters (or k) has to be performed.

• Plot of training errors and testing errors as functions of k for a typical problem.
When k is too large, there is underfitting (the learned function is too close to a
constant, which is too simple), while for k too small, there is overfitting (there is a
strong discrepancy between the testing and training errors).

k

Errors

1 n

test

train

underfitting

overfitting

◦ Exercise 2.7 How would the curve move when n increases (assuming the same
balance between classes)?

2.3.2 Empirical risk minimization

Consider a parameterized family of prediction functions, often referred to as models,
fθ : X → Y for θ ∈ Θ (typically a subset of a vector space), and minimize the empirical
risk with respect to θ ∈ Θ:

R̂(fθ) =
1

n

n∑

i=1

ℓ(yi, fθ(xi)).

This defines an estimator θ̂ ∈ arg minθ∈Θ R̂(fθ), and thus a function fθ̂ : X→ Y.

The most classic example is linear least-squares regression (studied at length in Chap-
ter 3), where we minimize 1

n

∑n
i=1(yi−θ⊤ϕ(xi))

2, where f is linear in some feature vector
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ϕ(x) ∈ Rd (there is no need for X to be a vector space). The vector ϕ(x) can be quite
large (or even implicit, like in kernel methods, see Chapter 7). Other examples include
neural networks (Chapter 9).

• Pros: (a) can be relatively easy to optimize (e.g., least-squares with simple deriva-
tion and numerical algebra, see Chapter 3), many algorithms available (primarily
based on gradient descent, see Chapter 5), (b) can be applied in any dimension (if
a suitable feature vector is available).

• Cons: (a) can be relatively hard to optimize when the optimization formulation is
not convex (e.g., neural networks), (b) need a suitable feature vector for linear meth-
ods, (c) the dependence on parameters can be complex (e.g., neural networks), (d)
need some capacity control to avoid overfitting, (e) how to parameterize functions
with values in {0, 1} (see Chapter 4 for the use of convex surrogates)?

Risk decomposition. The material in this section will be studied further in more
detail in Chapter 4.

• Risk decomposition in estimation error + approximation error: given any θ̂ ∈ Θ,
we can write the excess risk of fθ̂ as:

R(fθ̂)− R∗ =
{
R(fθ̂)− inf

θ′∈Θ
R(fθ′)

}
+
{

inf
θ′∈Θ

R(fθ′)− R∗
}

= estimation error + approximation error.

The approximation error infθ′∈Θ R(fθ′) − R∗ is always non-negative, does not de-
pend on the chosen fθ̂ and depends only on the class of functions parameterized by
θ ∈ Θ. It is thus always a deterministic quantity, which characterizes the modeling
assumptions made by the chosen class of functions. When Θ grows, the approxima-
tion error goes down to zero if arbitrary functions can be approximated arbitrarily
well by the functions fθ. It is also independent of n.

The estimation error
{
R(fθ̂) − infθ′∈Θ R(fθ′)

}
is also always non-negative and is

typically random because the function fθ̂ is random. It typically decreases in n and
increases when Θ grows.

Overall, the typical error curves look like this:

“size” of Θ

Errors

test

train

overfittingunderfitting

• Typically, we will see in later chapters that the estimation error is often decomposed
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as follows, for θ′ a minimizer on Θ of the expected risk R(fθ′):

R(fθ̂)− R(fθ′) =
{
R(fθ̂)− R̂(fθ̂)

}
+
{
R̂(fθ̂)− R̂(fθ′)

}
+
{
R̂(fθ′)− R(fθ′)

}

6 2 sup
θ∈Θ

∣∣R̂(fθ)− R(fθ)
∣∣ + empirical optimization error,

where the “empirical optimization error” is supθ∈Θ

{
R̂(fθ̂)− R̂(fθ)

}
(it is equal to

zero for the exact empirical risk minimizer, but in practice when using optimization
algorithms from Chapter 5, it is not). The uniform deviation supθ∈Θ

∣∣R̂(fθ)−R(fθ)
∣∣

grows with the “size” of Θ, and usually decays with n. See more details in Chapter 4.

Capacity control. To avoid overfitting, we need to make sure that the set of allowed
functions is not too large by typically reducing the number of parameters or by restrict-
ing the norm of predictors (thus by lowering the “size” of Θ): this typically leads to
constrained optimization, and allows for risk decompositions as done above.

Capacity control can also be done by regularization, that is, by minimizing

R̂(fθ) + λΩ(θ) =
1

n

n∑

i=1

ℓ(yi, fθ(xi)) + λΩ(θ),

where Ω(θ) controls the complexity of fθ. The main example is ridge regression:

min
θ∈Rd

1

n

n∑

i=1

(yi − θ⊤ϕ(xi))
2 + λ‖θ‖22.

This is often easier for optimization but harder to analyze (see Chapter 4 and Chapter 5).

△! There is a difference between parameters (e.g., θ) learned on the training data
and hyperparameters (e.g., λ) estimated on the validation data.

Examples of approximations by polynomials in one-dimensional regression.
We consider (x, y) ∈ R× R, with prediction functions which are polynomials of order k,
from k = 0 (constant functions) to k = 14. For each k, the model has k + 1 parameters.
The training error (using square loss) is minimized with n = 20 observations. The data
were generated with inputs uniformly distributed on [−1, 1] and outputs as the quadratic
function f(x) = x2 − 1

2 of the inputs plus some independent additive noise (Gaussian
with standard deviation 1/4). As shown in Figure 2.1 and Figure 2.2, the training error
monotonically decreases in k while the testing error goes down and then up.

2.4 Statistical learning theory

The goal of learning theory is to provide some guarantees of performance on unseen data.
A common assumption is that the data Dn(p) = {(x1, y1), . . . , (xn, yn)} is obtained as
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Figure 2.1: Polynomial regression with increasing orders k. Plots of estimated functions,
with training and testing errors. The Bayes prediction function f∗(x) = E[y|x] is plotted
in blue.
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Figure 2.2: Polynomial regression with increasing orders. Plots of training and testing
errors with error bars (computed as standard deviations obtained from 32 replications),
together with the Bayes error.
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independent and identically distributed (i.i.d.) observations from some unknown distri-
bution p from a family P.

An algorithm A is a mapping from Dn(p) (for any n) to a function from X to Y. The
expected risk depends on the probability distribution p ∈ P, as Rp(f). The goal is to find
A such that the (expected) risk

Rp(A(Dn(p))) − R∗
p

is small, where R∗
p is the Bayes risk (which depends on the joint distribution p), assuming

Dn(p) is sampled from p, but without knowing which p ∈ P is considered. Moreover, the
risk is random because Dn(p) is random.

2.4.1 Measures of performance

There are several ways of dealing with randomness to obtain a criterion.

• Expected error : we measure performance as

E
[
Rp(A(Dn(p)))

]
,

where the expectation is with respect to the training data. An algorithm A is called
consistent in expectation for the distribution p, if

E
[
Rp(A(Dn(p)))

]
− R∗

p

goes to zero when n tends to infinity. In this course, we will primarily use this
notion of consistency.

• “Probably approximately correct” (PAC) learning: for a given δ ∈ (0, 1) and ε > 0:

P

(
Rp(A(Dn(p)))− R∗

p 6 ε
)
> 1− δ.

The crux is to find ε, which is as small as possible (typically as a function of δ). The
notion of PAC consistency corresponds, for any ε > 0, to have such an inequality
for each n and a sequence δn that tends to zero.

2.4.2 Notions of consistency over classes of problems

An algorithm is called universally consistent (in expectation) if for all probability distri-
butions p = p(x,y) on (x, y) the algorithm A is consistent in expectation for the distribu-
tion p.

△! Be careful with the order of quantifiers: convergence speed will depend on p. See
the no-free lunch theorem section below to highlight that having a uniform rate over all
distributions is hopeless.

Most often, we want to study uniform consistency within a class P of distributions
satisfying some regularity properties (e.g., the inputs live in a compact space, or the
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dependence between y and x is at most of some complexity). We thus aim at finding an
algorithm A such that

sup
p∈P

E
[
Rp(A(Dn(p)))

]
− R∗

p

is as small as possible. The so-called “minimax risk” is equal to

inf
A

sup
p∈P

E
[
Rp(A(Dn(p)))

]
− R∗

p.

This is typically a function of the sample size n and properties of X, Y and the allowed
set of problems P (e.g., dimension of X, number of parameters). To compute estimates
of the minimax risk, several techniques exist:

• Upper-bounding the optimal performance: one given algorithm with a convergence
proof provides an upper bound. This is the main focus of this book.

• Lower-bounding the optimal performance: in some setups, it is possible to show that
the infimum over all algorithms is greater than a certain quantity. See Chapter 15
for a description of techniques to obtain such lower bounds. Machine learners are
happy when upper-bounds and lower-bounds match (up to constant factors).

Non-asymptotic vs. asymptotic analysis. The analysis can be “non-asymptotic”,
with an upper bound with explicit dependence on all quantities; the bound is then valid
for all n, even if sometimes vacuous (e.g., a bound greater than 1 for a loss uniformly
bounded by 1).

The analysis can also be “asymptotic”, where, for example, n goes to infinity and
limits are taken (alternatively, several quantities can be made to grow simultaneously).

△!
What (arguably) matters most here is the dependence of these rates on the
problem, not the choice of “in expectation” vs. “in high probability”, or
“asymptotic” vs. “non-asymptotic”, as long as the problem parameters ex-
plicitly appear.

2.5 No free lunch theorems (�)

Although it may be tempting to define the optimal learning algorithm that works opti-
mally for all distributions, this is impossible. In other words, learning is only possible
with assumptions. See Devroye et al. (1996, Chapter 7) for more details.

The following theorem shows that for any algorithm, for a fixed n, there is a data
distribution that makes the algorithm useless (with a risk that is the same as the chance
level).

Proposition 2.2 (no free lunch - fixed n) Consider the binary classification with 0-
1 loss, with X infinite. Let P denote the set of all probability distributions on X× {0, 1}.
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For any n > 0 and any learning algorithm A,

sup
p∈P

E
[
Rp(A(Dn(p)))

]
− R∗

p > 1/2.

Proof (��) Let k be a positive integer. Without loss of generality, we can assume that
N ⊂ X. The main ideas of the proof are (a) to construct a probability distribution
supported on k elements in N, where k is large compared to n (which is fixed), and to
show that the knowledge of n labels does not imply doing well on all k elements, and
(b) to choose parameters of this distribution (the vector r below) by comparing to a
performance obtained by random parameters.

Given r ∈ {0, 1}k, we define the joint distribution p on (x, y) such that we have
P(x = j, y = rj) = 1/k for j ∈ {1, . . . , k}; that is, for x, we choose one of the first k
elements uniformly at random, and then y is selected deterministically as y = rx. Thus,
the Bayes risk is zero (because there is a deterministic relationship): R∗

p = 0.

Denoting f̂Dn = A(Dn(p)) the classifier, and S(r) = E
[
Rp(f̂Dn)

]
the expectation of

the expected risk, we want to maximize S(r) with respect to r ∈ {0, 1}k; the maximum is
greater than the expectation of S(r) for any probability distribution q on r, in particular
the uniform distribution (each rj being an independent unbiased Bernoulli variable).
Then

max
r∈{0,1}k

S(r) > Er∼qS(r)

= P(f̂Dn(x) 6= y) = P(f̂Dn(x) 6= rx),

because x is almost surely in {1, . . . , k} and y = rx almost surely. Note that we take
expectations and probabilities with respect to x1, . . . , xn, x, and r (all being independent
of each other).

Then, we get, using that Dn(p) = {x1, rx1 , . . . , xn, rxn}:

Er∼qS(r) = E

[
P
(
f̂Dn(x) 6= rx

∣∣x1, . . . , xn, rx1 , . . . , rxn

)]
by the law of total expectation,

> E

[
P
(
f̂Dn(x) 6= rx & x /∈ {x1, . . . , xn}

∣∣x1, . . . , xn, rx1 , . . . , rxn

)]

by monotonicity of probabilities,

= E

[1

2
P
(
x /∈ {x1, . . . , xn}

∣∣x1, . . . , xn, rx1 , . . . , rxn

)]
,

because P
(
f̂Dn(x) 6= rx

∣∣x /∈ {x1, . . . , xn}, x1, . . . , xn, rx1 , . . . , rxn

)
= 1/2 (the label x = rx

has the same probability of being 0 or 1, given that it was not observed). Thus,

Er∼qS(r) >
1

2
P
(
x /∈ {x1, . . . , xn}

)
=

1

2
E

[ n∏

i=1

P(xi 6= x|x)
]

=
1

2

(
1− 1/k

)n
.

Given n, we can let k tend to infinity to conclude.
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A caveat is that the hard distribution may depend on n (from the proof, it takes k
values, with k tending to infinity fast enough compared with n). The following theorem
is given without proof and is much “stronger” (Devroye et al., 1996, Theorem 7.2), as it
more convincingly shows that learning can be arbitrarily slow without assumption (note
that the earlier one is not a corollary of the later one).

Proposition 2.3 (no free lunch - sequence of errors) Consider a binary classifica-
tion problem with the 0-1 loss, with X infinite. Let P denote the set of all probability
distributions on X×{0, 1}. For any decreasing sequence an tending to zero and such that
a1 6 1/16, for any learning algorithm A, there exists p ∈ P, such that for all n > 1:

E
[
Rp(A(Dn(p)))

]
− R∗

p > an.

2.6 Quest for adaptivity

As seen in the previous section, no method can be universal and achieve a good conver-
gence rate on all problems. However, such negative results consider classes of problems
that are arbitrarily large. In this textbook, we will consider reduced sets of learning
problems by considering X = Rd and putting restrictions on the target function f∗ based
on smoothness and/or dependence on an unknown low-dimensional projection. That is,
the most general set of functions will be the set of Lipschitz-continuous functions, for
which the optimal rate will be essentially proportional to O(n−1/d), typical of the curse
of dimensionality. No method can beat this, not k-nearest-neighbors, not kernel methods,
not even neural networks.

When the target function is smoother, that is, with all derivatives up to order m
bounded, then we will see that kernel methods (Chapter 7) and neural networks (Chap-
ter 9), with the proper choice of the regularization parameter, will lead to the optimal
rate of O(n−m/d).

When the target function moreover depends only on a k-dimensional linear projection,
neural networks (if the optimization problem is solved correctly) will have the extra ability
to lead to rates of the form O(n−m/k) instead of O(n−m/d), which is not the case for
kernel methods (see Chapter 9)

Note that another form of adaptivity, which is often considered, is in situations where
the input data lie on a submanifold of Rd (e.g., an affine subspace), where for most
methods presented in this textbook, adaptivity is obtained. In the convergence rate, d
can be replaced by the dimension of the subspace (or submanifold) where the data live.
See studies by Kpotufe (2011) for k-nearest neighbors, and Hamm and Steinwart (2021)
for kernel methods.

See more details in https://francisbach.com/quest-for-adaptivity/ as well as Chap-
ter 7 and Chapter 9 for detailed results.

https://francisbach.com/quest-for-adaptivity/
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2.7 Beyond supervised learning

This textbook focuses primarily on the traditional supervised learning paradigm, with
independent and identically distributed data and where the training and testing distri-
butions match. Many applications require extensions to this basic framework, which also
lead to many interesting theoretical developments that are out of scope. We present
briefly some of these extensions below with references for further reading.

Unsupervised learning. While in supervised learning, both inputs and outputs (e.g.,
labels) are observed, and the main goal is to model how the output depends on the input,
in unsupervised learning, only inputs are given. The goal is then to “find some structure”
within the data, for example, an affine subspace around which the data live (for principal
component analysis), the separation of the data in several groups (for clustering), or the
identification of an explicit latent variable model (such as with matrix factorization). The
new representation of the data is typically either used for visualization (then, with two
or three dimensions), or for reducing dimension before applying a supervised learning
algorithm.

While supervised learning relied on an explicit decision-theoretic framework, it is
not always clear how to characterize performance and perform evaluation; each method
typically has an ad-hoc empirical criterion, such as reconstruction of the data, full or
partial (like in self-supervised learning), log-likelihood when probabilistic models are used
(see Chapter 14), in particular graphical models (Bishop, 2006; Murphy, 2012). Often,
intermediate representations are used for subsequent processing (see, e.g., Goodfellow
et al., 2016).

Theory can be applied to sampling behavior and recovery of specific structures when
assumed (e.g., for clustering or dimension reduction), with a variety of theoretical results
in manifold learning, matrix factorization methods such as K-means, principal component
analysis or sparse dictionary learning (Mairal et al., 2014), outlier/novelty detection, or
independent component analysis (Hyvärinen et al., 2001).

Semi-supervised learning. This is the intermediate situation between supervised and
unsupervised, with some labeled (typically few) examples and some unlabeled (typically
many) examples. Several frameworks exist based on various assumptions (Chapelle et al.,
2010; Van Engelen and Hoos, 2020).

Active learning. This is a similar setting as semi-supervised learning, but the user
can choose which unlabelled point to label to maximize performance once new labels are
obtained. The selection of samples to label is often done by computing some form of
uncertainty estimation on the unlabelled data points (see, e.g. Settles, 2009).

Online learning. Mostly in a supervised setting, this framework allows us to go beyond
the training/testing splits, where data are acquired, and predictions are made on the fly,
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with a criterion that takes into account the sequential nature of learning. See Cesa-
Bianchi and Lugosi (2006); Hazan (2022) and Chapter 11.

Reinforcement learning. On top of the sequential nature of learning already present
in online learning, predictions may influence the future sampling distributions, for exam-
ple, in situations where some agents interact with an environment (Sutton and Barto,
2018), with algorithms relying on similar concepts than optimal control (Liberzon, 2011).

2.8 Summary - book outline

Now that the main concepts are introduced, we can give an outline of the book chapters,
which we have separated into three parts.

Part I: Preliminaries. The first part contains this introductory chapter and Chap-
ter 3 on linear least-squares regression. We start with such a chapter as it allows for the
introduction of the main concepts of the book, such as underfitting, overfitting, regular-
ization, using simple linear algebra, and without the need for more advanced analytic or
probabilistic tools.

Part II: Generalization bounds for learning algorithms. The second part is ded-
icated to the core concepts in learning theory and should be studied sequentially.

• Empirical risk minimization: Chapter 4 is dedicated to methods based on the
minimization of the potentially regularized or constrained regularized risk, with the
introduction of the key concept of Rademacher complexity that analyzes estimation
errors efficiently. Convex surrogates for binary classification are also introduced to
allow the use of only real-valued prediction functions.

• Optimization: Chapter 5 shows how gradient-based techniques can be used to
minimize approximately the empirical risk and, through stochastic gradient descent,
obtain generalization bounds for finitely-parameterized linear models (which are
linear in their parameters) leading to convex objective functions.

• Local averaging methods: Chapter 6 is the first chapter dealing with so-called
“non-parametric” methods that can potentially adapt to complex prediction func-
tions. This class of methods explicitly builds a prediction function mimicking the
Bayes predictor (without any optimization algorithm), such as k-nearest-neighbor
methods. These methods are classically subject to the curse of dimensionality.

• Kernel methods: Chapter 7 presents the most general class of linear models that
can be infinite-dimensional and adapt to complex prediction functions. They are
made computationally feasible using the “kernel trick”, and they still rely on convex
optimization, so they lead to strong theoretical guarantees, particularly by being
adaptive to the smoothness of the target prediction function.

• Sparse methods: While the previous chapter focused on Euclidean or Hilber-
tian regularization techniques for linear models, Chapter 8 considers regularization
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by sparsity-inducing penalties such as the ℓ1-norm or the ℓ0-penalty, leading to
the high-dimensional phenomenon that learning is possible even with potentially
exponentially many irrelevant variables.

• Neural networks: Chapter 9 presents a class of prediction functions that are
not linearly parameterized, therefore leading to non-convex optimization problems,
where obtaining a global optimum is not certain. The chapter studies approximation
and estimation errors, showing the adaptivity of neural networks to smoothness and
linear latent variables (in particular for non-linear variable selection).

Part III: Special topics. The third part presents a series of special topic chapters
that can be read in essentially any order.

• Ensemble learning: Chapter 10 presents a class of techniques aiming at combin-
ing several predictors obtained from the same model class but learned on slightly
modified datasets. This can be done in parallel, such as in bagging techniques, or
sequentially, like boosting methods.

• From online learning to bandits: Chapter 11 consider sequential decision prob-
lems within the regret framework, focusing first on online convex optimization, then
on zeroth order optimization (without access to gradients), and then multi-armed
bandits.

• Over-parameterized models: Chapter 12 presents a series of results related to
models with a large number of parameters (enough to fit the training data perfectly)
and trained with gradient descent. We present the implicit bias of gradient descent
in linear models towards minimum Euclidean norm solutions and then the double
descent phenomenon, before looking at implicit biases and global convergence for
non-convex optimization problems.

• Structured prediction: Chapter 13 goes beyond the traditional regression and
binary classification frameworks by first considering multi-category classification
and then the general framework of structured prediction, where output spaces can
be arbitrarily complex.

• Probabilistic methods: Chapter 14 presents a collection of results related to
probabilistic modeling, highlighting that probabilistic interpretations can some-
times be misleading but also naturally lead to model selection frameworks through
Bayesian inference and PAC-Bayes analysis.

• Lower bounds on performance: While most of the book is dedicated to ob-
taining upper bounds on the generalization or optimization performance of our
algorithms, Chapter 15 considers lower-bounds on such performance, showing how
many algorithms presented in this book are, in fact, “optimal” for a specific class
of learning or optimization problems.
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Chapter 3

Linear least-squares regression

Chapter summary
– Ordinary least-squares estimator: least-squares regression with linearly parameter-

ized predictors leads to a linear system of size d (the number of predictors).
– Guarantees in the fixed design setting with no regularization: when the inputs are

assumed deterministic and d < n, the excess risk is equal to σ2d/n.
– Ridge regression: with ℓ2-regularization, excess risk bounds become dimension in-

dependent and allow high-dimensional feature vectors where d > n.
– Guarantees in the random design setting: although they are harder to show, they

have a similar form.
– Lower bound of performance: under well-specification, the rate σ2d/n is unimprov-

able.

3.1 Introduction

In this chapter, we introduce and analyze linear least-squares regression, a tool that can
be traced back to Legendre (1805) and Gauss (1809).1

Why should we study linear least-squares regression? Has there not been any progress
since 1805? A few reasons:

• It already captures many of the concepts in learning theory, such as the bias-variance
trade-off, as well as the dependence of generalization performance on the underlying
dimension of the problem with no regularization or on dimension-less quantities
when regularization is added.

• Because of its simplicity, many results can be easily derived without the need for

1see https://en.wikipedia.org/wiki/Least_squares for an interesting discussion and the claim that
Gauss knew about it already in 1795.
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complicated mathematics, both in terms of algorithms and statistical analysis (sim-
ple linear algebra for the simplest results in the fixed design setting).

• Using non-linear features, it can be extended to arbitrary non-linear predictions
(see kernel methods in Chapter 7).

In subsequent chapters, we will extend many of these results beyond least-squares
with the proper additional mathematical tools.

3.2 Least-squares framework

We recall the goal of supervised machine learning from Chapter 2: given some observa-
tions (xi, yi) ∈ X× Y, i = 1, . . . , n, of inputs/outputs, features/variables (training data),
given a new x ∈ X, predict y ∈ Y (testing data) with a regression function f such that
y ≈ f(x). We assume that Y = R and we use the square loss ℓ(y, z) = (y− z)2, for which
we know from the previous chapter that the optimal predictor is f∗(x) = E[y|x].

In this chapter, we consider empirical risk minimization. We choose a parameterized
family of prediction functions (often referred to as “models”) fθ : X → Y = R for some
parameter θ ∈ Θ and minimize the empirical risk

1

n

n∑

i=1

(yi − fθ(xi))2,

leading to the estimator θ̂ ∈ arg minθ∈Θ
1
n

∑n
i=1(yi − fθ(xi))2. Note that in most cases,

the Bayes predictor f∗ does not belong to the class of functions {fθ, θ ∈ Θ}, that is, the
model is said misspecified.

Least-squares regression can be carried out with parameterizations of the function fθ,
which may be non-linear in the parameter θ (such as for neural networks in Chapter 9).
In this chapter, we will consider only situations where fθ(x) is linear in θ, which is thus
assumed to live in a vector space, and which we take to be Rd for simplicity.

△! Being linear in x or linear in θ is different!

While we assume linearity in the parameter θ, nothing forces fθ(x) to be linear in the
input x. In fact, even the concept of linearity may be meaningless if X is not a vector
space. If fθ(x) is linear in θ ∈ Rd, then it has to be a linear combination of the form

fθ(x) =
∑d

i=1 αi(x)θi, where αi : X→ R, i = 1, . . . , d, are d functions. By concatenating
them in a vector ϕ(x) ∈ Rd where ϕ(x)i = αi(x), we get the representation

fθ(x) = ϕ(x)⊤θ.

The vector ϕ(x) ∈ Rd is typically called the feature vector, which we assume to be known
(in other words, it is given to us and can be computed explicitly when needed). We thus
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consider minimizing the empirical risk

R̂(θ) :=
1

n

n∑

i=1

(yi − ϕ(xi)
⊤θ)2. (3.1)

When X ⊂ Rd, we can make the extra assumptions that fθ is an affine function, which
could be obtained through ϕ(x) =

(
x
1

)
= (x⊤, 1)⊤ ∈ R

d+1. Other classical assumptions
are ϕ(x) composed of monomials (so that prediction functions are polynomials). We will
see in Chapter 7 (kernel methods) that we can consider infinite-dimensional features.

Matrix notation. The cost function above in Eq. (3.1) can be rewritten in matrix
notations. Let y = (y1, . . . , yn)⊤ ∈ Rn be the vector of outputs (sometimes called the
response vector), and Φ ∈ Rn×d the matrix of inputs, whose rows are ϕ(xi)

⊤. It is called
the design matrix or data matrix. In these notations, the empirical risk is

R̂(θ) =
1

n
‖y − Φθ‖22, (3.2)

where ‖α‖22 =
∑d
j=1 α

2
j is the squared ℓ2-norm of α.

△! It is sometimes tempting at first to avoid matrix notations. We strongly advise against
it as it leads to lengthy and error-prone formulas.

3.3 Ordinary least-squares (OLS) estimator

We assume that the matrix Φ ∈ Rn×d has full column rank (i.e., the rank of Φ is d). In
particular, the problem is said to be “over-determined,” and we must have d 6 n, that
is, more observations than feature dimension. Equivalently, we assume that Φ⊤Φ ∈ R

d×d

is invertible.

Definition 3.1 (OLS) When Φ has full column rank, the minimizer of Eq. (3.2) is
unique and called the ordinary least-squares (OLS) estimator.

3.3.1 Closed-form solution

Since the objective function is quadratic, the gradient will be linear, and zeroing it will
lead to a closed-form solution.

Proposition 3.1 When Φ has full column rank, the OLS estimator exists and is unique.
It is given by

θ̂ = (Φ⊤Φ)−1Φ⊤y.

Denote the (non-centered2) empirical covariance matrix by Σ̂ := 1
nΦ⊤Φ ∈ Rd×d; we have

θ̂ = 1
n Σ̂−1Φ⊤y.

2The “centered” covariance matrix would be 1
n

∑n
i=1[ϕ(xi)−µ][ϕ(xi)−µ]⊤ where µ = 1

n

∑n
i=1 ϕ(xi) ∈

Rd is the empirical mean, while we consider Σ̂ = 1
n

∑n
i=1 ϕ(xi)ϕ(xi)

⊤.
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Proof Since the function R̂ is coercive (i.e., going to infinity at infinity) and continuous,

it admits at least a minimizer. Moreover, it is differentiable, so a minimizer θ̂ must
satisfy R̂′(θ̂) = 0 where R̂′(θ) ∈ Rd is the gradient of R̂ at θ. For all θ ∈ Rd, we have, by
expanding the square and computing the gradient:

R̂(θ) =
1

n

(
‖y‖22 − 2θ⊤Φ⊤y + θ⊤Φ⊤Φθ

)
and R̂′(θ) =

2

n

(
Φ⊤Φθ − Φ⊤y

)
.

The condition R̂′(θ̂) = 0 gives the so-called normal equations :

Φ⊤Φθ̂ = Φ⊤y.

The normal equations have a unique solution θ̂ = (Φ⊤Φ)−1Φ⊤y. This shows the unique-

ness of the minimizer of R̂ as well as its closed-form expression.

Another way to show the uniqueness of the minimizer is by showing that R̂ is strongly
convex since R̂′′(θ) = 2Σ̂ is invertible for all θ ∈ Rd (convexity will be studied in Chap-
ter 5).

△! For readers worried about carrying a factor of two in the gradients, we will use an
additional factor 1/2 in chapters on optimization (e.g., Chapter 5).

3.3.2 Geometric interpretation

Proposition 3.2 The vector of predictions Φθ̂ = Φ(Φ⊤Φ)−1Φ⊤y is the orthogonal pro-
jection of y ∈ R

n onto im(Φ) ⊂ R
n, the column space of Φ.

Proof Let us show that P = Φ(Φ⊤Φ)−1Φ⊤ ∈ Rn×n is the orthogonal projection on
im(Φ). For any a ∈ Rd, it holds PΦa = Φ(Φ⊤Φ)−1Φ⊤Φa = Φa, so Pu = u for all
u ∈ im(Φ). Also, since im(Φ)⊥ = null(Φ⊤), Pu′ = 0 for all u′ ∈ im(Φ)⊥. These
properties characterize the orthogonal projection on im(Φ).

Thus, we can interpret the OLS estimation as doing the following (see below for an
illustration):

1. compute ȳ the projection of y on the image of Φ,

2. solve the linear system Φθ = ȳ which has a unique solution.

im(Φ)
0

y

ȳ
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3.3.3 Numerical resolution

While the closed-form θ̂ = (Φ⊤Φ)−1Φ⊤y is convenient for analysis, inverting Φ⊤Φ is
sometimes unstable and has a large computational cost when d is large. The following
methods are usually preferred.

QR factorization. The QR decomposition factorizes the matrix Φ as Φ = QR where
Q ∈ Rn×d has orthonormal columns, that is, Q⊤Q = I, and R ∈ Rd×d is upper triangular
(see Golub and Loan, 1996). Computing a QR decomposition is faster and more stable
than inverting a matrix. We then have Φ⊤Φ = R⊤Q⊤QR = R⊤R, and R is thus the
Cholesky factor of Φ⊤Φ. One then has

(Φ⊤Φ)θ̂ = Φ⊤y ⇔ R⊤Q⊤QRθ̂ = R⊤Q⊤y ⇔ R⊤Rθ̂ = R⊤Q⊤y ⇔ Rθ̂ = Q⊤y.

It only remains to solve a triangular linear system, which is easy. The overall running
time complexity remains O(d3). The conjugate gradient algorithm can also be used (see
Golub and Loan, 1996, for details).

Gradient descent. We can bypass the need for matrix inversion or factorization using
gradient descent. It consists in approximately minimizing R̂ by taking an initial point
θ0 ∈ Rd and iteratively going towards the minimizer by following the opposite of the
gradient

θt = θt−1 − γR̂′(θt−1) for t > 1,

where γ > 0 is the step-size. When these iterates converge, it is towards the OLS estimator
since a fixed-point θ satisfies R̂′(θ) = 0. We will study such algorithms in Chapter 5,
with running-time complexities going down to linear in d.

3.4 Statistical analysis of OLS

We now provide guarantees on the performance of the OLS estimator. There are two
classical settings of analysis for least-squares:

• Random design. In this setting, both the inputs and the outputs are random. This is
the classical setting of supervised machine learning, where the goal is generalization
to unseen data (as in the last chapter). Since obtaining guarantees is mathematically
more complicated, it will be done after the fixed design setting.

• Fixed design. In this setting, we assume that the input data (x1, . . . , xn) are not
random, and we are interested in obtaining a small prediction error on those input
points only. Alternatively, this can be seen as a prediction problem where the input
distribution is the empirical distribution of (x1, . . . , xn).

Our goal is thus to minimize the fixed design risk (where thus Φ is deterministic):

R(θ) = Ey

[ 1

n

n∑

i=1

(yi − ϕ(xi)
⊤θ)2

]
= Ey

[ 1

n
‖y − Φθ‖22

]
. (3.3)
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This assumption allows a complete analysis with basic linear algebra. It is justified
in some settings, e.g., when the inputs are equally spaced along a fixed grid, but is
otherwise just a simplifying assumption. It can also be understood as learning the
optimal vector Φθ∗ ∈ Rn of best predictions instead of a function from X to R.

In the fixed design setting, no attempts are made to generalize to unseen input
points x ∈ X, and we want to estimate well a label vector y resampled from the
same distribution as the observed y. The risk in Eq. (3.3) is often called the in-
sample prediction error, and the task can be seen as “denoising” the labels.

We will first consider below the fixed design setting, where the celebrated rate σ2d/n will
appear naturally.

Relationship to maximum likelihood estimation. If, in the fixed design setting,
we make the stronger assumption that the noise is Gaussian with mean zero and variance
σ2, i.e., εi = yi − ϕ(xi)

⊤θ∗ ∼ N(0, σ2), then the least mean-squares estimator of θ∗
coincides with the maximum likelihood estimator (where Φ is assumed fixed). Indeed, the
density/likelihood of y is, using independence and the density of the normal distribution:

p(y|θ, σ2) =

n∏

i=1

1√
2πσ2

exp
(
− (yi − ϕ(xi)

⊤θ)2/(2σ2)
)
.

Taking the logarithm and removing constants, the maximum likelihood estimator (θ̃, σ̃2)
minimizes

1

2σ2

n∑

i=1

(yi − ϕ(xi)
⊤θ)2 +

n

2
log(σ2).

We immediately see that θ̃ = θ̂, that is, OLS corresponds to maximum likelihood.

△! While maximum likelihood under a Gaussian model provides an interesting interpre-
tation, the Gaussian assumption is not needed for the forthcoming analysis.

Exercise 3.1 In the Gaussian model above, compute σ̃2 the maximum likelihood estima-
tor of σ2.

3.5 Fixed design setting

We now assume that Φ is deterministic, and as before, we assume that Σ̂ = 1
nΦ⊤Φ is

invertible. Any guarantee requires assumptions about how the data are generated. We
assume that:

• There exists a vector θ∗ ∈ Rd such that the relationship between input and output
is for i ∈ {1, . . . , n}

yi = ϕ(xi)
⊤θ∗ + εi. (3.4)

• All noise variables εi, i ∈ {1, . . . , n}, are independent with expectation E[εi] = 0
and variance E[ε2i ] = σ2.
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The vector ε ∈ Rn accounts for variabilities in the output due to unobserved factors or
noise. The “homoscedasticity” assumption above, where the noise variances are uniform,
is made for simplicity (and allows for the later bound σ2d/n to be an equality). Note
that to prove upper-bounds in performance, we could also only assume that E[ε2i ] 6 σ2

for each i ∈ {1, . . . , n}. The noise variance σ2 is the expected squared error between the
observations yi and the model ϕ(xi)

⊤θ∗.

x

y

ϕ(x)⊤θ∗

σ

△! In Eq. (3.4), we assume the model is well-specified, that is, the target function is a
linear function of ϕ(x). In general, an additional approximation error is incurred because
of a misspecified model (see Chapter 4).

Denoting by R∗ the minimum value of R(θ) = Ey

[
1
n‖y − Φθ‖22

]
over Rd, the following

proposition shows that it is attained at θ∗, and that it is equal to σ2.

Proposition 3.3 (Risk decomposition for OLS - fixed design) Under the linear
model and fixed design assumptions above, for any θ ∈ Rd, we have R∗ = σ2 and

R(θ)− R∗ = ‖θ − θ∗‖2Σ̂,

where Σ̂ := 1
nΦ⊤Φ is the input covariance matrix and ‖θ‖2

Σ̂
:= θ⊤Σ̂θ. If θ̂ is now a

random variable (such as an estimator of θ∗), then

E[R(θ̂)]− R∗ = ‖E[θ̂]− θ∗‖2Σ̂︸ ︷︷ ︸
Bias

+E

[
‖θ̂ − E[θ̂]‖2

Σ̂

]

︸ ︷︷ ︸
Variance

.

Proof We have, using y = Φθ∗ + ε, with E[ε] = 0 and E[‖ε‖22] = nσ2:

R(θ) = Ey

[
1

n
‖y − Φθ‖22

]
= Eε

[
1

n
‖Φθ∗ + ε− Φθ‖22

]

=
1

n
Eε

[
‖Φ(θ∗ − θ)‖22 + ‖ε‖22 + 2

[
Φ(θ∗ − θ)

]⊤
ε
]

= σ2 +
1

n
(θ − θ∗)⊤Φ⊤Φ(θ − θ∗).

Since Σ̂ = 1
nΦ⊤Φ is invertible, this shows that θ∗ is the unique global minimizer of R(θ),

and that the minimum value R∗ is equal to σ2. This shows the first claim.
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Now if θ is random, we perform the usual bias/variance decomposition:

E[R(θ̂)]− R∗ = E

[
‖θ̂ − E[θ̂] + E[θ̂]− θ∗‖2Σ̂

]

= E

[
‖θ̂ − E[θ̂]‖2

Σ̂

]
+ 2E

[
(θ̂ − E[θ̂])⊤Σ̂(E[θ̂]− θ∗)

]
+ E

[
‖E[θ̂]− θ∗‖2Σ̂

]

= E

[
‖θ̂ − E[θ̂]‖2

Σ̂

]
+ 0 + ‖E[θ̂]− θ∗‖2Σ̂

(note that this is also a simple application of the law of total variance for vectors, that

is, E
[
‖z − a‖2M

]
= ‖E[z]− a‖2M + E

[
‖z − E[z]‖2M

]
to a = θ∗, M = Σ̂ and z = θ̂).

Note that the quantity ‖ ·‖Σ̂ is called the Mahalanobis distance norm (it is a “true” norm

whenever Σ̂ is positive definite). It is the norm on the parameter space induced by the
input data.

3.5.1 Statistical properties of the OLS estimator

We can now analyze the properties of the OLS estimator, which has a closed form θ̂ =
(Φ⊤Φ)−1Φ⊤y = Σ̂−1( 1

nΦ⊤y), with the model y = Φθ∗ + ε. The only randomness comes
from ε, and we thus need to compute the expectation of linear and quadratic forms in ε.

Proposition 3.4 (Estimation properties of OLS) The OLS estimator θ̂ has the fol-
lowing properties:

1. it is unbiased, that is, E[θ̂] = θ∗,

2. its variance is var(θ̂) = E
[
(θ̂ − θ∗)(θ̂ − θ∗)⊤

]
= σ2

n Σ̂−1, where Σ̂−1 is often called
the precision matrix.

Proof

1. Since E[y] = Φθ∗, we have directly E[θ̂] = (Φ⊤Φ)−1Φ⊤Φθ∗ = θ∗.

2. It follows that θ̂ − θ∗ = (Φ⊤Φ)−1Φ⊤(Φθ∗ + ε) − θ∗ = (Φ⊤Φ)−1Φ⊤ε. Thus, using
that E[εε⊤] = σ2I, we get

var(θ̂)=E
[
(Φ⊤Φ)−1Φ⊤εε⊤Φ(Φ⊤Φ)−1

]
=σ2(Φ⊤Φ)−1(Φ⊤Φ)(Φ⊤Φ)−1=σ2(Φ⊤Φ)−1,

which leads to the desired result σ2

n Σ̂−1.

We can now put back the expression of the variance in the risk.

Proposition 3.5 (Risk of OLS) The excess risk of the OLS estimator is equal to

E
[
R(θ̂)

]
− R∗ =

σ2d

n
. (3.5)

Proof Note here that the expectation is over ε only as we are in the fixed design setting.
Using the risk decomposition of Proposition 3.3 and the fact that E[θ̂] = θ∗, we have

E
[
R(θ̂)

]
− R∗ = E

[
‖θ̂ − θ∗‖2Σ̂

]
.
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We have: E
[
R(θ̂)

]
− R∗ = tr[var(θ̂)Σ̂] = tr[σ

2

n Σ̂−1Σ̂] = σ2

n tr(I) = σ2d
n .

We can also give a direct proof. Using the identity θ̂ − θ∗ = (Φ⊤Φ)−1Φ⊤ε, we get

E[R(θ̂)]− R∗ = E‖(Φ⊤Φ)−1Φ⊤ε‖2
Σ̂

=
1

n
E
[
ε⊤Φ(Φ⊤Φ)−1Φ⊤Φ(Φ⊤Φ)−1Φ⊤ε

]
=

1

n
E
[
ε⊤Φ(Φ⊤Φ)−1Φ⊤ε

]

=
1

n
E
[
ε⊤Pε

]
=

1

n
E
[
tr(Pεε⊤)

]
=
σ2

n
tr(P ) =

σ2d

n
,

where we used that P = Φ(Φ⊤Φ)−1Φ⊤ is the orthogonal projection on im(Φ), which is
d-dimensional.

We can make the following observations:

• △! In the fixed design setting, the expectation over ε appears twice: (1) in the
definition of the risk of some θ in Eq. (3.3), and when taking an expectation over
the data in Eq. (3.5).

Exercise 3.2 Show that the expected empirical risk E[R̂(θ̂)] is equal to E[R̂(θ̂)] =
n−d
n σ2. In particular, when n > d, deduce that an unbiased estimator of the noise

variance σ2 is given by
‖Y−Φθ̂‖2

2

n−d .

• In the exercise above, we have an expression of the expected training error, which
is equal to n−d

n σ2 = σ2− d
nσ

2, while the expected testing error is σ2+ d
nσ

2. We
thus see that in the context of least-squares, the training error underestimates (in
expectation) the testing error by a factor of 2σ2d/n, which characterizes the amount
of overfitting. This difference can be used to perform model selection.3

• In the fixed design setting, OLS thus leads to unbiased estimation, with an excess
risk of σ2d/n.

• On the positive side, the math is elementary, and as we will show in Section 3.7,
the obtained convergence rate is optimal.

• On the negative side, for the excess risk being small compared to σ2, we need d/n
to be small, which seems to exclude high-dimensional problems where d is close to
n (let alone problems where d > n or d much larger than n). Regularization (ridge
in this chapter or with the ℓ1-norm in Chapter 8) will come to the rescue.

• This is only for the fixed design setting. We consider the random design setting
below, which is a bit more involved mathematically, primarily because of the pres-
ence of Σ̂−1 which does not cancel anymore, leading to the term Σ̂−1Σ, where Σ is
the population covariance matrix.

Exercise 3.3 (general noise) We consider the fixed design regression model y = Φθ∗ + ε

3See https://en.wikipedia.org/wiki/Mallows’s_Cp.

https://en.wikipedia.org/wiki/Mallows's_Cp
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Figure 3.1: Polynomial regression with a varying number of observations. Blue: Optimal
prediction, red: estimated prediction by ordinary least-squares with degree 5 polynomials.

with ε with zero mean and covariance matrix equal to C (not anymore σ2I). Show that
the expected excess risk of the OLS estimator is equal to 1

n tr
[
Φ(Φ⊤Φ)−1Φ⊤C

]
.

Exercise 3.4 (�) (multivariate regression) We consider Y = R
k and the multivariate

regression model y = θ⊤∗ ϕ(x) + ε ∈ Rk, where θ∗ ∈ Rd×k, and ε has zero-mean with
covariance matrix C ∈ Rk×k. In the fixed regression setting with design matrix Φ ∈ Rn×d

and Y ∈ Rn×k the matrix of responses, derive the OLS estimator and its excess risk.

3.5.2 Experiments

To illustrate the bound σ2d/n, we consider polynomial regression in one dimension, with
x ∈ R, ϕ(x) = (1, x, x2, . . . , xk)⊤ ∈ Rk+1, so d = k + 1. The inputs are sampled from
the uniform distribution in [−1, 1], while the optimal regression function is a degree 2
polynomial f(x) = x2 − 1

2 (blue curve in Figure 3.1). Gaussian noise with standard
deviation 1

4 is added to generate the outputs (black crosses). The ordinary least-squares
estimator is plotted in red for various values of n, from n = 10 to n = 1000, for k = 5.

We can now plot in Figure 3.2 the expected excess risk as a function of n, estimated by
32 replications of the experiment, together with the bound. In the right plot, we consider
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Figure 3.2: Convergence rate for polynomial regression with error bars (obtained from
32 replications by adding/subtracting standard deviations), plotted in logarithmic scale,
with fixed design (left plot) and random design (right plot). The large error bars for
small n in the right plot are due to the lower error bar being negative before taking the
logarithm.

the random design setting (generalization error, considered in Section 3.8), while in the
left plot, we consider the fixed design setting (in-sample error). Notice the closeness of
the bound for all n for the fixed design (as predicted by our bounds), while this is only
valid for n large enough in the random design setting.

3.6 Ridge least-squares regression

Least-squares in high dimensions. When d/n approaches 1, we are essentially mem-
orizing the observations yi (that is, for example, when d = n and Φ is a square invertible
matrix, θ = Φ−1y leads to y = Φθ, that is, ordinary least-squares will lead to a perfect
fit, which is typically not good for generalization to unseen data, see more details in
Chapter 12). Also, when d > n, Φ⊤Φ is not invertible, and the normal equations admit
a linear subspace of solutions. These behaviors of OLS in high dimensions (d large) are
often undesirable.

Two main classes of solutions exist to fix these issues: dimension reduction and reg-
ularization. Dimension reduction aims to replace the feature vector ϕ(x) with another
feature of lower dimension, with a classical method being principal component analysis,
presented in Section 3.9. Regularization adds a term to the least-squares objective, typ-
ically either an ℓ1-penalty ‖θ‖1 (leading to “Lasso” regression, see Chapter 8) or ‖θ‖22
(leading to ridge regression, as done in this chapter and also in Chapter 7).

Definition 3.2 (Ridge least-squares regression) For a regularization parameter λ >

0, we define the ridge least-squares estimator θ̂λ as the minimizer of

min
θ∈Rd

1

n
‖y − Φθ‖22 + λ‖θ‖22.
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The ridge regression estimator can be obtained in closed form, and we do not require
anymore Φ⊤Φ to be invertible.

Proposition 3.6 We recall that Σ̂ = 1
nΦ⊤Φ ∈ Rd×d. We have θ̂λ =

1

n
(Σ̂ + λI)−1Φ⊤y.

Proof As for the proof of Proposition 3.1, we can compute the gradient of the objective
function, which is equal to 2

n

(
Φ⊤Φθ − Φ⊤y

)
+ 2λθ. Setting it to zero leads to the esti-

mator. Note that when λ > 0, the linear system always has a unique solution regardless
of the invertibility of Σ̂.

Exercise 3.5 Using the matrix inversion lemma (Section 1.1.3), show that the estimator

above can be written θ̂λ = (Φ⊤Φ +nλI)−1Φ⊤y = Φ⊤(ΦΦ⊤ +nλI)−1y. What could be the
computational benefits?

As for the OLS estimator, we can analyze its statistical properties under the linear model
and fixed design assumptions. See Chapter 7 for an analysis of random design and
potentially infinite-dimensional features.

Proposition 3.7 Under the linear model assumption (and for the fixed design setting),

the ridge least-squares estimator θ̂λ = 1
n (Σ̂ + λI)−1Φ⊤y has the following excess risk

E
[
R(θ̂λ)

]
− R∗ = λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗ +

σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
.

Proof We use the risk decomposition of Proposition 3.3 into a bias term B and a variance
term V . Since we have E[θ̂λ] = 1

n (Σ̂+λI)−1Φ⊤Φθ∗ = (Σ̂+λI)−1Σ̂θ∗ = θ∗−λ(Σ̂+λI)−1θ∗,
it follows

B = ‖E[θ̂λ]− θ∗‖2Σ̂
= λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗.

For the variance term, using the fact that E[εε⊤] = σ2I, we have

V = E

[
‖θ̂λ − E[θ̂λ]‖2

Σ̂

]
= E

[∥∥∥ 1

n
(Σ̂ + λI)−1Φ⊤ε

∥∥∥
2

Σ̂

]

= E

[ 1

n2
tr
(
ε⊤Φ(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1Φ⊤ε

) ]

= E

[ 1

n2
tr
(

Φ⊤εε⊤Φ(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1
) ]

=
σ2

n
tr
(

Σ̂(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1
)
.

The proposition follows by summing the bias and variance terms.

We can make the following observations:

• The result above is also a bias/variance decomposition with the bias term equal to

B = λ2θ⊤∗ (Σ̂+λI)−2Σ̂θ∗, and the variance term equal to V = σ2

n tr
[
Σ̂2(Σ̂+λI)−2

]
.

They are plotted in Figure 3.3.
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Figure 3.3: Polynomial regression (same set-up as Figure 3.2, with n = 300), with k = 5:
bias/variance trade-offs for ridge regression as a function of λ. We can see the mono-
tonicity of bias and variance with respect to λ and the presence of an optimal choice of λ.

The bias/variance decomposition can be related to the decomposition in approxi-
mation error and estimation error presented in Section 2.3.2 and further developed
in Chapter 4. The bias term is the part of the excess risk due to the regularization
term constraining the proper estimation of the model. It plays the role of the ap-
proximation error, while the variance term characterizes the effect of the noise and
plays the role of the estimation error.

• The bias term is increasing in λ and equal to zero for λ = 0 if Σ̂ is invertible, while
when λ goes to infinity, the bias goes to θ⊤∗ Σ̂θ∗. It is independent of n and plays
the role of the approximation error in the risk decomposition.

• The variance term is decreasing in λ, and equal to σ2d/n for λ = 0 if Σ̂ is invertible,
and converging to zero when λ goes to infinity. It depends on n and plays the role
of the estimation error in the risk decomposition.

• The quantity tr
[
Σ̂2(Σ̂+λI)−2

]
is called the “degrees of freedom”, and is often con-

sidered as an implicit number of parameters. It can be expressed as
∑d

j=1

λ2
j

(λj+λ)2
,

where (λj)j∈{1,...,d} are the eigenvalues of Σ̂. This quantity will be very important
in analyzing kernel methods in Chapter 7. Since the function µ 7→ µ2/(µ + λ2) in
increasing from 0 to 1, close to zero if µ≪ λ, close to one if µ≫ λ, the degrees of
freedom provide a soft count of the number of eigenvalues that are larger than λ.

• Observe how this converges to the OLS estimator (when defined) as λ→ 0.

• In most cases, λ = 0 is not the optimal choice; that is, biased estimation (with
controlled bias) is preferable to unbiased estimation. In other words, the mean
square error is minimized for a biased estimator.

Choice of λ. Based on the expression for the risk, we can tune the regularization
parameter λ to obtain a potentially better bound than with the OLS (which corresponds
to λ = 0 and the excess risk σ2d/n).
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Proposition 3.8 (choice of regularization parameter) With the choice of regular-

ization parameter λ∗ =
σ tr(Σ̂)1/2

‖θ∗‖2
√
n
, we have

E
[
R(θ̂λ∗)

]
− R∗ 6

σ tr(Σ̂)1/2‖θ∗‖2√
n

.

Proof We have, using the fact that the eigenvalues of (Σ̂ + λI)−2λΣ̂ are less than 1/2
(which is a simple consequence of (µ+λ)−2µλ 6 1/2⇔ (µ+λ)2 > 2λµ for all eigenvalues

µ of Σ̂):

B = λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗ = λθ⊤∗ (Σ̂ + λI)−2λΣ̂θ∗ 6
λ

2
‖θ∗‖22.

Similarly, we have V =
σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
=
σ2

λn
tr
[
Σ̂λΣ̂(Σ̂ + λI)−2

]
6
σ2 tr Σ̂

2λn
. This

leads to

E
[
R(θ̂λ∗)

]
− R∗ 6

λ

2
‖θ∗‖22 +

σ2 tr Σ̂

2λn
. (3.6)

Plugging in λ∗ (which was chosen to minimize the upper bound on B + V ) gives the
result.4

We can make the following observations:

• If we write R = maxi∈{1,...,n} ‖ϕ(xi)‖2, then we have

tr(Σ̂) =

d∑

j=1

Σ̂jj =
1

n

n∑

i=1

d∑

j=1

ϕ(xi)
2
j =

1

n

n∑

i=1

‖ϕ(xi)‖22 6 R2.

Thus, the dimension d plays no explicit role in the excess risk bound and could even
be infinite (given that R and ‖θ∗‖2 remain finite). This type of bounds is called
dimension-free bounds (see more details in Chapter 7).

△! The number of parameters is not the only way to measure the generalization
capabilities of a learning method, hence the need for explicit constants that
depend on problem parameters.

• Comparing this bound with that of the OLS estimator, we see that it converges
slower to 0 as a function of n (from n−1 to n−1/2), but it has a milder dependence
on the noise (from σ2 to σ). The presence of a “fast” rate in O(n−1) with a
potentially large constant and of a “slow” rate O(n−1/2) with a smaller constant
will appear several times in this book.

△! Depending on n and the constants, the “fast” rate result is not always the
best.

4We have used the property that for any vector u, any symmetric matrix M , and any symmetric
positive semi-definite matrix A, u⊤Mu 6 ‖u‖22 · λmax(M) and tr(AM) 6 tr(A) · λmax(M).
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• The value of λ∗ involves quantities that we typically do not know in practice (such
as σ and ‖θ∗‖2). This is still useful to highlight the existence of some λ with good
predictions (which can be found by cross-validation, as presented in Section 2.1).

• Note here that the choice of λ∗ =
σ
√

tr(Σ̂)

‖θ∗‖2
√
n

is optimizing the upper-bound λ
2 ‖θ∗‖22 +

σ2 tr Σ̂
2λn , and is thus typically not optimal for the true expected risk.

• We can check the homogeneity of the various formulas by a basic dimensional anal-
ysis. We use the bracket notation to denote the unit. Then [λ] × [θ]2 = [y2] = [σ2]
since λ‖θ‖22 appears in the same objective function as y2 (or σ2). Moreover, we
have [y] = [σ] = [ϕ][θ], leading to [λ] = [ϕ]2. The value of λ suggested above has

the dimension [ϕ]×[σ]
[θ] , which is indeed equal to [ϕ]2. Similarly, we can check that

the bias and variance terms have the correct dimensions.

Choosing λ in practice. The regularization λ is an example of a hyper-parameter.
This term broadly refers to any quantity that influences the behavior of a machine learn-
ing algorithm and that is left to choose by the practitioner. While theory often offers
guidelines and qualitative understanding on best choosing the hyper-parameters, their
precise numerical value depends on quantities that are often difficult to know or even
guess. In practice, we typically resort to validation and cross-validation.

Exercise 3.6 Compute the expected risk of the estimators obtained by regularizing by
θ⊤Λθ instead of λ‖θ‖22, where Λ ∈ Rd×d is a positive definite matrix.

Exercise 3.7 (�) We consider the leave-one-out estimator θ−iλ ∈ Rd obtained, for each
i ∈ {1, . . . , n}, by minimizing 1

n

∑
j 6=i(yj − θ⊤ϕ(xj))

2 + λ‖θ‖22. Given the matrix H =

Φ(Φ⊤Φ + nλI)−1Φ⊤ ∈ Rn×n, and its diagonal h = diag(H) ∈ Rn, show that

1

n

n∑

i=1

(yi − ϕ(xi)
⊤θ−iλ )2 =

1

n
‖(I −Diag(h))−1(I −H)⊤y‖22.

3.7 Lower-bound (�)

To show a lower bound in the fixed design setting, we will consider only Gaussian noise,
that is, ε has a joint Gaussian distribution with mean zero and covariance matrix σ2I
(adding an extra assumption can only make the lower bound smaller). We follow the
elegant and simple proof technique outlined by Mourtada (2019).

The only unknown in the model is the location of θ∗. To make the dependence on θ∗
explicit, we denote by Rθ∗(θ)−R∗ the excess risk (in the previous chapter, we were using
the notation Rp to make the dependence on the distribution p explicit), which is equal to

Rθ∗(θ) − R∗ = ‖θ − θ∗‖2Σ̂.
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Our goal is to lower bound

sup
θ∗∈Rd

Eε∼N(0,σ2I)

[
Rθ∗(A(Φθ∗ + ε))

]
− R∗,

over all functions A from Rn to Rd (these functions are allowed to depend on the observed
deterministic quantities such as Φ). Indeed, algorithms take y = Φθ∗+ε ∈ Rn as an input
and output a vector of parameters in Rd.

The main idea, which is classical in the Bayesian analysis of learning algorithms,
is to lower bound the supremum by the expectation with respect to some probability
on θ∗, called the prior distribution in Bayesian statistics. That is, we have, for any
algorithm/estimator A:

sup
θ∗∈Rd

Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε)) > E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε)). (3.7)

Here, we choose the normal distribution with mean 0 and covariance matrix σ2

λnI as a
prior distribution since this will lead to closed-form computations.

Using the expression of the excess risk (and ignoring the additive constant σ2 = R∗),
we thus get the lower bound

E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
‖A(Φθ∗ + ε)− θ∗‖2Σ̂

]
,

which we need to minimize with respect to A. By making θ∗ random, we now have a
joint Gaussian distribution for (θ∗, ε). The joint distribution of (θ∗, y) = (θ∗,Φθ∗ + ε) is
also Gaussian with mean zero and covariance matrix

( σ2

λnI
σ2

λnΦ⊤

σ2

λnΦ σ2

λnΦΦ⊤ + σ2I

)
=
σ2

λn

(
I Φ⊤

Φ ΦΦ⊤ + nλI

)
.

We need to perform an operation similar to computing the Bayes predictor in Chapter 2.
This will be done by conditioning on y by writing

E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
‖A(Φθ∗ + ε)− θ∗‖2Σ̂

]
= E(θ∗,y)

[
‖A(y)− θ∗‖2Σ̂

]

=

∫

Rn

( ∫

Rd

‖A(y)− θ∗‖2Σ̂dp(θ∗|y)
)
dp(y).

Thus, for each y, the optimal A(y) has to minimize
∫
Rd ‖A(y) − θ∗‖2Σ̂dp(θ∗|y), which is

exactly the posterior mean of θ∗ given y. Indeed, the vector that minimizes the expected
squared deviation is the expectation (exactly like when we computed the Bayes predictor
for regression), here applied to the distribution dp(θ∗|y).

Since the joint distribution of (θ∗, y) is Gaussian with known parameters, we could use
classical results about conditioning for Gaussian vectors (see Section 1.1.3). Still, we can
also use the property that for Gaussian variables, the posterior mean given y is equal to
the posterior mode given y, that is, it can be obtained by maximizing the log-likelihood
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log p(θ∗, y) with respect to θ∗. Up to constants and using independence of ε and θ∗, this
log-likelihood is

− 1

2σ2
‖ε‖2 − λn

2σ2
‖θ∗‖22 = − 1

2σ2
‖y − Φθ∗‖2 −

λn

2σ2
‖θ∗‖22,

which is exactly (up to a sign and a constant) the ridge regression cost function. Thus,

we have A∗(y) = (Φ⊤Φ +nλI)−1Φ⊤y, which is exactly the ridge regression estimator θ̂λ,
and we can compute the corresponding optimal risk, to get:

inf
A

sup
θ∗∈Rd

Eε∼N(0,σ2I)

[
Rθ∗(A(Φθ∗ + ε))

]
− R∗

> inf
A

E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
Rθ∗(A(Φθ∗ + ε))

]
− R∗ using Eq. (3.7),

= E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
Rθ∗(A∗(Φθ∗ + ε))

]
− R∗ using the reasoning above,

= E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
‖A∗(Φθ∗ + ε)− θ∗‖2Σ̂

]
using the expression of the risk,

= E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
‖(Φ⊤Φ+nλI)−1Φ⊤(Φθ∗+ε)−θ∗‖2Σ̂

]

using the closed-form expression of the OLS estimator,

= E
θ∗∼N(0, σ

2

λn I)
Eε∼N(0,σ2I)

[
‖(Φ⊤Φ + nλI)−1Φ⊤ε− nλ(Φ⊤Φ + nλI)−1θ∗‖2Σ̂

]

= E
θ∗∼N(0, σ

2

λn I)

[
‖−nλ(Φ⊤Φ+nλI)−1θ∗‖2Σ̂

]
+ Eε∼N(0,σ2I)

[
‖(Φ⊤Φ+nλI)−1Φ⊤ε‖2

Σ̂

]

by independence,

=
σ2

nλ
(nλ)2

1

n2
tr
[
(Σ̂ + λI)−2Σ̂

]
+
σ2

n
tr
[
(Σ̂ + λI)−2Σ̂2

]

=
σ2

n
tr
[
(Σ̂ + λI)−1Σ̂

]
.

When Φ (and thus Σ̂) has full rank, this last expression tends to σ2

n tr(I) = σ2d
n when λ

tends to zero (otherwise, it tends to σ2

n rank(Φ)). This such shows that

inf
A

sup
θ∗∈Rd

Eε∼N(0,σ2I)

[
Rθ∗(A(Φθ∗ + ε))

]
− R∗ >

σ2d

n
.

This gives us a lower bound on performance, which exactly matches the upper bound
obtained by OLS. In the general non-least-squares case, such results are significantly
harder to show. See more general lower bounds in Chapter 15.

3.8 Random design analysis

In this section, we consider the regular random design setting, that is, both x and y
are considered random, and each pair (xi, yi) is assumed independent and identically
distributed from a probability distribution p on X× R. We aim to show that the bound
on the excess risk we have shown for the fixed design setting, namely σ2d/n, is still valid.
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We will make the following assumptions regarding the joint distribution p, transposed
from the fixed design setting to the random design setting:

• There exists a vector θ∗ ∈ Rd such that the relationship between input and output
is for all i,

yi = ϕ(xi)
⊤θ∗ + εi.

• The noise distribution of εi ∈ R is independent from xi, and E[εi] = 0 and with
variance E[ε2i ] = σ2 (and is the same for all i, as observations are i.i.d.).

With the assumption above, E[yi|xi] = ϕ(xi)
⊤θ∗, and thus, we perform empirical risk

minimization where our class of functions includes the Bayes predictor. This situation is
often referred to as the well-specified setting. The risk also has a simple expression:

Proposition 3.9 (Excess risk for random design least-squares regression) Un-
der the linear model above, for any θ ∈ R

d, the excess risk is equal to:

R(θ)− R∗ = ‖θ − θ∗‖2Σ,

where Σ := E[ϕ(x)ϕ(x)⊤ ] is the (non-centered) covariance matrix, and R∗ = σ2.

Proof We have, for a pair (x0, y0) sampled from the same distribution as all (xi, yi),
i = 1, . . . , n, with ε0 the corresponding noise variable:

R(θ) = E
[
(y0 − θ⊤ϕ(x0))2

]
= E

[
(ϕ(x0)⊤θ∗ + ε0 − θ⊤ϕ(x0))2

]

= E
[
(ϕ(x0)⊤θ∗ − θ⊤ϕ(x0))2

]
+ E

[
ε20
]

= (θ − θ∗)⊤Σ(θ − θ∗) + σ2,

which leads to the desired result.

Note that the only difference with the fixed design setting is the replacement of Σ̂ by Σ.
We can now express the risk of the OLS estimator.

Proposition 3.10 Under the linear model above, assuming Σ̂ is invertible, the expected
excess risk of the OLS estimator is equal to

σ2

n
E
[

tr(ΣΣ̂−1)
]
.

Proof Since the OLS estimator is equal to θ̂ = 1
n Σ̂−1Φ⊤y = 1

n Σ̂−1Φ⊤(Φθ∗ + ε) =

θ∗ + 1
n Σ̂−1Φ⊤ε, we have:

E[R(θ̂)]− R∗ = E
[( 1

n
Σ̂−1Φ⊤ε

)⊤
Σ
( 1

n
Σ̂−1Φ⊤ε

)]

= E
[

tr
(
Σ
( 1

n
Σ̂−1Φ⊤ε

)( 1

n
Σ̂−1Φ⊤ε

)⊤)]
=

1

n2
E
[

tr
(
ΣΣ̂−1Φ⊤εε⊤ΦΣ̂−1

)]

=
1

n2
E
[

tr
(
ΣΣ̂−1Φ⊤

E[εε⊤]ΦΣ̂−1
)]

= E

[σ2

n2
tr
(
ΣΣ̂−1Φ⊤ΦΣ̂−1

)]

= E

[σ2

n
tr(ΣΣ̂−1)

]
.
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Thus, to compute the expected risk of the OLS estimator, we need to compute
E
[

tr(ΣΣ̂−1)
]
. One difficulty here is the potential non-invertibility of Σ̂. Under sim-

ple assumptions (e.g., ϕ(x) has a density on Rd), as soon as n > d, Σ̂ is almost surely
invertible. However, its smallest eigenvalue can be very small. Additional assumptions
are then needed to control it (see, e.g., Mourtada, 2019, Section 3).

Exercise 3.8 Show that for the random design setting with the same assumptions as
Prop. 3.10, the expected risk of the ridge regression estimator is

E
[
R(θ̂λ)− R∗] = λ2E

[
θ⊤∗ (Σ̂ + λI)−1Σ(Σ̂ + λI)−1θ∗

]
+
σ2

n
E

[
tr
[
(Σ̂ + λI)−2Σ̂Σ

]]
.

3.8.1 Gaussian designs

Suppose we assume that ϕ(x) is normally distributed with mean 0 and covariance matrix
Σ. In that case, we can directly compute the desired expectation by first considering
z = Σ−1/2ϕ(x), which has a standard normal distribution (that is, with mean zero and
identity covariance matrix), with the corresponding normalized design matrix Z ∈ Rn×d,

and compute E
[

tr(ΣΣ̂−1)
]

= nE
[

tr(Z⊤Z)−1
]
.

Note that E[Z⊤Z] = nI, and by convexity of the functionM 7→ tr(M−1) on the cone of
positive definite matrices, and using Jensen’s inequality, we see that E

[
tr(Z⊤Z)−1

]
> d

n
(here we have not used the Gaussian assumption). However, this bound is in the wrong
direction (this often happens with Jensen’s inequality).

It turns out that for Gaussians, the matrix (Z⊤Z)−1 has a specific distribution, called
the inverse Wishart distribution5, with an expectation that can be computed exactly as
E[(Z⊤Z)−1] = 1

n−d−1I. Thus, we have: E
[

tr(Z⊤Z)−1
]

= d
n−d−1 if n > d + 1, thus

leading to the expected excess risk of

σ2d

n− d− 1
=
σ2d

n

1

1− (d+ 1)/n
.

See Breiman and Freedman (1983) for further details. Note here that for Gaussian designs,
the expected risk is precisely equal to the expression above and that later in this book,
we will only consider upper bounds. See also a further analysis in Section 12.2.3.

Overall, in the Gaussian case, we have an explicit non-asymptotic bound on the risk,
which is equivalent to σ2d/n when n goes to infinity.

3.8.2 General designs (��)

This last more technical section highlights how the Gaussian assumption can be avoided.
The main idea is to show that with high probability, the lowest eigenvalue of Σ−1/2Σ̂Σ−1/2

5See https://en.wikipedia.org/wiki/Inverse-Wishart_distribution.

https://en.wikipedia.org/wiki/Inverse-Wishart_distribution
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is larger than some 1 − t, for some t ∈ (0, 1). Since the excess risk is σ2

n tr(ΣΣ̂−1), this

immediately shows that with high probability, the excess risk is less than σ2d
n

1
1−t .

To obtain such results, more refined concentration inequalities are needed, such as
described by Tropp (2012), Hsu et al. (2012), Oliveira (2013), and Lecué and Mendelson
(2016). See complementary results by Mourtada (2019).

Matrix concentration inequality. We will use the matrix Bernstein bound, adapted
from (Tropp, 2012, Theorem 1.4), already discussed in Section 1.2.6 and recalled here.

Proposition 3.11 (Matrix Bernstein bound) Given n independent symmetric ma-
trices Mi ∈ Rd×d, such that for all i ∈ {1, . . . , n}, E[Mi] = 0, λmax(Mi) 6 b almost
surely, for all t > 0, we have:

P

(
λmax

( 1

n

n∑

i=1

Mi

)
> t

))
6 d · exp

(
− nt2/2

τ2 + bt/3

)
,

for τ2 = λmax

(
1
n

∑n
i=1 E[M2

i ]
)
.

Application to re-scaled covariance matrices. We can now prove the following
proposition that will give the desired high-probability bound for the excess risk with one
extra assumption. Below, we will use the order between symmetric matrices, defined as
A < B ⇔ B 4 A⇔ A−B positive semi-definite.

Proposition 3.12 Given Σ = E[ϕ(x)ϕ(x)⊤ ] ∈ Rd×d, and i.i.d. observations ϕ(x1), . . . ,
ϕ(xn) ∈ Rd, assume that, for some ρ > 0,

E

[
ϕ(x)⊤Σ−1ϕ(x)ϕ(x)ϕ(x)⊤

]
4 ρdΣ. (3.8)

For δ ∈ (0, 1), if n > 5ρd log d
δ , then with probability greater than 1− δ,

Σ−1/2Σ̂Σ−1/2 <
1

4
I. (3.9)

Before giving the proof, note that from the discussion earlier, the bound in Eq. (3.9) leads

to an excess risk less than σ2d
n

1
1−t = 4σ

2d
n for t = 3/4. Moreover, without surprise, the

bound is non-vacuous only for n > d (and, in fact, because of the constraint on n, more
than a constant times d log d). The extra assumption in Eq. (3.8) can be interpreted
as follows. We consider the random vector z = Σ−1/2ϕ(x) ∈ R

d, which is such that
E[zz⊤] = I and E[‖z‖22] = d. The assumption in Eq. (3.8) is then equivalent to

λmax

(
E

[
‖z‖2zz⊤

])
6 ρd.

A sufficient condition is that almost surely ‖z‖22 6 ρd, that is, ϕ(x)⊤Σ−1ϕ(x) 6 ρd.
Moreover, for a Gaussian distribution with zero mean for z, one can check as an exercise
that ρ = (1 + 2/d). Similar results will be obtained for ridge regression in Chapter 7.
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Proof We consider the random symmetric matrix Mi = I − ziz⊤i , which is such that
E[Mi] = 0, λmax(Mi) 6 1 almost surely, and E[M2

i ] = E
[
‖zi‖2ziz⊤i

]
− I with largest

eigenvalue less than ρd. We thus have for any t > 0, using Prop. 3.11:

P

(
λmax(I − 1

n
Z⊤Z) > t

)
6 d · exp

(
− nt2/2

ρd+ t/3

)
.

Thus, if t is such that nt2

2ρd+2t/3 > log d
δ , then, with probability greater than 1−δ, we have

I − Σ−1/2Σ̂Σ−1/2 4 tI, that is, the desired result Σ−1/2Σ̂Σ−1/2 < (1− t)I.
For t = 3/4, the condition becomes n > (32ρd/9 + 8/3) log d

δ , which is implied by

n > 5ρd log d
δ since we always ρ > 1.

3.9 Principal component analysis (�)

Unsupervised dimension reduction is an effective way of reducing the number of features,
either for computational efficiency (by storing and manipulating smaller feature vectors)
or to avoid overfitting in a way complementary to ridge regularization. In this section,
we present principal component analysis (PCA), which corresponds to looking for a low-
dimensional subspace that contains approximately all feature vectors.

We consider n feature vectors ϕ(x1), . . . , ϕ(xn) ∈ Rd, with the corresponding design
matrix Φ ∈ Rn×d. PCA aims at finding a subspace of dimension k such that all feature
vectors are close to their orthogonal projections onto that subspace (see an illustration
below for d = 2 and k = 1, where the goal is to minimize the sum of squares of all dotted
segments).

ϕ(xi)

In the formulation presented below, we consider a linear subspace (which contains 0),
but it is common in practice to look for the optimal affine subspace (that may not
contain 0), which can be done by first centering the data, that is, subtracting the mean
from all feature vectors.

Formulation as an eigenvalue problem. We can parameterize the subspace (non-
uniquely) by an orthonormal basis V ∈ Rd×k such that V ⊤V = I. Then each feature
vector ϕ(xi), i = 1, . . . , n, has projection V V ⊤ϕ(xi), and thus the design matrix of all
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projected vectors is ΦV V ⊤, and the optimal V is found by minimizing:

‖Φ− ΦV V ⊤‖2F = tr
[
(Φ− ΦV V ⊤)⊤(Φ− ΦV V ⊤)

]

= tr
[
Φ⊤Φ

]
+ tr

[
V V ⊤Φ⊤ΦV V ⊤]− 2 tr

[
Φ⊤ΦV V ⊤]

= tr
[
Φ⊤Φ

]
− tr

[
V ⊤Φ⊤ΦV

]
.

Thus, minimizing ‖Φ − ΦV V ⊤‖2F is equivalent to maximizing tr
[
V ⊤Φ⊤ΦV

]
with re-

spect to an orthonormal matrix V ∈ Rd×k. Given an eigenvalue decomposition of the
non-centered empirical covariance matrix Σ̂ = 1

nΦ⊤Φ = U Diag(λ)U⊤, with U ∈ Rd×d

orthogonal and λ a vector with non-increasing components, an optimal V is obtained by
taking the first k columns of U , that is, a basis of the principal subspace of dimension k.
Such a basis can be computed by various algorithms from numerical algebra (Golub and
Loan, 1996). See Exercise 3.9 for a simple alternative optimization algorithm.

Exercise 3.9 Given Φ ∈ Rn×d, we consider minimizing ‖Φ−AD‖2F with respect to D ∈
R
k×d and A ∈ R

n×k. Show that the optimal solution is such that AD is the data matrix
after performing principal component analysis. Show that an alternating minimization
algorithm that iteratively minimizes ‖Φ−AD‖2F with respect to A and then D, converges
to the global optimum for almost all initializations D, and compute the corresponding
updates.

Exercise 3.10 (K-means clustering) Given Φ ∈ Rn×d, we consider minimizing ‖Φ−
AD‖2F with respect to D ∈ Rk×d and A ∈ {0, 1}n×k such that each row of A sums to one.
Compute the updates of an alternative optimization algorithm that minimizes ‖Φ−AD‖2F.

PCA and least-squares regression (��). While regularization is a common way
to avoid overfitting for least-squares (as shown in Section 3.6), performing PCA and
then (unregularized) ordinary least-squares provides an alternative with similar behavior.
That is, we now consider the feature vector ΦV ∈ Rn×k, and minimize ‖y−ΦV η‖22 with
respect to η ∈ Rk, with solution η = (V ⊤Φ⊤ΦV )−1V ⊤Φ⊤y, leading to the prediction
vector ΦV η = ΦV (V ⊤Φ⊤ΦV )−1V ⊤Φ⊤y ∈ Rn.

If we assume the linear model y = Φθ∗ + ε like in Section 3.6, we have:

1

n
Eε

[
‖ΦV η − Φθ∗‖22

]
=

σ2k

n
+

1

n

∥∥ΦV (V ⊤Φ⊤ΦV )−1V ⊤Φ⊤Φθ∗ − Φθ∗
∥∥2
2

=
σ2k

n
+ θ⊤∗ Σ̂θ∗ − θ⊤∗ Σ̂V (V ⊤Σ̂V )−1Σ̂θ∗

=
σ2k

n
+ θ⊤∗ (I − V V ⊤)Σ̂(I − V V ⊤)θ∗,

using the fact that the columns of V are eigenvector of Σ̂. We can now use the upper-
bound

6
σ2k

n
+ ‖θ∗‖22λk+1,
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where λk+1 is the (k+1)-th largest eigenvalue of Σ̂, which is less than 1/(k+1) times

tr[Σ̂] (the sum of all eigenvalues). Thus, the excess risk of OLS after PCA is less than
σ2k
n + ‖θ∗‖22 tr[Σ̂]

k , which is similar to Eq. (3.6). A good value of k is then the closest

integer to ‖θ∗‖2 · tr[Σ̂]
√
n/σ, leading to, up to constants, the same excess risk than for

ridge regression.

3.10 Conclusion

In this chapter, we have considered the simplest machine learning set-up, that is, square
loss and prediction functions linearly parameterized by a finite-dimensional parameter.
This simplest setup led to estimation algorithms based on numerical linear algebra (solv-
ing linear systems) and a statistical analysis based on simple probabilistic arguments
(mostly variance computations). In particular, we highlighted the importance of regular-
ization, which allows good predictive performance with high-dimensional features through
dimension-free bounds.

Going beyond the square loss will require iterative algorithms based on optimization
(presented in Chapter 5), and a more refined statistical analysis with deeper probabilistic
tools (presented in Chapter 4).
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Part II

Generalization bounds for
learning algorithms
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Chapter 4

Empirical risk minimization

Chapter summary
– Convexification of the risk: for binary classification, optimal predictions can be

achieved with convex surrogates.
– Risk decomposition: the risk can be decomposed into the sum of the approximation

and estimation errors.
– Rademacher complexity: To study estimation errors and compute expected uniform

deviations of real-valued outputs, Rademacher complexities are a very flexible and
powerful tool that allows obtaining dimension-independent concentration inequal-
ities.

– Relationship with asymptotic statistics: classical asymptotic results provide a finer
picture of the behavior of empirical risk minimization as they provide asymptotic
limits of performance as a well-defined constant times 1/n, but they may not, in
general, characterize small-sample effects.

As outlined in Chapter 2, given a joint distribution p on X × Y, and n independent
and identically distributed observations from p, our goal is to learn a function f : X→ Y

with minimum risk R(f) = E[ℓ(y, f(x))], or equivalently minimum expected excess risk:

R(f)− R∗ = R(f)− inf
g measurable

R(g).

In this chapter, we will consider methods based on empirical risk minimization. Before
looking at the necessary probabilistic tools, we will first show how problems where the
output space is not a vector space, such as binary classification with Y = {−1, 1}, can be
reformulated as real-valued outputs, with so-called “convex surrogates” of loss functions.

69
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4.1 Convexification of the risk

In this section, for simplicity, we focus on binary classification where Y = {−1, 1} with
the 0-1 loss, but many of the concepts extend to the more general structured prediction
set-up (see Chapter 13).

As our goal is to estimate a binary-valued function, the first idea that comes into
mind is to minimize the empirical risk over a hypothesis space of binary-valued func-
tions f (or equivalently, the subsets of X by considering the set {x ∈ X, f(x) = 1}).
However, this approach leads to a combinatorial problem that can be computationally
intractable. Moreover, how to control the capacity (i.e., how to regularize) for these
types of hypothesis spaces needs to be clarified. Learning a real-valued function instead
through the framework of convex surrogates simplifies and overcomes this problem as it
convexifies the problem. Classical penalty-based regularization techniques can then be
used for theoretical analysis (this chapter) and algorithms (Chapter 5).

This choice of treating classification problems through real-valued prediction functions
allows us to avoid introducing Vapnik-Chervonenkis dimensions (see Vapnik and Chervo-
nenkis, 2015) to obtain general convergence results for empirical risk minimization in this
chapter, where we will use the generic tool of Rademacher complexities in Section 4.5.

Instead of learning f : X → {−1, 1}, we will thus learn a function g : X → R and
define f(x) = sign(g(x)) where

sign(a) =





1 if a > 0
0 if a = 0
−1 if a < 0.

The convention sign(0) = 0 implies that the prediction can never be correct when
g(x) = 0. Within our context, for maximally ambiguous observations, this corresponds
to choosing none of the two labels (other conventions consider taking +1 or −1 uniformly
at random).

The risk of the function f = sign ◦ g, still denoted R(g) (△! note the slight overloading
of notations R(g) = R(sign ◦ g)), is then equal to:

R(g) = P(sign(g(x)) 6= y) = E[1sign(g(x)) 6=y] = E[1yg(x)60] = E
[
Φ0−1(yg(x))

]
,

where Φ0−1 : R→ R, with Φ0−1(u) = 1u60 is called the “margin-based” 0-1 loss function
or simply the 0-1 loss function.

△! Note the slightly overloaded notation above where the 0-1 loss function is defined on R,
compared to the 0-1 loss function from Chapter 2, which is defined on {−1, 1}× {−1, 1}.

In practice, for empirical risk minimization, we then minimize with respect to the
function g : X→ R the corresponding empirical risk 1

n

∑n
i=1 Φ0−1(yig(xi)). The function

Φ0−1 is not continuous (and thus also non-convex) and leads to difficult optimization
problems.
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Figure 4.1: Classical convex surrogates for binary classification with the 0-1 loss.

4.1.1 Convex surrogates

A key concept in machine learning is the use of convex surrogates, where we replace Φ0−1

by another function Φ with better numerical properties (all will be convex). See classic
examples below, plotted in Figure 4.1.

Instead of minimizing the classical risk R(g) or its empirical version, one then mini-
mizes the “Φ-risk” (and its empirical version) defined as

RΦ(g) = E[Φ(yg(x))].

In this context, the function g is sometimes called the score function.

The critical question we tackle in this section is: does it make sense to convexify the
problem? In other words, does it lead to good predictions for the 0-1 loss?

Classical examples. We first review the primary examples used in practice:

• Quadratic / square loss: Φ(u) = (u − 1)2, leading to, since we have y2 = 1,
Φ(yg(x)) = (y − g(x))2 = (g(x) − y)2. We get back least-squares, ignore that the
labels have to belong to {−1, 1}, and take the sign of g(x) for the prediction. Note
the overpenalization for a large positive value of yg(x) that will not be present for
the other losses below (which are non-increasing).

• Logistic loss: Φ(u) = log(1 + e−u), leading to

Φ(yg(x)) = log(1 + e−yg(x)) = − log
( 1

1 + e−yg(x)

)
= − log(σ(yg(x))),

where: σ(v) = 1
1+e−v is the sigmoid function. Note the link with maximum likeli-

hood estimation, where we define the model through

P(y = 1|x) = σ(g(x)) and P(y = −1|x) = σ(−g(x)) = 1− σ(g(x)).

The risk is then the negative conditional log-likelihood E[− log p(y|x)]. It is also
often called the cross-entropy loss.1 See more details about probabilistic methods
in Chapter 14.

1See https://en.wikipedia.org/wiki/Logistic_regression for details.

https://en.wikipedia.org/wiki/Logistic_regression
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• Hinge loss: Φ(u) = max(1−u, 0). With linear predictors, this leads to the support
vector machine, and yg(x) is often called the “margin” in this context. This loss
has a geometric interpretation (see Section 4.1.2 below).2

• Squared hinge loss: Φ(u) = max(1− u, 0)2. This is a smooth counterpart to the
regular hinge loss.

• Exponential loss: Φ(u) = exp(−u). This loss is often used within the boosting
framework presented in Section 10.3, in particular through the Adaboost algorithm
(Section 10.3.4).

This section analyzes precisely how replacing the 0-1 loss with convex surrogates
still leads to optimal predictions. This allows us to only focus on real-valued prediction
functions in the rest of this book. We will consider loss function ℓ(y, f(x)) that will be the
square loss (y− f(x))2 for regression, and any of the ones above for binary classification,
that is, Φ(yf(x)). We will consider alternatives and extensions in Chapter 13.

4.1.2 Geometric interpretation of the support vector machine (�)

Given its historical importance, this section provides a geometrical perspective on the
hinge loss to highlight why it leads to a learning architecture called the “support vector
machine” (SVM). We consider n observations (xi, yi) ∈ Rd × {−1, 1}, for i = 1, . . . , n.

Separable data (Vapnik and Chervonenkis, 1964). We first assume that the data
are separable by an affine hyperplane, that is, there exist w ∈ Rd and b ∈ R such that for
all i ∈ {1, . . . , n}, yi(w⊤xi + b) > 0. Among the infinitely many separating hyperplanes,
we aim to select the one for which the closest points from the dataset are the farthest.

w
⊤
x + b = 0

The distance from xi to the hyperplane {x ∈ Rd, w⊤x+ b = 0} is equal to |w⊤xi+b|
‖w‖2

,

and thus, this minimal distance is

min
i∈{1,...,n}

yi(w
⊤xi + b)

‖w‖2
,

2See also https://en.wikipedia.org/wiki/Support_vector_machine for details.

https://en.wikipedia.org/wiki/Support_vector_machine
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and we thus aim at maximizing this quantity. Because of the invariance by rescaling
(that is, we can multiply w and b by the same scalar constant without modifying the
affine separator), this problem is equivalent to minimizing ‖w‖2 with the constraint that
mini∈{1,...,n} yi(w

⊤xi + b) > 1, and thus to the following problem:

min
w∈Rd, b∈R

1

2
‖w‖22 such that ∀i ∈ {1, . . . , n}, yi(w⊤xi + b) > 1. (4.1)

General data (Cortes and Vapnik, 1995). When a hyperplane may not separate
data, then we can introduce so-called “slack variables” ξi > 0, i = 1, . . . , n, allowing
the constraint yi(w

⊤xi + b) > 1 to be violated, by introducing the modified constraint
yi(w

⊤xi + b) > 1− ξi instead. The overall amount of slack is then minimized, leading to
the following problem (with C > 0):

min
w∈Rd, b∈R, ξ∈Rn

1

2
‖w‖22+C

n∑

i=1

ξi such that ∀i ∈ {1, . . . , n}, yi(w⊤xi+b) > 1−ξi, ξi > 0.

(4.2)
With λ = 1

nC , the problem above is equivalent to

min
w∈Rd, b∈R

1

n

n∑

i=1

(1− yi(w⊤xi + b))+ +
λ

2
‖w‖22,

which is exactly an ℓ2-regularized empirical risk minimization with the hinge loss for the
prediction function f(x) = w⊤x+ b.

Lagrange dual and “support vectors” (�). The problem in Eq. (4.2) is a lin-
early constrained convex optimization problem and can be analyzed using Lagrangian
duality (see, e.g., Boyd and Vandenberghe, 2004). We consider non-negative Lagrange
multipliers αi and βi, i ∈ {1, . . . , n}, and the following Lagrangian:

L(w, b, ξ, α, β) =
1

2
‖w‖22 + C

n∑

i=1

ξi −
n∑

i=1

αi
(
yi(w

⊤xi + b)− 1 + ξi
)
−

n∑

i=1

βiξi.

Minimizing with respect to ξ ∈ Rn leads to the equality constraints that for all i ∈
{1, . . . , n}, αi + βi = C, while minimizing with respect to b leads to the constraint∑n

i=1 yiαi = 0. Finally, minimizing with respect to w can be done in closed form as
w =

∑n
i=1 αiyixi. Overall, this leads to the dual optimization problem:

max
α∈Rn

n∑

i=1

αi−
1

2

n∑

i,j=1

αiαjyiyjx
⊤
i xj such that

n∑

i=1

yiαi = 0 and ∀i ∈ {1, . . . , n}, αi ∈ [0, C].

(4.3)
As we will show in Chapter 7 for all ℓ2-regularized learning problems with linear predic-
tors, the optimization problem only depends on the dot-products x⊤i xj , i, j = 1, . . . , n.
The optimal predictor can be written as a linear combination of input data points xi,
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i = 1, . . . , n. Moreover, for optimal primal and dual variables, the “complementary slack-
ness” conditions for linear inequality constraints lead to αi

(
yi(w

⊤xi+b)−1+ξi
)

= 0 and
(C − αi)ξi = 0. This implies that αi = 0 as soon as yi(w

⊤xi + b) < 1, and thus many of
the αi’s are equal to zero, and the optimal predictor is a linear combination of only some
of the data points xi’s which are then called “support vectors”. The sparsity of the αi’s
can be leveraged computationally (Platt, 1998), but statistically, given that the number
of support vectors is proportional to the number n of observations (Steinwart, 2003), this
sparsity alone cannot directly justify the potential superiority of the hinge loss over other
convex surrogates.

4.1.3 Conditional Φ-risk and classification calibration (�)

From margin bounds to convergence to optimal predictions. All of the convex
surrogates presented in Section 4.1.1 are upper-bounds on the 0-1 loss or can be made
so with rescaling. This simple fact allows us to get a variety of “margin bounds” where
the 0-1 risk is upper-bounded by the Φ-risk. When the Φ-risk is equal to zero, which
can only occur for problems with deterministic labels, this leads to a guarantee that the
resulting classifier is the optimal one. In non-deterministic settings, however, the Φ-risk
will be strictly positive, and while the margin bound shows that the error is controlled,
it does not lead to guarantees to be close to the optimal predictions. In this section, we
study the tools dedicated to obtaining such guarantees.

If we denote η(x) = P(y = 1|x) ∈ [0, 1], then we have, E[y|x] = 2η(x)− 1, and, as seen
in Chapter 2:

R(g) = E[Φ0−1(yg(x))] = E[E[1sign(g(x)) 6=y|x]] > E[min(η(x), 1 − η(x))] = R∗,

and one best classifier is f∗(x) = sign(2η(x)−1) = sign(E[y|x]). Note that there are many
potential other functions g(x) than 2η(x)− 1 so that f∗(x) = sign(g(x)) is optimal. The
first (minor) reason is the arbitrary choice of prediction for η(x) = 1/2. The other reason
is that g(x) has to have the same sign as 2η(x) − 1, which leads to many possibilities
beyond 2η(x) − 1.

This section aims to ensure that the minimizers of the expected Φ-risk lead to optimal
predictions.

Square loss. Before moving on to general functions Φ, the square loss leads to simple
arguments. Indeed, as seen in Chapter 2, the function minimizing the expected Φ-risk
is then g(x) = E(y|x) = 2η(x) − 1, and taking its sign leads to the optimal prediction.
Thus, using the square loss for binary classification leads to the optimal prediction in the
population case.

General losses. To study the impact of using the Φ-risk, we first look at the conditional
risk for a given x (as for the 0-1 loss, the function g that will minimize the Φ-risk can be
determined by looking at each x separately).
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Definition 4.1 (conditional Φ-risk) Let g : X → R, we define the conditional Φ-risk
as

E[Φ(yg(x))|x] = η(x)Φ(g(x)) + (1− η(x))Φ(−g(x)) which we denote Cη(x)(g(x)),

with Cη(α) = ηΦ(α) + (1− η)Φ(−α).

The least we can expect from a convex surrogate is that in the population case, where
all x’s decouple, the optimal g(x) obtained by minimizing the conditional Φ-risk exactly
leads to the same prediction as the Bayes predictor (at least when this prediction is
unique). In other words, since the prediction is sign(g(x)), we want that for any η ∈ [0, 1]
(below R∗

+ is the set of strictly positive numbers, with a similar notation for R∗
−):

(positive optimal prediction) η > 1/2 ⇔ arg min
α∈R

Cη(α) ⊂ R
∗
+ (4.4)

(negative optimal prediction) η < 1/2 ⇔ arg min
α∈R

Cη(α) ⊂ R
∗
−. (4.5)

A function Φ that satisfies these two statements is said classification-calibrated, or simply
calibrated. It turns out that when Φ is convex, a simple sufficient and necessary condition
is available:

Proposition 4.1 (Bartlett et al., 2006) let Φ : R → R convex. The surrogate func-
tion Φ is classification-calibrated if and only if Φ is differentiable at 0 and Φ′(0) < 0.

Proof Since Φ is convex, so is Cη for any η ∈ [0, 1], and thus we simply consider left
and right derivatives at zero to obtain conditions about the location of minimizers, with
the two possibilities below (minimizer in R∗

+ if and only if the right derivative at zero is
strictly negative, and minimizer in R∗

− if and only if the left derivative at zero is strictly
positive):

α

Cη(α)

α

Cη(α)

arg min
α∈R

Cη(α) ⊂ R
∗
+ ⇔ (Cη)+(0)′ = ηΦ′

+(0)− (1− η)Φ′
−(0) < 0 (4.6)

arg min
α∈R

Cη(α) ⊂ R
∗
− ⇔ (Cη)−(0)′ = ηΦ′

−(0)− (1− η)Φ′
+(0) > 0. (4.7)

(a) Assume Φ is calibrated. By letting η tend to 1
2+ in Eq. (4.6), this leads to

(C1/2)+(0)′ = 1
2

[
Φ′

+(0) − Φ′
−(0)

]
6 0. Since Φ is convex, we always have the

inequality Φ′
+(0)−Φ′

−(0) > 0. Thus, the left and right derivatives are equal, which
implies that Φ is differentiable at 0. Then C′

η(0) = (2η−1)Φ′(0), and from Eq. (4.4)
and Eq. (4.6), we need to have Φ′(0) < 0.

(b) Assume Φ is differentiable at 0 and Φ′(0) < 0, then C′
η(0) = (2η−1)Φ′(0); Eq. (4.4)

and Eq. (4.5) are then direct consequences of Eq. (4.6) and Eq. (4.7).
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Note that the proposition above excludes the convex surrogate u 7→ (−u)+ = max{−u, 0},
which is not differentiable at zero, but that all examples from Section 4.1.1 are calibrated.

We now assume that Φ is classification-calibrated and convex, that is, Φ is convex, Φ
differentiable at 0, and Φ′(0) < 0.

4.1.4 Relationship between risk and Φ-risk (��)

Now that we know that for any x ∈ X, minimizing Cη(x)(g(x)) with respect to g(x)
leads to the optimal prediction through sign(g(x)), we would like to make sure that an
explicit control of the excess Φ-risk (which we aim to do with empirical risk minimization
using tools from later sections) leads to an explicit control of the original excess risk.
In other words, we are looking for an increasing function H : R+ → R+ such that
R(g)−R∗ ≤ H

[
RΦ(g)−R∗

Φ

]
, where R∗

Φ is the minimum possible Φ-risk. The function H
is often called the calibration function. This section shows that this calibration is the
identity for the hinge loss (support vector machine), while it can be the square root for
smooth convex surrogates such as the square and logistic losses.

△!
As opposed to the least-squares regression case, where the loss function used
for testing is directly the one used within empirical risk minimization, there are
two notions here: the testing error R(g), which is obtained after thresholding
at zero the function g, and the quantity RΦ(g), which is sometimes called the
testing loss.

We first start with a simple lemma expressing the excess risk, as well as an upper
bound (adapted from Theorem 2.2 from Devroye et al., 1996), that we will need for
comparison inequalities below:

Lemma 4.1 For any function g : X → R, and for a Bayes predictor g∗ : X → R, we
have:

R(g)− R(g∗) = E
[
1g(x)g∗(x)<0 · |2η(x)− 1|

]
.

Moreover, we have R(g)− R(g∗) 6 E
[
|2η(x) − 1− g(x)|

]
.

Proof We express the excess risk as:

R(g)− R(g∗) = E
[
E
[
1sign(g(x)) 6=y − 1sign(g∗)(x) 6=y

∣∣x
]]

by definition of the 0-1 loss.

For any given x ∈ X, we can look at the two possible cases for the signs of η(x)− 1/2 and
g(x) that lead to different predictions for g and g∗, namely (a) η(x) > 1/2 and g(x) < 0,
and (b) η(x) < 1/2 and g(x) > 0 (equality cases are irrelevant). For the first case the
expectation with respect to y is η(x)− (1− η(x)) = 2η(x)− 1, while for the second case,
we get 1− 2η(x). By combining these two cases into the condition g(x)g∗(x) < 0 and the
conditional expectation |2η(x) − 1|, we get the first result.

For the second result, we use the fact that if g(x)g∗(x) < 0, then, by splitting the cases
in two (the first one being η(x) > 1/2 and g(x) < 0, the second one being η(x) < 1/2
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and g(x) > 0), we get |2η(x)− 1| 6 |2η(x)− 1− g(x)|, and thus the second result.

Note that for any function b : R→ R that preserves the sign (that is b(R∗
+) ⊂ R∗

+ and
b(R∗

−) ⊂ R∗
−), we have R(g)− R(g∗) 6 E[|2η(x) − 1− b(g(x))|].

We see that the excess risk is the expectation of a quantity |2η(x)− 1)| · 1g(x)g∗(x)<0,
which is equal to 0 if the classification through g(x) is the same as the Bayes predictor
and equal to |2η(x)− 1| otherwise. The excess conditional Φ-risk is the quantity

η(x)Φ(g(x)) + (1− η(x))Φ(−g(x)) − inf
α

{
η(x)Φ(α) + (1 − η(x))Φ(−α)

}
,

which, as a function of g(x), is the deviation between a convex function (of g(x)) and its
minimum value. We simply need to relate it to the quantity |2η(x) − 1)| · 1g(x)g∗(x)<0

above for any x ∈ X and take expectations.

Zhang (2004a) and Bartlett et al. (2006) propose a general framework. We will only
consider the hinge loss and smooth losses for simplicity (they already cover all cases from
Section 4.1.1).

• For the hinge loss Φ(α) = (1 − α)+ = max{1 − α, 0}, we can easily compute the
minimizer of the conditional Φ-risk (which leads to the minimizer of the Φ-risk).
Indeed, we need to minimize η(x)(1−α)+ +(1−η(x))(1+α)+, which is a piecewise
affine function with kinks at −1 and 1, with a minimizer attained at α = 1 for
η(x) > 1/2 (see below), and symmetrically at α = −1 for η(x) < 1/2, with a
minimum conditional Φ-risk equal to 2 min{1 − η(x), η(x)}. The two excess risks
are plotted below for the hinge loss and the 0-1 loss, for η(x) > 1/2, showing
pictorially that the conditional excess Φ-risk is greater than the excess risk.

α

Cη(α)

1−1 α

Cη(α)

1−1

hinge loss
0-1 loss

η

1− η

α

excess conditional risks

1−1

This leads to the calibration function H(σ) = σ for the hinge loss.

Note that when the Bayes risk is zero (but not in other cases), that is, η(x) ∈ {0, 1}
almost surely, then using the fact that the hinge loss is an upper-bound on the 0-1
loss is enough to show that the excess risk is less than the excess Φ-risk (indeed,
the two optimal risks R∗ and R∗

Φ are equal to zero).

• For the square loss Φ(v) = (v − 1)2, we can use directly Lemma 4.1, to get, using
Jensen’s inequality

R(g)−R(g∗) 6 E
[
|2η(x)−1−g(x)|

]
6

(
E
[
|2η(x)−1−g(x)|2

])1/2
=

(
RΦ(g)−R∗

Φ

)1/2
,

which is exactly a calibration result which we extend below to smooth losses.

• We consider smooth losses of the form (up to additive and multiplicative constants)
Φ(v) = a(v)− v, where a(v) = 1

2v
2 for the quadratic loss, a(v) = 2 log(ev/2 + e−v/2)
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for the logistic loss. We assume that a is even, a(0) = 0, a is β-smooth (that is, as
defined in Chapter 5, a′′(v) 6 β for all v ∈ R). This implies3 that for all v ∈ R,
a(v)− αv − infw∈R

{
a(w)− αw

}
> 1

2β |α− a′(v)|2, leading to:

RΦ(g)− R∗
Φ = E

[
a(g(x))− (2η(x) − 1)g(x)− inf

w∈R

{
a(w) − (2η(x)− 1)w

}]

>
1

2β
E
[
|2η(x)− 1− a′(g(x))

∣∣2] by the property above,

>
1

2β

(
E
[
|2η(x)− 1− a′(g(x))

∣∣])2 by Jensen’s inequality,

>
1

2β

(
R(g)− R∗)2,

using Lemma 4.1, and the fact that a′ is sign-preserving (since a′(0) = 0). This
leads to the calibration function H(σ) =

√
2σ for the square loss and H(σ) = 2

√
σ

for the logistic loss.

Exercise 4.1 (�) Show that if a∗ is the Fenchel conjugate of a, then for any function
g : X→ R, we have a∗

(
R(g)− R∗) 6 RΦ(g)− R∗

Φ.

Exercise 4.2 (��) We consider a convex function Φ : R→ R which is differentiable at
zero with Φ′(0) < 0. Define G(z) = Φ(0)− infα∈R

{
1+z
2 Φ(α) + 1−z

2 Φ(−α)
}
. Show that G

is convex, G(0) = 0, and G
[
R(g) − R∗] 6 RΦ(g) − R∗

Φ for any function g : X → R.
Compute G for the exponential loss.

We can make the following observations:

• For the (non-smooth) hinge loss, the calibration function is identity, so if the excess
Φ-risk goes to zero at a specific rate, the excess risk goes to zero at the same rate.
In contrast, for smooth losses, the upper bound only ensures a (worse) rate with
a square root. Therefore, when going from the excess Φ-risk to the excess risk,
that is, after thresholding the function g at zero, the observed rates may be worse.
However, as shown in Chapter 5, smooth losses can be easier to optimize. There is,
thus, a trade-off between these two types of losses.

• Note that the noiseless case where η(x) ∈ {0, 1} (zero Bayes risk) leads to a stronger
calibration function, as well as a series of intermediate “low-noise” conditions (see
Bartlett et al., 2006, for details, as well as the exercise below).

Exercise 4.3 (�) Assume that |2η(x) − 1| > ε almost surely, for some ε ∈ (0, 1]. Show
that for any smooth convex classification calibrated function Φ : R → R of the form
Φ(v) = a(v)− v above, then we have R(g)−R(g∗) 6 ε

a∗(ε)

[
RΦ(g)−R∗

Φ

]
for any function

g : X→ R.

3Using the Fenchel conjugate a∗ : R → R which is (1/β)-strongly convex (see Chapter 5), we have:
a(v) − αv − infw∈R

{
a(w) − αw

}
= a(v) − αv + a∗(α) = a∗(α) − a∗(a′(v)) − (α − a′(v))(a∗)′(a′(v)) >

1
2β

|α− a′(v)|2, where a∗ is the Fenchel conjugate of a (Boyd and Vandenberghe, 2004).
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Figure 4.2: Optimal score functions for Gaussian class-conditional densities in one di-
mension. Left: conditional densities, right: optimal score functions for the square loss
(g∗(x) = 2η(x) − 1), the hinge loss (g∗(x) = sign(2η(x) − 1)) and the logistic loss
(g∗(x) = atanh(2η(x) − 1)).

Impact on approximation errors (�). For the same classification problem, several
convex surrogates can be used. While the Bayes classifier is always the same, that is,
f∗(x) = sign(2η(x)−1), the minimizer of the testing Φ-risk will be different. For example,
for the hinge loss, the minimizer g(x) is exactly sign(2η(x) − 1), while for losses of the
form like above Φ(v) = a(v)−v, we have a′(g(x)) = 2η(x)−1, and thus for the square loss
g(x) = 2η(x) − 1, while for the logistic loss, one can check that g(x) = atanh(2η(x) − 1)
(hyperbolic arc tangent). See examples in Figure 4.2, with X = R and Gaussian class
conditional densities.

The choice of surrogates will have an impact since to attain the minimal Φ-risk, differ-
ent assumptions are needed on the class of functions used for empirical risk minimization,
that is, sign(2η(x) − 1) has to be in the class of functions we use (for the hinge loss), or
2η(x)− 1 for the square loss, or atanh(2η(x)− 1) for the logistic loss.

Exercise 4.4 For the logistic loss, show that for data generated with class-conditional
densities of x|y = 1 and x|y = −1, which are Gaussians with the same covariance matrix,
the function g(x) minimizing the expected logistic loss is affine in x (this model is often
referred to as linear discriminant analysis). Provides an extension to the multi-class
setting.

Beyond calibration and loss consistency. The main property proved in this section
is R(g)− R∗ ≤ H

[
RΦ(g) − R∗

Φ

]
for any prediction function g : X→ R, for a function H

which tends to zero at zero. When the space of functions chosen for g is flexible enough
to reach the minimizer of RΦ, e.g., for kernel methods (Chapter 7) or neural networks
with sufficiently many neurons (Chapter 9), then g will reach the minimum risk R(g).
Such properties will also be available for structured prediction in Chapter 13.

However, it is common in practice, in particular in high dimensions, to use a restricted
class of models, in particular linear models, where reaching the minimum Φ-risk is not
possible anymore. In such setups, a more refined notion of consistency can be defined
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and studied, see, e.g., Long and Servedio (2013).

4.2 Risk minimization decomposition

We consider a family F of prediction functions f : X → R. Empirical risk minimization
aims to compute

f̂ ∈ arg min
f∈F

R̂(f) =
1

n

n∑

i=1

ℓ(yi, f(xi)),

with algorithms presented in Chapter 5. We consider loss functions that are defined for
real-valued outputs even for binary classification problems through the use of surrogates
presented in Section 4.1.1.

We can decompose the risk as follows into two terms:

R(f̂)− R∗ =
{
R(f̂)− inf

f ′∈F
R(f ′)

}
+
{

inf
f ′∈F

R(f ′)− R∗
}

= estimation error + approximation error.

A classic example is the situation where a subset of Rd parameterizes the family
of functions, that is, F = {fθ, θ ∈ Θ}, for Θ ⊂ Rd. This includes neural networks
(Chapter 9) and the simplest case of linear models of the form fθ(x) = θ⊤ϕ(x), for a
particular feature vector ϕ(x) (such as in Chapter 3). We will use linear models with
Lipschitz-continuous loss functions as a motivating example, most often with constraints
or penalties on the ℓ2-norm ‖θ‖2, but other norms can be considered as well (such as the
ℓ1-norm in Chapter 8).

We now turn separately to the approximation and estimation errors.

4.3 Approximation error

The approximation error inff∈F R(f) − R∗ is deterministic and depends on the under-
lying distribution, and the class F of functions: the larger the class, the smaller the
approximation error.

Bounding the approximation error requires assumptions on the Bayes predictor (some-
times also called the “target function”) f∗, and hence on the testing distribution.

In this section, we will focus on F = {fθ, θ ∈ Θ}, for Θ ⊂ Rd (we will consider infinite-
dimensions in Chapter 7), and convex Lipschitz-continuous losses, assuming that θ∗ is
the minimizer of R(fθ) over θ ∈ R

d, which is assumed to exist (typically, θ∗ does not
belong to Θ). This implies that the approximation error decomposes into

inf
θ∈Θ

R(fθ)− R∗ =
(

inf
θ∈Θ

R(fθ)− inf
θ∈Rd

R(fθ)
)

+
(

inf
θ∈Rd

R(fθ)− R∗
)
.

• The second term infθ∈Rd R(fθ)−R∗ is the incompressible approximation error com-
ing from the chosen set of models fθ. For flexible models such as kernel methods
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(Chapter 7) or neural networks (Chapter 9), this incompressible error can be made
as small as desired.

• The function θ 7→ R(fθ)− infθ∈Rd R(fθ) is a positive function on Rd, which can be
typically upper bounded by a specific norm (or its square) Ω(θ − θ∗), and we can
see the first term above inf

θ∈Θ
R(fθ)− inf

θ∈Rd
R(fθ) as a “distance” between θ∗ and Θ.

For example, if the loss which is considered is G-Lipschitz-continuous with respect
to the second variable (which is possible for regression or when using a convex
surrogate for binary classification as presented in Section 4.1), we have,

R(fθ)− R(fθ′) = E
[
ℓ(y, fθ(x)) − ℓ(y, fθ′(x))

]
6 GE

[
|fθ(x) − fθ′(x)|

]
,

and thus, this second part of the approximation error is upper bounded by G times
the distance between fθ∗ and F = {fθ, θ ∈ Θ}, for a particular pseudo-distance
d(θ, θ′) = E

[
|fθ(x) − fθ′(x)|

]
.

A classical example will be fθ(x) = θ⊤ϕ(x), and Θ = {θ ∈ Rd, ‖θ‖2 6 D}, leading
to the upper bound4

inf
θ∈Θ

R(fθ)− inf
θ∈Rd

R(fθ) 6 G inf
‖θ‖26D

E
[
‖ϕ(x)‖2

]
·‖θ−θ∗‖2 6 GE

[
‖ϕ(x)‖2

]
(‖θ∗‖2−D)+,

which is equal to zero if ‖θ∗‖2 6 D (well-specified model).

Exercise 4.5 Show that for Θ = {θ ∈ Rd, ‖θ‖1 6 D} (ℓ1-norm instead of the
ℓ2-norm), we have

inf
θ∈Θ

R(fθ)− inf
θ∈Rd

R(fθ) 6 GE
[
‖ϕ(x)‖∞

]
(‖θ∗‖1 −D)+.

Generalize to all norms.

4.4 Estimation error

We will consider general techniques and apply them as illustrations to linear models with
bounded ℓ2-norm by D and G-Lipschitz-losses. See further applications in Chapter 7 and
Chapter 9.

The estimation error is often decomposed using gF ∈ arg ming∈F R(g) the minimizer

of the expected risk for our class of models and f̂ ∈ arg minf∈F R̂(f) the minimizer of

4The identity inf‖θ‖26D ‖θ − θ∗‖2 = (‖θ∗‖2 − D)+ can be shown by looking for the optimal θ
proportional to θ∗ and optimizing with respect to the proportionality constant.
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the empirical risk:

R(f̂)− inf
f∈F

R(f) = R(f̂)−R(gF)

=
{
R(f̂)−R̂(f̂)

}
+
{
R̂(f̂)−R̂(gF)

}
+
{
R̂(gF)−R(gF)

}

6 sup
f∈F

{
R(f)−R̂(f)

}
+
{
R̂(f̂)−R̂(gF)

}
+ sup
f∈F

{
R̂(f)− R(f)

}

6 sup
f∈F

{
R(f)−R̂(f)

}
+0+sup

f∈F

{
R̂(f)−R(f)

}
by definition of f̂ . (4.8)

This is often further upper-bounded by 2 supf∈F

∣∣R̂(f)−R(f)
∣∣. We can make the following

observations:

• The key tool to remove the statistical dependence between R̂ and f̂ is to take a
uniform bound.

• When f̂ is not the global minimizer of R̂ but satisfies R̂(f̂) 6 inff∈F R̂(f) + ε, then
the optimization error ε has to be added to the bound above (see more details in
Chapter 5).

• The uniform deviation grows with the “size” of F, is a random quantity (because
of its dependence on data), and usually decays with n. See the examples below.

• A key issue is that we need a uniform control for all f ∈ F: with a single f , we could
apply any concentration inequality to the random variable ℓ(y, f(x)) to obtain a
bound in O(1/

√
n); however, when controlling the maximal deviations over many

functions f , there is always a small chance that one of these deviations get large.
We thus need explicit control of this phenomenon, which we now tackle by first
showing that we can focus on the expectation alone.

Since the estimation error is a random quantity, we need to bound it using probabilistic
tools. This can be done either in high probability or in expectation. In the next section,
we show how concentration inequalities allow us to focus on control in expectation.

4.4.1 Application of McDiarmid’s inequality

Let H(z1, . . . , zn) = supf∈F

{
R(f) − R̂(f)

}
, where the random variables zi = (xi, yi)

are independent and identically distributed, and R̂(f) = 1
n

∑n
i=1 ℓ(yi, f(xi)). We let ℓ∞

denote the maximal absolute value of the loss functions for all (x, y) in the support of the
data generating distribution and f ∈ F (for most loss functions, this is a consequence of
having bounded prediction functions).

For a single function f ∈ F, we can control the deviation between R̂(f), which is an
empirical average of bounded independent random variables, and its expectation R(f)
through Hoeffding’s inequality, presented in detail and proved in Section 1.2.1: for any
δ ∈ (0, 1), with probability greater than 1− δ,

R(f)− R̂(f) 6
ℓ∞
√

2√
n

√
log

1

δ
.
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Such a control can be extended beyond a single function f . When changing a single
zi ∈ X × Y into z′i ∈ X × Y, the deviation in H is almost surely at most 2

nℓ∞.5 Thus,
applying McDiarmid’s inequality (see Section 1.2.2 in Chapter 1), with probability greater
than 1− δ, we have:

H(z1, . . . , zn)− E[H(z1, . . . , zn)] 6
ℓ∞
√

2√
n

√
log

1

δ
.

We thus only need to bound the expectation of supf∈F

{
R(f)− R̂(f)

}
and of the similar

quantity supf∈F

{
R̂(f)−R(f)

}
(which will typically have the same bound), and add on

top of it ℓ∞
√
2√

n

√
log 2

δ , to ensure a high-probability bound.6

We now provide a series of bounds to bound these expectations, from simple to more
refined, culminating in Rademacher complexities in Section 4.5.

4.4.2 Easy case I: quadratic functions

We will show what happens with a quadratic loss function and an ℓ2-ball constraint. We
remember that in this case ℓ(y, θ⊤ϕ(x)) = (y − θ⊤ϕ(x))2. From that, we get

R̂(f)− R(f) = θ⊤
( 1

n

n∑

i=1

ϕ(xi)ϕ(xi)
⊤ − E

[
ϕ(x)ϕ(x)⊤

])
θ

−2θ⊤
( 1

n

n∑

i=1

yiϕ(xi)− E
[
yϕ(x)

])
+
( 1

n

n∑

i=1

y2i − E
[
y2
])
.

Hence, the supremum can be upper-bounded in closed form as

sup
‖θ‖26D

|R(f)− R̂(f)| 6 D2
∥∥∥ 1

n

n∑

i=1

ϕ(xi)ϕ(xi)
⊤ − E

[
ϕ(x)ϕ(x)⊤

]∥∥∥
op

+2D
∥∥∥ 1

n

n∑

i=1

yiϕ(xi)− E
[
yϕ(x)

]∥∥∥
2

+
∣∣∣ 1

n

n∑

i=1

y2i − E
[
y2
]∣∣∣,

where ‖M‖op is the operator norm of the matrix M defined as ‖M‖op = sup‖u‖2=1 ‖Mu‖2
(for which we have |u⊤Mu| 6 ‖M‖op‖u‖22 for any vector u).

Thus, to get a uniform bound, we simply need to upper-bound the three non-uniform
expectations of deviations, and therefore of order O(1/

√
n), and we get an overall uniform

deviation bound. This case gives the impression that it should be possible to get such a
rate in O(1/

√
n) for other types of losses than the quadratic loss. However, closed-form

calculations are impossible, so we must introduce new tools.

5For a fixed function f ∈ F, only one term in the average is changed, with absolute value less than
ℓ∞, thus a deviation of at most 2

n
ℓ∞. This can be extended to the supremum by a simple computation

left as an exercise.
6When combining two bounds in probability, the union bound leads to the term 2/δ instead of 1/δ,

see Section 1.2.1.
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Exercise 4.6 (�) Provide an explicit bound on sup‖θ‖26D |R(f)− R̂(f)| above, and com-
pare it to using Rademacher complexities in Section 4.5. The concentration of averages
of matrices from Section 1.2.6 can be used.

△! Note that from now on, in the sections below, unless otherwise stated, we do
not require the loss to be convex.

4.4.3 Easy case II: Finite number of models

We assume in this section that the loss functions are bounded between 0 and ℓ∞, using
the upper-bound 2 supf∈F

∣∣R̂(f)− R(f)
∣∣ on the estimation error, and the union bound:

P

(
R(f̂)− inf

f∈F
R(f) > t

)
6 P

(
2 sup
f∈F

∣∣R̂(f)− R(f)
∣∣ > t

)
6

∑

f∈F

P

(
2
∣∣R̂(f)− R(f)

∣∣ > t
)
.

We have, for f ∈ F fixed, R̂(f) = 1
n

∑n
i=1 ℓ(yi, f(xi)), and we can apply Hoeffding’s

inequality from Section 1.2.1 to bound each P
(
2
∣∣R̂(f)− R(f)

∣∣ > t
)
, leading to

P

(
R(f̂)− inf

f∈F
R(f) > t

)
6

∑

f∈F

2 exp(−2n(t/2)2/ℓ2∞) = 2|F| exp(−nt2/(2ℓ2∞)).

Thus, by setting δ = 2|F| exp(−nt2/2ℓ2∞), and finding the corresponding t, with proba-
bility greater than 1− δ, we get (using

√
a+ b 6

√
a+
√
b):

R(f̂)− inf
f∈F

R(f) 6 t =

√
2ℓ∞√
n

√
log

2|F|
δ

=

√
2ℓ∞√
n

√
log(2|F|) + log

1

δ

6
√

2ℓ∞

√
log(2|F|)

n
+

√
2ℓ∞√
n

√
log

1

δ
.

Exercise 4.7 (�) In terms of expectation, show that (using the proof of the max of
random variables from Section 1.2.4 in Chapter 2, which applies because bounded random
variables are sub-Gaussian):

E
[
R(f̂)− inf

f∈F
R(f)

]
6 2E

[
sup
f∈F

∣∣R̂(f)− R(f)
∣∣
]
6 ℓ∞

√
2 log(2|F|)

n
.

Thus, according to the bound, learning is possible when the logarithm log(|F|) of the
number of models is small compared to n. This is the first generic control of uniform
deviations.

△! Note that this is only an upper bound, and learning is possible with infinitely many
models (the most classical scenario). See below.
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4.4.4 Beyond finitely many models through covering numbers (�)

The simple idea behind covering numbers is to deal with function spaces with infinitely
many elements by approximating them through a finite number of elements. This is often
referred to as an “ε-net argument.”

For simplicity, we assume that the loss functions are regular, for example, that they
are G-Lipschitz-continuous with respect to their second argument.

Covering numbers. We assume there exists m = m(ε) elements f1, . . . , fm such that
for any f ∈ F, ∃i ∈ {1, . . . ,m} such that d(f, fi) 6 ε. The minimal possible number m(ε)
is the covering number of F at precision ε. See an example below in two dimensions of a
covering with Euclidean balls.

The covering number m(ε) is a non-increasing function of ε. Typically, m(ε) grows
with ε as a power ε−d when ε → 0, where d is the underlying dimension. Indeed, for
the ℓ∞-metric, if (in a certain parameterization) F is included in a ball of radius c in the
ℓ∞-ball of dimension d, it can be easily covered by (c/ε)d cubes of length 2ε. See below.

2ε

2c

Given that all norms are equivalent in dimension d, we get the same dependence in
ε−d of m(ε) for all bounded subsets of a finite-dimensional vector space, and thus logm(ε)
grows as d log 1

ε when ε tends to zero.

For some sets (e.g., all Lipschitz-continuous functions in d dimensions) logm(ε) grows
faster, for example as ε−d. See, e.g., Wainwright (2019).
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ε-net argument. Given a cover of F, for all f ∈ F, and with (fi)i∈{1,...,m(ε)} the
associated cover elements,

∣∣R̂(f)− R(f)
∣∣ 6

∣∣R̂(f)− R̂(fi)
∣∣ +

∣∣R̂(fi)− R(fi)
∣∣ +

∣∣R(fi)− R(f)
∣∣

6 2Gε+ sup
i∈{1,...,m(ε)}

∣∣R̂(fi)− R(fi)
∣∣.

This implies that using bounds on the expectation of the maximum (Section 1.2.4), which
apply because bounded random variables are sub-Gaussian (with the sub-Gaussianity
parameter proportional to the almost sure bound):

E

[
sup
f∈F

∣∣R̂(f)−R(f)
∣∣
]
62Gε+E

[
sup

i∈{1,...,m(ε)}

∣∣R̂(fi)−R(fi)
∣∣
]
6 2Gε+2ℓ∞

√
2 log(2m(ε)))

n
.

Therefore, if m(ε) ∼ ε−d, ignoring constants, we need to balance ε +
√
d log(1/ε)/n,

which leads to, with a choice of ε proportional to 1/
√
n, to a rate proportional to√

(d/n) log(n), which shows that the dependence in n is also close to 1/
√
n. Unfortu-

nately, unless refined computations of covering numbers or more advanced tools (such as
“chaining”) are used, this often leads to a non-optimal dependence on dimension and/or
number of observations (see, e.g., Wainwright, 2019, for examples of these refinements).

One powerful tool that allows sharp bounds at a reasonable cost is Rademacher com-
plexities (Boucheron et al., 2005) or Gaussian complexities (Bartlett and Mendelson,
2002). In this chapter, we will focus on Rademacher complexity.

4.5 Rademacher complexity

We consider n independent and identically distributed random variables z1, . . . , zn ∈ Z,
and a class H of functions from Z to R. In our context, the space of functions is related
to the learning problem as: z = (x, y), and H = {(x, y) 7→ ℓ(y, f(x)), f ∈ F}.

Our goal in this section is to provide an upper-bound on supf∈F

{
R(f)−R̂(f)

}
, which

happens to be equal to

sup
h∈H

{
E[h(z)]− 1

n

n∑

i=1

h(zi)
}
,

where E[h(z)] denotes the expectation with respect to a variable having the same distri-
bution as all zi’s.

We denote by D = {z1, . . . , zn} the data. We define the Rademacher complexity of
the class of functions H from Z to R:

Rn(H) = Eε,D

(
sup
h∈H

1

n

n∑

i=1

εih(zi)
)
, (4.9)

where ε ∈ Rn is a vector of independent Rademacher random variable (that is, taking val-
ues −1 or 1 with equal probabilities), which is also independent of D. It is a deterministic
quantity that only depends on n and H.
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In words, the Rademacher complexity is equal to the expectation of the maximal
dot-product between values of a function h at the observations zi and random labels.
It measures the “capacity” of the set of functions H. We will see later that it can
be computed (or simply upper-bounded) in many interesting cases, leading to powerful
bounds. The term “Rademacher average” is also commonly used.

△! Be careful with the two notations Rn(H) (Rademacher complexity) and R(f) (risk of
the prediction function f), not to be confused with the feature norm R often used with
linear models.

Exercise 4.8 Show the following properties of Rademacher complexities (see Bartlett
and Mendelson, 2002, for more details):

(a) If H ⊂ H′, then Rn(H) 6 Rn(H′).

(b) Rn(H + H′) = Rn(H) + Rn(H′).

(c) If α ∈ R, Rn(αH) = |α|Rn(H).

(d) If h0 : Z→ R, Rn(H + {h0}) = Rn(H).

(e) Rn(H) = Rn(convex hull(H)).

Exercise 4.9 (Massart’s lemma) If H = {h1, . . . , hm}, and almost surely we have the
bound 1

n

∑n
i=1 hj(xi)

2 6 R2 for all j ∈ {1, . . . ,m}, then the Rademacher complexity of

the class of functions H satisfies Rn(H) 6
√

2 logm
n R.

4.5.1 Symmetrization

First, we relate the Rademacher complexity to the uniform deviation through a gen-
eral “symmetrization” property, which shows that the Rademacher complexity directly
controls the expected uniform deviation.

Proposition 4.2 (symmetrization) Given the Rademacher complexity of H defined in
Eq. (4.9), we have:

E

[
sup
h∈H

(
1

n

n∑

i=1

h(zi)−E[h(z)]

)]
6 2Rn(H) , E

[
sup
h∈H

(
E[h(z)]− 1

n

n∑

i=1

h(zi)

)]
6 2Rn(H).

Proof (�) Let D′ = {z′1, . . . , z′n} be an independent copy of the data D = {z1, . . . , zn}.
Let (εi)i∈{1,...,n} be i.i.d. Rademacher random variables, which are also independent of

D and D′. Using that for all i in {1, . . . , n}, E[h(z′i)|D] = E[h(z)], we have:

E

[
sup
h∈H

(
E[h(z)]− 1

n

n∑

i=1

h(zi)

)]
= E

[
sup
h∈H

(
1

n

n∑

i=1

E[h(z′i)|D]− 1

n

n∑

i=1

h(zi)

)]

= E

[
sup
h∈H

(
1

n

n∑

i=1

E
[
h(z′i)− h(zi)

∣∣D
])]

,
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by definition of the independent copy D′. Then

E

[
sup
h∈H

(
E[h(z)]− 1

n

n∑

i=1

h(zi)

)]
6 E

[
E

(
sup
h∈H

(
1

n

n∑

i=1

[
h(z′i)− h(zi)

])∣∣∣∣D
)]
,

using that the supremum of the expectation is less than the expectation of the supremum.
Thus, by the towering law of expectation, we get

E

[
sup
h∈H

(
E[h(z)]− 1

n

n∑

i=1

h(zi)

)]
6 E

[
sup
h∈H

(
1

n

n∑

i=1

[
h(z′i)− h(zi)

])]
.

We can now use the symmetry of the laws of εi and h(z′i)− h(zi), to get:

E

[
sup
h∈H

(
E[h(z)]− 1

n

n∑

i=1

h(zi)

)]

6 E

[
sup
h∈H

(
1

n

n∑

i=1

εi
(
h(z′i)− h(zi)

))]

6 E

[
sup
h∈H

(
1

n

n∑

i=1

εi
(
h(zi)

))]
+ E

[
sup
h∈H

(
1

n

n∑

i=1

εi
(
− h(zi)

))]

= 2E

[
sup
h∈H

(
1

n

n∑

i=1

εih(zi)

)]
= 2Rn(H).

The reasoning is essentially identical for E
[
suph∈H

(
1
n

∑n
i=1 h(zi)− E[h(z)]

)]
6 2Rn(H).

The lemma above only bounds the expectation of the deviation between the empirical
average and the expectation by the Rademacher average. Together with concentration
inequalities from Section 1.2, we can obtain high-probability bounds, as done in Sec-
tion 4.4.1 with McDiarmid’s inequality.

Exercise 4.10 (�) The Gaussian complexity of a class of functions H from Z to R is de-
fined as Gn(H) = Eε,D

(
suph∈H

1
n

∑n
i=1 εih(zi)

)
, where ε ∈ Rn is a vector of independent

Gaussian variables with mean zero and variance one. Show that (a) Rn(H) 6
√

π
2 ·Gn(H)

and (b) Gn(H) 6
√

2 log(2n) · Rn(H).

Empirical Rademacher complexities (�). The Rademacher complexity Rn(H) de-
fined in Eq. (4.9) is a deterministic quantity that depends on the distribution of inputs.
When using bound in high-probability through MacDiarmid’s inequality in Section 4.4.1,
we obtained that if |h(z)| 6 ℓ∞ for all h ∈ H, then with probability greater than 1 − δ,
for all h ∈ H,

E[h(z)] 6
1

n

n∑

i=1

h(zi) + 2Rn(H) +
2ℓ∞√
n

√
log(1/δ).
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While we provide below estimates based on simple information on the input distribution,
an empirical version can be defined that does not take the expectation with respect to
the data, that is,

R̂n(H) = Eε

(
sup
h∈H

1

n

n∑

i=1

εih(zi)
)
, (4.10)

which is now a random quantity that is computable from the training data and the class
of functions. We can also use MacDiarmid’s inequality to bound the difference between
Rn(H) and R̂n(H), obtain a similar high-probability bound as above, that is,

E[h(z)] 6
1

n

n∑

i=1

h(zi) + 2R̂n(H) + 4
2ℓ∞√
n

√
log(2/δ),

which is now computable.

4.5.2 Lipschitz-continuous losses

A particularly appealing property in our context is the following property, sometimes
called the “contraction principle,” using a simple proof from Meir and Zhang (2003,
Lemma 5); see also Ledoux and Talagrand (1991, Section 4.5). See Prop. 4.4 below for
a similar result for the Rademacher complexity defined with absolute values (and then
with an extra factor of 2).

Proposition 4.3 (Contraction principle - Lipschitz-continuous functions) .
Given any functions b, ai : Θ → R (no assumption) and ϕi : R → R any 1-Lipschitz-
functions, for i = 1, . . . , n, we have, for ε ∈ Rn a vector of independent Rademacher
random variables:

Eε

[
sup
θ∈Θ

{
b(θ) +

n∑

i=1

εiϕi(ai(θ))
}]

6 Eε

[
sup
θ∈Θ

{
b(θ) +

n∑

i=1

εiai(θ)
}]
.

Proof (�) We consider a proof by induction on n. The case n = 0 is trivial, and we show

how to go from n > 0 to n+1. We thus consider Eε1,...,εn+1

[
sup
θ∈Θ

{
b(θ)+

n+1∑

i=1

εiϕi(ai(θ))
}]

and compute the expectation with respect to εn+1 explicitly, by considering the two
potential values with probability 1/2:

Eε1,...,εn+1

[
sup
θ∈Θ

{
b(θ) +

n+1∑

i=1

εiϕi(ai(θ))
}]

=
1

2
Eε1,...,εn

[
sup
θ∈Θ

{
b(θ)+

n∑

i=1

εiϕi(ai(θ)) + ϕn+1(an+1(θ))
}]

+
1

2
Eε1,...,εn

[
sup
θ∈Θ

{
b(θ)+

n∑

i=1

εiϕi(ai(θ)) − ϕn+1(an+1(θ))
}]
,
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which is equal to

Eε1,...,εn

[
sup
θ,θ′∈Θ

{ b(θ)+b(θ′)

2

+

n∑

i=1

εi
ϕi(ai(θ))+ϕi(ai(θ

′))

2
+
ϕn+1(an+1(θ))−ϕn+1(an+1(θ′))

2

}]
,

by assembling the terms. By taking the supremum over (θ, θ′) and (θ′, θ), we get

Eε1,...,εn

[
sup
θ,θ′∈Θ

{b(θ)+b(θ′)

2

+

n∑

i=1

εi
ϕi(ai(θ))+ϕi(ai(θ

′))

2
+
|ϕn+1(an+1(θ))−ϕn+1(an+1(θ′))|

2

}]

6 Eε1,...,εn

[
sup
θ,θ′∈Θ

{ b(θ) + b(θ′)

2
+

n∑

i=1

εi
ϕi(ai(θ)) + ϕi(ai(θ

′))

2
+
|an+1(θ)− an+1(θ′)|

2

}]
,

using Lipschitz-continuity. We can redo the same sequence of equalities with ϕn+1 being
the identity to obtain that the last expression above is equal to

Eε1,...,εnEεn+1

[
sup
θ∈Θ

{
b(θ) + εn+1an+1(θ) +

n∑

i=1

εiϕi(ai(θ))
}]

6 Eε1,...,εn,εn+1

[
sup
θ∈Θ

{
b(θ) + εn+1an+1(θ) +

n∑

i=1

εiai(θ)
}]

by the induction hypothesis,

which leads to the desired result.

We can apply the contraction principle above to supervised learning situations where
ui 7→ ℓ(yi, ui) is G-Lipschitz-continuous for all i almost surely (which is possible for
regression or when using a convex surrogate for binary classification as presented in
Section 4.1), leading to, by the contraction principle (applied conditioned on the data D

to b = 0, Θ = {(f(x1), . . . , f(xn)), f ∈ F} ⊂ Rn and ai(θ) = θi, ϕi(ui) = ℓ(yi, ui)):

Eε

[
sup
f∈F

1

n

n∑

i=1

εiℓ(yi, f(xi))
∣∣∣ D

]
6 G · Eε

[
sup
f∈F

1

n

n∑

i=1

εif(xi)
∣∣∣ D

]
,

which leads to

Rn(H) 6 G · Rn(F). (4.11)

Thus, the Rademacher complexity of the class of prediction functions controls the uniform
deviations of the empirical risk. We consider simple examples below but give before
without proof a contraction result that we will need in Section 9.2.3 (See proof by Ledoux
and Talagrand, 1991, Theorem 4.12).
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Proposition 4.4 (Contraction principle - absolute values) Given any functions
ai : Θ→ R (no assumption) and ϕi : R→ R any 1-Lipschitz-functions such that ϕi(0) =
0, for i = 1, . . . , n, we have, for ε ∈ Rn a vector of independent Rademacher random
variables:

Eε

[
sup
θ∈Θ

∣∣∣
n∑

i=1

εiϕi(ai(θ))
∣∣∣
]
6 2Eε

[
sup
θ∈Θ

∣∣∣
n∑

i=1

εiai(θ)
∣∣∣
]
.

4.5.3 Ball-constrained linear predictions

We now assume that F = {fθ(x) = θ⊤ϕ(x), Ω(θ) 6 D} where Ω is a norm on Rd. We
denote the design matrix by Φ ∈ Rn×d. We have (with expectations both with respect
to ε and the data):

Rn(F) = E

[
sup

Ω(θ)6D

{ 1

n

n∑

i=1

εiθ
⊤ϕ(xi)

}]
= E

[
sup

Ω(θ)6D

1

n
ε⊤Φθ

]

=
D

n
E

[
Ω∗(Φ⊤ε)

]
,

where Ω∗(u) = supΩ(θ)61 u
⊤θ is the dual norm of Ω. For example, when Ω is the ℓp-norm,

with p ∈ [1,∞], then Ω∗ is the ℓq-norm, where q is such that 1
p + 1

q = 1, e.g., ‖ ·‖∗2 = ‖ ·‖2,
‖ · ‖∗1 = ‖ · ‖∞, and ‖ · ‖∗∞ = ‖ · ‖1. For more details, see Boyd and Vandenberghe (2004).

Thus, computing Rademacher complexities is equivalent to computing expectations
of norms. When Ω = ‖ · ‖2, we get:

Rn(F) =
D

n
E
[
‖Φ⊤ε‖2

]
6
D

n

√
E [‖Φ⊤ε‖22] by Jensen’s inequality,

=
D

n

√
E [tr[Φ⊤εε⊤Φ]] =

D

n

√
E [tr[Φ⊤Φ]] using that E[εε⊤] = I,

=
D

n

√√√√
n∑

i=1

E(Φ⊤Φ)i =
D

n

√√√√
n∑

i=1

E‖ϕ(xi)‖22 =
D√
n

√
E‖ϕ(x)‖22. (4.12)

We thus obtain a dimension-independent Rademacher complexity that we can use in the
summary in Section 4.5.4 below.

Exercise 4.11 (ℓ1-norm) Assume that almost surely ‖ϕ(x)‖∞ 6 R. Show that the
Rademacher complexity Rn(F) for F = {fθ(x) = θ⊤ϕ(x), Ω(θ) 6 D} with Ω = ‖ · ‖1 is

upper-bounded by RD
√

2 log(2d)
n .

Exercise 4.12 (�) Let p > 1, and q such that 1/p + 1/q = 1. Assume that almost
surely ‖ϕ(x)‖q 6 R. Show that the Rademacher complexity Rn(F) for F = {fθ(x) =
θ⊤ϕ(x), Ω(θ) 6 D}, with Ω = ‖ · ‖p, is upper-bounded by RD√

n
1√
p−1

(hint: use Exer-

cise 1.19). Recover the result of Exercise 4.11 by taking p = 1 + 1
log(2d) .
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4.5.4 Putting things together (linear predictions)

We now consider a linear model based on some feature map ϕ : X → Rd and apply the
Rademacher results from the previous section to obtain a bound on the estimation error.
We then look at the approximation error.

Estimation error. With all the elements above, we can now propose the following
general result (where no convexity of the loss function is assumed) for the estimation
error. Note that there is no explicit dependence on the underlying dimension d, which
will be important in Chapter 7 where we consider infinite-dimensional feature spaces.

Proposition 4.5 (Estimation error) Assume a G-Lipschitz-continuous loss function,
linear prediction functions with F = {fθ(x) = θ⊤ϕ(x), ‖θ‖2 6 D}, where E‖ϕ(x)‖22 6 R2.

Let f̂ = fθ̂ ∈ F be the minimizer of the empirical risk, then:

E
[
R(fθ̂)

]
6 inf

‖θ‖26D
R(fθ) +

4GRD√
n

.

Proof Using Prop. 4.2 to relate the uniform deviation to the Rademacher average,
Eq. (4.11) to take care of the Lipschitz-continuous loss, and Eq. (4.12) to account for
the ℓ2-norm constraint, we get the desired result. Note that the factor of 4 comes from
symmetrization (Prop. 4.2, which leads to a factor of 2), and Eq. (4.8) in Section 4.4
(which leads to another one).

Approximation error. If we assume that there exists a minimizer θ∗ of R(fθ) over Rd,
the approximation error (of using a ball of θ rather than the whole Rd) is upper-bounded
by, following derivations from Section 4.3 (using Cauchy-Schwarz and Jensen’s inequali-
ties):

inf
‖θ‖26D

R(fθ)− R(fθ∗) 6 G inf
‖θ‖26D

E
[
|fθ(x)− fθ∗(x)|

]

= G inf
‖θ‖26D

E
[
|ϕ(x)⊤(θ − θ∗)|

]

6 G inf
‖θ‖26D

‖θ − θ∗‖2E
[
‖ϕ(x)‖2

]
6 GR inf

‖θ‖26D
‖θ − θ∗‖2.

This leads to

E
[
R(fθ̂)

]
− R(fθ∗) 6 GR inf

‖θ‖26D
‖θ − θ∗‖2 +

4GRD√
n

= GR(‖θ∗‖2 −D)+ +
4GRD√

n
.

We see that for D = ‖θ∗‖2, we obtain the bound 4GR‖θ∗‖2√
n

, but this setting requires

to know ‖θ∗‖2 which is not possible in practice. If D is too large, the estimation error
increases (overfitting). At the same time, if D is too small, the approximation error
can quickly kick in (with a value that does not go to zero when n tends to infinity),
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leading to underfitting. Note that on top of this approximation error, we need to add the
incompressible one due to the choice of a linear model.

Exercise 4.13 We consider a learning problem with 1-Lipschitz-continuous loss (with
respect to the second variable), with a function class fθ(x) = θ⊤ϕ(x), with ‖θ‖1 6 D, and
ϕ : X → Rd with ‖ϕ(x)‖∞ almost surely less than R. Given the expected risk R(fθ) and

the empirical risk R̂(fθ). Show that E
[
R(fθ̂)

]
6 inf‖θ‖16D R(fθ) + 4RD

√
2 log(2d)/n.

4.5.5 From constrained to regularized estimation (�)

In practice, it is preferable to penalize by the norm Ω(θ) instead of constraining. While
the respective sets of solutions when letting the respective constraint and regularization
parameters vary are the same, the main reason is that the hyperparameter is easier to
find, and the optimization is typically easier. For simplicity, we only consider the ℓ2-norm
in this section.

We now denote θ̂λ the minimizer of

R̂(fθ) +
λ

2
‖θ‖22. (4.13)

If the loss is always positive, then
λ

2
‖θ̂λ‖22 6 R̂(fθ̂λ) +

λ

2
‖θ̂λ‖22 6 R̂(f0), leading to a

bound ‖θ̂λ‖2 = O(1/
√
λ). Thus, with D = O(1/

√
λ) in the bound above, this leads to a

deviation of O(1/
√
λn), which is not optimal.

We now give an interesting stronger result using the strong convexity of the squared
ℓ2-norm (with now a convex loss), adapted from Sridharan et al. (2009); Bartlett et al.
(2005).

Proposition 4.6 (Fast rates for regularized objectives) Assume the loss function
is G-Lipschitz-continuous and convex, with linear prediction functions defined by fθ(x) =

θ⊤ϕ(x), for θ ∈ R
d, where ‖ϕ(x)‖2 6 R almost surely. Let θ̂λ ∈ R

d be the minimizer of
the regularized empirical risk in Eq. (4.13), then:

E
[
R(fθ̂λ)

]
6 inf
θ∈Rd

{
R(fθ) +

λ

2
‖θ‖22

}
+

32G2R2

λn
.

Proof (�) Let Rλ(fθ) = R(fθ) + λ
2 ‖θ‖22, with minimum value R∗

λ attained at θ∗λ. We
consider the convex set Cε = {θ ∈ Rd, Rλ(fθ)−R∗

λ 6 ε} for an ε > 0 to be chosen later.

If θ̂λ /∈ Cε, then, by convexity, there has to be an η in the segment [θ∗λ, θ̂λ] such that

Rλ(fη)− R∗
λ = Rλ(fη)− Rλ(fθ∗λ) = ε, and R̂λ(fη) 6 R̂λ(fθ∗λ).7 This implies that

Rλ(fη)− R̂λ(fη)+ R̂λ(fθ∗
λ
)−Rλ(fθ∗

λ
) = Rλ(fη)−Rλ(fθ∗

λ
)+ R̂λ(fθ∗

λ
)− R̂λ(fη) > ε. (4.14)

7This can be shown by taking η at the intersection of the segment [θ∗λ, θ̂λ] and the set ∂Cε (the
boundary of Cε).
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By strong convexity, we have, Rλ(fθ) − R∗
λ > λ

2 ‖θ − θ∗λ‖22 for all θ, and thus Cε is

included in the ℓ2-ball of center θ∗λ and radius
√

2ε/λ. Thus, from Eq. (4.14), we get

sup‖η−θ∗λ‖26
√

2ε/λ

{
Rλ(fη) − Rλ(fθ∗λ) −

[
R̂λ(fη) − R̂λ(fθ∗λ)

]}
> ε. Using Section 4.5.3,

we have

E

[
sup

‖η−θ∗λ‖26
√

2ε/λ

{
Rλ(fη)− Rλ(fθ∗λ)−

[
R̂λ(fη)− R̂λ(fθ∗λ)

]}]

6 2E
[

sup
‖η−θ∗λ‖26

√
2ε/λ

{ 1

n

n∑

i=1

εi[ℓ(yi, ϕ(xi)
⊤η)− ℓ(yi, ϕ(xi)

⊤θ∗λ)]
}]

6 2GR
√

2ε/λ.

Moreover, by McDiarmid’s inequality,

P

(
Rλ(fη)− R̂λ(fη) + R̂λ(fθ∗λ)− Rλ(fθ∗λ) > 2GR

√
2ε/λ+ t

2GR√
n

√
2ε/λ

√
2n

)
6 e−t

2

.

Thus, if ε > 2GR√
n

√
2ε/λ(1 + t√

2
), that is, if ε > 8G

2R2

λn (2 + t2), we have the high proba-

bility bound P
(
Rλ(fθ̂λ) − R∗

λ > ε
)
6 e−t

2

. This leads to, by integration, the final bound

E
[
Rλ(fθ̂λ)− R∗

λ

]
6 32G2R2

λn .

Note that we obtain a “fast rate” in O(R2/(λn)), which has a better dependence in n
but depends on λ, which can be very small in practice. One classical choice of λ that we
have seen in Chapter 3 also applies here, as λ ∝ GR√

n‖θ∗‖ , leading to the slow rate

E
[
R(fθ̂λ)

]
6 R(fθ∗) +O

(GR√
n
‖θ∗‖2

)
.

This result is similar to the one obtained in Chapter 3 for ridge (least-squares) regression,
but now for all Lipschitz-continuous losses. Note that the amount of regularization to
get the result above still depends on the unknown quantity ‖θ∗‖2. Below, we consider
the general case of penalization by a norm, where we will obtain similar results but with
a hyperparameter that does not depend on the unknown norm of ‖θ∗‖2.

Exercise 4.14 (��) Extend the result in Prop. 4.6 to features that are almost surely
bounded in ℓp-norm by R, and a regularizer ψ which is strongly-convex with respect to the
ℓp-norm, that is, such that for all θ, η ∈ Rd, ψ(θ) > ψ(η) + ψ′(η)⊤(θ − η) + µ

2 ‖θ − η‖2p,
where ψ′(η) is a subgradient of ψ at η.

Norm-penalized estimation. (��) While Proposition 4.6 considered squared ℓ2-
norm penalization and relied on specific properties of the ℓ2-norm, we now consider
penalization by any (non-squared) norm. That is, we now focus on the following objective
function:

R̂λ(θ) =
1

n

n∑

i=1

ℓ(yi, θ
⊤ϕ(xi)) + λΩ(θ), (4.15)
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for any norm Ω on Rd, with Ω∗ denoting the dual norm. The following proposition
provides an estimation rate in O(1/

√
n).

Proposition 4.7 (Norm-penalized estimation) Assume that the unregularized risk
R0(θ) = Ep(x,y)

[
ℓ(y, θ⊤ϕ(x))

]
is minimized at some θ∗ ∈ Rd, and that the function θ 7→

ℓ(y, θ⊤ϕ(x)) is GR-Lipschitz continuous in θ for Ω(θ) 6 2Ω(θ∗), and that Ω∗(ϕ(x)) 6

R almost surely. Denote ρΩ = supΩ∗(z1),...,Ω∗(zn)61 Eε

[
Ω∗

(
1√
n

∑n
i=1 εizi

)]
where ε ∈

{−1, 1}n is a vector of independent Rademacher random variables. For any δ ∈ (0, 1),

and for λ = GR√
n

(ρΩ + 4
√

2 log 1
δ ), with probability at least 1 − δ, any minimizer θ̂λ of

Eq. (4.15) satisfies:

R(θ̂λ) 6 R(θ∗) + Ω(θ∗)
3GR√
n

(
ρΩ + 4

√
2 log

1

δ

)
.

Proof We consider θ∗λ a minimizer of the population regularized risk Rλ(θ) = R(θ) +
λΩ(θ). It satisfies Ω(θ∗λ) 6 Ω(θ∗). Moreover, ρΩ is such that the Rademacher complexity

of the set of linear predictors such that Ω(θ) 6 D for D 6 2Ω(θ∗), is less than ρΩGRD√
n

(see Section 4.5.3). For example, for the ℓ2-norm, we have ρΩ = 1, while for the ℓ1-norm,
we have ρΩ =

√
2 log(2d). In terms of losses, for the logistic loss, we have G = 1, while

for the square loss (with a factor of 1/2) with a model y = ϕ(x)⊤θ∗ + ε with |ε| 6 σ
almost surely, we get G = σ + 3RΩ(θ∗).

Using McDiarmid’s inequality like in Section 4.4.1, by fixing any θ0 such that Ω(θ0) 6

D, with probability greater than 1−e−t2 , for all θ such that Ω(θ) 6 2Ω(θ∗), R(θ)−R(θ0) 6

R̂(θ)− R̂(θ0) + ρΩGRD√
n

+ t 2GRD
√
2√

n
.

We consider the set Cν,ε =
{
θ ∈ Rd, Ω(θ) 6 2Ω(θ∗λ), Rλ(θ) − Rλ(θ∗λ) 6 ε

}
. This is

a convex set, with boundary ∂Cν,ε =
{
θ ∈ Rd, Ω(θ) 6 2Ω(θ∗λ), Rλ(θ) − Rλ(θ∗λ) = ε

}

for a well-chosen ε (that is, the saturated constraint has to be one on the expected risk).
Indeed, if Ω(θ) = 2Ω(θ∗λ), then, using that the optimality conditions for θ∗λ implies that
Ω∗(R′(θ∗λ)) 6 λ:

Rλ(θ)− Rλ(θ∗λ) = R(θ) − R(θ∗λ) + λΩ(θ) − λΩ(θ∗λ) by definition,

> R′(θ∗λ)⊤(θ − θ∗λ) + λΩ(θ) − λΩ(θ∗λ) by convexity,

> −Ω∗(R′(θ∗λ)) · Ω(θ − θ∗λ) + λΩ(θ) − λΩ(θ∗λ)

by definition of the dual norm,

> −λΩ(θ − θ∗λ) + λΩ(θ) − λΩ(θ∗λ) by optimality of θ∗λ,

> 2λΩ(θ)− 2λΩ(θ∗λ) by the triangular inequality,

= 2λΩ(θ∗λ) since we have assumed Ω(θ) = 2Ω(θ∗λ).

Thus, we must impose that ε 6 2Ω(θ∗λ).

We now show that with high probability, we must have θ̂λ ∈ Cν,ε. If θ̂λ /∈ Cν,ε, since

θ∗λ ∈ Cν,ε, there has to be an element θ in the segment [θ∗λ, θ̂λ] which is in ∂Cν,ε. Since
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our risks are convex, we have R̂λ(θ) 6 max{R̂λ(θ∗λ), R̂λ(θ̂λ)} = R̂λ(θ∗λ). Thus

R̂(θ∗λ)− R̂(θ)−R(θ∗λ) +R(θ) = R̂λ(θ∗λ)− R̂λ(θ)−Rλ(θ∗λ) +Rλ(θ) > −Rλ(θ∗λ) +Rλ(θ) = ε.

Thus if we take, ε >
ρΩGRD√

n
+ t 2GRD

√
2√

n
, with D = 2Ω(θ∗λ), this can only happen with

probability less than exp(−t2). This leads to the constraint ε >
2GRΩ(θ∗λ)√

n
(ρΩ + 4t

√
2).

Thus, we can take λ = GR√
n

(ρΩ + 4t
√

2), and with probability greater than 1 − e−t2 we

have
Rλ(θ̂λ)− Rλ(θ∗λ) 6 2λΩ(θ∗λ) 6 2λΩ(θ∗).

Overall, denoting δ = e−t
2

, we get that with probability greater than 1− δ

R(θ̂λ) 6 R(θ∗) + Ω(θ∗)
3GR√
n

(
ρΩ + 4

√
2 log

1

δ

)
.

for λ = GR√
n

(ρΩ + 4
√

2 log 1
δ ). Note that we could get a result in expectation (left as an

exercise). The key here is that the value of λ does not depend on Ω(θ∗).

4.5.6 Extensions and improvements

In this chapter, we have focused on the simplest situations for empirical risk minimization
technique: regression or binary classification with i.i.d. data. Statistical learning theory
investigates many more complex cases along several lines:

• Slower rates than 1/
√
n: In this chapter, we primarily studied the estimation

error that decays as 1/
√
n. When balancing it with approximation error (by adapt-

ing norm constraints or regularization parameters), we will obtain slower rates, but
with weaker assumptions, in Chapter 7 (kernel methods) and Chapter 9 (neural
networks).

• Faster rates with discrete outputs: Further analysis can be carried through
when dealing with binary classification, or more generally discrete outputs, with
potentially different convergence rates for the convex surrogate and the original
loss function (i.e., after thresholding, where sometimes exponential rates can be
obtained). This is often done under so-called “low noise” conditions (see, e.g.,
Koltchinskii and Beznosova, 2005; Audibert and Tsybakov, 2007), as briefly exposed
in Section 4.1.4.

• Other generic learning theory frameworks: In this chapter, we have focused
primarily on the tools of Rademacher averages to obtain generic learning bounds.
Other frameworks lead to similar bounds but from different mathematical perspec-
tives. For example, PAC-Bayesian analysis (Catoni, 2007; Zhang, 2006) is described
in Section 14.4, while stability-based arguments (Bousquet and Elisseeff, 2002) lead
to similar results (see exercise below).
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Exercise 4.15 (�) We consider a learning algorithm and a distribution p on (x, y)
such that for all (x, y) ∈ X × Y, and two outputs f, f ′ : X → Y of the learn-
ing algorithm on datasets of n observations which differ by a single observation,
|ℓ(y, f(x)) − ℓ(y, f ′(x))| 6 βn, an assumption referred to as “uniform stability”.
Show that the expected deviation between the expected risk and the empirical risk of
the algorithm’s output is bounded by βn. With the same assumptions as in Prop. 4.6,

show that we have βn = 2G2R2

λn (see Bousquet and Elisseeff, 2002, for more details).

• Beyond independent observations: Much of statistical learning theory deals
with the simplifying assumptions that observations are i.i.d. from the same distri-
bution as the one used during the testing phase. This leads to the reasonably simple
results presented in this chapter. Several lines of work deal with situations when
data are not independent: among them, online learning presented in Chapter 11
shows that many classical algorithms are indeed robust to such dependence. An-
other avenue coming from statistics is to make some assumptions on the dependence
between observations, the most classical one being that the sequence of observations
(xi, yi)i>1 form a Markov chain, and thus satisfies “mixing conditions” (see, e.g.,
Mohri and Rostamizadeh, 2010).

• Mismatch between training and testing distributions: In many applica-
tion scenarios, the testing distribution may deviate from the training distribution:
the input distribution of x may be different while the conditional distribution of y
given x remains the same, a situation commonly referred to as “covariate shift”,
or the entire distribution of (x, y) may deviate (often referred to as the need for
“domain adaptation”). If no assumption is made on the proximity of these two
distributions, no guarantee can be obtained. Several ideas have been explored to
derive algorithms and/or guarantees, such as importance reweighting (Sugiyama
et al., 2007) or finding projections of the data with similar test and train distribu-
tions (Ganin et al., 2016).

• Semi-supervised learning: In many applications, many unlabelled observations
are available (that is, only with the input x being available). To leverage the
abundance of unlabelled data, some assumptions are typically made to show an
improvement of learning algorithms, such as the “cluster assumption” (points in the
same class tend to cluster together) or “low-density separation” (for classification,
decision boundaries tend to be in regions with few input observations). Many
algorithms exist, such as Laplacian regularization (see Cabannes et al., 2021, and
references therein) or discriminative clustering (Xu et al., 2004; Bach and Harchaoui,
2007).

4.6 Model selection (�)

Throughout this chapter, we have considered a family F of functions from X to Y and
have obtained generalization bounds for the minimizer f̂ ∈ F of the empirical risk R̂.
Assuming that the loss function ℓ(y, f(x)) is almost surely in [−ℓ∞, ℓ∞], we have obtained
in Section 4.4.1, together with Rademacher complexities in Section 4.5, a bound of the
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form

sup
f∈F

∣∣R(f)− R̂(f)
∣∣ 6 2Rn(H) +

ℓ∞√
n

√
2 log

2

δ

with probability greater than 1− δ, with the Rademacher complexity Rn(H) of the class
of functions H = {(x, y) 7→ ℓ(y, f(x)), f ∈ F}. From Eq. (4.8), this leads to, with
probability greater than 1− δ:

R(f̂) 6 R̂(f̂) + 2Rn(H) +
ℓ∞√
n

√
2 log

2

δ
, (4.16)

which is a data-dependent generalization bound in high probability. Moreover, at the end
of Section 4.5.1, we have seen that we could use the empirical Rademacher complexity,
which can be more easily computed (with fewer assumptions).

We now consider a finite (but potentially large) number m of models F1, . . . ,Fm,
together with their associated loss function spaces H1, . . . ,Hm and their generalization
bounds for the empirical risk minimizer based on Rademacher complexities. In this
section, we consider how to choose the best corresponding empirical risk minimizer among
f̂1, . . . , f̂m. We consider two approaches, either based on minimizing a penalized data-
generalization bound (also referred to as structural risk minimization) or simply using a
validation set.

In both cases, we consider a set of positive weights π1, . . . , πm that sum to one. We
can typically choose πi = 1/m for all i ∈ {1, . . . ,m}, we can also consider other choices,
in particular when m gets large and we are willing to put more prior weight on certain
models.

4.6.1 Structural risk minimization

We minimize the data-dependent generalization bounds plus an additional parameter to
take into account the prior on models, that is,

ı̂ = arg min
i∈{1,...,m}

{
R̂(f̂i) + 2Rn(Hi) +

2ℓ∞√
n

√
2 log(1/πi)

}
.

We can then use Eq. (4.16) for each of the m models, and with πiδ instead of δ, use the
union bound to get, with probability greater than 1− δ:

R(f̂ı̂) 6 min
i∈{1,...,m}

{
inf
fi∈Fi

R(fi) + 2Rn(Hi) +
2ℓ∞√
n

√
2 log(1/πi)

}
+

2ℓ∞√
n

√
2 log(2/δ).

For example, when π1 = · · · = πm = 1/m, we thus obtain that the model selection
procedure pays an extra price of

√
log(m)/n on top of the individual generalization

bounds.
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4.6.2 Selection based on validation set

We assume here that we have kept a proportion ρ ∈ (0, 1) of the training data as a
validation set (assuming for simplicity that ρn is an integer). We then have an empirical

risk based on (1 − ρ)n observations, we which now denote R̂
(training)
(1−ρ)n , and a validation

empirical risk denoted R̂
(validation)
ρn . Given the m minimizers f̂i of the training empirical

risks R̂
(training)
(1−ρ)n (fi) over fi ∈ Fi, for i ∈ {1, . . . ,m}, we choose ı̂ that minimizes the

following criterion

R̂(validation)
ρn (f̂i) +

2ℓ∞√
ρn

√
2 log(1/πi)

(for uniform weights π1 = · · · = πm = 1/m, this is simply the minimizer of the validation
risk). We can then simply use Hoeffding’s inequality and the union bound to get the
generalization bound:

R(f̂ı̂) 6 min
i∈{1,...,m}

R(f̂i) +
2ℓ∞√
ρn

√
2 log(1/πi) +

2ℓ∞√
ρn

√
2 log(2/δ),

which shows an extra price proportional to 1/
√
ρn, highlighting the fact that the vali-

dation set proportion ρ ∈ (0, 1) should not be too small. We can also obtain a result
similar to the one in the section above by using the same generalization bounds based on
Rademacher averages, that is,

R(f̂ı̂) 6 min
i∈{1,...,m}

{
inf
fi∈Fi

R(fi) + 2R(1−ρ)n(Hi) +
2ℓ∞√
ρn

√
2 log(1/πi)

}

+
2ℓ∞√
ρn

√
2 log(2/δ) +

2ℓ∞√
(1− ρ)n

√
2 log(2/δ).

Suppose ρ is bounded away from 0 and 1. In that case, we obtain a slightly worse bound
than when using data-dependent bounds, with the difference that the performance of
validation methods is, in practice, much better than the bound guarantees (while data-
dependent bound optimization may not exhibit such adaptivity).

4.7 Relationship with asymptotic statistics (�)

In this last section, we will relate the non-asymptotic analysis presented in this chapter to
results from asymptotic statistics (see the comprehensive book by Van der Vaart (2000),
which presents this large literature).

To make this concrete, we assume that we have a set of models F = {fθ : X→ R, θ ∈
R
d} parameterized by a vector θ ∈ R

d. We consider the empirical risk and expected risks
(with a slight overloading of notations):

R(θ) = R(fθ) = E
[
ℓ(y, fθ(x))

]
and R̂(θ) = R̂(fθ) =

1

n

n∑

i=1

ℓ(yi, fθ(xi)).
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We assume that we have a loss function ℓ : Y × R → R (such as for regression or any of
the convex surrogates for classification), which is sufficiently differentiable with respect
to the second variable, so that results from Van der Vaart (2000) apply (e.g., Theorems
5.21 or 5.41 on “M-estimation”, which cover empirical risk minimization). In this section,
we will only report their final result and provide an intuitive justification.

We assume that θ∗ ∈ Rd is a minimizer of R(θ) and that the Hessian R′′(θ∗) is positive-
definite (it has to be positive semi-definite as θ∗ is a minimizer, we assume invertibility
on top of it).

We let θ̂n denote a minimizer of R̂. Since R′(θ∗) = 0, and R̂′(θ∗) = 1
n

∑n
i=1

∂ℓ(y,fθ(x))
∂θ ,

by the law of large numbers, R̂′(θ∗) tends to R′(θ∗) = 0 (e.g., almost surely), and we

should thus expect that θ̂n (which is defined through R̂′(θ̂n) = 0) tends to θ∗ (all these
statements can be made rigorous, see Van der Vaart (2000)).

Then, a Taylor expansion of R̂′ around θ∗ leads to

0 = R̂′(θ̂n) ≈ R̂′(θ∗) + R̂′′(θ∗)(θ̂n − θ∗).

By the law or large numbers, R̂′′(θ∗) tends to H(θ∗) = R′′(θ∗) when n tends to infinity,
and thus we obtain:

θ̂n − θ∗ ≈ R′′(θ∗)−1R̂′(θ∗) = H(θ∗)−1R̂′(θ∗).

Moreover, R̂′(θ∗) is the average of n i.i.d. random vectors, and by the central limit
theorem, it is asymptotically Gaussian with mean zero and covariance matrix equal to
1
nG(θ∗) = 1

nE
[(∂ℓ(y,fθ(x))

∂θ

)(∂ℓ(y,fθ(x))
∂θ

)⊤∣∣
θ=θ∗

]
. Therefore, we (intuitively) obtain that θ̂n

is asymptotically Gaussian with mean θ∗ and covariance matrix 1
nH(θ∗)−1G(θ∗)H(θ∗)−1.

This asymptotic result has the nice consequence that:

E
[
‖θ̂n − θ∗‖22

]
∼ 1

n
tr
[
H(θ∗)−1G(θ∗)H(θ∗)−1

]

E
[
R(θ̂n)− R(θ∗)

]
∼ 1

n
tr
[
H(θ∗)−1G(θ∗)

]
.

For example, for well-specified linear regression (like analyzed in Chapter 3), it turns out
that we have G(θ∗) = σ2H(θ∗) (proof left as an exercise), and thus we recover the rate
σ2d/n.

Benefits of the asymptotic analysis. As shown above, the asymptotic analysis gives
a precise picture of the asymptotic behavior of empirical risk minimization. Much more
than simply providing an upper-bound on E

[
R(θ̂n)−R(θ∗)

]
, it gives also a limit Gaussian

distribution for θ̂n, and a fast rate as O(1/n). Moreover, because we have limits, we can
compare limits between various learning algorithms and claim (asymptotic) superiority
or inferiority of one method over another, which comparing upper bounds cannot achieve.

Thus, an asymptotic analysis does not suffer from the traditional looseness of non-
asymptotic bounds that rely on crude approximations, and, while they are valid even for
small n and often exhibit the desired behavior of n, are overly pessimistic.
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Pitfalls of the asymptotic analysis. The main drawback of this analysis is that it
is... asymptotic. That is, n tends to infinity, and it is impossible to tell without further
analysis when the asymptotic behavior will kick in. Sometimes, this is for reasonably
small n, sometimes for large n. Further asymptotic expansions can be carried out, but
small sample effects are hard to characterize, particularly when the underlying dimension
d gets large.

Bridging the gap. Studying the validity of the asymptotic expansion described above
can be done in several ways. See, e.g., Ostrovskii and Bach (2021a) (and references
therein) for finite-dimensional models, and Chapter 7 for results similar to σ2d/n when
the dimension of the feature space gets infinite.

4.8 Summary

In this chapter, we have first introduced convex surrogates for binary classification prob-
lems to avoid performing optimization on functions with values in {−1, 1}. This comes
with generalization guarantees that will be extended in Chapter 13 to multiple categories
and, more generally, to structured output spaces.

The chapter’s core was dedicated to introducing Rademacher complexities, which are
flexible tools to study estimation errors in many settings. This led to simple bounds for
linear models and ball constraints, which will be extended to infinite-dimensional settings
in Chapter 7 and neural networks in Chapter 9. Other frameworks exist to obtain similar
bounds, such as the PAC-Bayes framework presented in Section 14.4, often leading to
tighter bounds.

While the present chapter was dedicated to the statistical analysis of empirical risk
minimizers, the next chapter is dedicated to optimization algorithms traditionally dedi-
cated to finding approximate such minimizers, with notably stochastic gradient descent,
which also naturally exhibits good generalization performance.
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Chapter 5

Optimization for machine
learning

Chapter summary
– Gradient descent: the workhorse first-order algorithm for optimization, which con-

verges exponentially fast for well-conditioned convex problems.
– Stochastic gradient descent (SGD): the workhorse first-order algorithm for large-

scale machine learning, which converges as 1/t or 1/
√
t, where t is the number of

iterations.
– Generalization bounds through stochastic gradient descent: with only a single pass

on the data, there is no risk of overfitting, and we obtain generalization bounds for
unseen data.

– Variance reduction: when minimizing strongly-convex finite sums, this class of
algorithms is exponentially convergent while having a small iteration complexity.

In this chapter, we present optimization algorithms based on gradient descent and
analyze their performance, mainly on convex objective functions. We will consider generic
algorithms that have applications beyond machine learning and algorithms dedicated to
machine learning (such as stochastic gradient methods). See Nesterov (2018); Bubeck
(2015) for further details.

5.1 Optimization in machine learning

In supervised machine learning, we are given n i.i.d. samples (xi, yi), i = 1, . . . , n of a
couple of random variables (x, y) on X× Y and the goal is to find a predictor f : X→ R
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with a small risk on unseen data

R(f) := E[ℓ(y, f(x))],

where ℓ : Y × R → R is a loss function. This loss is typically convex in the second
argument (e.g., square loss or logistic loss, see Chapter 4), which is often considered a
weak assumption.

In the empirical risk minimization approach described in Chapter 4, we choose the
predictor by minimizing the empirical risk over a parameterized set of predictors, poten-
tially with regularization. For a parameterization {fθ}θ∈Rd and a regularizer Ω : Rd → R

(e.g., Ω(θ) = ‖θ‖22 or Ω(θ) = ‖θ‖1), this requires to minimize the function

F (θ) :=
1

n

n∑

i=1

ℓ(yi, fθ(xi)) + Ω(θ). (5.1)

In optimization, the function F : Rd → R is called the objective function.

In general, the minimizer has no closed form. Even when it has one (e.g., linear
predictor and square loss in Chapter 3), it could be expensive to compute for large
problems. We thus resort to iterative algorithms.

Accuracy of iterative algorithms. Solving optimization problems with high accu-
racy is computationally expensive, and the goal is not to minimize the training objective
but the error on unseen data.

Then, which accuracy is satisfying in machine learning? If the algorithm returns θ̂,
and we define θ∗ ∈ arg minθ R(fθ), we have the risk decomposition from Section 2.3.2
(where the approximation error due to the use of a specific set of models fθ, θ ∈ Θ is
ignored):

R(fθ̂)− inf
θ∈Rd

R(fθ) =
{
R(fθ̂)− R̂(fθ̂)

}
︸ ︷︷ ︸

estimation error

+
{
R̂(fθ̂)− R̂(fθ∗)

}
︸ ︷︷ ︸
optimization error

+
{
R̂(fθ∗)− R(fθ∗)

}
︸ ︷︷ ︸

estimation error

,

where we added the second term, the optimization error, which will always be negative
if θ̂ is the minimizer of R̂, and is usually upper-bounded by R̂(fθ̂) − infθ∈Θ R̂(fθ). It
is thus sufficient to reach an optimization accuracy of the order of the estimation error
(usually of the order O(1/

√
n) or O(1/n), see Chapter 3 and Chapter 4). Note that

for machine learning, the optimization error defined above corresponds to characterizing
approximate solutions through function values. While this will be one central focal point
in this chapter, we will consider other performance measures.

In this chapter, we will first look at minimization without focusing on machine learning
problems (Section 5.2), with both smooth and non-smooth objective functions. We will
then look at stochastic gradient descent in Section 5.4, which can be used to obtain bounds
on both the training and testing risks. We then briefly present adaptive methods in
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Section 5.4.2, bias-variance decompositions for least-squares in Section 5.4.3, and variance
reduction in Section 5.4.4.

△!
The notation θ∗ may mean different things in optimization and machine learn-
ing: minimizer of the regularized empirical risk, or minimizer of the expected
risk. For the sake of clarity, we will use the notation η∗ for the minimizer of
empirical (potentially regularized) risk, that is, when we look at optimization
problems, and θ∗ for the minimizer of the expected risk, that is, when we look
at statistical problems.

△! Sometimes, we mention solving a problem with high precision. This corre-
sponds to a low optimization error.

In this chapter, we primarily focus on gradient descent methods for convex optimiza-
tion problems, which, in learning terms, correspond to predictors that are linear in their
parameter (an assumption that will be relaxed in subsequent chapters) and a convex loss
function such as the logistic loss or the square loss. We first consider so-called “batch
methods” that do not use the finite sum structure of the objective function in Eq. (5.1)
before moving on to the stochastic gradient method that does take into account this
structure for enhanced computational efficiency.

5.2 Gradient descent

Suppose we want to solve, for a function F : Rd → R, the optimization problem

min
θ∈Rd

F (θ).

We assume that we are given access to certain “oracles”: the k-th-order oracle corresponds
to the access to: θ 7→ (F (θ), F ′(θ), . . . , F (k)(θ)), that is all partial derivatives up to
order k. All algorithms will call these oracles; thus, their computational complexity will
depend directly on the complexity of this oracle. For example, for least-squares with a
design matrix in Rn×d, computing a single gradient of the empirical risk costs O(nd).

In this section, for the algorithms and proofs, we do not assume that the function F is
the regularized empirical risk, but this situation will be our motivating example through-
out. We will study the following first-order algorithm.

Algorithm 5.1 (Gradient descent (GD)) Pick θ0 ∈ Rd and for t > 1, let

θt = θt−1 − γtF ′(θt−1), (5.2)

for a well (potentially adaptively) chosen step-size sequence (γt)t>1.

For machine learning problems where the empirical risk is minimized, computing the
gradient F ′(θt−1) requires computing all gradients of θ 7→ ℓ(yi, fθ(xi)), and averaging
them.
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There are many ways to choose the step-size γt, either constant, decaying, or through
a line search.1 In practice, using some form of line search is usually advantageous and
is implemented in most applications. See Armijo (1966) and Goldstein (1962) for con-
vergence guarantees with typical procedures. In this chapter, since we want to focus on
the simplest algorithms and proofs, we will focus on step-sizes that depend explicitly
on problem constants and sometimes on the iteration number. When gradients are not
available, gradient estimates may be built from function values (see, e.g., Nesterov and
Spokoiny, 2017, and Chapter 11). Note that the differences between convergence rates
with and without line searches are generally not significant (see Exercise 5.2 below for
quadratic functions). At the same time, practical behavior is significantly improved with
line search.

We start with the simplest example, namely convex quadratic functions, where the
most important concepts already appear.

5.2.1 Simplest analysis: ordinary least-squares

We start with a case where the analysis is explicit: ordinary least squares (see Chapter 3
for the statistical analysis). Let Φ ∈ Rn×d be the design matrix and y ∈ Rn the vector of
responses. Least-squares estimation amounts to finding a minimizer η∗ of

F (θ) =
1

2n
‖Φθ − y‖22. (5.3)

△! A factor of 1
2 has been added compared to Chapter 3 to get nicer looking gradients.

The gradient of F is F ′(θ) = 1
nΦ⊤(Φθ − y) = 1

nΦ⊤Φθ − 1
nΦ⊤y. Thus, denoting

H = 1
nΦ⊤Φ ∈ Rd×d the Hessian matrix (equal for all θ, denoted Σ̂ in Chapter 3),

minimizers η∗ are characterized by

Hη∗ =
1

n
Φ⊤y.

Since 1
nΦ⊤y ∈ Rd is in the column space of H , there is always a minimizer, but unless H

is invertible, the minimizer is not unique. But all minimizers η∗ have the same function
value F (η∗), and we have, from a simple exact Taylor expansion (and using F ′(η∗) = 0):

F (θ) − F (η∗) = F ′(η∗)⊤(θ − η∗) +
1

2
(θ − η∗)⊤H(θ − η∗) =

1

2
(θ − η∗)⊤H(θ − η∗).

Two quantities will be important in the following developments: the largest eigenvalue L
and the smallest eigenvalue µ of the Hessian matrix H . As a consequence of the convexity
of the objective, we have 0 6 µ 6 L. We denote by κ = L

µ > 1 the condition number.

Note that for least-squares, µ is the lowest eigenvalue of the non-centered empirical
covariance matrix and that it is zero as soon as d > n, and, in most practical cases, very
small. When adding a regularizer λ

2 ‖θ‖22 (like in ridge regression), then µ > λ (but then λ
typically decreases with n, often between 1√

n
and 1

n , see Chapter 7 for more details).

1See, e.g., https://en.wikipedia.org/wiki/Line_search.

https://en.wikipedia.org/wiki/Line_search
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Closed-form expression. Gradient descent iterates with fixed step-size γt = γ can be
computed in closed form:

θt = θt−1 − γF ′(θt−1) = θt−1 − γ
[ 1

n
Φ⊤(Φθt−1 − y)

]
= θt−1 − γH(θt−1 − η∗),

leading to

θt − η∗ = θt−1 − η∗ − γH(θt−1 − η∗) = (I − γH)(θt−1 − η∗),

that is, we have a linear recursion, and we can unroll the recursion and now write

θt − η∗ = (I − γH)t(θ0 − η∗).

We can now look at various measures of performance:

‖θt − η∗‖22 = (θ0 − η∗)⊤(I − γH)2t(θ0 − η∗)

F (θt)− F (η∗) =
1

2
(θ0 − η∗)⊤(I − γH)2tH(θ0 − η∗).

The two optimization performance measures differ by the presence of the Hessian ma-
trix H in the measure based on function values.

Convergence in distance to the minimizer. If we hope to have ‖θt − η∗‖22 going
to zero, we need to have a single minimizer η∗, and thus H has to be invertible, that
is µ > 0. Given the form of ‖θt − η∗‖22, we simply need to bound the eigenvalues of
(I − γH)2t (since for a positive semi-definite matrix M , u⊤Mu 6 λmax(M)‖u‖22 for all
vectors u).

The eigenvalues of (I − γH)2t are exactly (1 − γλ)2t for λ an eigenvalue of H (all of
them are in the interval [µ, L]). Thus all the eigenvalues of (I − γH)2t have magnitude
less than (

max
λ∈[µ,L]

|1− γλ|
)2t

.

We can then have several strategies for choosing the step-size γ:

• Optimal choice: one can check that minimizing maxλ∈[µ,L] |1−γλ| is done by setting

γ = 2/(µ+L), with an optimal value equal to κ−1
κ+1 = 1− 2

κ+1 ∈ (0, 1). See geometric
“proof” below.

γ1/L 1/µ

max{|1− γL|, |1− γµ|}

|1− γµ|

|1− γL|

2/(L+ µ)
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• Choice independent of µ: with the simpler (slightly smaller) choice γ = 1/L, we
get maxλ∈[µ,L] |1 − γλ| = (1 − µ

L ) = (1 − 1
κ ), which is only slightly larger than the

value for the optimal choice. Note that all step-sizes strictly less than 2/L will lead
to exponential convergence.

For example, with the weaker choice γ = 1/L, we get:

‖θt − η∗‖22 6

(
1− 1

κ

)2t

‖θ0 − η∗‖22,

which is often referred to as exponential, geometric, or linear convergence.

△! The denomination “linear” is sometimes confusing and corresponds to a number of
significant digits that grows linearly with the number of iterations.

We can further bound
(
1 − 1

κ

)2t
6 exp(−1/κ)2t = exp(−2t/κ), and thus the char-

acteristic time of convergence is of order κ. We will often make the calculation ε =
exp(−2t/κ) ⇔ t = κ

2 log 1
ε . Thus, for a relative reduction of squared distance to the

optimum of ε, we need at most t = κ
2 log 1

ε iterations.

For κ = +∞, the result remains true but simply says that for all minimizers ‖θt −
η∗‖22 6 ‖θ0 − η∗‖22, which is a good sign (the algorithm does not move away from min-
imizers) but not indicative of any form of convergence. We will need to use a different
criterion.

Convergence in function values. Using the same step-size γ = 1/L as above, and
using the upper-bound on eigenvalues of (I − γH)2t (which are all less than (1− 1/κ)2t),
we get

F (θt)− F (η∗) 6
(

1− 1

κ

)2t

[F (θ0)− F (η∗)] 6 exp(−2t/κ)[F (θ0)− F (η∗)]. (5.4)

When κ < ∞ (that is, µ > 0), we also obtain linear convergence for this criterion, but
when κ =∞, this is non-informative.

To obtain a convergence rate, we will need to bound the eigenvalues of (I − γH)2tH
instead of (I − γH)2t. The key difference is that for eigenvalues λ of H which are close
to zero, (1 − γλ)2t does not have a strong contracting effect, but they count less as they
are multiplied by λ in the bound.

We can make this trade-off precise, for γ 6 1/L, as
∣∣λ(1 − γλ)2t

∣∣ 6 λ exp(−γλ)2t = λ exp(−2tγλ)

=
1

2tγ
2tγλ exp(−2tγλ) 6

1

2tγ
sup
α>0

α exp(−α) =
1

2etγ
6

1

4tγ
,

where we used that αe−α is maximized over R+ at α = 1 (as the derivative is e−α(1−α)).

This leads to, with the largest step-size γ = 1/L:

F (θt)− F (η∗) 6
1

8tγ
‖θ0 − η∗‖22 =

L

8t
‖θ0 − η∗‖22. (5.5)
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We can make the following observations:

• △! The convergence results in exp(−2t/κ) in Eq. (5.4) for invertible Hessians or
1/t in general in Eq. (5.5) are only upper-bounds! It is good to understand the gap
between the bounds and the actual performance, as this is possible for quadratic
objective functions.

For the exponentially convergent case, the lowest eigenvalue µ dictates the rate for
all eigenvalues. So, if the eigenvalues are well-spread (or if only one eigenvalue is
very small), there can be quite a strong discrepancy between the bound and the
actual behavior.

For the rate in 1/t, the bound in eigenvalues is tight when tγλ is of order 1, namely
when λ is of order 1/(tγ). Thus, to see an O(1/t) convergence rate in practice, we
need to have sufficiently many small eigenvalues. As t grows, we often go to a local
linear convergence phase where the smallest non-zero eigenvalue of H kicks in. See
the simulations and the exercise below.

Exercise 5.1 Let µ+ be the smallest non-zero eigenvalue of H. Show that gradient
descent is linearly convergent with the contracting rate (1− µ+/L).

• From errors to numbers of iterations: as already mentioned, the bound in Eq. (5.4)
says that after t steps, the reduction in suboptimality in function values is multiplied
by ε = exp(−2t/κ). This can be reinterpretated as a need of t = κ

2 log 1
ε iterations

to reach a relative error ε.

• Can an algorithm having the same access to oracles of F do better?

If we have access to matrix-vector products with the matrix Φ, then the conjugate
gradient algorithm can be used with convergence rates in exp(−t/√κ) and 1/t2

(see Golub and Loan, 1996). With only access to gradients of F (which is a bit
weaker), Nesterov acceleration (see Section 5.2.5 below) will also lead to the same
convergence rates, which are then optimal (for a sense to be defined later in this
chapter and in more details in Chapter 15).

• Can we extend beyond least-squares? The convergence results above will generalize
to convex functions (see Section 5.2.2) but with less direct proofs. Non-convex
objectives are discussed in Section 5.2.6.

Experiments. We consider two quadratic optimization problems in dimension d =
1000, with two different decays of eigenvalues (λk)k∈{1,...,d} for the Hessian matrix H ,
one as 1/k (in blue below) and one in 1/k2 (in red below), and for which we plot in
Figure 5.1 the performance for function values, both in semi-logarithm plots (left) and
full-logarithm plots (right). For slow decays (blue), we see the linear convergence kicking
in (line in the left “semi-log” plot), while for fast decays (red), we obtain a polynomial
rate that is not exponential (line in the right “log-log” plot). Note that the bound in
Eq. (5.5) is very pessimistic and does not lead to the correct power of t (which, as can
be checked as an exercise, should be 1/

√
t for t small enough compared to d).
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Figure 5.1: Gradient descent on two least-squares problems with step-size γ = 1/L, and
two different sets of eigenvalues (λk)k∈{1,...,d} of the Hessian, together with the bound
from Eq. (5.5). Left: semi-logarithmic scale. Right: joint logarithmic scale.

Exercise 5.2 (exact line search �) For the quadratic objective in Eq. (5.3), show that

the optimal step-size γt in Eq. (5.2) is equal to γt =
‖F ′(θt−1)‖2

2

||F ′(θt−1)⊤HF ′(θt−1)
. Show that when

F is strongly-convex, F (θt) − F (η∗) 6
(
κ−1
κ+1

)2[
F (θt−1) − F (η∗)

]
, and compare the rate

with constant step-size gradient descent.

Hint: prove and use the Kantorovich inequality sup‖z‖2=1 z
⊤Hzz⊤H−1z = (L+µ)2

4µL .

5.2.2 Convex functions and their properties

We now wish to analyze GD (and later its stochastic version SGD) in a broader setting.
We will always assume convexity, although these algorithms are also used (and can some-
times also be analyzed) when this assumption does not hold (see Section 5.2.6). In other
words, convexity is most often used for analysis rather than to define the algorithm.

Definition 5.1 (Convex function) A differentiable function F : Rd → R is said con-
vex if and only if

F (η) > F (θ) + F ′(θ)⊤(η − θ), ∀η, θ ∈ R
d. (5.6)

This corresponds to the function F being above its tangent at θ, as illustrated below.

η

F (η)

θ

F (θ) + F ′(θ)⊤(η − θ)
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If f is twice-differentiable, this is equivalent to requiring F ′′(x) < 0, ∀x ∈ Rd; here <

denotes the semidefinite partial ordering—also called the Löwner order—characterized
by A < B ⇔ A−B is positive semidefinite, see Boyd and Vandenberghe (2004); Bhatia
(2009).

An important consequence that we will use a lot in this chapter is, for all θ ∈ Rd (and
using η = η∗)

F (η∗) > F (θ) + F ′(θ)⊤(η∗ − θ) ⇔ F (θ) − F (η∗) 6 F ′(θ)⊤(θ − η∗), (5.7)

that is, the distance to optimum in function values is upper bounded by a function of the
gradient (note that it provides proof that F ′(θ) = 0 implies that θ is a global minimizer
of F ).

A more general definition of convexity (without gradients) is that ∀θ, η ∈ Rd and
α ∈ [0, 1],

F (αη + (1− α)θ) 6 αF (η) + (1− α)F (θ),

which generalizes to the usual Jensen’s inequality below.2

Proposition 5.1 (Jensen’s inequality) If F : Rd → R is convex and µ is a probability
measure on Rd, then

F
(∫

Rd

θdµ(θ)
)
6

∫

Rd

F (θ)dµ(θ). (5.8)

In words: “the image of the average is smaller than the average of the images”.

△! When using Jensen’s inequality, be extra careful in the direction of the inequality.

Exercise 5.3 Assume that the function F : Rd → R is strictly convex, that is, ∀θ, η ∈ Rd

such that θ 6= η, and α ∈ (0, 1), F (αη + (1 − α)θ) < αF (η) + (1 − α)F (θ). Show that
there is equality in Jensen’s inequality in Eq. (5.8) if and only if the random variable θ
is almost surely constant.

The class of convex functions satisfies the following stability properties (proofs left
as an exercise); for more properties on convex functions, see Boyd and Vandenberghe
(2004):

• If (Fj)j∈{1,...,m} are convex and (αj)j∈{1,...,m} are nonnegative, then
∑m

j=1 αjFj
and maxj∈{1,...,m} Fj are convex.

• If F : Rd → R is convex and A : Rd
′ → Rd is linear then F ◦A : Rd

′ → R is convex.

• If F : Rd1+d2 → R is convex, so is the function x1 7→ infx2∈Rd2 F (x1, x2) on Rd1 .

Classical machine learning example. Problems of the form in Eq. (5.1) are convex
if the loss ℓ is convex in the second variable, fθ(x) is linear in θ, and Ω is convex.

2See several applications in https://francisbach.com/jensen-inequality/.

https://francisbach.com/jensen-inequality/
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Global optimality from local information. It is also worth emphasizing the follow-
ing property (immediate from the definition).

Proposition 5.2 Assume that F : Rd → R is convex and differentiable. Then η∗ ∈ Rd

is a global minimizer of F if and only if

F ′(η∗) = 0.

This implies that for convex functions, we only need to look for stationary points.
This is not the case for potentially non-convex functions. For example, in one dimension
below, all red points are stationary points that are not the global minimum (which is in
green).

θ

The situation is even more complex in higher dimensions. Note that without convexity
assumptions, optimization of Lipschitz-continuous functions will need exponential time
in dimension in the worst case (see Section 15.2.2).

Exercise 5.4 Identify all stationary points in the function in R2 depicted below.
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5.2.3 Analysis of GD for strongly convex and smooth functions

The analysis of optimization algorithms requires assumptions on the objective functions,
like the ones introduced in this section. From these assumptions, additional properties are
derived (typically inequalities), and then most convergence proofs look for a “Lyapunov
function” (sometimes called a “potential function”) that goes down along the iterations.
More precisely, if V : Rd → R+ is such that V (θt) 6 (1 − α)V (θt−1), then V (θt) 6

(1 − α)tV (θ0) and we obtain linear convergence. The art is then to find the appropriate
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Lyapunov function; for slower convergence rates, weaker forms of decrease for Lyapunov
functions will be considered.

We first consider an assumption allowing exponential convergence rates.

Definition 5.2 (Strong convexity) A differentiable function F is said µ-strongly con-
vex, with µ > 0, if and only if

F (η) > F (θ) + F ′(θ)⊤(η − θ) +
µ

2
‖η − θ‖22, ∀η, θ ∈ R

d. (5.9)

The function F is strongly-convex if and only if the function F is strictly above its tangent
and the difference is at least quadratic in the distance to the point where the two coincide.
This notably allows us to define quadratic lower bounds on F . See below.

η

F (η)

θ

F (θ) + F ′(θ)⊤(η − θ)

F (θ) + F ′(θ)⊤(η − θ) + µ
2‖η − θ‖22

For twice differentiable functions, this is equivalent to F ′′(θ) < µI for all θ, that is, all
eigenvalues of F ′′(θ) are greater than or equal to µ (see Nesterov, 2018), but non-smooth
functions can be strongly-convex, since, as a consequence of the exercise below, we can
add µ

2 ‖·‖22 to any (potentially non-smooth) convex function to make it µ-strongly-convex.

Exercise 5.5 Show that F : Rd → R is µ-strongly-convex if and only if the function
θ 7→ F (θ)− µ

2 ‖θ‖22 is convex.

Exercise 5.6 Show that if F : Rd → R is µ-strongly-convex, then it has a unique mini-
mizer.

Exercise 5.7 Show that the differentiable function F : Rd → R is µ-strongly convex if
and only if for all θ, η ∈ Rd, ‖F ′(θ)− F ′(η)‖2 > µ‖θ − η‖2.

Strong convexity through regularization. When an objective function F is convex,
then F + µ

2 ‖ · ‖22 is µ-strongly convex (proof left as an exercise). In practice, in machine
learning problems with linear models, so that the empirical risk is convex, strong convexity
most often comes from the regularizer (and thus µ decays with n), leading to condition
numbers that grow with n (typically in

√
n or n). While the regularizer was added in

Section 3.6 to improve generalization, we see in this section that it also leads to faster
optimization algorithms, showing that statistical and optimization performances are often
aligned.
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 Lojasiewicz inequality. Strong convexity implies that F admits a unique minimizer η∗,
which is characterized by F ′(η∗) = 0. Moreover, this guarantees that the gradient is large
when a point is far from optimal (in function values):

Lemma 5.1 ( Lojasiewicz inequality) If F is differentiable and µ-strongly convex with
unique minimizer η∗, then we have:

‖F ′(θ)‖22 > 2µ(F (θ)− F (η∗)), ∀θ ∈ R
d.

Proof The right-hand side in Definition 5.2 is strongly convex in η and minimized with
η̃ = θ − 1

µF
′(θ). Plugging this value into the bound and taking η = η∗ in the left-hand

side, we get F (η∗) > F (θ)− 1
µ‖F ′(θ)‖22+ 1

2µ‖F ′(θ)‖22 = F (θ)− 1
2µ‖F ′(θ)‖22. The conclusion

follows by rearranging.

Note that while strong convexity is a sufficient condition for the  Lojasiewicz inequality,
it is unnecessary (see, e.g., Section 12.1.1).

To obtain exponential convergence rates, strong-convexity is typically associated with
smoothness, which we now define.

Definition 5.3 (Smoothness) A differentiable function F is said L-smooth if and only
if

|F (η)− F (θ)− F ′(θ)⊤(η − θ)| 6 L

2
‖θ − η‖2, ∀θ, η ∈ R

d. (5.10)

This is equivalent to F having a L-Lipschitz-continuous gradient with respect to the ℓ2-
norm, i.e., ‖F ′(θ)− F ′(η)‖22 6 L2‖θ− η‖22, ∀θ, η ∈ Rd. For twice differentiable functions,
this is equivalent to −LI 4 F ′′(θ) 4 LI (see Nesterov, 2018). If the function is also
µ-strongly convex, then all eigenvalues of all Hessians are in the interval [µ, L].

Note that when F is convex and L-smooth, we have a quadratic upper bound that is
tight at any given point (strong convexity implies the corresponding lower bound with L
replaced by µ). See below.

η

F (η)

θ

F (θ) + F ′(θ)⊤(η − θ)

F (θ) + F ′(θ)⊤(η − θ) + L
2‖η − θ‖22

When a function is both smooth and strongly convex, we denote by κ = L/µ > 1 its
condition number (we recover the definition of Section 5.2.1 for quadratic functions). See
examples below of level sets of functions with varying condition numbers: the condition
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number impacts the shapes of the level sets.

(small κ = L/µ) (large κ = L/µ)

The performance of gradient descent will depend on this condition number (see steep-
est descent below, that is, gradient descent with exact line search): with a small condition
number (left), we get fast convergence, while for a large condition number (right), we get
oscillations.

Exercise 5.8 (�) We consider the angle α between the descent direction −F ′(θ) and the

deviation to optimum θ − η∗, defined through cosα = F ′(θ)⊤(θ−η∗)
‖F ′(θ)‖·‖θ−η∗‖2

. Show that for a

µ-strongly-convex, L-smooth quadratic function, cosα >
2
√
µL

L+µ (hint: prove and use the

Kantorovich inequality sup‖z‖2=1 z
⊤Hzz⊤H−1z = (L+µ)2

4µL ). (��) Show that the same

result holds without the assumption that F is quadratic (hint: use the co-coercivity of the
function θ 7→ F (θ) − µ

2 ‖θ‖22, from Prop. 5.4).

(small κ = L/µ) (large κ = L/µ)

For machine learning problems, such as linear predictions and smooth losses (square
or logistic), we have smooth problems. If we use a squared ℓ2-regularizer µ

2 ‖ · ‖22 , we
get a µ-strongly convex problem. Note that when using regularization, as explained in
Chapters 3 and 4, the value of µ decays with n, typically between 1/n and 1/

√
n, leading

to condition numbers between
√
n and n.
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In this context, gradient descent on the empirical risk is often called a “batch” tech-
nique because all the data points are accessed at every iteration.

In the next proposition, we show that gradient descent converges exponentially for
such smooth and strongly-convex problems, thus extending the result for quadratic func-
tions from Section 5.2.1.

Proposition 5.3 (Convergence of GD for smooth strongly-convex functions) aa
Assume that F is L-smooth and µ-strongly convex. Choosing γt = 1/L, the iterates (θt)t>0

of GD on F satisfy

F (θt)− F (η∗) 6
(

1− 1

κ

)t
(F (θ0)− F (η∗)) 6 exp(−t/κ)(F (θ0)− F (η∗)).

Proof By the smoothness inequality in Eq. (5.10) applied to θt−1 and θt−1−F ′(θt−1)/L,
we have the following descent property, with γt = 1/L,

F (θt) = F
(
θt−1−F ′(θt−1)/L

)
6 F (θt−1)+F ′(θt−1)⊤(−F ′(θt−1)/L)+

L

2
‖−F ′(θt−1)/L‖22

= F (θt−1)− 1

L
‖F ′(θt−1)‖22 +

1

2L
‖F ′(θt−1)‖22.

Rearranging, we get

F (θt)− F (η∗) 6 F (θt−1)− F (η∗)− 1

2L
‖F ′(θt−1)‖22.

Using Lemma 5.1, it follows

F (θt)− F (η∗) 6 (1− µ/L)(F (θt−1)− F (η∗)) 6 exp(−µ/L)(F (θt−1)− F (η∗)).

We conclude by recursion and with the definition κ = L/µ.

We can make the following observations:

• As mentioned before, we necessarily have µ 6 L; the ratio κ := L/µ is called the
condition number. It is a property of the objective function, which may be hard or
easy to minimize. It is not invariant by linear changes of variables θ → Aθ, where A
is an invertible linear map; finding a good A to reduce the condition number is the
main principle behind “preconditioning” techniques (see, e.g., Nocedal and Wright,
1999 for more details and the end of Section 5.2.5).

• If we only assume that the function is smooth and convex (not strongly convex),
then GD with constant step-size γ = 1/L also converges when a minimizer exists,
but at a slower rate in O(1/t). See Section 5.2.4 below.

• Choosing the step-size only requires an upper bound L on the smoothness constant
(if it is over-estimated, the convergence rate only degrades slightly).
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• Writing the update (θt − θt−1)/γ = −F ′(θt−1), this algorithm can be seen, under
the smoothness assumption, as the discretization of the gradient flow

d

dt
η(t) = −F ′(η),

where η(tγ) ≈ θt. This analogy can lead to several insights and proof ideas (see,
e.g., Scieur et al., 2017).

• For this class of functions (convex and smooth), first-order methods exist that
achieve a faster rate, showing that gradient descent is not optimal. However, these
improved algorithms also have drawbacks (lack of adaptivity, instability to noise,
etc.). See below.

Exercise 5.9 Compute all constants for ℓ2-regularized logistic regression and for ridge
regression.

Adaptivity. Note that gradient descent is adaptive to strong convexity: the exact same
algorithm applies to both strongly convex and convex cases, and the two bounds apply.
This adaptivity is important in practice, as often, locally around the global optimum,
the strong convexity constant converges to the minimal eigenvalue of the Hessian at η∗,
which can be significantly larger than µ (the global constant).

Fenchel conjugate (�). Given some convex function F : Rd → R, an important
tool is the Fenchel-Legendre conjugate F ∗ defined as F ∗(α) = supθ∈Rd α⊤θ − F (θ). In
particular, when we allow extended-value functions (which may take the value +∞), we
can represent functions defined on a convex domain, and we have, under simple regularity
conditions, that the conjugate of the conjugate of a convex function is the function itself.
Thus, any convex function can be seen as a maximum of affine functions. Moreover,
suppose the original function is not convex. In that case, the bi-conjugate is often referred
to as the convex envelope and is the tightest convex lower-bound (this is often used
when designing convex relaxations of non-convex problems). Moreover, using Fenchel
conjugation is crucial when dealing with convex duality (which we will not cover in this
chapter). See Boyd and Vandenberghe (2004) for details.

Exercise 5.10 Let F be an L-smooth convex function on Rd. Show that its Fenchel
conjugate is (1/L)-strongly convex.

Exercise 5.11 Let F be an L-smooth convex function on Rd, and F ∗ its Fenchel conju-
gate. Show that for any θ, z ∈ Rd, we have F (θ)+F ∗(z)−z⊤θ > 0, if and only if z = F ′(θ)
(this is the Fenchel-Young inequality). (�) Show in addition that F (θ) + F ∗(z)− z⊤θ >
1
2L‖z − F ′(θ)‖22.

5.2.4 Analysis of GD for convex and smooth functions (�)

To obtain the 1/t convergence rate without strong-convexity (like we got in Section 5.2.1
for quadratic functions), we will need an extra property of convex, smooth functions,
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sometimes called “co-coercivity”. This is an instance of inequalities we need to use to
circumvent the lack of closed form for iterations.

Proposition 5.4 (co-coercivity) If F is a convex L-smooth function on Rd, then for
all θ, η ∈ Rd, we have:

1

L
‖F ′(θ)− F ′(η)‖22 6

[
F ′(θ)− F ′(η)

]⊤
(θ − η).

Moreover, we have: F (θ) > F (η) + F ′(η)⊤(θ − η) + 1
2L‖F ′(θ)− F ′(η)‖2.

Proof We will show the second inequality, which implies the first one, by applying it
twice with η and θ swapped and summing them.

• Define H(θ) = F (θ) − θ⊤F ′(η). The function H : Rd → R is convex with global
minimum at η, since H ′(θ) = F ′(θ) − F ′(η), which is equal to zero for θ = η. The
function H is also L-smooth.

• From the definition of smoothness, we getH(θ− 1
LH

′(θ)) 6 H(θ)+H ′(θ)⊤(− 1
LH

′(θ))

+L
2 ‖− 1

LH
′(θ)‖22, which is less than H(θ)− 1

2L‖H ′(θ)‖22.

• This leads to F (η) − η⊤F ′(η) = H(η) 6 H(θ− 1
LH

′(θ)) 6 H(θ) − 1
2L‖H ′(θ)‖22 =

F (θ) − θ⊤F ′(η) − 1
2L‖F ′(θ) − F ′(η)‖22, which leads to the desired inequality by

shuffling terms.

We can now state the following convergence result for gradient descent with potentially
no strong-convexity. Up to constants, we obtain the same rate for quadratic functions in
Eq. (5.5).

Proposition 5.5 (Convergence of GD for smooth convex functions) Assume that
F is L-smooth and convex, with a global minimizer η∗. Choosing γt = 1/L, the iterates
(θt)t>0 of GD on F satisfy, for t > 0,

F (θt)− F (η∗) 6
L

2t
‖θ0 − η∗‖22.

Proof Following Bansal and Gupta (2019), the Lyapunov function that we will choose
is

Vt(θt) = t[F (θt)− F (η∗)] +
L

2
‖θt − η∗‖22,

and our goal is to show that it decays along iterations (the requirement is thus weaker
than for exponential convergence). We can split the difference in Lyapunov functions into
three terms (each with its own color):

Vt(θt)− Vt−1(θt−1)

= t[F (θt)− F (θt−1)] + F (θt−1)− F (η∗) +
L

2
‖θt − η∗‖22 −

L

2
‖θt−1 − η∗‖22.

To bound it:
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• We use F (θt)−F (θt−1) 6 − 1
2L‖F ′(θt−1)‖22 like in the proof of Prop. 5.3.

• We use F (θt−1)− F (η∗) 6 F ′(θt−1)⊤(θt−1 − η∗), as a consequence of convexity
(function above the tangent at θt−1), as in Eq. (5.7).

• We use L
2 ‖θt − η∗‖22 − L

2 ‖θt−1 − η∗‖22 = −Lγ(θt−1 − η∗)⊤F ′(θt−1) + Lγ2

2 ‖F ′(θt−1)‖22
by expanding the square.

This leads to, with the step-size γ = 1/L:

Vt(θt)− Vt−1(θt−1) 6 t
[
− 1

2L
‖F ′(θt−1)‖22

]
+ F ′(θt−1)⊤(θt−1 − η∗)

−Lγ(θt−1 − η∗)⊤F ′(θt−1) +
Lγ2

2
‖F ′(θt−1)‖22

= − t− 1

2L
‖F ′(θt−1)‖22 6 0,

which leads to t[F (θt) − F (η∗)] 6 Vt(θt) 6 V0(θ0) = L
2 ‖θ0 − η∗‖22,, and thus the desired

bound F (θt)− F (η∗) 6 L
2t‖θ0 − η∗‖22.

The proof above is on purpose mysterious: the choice of Lyapunov function seems
arbitrary at first, but all inequalities lead to nice cancellations. These proofs are some-
times hard to design. For an interesting line of work trying to automate these proofs, see
https://francisbach.com/computer-aided-analyses/.

Exercise 5.12 (alternative convergence proof �) We consider an L-smooth convex func-
tion with a global minimizer η∗, and gradient descent with step-size γt = 1/L.

(a) Show that ‖θt − η∗‖22 6 ‖θt−1 − η∗‖22 for all t > 1.

(b) Show that F (θt) 6 F (θt−1)− 1
2L‖F ′(θt−1)‖22 for all t > 1.

(c) Denoting ∆t = F (θt)−F (η∗), show that ∆t 6 ∆t−1− 1
2L‖θ0−η∗‖2 ∆2

t−1 for all t > 1.

Conclude that ∆t 6
2L
t+4‖θ0 − η∗‖2.

Early stopping for machine learning (��). An inspection of the proof of Prop. 5.5
shows that throughout the proof, a minimizer η∗ can be replaced by any η ∈ Rd, leading
to

t[F (θt)− F (η)] +
L

2
‖θt − η‖22 6

L

2
‖θ0 − η‖22. (5.11)

When F (θ) = R̂(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤ϕ(xi)), for a smooth loss function (with con-
stant G2), for linear predictions with feature ℓ2-norms smaller than R, we have L 6 G2R

2.
Moreover, if the loss is non-negative, less than G0 at zero predictions, and also Lipschitz-
continuous (with constant G1), such as the logistic loss, we showed in Section 4.5.4 that
for any D,

E

[
sup

‖θ‖26D

∣∣R(θ)− R̂(θ)
∣∣
]
6

4G1RD√
n

.

https://francisbach.com/computer-aided-analyses/
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Then from Eq. (5.11), assuming we initialize with θ0 = 0, we get for η = 0, G2R
2

2 ‖θt‖22 6

tG0, leading to for any η ∈ R
d:

E
[
R(θt)

]
6 R(η) +

4G1RD√
n

(
‖η‖2 +

( 2G0

G2R2
t
)1/2)

,

showing that if t = o(n) (we do not make too many steps), the testing error is controlled.
In particular, if θ∗ is a minimizer of the expected risk R, then wit t =

√
n, we obtain

E
[
R(θt)

]
− R(θ∗) = O(n−1/4), which will be improved using a different analysis at the

end of Section 5.3.

5.2.5 Beyond gradient descent (�)

While gradient descent is the simplest algorithm with a simple analysis, there are multiple
extensions that we will only briefly mention (see more details by Nesterov, 2004, 2007):

Nesterov acceleration. For strongly-convex functions, a simple modification of gra-
dient descent allows for obtaining better convergence rates. The algorithm is as follows
and is based on updating the following iterates:

θt = ηt−1 −
1

L
g′(ηt−1) (5.12)

ηt = θt +
1−

√
µ/L

1 +
√
µ/L

(θt − θt−1), (5.13)

and the convergence rate is then F (θt) − F (η∗) 6 L‖θ0 − η∗‖2(1 −
√
µ/L)t, which is

equal to L‖θ0 − η∗‖2(1 − 1/
√
κ)t, that is the characteristic time to convergence goes

from κ to
√
κ. If κ is large (typically of order

√
n or n for machine learning), the

gains are substantial. In practice, this leads to significant improvements. See a detailed
description and many extensions by d’Aspremont et al. (2021).

For convex functions, we need the extrapolation step to depend on t as follows:

θt = ηt−1 −
1

L
F ′(ηt−1) (5.14)

ηt = θt +
t− 1

t+ 2
(θt − θt−1). (5.15)

This simple modification dates back to Nesterov in 1983 and leads to the following con-

vergence rate F (θt) − F (η∗) 6
2L‖θ0−η∗‖2

(t+1)2 . See exercise below, and d’Aspremont et al.

(2021) for more details.

Moreover, the last two rates are known to be optimal for the considered problems.
For algorithms that access gradients and combine them linearly to select a new query
point, it is impossible to have better dimension-independent rates. See Nesterov (2007)
and Chapter 15 for more details.
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Exercise 5.13 (��) For the updates in Eq. (5.12) and Eq. (5.13), show that for L(θ, η) =

f(θ) − f(η∗) + µ
2

∥∥∥η − η∗ +
1+
√
µ/L√
µ/L

(θ − η)
∥∥∥
2

2
, then L(θt, ηt) 6 (1 −

√
µ/L)L(θt−1, ηt−1).

Show that this implies a convergence rate proportional to (1−
√
µ/L)t.

Exercise 5.14 (��) For the updates in Eq. (5.14) and Eq. (5.15), show that for Lt(θ, η) =(
t+1
2

)2[
f(θ)− f(η∗) + L

2

∥∥η − η∗ + t
2 (η − θ)

∥∥2

2

]
, then Lt(θt, ηt) 6 Lt−1(θt−1, ηt−1). Show

that this implies a convergence rate proportional to 1
t2 .

Newton method. Given θt−1, the Newton method minimizes the second-order Taylor
expansion around θt−1 (or, equivalently, finds a zero of F ′ by using a first-order Taylor
expansion of F ′ around θt−1):

F (θt−1) + F ′(θt−1)⊤(θ − θt−1) +
1

2
(θ − θt−1)⊤F ′′(θt−1)⊤(θ − θt−1).

The gradient of this quadratic function is θ − θt−1 + F ′′(θt−1)⊤(θ − θt−1), and setting it
to zero leads to θt = θt−1 − F ′′(θt−1)−1F ′(θt−1), which is an expensive iteration, as the
running-time complexity is O(d3) in general to solve the linear system. It leads to local
quadratic convergence: If ‖θt−1 − θ∗‖ small enough, for some constant C, one can show
(C‖θt−θ∗‖) = (C‖θt−1−θ∗‖)2. See Boyd and Vandenberghe (2004) for more details and
conditions for global convergence, in particular through the use of “self-concordance”,
which is a property that relates third and second-order derivatives.

△! The denomination “quadratic” is sometimes confusing and corresponds to a number
of significant digits that doubles at each iteration.

Note that for machine learning problems, quadratic convergence may be overkill com-
pared to the computational complexity of each iteration since cost functions are averages
of n terms and naturally have some uncertainty of order O(1/

√
n).

Exercise 5.15 (�) Assume the function F is µ-strongly convex, twice differentiable, and
such that the Hessian is Lipschitz-continuous, i.e., ‖f ′′(θ)−f ′′(η)‖op 6M‖θ−η‖2. Using
the Taylor formula with integral remainder, show that for the iterates of Newton’s method,
‖∇F (θt)‖2 6 M

2µ2 ‖∇F (θt−1)‖22. Show that this implies local quadratic convergence.

Proximal gradient descent (�). Many optimization problems are said “composite”,
that is, the objective function F is the sum of a smooth function G and a non-smooth
function H (such as a norm). It turns out that a simple modification of gradient descent
allows us to benefit from the fast convergence rates of smooth optimization (compared to
the slower rates for non-smooth optimization that we would obtain from the subgradient
method in the next section).

For this, we need to first see gradient descent as a proximal method. Indeed, one may
see the iteration θt = θt−1 − 1

LG
′(θt−1), as

θt = arg min
θ∈Rd

G(θt−1) + (θ − θt−1)⊤G′(θt−1) +
L

2
‖θ − θt−1‖22,
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where, for a L-smooth function G, the objective function above is an upper-bound of
G(θ) which is tight at θt−1 (see Eq. (5.10)).

While this reformulation does not bring much for gradient descent, we can extend this
to the composite problem and consider the following iteration, where H is left as is,

θt = arg min
θ∈Rd

G(θt−1) + (θ − θt−1)⊤G′(θt−1) +
L

2
‖θ − θt−1‖22 +H(θ).

It turns out that the convergence rates for G+H are the same as smooth optimization,
with potential acceleration (Nesterov, 2007; Beck and Teboulle, 2009).

The crux is to be able to compute the step above, that is, minimize with respect to θ
functions of the form L

2 ‖θ − η‖22 + H(θ). When H is the indicator function of a convex
set (which is equal to 0 inside the set, and +∞ otherwise), we get projected gradient
descent. When H is the ℓ1-norm, that is, H = λ‖ · ‖1, this can be shown to be a soft-
thresholding step, as for each coordinate θi = (|ηi|−λ/L)+

ηi
|ηi| (proof left as an exercise).

See applications to model selection and sparsity-inducing norms in Chapter 8.

Pre-conditioning (�). The convergence rate of gradient descent depends crucially on
the condition number κ, which is not invariant by linear rescaling of the problem. That is,
if we (equivalently) aim to minimize G(θ̃) = F (Aθ̃) for some invertible matrix A ∈ R

d×d

and a twice differentiable function F , the gradient of G is G′(θ̃) = A⊤F ′(Aθ̃), and thus
gradient descent on G can be written θ̃t = θ̃t−1 − γG′(θ̃) = θ̃t−1 − γA⊤F ′(Aθ̃t−1), which
can be rewritten as θt = θt−1−γAA⊤F ′(θt−1) with the change of variable θ = Aθ̃. This is
thus equivalent to pre-multiplying the gradient of F by the positive definite matrix AA⊤.

This will be advantageous when the condition number of G is smaller than that of F .
For example, for a quadratic function F with constant Hessian matrix H ∈ Rd×d, taking
A as an inverse square root of H leads to the minimal possible value of the condition
number, and thus the pre-conditioned gradient iteration (here equal to the Newton step)
converges in one iteration. Such a value of A optimizes the condition number but is not
computationally efficient, and various conditioners can be used in practice, based on di-
agonal approximations of the Hessian, random projections (Martinsson and Tropp, 2020)
or incomplete Cholesky factorizations (Golub and Loan, 1996). Such preconditioning is
also useful in non-smooth situations (see Section 5.4.2 in the context of SGD).

5.2.6 Non-convex objective functions (�)

For smooth, potentially non-convex objective functions, the best one can hope for is
to converge to a stationary point θ such that F ′(θ) = 0. The proof below provides the
weaker result that at least one iterate has a small gradient. Indeed, using the same Taylor
expansion as the convex case (which is still valid), we get, using the L-smoothness of F :

F (θt) 6 F (θt−1)− 1

2L
‖F ′(θt−1)‖22,
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leading to, summing the inequalities above for all iterations between 1 and t:

1

2Lt

t∑

s=1

‖F ′(θs−1)‖22 6
F (θ0)− F (η∗)

t
.

Thus, there is one s in {0, . . . , t − 1} for which ‖F ′(θs)‖22 6 O(1/t). Without further
assumptions, this does not imply that any of the iterates is close to a stationary point.

5.3 Gradient methods on non-smooth problems

We now relax our assumptions and only require Lipschitz continuity in addition to con-
vexity. The rates will be slower, but extending stochastic gradients will be easier.

Definition 5.4 (Lipschitz-continuous function) A function F : Rd → R is said
B-Lipschitz-continuous if and only if

|F (η)− F (θ)| 6 B‖η − θ‖2, ∀θ, η ∈ R
d.

This setting is usually referred to as non-smooth optimization.

Exercise 5.16 Show that if F is differentiable, B-Lipschitz-continuity is equivalent to
the assumption ‖F ′(θ)‖2 6 B, ∀θ ∈ Rd.

From gradients to subgradients. We can apply non-smooth optimization to objec-
tive functions that are not differentiable (such as the hinge loss from Section 4.1.2). For
convex Lipschitz-continuous objectives, one can show that the function is almost every-
where differentiable (see, e.g., Nekvinda and Zaj́ıček, 1988). In points where it is not,
one can define the set of slopes of lower-bounding tangents as the subdifferential and any
element of it as a subgradient. That is, we can define the subdifferential as (see illustration
below):

∂F (θ) =
{
z ∈ R

d, ∀η ∈ R
d, F (η) > F (θ) + z⊤(η − θ)

}
.

For a convex function defined on Rd, the subdifferential happens to be a non-empty
convex set at all points θ. Moreover, when F is differentiable with gradient F ′(θ), the
subdifferential is reduced to a point, that is, ∂F (θ) = {F ′(θ)}. For example, the absolute
value θ 7→ |θ| has a subdifferential equal to [−1, 1] at zero. See more details by Rockafellar
(1997).

η

F (η)

θ

F (θ) + z⊤(η − θ)
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The gradient descent iteration is then meant as using any subgradient z ∈ ∂F (θt−1)
instead of F ′(θt−1), for which we will only need that the function is above the tangent
defined by this subgradient. The method is then referred to as the subgradient method
(it is not a descent method anymore, that is, the function values may go up occasionally).

Exercise 5.17 Compute the subdifferential of θ 7→ |θ| and θ 7→ (1−yθ⊤x)+, for the label
y ∈ {−1, 1} and the input x ∈ Rd.

Convergence rate of the subgradient method. We can prove convergence of the
gradient descent algorithm, now with a decaying step-size and a slower rate than for
smooth functions.

△! Like for stochastic gradient descent in the next section, and as opposed to gradi-
ent descent for smooth functions in the previous section, the objective function for the
subgradient method for non-smooth functions may not go down at every iteration.

Proposition 5.6 (Convergence of the subgradient method) Assume that F is con-
vex, B-Lipschitz-continuous, and admits a minimizer η∗ that satisfies ‖η∗ − θ0‖2 6 D.
By choosing γt = D

B
√
t
then the iterates (θt)t>0 of GD on F satisfy

min
06s6t−1

F (θs)− F (η∗) 6 DB
2 + log(t)

2
√
t

. (5.16)

Proof We look at how θt approaches η∗, that is, we try to use ‖θt− η∗‖22 as a Lyapunov
function. We have:

‖θt − η∗‖22 = ‖θt−1 − γtF ′(θt−1)− η∗‖22
= ‖θt−1 − η∗‖22 − 2γtF

′(θt−1)⊤(θt−1 − η∗) + γ2t ‖F ′(θt−1)‖22.

Combining this with the convexity inequality F (θt−1) − F (η∗) 6 F ′(θt−1)⊤(θt−1 − η∗)
from Eq. (5.7), using the boundedness of the gradients (that is, ‖F ′(θt−1)‖22 6 B2), it
follows:

‖θt − η∗‖22 6 ‖θt−1 − η∗‖22 − 2γt[F (θt−1)− F (η∗)] + γ2tB
2.

We are in a situation where the Lyapunov function θ 7→ ‖θ− η∗‖22 is not decreasing along
iterations because of the term γ2tB

2 above. It is then classical to isolate the negative term
−2γt[F (θt−1)−F (η∗)] and sum inequalities. Thus, by isolating the distance to optimum
in function values, we get:

γt(F (θt−1)− F (η∗)) 6
1

2

(
‖θt−1 − η∗‖22 − ‖θt − η∗‖22

)
+

1

2
γ2tB

2. (5.17)

It is sufficient to sum these inequalities to get (in fact, for any η∗ ∈ Rd and not only the
minimizer),

1∑t
s=1 γs

t∑

s=1

γs (F (θs−1)− F (η∗)) 6
‖θ0 − η∗‖22
2
∑t
s=1 γs

+B2

∑t
s=1 γ

2
s

2
∑t
s=1 γs

.
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As a weighted average, the left-hand side is larger than min06s6t−1(F (θs) − F (η∗)),

and also larger than F (θ̄t) − F (η∗) where θ̄t = (
∑t

s=1 γsθs−1)/(
∑t

s=1 γs) by Jensen’s
inequality.

The upper bound goes to 0 if
∑t

s=1 γs goes to ∞ (to forget the initial condition,
sometimes called the “bias”) and γt → 0 (to decrease the “variance” term). Let us
choose γs = τ/

√
s for some τ > 0. By using the series-integral comparisons below, we

get the bound

min
06s6t−1

(F (θs)− F (η∗)) 6
1

2
√
t

(D2

τ
+ τB2(1 + log(t))

)
.

We choose τ = D/B (which is suggested by optimizing the previous bound when log(t) =
0), which leads to the result. In the proof, we used the following series-integral compar-
isons for decreasing functions:

t∑

s=1

1√
s
>

t∑

s=1

1√
t

=
√
t,

and
∑t
s=1

1
s 6 1 +

∑t
s=2

1
s 6 1 +

∫ t
1
ds
s = 1 + log(t).

The proof scheme above is very flexible. It can be extended in the following directions:

• There is no need to know in advance an upper-bound D on the distance to optimum;
we then get, with an arbitrary D, with the same step-size γt = D

B
√
t

a rate of the

form BD
2
√
t

(‖θ0−η∗‖2
2

D2 + (1 + log(t))
)
. Moreover, a slightly modified version of the

subgradient method removes the need to know the Lipschitz constant. See the
exercise below.

Exercise 5.18 We consider the iteration θt = θt−1 − γ′
t

‖F ′(θt−1)‖2
F ′(θt−1). Show

that with the step-size γ′t = D/
√
t, we get the guarantee min06s6t−1 F (θs)−F (η∗) 6

DB 2+log(t)

2
√
t

.

• The algorithm applies to constrained minimization over a convex set by insert-
ing a projection step at each iteration (the proof, which uses the contractivity of
orthogonal projections, is essentially the same; see the exercise below).

Exercise 5.19 Let K ⊂ Rd be a convex closed set, and denote by ΠK(θ) he orthog-
onal projection of θ onto K, defined as ΠK(θ) = arg minη∈K ‖η− θ‖22.Show that the
function ΠK is contractive, that is, for all θ, η ∈ R

d, ‖ΠK(θ)−ΠK(η)‖2 6 ‖θ−η‖2.
For the algorithm θt = ΠK(θt−1 − γtF ′(θt−1)), and η∗ a minimizer of F on K,
show that the guarantee of Prop. 5.6 still holds.

• The algorithm applies to non-differentiable convex and Lipschitz objective functions
(using sub-gradients, i.e., any vector satisfying Eq. (5.6) in place of F ′(θt)).

• The algorithm can be applied to “non-Euclidean geometries”, where we consider
bounds on the iterates or the gradient with different quantities, such as Bregman
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divergences. This can be done using the “mirror descent” framework, and for
instance, can be applied to obtain multiplicative updates (see, e.g., Juditsky and
Nemirovski, 2011a,b; Bubeck, 2015). See more details in the online stochastic case
in Section 11.1.3.

Exercise 5.20 (�) Let F : Rd → R be a differentiable function, and ψ : Rd → R a
strictly convex function:

(a) Show that the minimizer of F (θ) + F ′(θ)⊤(η − θ) + 1
2γ ‖η − θ‖22 is equal to

η = θ − γF ′(θ).

(b) Show that the Bregman divergence Dψ(η, θ) defined as Dψ(η, θ) = ψ(η)−ψ(θ)−
ψ′(θ)⊤(η − θ) is non-negative, and equal to zero if and only if η = θ.

(c) Show that the minimizer of F (θ) +F ′(θ)⊤(η− θ) + 1
γDψ(η, θ) satisfies ψ′(η) =

ψ′(θ) − γF ′(θ). Show that the same conclusion holds if ψ is only defined on
an open convex set K ⊂ Rd, and so that the gradient ψ′ is a bijection from K
to Rd.

(d) Apply to ψ(θ) =
∑d

i=1 θi log θi.

• Often the uniformly averaged iterate is used, as 1
t

∑t−1
s=0 θs. Convergence rates

(without the log t factor) can be obtained with a slightly more involved proof using
the Abel summation formula (see also Section 11.1.1).

Exercise 5.21 (�) We consider the same assumptions as Exercise 5.19 and the
same algorithm with orthogonal projections. With D the diameter of K, show that
for the average iterate θ̄t = 1

t

∑t−1
s=0 θs, we have: F (θ̄t)− F (θ∗) 6 3BD

2
√
t
.

• The algorithm with the decaying step-size γt is an “anytime” algorithm; that is, it
can be stopped at any time t, and the bound in Eq. (5.16) then applies. Computa-
tions are often easier when considering a constant step-size γ that depends on the
number of iterations T that the user wishes to perform, T being usually referred to
as the “horizon”. Starting from Eq. (5.17), we get the bound:

1

T

T∑

t=1

F (θt−1)− F (θ∗) 6
D2

2γT
+
γB2

2
, (5.18)

where the optimal γ can be obtain as γ = D
B
√
T

and an optimized rate of DB√
T

. We

gain on the logarithmic factor, but we no longer have an anytime algorithm (since
the bound only applies at time T ). This applies as well to SGD in Section 5.4. In
these situations, a “doubling trick” can be used, leading to an anytime algorithm
with the same guarantee but undesired practical behavior as the algorithm makes
substantial changes at each iteration, which is a power of two (see the exercise
below).

• Stochastic gradients can be used, as presented below (one interpretation is that the
subgradient method is so slow that it is robust to noisy gradients).
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Exercise 5.22 (doubling trick for subgradient method) We consider an algorithm
that successively applies the SGD iteration with step-size γ = D

B
√
2k

during 2k iterations,

for k = 0, 1, . . . . Show that after t subgradient iterations, the observed best value of F is
less than a constant times DB/

√
t.

Exercise 5.23 Compute all constants for ℓ2-regularized logistic regression and the sup-
port vector machine with linear predictors (Section 4.1).

Machine learning with linear predictions and Lipschitz-continuous losses. For
specialized machine learning problems, we can now close the loop on the discussion out-
lined in Section 5.1 regarding the need to take into account the optimization error on top
of the estimation error. For convex Lipschitz-continuous losses (with constant G) such
as the logistic loss or the hinge loss, for linear predictions with feature ℓ2-norms smaller
than R, a parameter bounded in ℓ2-norm by D, we showed in Section 4.5.4 that the
estimation error was upper-bounded by a constant times GRD√

n
. The optimization error

after t iterations of the subgradient method is upper-bounded by a constant times GRD√
t

,

since the Lipschitz constant of the objective function is B 6 GR.

Adding these two bounds, there is no need to have the number of iterations t larger
than the number of observations n. However, since each gradient computation requires
n gradient computations for the individual loss functions associated with a single data
point, the total number of such gradient computations is tn ≈ n2, which is not scalable
when n is large. We now show how stochastic gradient descent can turn this number to
n with the same upper-bound on the generalization performance.

5.4 Convergence rate of stochastic gradient descent
(SGD)

For machine learning problems, where F (θ) = 1
n

∑n
i=1 ℓ(yi, fθ(xi)) + Ω(θ), at each itera-

tion, the gradient descent algorithm requires computing a “full” gradient F ′(θt−1), which
could be costly as it requires accessing the entire data set (all n pairs of observations).
An alternative is to instead only compute unbiased stochastic estimations of the gradient
gt(θt−1), i.e., such that

E[gt(θt−1)|θt−1] = F ′(θt−1), (5.19)

which could be much faster to compute, in particular by accessing fewer observations.

△! Note that we need to condition over θt−1 because θt−1 encapsulates all the randomness
due to past iterations, and we only require “fresh” randomness at time t.

△! Somewhat surprisingly, this unbiasedness does not need to be coupled with a vanishing
variance: while there are always errors in the gradient, the use of a decreasing step-size
will ensure convergence. If the noise in the gradient is not unbiased, then we only get
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convergence if the noise magnitudes go to zero (see, e.g., d’Aspremont, 2008; Schmidt
et al., 2011 and references therein).

This leads to the following algorithm.

Algorithm 5.2 (Stochastic gradient descent (SGD)) Choose a step-size sequence
(γt)t>0, pick θ0 ∈ R

d and for t > 1, let

θt = θt−1 − γtgt(θt−1),

where gt(θt−1) satisfies Eq. (5.19).

SGD in machine learning. There are two ways to use SGD for supervised machine
learning:

(1) Empirical risk minimization: If F (θ) = 1
n

∑n
i=1 ℓ(yi, fθ(xi)) then at iteration t

we can choose uniformly at random i(t) ∈ {1, . . . , n} and define gt as the gradient
of θ 7→ ℓ(yi(t), fθ(xi(t))). Here, the randomness comes from the random choice of
indices.

There exist “mini-batch” variants where, at each iteration, the gradient is averaged
over a random subset of the indices (we then reduce the variance of the gradient
estimate, but we use more gradients, and thus the running time increases, see
Exercise 5.25). We then converge to a minimizer η∗ of the empirical risk.

Note here that since we sample with replacement, a given function will be selected
several times, even within n iterations. Sampling without replacement can also
be studied, but its analysis is more involved (see, e.g., Nagaraj et al., 2019, and
references therein).

(2) Expected risk minimization: If F (θ) = E[ℓ(y, fθ(x))] is the expected (non-
observable) risk, then at iteration t we can take a fresh sample (xt, yt) and define gt
as the gradient of θ 7→ ℓ(yt, fθ(xt)), for which, if we swap the orders of expectation
and differentiation, we get the unbiasedness. Note here that to preserve the unbi-
asedness, only a single pass is allowed (otherwise, this would create dependencies
that would break it) and that the randomness comes from the observations (xt, yt)
themselves.

Here, we directly minimize the (generalization) risk. The counterpart is that if we
only have n samples, then we can only run n SGD iterations, and when n grows,
the iterates will converge to a minimizer θ∗ of the expected risk.

Note that in practice, multiple passes over the data (that is, using each observation
multiple times) lead to better performance. To avoid overfitting, either a regular-
ization term is added to the empirical risk, or the SGD algorithm is stopped before
its convergence (and typically when some validation risk stops decreasing), which
is referred to as regularization by “early stopping”.

We can study the two situations above using the latter one by considering the empirical
risk as the expectation with respect to the empirical distribution of the data (and we thus
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use the notation θ∗ for the global minimizer).

△! Stochastic gradient descent is not a descent method: the function values often
go up, but they go down “on average”. See, for example, an illustration in
Figure 5.2.

Under the same usual assumptions on the objective functions, we now study SGD
with the following extra assumptions:

• (H-1) unbiased gradient: E[gt(θt−1)|θt−1] = F ′(θt−1), ∀t > 1,

• (H-2) bounded gradient: ‖gt(θt−1)‖22 6 B2 almost surely, ∀t > 1.

Assumption (H-2) could be replaced by other regularity conditions (e.g., Lipschitz-
continuous gradients). Assumption (H-1) is crucial and is often obtained by considering
independent gradient functions gt, for which we have E[gt(·)] = F ′(·). See Exercise 5.26
for SGD for smooth functions.

Proposition 5.7 (Convergence of SGD) Assume that F is convex, B-Lipschitz and
admits a minimizer θ∗ that satisfies ‖θ∗−θ0‖2 6 D. Assume that the stochastic gradients
satisfy (H-1) and (H-2). Then, choosing γt = (D/B)/

√
t, the iterates (θt)t>0 of SGD

on F satisfy

E
[
F (θ̄t)− F (θ∗)

]
6 DB

2 + log(t)

2
√
t

.

where θ̄t = (
∑t

s=1 γsθs−1)/(
∑t
s=1 γs).

We state our bound in terms of the average iterates because the cost of finding the best
iterate could be higher than that of evaluating a stochastic gradient (since we cannot
compute F in general).

Proof We follow essentially the same proof as in the deterministic case, adding some
expectations at well-chosen places. We have:

E
[
‖θt − θ∗‖22

]
= E

[
‖θt−1 − γtgt(θt−1)− θ∗‖22

]

= E
[
‖θt−1 − θ∗‖22

]
− 2γtE

[
gt(θt−1)⊤(θt−1 − θ∗)

]
+ γ2t E

[
‖gt(θt−1)‖22

]
.

We can then compute the expectation of the middle term as:

E
[
gt(θt−1)⊤(θt−1 − θ∗)

]
= E

[
E
[
gt(θt−1)⊤(θt−1 − θ∗)

∣∣θt−1

]]

= E
[
E
[
gt(θt−1)

∣∣θt−1

]⊤
(θt−1 − θ∗)

]
= E

[
F ′(θt−1)⊤(θt−1 − θ∗)

]
,

where we have crucially used the unbiasedness assumption (H-1). This leads to

E
[
‖θt − θ∗‖22

]
6 E

[
‖θt−1 − θ∗‖22

]
− 2γtE

[
F ′(θt−1)⊤(θt−1 − θ∗)

]
+ γ2tB

2.

Thus, combining with the convexity inequality F (θt−1) − F (θ∗) 6 F ′(θt−1)⊤(θt−1 − θ∗)
from Eq. (5.7), we get

γtE[F (θt−1)− F (θ∗)] 6
1

2

(
E
[
‖θt−1 − θ∗‖22

]
− E

[
‖θt − θ∗‖22

])
+

1

2
γ2tB

2. (5.20)
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Except for the expectations, this is the same bound as Eq. (5.17), so we can conclude as
in the proof of Prop. 5.6.

We can make the following observations:

• Averaging of iterates is often performed after a certain number of iterations (e.g.,
one pass over the data when doing multiple passes): having such a “burn-in” period
speeds up the algorithms by forgetting initial conditions faster.

• Many authors consider the projected version of the algorithm where after the gra-
dient step, we orthogonally project onto the ball of radius D and center θ0. The
bound is then exactly the same.

• Like for the subgradient method in Eq. (5.18), we can consider a constant step-
size γ, to obtain

1

T

T∑

t=1

E
[
F (θt−1)

]
− F (θ∗) 6

D2

2γT
+
γB2

2
,

from which we get, E
[
F (θ̄t)

]
− F (θ∗) 6 D2

2γT + γB2

2 = DB√
T

, for the specific choice

γ = D/(B
√
T ) (that depends on the horizon T , and for the uniformly average

iterate.

• The result that we obtain, when applied to single pass SGD, is a generalization
bound; that is, after the n iterations, we have an excess risk proportional to 1/

√
n,

corresponding to the excess risk compared to the best predictor fθ.

This is to be compared to using results from Chapter 4 (uniform deviation bounds)
and non-stochastic gradient descent. It turns out that the estimation error due
to having n observations is exactly the same as the generalization bound obtained
by SGD (see Section 4.5.4 in Chapter 4). Still, we need to add on top of the
optimization error proportional to 1/

√
t (with the same constants). The bounds

match if t = n, that is, we run n iterations of gradient descent on the empirical
risk. This leads to a running time complexity of O(tnd) = O(n2d) instead of O(nd)
using SGD, hence the strong gains in using SGD.

△! We are still comparing upper bounds.

• The bound in O(BD/
√
t) is optimal for this class of problem. That is, as shown for

example by Agarwal et al. (2009), among all algorithms that can query stochastic
gradients, having a better convergence rate (up to some constants) is impossible.
See Section 15.3 for a detailed proof.

• As opposed to the deterministic case, the use of smoothness does not lead to sig-
nificantly better results (see Exercise 5.26).

• An inspection of the proof shows that we can replace the almost sure bounds
‖gt(θt−1)‖22 6 B2 by bounds in expectation E

[
‖gt(θt−1)‖22

]
6 B2. For machine

learning problems with linear predictions with feature ℓ2-norm bounded by R and
a G-Lipschitz-continuous loss, the gradient gt(θt−1) is the gradient of the func-
tion θ 7→ ℓ(yt, ϕ(xt)

⊤θ) taken at θt−1, and thus its squared norm is less than
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G2 · ‖ϕ(xt)‖22. An almost sure bound is therefore G2R2, while a bound in expecta-
tion is G2 · E

[
‖ϕ(xt)‖22

]
, which is stronger.

• We can obtain a result in high probability, using an extension of Hoeffding’s in-
equality to “differences of martingales”, as shown in the exercise below.

Exercise 5.24 (high-probability bound for SGD (�)) Using the same assumptions
and notations as in Prop. 5.7, we consider the projected iteration: θt = ΠD(θt−1 − γtgt),
where ΠD is the orthogonal projection on the ℓ2-ball of center 0 and radius D. Denoting
zt = −γt(θt−1 − θ∗)⊤[gt − F ′(θt−1)], show that E[zt|Ft−1] = 0 and |zt| 6 4γtBD almost
surely, and that

γt[F (θt−1)− F (θ∗)] 6
1

2

(
E
[
‖θt−1 − θ∗‖22

]
− E

[
‖θt − θ∗‖22

])
+

1

2
γ2tB

2 + zt.

Show that with probability at least 1 − δ, then, for the weighted average θ̄t defined in
Prop. 5.7, for any step-sizes γt:

F (θ̄t) 6
2D2

∑t
s=1 γs

+B2

∑t
s=1 γ

2
s

2
∑t
s=1 γs

+ 4BD

(∑t
s=1 γ

2
s

)1/2
∑t

s=1 γs

√
2 log

1

δ
,

and that for a constant-step size, γt = γ, F (θ̄t) 6
2D2

γT + γB2

2 + 4DB√
t

√
2 log 1

δ .

SGD or gradient descent on the empirical risk? As seen above, the number of
iterations to reach a given precision will be larger for stochastic gradient descent than for
smooth deterministic gradient descent, but with a complexity that is typically n times
faster. Thus, for high precision, that is, low values of F (θ)− F (η∗) (which is not needed
for machine learning), the number of iterations of SGD may become prohibitively large,
and deterministic full gradient descent could be preferred. However, for low precision and
large n, SGD is the method of choice (see also recent improvements in Section 5.4.4).

In particular, for the linear prediction case described at the end of Section 5.3, we
obtain the exact same rate in Prop. 5.7 as for non-stochastic gradient descent on the
empirical risk. If sampling from the n observations with replacement, after t = n steps,
the sum of optimization error and optimization error is of the same order O(GRD√

n
), with

now only n accesses to individual loss gradients (instead of n2 with batch methods, thus,
with a big improvement). Moreover, with a single pass over the data, Prop. 5.7 is directly
a generalization performance result with the same rate.

Exercise 5.25 We consider the mini-batch version of SGD, where at every iteration, we
replace gt(θt−1) by the average of m independent samples of stochastic gradients at θt−1.
Extend the convergence result of Prop. 5.7.

Exercise 5.26 (�) We consider independent and identically distributed convex L-smooth
random functions ft : Rd → R, t > 1, with expectation F : Rd → R, that has a minimizer
θ∗ ∈ Rd. We consider the SGD recursion θt = θt−1 − γtf ′

t(θt−1), with γt a deterministic
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step-size sequence. Using co-coercivity (Prop. 5.4), show that

E
[
‖θt−θ∗‖22

]
6 E

[
‖θt−1−θ∗‖22

]
−2γt(1−γtL)E

[
F ′(θt−1)⊤(θt−1−θ∗)

]
+2γ2tE

[
‖f ′
t(θ∗)‖22

]
.

Extend the proof of Prop. 5.7 to obtain an explicit rate in O(1/
√
t).

Exercise 5.27 (non-uniform sampling (�)) We consider functions F : Rd×Z→ R,
which are convex with respect to the first variable, with a subgradient F ′(θ, z) with respect
to the first variable which is bounded in ℓ2-norm by a constant B(z) that depends on z. We
consider a distribution p on Z, and we aim to minimize Ez∼pF (θ, z), but we sample from
a distribution q, with density dq/dp(z) with respect to p to get independent and identically
distributed random zt, t > 1. We consider the recursion θt = θt−1− γ

dq/dp(zt)
F ′(θt−1, zt).

Provide a convergence rate for this algorithm and show how a good choice of q leads to
significant improvements over the choice q = p when B(z) is far from uniform in z. Apply
this result to the support vector machine when applying SGD to the empirical risk.

5.4.1 Strongly convex problems (�)

We consider the regularized problem G(θ) = F (θ) + µ
2 ‖θ‖22, with the same assumption

as above, and started at θ0 = 0. The SGD iteration is then, with gt(θt−1) a stochastic
(sub)gradient of F at θt−1:

θt = θt−1 − γt
[
gt(θt−1) + µθt−1

]
. (5.21)

We then have an improved convergence rate in O(1/t) with a different decay for the
step-size.

Proposition 5.8 (Convergence of SGD for strongly-convex problems) Assume that
F is convex, B-Lipschitz and that F + µ

2 ‖ · ‖22 admits a (necessarily unique) mini-
mizer θ∗. Assume that the stochastic gradient g satisfies (H-1) and (H-2). Then, choosing
γt = 1/(µt), the iterates (θt)t>0 of SGD from Eq. (5.21) satisfy

E
[
G(θ̄t)−G(θ∗)

]
6

2B2(1 + log t)

µt
,

where θ̄t = 1
t

∑t
s=1 θs−1.

Proof The beginning of the proof is essentially the same as for convex problems, leading
to (with the new terms in blue):

E
[
‖θt − θ∗‖22

]
= E

[
‖θt−1 − γt(gt(θt−1)+µθt−1)− θ∗‖22

]

= E
[
‖θt−1 − θ∗‖22

]
−2γtE

[
(gt(θt−1)+µθt−1)⊤(θt−1−θ∗)

]

+γ2tE
[
‖gt(θt−1)+µθt−1‖22

]
.

From the iterations in Eq. (5.21), we see that θt = (1− γtµ)θt−1 + γtµ
[
− 1

µgt(θt−1)
]

is a

convex combination of gradients divided by −µ, and thus ‖gt(θt−1) + µθt−1‖22 is always
less than 4B2. Thus

E
[
‖θt − θ∗‖22

]
6 E

[
‖θt−1 − θ∗‖22

]
− 2γtE

[
G′(θt−1)⊤(θt−1 − θ∗)

]
+ 4γ2tB

2.
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Therefore, combining with the inequality coming from strong convexity G(θt−1) −
G(θ∗)+µ

2 ‖θt−1 − θ∗‖22 6 G′(θt−1)⊤(θt−1 − θ∗) (see Eq. (5.9)), it follows

γtE[G(θt−1)−G(θ∗)] 6
1

2

(
(1−γtµ)E‖θt−1 − θ∗‖2 − E‖θt − θ∗‖2

)
+ 2γ2tB

2,

and thus, now using the specific step-size choice γt = 1/(µt):

E[G(θt−1)−G(θ∗)] 6
1

2

(
(γ−1
t − µ)E‖θt−1 − θ∗‖2 − γ−1

t E‖θt − θ∗‖2
)

+ 2γtB
2,

=
1

2

(
µ(t− 1)E‖θt−1 − θ∗‖2 − µtE‖θt − θ∗‖2

)
+

2B2

µt
.

Thus, we get a telescoping sum: summing between all indices between 1 and t, and using
the bound

∑t
s=1

1
s 6 1 + log t, we get the desired result.

We can make the following observations:

• For smooth problems, we can show a similar bound of the form O(κ/t). For
quadratic problems, constant step-sizes can be used with averaging, leading to im-
proved convergence rates (Bach and Moulines, 2013). See the exercise below.

Exercise 5.28 (�) We consider the minimization of F (θ) = 1
2θ

⊤Hθ− c⊤θ, where
H ∈ Rd× is positive definite (and thus invertible). We consider the recursion θt =
θt−1−γ[F ′(θt−1)+εt], where all εt’s are independent, with zero mean and covariance
matrix equal to C. Compute explicity E

[
F (θt)−F (θ∗)

]
, and provide an upper-bound

of E
[
F (θ̄t)− F (θ∗)

]
, where θ̄t = 1

t

∑t−1
s=0 θs.

• The bound in O(B2/µt) is optimal for this class of problems. That is, as shown for
example by Agarwal et al. (2009), among all algorithms that can query stochastic
gradients, having a better convergence rate (up to some constants) is impossible
(see Section 15.3).

• We note that for the same regularized problem, we could use a step size proportional
to DB/

√
t and obtain a bound proportional to DB/

√
t, which looks worse than

B2/(µt) but can, in fact, be better when µ is very small.

Note also the loss of adaptivity: the step-size now depends on the problem’s diffi-
culty (this was different for deterministic gradient descent). See experiments below
for illustrations.

Exercise 5.29 With the same assumptions as Prop. 5.8, show that with the step-size

γt = 2
µ(t+1) , and with θ̄t = 2

t(t+1)

∑t
s=1 sθs−1, we have: E

[
G(θ̄t)−G(θ∗)

]
6 8B2

µ(t+1) .

Experiments. We consider a simple binary classification problem with linear predictors
in dimension d = 40 (inputs generated from a Gaussian distribution, with binary outputs
obtained as the sign of a linear function with additive Gaussian noise), with n = 400
observations, and observed features with ℓ2-norm bounded by R. We consider the hinge
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Figure 5.2: Comparison of step-sizes for SGD for the support vector machine, for two
values of the regularization parameter µ (top: large µ, bottom: small µ). The performance
is measured with a single run (hence the variability) on the excess training objective (left:
regular plot, right: “log-log” plot).

loss with a squared ℓ2-regularizer µ
2 ‖ · ‖22 (that is, the support vector machine presented

in Section 4.1.2). We measure the excess training objective. We consider two values of µ,
and compare the two step-sizes γt = 1/(R2

√
t) and γt = 1/(µt) in Figure 5.2. We see

that for large enough µ, the strongly-convex step-size is better. This is not the case for
small µ.

The experiments above highlight the danger of a step-size equal to 1/(µt). In practice,
it is often preferable to use γt = 1

B2
√
t+µt

, as shown in the exercise below.

Exercise 5.30 (��) With the same assumptions as in Prop. 5.8, with γt = 1
B2

√
t+µt

,

provide a convergence rate for the averaged iterate.

5.4.2 Adaptive methods (�)

The discussion on pre-conditioning for gradient descent on smooth functions at the end
of Section 5.2.5 can be adapted to stochastic gradient methods for non-smooth problems.
In this section, we highlight the potential gains and give references for precise results.
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We focus on a linear prediction problem with i.i.d. features bounded in ℓ2-norm by R,
and a convex G-Lipschitz-continuous loss function, in the setting of Prop. 5.7. For a
constant step-size γ, in the proof of Prop. 5.7, we obtained an expected excess-risk equal
to, starting from θ0 = 0,

1

2γt
‖θ∗‖22 +

γG2

2
tr[Σ],

where Σ = E[ϕ(x)ϕ(x)⊤ ] is the covariance matrix of the features. Optimizing over γ

leads to the overall rate of G‖θ∗‖2√
t

√
tr[Σ].

Like done at the end of Section 5.2.5, pre-multiplying each gradient by the matrixAA⊤

is equivalent to minimizing the expectation of ℓ(y, ϕ(x)⊤Aθ̃), which itself corresponds to
replacing the feature map ϕ by A⊤ϕ, and θ∗ by A−1θ∗. The complexity bound above
then becomes

1

2γt
θ⊤∗ (AA⊤)−1θ∗ +

γG2

2
tr[ΣAA⊤].

The matrix M = (γAA⊤)−1, which is the inverse of the matrix multiplying the gradient
in the SGD iteration, can be optimized in the specific situation where we restrict the
matrix M to be diagonal with diagonal m ∈ Rd. We then obtain the bound

1

2t
‖θ∗‖2∞ ·

d∑

j=1

mj +
G2

2

d∑

j=1

Σjj
mj

,

with optimal mj equal to Σ
1/2
jj G

√
t/‖θ∗‖∞ and an overall rate equal to G‖θ∗‖∞√

t

∑d
j=1 Σ

1/2
jj ,

which can be substantially smaller than the corresponding rate with uniform m, propor-

tional to G‖θ∗‖∞√
t

d
√∑d

j=1 Σjj ; this in particular the case, where the Σjj ’s have heteroge-

neous values.

In practice, we can estimate before running the learning algorithm the required ele-
ments of Σ, the (non-centered) covariance matrix of the features, and, more generally,
the covariance of the gradients. These quantities can be estimated online, leading to the
algorithms Adagrad (Duchi et al., 2011), or Adam (Kingma and Ba, 2014), which come
with specific complexity bounds (see, e.g., Défossez et al., 2022).

5.4.3 Bias-variance trade-offs for least-squares (�)

In this section, we consider the least-squares learning problems studied in Chapter 3, that
is, we assume that we have i.i.d. observations (xi, yi) ∈ X × R, for i > 1, assuming that
there exists a feature map ϕ : X→ Rd and θ∗ ∈ Rd such that yi = ϕ(xi)

⊤θ∗+εi, where εi
has mean zero and variance σ2, and is independent of xi. The goal of this section is to
relate the performance of single-pass SGD to (regularized) empirical risk minimization
studied in Section 3.3 and Section 3.6, and to study the impact of noise in SGD precisely.

The SGD recursion, often referred to as the least-mean-squares (LMS) recursion, can
be written as, with a constant step-size:

θt = θt−1 − γ(θ⊤t−1ϕ(xt)− yt)ϕ(xt) = θt−1 − γ(θ⊤t−1ϕ(xt)− θ⊤∗ ϕ(xt)− εt)ϕ(xt),
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leading to
θt − θ∗ = (I − γϕ(xt)ϕ(xt)

⊤)(θt−1 − θ∗) + γεtϕ(xt). (5.22)

Thus, like in the deterministic case in Section 5.2.1, we obtain a linear dynamical system,
this time with random coefficients.

Classical analysis. We can first use a similar proof as in previous sections, that is,
expanding Eq. (5.22),

‖θt − θ∗‖22 = ‖θt−1 − θ∗‖22 + ‖γϕ(xt)ϕ(xt)
⊤(θt−1 − θ∗)‖22

−2γ(θt−1 − θ∗)⊤ϕ(xt)ϕ(xt)
⊤(θt−1 − θ∗) + ‖γεtϕ(xt)‖22

+2γεtϕ(xt)
⊤(I − γϕ(xt)ϕ(xt)

⊤)(θt−1 − θ∗),

leading to, with Ft−1 the information up to time t−1 (generated by x1, y1, . . . , xt−1, yt−1),
and using that ‖ϕ(xt)‖22 6 R2 almost surely, and the inequality Σ = E

[
ϕ(xt)ϕ(xt)

⊤],
and E

[
‖ϕ(xt)‖22ϕ(xt)ϕ(xt)

⊤] 4 Σ:

E
[
‖θt − θ∗‖22

∣∣Ft−1

]
6 ‖θt−1 − θ∗‖22 + (γ2R2 − 2γ)(θt−1 − θ∗)⊤Σ(θt−1 − θ∗) + γ2σ2R2.

This leads to, with F (θ) − F (θ∗) = 1
2 (θ − θ∗)⊤Σ(θ − θ∗), for γ 6 1/R2,

E
[
F (θt−1)− F (θ∗)

]
6

1

2γ

(
E
[
‖θt−1 − θ∗‖22

]
− E

[
‖θt − θ∗‖22

])
+
γσ2R2

2
,

and thus, for the average θ̄t = 1
t

∑t
s=1 θs−1, using Jensen’s inequality,

E
[
F (θ̄t)

]
− F (θ∗)

]
6

1

2γt
‖θ0 − θ∗‖22 +

γσ2R2

2
,

which is a similar result to the non-smooth case but with an explicit bias/variance de-
composition where the noise variance σ2 explicitly appears, as well as the norm of θ∗.
Note that it requires the step-size to depend on the number of total iterations to obtain
convergence.

However, for least-squares, a finer analysis can be performed, allowing explicitly for
constant step-sizes and a clear relationship with generalization bounds for least-squares
outlined in Chapter 3.

Finer analysis of the LMS recursion (��). A detailed analysis of the LMS recursion
in Eq. (5.22) is out of the scope of this textbook. However, a simplified recursion with
essentially the same behavior can be analyzed with simple linear algebra tools. To obtain
this simplified recursion, we rewrite Eq. (5.22) as

θt − θ∗ = (I − γΣ)(θt−1 − θ∗) + γεtϕ(xt) + γ(Σ− ϕ(xt)ϕ(xt)
⊤)(θt−1 − θ∗),

which is the recursion of the expected risk, corresponding to the term (I−γΣ)(θt−1−θ∗),
plus additional stochastic terms with zero conditional mean. One of them, γεtϕ(xt) is
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purely “additive” (i.e., it does not depend on θt−1) and has a constant non-zero variance,
while the other one, γ(Σ− ϕ(xt)ϕ(xt)

⊤)(θt−1 − θ∗) is multiplicative and has a variance
that will go to zero as iterates converge to θ∗. The simplified recursion ignores that term,
and we now study the recursion (started at η0 = θ0):

ηt − θ∗ = (I − γΣ)(ηt−1 − θ∗) + γεtϕ(xt), (5.23)

which also corresponds to replacing ϕ(xt)ϕ(xt)
⊤ in Eq. (5.22) by its expectation Σ .

We can then explicitly unroll the recursion as:

ηt − θ∗ = (I − γΣ)t(η0 − θ∗) +

t∑

u=1

γεu(I − γΣ)t−uϕ(xu),

with two parts, one which only depends on the initialization, that is, (I − γΣ)t(η0 − θ∗),
which is precisely the deterministic recursion from Section 5.2.1, and we refer to it as the
“bias” part, and a part that depends on the noise variables εu, u = 1, . . . , t, which we
refer to as the “variance” part. Assuming these noise variables are independent from x,
the two parts can be considered totally independently when taking expectations.

We then have, for the averaged iterates:

η̄
(bias)
t − θ∗ =

1

t

t−1∑

v=0

(I − γΣ)v(η0 − θ∗) =
1

t
(γΣ)−1

[
I − (I − γΣ)t

]
(η0 − θ∗)

η̄
(var)
t − θ∗ =

1

t

t−1∑

v=1

v∑

u=1

γεu(I − γΣ)v−uϕ(xu) = .
γ

t

t−1∑

u=1

t−1∑

v=u

(I − γΣ)v−uεuϕ(xu)

=
1

t

t−1∑

u=1

Σ−1
[
I − (I − γΣ)t−u

]
εuϕ(xu),

leading to

∥∥η̄(bias)t − θ∗
∥∥2
Σ

=
1

t2
(η0 − θ∗)⊤(γΣ)−2

[
I − (I − γΣ)t

]2
Σ(η0 − θ∗)

6
1

γ2t2
(η0 − θ∗)⊤Σ−1(η0 − θ∗),

E

[∥∥η̄(var)t − θ∗
∥∥2
Σ

]
=

σ2

γt2

t−1∑

u=1

tr
[
Σ2Σ−2

[
I − (I − γΣ)t−u

]2]
6
σ2d

t
.

We thus obtain two terms, the variance term in σ2d
t , which is present because the optimal

prediction is not equal to the response, and the bias term in 1
γ2t2 (η0 − θ∗)⊤Σ−1(η0 − θ∗),

which corresponds to the forgetting of initial conditions. It is worth comparing to the
same quantities for the non-averaged iterates: the bias term is upper-bounded by (using
the same constants) 1

γ2t2 (η0− θ∗)⊤Σ−1(η0− θ∗), but it is typically faster when the lowest

eigenvalue of Σ is strictly positive. The variance term is only of order γσ2 tr[Σ] for the
variance term (thus. with no convergence). This is illustrated in Figure 5.3.
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θ̄γ

θ0

θn

θ̄n

θ∗

Figure 5.3: The iterates of SGD form a Markov chain, which is homogeneous when the
step-size γ is constant. It typically converges to a stationary distribution with expec-
tation θ̄γ , which happens to be the global minimum θ∗ for quadratic costs (and with a
deviation of γ2 in general). The non-average iterates go from the initial condition θ0 to
the vicinity of θ̄γ , while the averaged iterates converge to that expectation θ̄γ .

When t = n iterations are performed, these should be compared to the excess risk for
the least-squares estimators defined in Section 3.3 obtained by minimizing the empirical
risk (only with the fixed design assumption). The variance term is the same as σ2d/n =
O(1/n), while the bias term is in O(1/n2) and seems smaller in the dependence in n.
However, in high-dimensional problems, it can start to be larger for small n, highlighting
the impact of forgetting initial conditions (see, e.g., Défossez and Bach, 2015).

The analysis provided in this section can be extended in several ways, for the “true”
multiplicative noise, with similar results (Bach and Moulines, 2013; Défossez and Bach,
2015), to obtain dimension-free results akin to Section 3.6 (Dieuleveut and Bach, 2016;
Dieuleveut et al., 2017), and to go beyond least-squares regression by studying logistic
regression (Bach, 2014).

5.4.4 Variance reduction (�)

We consider a finite sum F (θ) = 1
n

∑n
i=1 fi(θ), where each fi is R2-smooth (for example,

logistic regression with features bounded by R in ℓ2-norm), and which is such that F
is µ-strongly convex (for example by adding µ

2 ‖θ‖22 to each fi, or by benefitting from
the strong convexity of the sum). We denote by κ = R2/µ the condition number of the
problem (note that it is more significant than L/µ, where L is the smoothness constant
of F ).

Using SGD, the convergence rate has been shown to be O(κ/t) in Section 5.4.1, with
iterations of complexity O(d), while for GD, the convergence rate is O(exp(−t/κ)) (see
Section 5.2.3), but each iteration has complexity O(nd). We now present a result allowing
exponential convergence with an iteration cost of O(d).

The idea is to use a form of variance reduction, made possible by keeping in memory

past gradients. We denote by z
(t)
i ∈ Rd the version of gradient i stored at time t.

The SAGA algorithm (Defazio et al., 2014), which combines the earlier algorithms
SAG (Schmidt et al., 2017) and SVRG (Johnson and Zhang, 2013; Zhang et al., 2013),
works as follows: at every iteration, an index i(t) is selected uniformly at random in
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{1, . . . , n}, and we perform the iteration

θt = θt−1 − γ
[
f ′
i(t)(θt−1) +

1

n

n∑

i=1

z
(t−1)
i − z(t−1)

i(t)

]
,

with z
(t)
i(t) = f ′

i(t)(θt−1) and all others z
(t)
i left unchanged (i.e., the same as z

(t−1)
i ). In

words, we add to the update with the stochastic gradient f ′
i(t)(θt−1) the corrective term

1
n

∑n
i=1 z

(t−1)
i − z(t−1)

i(t) , which has zero expectation with respect to i(t). Thus, since the

expectation of f ′
i(t)(θt−1) with respect to i(t) is equal to the full gradient F ′(θ), the update

is unbiased like for regular SGD. The goal is to reduce its variance.

The idea behind variance reduction is that if the random variable z
(t−1)
i(t) (only consid-

ering the source of randomness coming from i(t)) is positively correlated with f ′
i(t)(θt−1),

then the variance is reduced, and larger step-sizes can be used.

As the algorithm converges, then z
(t)
i converges to f ′

i(η∗) (the individual gradient at

optimum). We will show that simultaneously θt converges to η∗ and z
(t)
i converges to

f ′
i(η∗) for all i, all at the same speed.

Proposition 5.9 (Convergence of SAGA) If initializing with z
(0)
i = f ′

i(θ0) at the
initial point θ0 ∈ Rd, for all i ∈ {1, . . . , n}, we have, for the choice of step-size γ = 1

4R2 :

E
[
‖θt − η∗‖22

]
6

(
1−min

{ 1

3n
,

3µ

16R2

})t(
1 +

n

4

)
‖θ0 − η∗‖22. (5.24)

Proof (��) The proof consists in finding a Lyapunov function that decays along itera-
tions.

Step 1. We first try our “usual” Lyapunov function, making the differences ‖z(t)i −
f ′
i(η∗)‖22 appear, with the update θt = θt−1−γωt, with ωt =

[
f ′
i(t)(θt−1)+ 1

n

∑n
i=1 z

(t−1)
i −

z
(t−1)
i(t)

]
,

‖θt − η∗‖22 = ‖θt−1 − η∗‖22 − 2γ(θt−1 − η∗)⊤ωt + γ2
∥∥ωt

∥∥2
2

by expanding the square,

Ei(t)‖θt − η∗‖22 = ‖θt−1 − η∗‖22 − 2γ(θt−1 − η∗)⊤F ′(θt−1)

+γ2Ei(t)

∥∥∥f ′
i(t)(θt−1) +

1

n

n∑

i=1

z
(t−1)
i − z(t−1)

i(t)

∥∥∥
2

2
,

using the unbiasedness of the stochastic gradient. We further get

Ei(t)‖θt − η∗‖22 6 ‖θt−1 − η∗‖22 − 2γ(θt−1 − η∗)⊤F ′(θt−1)

+2γ2Ei(t)
∥∥f ′
i(t)(θt−1)− f ′

i(t)(η∗)
∥∥2
2

+ 2γ2Ei(t)
∥∥f ′
i(t)(η∗)− z(t−1)

i(t) +
1

n

n∑

i=1

z
(t−1)
i

∥∥2

2
,
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using ‖a + b‖22 6 2‖a‖22 + 2‖b‖22. To bound Ei(t)

∥∥f ′
i(t)(θt−1)− f ′

i(t)(η∗)
∥∥2

2
, we use co-

coercivity of all functions fi (see Prop. 5.4), to get:

Ei(t)

∥∥f ′
i(t)(θt−1)− f ′

i(t)(η∗)
∥∥2
2

=
1

n

n∑

i=1

∥∥f ′
i(θt−1)− f ′

i(η∗)
∥∥2
2

6
1

n

n∑

i=1

R2[f ′
i(θt−1)− f ′

i(η∗)]⊤(θt−1 − θ∗)

6 R2F ′(θt−1)⊤(θt−1 − η∗) since

n∑

i=1

f ′
i(η∗) = 0. (5.25)

To bound Ei(t)

∥∥f ′
i(t)(η∗)− z(t−1)

i(t) + 1
n

∑n
i=1 z

(t−1)
i

∥∥2
2
, we use Ei(t)‖Z−Ei(t)Z‖22 6 Ei(t)‖Z‖22.

We thus get

Ei(t)‖θt − η∗‖22 6 ‖θt−1 − η∗‖22 − 2γ(θt−1 − η∗)⊤F ′(θt−1) + 2γ2R2(θt−1 − η∗)⊤F ′(θt−1)

+2γ2
1

n

n∑

i=1

∥∥f ′
i(η∗)− z(t−1)

i

∥∥2
2
,

6 ‖θt−1−η∗‖22 − 2γ(1−γR2)(θt−1−η∗)⊤F ′(θt−1)

+2
γ2

n

n∑

i=1

∥∥f ′
i(η∗)−z(t−1)

i

∥∥2

2
.

Step 2. We see the term
∑n

i=1

∥∥f ′
i(η∗)− z(t−1)

i

∥∥2
2

appearing, so we try to study how it

varies across iterations. We have, by definition of the updates of the vectors z
(t)
i :

n∑

i=1

∥∥f ′
i(η∗)− z(t)i

∥∥2
2

=

n∑

i=1

∥∥f ′
i(η∗)− z(t−1)

i

∥∥2
2

−
∥∥f ′
i(t)(η∗)−z(t−1)

i(t)

∥∥2

2
+
∥∥f ′
i(t)(η∗)−f ′

i(t)(θt−1)
∥∥2

2
.

Taking expectations with respect to i(t), we get

Ei(t)

[ n∑

i=1

∥∥f ′
i(η∗)−z(t)i

∥∥2
2

]
=

(
1− 1

n

) n∑

i=1

∥∥f ′
i(η∗)−z(t−1)

i

∥∥2
2

+
1

n

n∑

i=1

∥∥f ′
i(η∗)−f ′

i(θt−1)
∥∥2

2

6
(
1− 1

n

) n∑

i=1

∥∥f ′
i(η∗)− z(t−1)

i

∥∥2
2

+ R2(θt−1 − η∗)⊤F ′(θt−1),

where we use the bound in Eq. (5.25). Thus, for a positive number ∆ to be chosen later,

Ei(t)

[
‖θt − η∗‖22 + ∆

n∑

i=1

∥∥f ′
i(η∗)− z(t)i

∥∥2
2

]

6 ‖θt−1 − η∗‖22 − 2γ(1− γR2 − R2∆

2γ
)(θt−1 − η∗)⊤F ′(θt−1)

+
[
2
γ2

n∆
+ (1− 1/n)

]
∆

n∑

i=1

∥∥f ′
i(η∗)− z(t−1)

i

∥∥2

2
.
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With ∆ = 3γ2 and γ = 1
4R2 , we get 1− γR2 − R2∆

2γ = 3
8 and 2 γ2

n∆ = 2
3n . Moreover, using

the identity (θt−1 − η∗)⊤F ′(θt−1) > µ‖θt−1 − η∗‖22 as a consequence of strong convexity,
we then get:

Ei(t)

[
‖θt − η∗‖22 + ∆

n∑

i=1

∥∥f ′
i(η∗)− z(t)i

∥∥2
2

]
6

(
1−min

{ 1

3n
,

3µ

16R2

})[
‖θt−1 − η∗‖22

+∆

n∑

i=1

∥∥f ′
i(η∗)− z(t−1)

i

∥∥2
2

]
.

Thus

E
[
‖θt − η∗‖22

]
6

(
1−min

{ 1

3n
,

3µ

16R2

})t[
‖θ0 − η∗‖22 +

3

16R4

n∑

i=1

∥∥f ′
i(η∗)− z(0)i

∥∥2
2

]
.

If initializing with z
(0)
i = f ′

i(θ0), we get the desired bound by using the Lipschitz-
continuity of each f ′

i , which leads to (1 + 3n
16 )‖θ0 − η∗‖22 6 (1 + n

4 )‖θ0 − η∗‖22. This
leads to the final bound in Eq. (5.24).

We can make the following observations:

• The contraction rate after one iteration is
(
1−min

{
1
3n ,

3µ
16R2

})
, which is less than

exp
(
− min

{
1
3n ,

3µ
16R2

})
. Thus, after an “effective pass” over the data, that is, n

iterations, the contracting rate is exp
(
−min

{
1
3 ,

3µn
16R2

})
. It is only an effective pass

because after we sample n indices with replacement, we will not see all functions
(while some will be seen several times).

In order to have a contracting effect of ε, that is, having ‖θt − η∗‖22 6 ε‖θ0 −
η∗‖22, we need to have exp

(
− tmin

{
1
3n ,

3µ
16R2

})
2n 6 ε, which is equivalent to

t > max
{

3n, 16R
2

3µ

}
log 2n

ε . It just suffices to have t >
(
3n+ 16R2

3µ

)
log 2n

ε , and thus
the running time complexity is equal to d times the minimal number, that is

d
(

3n+
16R2

3µ

)
log

2n

ε
.

This is to be contrasted with batch gradient descent with step-size γ = 1/R2 (which
is the simplest step-size that can be computed easily), whose complexity is

dn
R2

µ
log

1

ε
.

We replace the product of n and condition number κ = R2

µ by a sum, which is
significant where κ is large.

• Multiple extensions of this result are available, such as a rate for non-strongly-
convex functions, adaptivity to strong-convexity, proximal extensions, and accel-
eration. It is also worth mentioning that the need to store past gradients can be
alleviated (see Gower et al., 2020, for more details).
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Figure 5.4: Comparison of stochastic gradient algorithms for logistic regression. Top:
n = 1000, bottom: n = 10000. Left: training objective in semi-log plot, right: expected
risk estimated with n test points.

• Note that these fast algorithms allow very small optimization errors and that the
best testing risks will typically be obtained after a few (10 to 100) passes.

Experiments. We consider ℓ2-regularized logistic regression, and we compare GD,
SGD, and SAGA, all with their corresponding step-sizes coming from the theoretical
analysis, with two values of n. We use a simple binary classification problem with linear
predictors in dimension d = 40 (inputs generated from a Gaussian distribution, with bi-
nary outputs obtained as the sign of a linear function with additive Gaussian noise), with
two different numbers of observations n, and regularization parameter µ = R2/n. See
Figure 5.4 (top: small n, left: large n). We see that for early iterations, SGD dominates
GD, while for larger numbers of iterations, GD is faster. This last effect is not seen for
large numbers of observations (right), where SGD always dominates GD. SAGA gets to
machine precision after 50 effective passes over the data in the two cases. Note also the
better performance on the testing data.
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5.5 Conclusion

Convex finite-dimensional problems. We can now provide a summary of conver-
gence rates below, with the main rates we have seen in this chapter (and some that
we have not seen) for convex objective functions. We separate between convex and
strongly convex, and between smooth and non-smooth, as well as between deterministic
and stochastic methods. Below, L is the smoothness constant, µ the strong convexity
constant, B the Lipschitz constant, and D the distance to optimum at initialization.

convex strongly convex

nonsmooth deterministic: BD/
√
t deterministic: B2/(tµ)

stochastic: BD/
√
t stochastic: B2/(tµ)

smooth deterministic: LD2/t2 deterministic: exp(−t
√
µ/L)

stochastic: LD2/
√
t stochastic: L/(tµ)

finite sum: n/t finite sum: exp(−min{1/n, µ/L}t)
The convergence rates are often written as a number t of accesses to individual gra-

dients to achieve excess function values of ε. This corresponds to inverting each formula
for ε as a function of t to a formula for t as a function of ε. This leads to the following
table:

convex strongly convex
nonsmooth deterministic: (BD)2/ε2 deterministic: B2/(εµ)

stochastic: (BD)2/ε2 stochastic: B2/(εµ)

smooth deterministic:
√
LD/

√
ε deterministic: exp(−t

√
µ/L)

stochastic: (LD2)2/ε2 stochastic: L/(εµ)
finite sum: n/ε finite sum: max{n, L/µ} log(1/ε)

△!
Like in the rest of the book, where we obtain explicit convergence rates, the
homogeneity of all quantities can be checked (see exercise below). In the
context optimization, this ensures that algorithms are invariant by change of
variable θ → αθ for α 6= 0.

Exercise 5.31 Check the homogeneity of all quantities of this section (step-size and con-
vergence rates).

Note that many important themes in optimization have been ignored, such as Frank-
Wolfe methods (presented in Chapter 9), coordinate descent, or duality. See Nesterov
(2018); Bubeck (2015) for further details. See also Chapter 7 and Chapter 9 for opti-
mization methods for kernel methods and neural networks.

For strongly-convex smooth problems, the following toy figure also provides a good
summary, with gradient descent being along a line in a semi-log plot (that is, exponential
convergence) but with a staircase effect due to the lack of progress while computing
the full gradient, SGD starting fast but having trouble reaching low optimization error,
with variance reduction getting the best of both worlds, together with a faster rate of
convergence than regular GD.



144 CHAPTER 5. OPTIMIZATION FOR MACHINE LEARNING

gradient descent

stochastic gradient descent

variance reduction

running time

lo
g(
ex
ce
ss

co
st
)

Beyond finite-dimensional problems. Supervised machine learning problems lead-
ing to finite-dimensional convex objective functions are essentially problems with pre-
diction functions that are linear in their parameters, with a feature map that can be
explicitly computed. In Chapter 7, we extend some of the algorithms seen in this chapter
to features that are only available through dot-products ϕ(x)⊤ϕ(x′).

Beyond convex problems. Complexity bounds can be obtained beyond convex prob-
lems, as shown briefly in Section 5.2.6. However, they only certify that the gradient norm
will go to zero, not that a global optimum has been approximately reached. Objective
functions obtained from neural network training provide an important class of non-convex
objective functions that we consider in Chapter 9.

Generalization bounds: Rademacher or SGD? In the last chapter, we have shown
how to obtain generalization bounds for the constrained or regularized empirical risk min-
imizer. They relied on Rademacher complexities, which apply to all Lipschitz-continuous
loss functions (not necessarily convex). However, they leave open how to obtain algo-
rithmically such minimizers. In this section, we have not only seen algorithms to obtain
such minimizers through gradient-based techniques but also single-pass SGD that directly
provides the same generalization bound on unseen data for an efficient algorithm. We
will see in Section 11.1.3 how this extends to the mirror descent framework to account
for non-Euclidean geometries.

These two ways of obtaining generalization bounds will also be compared for multi-
category classification in Chapter 13, where SGD-based bounds will lead to better bounds.



Chapter 6

Local averaging methods

Chapter summary
– First chapter on non-parametric methods that are not based on parametric models

and can adapt to complex target functions.
– “Linear” estimators: These are based on assigning weight functions to each obser-

vation so that each observation can vote for its label with the corresponding weight
(typically non-linear in the input variables).

– Partitioning estimates: the input space is cut into non-overlapping cells, and the
predictor is piecewise-constant.

– Nadaraya-Watson estimators (a.k.a. kernel regression): each observation assigns a
weight proportional to its distance in input space.

– k-nearest-neighbors: each observation assigns an equal weight to its k nearest neigh-
bors.

– Consistency: All of these methods can provably learn complex Lipschitz-continuous
non-linear functions with a convergence rate of the form O(n−2/(d+2)), where d is
the underlying input dimension, leading to the curse of dimensionality.

6.1 Introduction

Like in previous chapters, we consider the supervised learning set-up, where we are being
given a training set: observations (xi, yi) ∈ X × Y, i = 1, . . . , n, of inputs/outputs,
features/variables are assumed independent and identically distributed (i.i.d.) random
variables with common distribution p. We consider a loss function ℓ : Y× Y→ R, where
ℓ(y, z) is the loss of predicting z while the true label is y.

Our goal is to minimize the expected risk, that is, the generalization performance of

145
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a prediction function f from X to Y:

R(f) = E
[
ℓ(y, f(x))

]
,

where the expectation is taken with respect to the distribution p.

△! Like in the rest of the book, we assume that the testing distribution is the same as
the training distribution.

△! Be careful with the randomness or lack thereof of f : The estimator f̂ we will use

depends on the training data and not on the testing data, and thus R(f̂) is random
because of the dependence on the training data.

As seen in Chapter 2, the two classical cases are:

• Binary classification: Y = {0, 1} (or often Y = {−1, 1}), and ℓ(y, z) = 1y 6=z (“0-1”
loss). Then R(f) = P(f(x) 6= y).

• Regression: Y = R and ℓ(y, z) = (y − z)2 (square loss). Then R(f) = E(y − f(x))2.

As seen in Chapter 2, minimizing the expected risk leads to an optimal “target func-
tion,” called the Bayes predictor f∗ ∈ arg minR(f) = E

[
ℓ(y, f(x))

]
. As shown in Sec-

tion 2.2.3, the optimal predictor can be obtained from the conditional distribution of y|x
as

f∗(x) ∈ arg min
z∈Y

E(ℓ(y, z)|x).

Note that (a) the Bayes predictor is not unique but that all Bayes predictors lead to
the same Bayes risk, and (b) the Bayes risk is usually non-zero (unless the dependence
between x and y is deterministic). The goal of supervised machine learning is thus to
estimate f∗, knowing only the training data D = {(x1, y1), . . . , (xn, yn)} and the loss ℓ,
with the goal of minimizing the risk or the excess risk R(f)−R∗. We have the following
special cases:

• For binary classification: Y = {0, 1} and ℓ(y, z) = 1y 6=z, the Bayes predictor is equal
to f∗(x) ∈ arg maxi∈{0,1} P(y = i|x). This extends naturally to multi-category
classification with the Bayes predictor f∗(x) ∈ arg max

i∈{1,...,k}
P(y = i|x).

If a convex surrogate from Section 4.1.1 is used, such as the logistic loss ℓ(y, z) =

log(1 + exp(−yz)) for z ∈ R, then the target function is f∗(x) = log P(y=1|x)
P(y=−1|x) .

• For regression: Y = R and ℓ(y, z) = (y− z)2, the Bayes predictor is f∗(x) = E(y|x).
Moreover, we have R(f)− R∗ =

∫
X

(f(x)− f∗(x))2dp(x) = ‖f − f∗‖2L2(dp(x))
.

In Chapter 3 and Chapter 4, we explored methods based on empirical risk minimiza-
tion, with explicit finite-dimensional models (often linear in their parameters) that may
not be flexible enough to adapt to complex target functions. We now explore methods
that can, starting with local averaging methods, which are not based on empirical risk
minimization. In subsequent chapters, we will study kernel methods (Chapter 7) and
neural networks (Chapter 9).
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6.2 Local averaging methods

In local averaging methods, we aim at approximating the target function f∗ directly
without any form of optimization. This will be done by approximating the conditional
distribution p(y|x) of y given x, by some p̂(y|x). We then replace the target function

f∗(x) ∈ arg minz∈Y

∫
Y
ℓ(y, z)dp(y|x) by f̂(x) ∈ arg minz∈Y

∫
Y
ℓ(y, z)dp̂(y|x). These are

often called “plug-in” estimators.

In the usual cases, this leads to the following predictions:

• For classification with the 0-1 loss: f̂(x) ∈ arg max
j∈{1,...,k}

P̂(y = j|x).

• For regression with the square loss: f̂(x) =
∫
Y
y dp̂(y|x).

6.2.1 Linear estimators

In this chapter, we will consider “linear” estimators, where the conditional distribution
is of the form

p̂(y|x) =
n∑

i=1

ŵi(x)δyi(y),

where δyi is the Dirac probability distribution at yi (putting a unit mass at yi), and the
weight functions ŵi : X→ R, i = 1, . . . , n, depends on the input data only (for simplicity)
and satisfy (almost surely in x):

∀x ∈ X, ∀i ∈ {1, . . . , n}, ŵi(x) > 0, and
n∑

i=1

ŵi(x) = 1.

These conditions ensure that for all x ∈ X, p̂(y|x) is a probability distribution.

△! Some references allow for the weights not to sum to 1.

For our running examples, this leads to the following predictions:

• For classification: f̂(x) ∈ arg max
j∈{1,...,k}

n∑

i=1

ŵi(x)1yi=j , that is, each observation

(xi, yi) votes for its label with weight ŵi(x), a strategy often called “majority vote”.

• For regression: Y = R: f̂(x) =

n∑

i=1

ŵi(x)yi. This is why the terminology “linear

estimators” is sometimes used, since, as a function of the response vector in Rn, the
estimator is linear (note that this is the case as well for kernel ridge regression in

Chapter 7). If we only consider predictions f̂(xi) at the observed inputs, the vector

ŷ ∈ Rn of predictions ŷi = f̂(xi), for i ∈ {1, . . . , n} is of the form ŷ = Hy, where
the matrix H ∈ Rn×n, often called the smoothing matrix or the “hat matrix”, is
such that Hij = ŵj(xi).

Note that on top of being a linear estimator, the estimator satisfies additional
properties: if the same constant is added to all outputs, the exact same constant
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Figure 6.1: Weights of linear estimators in d = 1 dimension for the three types of local
averaging estimators. The n = 8 weight functions x 7→ ŵi(x) are plotted with the
observations in black.

is added to the prediction function; moreover, given two vectors of outputs y and
y′ ∈ Rn, with two prediction functions f̂ and f̂ ′, if yi 6 y′i for all i ∈ {1, . . . , n},
then f̂(x) 6 f̂ ′(x) for all x ∈ X.

Construction of weight functions. In most cases, for any i, the weight function
ŵi(x) is close to 1 for training points xi which are close to x. We now show three
classical ways of building them: (1) partition estimators, (2) Nearest-neighbors, and (3)
Nadaraya-Watson estimator (a.k.a. kernel regression). See examples in Figure 6.1.

6.2.2 Partition estimators

If X =
⋃
j∈J Aj is a partition (such that for all distinct j, j′ ∈ J , Aj ∩Aj′ = ∅) of X with

a countable index set J (which we will assume finite for simplicity, equal to {1, . . . , |J |}),
then we can consider for any x ∈ X the corresponding element A(x) of the partition (that
is, A(x) is the unique Aj , j ∈ J , such that x ∈ Aj), and define

ŵi(x) =
1xi∈A(x)∑n
i′=1 1xi′∈A(x)

, (6.1)

with the convention that if no training data point lies in A(x), then ŵi(x) is equal to 1/n
for each i ∈ {1, . . . , n}. This implies that each ŵi is piecewise constant with respect to the
partition, that is, for any non-empty cell Aj (that is, for which at least one observation
falls in Aj), for any x ∈ Aj , the vectors (ŵi(x))i∈{1,...,n} has weights equal to 1/nAj for
i ∈ Aj , where nAj is the number of training points in the set Aj , and 0 otherwise.

Equivalence with least-squares regression. When applied to regression where the
estimator is f̂(x)=

∑n
i=1 ŵi(x)yi, then using a partition estimator can be seen as a least-

squares estimator with feature vector
(
ϕ(x)
1

)
=
((1x∈Aj

)j∈J

1

)
∈ R|J|+1, as we now show.
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Indeed, we then aim to estimate
(
θ
η

)
∈ R|J|+1 for the prediction function

f̂(x) =
∑

j∈J
θj1x∈Aj + η.

From training data (x1, y1), . . . , (xn, yn), as shown in Chapter 3, we can directly estimate
the constant term as η = ȳ = 1

n

∑n
i=1 yi, while for the other components, we need to

solve the normal equations

n∑

i=1

ϕ(xi)ϕ(xi)
⊤ θ =

n∑

i=1

(yi − ȳ)ϕ(xi).

It turns out that the matrix nΣ̂ =
∑n

i=1 ϕ(xi)ϕ(xi)
⊤ is diagonal where for each j ∈ J ,

nΣ̂jj is equal to nAj the number of data points lying in cell Aj . This implies that for a
non-empty cell Aj , θj is the average of all yi − ȳ, for all i such that xi lies in Aj . Thus,
for all x ∈ Aj , the prediction is exactly θj + ȳ, as obtained from weights in Eq. (6.1). For
empty cells, θj is not determined by the normal equations above, and if we set it to zero,
we recover our convention of predicting as the mean of all labels.

△! Other conventions exist (such as all zero weights when no data point lies in A(x)).

This equivalence with least-squares estimation with a diagonal (empirical or not) non-
centered covariance matrix makes it attractive for theoretical purposes, as the inversion
of the population and expected covariance matrices could be done in closed form.

Choice of partitions. There are two standard applications of partition estimators:

• Fixed partitions: for example, when X = [0, 1]d, we can consider cubes of length
h, with |J | = h−d (see example below in d = 2 dimension with |J | = 25). Note
here that the computation time for each x ∈ X is not necessarily proportional to |J |
but to n (by simply considering the bins where the data lie). This estimator is
sometimes called a “regressogram”. We need then to choose the bandwidth h (see
analysis in Section 6.3.1). See Figure 6.2 for an illustration in one dimension.

A2 A3 A4 A5

A6 A7 A8 A9 A10

A11 A12 A13 A14 A15

A16

A21

A17

A22

A18

A23

A19

A24

A20

A25

A1

• Decision trees: for data in a hypercube, we can recursively partition it by se-
lecting a variable to split, leading to a maximum reduction in errors when defining
the partitioning estimate.1 A model selection criterion is then needed to control

1See more details in https://en.wikipedia.org/wiki/Decision_tree_learning.

https://en.wikipedia.org/wiki/Decision_tree_learning
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the number of cells in the partition (see, e.g., Friedman et al., 2009, Section 9.2).
Note here that the partition depends on the labels (so the analysis below does not
apply unless the partitioning is learned on data different from the one used for the
estimation).
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Figure 6.2: Regressograms in d = 1 dimension, with three values of |J | (the number of
sets in the partition). The n = 100 input data points are distributed uniformly on [0, 1],
and, for i ∈ {1, . . . , n}, the outputs yi are equal to 1

2 −|xi− 1
2 |+εi, where εi is a Gaussian

with mean zero and variance σ2 = 1
100 . We can observe both underfitting (|J | too small)

and overfitting (|J | too large). Note that the target function f∗ is piecewise affine and
that on the affine parts, the estimator is far from linear; that is, the estimator cannot
take advantage of extra-regularity (see Section 6.5 for more details).

6.2.3 Nearest-neighbors

Given an integer k > 1, and a distance d on X, for any x ∈ X, we can order the n
observations so that

d(xi1(x), x) 6 d(xi2(x), x) 6 · · · 6 d(xin(x), x),

where {i1(x), . . . , in(x)} = {1, . . . , n}, and ties are broken randomly2 (that is, for all
x ∈ X, by sampling randomly once, which indices should come first for each i). See the
illustration below.

x

xi1(x)

xi2(x)

xi3(x)

xi4(x)

2Other conventions share the weights among all ties.
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We then define

ŵi(x) = 1/k if i ∈ {i1(x), . . . , ik(x)}, and 0 otherwise.

Given a new input x ∈ Rd, the nearest neighbor predictor looks at the k nearest points xi
in the data set {(x1, y1), . . . , (xn, yn)} and predicts a majority vote among them (for clas-
sification) or simply the averaged response (for regression). The number of nearest neigh-
bors is the hyperparameter, which needs to be estimated (typically by cross-validation);
see Section 6.3.2 for an analysis. See a one-dimensional example in Figure 6.3. For k = 1,
the prediction function is piecewise constant, with each constant piece corresponding to
a region where a given observation is the nearest neighbor, leading, in two dimensions to
the Voronoi diagram below, with all regions displayed.

Algorithms. Given a test point x ∈ X, the naive algorithm looks at all training data
points for computing the predicted response. Thus the complexity is O(nd) per test point
in Rd. When n is large, this is costly in time and memory. Indexing techniques exist for
(potentially approximate) nearest-neighbor search, such as “k-d-trees”,3 with typically a
logarithmic complexity in n (but with some additional compiling time), with a memory
footprint that can grow exponentially in dimension (see, e.g., Shakhnarovich et al., 2005).

Exercise 6.1 What is the pattern of non-zeros of the smoothing matrix H ∈ Rn×n?

6.2.4 Nadaraya-Watson estimator a.k.a. kernel regression (�)

Given a “kernel” function k : X× X→ R+, which is pointwise non-negative, we define

ŵi(x) =
k(x, xi)∑n
i′=1 k(x, xi′ )

,

with the convention that if k(x, xi) = 0 for all i ∈ {1, . . . , n}, then ŵi(x) is equal to
1/n for each i (which is the same convention used for estimators based on partitions in
Section 6.2.2).

3See https://en.wikipedia.org/wiki/K-d_tree.

https://en.wikipedia.org/wiki/K-d_tree
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Figure 6.3: k-nearest neighbor regression in d = 1 dimension, with three values of k (the
number of neighbors), with the same data as Figure 6.2. We can observe both underfitting
(k too large) and overfitting (k too small).

In most cases where X ⊂ R
d, we take k(x, x′) = h−dq

(
1
h (x−x′)

)
for a certain function

q : Rd → R+ that has large values around 0, and h > 0 a “bandwidth” parameter to
be selected (see analysis in Section 6.3.3). If we assume that q is integrable with an
integral equal to one, then k(·, x′) is a probability density with mass around x′, which
gets more concentrated as h goes to zero. See the illustration below for the two typical
kernel functions (sometimes called “windows”).

qh, h small

x

qh, h large

Box kernel

qh, h small

x

qh, h large

Gaussian kernel

Typical examples are:

• Box kernel: q(x) ∝ 1‖x‖261, which leads to a weight functions ŵi with many zeros.
See below for an illustration in d = 2 dimensions.

x h
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• Gaussian kernel q(x) ∝ e−‖x‖2/2, where we use the fact it is non-negative pointwise,
as opposed to positive-definiteness in Chapter 7.4 See a one-dimensional experiment
in Figure 6.4.

In terms of algorithms, with a naive algorithm, for every test point, all the input data
have to be considered, that is, a complexity proportional to n. The same techniques
used for efficient k-nearest-neighbor search (e.g., k-d-trees) can also be applied here.
Algorithms based on the fast Fourier transform can also be used (Silverman, 1982).
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h = 0.005
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Nadaraya-W.
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0.4

0.6

y

h = 0.250

target

Nadaraya-W.

Figure 6.4: Nadaraya-Watson regression in d = 1 dimension, with three values of h (the
bandwidth), for the Gaussian kernel, with the same data as Figure 6.2. We can observe
both underfitting (h too large), or overfitting (h too small).

6.3 Generic “simplest” consistency analysis

We consider for simplicity the regression case. For classification, convex surrogate tech-
niques such as those used in Section 4.1 can be used, with, for example, the square loss or
the logistic loss (with then a square root calibration function on top of the least-squares
excess risk, see Exercise 6.2 below). Still, better rates can be obtained directly (see, e.g.,
Chen and Shah, 2018; Biau and Devroye, 2015; Audibert and Tsybakov, 2007; Chaudhuri
and Dasgupta, 2014).

We make the following generic simplifying assumptions (weaker ones could be consid-
ered with more involved proofs):

(H-1) Bounded noise: There exists σ > 0 such that (y − E(y|x))2 6 σ2 almost surely.
We could also consider a weaker assumption that the conditional variance E

[
(y −

E(y|x))2|x
]

is bounded by σ2 almost surely.

(H-2) Regular target function: The target function f∗(x) = E(y|x) isB-Lipschitz-continuous
with respect to a distance d. For weaker assumptions, see Section 6.4.

We have, with the target function f∗(x) = E(y|x), at a test point x ∈ X (and using that

4See also https://francisbach.com/cursed-kernels/

https://francisbach.com/cursed-kernels/
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the weights ŵi(x) sum to one):

f̂(x)− f∗(x) =

n∑

i=1

yiŵi(x)− E(y|x)

=

n∑

i=1

ŵi(x)
[
yi − E(yi|xi)

]
+

n∑

i=1

ŵi(x)
[
E(yi|xi)− E(y|x)

]

=

n∑

i=1

ŵi(x)
[
yi − E(yi|xi)

]
+

n∑

i=1

ŵi(x)
[
f∗(xi)− f∗(x)

]
.

Given x1, . . . , xn (and because we have assumed the weight functions do not depend
on the labels), the left term has zero expectation, while the right term is deterministic.
We thus have, using the independence of all (xi, yi), i = 1, . . . , n, and for x fixed:

E
[
(f̂(x)− f∗(x))2

∣∣x1, . . . , xn
]

= (E(f̂(x)
∣∣x1, . . . , xn)− f∗(x))2 + var

[
f̂(x)

∣∣x1, . . . , xn
]

=
[ n∑

i=1

ŵi(x)
[
f∗(xi)− f∗(x)

]]2
+

n∑

i=1

ŵi(x)2E
[(
yi − E(yi|xi)

)2∣∣xi
]

= bias + variance,

with a “bias” term which is zero if f∗ is constant,5 and a “variance” term which is zero,
when y is a deterministic function of x (i.e., σ = 0). Note that at this point, we only had
equalities in the argument; we can now upper-bound as:

E
[
(f̂(x) − f∗(x))2

∣∣x1, . . . , xn
]

6

[ n∑

i=1

ŵi(x)
∣∣f∗(xi)− f∗(x)

∣∣
]2

+ σ2
n∑

i=1

ŵi(x)2 using (H-1), (6.2)

6

[ n∑

i=1

ŵi(x)Bd(xi, x)
]]2

+ σ2
n∑

i=1

ŵi(x)2 using (H-2),

6 B2
n∑

i=1

ŵi(x)d(xi, x)2 + σ2
n∑

i=1

ŵi(x)2 using Jensen’s inequality.

Note that in the last inequality, having the weight vector ŵ(x) in the simplex is crucial.
We then have for the expected excess risk this generic bound we will use for all three
cases (partitions, k-nn, and Nadaraya-Watson):

∫

X

E[(f̂(x)−f∗(x))2]dp(x) 6 B2

∫

X

E

[ n∑

i=1

ŵi(x)d(xi, x)2
]
dp(x)+σ2

n∑

i=1

∫

X

E[ŵi(x)2]dp(x).

(6.3)

5What we call bias in this book is sometimes referred to as the squared bias.
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△! The expectation is with respect to the training data. The expectation with respect
to the testing point x is kept as an integral to avoid confusion.

This upper bound can be divided into two terms:

• A variance term σ2
∑n

i=1

∫
X
E[ŵi(x)2]dp(x), that depends on the noise on top of the

optimal predictions. Since the weights sum to one, we can write
∑n

i=1 E[ŵi(x)2] =∑n
i=1 E[(ŵi(x)−1/n)2]+2/n−1/n2, that is, up to vanishing constant, the variance

term measures the deviation to uniform weights.

• A bias term B2
∫
X
E

[∑n
i=1 ŵi(x)d(xi, x)2

]
dp(x), which depends on the regularity

of the target function through the constant B. It will be small if the weight vectors
ŵ(x) put most of its mass on observations xi that are close to x.

This leads to two conditions: variance and bias have to go to zero when n grows, cor-
responding to two simple expressions that depend on the weights. For the variance, the
worst case scenario is that ŵi(x)2 ≈ ŵi(x), that is, weights are putting all the mass into a
single label (usually different for different testing point), thus leading to overfitting. For
the bias, the worst-case scenario is that weights are uniform (leading to underfitting).

In the following, we will specialize it for X a subset of Rd, with a distribution with a
density with some minor regularity properties (all will have compact support, that is, X
compact), where we show that a proper setting of the hyperparameters leads to “good”
predictions. This will be done for all three cases of local averaging methods.

We look at universal consistency in Section 6.4, where we will list assumption (H-2).

Exercise 6.2 For the binary classification problem, with Y = {−1, 1}, assume that
f∗(x) = E(y|x) is B-Lipschitz-continuous. Using Section 4.1.4, show that the excess
risk of the majority vote is upper-bounded by

(
B2

∫

X

E

[ n∑

i=1

ŵi(x)d(xi, x)2
]
dp(x) + σ2

n∑

i=1

∫

X

E[ŵi(x)2]dp(x)

)1/2

.

6.3.1 Fixed partition

For the partitioning estimate defined in Section 6.2.2, we can prove the following conver-
gence rate.

Proposition 6.1 (Convergence rate for partition estimates) Assume bounded noise
(H-1) and a Lipschitz-continuous target function (H-2), and a partition of the bounded

support X of p, as X =
⋃
j∈J Aj; then for the partitioning estimate f̂ , we have:

∫

X

E[(f̂ (x)− f∗(x))2]dp(x) 6
(

8σ2 +
B2

2
diam(X)2

) |J |
n

+B2 max
j∈J

diam(Aj)
2. (6.4)

Optimal trade-off between bias and variance. Before we look at the proof (which
is based on Eq. (6.3)), we can look at the consequence of the bound in Eq. (6.4). We

need to balance the terms (up to constants) maxj∈J diam(Aj)
2 and |J|

n . In the simplest
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Figure 6.5: Learning curves for all three local averaging methods as a function of the
corresponding hyperparameter. Left: regressogram (hyperparameter = number |J | of sets
in the partition), middle: k-nearest-neighbors (hyperparameter = number of neighbors
k), right: Nadaraya-Watson (hyperparameter = bandwidth h). In all three cases, we see
a trade-off between under-fitting and over-fitting.

situation of the unit-cube [0, 1]d, with |J | = h−d cubes of length h, we get |J|
n = 1

nhd and

maxj∈J diam(Aj)
2 = h2, which, with h = n−1/(2+d) to make them equal, leads to a rate

proportional to n−2/(2+d). As shown by Györfi et al. (2006), this rate is optimal for the
estimation of Lipschitz-continuous functions (see Chapter 15).

While optimal, this is a very slow rate and a typical example of the curse of dimen-
sionality. For this rate to be small, n has to be exponentially large in dimension. This is
unavoidable with so little regularity (only bounded first-order derivatives). In Chapter 7
(and also in Section 6.5), we show how to leverage the smoothness of the target func-
tion to get significantly improved bounds (local averaging cannot take strong advantage
of such smoothness). In Chapter 8, we will leverage dependence on a small number of
variables.

Experiments. For the problem shown in Section 6.2, we plot in Figure 6.5 (left plot)
training and testing errors averaged over 32 replications (with error bars showing the
standard deviations), where we clearly see the trade-off in the choice of |J |.
Proof of Proposition 6.1 (�) We consider an element Aj of the partition with at least
one observation in it (a non-empty cell). Then for x ∈ Aj , and i among the indices of the
points lying in Aj , ŵi(x) = 1/nAj where nAj ∈ {1, . . . , n} is the number of data points
lying in Aj .

Variance. From Eq. (6.3), the variance term is bounded from above by σ2 times

n∑

i=1

ŵi(x)2 = nAj

1

n2
Aj

=
1

nAj

.
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If Aj contains no input observations, then all weights are equal to 1/n, and this sum is
equal to n× 1

n2 = 1/n for all x ∈ Aj . Thus, we get

∫

X

E
[ n∑

i=1

ŵi(x)2
]
dp(x) =

∫

X

∑

j∈J
1x∈AjE

[ 1

nAj

1nAj
>0 +

1

n
1nAj

=0

]
dp(x)

=
∑

j∈J
P(Aj) · E

[ 1

nAj

1nAj
>0 +

1

n
1nAj

=0

]
.

Intuitively, by the law of large numbers, nAj/n tends to P(Aj), so the variance term is

expected to be of the order σ2
∑

j∈J P(Aj)
1

nP(Aj)
= σ2 |J|

n , which is to be expected as this

is essentially equivalent to least-squares regression with |J | features (1x∈Aj )j∈J .

More formally, we have P(nAj = 0) = (1− P(Aj))
n, and, using Bernstein’s inequality

(see Section 1.2.3) for the random variables 1xi∈Aj , which have mean and variance upper

bounded by P(Aj), we have: P
(nAj

n 6 1
2P(Aj)

)
= P

(nAj

n 6 P(Aj) − 1
2P(Aj)

)
6 exp

(
−

nP(Aj)
2/4

2P(Aj)+2(P(Aj)/2)/3

)
6 exp(−nP(Aj)/10) 6 5

nP(Aj)
, where we have used αe−α 6 1/2 for

any α > 0. This leads to the bound

∑

j∈J
P(Aj)E

[
1nAj

>0

nAj

+
1nAj

=0

n

]
6

∑

j∈J
P(Aj)E

[116nAj
6n

2 P(Aj)

nAj

+
1nAj

>n
2 P(Aj)

nAj

+
1nAj

=0

n

]

6
∑

j∈J
P(Aj)

[
P

(nAj

n
6

P(Aj)

2

)
+

2

nP(Aj)
+

1

n
P(nAj =0)

]

6
∑

j∈J
P(Aj)E

[ 5

nP(Aj)
+

2

nP(Aj)
+

1

nP(Aj)

]
6

8|J |
n
.

Bias. We have, for x ∈ Aj and a non-empty cell,

n∑

i=1

ŵi(x)d(x, xi)
2 6 diam(Aj)

2,

with
∑n
i=1 ŵi(x)d(x, xi)

2 = 1
n

∑n
i=1 d(x, xi)

2 6 diam(X)2 for empty-cells. Thus, separat-
ing the cases nAj = 0 and nAj > 0:

∫

X

E
[ n∑

i=1

ŵi(x)d(x, xi)
2
]
dp(x) 6

∑

j∈J
P(Aj)E

[
diam(Aj)

21nAj
>0 + 1nAj

=0diam(X)2
]

6
∑

j∈J
P(Aj)

[
diam(Aj)

2 + (1 − P(Aj))
ndiam(X)2

]

=
∑

j∈J
P(Aj)diam(Aj)

2+
∑

j∈J
P(Aj)(1−P(Aj))

n · diam(X)2.
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Using that u(1− u)n 6 1/(2n) for u > 0, we get

∫

X

E
[ n∑

i=1

ŵi(x)d(x, xi)
2
]
dp(x)6

∑

j∈J
P(Aj)diam(Aj)

2 +
1

2

|J |
n
× diam(X)2,

which leads to the desired term.

6.3.2 k-nearest neighbor

Here, since all weights are equal to zero except k of them, which are equal to 1
k , we have∑n

i=1 ŵi(x)2 = 1
k , so the variance term will go down as soon as k tends to infinity. For

the bias term, the needed term
∑n

i=1 ŵi(x)d(xi, x)2 is equal to the average of the squared
distances between x and its k-nearest neighbors within {x1, . . . , xn}, and this is less than
the expected distance to the k-th nearest neighbor xik(x), for which the two following
lemmas, taken from Biau and Devroye (2015, Theorem 2.4), give an estimate for the
ℓ∞-distance, and thus for all distances by equivalence of norms on Rd.

Lemma 6.1 (distance to nearest neighbor) Consider a probability distribution with
compact support in X ⊂ R

d. Consider n+1 points x1, . . . , xn, xn+1 sampled i.i.d. from X.
Then the expected squared ℓ∞-distance between xn+1 and its first-nearest-neighbor is less

than 4diam(X)2

n2/d for d > 2, and less than 2
ndiam(X)2 for d = 1.

Proof We denote by x(i) a nearest neighbor of xi among the other n points. Since all
n+1 points are i.i.d., we can permute the indices without changing the distributions, and
all ‖xi − x(i)‖2∞ have the same distribution as ‖xn+1 − x(n+1)‖2∞; thus, we can instead

compute 1
n+1

∑n+1
i=1 E

[
‖xi − x(i)‖2∞

]
. We denote by Ri = ‖xi − x(i)‖∞ and assume for

simplicity Ri > 0 for all i (the general case is left as an exercise). Then the sets Bi =
{x ∈ R

d, ‖x− xi‖∞ < Ri

2 } are disjoint since for i 6= j, ‖xi − xj‖∞ > max{Ri, Rj}. See
the illustration below in two dimensions, with squares representing the sets Bi centered
as xi (represented as dots).
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Moreover, their union has diameter less than diam(X) + diam(X) = 2diam(X). Thus,
the volume of the union of all sets Bi, which is equal to the sum of their volumes, is

less than
(
2diam(X)

)d
. Thus, we have:

∑n+1
i=1 R

d
i 6

(
2diam(X)

)d
. Therefore, by Jensen’s

inequality, for d > 2,

( 1

n+ 1

n+1∑

i=1

R2
i

)d/2
6

1

n+ 1

n+1∑

i=1

(Ri)
d 6

2ddiam(X)d

n+ 1
,

leading to the desired result. For d = 1, we have
(

1
n+1

∑n+1
i=1 R

2
i

)
6diam(X)

(
1

n+1

∑n+1
i=1 Ri

)
,

which is less than 2
n+1diam(X)2.

Lemma 6.2 (distance to k-nearest-neighbor) Let k > 1. Consider a probability dis-
tribution with compact support in X ⊂ Rd. Consider n+1 points x1, . . . , xn, xn+1 sampled
i.i.d. from X. Then the expected squared ℓ∞-distance between xn+1 and its k-nearest-

neighbor is less than 8diam(X)2
(
2k
n

)2/d
for d > 2, and less than 8k

n diam(X)2 for d = 1.

Proof (�) Without loss of generality, we assume 2k 6 n (otherwise, the proposed bounds
are trivial). We can then divide randomly (and independently) the n first points into 2k
sets of size approximately n

2k . We denote xj(k) a 1-nearest neighbor of xn+1 within the

j-th set. The squared distance from xn+1 to the k-nearest neighbor among all first n
points is less than the k-th smallest of the distances ‖xn+1 − xj(k)‖2∞, j ∈ {1, . . . , 2k},
because we take a k-nearest neighbor over a smaller set. This k-th smallest distance is
less than 1

k

∑2k
j=1 ‖xn+1−xj(k)‖2∞ (this is a general fact that the k-smallest element among

non-negative p elements, is less than their sum divided by p− k, applied here for p = k).

Thus, using the lemma above on the 1-nearest-neighbor from n
2k points, we get that

the desired averaged distance is less than, for d > 2:

1

k

2k∑

j=1

4
diam(X)2

( n2k )2/d
= 8

diam(X)2

n2/d
(2k)2/d.

A similar argument can be extended to d = 1 (left as an exercise).

Putting things together, we get the following result for the consistency of k-nearest-
neighbors.

Proposition 6.2 (Convergence rate for k-nearest-neighbors) Assume bounded noise
(H-1) and a Lipschitz-continuous target function (H-2) with an input distribution with

bounded support X. Then for the k-nearest-neighbor estimate f̂ with the ℓ∞-norm, we
have, for d > 2:

∫

X

E[(f̂(x)− f∗(x))2]dp(x) 6
σ2

k
+ 8B2diam(X)2

(2k

n

)2/d

. (6.5)

Balancing the two terms above is obtained with k ∝ n2/(2+d), and we get the same result
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as for the other local averaging schemes. See more details by Chen and Shah (2018) and
Biau and Devroye (2015).

Exercise 6.3 Show that if the Bayes rate is 0 (that is, σ = 0), then 1-nearest-neighbor
is consistent.

Experiments. For the problem shown in Section 6.2, we plot in Figure 6.5 (middle)
training and testing errors averaged over 32 replications (with error bars showing the
standard deviations), where we clearly see the trade-off in the choice of k.

6.3.3 Kernel regression (Nadaraya-Watson) (�)

In this section, we assume that X = Rd, and for simplicity, we assume that the distribution
of the inputs has a density (also denoted p) with respect to the Lebesgue measure. We
also assume that the kernel is of the form k(x, x′) = qh(x − x′) = h−dq( 1

h (x − x′)) for a
probability density q : Rd → R+. The function qh is also a density, which is the density
of hz when z has density q(z) (it thus gets more concentrated around 0 as h tends to
zero). With these notations, the weights can be written:

ŵi(x) =
qh(x− xi)∑n
j=1 qh(x− xj)

.

Smoothing by convolution. When performing kernel regression, quantities of the
form 1

n

∑n
i=1 qh(x − xi)g(xi) naturally appear. When the number n of observations

goes to infinity, and x is fixed, by the law of large numbers, it tends almost surely to∫

Rd

qh(x − z)g(z)p(z)dz, which is exactly the convolution between the function qh and

the function x 7→ p(x)g(x), which we can denote [(pg) ∗ qh](x). The function qh is a
probability density that puts most of its weights at a range of values of order h, e.g., for
kernels like the Gaussian kernel or the box kernel. Thus, convolution will smooth the
function pg by averaging values at range h. Therefore, when h goes to zero, it converges
to the function pg itself. See an example below for g = 1.

x

p(x)

smoothed(p)(x)

Note that for this limit to hold, we need to ensure the factors in n and hd are present.

We can now look at the generalization bound from Eq. (6.3) and see how it applies
to kernel regression. We now consider the ℓ2-distance for simplicity and consider the
variance and bias terms separately, first with an asymptotic informal result where both
h tends to zero and n tends to infinity, and then a formal result.
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Variance term. We have, for a fixed x ∈ X:

n

n∑

i=1

ŵi(x)2 =
1
n

∑n
i=1 qh(x− xi)2(

1
n

∑n
i=1 qh(x− xi)

)2 .

Using the law of large numbers and the smoothing reasoning above, this sum n
∑n
i=1 ŵi(x)2

is converging almost surely to
∫
Rd qh(x− z)2p(z)dz

( ∫
Rd qh(x− z)p(z)dz

)2 =
[q2h ∗ p](x)

[qh ∗ p](x)2
.

When h tends to zero, then the denominator above [qh ∗ p](x)2 tends to p(x)2 because
the bandwidth of the smoothing goes to zero. The numerator above corresponds, up to

a multiplicative constant, to the smoothing of p by the density x 7→ qh(x)
2

∫
Rd
qh(u)2du

, and is

thus asymptotically equivalent to p(x)
∫
Rd qh(u)2du = p(x)h−d

∫
Rd q(u)2du.

Overall, when n tends to infinity, and h tends to zero, we get, asymptotically for x
fixed:

n∑

i=1

ŵi(x)2 ∼ 1

nhd
1

p(x)

∫

Rd

q(u)2du,

and thus, still asymptotically,
∫

X

[ n∑

i=1

ŵi(x)2
]
p(x)dx ∼ 1

nhd
vol(supp(p))

∫

Rd

q(u)2du,

where vol(supp(p)) is the volume of the support of p in Rd (the closure of all x for which
p(x) > 0), which we assume bounded.

Bias. With the same intuitive reasoning, we get when n tends to infinity:

n∑

i=1

ŵi(x)d(xi, x)2 →
∫
Rd qh(x− z)‖x− z‖22p(z)dz∫

Rd qh(x− z)p(z)dz
.

The denominator has the same shape as for the variance term and tends to p(x) when
h tends to zero. With the change of variable u = 1

h (x − z), the numerator is equal
to

∫
Rd qh(x − z)‖x − z‖22p(z)dz = h2

∫
Rd q(u)‖u‖22p(x − uh)du, which is equivalent to

h2p(x)
∫
Rd q(u)‖u‖22du when h tends to zero. Overall, when n tends to infinity, and h

tends to zero, we get:
∫

X

[ n∑

i=1

ŵi(x)d(xi, x)2
]
p(x)dx ∼ h2

∫

Rd

q(u)‖u‖22du.

Therefore, overall we get an asymptotic bound proportional to (up to constants depending
on q):

σ2

nhd
+B2h2,

leading to the same upper bound as for partitioning estimates by setting h ∝ n−1/(d+2).
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Formal reasoning (��). We can make the informal reasoning above more formal using
concentration inequalities, leading to non-asymptotic bounds of the same nature (simply
more complicated) that make explicit the joint dependence on n and h. We will prove
the following result:

Proposition 6.3 (Convergence rate for Nadaraya-Watson estimation) Assume
bounded noise (H-1) and a Lipschitz-continuous target function (H-2), and a function
q : Rd → R such that

∫
Rd q(z)dz = 1, and ‖q‖∞ = supz∈Rd q(z) is finite. Moreover,

assume that p has bounded support X and density upper-bounded by ‖p‖∞. Then for the

Nadaraya-Watson estimate f̂ , we have:
∫

X

E[(f̂(x) − f∗(x))2]dp(x) 6

[
8‖q‖∞
nhd

(
1 +

1

2
diam(X)2

)
+ 2Bh2‖p‖∞c

]
· Ch, (6.6)

where c =
∫
Rd q(u)‖u‖22du and Ch =

∫
X

p(x)
[qh∗p](x)dx.

With additional assumptions, we can show that the constant Ch remains bounded when
h tends to zero (see exercise below). Before giving the proof, we note that the optimal
bandwidth parameter is indeed proportional to h ∝ n−1/(d+2), with an overall excess risk
proportional to n−2/(d+2), like the two other types of estimators.

Proof of Proposition 6.3 (�) As for the proof for partitioning estimates, to deal with
the denominator in the definition of the weights, we can first use Bernstein’s inequality
(see Section 1.2.3), applied to the random variables qh(x− xi) which is almost surely in
[0, h−d‖q‖∞], to bound

P

( 1

n

n∑

i=1

qh(x− xi) 6 E[qh(x− z)]− ε
)
6 exp

(
− nε2

2E[q2h(x− z)] + 2‖q‖∞h−dε/3
)
.

We get with ε = 1
2E[qh(x− z)], using E[q2h(x− z)] 6 ‖q‖∞h−dE[qh(x− z)], for the event

A(x) = { 1n
∑n

i=1 qh(x − xi) 6 1
2E[qh(x− z)]}:

P
(
A(x)

)
6 exp

(
−

n
4 (E[qh(x− z)])2

2E[q2h(x− z)] + E[qh(x− z)]h−d‖q‖∞/3
)

6 exp
(
−

n
4E[qh(x− z)]

(7/3)h−d‖q‖∞

)
6

‖q‖∞
nhdE[qh(x − z)]

· 1
e

28

3
6

4‖q‖∞
nhdE[qh(x − z)]

, (6.7)

where we have used αe−α 6 1/e for α > 0. We can now bound bias and variance.

Variance. For a fixed x ∈ X, we get

E

[ n∑

i=1

ŵi(x)2
]

= E

[
1A(x)

n∑

i=1

ŵi(x)2
]

+ E

[
1A(x)c

n∑

i=1

ŵi(x)2
]

6 P(A(x)) +
4

(
nE[qh(x − z)]

)2E
[ n∑

i=1

q
( 1

h
(x − xi)

)2]

6
4‖q‖∞

nhdE[qh(x− z)]
+

4E
[
qh(x− z)2

]

n
[
Eqh(x− z)

]2 6
8‖q‖∞

nhdE[qh(x− z)]
.
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Moreover, we have E[qh(x−z)] =
∫
Rd dp(x−hu)q(u)du = [p∗qh](x). This leads to an over-

all bound on the variance term as

∫

X

E

[ n∑

i=1

ŵi(x)2
]
p(x)dx 6

8‖q‖∞
nhd

∫

X

p(x)

[p ∗ qh](x)
dx.

Bias term. We have a similar reasoning for the bias term. Indeed, we get for a given
x ∈ X, using the bound in Eq. (6.7):

E

[ n∑

i=1

ŵi(x)‖x− xi‖22
]

= E

[
1A(x)

n∑

i=1

ŵi(x)‖x− xi‖22
]

+ E

[
1A(x)c

n∑

i=1

ŵi(x)‖x− xi‖22
]

6 P(A(x)) · diam(X)2 +
2

nE[qh(x− z)]
· nE[qh(x− z)‖x− z‖22]

6
4‖q‖∞

nhd[qh ∗ p](x)
· diam(X)2 +

2h2

[qh ∗ p](x)
·
∫

Rd

q(u)‖u‖22p(x− uh)du

6
4‖q‖∞

nhd[qh ∗ p](x)
· diam(X)2 +

2h2‖p‖∞
[qh ∗ p](x)

·
∫

Rd

q(u)‖u‖22du.

This leads to an overall bound on the bias term equal to

∫

X

E

[ n∑

i=1

ŵi(x)‖x−xi‖22
]
p(x)dx 6

∫

X

p(x)

[qh ∗ p](x)
dx ·

[
4‖q‖∞
nhd

diam(X)2 + 2h2‖p‖∞
(∫

Rd

q(u)‖u‖22du
)]
.

Putting things together, we get that the excess risk
∫
X
E[(f̂ (x)− f∗(x))2]dp(x) is less

than [
8‖q‖∞
nhd

(
1 +

1

2
diam(X)2

)
+ 2Bh2‖p‖∞

(∫

Rd

q(u)‖u‖22du
)]
·
∫

X

p(x)

[qh ∗ p](x)
dx,

which is exactly the desired bound.

Exercise 6.4 Assume that the support X of the density p of inputs is bounded and that
p is strictly positive and continuously differentiable on X. Show that for h small enough

(with an explicit upper-bound), then Ch =
∫
X

p(x)
[qh∗p](x)dx 6 1

2vol(X).

Experiments. For the problem shown in Section 6.2, we plot in Figure 6.5 (right)
training and testing errors averaged over 32 replications (with error bars showing the
standard deviations), where we clearly see the trade-off in the choice of h.

6.4 Universal consistency (�)

Above, we have required the following conditions on the weights:
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•

∫

X

E

[ n∑

i=1

ŵi(x)d(xi, x)2
]
dp(x)→ 0 when n tends to infinity, to ensure that the bias

goes to zero.

•

∫

X

n∑

i=1

E[ŵi(x)2]dp(x) → 0 when n tends to infinity, to ensure that the variance

goes to zero.

This was enough to show consistency when the target function is Lipschitz-continuous
in Rd. This also led to a precise rate of convergence, which turns out to be optimal for
learning with target functions that are Lipschitz-continuous and for which the curse of
dimensionality cannot be avoided (see Chapter 15).

To show universal consistency, that is, consistency for any square-integrable func-
tions, we need an extra (technical) assumption, which was first outlined in Stone’s the-
orem (Stone, 1977), namely that there exists c > 0 such that for any non-negative inte-
grable function h : X→ R, then

∫

X

n∑

i=1

E
[
ŵi(x)h(xi)

]
dp(x) 6 c ·

∫

X

h(x)dp(x). (6.8)

Below, h will be the squared deviation between two functions.

△! Above, we only take the expectation with respect to the training data, while we use
the integral notation to take the expectation with respect to the training distribution.

Then for any ε > 0, and for any target function f∗ ∈ L2(dp(x)), we can find a function
g which is B(ε)-Lipschitz-continuous and such that ‖f∗ − g‖L2(dp(x)) 6 ε, because the
set of Lipschitz-continuous functions is dense in L2(dp(x)) (see, e.g., Ambrosio et al.,
2013)).

Then we have, for a given x ∈ X:

E

([ n∑

i=1

ŵi(x)
[
f∗(xi)− f∗(x)

]]2)

6 E

([ n∑

i=1

ŵi(x)
(∣∣f∗(xi)− g(xi)

∣∣ +
∣∣g(xi)− g(x)

∣∣ +
∣∣g(x)− f∗(x)

∣∣
]2)

6 3E
([ n∑

i=1

ŵi(x)
∣∣f∗(xi)− g(xi)

∣∣
]2)

+ 3E
([ n∑

i=1

ŵi(x)
∣∣g(xi)− g(x)

∣∣
]2)

+3E
([ n∑

i=1

ŵi(x)
∣∣g(x)− f∗(x)

∣∣
]2)

using the inequality (a+b+c)2 6 3a2+3b2+]!3c2,

6 3E
([ n∑

i=1

ŵi(x)
∣∣f∗(xi)− g(xi)

∣∣
]2)

+ 3E
([ n∑

i=1

ŵi(x)B(ε)d(x, xi)
]2)

+3E
(∣∣g(x)− f∗(x)

∣∣2
)

since weights sum to one, and g is Lipschitz-continuous.
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We can further upper-bound E

([∑n
i=1 ŵi(x)

[
f∗(xi)− f∗(x)

]]2)
by

3E
[ n∑

i=1

ŵi(x)
∣∣f∗(xi)− g(xi)

∣∣2
]

+ 3B(ε)2E
( n∑

i=1

ŵi(x)d(x, xi)
2
)

+3E
(∣∣g(x)− f∗(x)

∣∣2
)

using Jensen’s inequality on the second term,

6 3c · E
[∣∣f∗(x) − g(x)

∣∣2] + 3B(ε)2E
( n∑

i=1

ŵi(x)d(x, xi)
2
)

+ 3E
(∣∣g(x)− f∗(x)

∣∣2
)
,

using Eq. (6.8). We can now integrate with respect to x to get

∫

X

E

([ n∑

i=1

ŵi(x)
[
f∗(xi)− f∗(x)

]]2)
dp(x)

6 3c · ε2 + 3B(ε)2
∫

X

E

( n∑

i=1

ŵi(x)d(x, xi)
2
)
dp(x) + 3ε2. (6.9)

Proving universal consistency. We can then combine the bound above (which gives a

bound on the bias) with Eq. (6.2), starting from the excess risk
∫
X
E
[
(f̂(x)−f∗(x))2

]
dp(x)

less than
∫

X

E

([ n∑

i=1

ŵi(x)
∣∣f∗(xi)− f∗(x)

∣∣
]2)

dp(x) + σ2

∫

X

E
[ n∑

i=1

ŵi(x)2
]
dp(x),

which is the sum of a bias term and a variance term, and for which, together with
Eq. (6.9), we can use the same tools for consistency as for Eq. (6.3).

To prove universal consistency, we fix a certain ε > 0, from which we obtain some
Lipschitz constant B(ε). For such a B(ε), we know how to make the (squared) bias

term B(ε)2
∫
X
E

(∑n
i=1 ŵi(x)d(x, xi)

2
)
dp(x) + σ2

∫
X
E
[∑n

i=1 ŵi(x)2
]
dp(x) less than ε,

by choosing appropriate hyperparameter and number of observations n (see previous
sections). Thus, if the extra condition in Eq. (6.8) is satisfied, these three methods are
universally consistent. Note that, in general, n has to grow unbounded when ε tends to
zero without any a priori bound.

We can now look at the three cases:

• Partitioning: We have then c = 2, and we get universal consistency. Indeed, using
the same notations as in Section 6.2.2, we have for any fixed x ∈ Aj , j ∈ J , and f
a non-negative function:

n∑

i=1

E
[
ŵi(x)f(xi)

]
= E

[
1nAj

>0
1

nAj

∑

i s.t. xi∈Aj

f(xi) + 1nAj
=0

1

n

n∑

i=1

f(xi)
]

= E

[
1nAj

>0
1

nAj

∑

i s.t. xi∈Aj

E[f(xi)|xi ∈ Aj ]+1nAj
=0

1

n

n∑

i=1

f(xi)
]

6 E[f(z)|z ∈ Aj ] + E[f(z)],
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where z is distributed as x. Thus, integrating with respect to x and summing over
j ∈ J , we get:

∫

X

n∑

i=1

E
[
ŵi(x)h(xi)

]
dp(x) 6

∑

j∈J

(
P(Aj)E[f(z)|z ∈ Aj ] +P(Aj)·E[f(z)]

)
= 2E[f(z)],

which is exactly Eq. (6.8) with c = 2.

• Kernel regression: it can be shown using the same type of techniques outlined for
consistency for Lipschitz-continuous functions.

• k-nearest neighbor: the condition in Eq. (6.8) is not easy to show and is often
referred to as Stone’s lemma. See Biau and Devroye (2015, Lemma 10.7).

6.5 Adaptivity (��)

As shown above, all local averaging techniques achieve the same performance on Lipschitz-
continuous functions, which is an unavoidable bad performance when d grows (curse of
dimensionality). One extra order of smoothness, that is, on Rd, two bounded derivatives,
can be leveraged to lead to a convergence rate proportional to n−4/(4+d) (Wasserman,
2006, Section 5.4). However, the higher smoothness of the target function does not
seem to be easy to leverage, that is, even if the target function is very smooth, the local
averaging techniques will not be able to attain better convergence rates. The impossibility
comes from the bias term which is the square of

∑n
i=1 ŵi(x)

[
f∗(xi)−f∗(x)

]
in Section 6.3:

when f∗ is once differentiable, f∗(xi)−f∗(x) = O(‖xi−x‖) and this is what we leveraged
in the proofs; when f∗ is twice differentiable, by a Taylor expansion, f∗(xi) − f∗(x) =
(xi−x)⊤(f∗)′(xi)+O(‖xi−x‖2), and we can choose weights so that

∑n
i=1 ŵi(x)(x−xi) =

O(‖x − xi‖2) (this is possible because the components of x − xi may take positive and
negative values, leading to potential cancellations, see exercise below); but when f is
three-times differentiable or more, obtaining a term O(‖xi − x‖3) that would come from
a Taylor expansion, is only possible if the weights satisfy

∑n
i=1 ŵi(x)(x− xi)(x− xi)⊤ =

O(‖xi−x‖3), which is not possible when the weights are non-negative as no cancellations
are possible.

Positive-definite kernel methods will provide simple ways in Chapter 7, as well as
neural networks in Chapter 9, to leverage smoothness. Among local averaging techniques,
there are, however, ways to do it. For example, using locally linear regression, where one
solves for any test point x,

inf
β1∈Rd, β0∈R

n∑

i=1

ŵi(x)(yi − β⊤
1 xi − β0)2.

(note that the regular regressogram corresponds to setting β1 = 0 above). In other words
we solve

inf
β1∈Rd, β0∈R

∫

Y

(y − β⊤
1 x− β0)2dp̂(y|x).
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The running time is now O(nd2) per testing point as we have to solve a linear least-
squares (see Chapter 3), but the performance, both empirical and theoretical (Tsybakov,
2008), improves. See an example with the regressogram weights in Figure 6.6.
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Figure 6.6: Locally linear regression, on the same data as Figure 6.2, for three values of
the number |J | of sets within in the partition. Notice the difference with Figure 6.2.

Exercise 6.5 (�) For the Nadaraya Watson estimator, show that when the target func-
tion and the kernel are twice continuously differentiable, then the bias term is bounded by
a constant times h4. Show that the optimal bandwidth selection leads to a rate proportional
to n−4/(4+d).

6.6 Conclusion

In this chapter, we have explored local averaging methods, which leverage the explicit
formula for the Bayes predictor and explicitly aim at approximating it, without the need
for optimization (as opposed to all other methods presented in this book). While they
can potentially adapt to complex prediction functions, they suffer from the curse of di-
mensionality, that is, the number of observations has to be exponential in dimension for
good predictions. Without further assumptions, this is unavoidable, but in the following
chapters, we will see that other learning techniques can take advantage of extra assump-
tions, such as the smoothness of the prediction function (kernels in Chapter 7 and neural
networks in Chapter 9), and dependence only a linear projection of the inputs (this will
only be possible for neural networks).

Like all techniques presented in this book, local averaging methods can also be used
within “ensemble methods” that combine several predictors learned on modifications of
the original dataset (see Chapter 10).
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Chapter 7

Kernel methods

Chapter summary
– Kernels and representer theorem: learning with infinite-dimensional linear models

can be done in a time that depends on the number of observations using a kernel
function.

– Kernels on Rd: such models include polynomials and classical Sobolev spaces (func-
tions with square-integrable partial derivatives).

– Algorithms: convex optimization algorithms can be applied with theoretical guar-
antees and many dedicated developments to avoid the quadratic complexity of
computing the kernel matrix.

– Analysis of well-specified models: When the target function is in the associated
function space, learning can be done with rates that are independent of dimension.

– Analysis of misspecified models: if the target function is not in the function space,
the curse of dimensionality cannot be avoided in the worst-case situations of few
existing derivatives of the target function, but the methods are adaptive to any
amount of intermediate smoothness.

– Sharp analysis of ridge regression: for the square loss, a more involved analysis
leads to optimal rates in various situations in Rd.

In this chapter, we consider positive-definite kernel methods, with only a brief account
of the main results. For more details, see Schölkopf and Smola (2001); Shawe-Taylor and
Cristianini (2004); Christmann and Steinwart (2008), and teaching slides from Jean-
Philippe vert (available from https://jpvert.github.io/).

169

https://jpvert.github.io/
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7.1 Introduction

In this chapter, we study empirical risk minimization for linear models, that is, prediction
functions fθ : X→ R which are linear in their parameters θ, that is, functions of the form
fθ(x) = 〈θ, ϕ(x)〉H, where ϕ : X → H and H is a Hilbert space (essentially a Euclidean
space with potentially infinite dimension)1, and θ ∈ H. We will often use the notation
〈θ, ϕ(x)〉 in this chapter instead of 〈θ, ϕ(x)〉H when this is not ambiguous.

The key difference with Chapter 3 on least-squares estimation is that (1) we are not
restricted to the square loss (although many of the same concepts will play a role, in
particular, in the analysis of ridge regression), and (2), we will explicitly allow infinite-
dimensional models, thus extending the dimension-free bounds from Chapter 3. The
notion of kernel function (or simply kernel) k(x, y) = 〈ϕ(x), ϕ(y)〉H will be particularly
fruitful.

Why is this relevant? The study of infinite-dimensional linear methods is important
for several reasons:

• Understanding linear models in finite but very large input dimensions requires tools
from infinite-dimensional analysis.

• Kernel methods lead to simple and stable algorithms, with theoretical guarantees
and adaptivity to the smoothness of the target function (as opposed to local av-
eraging techniques). They can be applied in high dimensions, with good practical
performance (note that for supervised learning problems with many observations
in domains such as computer vision and natural language processing, they do not
achieve the state of the art anymore, which is achieved by neural networks presented
in Chapter 9).

• They can be easily applied when input observations are not vectors (see Sec-
tion 7.3.4).

• They are helpful to understand other models such as neural networks (see Chap-
ter 9).

△! The type of kernel we consider here is different from the ones in Chapter 6. The
ones here are “positive definite,” the ones from Chapter 6 are “non-negative”.
See more details in https://francisbach.com/cursed-kernels/.

7.2 Representer theorem

Dealing with infinite-dimensional models initially seems impossible because algorithms
cannot be run in infinite dimensions. In this section, we show how the kernel function
plays a crucial role in achieving lower-dimensional algorithms.

1More precisely, this is a vector space endowed with a inner product and which is complete for
the associated normed space topology. See https://en.wikipedia.org/wiki/Hilbert_space for more
details.

https://francisbach.com/cursed-kernels/
https://en.wikipedia.org/wiki/Hilbert_space
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As a motivation, we consider the optimization problem coming from machine learning
with linear models, with data (xi, yi) ∈ X× Y, i = 1, . . . , n:

min
θ∈H

1

n

n∑

i=1

ℓ(yi, 〈ϕ(xi), θ〉) +
λ

2
‖θ‖2, (7.1)

assuming the loss function ℓ is already from Y × R → R and not from Y × Y → R (e.g.,
hinge loss, logistic loss or least-squares, see Chapter 4).

The key property of the objective function in Eq. (7.1) is that it accesses the input
observations x1, . . . , xn ∈ X, only through dot-products 〈θ, ϕ(xi)〉, i = 1, . . . , n, and that
we penalize using the Hilbertian norm ‖θ‖. The following proposition is crucial and has an
elementary proof, due to Kimeldorf and Wahba (1971) for Corollary 7.1, and to Schölkopf
et al. (2001) for the general form presented below.

Proposition 7.1 (Representer theorem) Consider a feature map ϕ : X → H. Let
(x1, . . . , xn) ∈ Xn, and assume that the functional Ψ : Rn+1 → R is strictly increasing
with respect to the last variable, then the infimum of

Ψ(〈θ, ϕ(x1)〉, . . . , 〈θ, ϕ(xn)〉, ‖θ‖2)

can be obtained by restricting to a vector θ of the form

θ =

n∑

i=1

αiϕ(xi),

with α ∈ Rn.

Proof Let θ ∈ H, and HD =
{∑n

i=1 αiϕ(xi), α ∈ Rn
}
⊂ H, the linear span of the

observed feature vectors. Let θD ∈ HD and θ⊥ ∈ H⊥
D be such that θ = θD + θ⊥,

a decomposition which is using the Hilbertian structure of H. Then ∀i ∈ {1, . . . , n},
〈θ, ϕ(xi)〉 = 〈θD, ϕ(xi)〉+〈θ⊥, ϕ(xi)〉 with 〈θ⊥, ϕ(xi)〉 = 0, by definition of the orthogonal.

HD

0

θ

θD

From the Pythagorean theorem, we get: ‖θ‖2 = ‖θD‖2 + ‖θ⊥‖2. Therefore, we have:

Ψ(〈θ, ϕ(x1)〉, . . . , 〈θ, ϕ(xn)〉, ‖θ‖2) = Ψ(〈θD, ϕ(x1)〉, . . . , 〈θD, ϕ(xn)〉, ‖θD‖2 + ‖θ⊥‖2)

> Ψ(〈θD, ϕ(x1)〉, . . . , 〈θD, ϕ(xn)〉, ‖θD‖2),

with equality if and only if θ⊥ = 0 (since Ψ is strictly increasing with respect to the last
variable). Thus

inf
θ∈H

Ψ(〈θ, ϕ(x1)〉, . . . , 〈θ, ϕ(xn)〉, ‖θ‖2) = inf
θ∈HD

Ψ(〈θ, ϕ(x1)〉, . . . , 〈θ, ϕ(xn)〉, ‖θ‖2),
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which is exactly the desired result.

This implies that the minimizer of Eq. (7.1) can be found among the vectors of the form
θ =

∑n
i=1 αiϕ(xi):

Corollary 7.1 (Representer theorem for supervised learning) For λ > 0, the in-
fimum of 1

n

∑n
i=1 ℓ(yi, 〈θ, ϕ(xi)〉) + λ

2 ‖θ‖2 can be obtained by restricting to a vector θ of
the form θ =

∑n
i=1 αiϕ(xi), with α ∈ Rn.

It is important to note that there is no assumption on the loss function ℓ. In particular,
no convexity is assumed. This is to be contrasted to the use of duality in Section 7.4.4,
where convexity will play a major role and similar α’s will be defined (but with some
notable differences).

Given Corollary 7.1, we can reformulate the learning problem. We will need the kernel
function k, which is the dot product between feature vectors:

k(x, x′) = 〈ϕ(x), ϕ(x′)〉.

We then have:

∀j ∈ {1, . . . , n}, 〈θ, ϕ(xj)〉 =
n∑

i=1

αik(xi, xj) = (Kα)j ,

where K ∈ Rn×n is the kernel matrix, such that Kij = 〈ϕ(xi), ϕ(xj)〉 = k(xi, xj), and

‖θ‖2 =

n∑

i=1

n∑

j=1

αiαj〈ϕ(xi), ϕ(xj)〉 =

n∑

i=1

n∑

j=1

αiαjKij = α⊤Kα.

We can then write:

inf
θ∈H

1

n

n∑

i=1

ℓ(yi, 〈θ, ϕ(xi)〉) +
λ

2
‖θ‖2 = inf

α∈Rn

1

n

n∑

i=1

ℓ(yi, (Kα)i) +
λ

2
α⊤Kα. (7.2)

For a test point x ∈ X, we have f(x) =
n∑

i=1

αik(x, xi).

Thus, the input observations are summarized in the kernel matrix and the kernel
function, regardless of the dimension of H. Moreover, explicitly computing the feature
vector ϕ(x) is never needed! This is the kernel trick, which allows to:

• replace the search space H by Rn; this is interesting computationally when the
dimension of H is very large (see more details in Section 7.4),

• separate the representation problem (design of kernels on a set X) and the design
of algorithms and their analysis (which only use the kernel matrix K); this is in-
teresting because a wide range of kernels can be defined for many data types (see
more details in Section 7.3).
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Minimum norm interpolation. The representer theorem can be extended to an in-
terpolating estimator with essentially the same proof (see proposition below).

Proposition 7.2 Given x1, . . . , xn ∈ X, and y ∈ Rn such that there exists at least one
θ ∈ H such that yi = 〈θ, ϕ(xi)〉 for all i ∈ {1, . . . , n}, then among all these θ ∈ H that
interpolate the data, the one of minimum norm can be expressed as θ =

∑n
i=1 αiϕ(xi),

with α ∈ Rn is such that y = Kα (this system must then have a solution).

7.3 Kernels

In the section above, we have introduced the kernel function k : X× X→ R as obtained
from a dot product k(x, x′) = 〈ϕ(x), ϕ(x′)〉. The associated kernel matrix is then a matrix
of dot-products (often called a “Gram matrix”) and is thus symmetric positive semi-
definite (see proof below), that is, all of its eigenvalues are non-negative, or, equivalently,
∀α ∈ Rn, α⊤Kα > 0. It turns out that this simple property is enough to impose the
existence of a feature function.

△! If H = Rd, and Φ ∈ Rn×d is the matrix of features (design matrix in the context of
regression) with i-th row composed of ϕ(xi), then K = ΦΦ⊤ ∈ Rn×n is the kernel matrix,
while 1

nΦ⊤Φ ∈ Rd×d is the empirical covariance matrix.

Definition 7.1 (Positive definite kernels) A function k : X × X → R is a positive
definite kernel if and only if all kernel matrices are symmetric positive semi-definite.

The following important proposition dates back to Aronszajn (1950) and comes with
an elegant constructive proof. Note the total absence of assumptions on the set X.

Proposition 7.3 (Aronszajn, 1950) k is a positive definite kernel if and only if there
exists a Hilbert space H, and a function ϕ : X→ H such that for all x, x′ ∈ X, k(x, x′) =
〈ϕ(x), ϕ(x′)〉H.

Partial proof We first assume that k(x, x′) = 〈ϕ(x), ϕ(x′)〉H. Then for any α ∈ Rn,
and points x1, . . . , xn ∈ X, we have:

α⊤Kα =

n∑

i,j=1

αiαi〈ϕ(xi), ϕ(xj)〉H =
∥∥∥

n∑

i=1

αiϕ(xi)
∥∥∥
2

H
> 0.

Thus, k is a positive definite kernel.

For the other direction, we consider a positive-definite kernel, and we will construct a
space of functions explicitly from X to R with a dot-product. We define the set H′ ⊂ RX

as the set of linear combinations of kernel functions
∑n
i=1 αik(·, xi) for any integer n,

any set of n points, and any α ∈ Rn. This is a vector space on which we can define a
dot-product through

〈 n∑

i=1

αik(·, xi),
m∑

j=1

βjk(·, x′j)
〉

=

n∑

i=1

m∑

j=1

αiβjk(xi, x
′
j). (7.3)

We first check that this is a well-defined function on H′ ×H′, that is, the value does not
depend on the chosen representation as a linear combination of kernel functions. Indeed,
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if we denote f =
∑n

i=1 αik(·, xi), then the dot-product is equal to
∑m

j=1 βjf(x′j) and
depends only on the values of f , and not on its representation (and similarly for the
function on the right of the dot-product).

This dot-product is bi-linear and always non-negative when applied to the same func-
tion (that is, in Eq. (7.3) above, when α = β and the points (xi) and (x′j) are the
same, we get a positive number because of the positivity of the kernel k). To obtain a
dot-product, we only need to show that 〈f, f〉 = 0 implies f = 0. This can be shown
using Cauchy-Schwarz inequality,2 leading to for any x ∈ X, to the sequence of bounds
f(x)2 = 〈f, k(·, x)〉2 6 〈f, f〉〈k(·, x), k(·, x)〉 = 〈f, f〉k(x, x), leading to f = 0 as soon as
〈f, f〉 = 0.

Moreover, this dot product satisfies the two properties for any f ∈ H′, x, x′ ∈ X:

〈k(·, x), f〉 = f(x) and 〈k(·, x), k(·, x′)〉 = k(x, x′).

These are called “reproducing properties” and correspond to an explicit construction of
the feature map ϕ(x) = k(·, x).

The space H′ is called “pre-Hilbertian” because it is not complete.3 It can be “com-
pleted” into a Hilbert space H with the same reproducing property. See Aronszajn (1950);
Berlinet and Thomas-Agnan (2004) for more details.

We can make the following observations:

• H is called the “feature space,” and ϕ the “feature map,” that goes from the “input
space” X to the feature space H.

• No assumption is needed about the input space X, and no regularity assumption is
needed for k. Up to isomorphisms, the feature map and space happen to be unique.
The particular space of functions we built is called the reproducing kernel Hilbert
space (RKHS) associated with k, for which ϕ(x) = k(·, x).

• A classical intuitive interpretation of the identity 〈k(·, x), f〉 = f(x) is that the
function evaluation is the dot-product with a function (this is, in fact, another
characterization, see the exercise below). This implies that not all Hilbert spaces
of real-valued functions on X are RKHSs. Indeed, for example, if L2(Rd) was an
RKHS, this would mean that there exists a function k : X × X → R such that∫
Rd k(x, x′)f(x′)dx′ = f(x). In other words, k(x, x′)dx′ would be a Dirac measure

at x, which is impossible (as Dirac measures have no density with respect to the
Lebesgue measure). Thus L2(Rd) is a Hilbert space that is too large to be an
RKHS. We will see below that smaller spaces of functions, with square-integrable
derivatives of sufficiently high order, will be RKHSs.

• Given a positive-definite kernel k, we can thus associate it to some feature map ϕ
such that k(x, y) = 〈ϕ(x), ϕ(y)〉H , but also to a space of functions on X with a given

2Cauchy-Schwarz inequality applies to bilinear forms that are symmetric positive semi-definite, but
may not be positive defiite, that is, such that 〈f, f〉 = 0 may not imply f = 0.

3See https://en.wikipedia.org/wiki/Complete_metric_space for definitions.

https://en.wikipedia.org/wiki/Complete_metric_space
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norm, either directly through the RKHS above or by looking at all functions fθ of
the form fθ(x) = 〈θ, ϕ(x)〉H, with a regularization term ‖θ‖2H. These two views are
equivalent.

△! From now on, we will denote elements of the Hilbert space H through the
notation f ∈ H to highlight the fact that we are considering a space of functions
from X to R, except for optimization algorithms in Section 7.4, where will use the
notation 〈θ, ϕ(x)〉H instead of f(x).

Exercise 7.1 (�) Let H be a Hilbert space of real-valued functions on X, such that for
any x ∈ X, the linear form x 7→ f(x) is bounded (that is, supf∈H, ‖f‖H61 |f(x)| is finite).
Using the Riesz representation theorem, show that this is a reproducing kernel Hilbert
space.

Kernel calculus. The set of positive definite kernels on a set X is a cone, that is, it
is closed under addition and multiplication by a positive constant. In other words, if k1
and k2 are two positive definite kernels and λ1, λ2 > 0, then so is λ1k1 + λ2k2. A simple
proof follows from considering two feature maps ϕ1 : X → H1 and ϕ2 : X → H2, and

noticing that x 7→
(λ1/2

1 ϕ1(x)

λ
1/2
2 ϕ2(x)

)
is a feature map for λ1k1 + λ2k2.

Moreover, positive definite kernels are closed under pointwise multiplication, that is,
if k1 and k2 are positive definite kernels on the set X, so is, (x, x′) 7→ k1(x, x′)k2(x, x′). For
finite-dimensional kernels, where we can consider feature spaces H1 = Rd1 and H2 = Rd2 ,
the product kernel is associated with a feature space of dimension d1d2 and the feature
map x 7→

[
ϕ1(x)i1ϕ2(x)i2

]
i1∈{1,...,d1},i2∈{1,...,d2}. The general proof is left as an exercise.

Exercise 7.2 Show that if k : X×X→ R is a positive definite kernel, so is the function
(x, x′) 7→ ek(x,x

′).

Kernels = features and functions. A positive-definite kernel thus defines a feature
map and a space of functions. Sometimes, the feature map is easy to find, and sometimes
it is not. In the next section, we will look at the main examples and describe the associated
spaces of functions (and the corresponding norms).

We now look at different ways of building the kernels, by starting first from the feature
vector (e.g., linear kernels), from the kernel and explicit feature map (polynomial kernel),
from the norm (translation-invariant kernel on [0, 1]), or from the kernel without explicit
features (translation-invariant kernel on Rd).

7.3.1 Linear and polynomial kernels

We start with the most obvious kernels on X = Rd, for which feature maps are easily
found.
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Linear kernel. We define k(x, x′) = x⊤x′. It corresponds to a function space composed
of linear functions fθ(x) = θ⊤x, with an ℓ2-penalty ‖θ‖22. The kernel trick can be useful
when the input data have huge dimension d but are quite sparse (many zeros), such as
in text processing, so that the dot-product x⊤x′ can be computed in time o(d).

Polynomial kernel. For s a postive integer, the kernel k(x, x′) = (x⊤x′)s is positive-
definite as a integer power of a kernel and can be explicitly expanded as (with the binomial
theorem4):

k(x, x′) =
( d∑

i=1

xix
′
i

)s
=

∑

α1+···+αd=s

(
s

α1, . . . , αd

)
(x1x

′
1)α1 · · · (xdx

′
d)
αd

︸ ︷︷ ︸
(x

α1
1 ··· xαd

d )((x′
1)

α1 ···(x′
d)

αd )

,

where the sum is over all non-negative integer vectors (α1, . . . , αd) that sum to s. We

have an explicit feature map: ϕ(x) =
((

s
α1,...,αd

) 1
2xα1

1 · · ·xαd

d

)
α1+···+αd=s

, and the set of

functions is the set of degree-s homogeneous5 polynomials on Rd, which has dimension(
d+s−1
s

)
.

When d and s grow, the feature space dimension grows as ds, an explicit representation
is not desirable, and the kernel trick can be advantageous. Note, however, that the
associated norm (which penalizes coefficients of the polynomials) is hard to interpret (as
a small change in a single high-order coefficient can lead to significant changes).

Exercise 7.3 Show that the kernel k(x, x′) = (1 + x⊤x′)s corresponds to the set of all
monomials xα1

1 · · ·xαd

d such that α1 + · · ·+αd 6 s. Show that the dimension of the feature

space is
(
d+s
s

)
.

As an illustration, when using a polynomial kernel of degree 2, the set of functions
that are linear in the feature map is, therefore, the set of quadratic functions. Thus, in
a binary classification problem where data can be separated by an ellipsoid, this can be
obtained by linear separation in the feature space. See the illustration below.

x1

x2

x21

x22

4See https://en.wikipedia.org/wiki/Binomial_theorem .
5A function f : Rd → R is said homogeneous if there exists s ∈ R+ such that for all x ∈ Rd, and

λ ∈ R+, f(λx) = λsf(x).

https://en.wikipedia.org/wiki/Binomial_theorem
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7.3.2 Translation-invariant kernels on [0, 1]

We consider X = [0, 1], and kernels of the form k(x, x′) = q(x − x′) with a function
q : [0, 1]→ R, which is 1-periodic. We will show how they emerge from penalties on the
Fourier coefficients of functions, which we now quickly review.6

Fourier series. We will consider complex-valued functions and use complex exponen-
tials, but all developments could be carried out with cosines and sines. Fourier series cor-
responds simply to an orthonormal decomposition of square-integrable functions on [0, 1],
which are naturally extended to 1-periodic functions on R. More precisely, the set of func-
tions x 7→ e2imπx, for m ∈ Z is an orthonormal basis of L2([0, 1]). Therefore, any squared
integrable functions which are 1-periodic can be expanded in this orthonormal basis, that

is, q(x) =
∑
m∈Z

e2imπxq̂m, with q̂m =
∫ 1

0
q(x)e−2imπxdx ∈ C, for m ∈ Z, obtained by

projection q to the element of the basis. The function q is real-valued if and only if
for all m ∈ Z, q̂−m = q̂∗m (the complex conjugate of q̂m). We will also need Parseval’s
identity, which is exactly the Pythagorean theorem in the orthonormal basis, that is,∫ 1

0
|q(x)|2dx =

∑
m∈Z
|q̂m|2.

Translation-invariant kernels. When presenting translation-invariant kernels, we
can choose to start from the kernel or the associated squared norm. In this section,
we start from the squared norm, while in the next one, we start from the kernel.

Given a 1-periodic function f decomposed into its Fourier series as

f(x) =
∑

m∈Z

e2imπxf̂m,

we consider the penalty ∑

m∈Z

cm|f̂m|2,

with c ∈ RZ

+; this penalty can be interpreted through a feature map and the ℓ2-norm on
CZ (the space of functions from Z to C). Indeed, it corresponds to the feature vector

ϕ(x)m = e2imπx/
√
cm, and θ ∈ CZ, such that θm = f̂m

√
cm (we can easily consider

complex-valued features instead of real-valued features if Hermitian dot-products are
considered), so that f(x) = 〈θ, ϕ(x)〉 and

∑
m∈Z
|θm|2 is equal to the norm

∑
m∈Z

cm|f̂m|2.

Thus the associated kernel is

k(x, x′) =
∑

m∈Z

ϕ(x)mϕ(x′)∗m =
∑

m∈Z

e2imπx√
cm

e−2imπx′

√
cm

=
∑

m∈Z

1

cm
e2imπ(x−x

′),

which is thus of the form q(x− x′) for a 1-periodic function q.

What we showed above is that any penalty of the form
∑

m∈Z
cm|f̂m|2 defines a

squared RKHS norm as soon as cm is strictly positive for all m ∈ Z, and
∑

m∈Z

1
cm

is

6See https://en.wikipedia.org/wiki/Fourier_series for more details.

https://en.wikipedia.org/wiki/Fourier_series
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finite. The kernel function is then of the form k(x, y) = q(x− y) with q being 1-periodic,
and such that the Fourier series has non-negative real values q̂m = c−1

m . In the other
direction, all such kernels are positive-definite (see an extension to Rd in Section 7.3.3).

Penalization of derivatives. For certain penalties based on (cm)m, there is a nat-
ural link with penalties on derivatives, as if f is s-times differentiable with squared in-
tegrable derivative, we have, by differentiating the Fourier series representation above,
f (s)(x) =

∑
m∈Z

(2imπ)se2imπxf̂m, and thus, from Parseval’s theorem (which states that
the squared L2-norm of a function is equal to the sum of the square modulus of its Fourier
coefficients):

∫ 1

0

|f (s)(x)|2dx = (2π)2s
∑

m∈Z

m2s|f̂m|2.

In this chapter, we will consider penalizing such derivatives, leading to Sobolev spaces
on [0, 1] (see extensions in sections below). The following examples are often considered:

• Bernoulli polynomials: we can consider c0 = 1 and cm = |m|2s for m 6= 0, for

which the associated norm is ‖f‖2H = 1
(2π)2s

∫ 1

0
|f (s)(x)|2dx +

( ∫ 1

0
f(x)dx

)2
. The

corresponding kernel k(x, x′) can then be written as

k(x, x′) =
∑

m∈Z

c−1
m e2imπ(x−x

′) = 1 +
∑

m>1

2 cos[2πm(x− x′)]
m2s

.

In order to have an expression for q in closed form we notice that if we define
{x} = x − ⌊x⌋ ∈ [0, 1) the fractional part of x, the function x 7→ {x} has (by

integration by part) an m-th Fourier coefficient equal to
∫ 1

0
e−2imπxxdx = i

2mπ .
Similarly, the s-th power of {x} has an m-th Fourier coefficient which is an order s
polynomial in m−1. This implies that k(x, x′) has to be an order s polynomial in
{x− x′}, which happens to be related to classical polynomials, as we now show.

For s = 1, we have k(x, x) = 1 + 2
∑
m>1m

−2 = 1 + π2/3; moreover by using the

Fourier series expansion {t} = 1
2 − 1

2π

∑
m>1

2 sin[2πmt]
m , and integrating, we get

k(x, x′) = 2π2{x− x′}2 − 2π2{x− x′}+ π2/3 + 1 = q(x− x′),

with q plotted in Figure 7.1. For s > 1, we have the closed-form expression

k(x, x′) = 1 + (−1)s−1 (2π)2s

(2s)! B2s({x− x′}), where B2s the (2s)-th Bernoulli polyno-

mial,7 from which we can “check” the computation above since B2(t) = t2− t+1/6.

Exercise 7.4 Show that for s = 2, we have for all x, x′ ∈ [0, 1], k(x, x′) = q(x−x′)
with q(t) = 1− (2π)4

24

(
{t}4 − 2{t}3 + {t}2 − 1

30

)
.

7See https://en.wikipedia.org/wiki/Bernoulli_polynomials.

https://en.wikipedia.org/wiki/Bernoulli_polynomials
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• Periodic exponential kernel: we can consider cm = 1 + α2|m|2, for which we

also have a closed-form formula, with the penalty ‖f‖2H = α2

(2π)2

∫ 1

0 |f ′(x)|2dx +
∫ 1

0 |f(x)|2dx.

Exercise 7.5 (���) Show that we have k(x, x′) =
∑

m∈Z

e2imπ(x−x′)

1+α2|m|2 = q(x − x′)
for q(t) = π

α

cosh π
α (1−2|{t+1/2}−1/2|)

sinh π
α

. Hint: use the Cauchy residue formula.8
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Figure 7.1: Translation-invariant kernels on [0, 1], of the form k(x, x′) = q(x−x′), with q
1-periodic, for the kernels based on Bernoulli polynomials, and the periodic exponential
kernel. Kernels are normalized so that k(x, x) = 1.

These kernels are mainly used for their simplicity and explicit feature map, which are
simpler than the kernels described below which are most used in practice (with similar
links with Sobolev spaces). Note also that for the uniform distribution on [0, 1], the
Fourier basis will be an orthogonal eigenbasis of the covariance operator with eigenval-
ues c−1

m (see Section 7.6.6).

We saw that for the kernel q(x− x′) with Fourier series q̂m for q, the associated norm

is
∑
m∈Z

|f̂m|2
q̂m

. We now extend this to Fourier transforms (instead of Fourier series).

7.3.3 Translation-invariant kernels on R
d

We consider X = Rd, and a kernel of the form k(x, x′) = q(x − x′) with a function
q : Rd → R, which we refer to as translation-invariant as it is invariant by the addition of
the same constant to both arguments. We start with a short review of Fourier transforms.9

Fourier transforms. The Fourier transform f̂ : Rd → C of an integrable function
f : Rd → C can be defined through

f̂(ω) =

∫

Rd

f(x)e−iω
⊤xdx,

8See https://francisbach.com/cauchy-residue-formula/.
9See https://en.wikipedia.org/wiki/Fourier_transform for more details.

https://francisbach.com/cauchy-residue-formula/
https://en.wikipedia.org/wiki/Fourier_transform
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which is then a continuous function of ω. It can naturally be extended to an operator on
all square-integrable functions, and under appropriate conditions on f , we can recover f
from its Fourier transform, that is,

f(x) =
1

(2π)d

∫

Rd

f̂(ω)eiω
⊤xdω.

Moreover, Parseval’s identity leads to
∫
Rd |f(x)|2dx = 1

(2π)d

∫
Rd |f̂(ω)|2dω.

Translation-invariant kernels. The following proposition gives conditions under which
we obtain a positive definite kernel.

Proposition 7.4 (Bochner’s theorem) The kernel k is positive definite if and only
if q is the Fourier transform of a non-negative Borel measure. Consequently, if q is
integrable (for the Lebesgue measure) and its Fourier transform only has non-negative
real values, then k is positive definite.

Partial proof We only give the proof of the consequence, which is the only one we need.

Since q is integrable, q̂(ω) =
∫
Rd e

−iω⊤xq(x)dx is defined on Rd and continuous, and we
have through the inverse Fourier transform formula:

q(x− x′) =
1

(2π)d

∫

Rd

q̂(ω)ei(x−x
′)⊤ωdω.

Let x1, . . . , xn ∈ Rd, let α1, . . . , αn ∈ R. We have:

n∑

s,j=1

αsαjk(xs, xj) =

n∑

s,j=1

αsαjq(xs − xj) =
1

(2π)d

n∑

s,j=1

αsαj

∫

Rd

eiω
⊤(xs−xj)q̂(ω)dω

=
1

(2π)d

∫

Rd

( n∑

s,j=1

αsαje
iω⊤xs(eiω

⊤xj)∗
)
q̂(ω)dω

=
1

(2π)d

∫

Rd

∣∣∣
n∑

s=1

αse
iω⊤xs

∣∣∣
2

q̂(ω)dω > 0,

which shows the positive-definiteness. See Reed and Simon (1978) and Varadhan (2001,
Theorem 2.7) for a proof of the other direction.

Construction of the associated norm. We give an intuitive (non-rigorous) reason-
ing: if q is integrable, then q̂(ω) exists and, we have an explicit representation as

k(x, x′) =
1

(2π)d

∫

Rd

√
q̂(ω)eiω

⊤x
(√

q̂(ω)eiω
⊤x′)∗

dω =

∫

Rd

ϕ(x)ωϕ(x′)∗ωdω,

which is of the form 〈ϕ(x), ϕ(y)〉, with ϕ(x)ω = 1
(2π)d/2

√
q̂(ω)eiω

⊤x (it is non rigorous

because the index ω belongs to Rd, which is not countable). If we consider a function
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f defined as f(x) =
∫
Rd ϕ(x)ωθωdω = 〈ϕ(x), θ〉, then θω = 1

(2π)d/2
f̂(ω)/

√
q̂(ω), and the

squared norm of θ is equal to 1
(2π)d

∫
Rd

|f̂(w)|2
q̂(ω) dω, where f̂ denotes the Fourier transform

of f . Therefore, the norm of a function f ∈ H should be:

‖f‖2H =
1

(2π)d

∫

Rd

|f̂(w)|2
q̂(ω)

dω.

Given the candidate for the norm and the associated dot-product, we can simply check
that this is the correct one by showing the reproducing property 〈f, k(·, x)〉 for this dot-
product. Note the similarity with the penalty for the kernel on [0, 1] (see more similarity
below).

Link with derivatives. When f has partial derivatives, then the Fourier transform
of ∂f

∂xj
is equal to iωj times the Fourier transform of f . This leads to, using Parse-

val’s theorem, 1
(2π)d

∫
Rd |ωj |2|f̂(w)|2dω =

∫
Rd

∣∣ ∂f
∂xj

(x)
∣∣2dx, which extends to higher order

derivatives:

1

(2π)d

∫

Rd

|ωj11 · · ·ω
jd
d |2|f̂(w)|2dω =

∫

Rd

∣∣∣ ∂jf

∂xj11 · · · ∂xjdd
(x)

∣∣∣
2

dx, (7.4)

for a vector j ∈ Nd. This will allow us to find corresponding norms by expanding q̂(ω)−1

as sums of monomials. We now consider the main classical examples.

Exponential kernel. This is the kernel q(x−x′) = exp(−‖x−x′‖2/r), where r is often
referred to as the kernel bandwidth (homogeneous to x), for which the Fourier transform

can be computed as q̂(ω) = 2dπ(d−1)/2Γ((d + 1)/2) rd

(1+r2‖ω‖2
2)

(d+1)/2 . See Rasmussen and

Williams (2006, page 84). Thus, for d odd, q̂(ω)−1 is a sum of monomials, and looking at
their orders, we see that the corresponding RKHS norm (that is, the norm on the space
of functions on Rd that our kernel defines) is penalizing all derivatives up to total order
(d + 1)/2, that is, in Eq. (7.4), for all j ∈ N

d such that j1 + · · ·+ jd 6 (d + 1)/2, which
is a Sobolev space (fractional for d even).10

In particular, for d = 1, we have q̂(ω) = 2r
1+r2ω2 , and thus

‖f‖2H =
1

2π

∫

R

|f̂(w)|2
q̂(ω)

dω =
1

2r

1

2π

∫

R

|f̂(ω)|2dω +
r

2

1

2π

∫

R

|ωf̂(ω)|2dω

=
1

2r

∫

R

|f(x)|2dx+
r

2

∫

R

|f ′(x)|2dx,

10See https://en.wikipedia.org/wiki/Sobolev_space.

https://en.wikipedia.org/wiki/Sobolev_space
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and we recover the Sobolev space of functions with squared-integrable derivatives.

△!
The constant r is homogeneous to the input x, while the constant R will
be homogeneous to features ϕ(x) (that is, square roots of kernel values). A
common rule of thumb is to choose r to be a quantile (such as the median) of
all pairwise distances ‖xi − xj‖2 of the training data.

Gaussian kernel. This is the kernel q(x − x′) = exp(−‖x − x′‖22/r2) (still with a
kernel bandwidth r), for which the Fourier transform can be explicitly computed as
q̂(ω) = (πr2)d/2 exp(−r2‖ω‖22/4). By expanding q̂(ω)−1 through its power series as

q̂(ω)−1 = (πr2)d/2
∑∞
s=0

(r‖ω‖2)
2s

4ss! , this corresponds to an RKHS norm which is penal-
izing all derivatives. Note that all members of this RKHS (the associated function space)
are infinitely differentiable and thus much smoother than functions coming from the ex-
ponential kernel (the RKHS is smaller).

Matern kernels and Sobolev spaces. More generally, one can define a series of
kernels so that q̂(ω) is proportional to (1 + r2‖ω‖22)−s for s > d/2, to ensure integrability
of the Fourier transform. These so-called “Matern kernels” all correspond to Sobolev
spaces of order s and can be computed in closed form; see Rasmussen and Williams
(2006, page 84). A key fact is that to be an RKHS, a Sobolev space has to have many
derivatives when d grows; in particular, having only first-order derivatives (s = 1) only
leads to an RKHS for d = 1, and having s = 0 never does.

For s = d+3
2 , we have k(x, x′) ∝ (1 +

√
3‖x − x′‖2/r) exp(−

√
3‖x − x′‖2/r), and for

s = d+5
2 , we have k(x, x′) ∝ (1 +

√
5‖x− x′‖2/r + 5

3‖x− x′‖22/r2) exp(−
√

5‖x− x′‖2/r).
General values s also lead to closed-form formulas (through Bessel functions).

Density in L2(Rd). For all the kernels below, the set H is dense in L2(R
d) (the set

of square-integrable functions with respect to the Lebesgue measure), meaning that all
functions in L2(Rd) can be approached (with respect to their corresponding norm) by a
function in H. This is made quantitative in Section 7.5.2.

△! In this chapter, we will consider two spaces of integrable functions, with respect to
the Lebesgue measure (which is not a probability measure), which we denote L2(Rd), and
with respect to the probability measure of the input data, which we denote L2(p). If p
has a density with respect to the Lebesgue measure and this density dp

dx (x) is uniformly

bounded, then L2(R
d) ⊂ L2(p); more precisely, ‖f‖L2(p) 6

∥∥ dp
dx

∥∥1/2
∞ ‖f‖L2(Rd). However,

the converse is not true, simply because being an element of L2(Rd) imposes a zero limit at
infinity, which being an element of L2(p) does not impose (moreover, non zero constants
are in L2(p) but not in L2(Rd)). Note moreover that

∥∥ dp
dx

∥∥
∞ is typically exponential in d,

and is homogeneous to r−d (in terms of units), where, r is homogeneous to x.

Examples of members of RKHS. Below, we sampled n = 10 random points in [−1, 1]
with 10 random responses, and we look for the function f ∈ H such that f(xi) = yi for
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Figure 7.2: Examples of functions in the reproducing kernel Hilbert spaces (RKHS) for
several kernels. All functions are the minimum norm interpolators of the yellow points.

all i ∈ {1 . . . , n} and with minimum norm. Given the representer theorem, we can write
f(x) =

∑n
i=1 αik(x, xi), and the interpolation condition implies that Kα = y, and thus

α = K−1y (see Prop. 7.2).

We consider several kernels in Figure 7.2, going from close to piecewise affine inter-
polation to infinitely differentiable functions (for the Gaussian kernel).

7.3.4 Beyond vectorial input spaces (�)

While our theoretical analysis of kernel methods focuses a lot on kernels on Rd and their
link with differentiability properties of the target function, kernels can be applied to a
wide variety of problems with various input types. We give below classic examples (see
more details by Shawe-Taylor and Cristianini, 2004)

• Set of subsets of a given set V : for example, the function k defined as k(A,B) =
|A∩B|
|A∪B| is a positive definite kernel (classically referred to as the Jaccard index11).

• Point clouds: a point cloud in Rd is a finite subset of Rd, thus with no particular
ordering. They occur, for example, in computer vision or graphics. To build a kernel
for such objects, a simple first idea is to compute the empirical average of a certain
feature vector ϕ : Rd → H, and then use a kernel on H. Other kernels may be
obtained as functions of the concatenation of the two point clouds (see more details
by Cuturi et al., 2005). These constructions extend to probability distributions.

• Text documents/web pages: with the usual “bag of words” assumption, we repre-
sent a text document or a web page by considering a vocabulary of “words” (this
could be groups of letters, single original words, or groups of words or letters), and
counting the number of occurrences of this word in the corresponding document.
This gives a typically high-dimensional feature vector ϕ(x) (with dimension the

11See https://en.wikipedia.org/wiki/Jaccard_index.

https://en.wikipedia.org/wiki/Jaccard_index
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vocabulary size). Using linear functions on this feature provides cheap and stable
predictors on such data types (better models that take into account the word or-
der can be obtained, such as neural networks, at the expense of significantly more
computational resources). See, e.g., Joulin et al. (2017) for examples.

• Sequences: given some finite alphabet A, we consider the set X of finite sequences
in A with arbitrary length. A classical infinite-dimensional feature space is indexed
by X itself, and for y ∈ X, ϕ(x)y is equal to 1 is y is a subsequence of x (we could
also count the number of times the subsequence y appears in x, or we could add
a weight that depends on y, e.g., to penalize longer subsequences). This kernel
has an infinite-dimensional feature space, but for two sequences x and x′, we can
enumerate all subsequences of x and x′ and compare them in polynomial time
(there exist much faster algorithms, see Gusfield (1997)). These kernels have many
applications in bioinformatics.

The same techniques can be extended to more general combinatorial objects such
as trees and graphs (see Shawe-Taylor and Cristianini, 2004).

• Images: before neural networks took over in the years 2010s with the use of large
amounts of data, several kernels were designed for images, with often a “bag-of-
words” assumption that provides for free invariance by translation. The key is what
to consider as “words”, i.e., the presence of specific local patterns in the image and
the regions under which this assumption is made. See Zhang et al. (2007) for details.

7.4 Algorithms

In this section, we briefly mention algorithms aimed at solving

min
f∈H

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2H, (7.5)

for ℓ being convex with respect to its second variable. We assume that for all i ∈
{1, . . . , n}, k(xi, xi) = ‖ϕ(xi)‖2 6 R2.

7.4.1 Representer theorem

We can directly apply the representer theorem, as done in Eq. (7.2) and try to solve

min
α∈Rn

1

n

n∑

i=1

ℓ(yi, (Kα)i) +
λ

2
α⊤Kα,

which is a convex optimization problem since ℓ is assumed convex with respect to the
second variable, and K is positive-semidefinite.

In the particular case of the square loss (ridge regression), this leads to

min
α∈Rn

1

2n
‖y −Kα‖22 +

λ

2
α⊤Kα,
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and setting the gradient to zero, we get (K2 + nλK)α = Ky, with a solution α =
(K + nλI)−1y, which is not unique as soon as K is not invertible.

However, in general (for the square loss and beyond), it is an ill-conditioned optimiza-
tion problem because K often has very small eigenvalues (more on this later). When the
loss is smooth, the Hessians are equal to 1

nK Diag(h)K + λK, where h ∈ Rn is a vector
of second-order derivatives of ℓ, so that the Hessians are ill-conditioned.

A better alternative is to first compute a square root of K as K = ΦΦ⊤, where
Φ ∈ Rn×m, and m the rank of K, and solve

min
β∈Rm

1

n

n∑

i=1

ℓ(yi, (Φβ)i) +
λ

2
‖β‖22,

with β = Φ⊤α. Note that this corresponds to an explicit feature space representation
(that is, the rows of Φ correspond to features in R

m for the corresponding data point).
For ridge regression, the objective function’s Hessian is equal to 1

nΦ⊤Φ+λI, which is well-
conditioned because its lowest eigenvalue is greater than λ and is thus directly controlled
by regularization.

Computing a square root can be done in several ways (through Cholesky decomposi-
tion or SVD) (Golub and Loan, 1996), in running time O(m2n).

7.4.2 Column sampling

To approximate K, approximate square roots are a very useful tool, and among various
algorithms, approximating K ∈ Rn×n from a subset of its columns can be done as K ≈
K(V, I)K(I, I)−1K(I, V ), where K(A,B) is the sub-matrix of K obtained by taking rows
from the set A ⊂ {1, . . . , n} and columns from B ⊂ {1, . . . , n}, and V = {1, . . . , n}. See
below for an illustration when I = {1, . . . ,m} and a partition of the kernel matrix.

K(I, I)

K(J, I) K(J, J)

K(I, J)

This corresponds to an approximate square root Φ = K(V, I)K(I, I)−1/2 ∈ Rn×m,
with m = |I|, and it can be computed in time O(m2n) (computing the entire kernel
matrix is not even needed). Then, the complexity is typically O(m2n) instead of O(n3)
(e.g., when using matrix inversion for ridge regression, for faster algorithms, see below),
and is thus linear in n.

Exercise 7.6 (�) Show that column sampling corresponds to approximating optimally
each ϕ(xj), j /∈ I, by a linear combination of ϕ(xi), i ∈ I.
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This approximation technique, often called “Nyström approximation,” can be ana-
lyzed when the columns are chosen randomly (Rudi et al., 2015).

7.4.3 Random features

Some kernels have a special form that leads to specific approximation schemes, that is,

k(x, x′) =

∫

V

ϕ(x, v)ϕ(x′, v)dτ(v),

where τ is a probability distribution on some space V and ϕ(x, v) ∈ R. We can then
approximate the expectation by an empirical average

k̂(x, x′) =
1

m

m∑

j=1

ϕ(x, vj)ϕ(x′, vj),

where the vj ’s are sampled i.i.d. from τ . We can thus use an explicit feature representation
ϕ̂(x) =

(
1√
m
ϕ(x, vj)

)
j∈{1,...,m}, and solve

min
β∈Rm

1

n

n∑

i=1

ℓ(yi, ϕ̂(xi)
⊤β) +

λ

2
‖β‖22.

For this scheme to make sense, the number m of random features has to be significantly
smaller than n, which is often sufficient in practice (see an analysis by Rudi and Rosasco,
2017).

△! Note that dimension reduction is here performed independently of the input data
(that is, the random feature functions ϕ(·, vj) are selected before the data are observed,
as opposed to column sampling, which is a data-dependent dimension reduction scheme.

The two classic examples are:

• Translation-invariant kernels: k(x, y) = q(x − y) = 1
(2π)d

∫
Rd q̂(ω)eiω

⊤(x−y)dω,

for which we can take ϕ(x, ω) =
√
q(0)eiω

⊤x ∈ C, where ω is sampled from the dis-

tribution with density 1
(2π)d

q̂(ω)
q(0) , which is a Gaussian distribution for the Gaussian

kernel. Alternatively, one can use a real-valued feature (instead of a complex-
valued one) by using

√
2 cos(ω⊤x+ b) with b sampled uniformly in [0, 2π] (Rahimi

and Recht, 2008).

• Neural networks with random weights: we can start from an expectation, for
which the sampled features are classical, e.g., ϕ(x, v) = σ(v⊤x) for some function
σ : R → R. For the “rectified linear unit”, that is, σ(α) = max{0, α}, and for v
sampled uniformly on the sphere, we have (proof left as an exercise) k(x, x′) =
‖x‖2‖x′‖2

2(d+1)π

[
(π−η) cos η+sin η

]
, where cos η = x⊤x′

‖x‖2·‖x′‖2
(Le Roux and Bengio, 2007).

Therefore, we can view a neural network with a large number of hidden neurons,
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with random input weights and not optimized as a kernel method. See a thorough
discussion in Chapter 9.

7.4.4 Dual algorithms (�)

For the following two algorithms, we go back to the notation f(x) = 〈ϕ(x), θ〉 with θ ∈ H

because it is more adapted (and is a direct infinite-dimensional extension of the algorithms
from Chapter 5). To solve minθ∈H

1
n

∑n
i=1 ℓ(yi, 〈ϕ(xi), θ〉) + λ

2 ‖θ‖2, for a loss which is
convex with respect to the second variable, we can derive a Lagrange dual in the following
way (for an introduction to Lagrange duality, see Boyd and Vandenberghe, 2004). We
start by reformulating the problem as a constrained problem:

min
θ∈H

1

n

n∑

i=1

ℓ(yi, 〈ϕ(xi), θ〉) +
λ

2
‖θ‖2

= min
θ∈H, u∈Rn

1

n

n∑

i=1

ℓ(yi, ui) +
λ

2
‖θ‖2 such that ∀i ∈ {1, . . . , n}, 〈ϕ(xi), θ〉 = ui.

By Lagrange duality, this is equal to (with λ added on top of the regular multiplier α for
convenience):

max
α∈Rn

min
θ∈H, u∈Rn

1

n

n∑

i=1

ℓ(yi, ui) +
λ

2
‖θ‖2 + λ

n∑

i=1

αi
(
ui − 〈ϕ(xi), θ〉

)

= max
α∈Rn

{ 1

n

n∑

i=1

min
ui∈R

{
ℓ(yi, ui)+nλαiui]}+ min

θ∈H

{λ
2
‖θ‖2−λ

n∑

i=1

αi〈ϕ(xi), θ〉
}}

by reordering,

= max
α∈Rn

1

n

n∑

i=1

min
ui∈R

{
ℓ(yi, ui) + nλαiui} −

λ

2

∥∥∥
n∑

i=1

αiϕ(xi)
∥∥∥
2

with θ =

n∑

i=1

αiϕ(xi),

= max
α∈Rn

1

n

n∑

i=1

min
ui∈R

{
ℓ(yi, ui) + nλαiui} −

λ

2
α⊤Kα,

with θ=
∑n
i=1 αiϕ(xi) at optimum. Since the functions αi 7→ minui∈R

{
ℓ(yi, ui)+nλαiui}

are concave (as minima of affine functions), this is a concave maximization problem.

Note the similarity with the representer theorem (existence of α ∈ Rn such that θ =∑n
i=1 αiϕ(xi)) and the dissimilarity (one is a minimization problem, one is maximization

problem). Moreover, when the loss is smooth, one can show that the function αi 7→
minui∈R

{
ℓ(yi, ui) + nλαiui} is a strongly concave function, and thus relatively easy to

optimize (in other words, the associated condition numbers of dual problems are smaller
than when using the representer theorem).

Exercise 7.7 (a) For ridge regression, compute the dual problem and compare the con-
dition number of the primal problem and the condition number of the dual problem; (b)
compare the two formulations to the use of normal equations as in Chapter 3, and relate
the two using the matrix inversion lemma (ΦΦ⊤ + nλI)−1Φ = Φ(Φ⊤Φ + nλI)−1.
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7.4.5 Stochastic gradient descent (�)

When minimizing an expectation

min
θ∈H

E
[
ℓ(y, 〈ϕ(x), θ〉)

]
+
λ

2
‖θ‖2

as in Chapter 5, the stochastic gradient algorithm leads to the recursion

θt = θt−1 − γt
[
ℓ′(yt, 〈ϕ(xt), θt−1〉)ϕ(xt) + λθt−1

]
,

where (xt, yt) is an i.i.d. sample from the distribution defining the expectation, and ℓ′ is
the derivative with respect to the second variable.

When initializing at θ0 = 0, θt is a linear combination of all ϕ(xi), i = 1, . . . , t, and
thus we can write

θt =

t∑

i=1

α
(t)
i ϕ(xi),

with α(0) = 0, and the recursion in α as

α
(t)
i = (1− γtλ)α

(t−1)
i for i ∈ {1, . . . , t− 1}, and α

(t)
t = −γtℓ′

(
yt, ,

t−1∑

i=1

α
(t−1)
i k(xt, xi)

)
.

The complexity after t iterations is O(t2) kernel evaluations. The convergence rates
from Chapter 5 apply. More precisely, if the loss is G-Lipschitz continuous, then, for
F (θ) = E

[
ℓ(y, 〈ϕ(x), θ〉)

]
+ λ

2 ‖θ‖2, we have, for the averaged iterate θt (from Prop. 5.8):

E
[
F (θ̄t)

]
− inf
θ∈H

F (θ) 6
2G2R2(1 + log t)

λt
.

△!
When doing a single pass with t = n, then F (θ) is the regularized expected

risk, and we obtain a generalization bound, leading to E
[
R(fθ̄t)

]
6 G2R2

λn +

inff∈H

{
R(f) + λ

2 ‖f‖2H
}

. These bounds are similar to the ones in Section 7.5
below (which assume a regularized empirical risk minimizer is available).

7.4.6 “Kernelization” of linear algorithms

Beyond supervised learning, many unsupervised learning algorithms can be “kernelized,”
such as principal component analysis (as presented in Section 3.9), K-means, or canonical
correlation analysis.12 Indeed, these algorithms can be cast only through the matrices of
dot-products between observations and can thus be applied after the feature transforma-
tion ϕ : X→ H, and run implicitly only using the kernel function k(x, x′) = 〈ϕ(x), ϕ(x′)〉.
See Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004) for details and ex-
ercises below.

12See https://en.wikipedia.org/wiki/Canonical_correlation.

https://en.wikipedia.org/wiki/Canonical_correlation
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Exercise 7.8 (Kernel principal component analysis) We consider n observations
x1, . . . , xn in a set X equipped with a positive definite kernel and feature map ϕ from X

to H. Show that the largest eigenvector of the empirical non-centered covariance operator
1
n

∑n
i=1 ϕ(xi)⊗ ϕ(xi) is proportional to

∑n
i=1 αiϕ(xi) where α ∈ Rn is an eigenvector of

the n× n kernel matrix associated with the largest eigenvalue. Given the RKHS H asso-
ciated with the kernel k, relate this eigenvalue problem to the maximizer of 1

n

∑n
i=1 f(xi)

2

subject to ‖f‖H = 1.

Exercise 7.9 (Kernel K-means) Show that the K-means clustering algorithm13 can
be expressed only using dot-products.

Exercise 7.10 (Kernel quadrature) We consider a probability distribution p on a
set X equipped with a positive definite kernel k with feature map ϕ : X → H. For a
function f which is linear in ϕ, we want to approximate

∫
X
f(x)dp(x) from a linear com-

bination
∑n
i=1 αif(xi) with α ∈ Rn.

(a) Show that

∣∣∣
∫

X

f(x)dp(x) −
n∑

i=1

αif(xi)
∣∣∣ 6 ‖f‖ ·

∥∥∥
∫

X

ϕ(x)dp(x) −
n∑

i=1

αiϕ(xi)
∥∥∥.

(b) Express the square of the right-hand side with the kernel function and show how to
minimize with respect to α ∈ Rn.
(c) Show that if the points x1, . . . , xn are sampled i.i.d. from p and αi = 1/n for all i,

then E
∥∥ ∫

X
ϕ(x)dp(x) −∑n

i=1 αiϕ(xi)
∥∥2

6 1
nE[k(x, x)].

Exercise 7.11 Consider a binary classification problems with data (x1, y1), . . . , (xn, yn)
in X × {−1, 1}, with a positive kernel k defined on X with feature map ϕ : X → H. Let
µ+ (resp. µ−) be the mean of all feature vectors for positive (resp. negative) labels. We
consider the classification rule that predicts 1 if ‖ϕ(x) − µ+‖2H < ‖ϕ(x)− µ−‖2H and −1
otherwise. Compute the classification rule only using kernel functions and compare it to
local averaging methods from Chapter 6.

7.5 Generalization guarantees - Lipschitz-continuous

losses

In this section, we consider a G-Lipschitz-continuous loss function, and consider a mini-

mizer f̂
(c)
D of the constrained problem

min
f∈H

1

n

n∑

i=1

ℓ(yi, f(xi)) such that ‖f‖H 6 D, (7.6)

13See https://en.wikipedia.org/wiki/K-means_clustering.

https://en.wikipedia.org/wiki/K-means_clustering
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and the unique minimizer f̂
(r)
λ of the regularized problem

min
f∈H

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2H. (7.7)

We denote by R(f) = E
[
ℓ(y, f(x))

]
the expected risk, and by f∗ one of its minimizers

(which we assume to be square integrable). We assume k(x, x) 6 R2 almost surely.

We can first relate the excess risk to the L2-norm of f − f∗, as (using Jensen’s
inequality)

R(f)− R(f∗) 6 E[|ℓ(y, f(x))− ℓ(y, f∗(x))|] 6 GE[|f(x)− f∗(x)|]
6 G

√
E[|f(x) − f∗(x)|2] = G‖f − f∗‖L2(p),

that is, the excess risk is dominated by the L2(p)-norm of f − f∗. For X = R
d, and

probability measures with bounded density with respect to the Lebesgue measure, we

have shown that ‖f‖L2(p) 6
∥∥ dp
dx

∥∥1/2
∞ ‖f‖L2(Rd), so we can replace in upper-bounds the

quantity G‖f − f∗‖L2(p) by G
∥∥ dp
dx

∥∥1/2
∞ ‖f − f

∗‖L2(Rd).

7.5.1 Risk decomposition

We now assume that supx∈X k(x, x) 6 R2, compatible with the convention in earlier
chapters on linear models (e.g., Section 4.5.3) that ‖ϕ(x)‖2H 6 R2 for all x ∈ X.

Constrained problem. Dimension-free results from Chapter 4 (Prop. 4.5), based on
Rademacher complexities, immediately apply, and we obtain that the estimation error is
bounded from above by 4GDR√

n
, leading to:

E
[
R(f̂

(c)
D )

]
− R(f∗) 6

4GDR√
n

+G inf
‖f‖H6D

‖f − f∗‖L2(p),

(the first term is the estimation error of using the empirical risk minimizer constrained
to the ball of RKHS norm less than D, the second term is the approximation error).

To find the optimal D (to balance estimation and approximation error), we can min-
imize the bound with respect to D, leading to (using |a|+ |b| 6

√
2(a2 + b2)):

inf
D>0

4GRD√
n

+G inf
‖f‖H6D

‖f−f∗‖L2(p) = inf
f∈H

4GR‖f‖H√
n

+G‖f−f∗‖L2(p)

6 G

√
2 inf
f∈H

{
‖f−f∗‖2L2(p)

+
16R2

n
‖f‖2

H

}
. (7.8)

Note that if we consider D equal to
√
n

4R

√
inff∈H

{
‖f − f∗‖2L2(p)

+ 16R2

n ‖f‖2H
}

, we can

obtain a bound proportional to what we obtained above.
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Overall, we need to understand how the deterministic quantity

A(µ, f∗) = inf
f∈H

{
‖f − f∗‖2L2(p)

+ µ‖f‖2H
}

goes to zero when µ goes to zero (note that we define A(µ, f∗) above through a regularized
estimation problem to study trade-offs between estimation and approximation errors, and
that this is not a justification to use 16R2/n as a regularization parameter in practice).
A few situations are possible:

• If the target function f∗ happens to be in H (well-specified problem), then we have
A(µ, f∗) 6 µ‖f∗‖2H, and thus it tends to zero as O(µ). This is the best-case scenario
and requires that the target function is sufficiently regular (e.g., with at least d/2
derivatives for X = Rd). Then, using it with µ = 16R2/n above, the overall excess
risk goes to zero as O(1/

√
n). Moreover, the suggested value of D not surprisingly

is exactly ‖f∗‖H.

• The target function f∗ is not in H (mis-specified problem), but can be approached
arbitrary closely in L2(p)-norm by a function in H; in other words, f∗ is in the
closure of H in L2(p). In this situation, A(µ, f∗) goes to zero as µ goes to zero, but
without an explicit rate if no further assumptions are made.

For X = Rd, and the distribution p of inputs with a bounded density with respect to
the Lebesgue measure, and for the translation-invariant kernels from Section 7.3.3,
this closure includes all of L2(Rd), so this case includes most potential functions.
See Section 7.5.2 for explicit rates.

• Otherwise, denoting ΠH̄(f∗) the orthogonal projection in L2(p) of f∗ on the closure
of H, by the Pythagorean theorem, A(µ, f∗) = A(µ,ΠH̄(f∗))+‖f∗−ΠH̄(f∗)‖2L2(p)

,
that is, there is an incompressible error due to a choice of function space which is
not large enough.

Note that we will use the same reasoning for neural networks in Section 9.4.

Regularized problem (�). For the regularized problem, we can use the bound from
Chapter 4 (Prop. 4.6):

E
[
R(f̂

(r)
λ )

]
− R(f∗) 6

32G2R2

λn
+ inf
f∈H

{
G‖f − f∗‖L2(p) +

λ

2
‖f‖2H

}
.

We can now minimize the bound with respect to λ, with f fixed, as λ = 8RG
‖f‖H

√
n

, to

obtain the bound:

G inf
f∈H

{
‖f − f∗‖L2(p) +

8R√
n
‖f‖H

}
6 G

√
2 inf
f∈H

{
‖f − f∗‖2L2(p)

+
64R2

n
‖f‖2

H

}
,

which is the same bound as for the constrained problem but on a more commonly used
optimization problem in practice. Note that for well-specified problems, the suggested
regularization parameter is λ = 8RG

‖f∗‖H

√
n

.
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7.5.2 Approximation error for translation-invariant kernels on Rd

We first start by analyzing kernel methods’ approximation error for translation invariant
kernels. Given a distribution p of inputs, the goal is to compute

A(µ, f∗) = inf
f∈H
‖f − f∗‖2L2(p)

+ µ‖f‖2H,

where f∗ is the target function (e.g., the minimizer of the test risk), which we assume
is squared-integrable. If A(µ, f∗) tends to zero when µ tends to zero for any fixed f∗,
kernel-based supervised learning leads to universally consistent algorithms.

We assume that ‖f − f∗‖2L2(p)
6 C

rd
‖f − f∗‖2L2(Rd) (e.g., with C = rd‖dp/dx‖∞ where

dp/dx is the density of p), where we have introduced a constant r to preserve homogeneity.
Moreover, for simplicity, we assume that ‖f∗‖L2(Rd) is finite (which implies that f∗ has
to go to zero at infinity). We now give bounds on

Ã(µ, f∗) = inf
f∈H

1
rd
‖f − f∗‖2L2(Rd) + µ‖f‖2H,

keeping in mind that A(µ, f∗) 6 CÃ(µ/C, f∗). Remember from Section 7.5.1 that if

f∗ ∈ H (best case scenario), then both A(µ, f∗) and Ã(µ, f∗) are less than µ‖f∗‖2H.

Explicit approximation. We have, for translation-invariant kernels defined in Sec-

tion 7.3.3, an explicit formulation of the norm ‖ · ‖H as ‖f‖2H = 1
(2π)d

∫
Rd

|f̂(ω)|2
q̂(ω) dω, and

thus

Ã(µ, f∗) = inf
f̂∈L2(Rd)

1

(2π)d

∫

Rd

[
1
rd
|f̂(ω)− f̂∗(ω)|2 + µ

|f̂(ω)|2
q̂(ω)

]
dω.

The optimization can be performed independently for each ω, which is a quadratic prob-
lem. Setting the derivative with respect to f̂(ω) to zero leads to 0 = 2 1

rd
(f̂(ω)− f̂∗(ω)) +

2µ f̂(ω)q̂(ω) , and thus f̂µ(ω) = f̂∗(ω)
1+µrdq̂(ω)−1 . In terms of the objective function, we get:

Ã(µ, f∗) =
1

(2πr)d

∫

Rd

|f̂∗(ω)|2
(

1− 1

1+µrdq̂(ω)−1

)
dω =

1

(2π)d

∫

Rd

|f̂∗(ω)|2 µ

q̂(ω)+µrd
dω.

When µ goes to zero, we see that for each ω, f̂µ(ω) tends to f̂∗(ω). By the dominated

convergence theorem, Ã(µ, f∗) goes to zero when µ goes to zero.

Without further assumptions, it is impossible to obtain a convergence rate (otherwise,
the no-free lunch theorem from Chapter 2 would be invalidated). However, this is possible
when assuming regularity properties for f∗.

△! Note that the universal approximation properties of translation-invariant kernels do
not require the kernel bandwidth r to go to zero (as opposed to smoothing kernels from
Chapter 6).
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Sobolev spaces (�). If we assume that

1

(2π)d

∫

Rd

(1 + r2‖ω‖22)t|f̂∗(ω)|2dω < +∞ (7.9)

for some t > 0, that is, f∗ with squared integrable partial derivatives up to order t, then
we can further bound:

Ã(µ, f∗) 6
1

(2π)d

∫

Rd

(1 + r2‖ω‖22)t|f̂∗(ω)|2dω × sup
ω∈Rd

{ µ

q̂(ω) + µrd
1

(1 + r2‖ω‖22)t
}
.

If we now assume q̂(ω) ∝ rd(1 + r2‖ω‖22)−s (Matern kernels), with s > d/2 to get

an RKHS, then with t > s, f∗ ∈ H, and have Ã(µ, f∗) = µ‖f∗‖2H. With t < s, that
is the function is not inside the RKHS H, then we get a bound proportional to (using
a+ b > t

sa+ (1 − t
s )b > at/sb1−t/s):

sup
ω∈Rd

{ µ

q̂(ω) + µrd
1

(1 + r2‖ω‖22)t
}
6 sup
ω∈Rd

{ µ

q̂(ω)t/s(µrd)1−t/s
1

(1 + r2‖ω‖22)t
}

= O(µt/s).

Exercise 7.12 (�) Find an upper-bound of Ã(µ, f∗) for the same assumption on f∗ but
with the Gaussian kernel.

△! There are two regularities, with two different constraints: t > 0 for the target
function, and s > d/2 for the kernel.

Putting things together. Thus, for Lipschitz-continuous losses and target functions

that satisfy Eq. (7.9), we get an expected excess risk of the order
(
Ã(R2/n, f∗)

)1/2
=

O(n−t/(2s)), when t 6 s. For example, when t = 1, that is, only first-order derivatives are
assumed to be square integrable, then for s = d/2+1/2 (exponential kernel), we obtain a
rate of O(n−1/(d+1))), which is similar to the rate obtained with local averaging techniques
in Chapter 6 (note here that we are in Lipschitz-loss set-up, which leads to worse rates,
see the square loss in Section 7.6). Thus, kernel methods do not escape the curse of
dimensionality (which is unavoidable anyway). However, with the proper choice of the
regularization parameter, they can benefit from extra smoothness of the target function:
in the very favorable case, where f∗ ∈ H, that is t > s, then we obtain a dimension-
independent rate of 1/

√
n. In intermediate scenarios, the rates are in between. This is

why kernel methods are said to be adaptive to the smoothness of the target function.

Approximation bounds (�). In some analysis set-ups (such as those explored in
Chapter 9), it is required to approximate some f∗ up to ε with the minimum possible
RKHS norm. This can be done as follows.

A bound on the quantity A(µ, f∗) = inff∈H

{
‖f −f∗‖2L2(p)

+µ‖f‖2H
}

of the form cµα
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for α ∈ (0, 1) leads to the following bound:

inf
f∈H
‖f‖2H such that ‖f − f∗‖L2(p) 6 ε

= inf
f∈H

sup
µ>0
‖f‖2H + µ(‖f − f∗‖2L2(p)

− ε2) using Lagrangian duality,

= sup
µ>0

µA(µ−1, f∗)− µε2 6 sup
µ>0

µcµ−α − µε2.

The optimal µ is such that (1 − α)cµ−α = ε2, leading to an approximation bound pro-
portional to ε2(1−1/α) = ε−2(1−α)/α.

Applied to α = t/s like before, this leads to an RKHS norm proportional to ε−(1−α)/α

to get an error less than ‖f − f∗‖L2(Rd) So when t = 1 (single derivative for the target

function), and s > d/2 (for the Sobolev kernel), we get a norm of the order ε−(1/α−1) =
ε−(s−1) > ε−d/2+1, which explodes exponentially in dimension, which is another way of
formulating the curse of dimensionality.

Relationship between Lipschitz-continuous functions and Sobolev spaces on Rd

(��). In the previous chapter on local averaging methods, as well as for neural networks
(Chapter 9), we will consider Lipschitz-continuous functions on a subset of Rd, which we
take here to be the ball of center 0 and radius r. To apply results from the current chapter,
we need to extend them to a function g on Rd with controlled squared Sobolev norm with
order t = 1, that is,

∫
Rd

(
|g(x)|2 + r2‖g′(x)‖22

)
dx. Then, the estimation rates for Sobolev

space of order t, that is, O(n−1/(1+d)), applies to Lipshitz-continuous functions on an
Euclidean ball.

For this, we also need to impose a bound on the value of f at 0, that is, we assume
|f(0)| 6 rD, and f is D-Lipschitz-continuous on the ball of center 0 and radius r. We
now show that we can extend it to a function g with squared Sobolev norm less than a
constant cd (that depends on d) times Rd+2D2.

We define the function g which is equal to f on the ball of radius r, equal to 0
outside of the ball of radius 2r, and equal to g(x) = f(rx/‖x‖2)(2 − ‖x‖2/r) for ‖x‖2 ∈
[r, 2r], that is, on each ray {ty, t ∈ [r, 2r]}, for y ∈ Rd of unit norm, the function g
goes linearly from f(y) to 0. The function g is continuous and has almost everywhere
bounded derivatives. On the ball of radius 2r, |g(x)| 6 2rD, while when ‖x‖2 ∈ [r, 2r],
g′(x) = − 1

r f(rx/‖x‖2)x/‖x‖2 + r
‖x‖2

(I − xx⊤/‖x‖22)f ′(rx/‖x‖2)(2 − ‖x‖2/r), leading

to, by the Pythagorean theorem, ‖g′(x)‖22 = 1
r2 |f(rx/‖x‖2)|2 + r2

‖x‖2
2
(2 − ‖x‖2/r)2‖(I −

xx⊤/‖x‖22)f ′(rx/‖x‖2)‖22 6 1
r2 |2rD|2 +D2 = 5D2. Thus,

∫
Rd

(
|g(x)|2 + r2‖g′(x)‖22

)
dx 6

9r2D2(2r)d πd/2

Γ(1+d/2) , since the volume of the Euclidean unit ball is equal to πd/2

Γ(1+d/2) .

Thus the constant cd is less than 9·2dπd/2

Γ(1+d/2) .
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7.6 Theoretical analysis of ridge regression (�)

In this section, we provide finer results for ridge regression (that is, square loss and
penalization by squared norm) used within kernel methods. Compared to the analysis
performed in Section 3.6, there are three difficulties:

(1) we go from fixed design to random design: this will require finer probabilistic argu-
ments to relate population and empirical covariance operators,

(2) we need to go infinite-dimensional: in terms of notations, this will mean not using
transposes of matrices, but dot-products, which is a minor modification,

(3) the infimum of the expected risk over linear functions parameterized by θ ∈ H may
not be attained by an element of H, but by an element of its closure in L2(p). This
is important, as this allows access to a potentially large set of functions and requires
more care.

7.6.1 Kernel ridge regression as a “linear” estimator

We consider n i.i.d. observations (xi, yi) ∈ X×R, i = 1, . . . , n, and we aim at minimizing,
for λ > 0,

1

n

n∑

i=1

(yi − f(xi))
2 + λ‖f‖2H.

Like local averaging methods in Chapter 6, the ridge regression estimator happens to be a
“linear” estimator that depends linearly on the response vector (but of course non-linearly
in x in general). Indeed, using the representer theorem from Eq. (7.2), the estimator is
f(x) =

∑n
i=1 αik(x, xi), with α ∈ Rn defined as α = (K + nλI)−1y, where K ∈ Rn×n is

the kernel matrix. We can then write

f(x) =

n∑

i=1

ŵi(x)yi,

with ŵ(x) = (K + nλI)−1q(x) ∈ R
n, where q(x) ∈ R

n is defined as qi(x) = k(x, xi). The
smoothing matrix H is then equal to H = K(K + nλI)−1.

The key differences with local averaging are that (a) the weights do not sum to one,
that is,

∑n
i=1 ŵi(x) may be different from one, and (b) the weights are not constrained

to be non-negative. While the first difference can be removed using centering (see ex-
ercise below), the second one is more fundamental: allowing the weights to be negative
will enable the adaptivity to smoothness, which local averaging methods missed (see
Section 6.5).

Exercise 7.13 We consider the optimization problem 1
2n‖y−Φθ−η1n‖22 + λ

2 ‖θ‖22, where
Φ ∈ Rn×d is the design matrix obtained from feature map ϕ and data points x1, . . . , xn,
and y ∈ Rn, and 1n ∈ Rn is the vector of all ones. Show that the optimal value of θ
and η are: θ = Φ⊤α, and η = 1

n1⊤n (y − Φθ), with α = Πn(ΠnKΠn + nλI)−1Πny, and
Πn = I − 1

n1n1⊤n . Show that the prediction function f(x) = ϕ(x)⊤θ + η is of the form∑n
i=1 ŵi(x)yi with weights that sum to one.
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Exercise 7.14 (�) For x1, . . . , xn equally spaced in [0, 1] and for a translation-invariant
kernel from Section 7.3.2, compute the eigenvalues of the kernel matrix and the smoothing
matrix.

7.6.2 Bias and variance decomposition (�)

Beyond fixed-design finite-dimensional analysis. In Chapter 3, we considered
ridge regression in the fixed design setting (where the input data were assumed de-
terministic) and a finite-dimensional feature space H, and obtained in Prop. 3.7 the

following exact expression of the excess risk of the ridge regression estimator θ̂λ, assum-
ing yi = 〈θ∗, ϕ(xi)〉 + εi, with εi independent from xi, and where E[εi] = 0, E[ε2i ] = σ2:

E
[
(θ̂λ − θ∗)⊤Σ̂(θ̂λ − θ∗)

]
= λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗ +

σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
. (7.10)

For the random design assumption (the usual machine learning setting), we first need to
obtain a value for the expected risk. Moreover, we need to replace the matrix notation
to apply to infinite dimensional H where the minimizer has a potentially infinite norm.

Modeling assumptions. We assume that

yi = f∗(xi) + εi,

with for simplicity E[εi|xi] = 0, and E[ε2i |xi] 6 σ2 almost surely, for some target function
f∗ ∈ L2(p), so that f∗(x) = E[y|x] is exactly the conditional expectation of y|x.

△! The target function f∗ may not be in H. All dot-products will always be in H,
while we will specify the corresponding space for norms.

We thus consider the optimization problem:

min
f∈H

1

n

n∑

i=1

(yi − f(xi))
2 + λ‖f‖2H, (7.11)

with the solution found with algorithms in Section 7.4.

△! The theoretical analysis of kernel methods typically does not involve the pa-
rameters α ∈ R

n obtained from the representer theorem.

We have, with Σ̂ = 1
n

∑n
i=1 ϕ(xi) ⊗ ϕ(xi) a self-adjoint operator from H to H (the

empirical covariance operator), a cost function equal to

1

n

n∑

i=1

y2i + 〈f, Σ̂f〉 − 2
〈 1

n

n∑

i=1

yiϕ(xi), f
〉

+ λ〈f, f〉,
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leading to the minimizer f̂λ of Eq. (7.11) equal to:

f̂λ = (Σ̂ +λI)−1 1

n

n∑

i=1

yiϕ(xi) = (Σ̂ +λI)−1 1

n

n∑

i=1

f∗(xi)ϕ(xi) + (Σ̂ +λI)−1 1

n

n∑

i=1

εiϕ(xi).

We can now compute the (expected) excess risk equal to E
[
‖f̂λ−f∗‖2L2(p)

]
as (using that

E(εi|xi) = 0):

E
[
‖f̂λ − f∗‖2L2(p)

]

= E

[∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

εiϕ(xi)
∥∥2
L2(p)

]
+ E

[∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

f∗(xi)ϕ(xi)− f∗∥∥2
L2(p)

]
.

The first term is the usual variance term (that depends on the noise on top of the optimal
predictions). In contrast, the second is the (squared) bias term (which depends on the
regularity of the target function). Before developing the probabilistic argument, we give
simplified upper bounds of the two terms.

On top of the non-centered empirical covariance operator Σ̂ = 1
n

∑n
i=1 ϕ(xi)⊗ ϕ(xi),

we will need its expectation, the covariance operator (from H to H)

Σ = E
[
ϕ(x) ⊗ ϕ(x)

]
,

for the corresponding distribution of the xi’s. A key property relates the L2(p)-norm and
the RKHS norm, that is, that for g ∈ H,

‖g‖2L2(p)
=

∫

X

g(x)2dp(x) =

∫

X

〈g, ϕ(x)〉2dp(x) =

∫

X

〈g, ϕ(x) ⊗ ϕ(x)g〉dp(x)

= 〈g,Σg〉=‖Σ1/2g‖2H. (7.12)

Variance term. Starting from variance = E

[∥∥(Σ̂ + λI)−1 1
n

∑n
i=1 εiϕ(xi)

∥∥2
L2(p)

]
, the

variance term can be upper-bounded as follows (first using independence and zero means
of the variables εi). Below, we use the property that for symmetric matrices such that
A < 0 and B 4 C, we have tr[AB] 6 tr[AC], and Eq. (7.12):

E

[∥∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

εiϕ(xi)
∥∥∥
2

L2(p)

]

=
1

n2

n∑

i=1

E

[
tr
(
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1ε2iϕ(xi)⊗ ϕ(xi)

)]

6
σ2

n
E
[

tr
(
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂

)]
using E[ε2i |xi] 6 σ2,

6
σ2

n
E

[
tr
(
(Σ̂ + λI)−1Σ

)]
using (Σ̂ + λI)−1Σ̂ 4 I. (7.13)

This will be the main expression we will bound later.
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Bias term. We first assume that f∗ ∈ H, that is, the model is well-specified. Then,
writing f∗(xi) = 〈f∗, ϕ(xi)〉 (which is possible because f∗ ∈ H), the bias term is equal
to

bias = E

[∥∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

f∗(xi)ϕ(xi)− f∗
∥∥∥
2

L2(p)

]
(7.14)

= E

[∥∥∥(Σ̂ + λI)−1 1

n

n∑

i=1

〈f∗, ϕ(xi)〉ϕ(xi)− f∗
∥∥∥
2

L2(p)

]
(7.15)

= E
[∥∥(Σ̂ + λI)−1Σ̂f∗ − f∗∥∥2

L2(p)

]

= E

[∥∥λΣ1/2(Σ̂ + λI)−1f∗∥∥2
H

]
= λ2E

[
〈f∗, (Σ̂ + λI)−1Σ(Σ̂ + λI)−1f∗〉

]
, (7.16)

where we have used Eq. (7.12) above to re-introduce the operator Σ. This will be the
main expression we will bound later.

Upper-bound on excess risk. We have thus shown the following proposition:

Proposition 7.5 When f∗ ∈ H, the excess risk of the ridge regression estimator is
upper-bounded by:

E
[
‖f̂λ − f∗‖2L2(p)

]
6
σ2

n
E

[
tr
(
(Σ̂ + λI)−1Σ

)]
+ λ2E

[
〈f∗, (Σ̂ + λI)−1Σ(Σ̂ + λI)−1f∗〉

]
.

(7.17)

Given the expression of the expected variance in Eq. (7.13) and the expected bias in
Eq. (7.16), we notice that both the empirical and expected covariance operators appear
and that it would be important to replace the empirical one with the expected one. This
is possible with extra multiplicative factors, which we now show. Then, we will bound the
two terms separately and show how balancing them leads to interesting learning bounds.

7.6.3 Relating empirical and population covariance operators

We follow Mourtada and Rosasco (2022) and derive simple relationships between the

empirical covariance operator Σ̂ and the population operator Σ, by showing the following
lemma dealing with expectations; for high probability bounds, see, e.g., Rudi et al. (2015);
Rudi and Rosasco (2017), as well as the end of Section 7.6.4.

Lemma 7.1 (Mourtada and Rosasco, 2022) Assuming i.i.d. data x1, . . . , xn ∈ X,
and bounded features ‖ϕ(x)‖H 6 R for all x ∈ X; we have, for all g ∈ H:

E

[
tr
(
(Σ̂ + λI)−1Σ

)]
6

(
1 +

R2

λn

)
tr
(
(Σ + λI)−1Σ

)
(7.18)

E

[〈
g, (Σ̂ + λI)−1Σ(Σ̂ + λI)−1g

〉]
4 λ−1

(
1 +

R2

λn

)2

〈g, (Σ + λI)−1Σg〉. (7.19)

Proof (�) The main idea is to introduce a (n+ 1)-th independent observation from the
same distribution, write Σ = E

[
ϕ(xn+1) ⊗ ϕ(xn+1)

]
, and use the fact that the obser-
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vations are “exchangeable”, that is, they can be permuted without changing their joint
distribution.

We denote C =
∑n+1

i=1 ϕ(xi) ⊗ ϕ(xi), and using the matrix inversion lemma (Sec-
tion 1.1.3), we have

(C+nλI)−1ϕ(xn+1) = (nΣ̂ + nλI + ϕ(xn+1)⊗ ϕ(xn+1))−1ϕ(xn+1)

=
(nΣ̂+nλI)−1ϕ(xn+1)

1 + 〈ϕ(xn+1), (nΣ̂ + nλI)−1ϕ(xn+1)〉
. (7.20)

Finally, we will use c =
〈
ϕ(xn+1),

(
nΣ̂ + nλI

)−1
ϕ(xn+1)

〉
6
R2

λn
. To prove Eq. (7.18),

we use Eq. (7.20) above to express (Σ̂+λI)−1ϕ(xn+1) in terms of (C+nλI)−1ϕ(xn+1),
to get:

E

[
tr
(
(Σ̂ + λI)−1Σ

)]
= E

[
tr
(
(Σ̂ + λI)−1ϕ(xn+1)⊗ ϕ(xn+1)

)]

= E

[〈
ϕ(xn+1), (Σ̂ + λI)−1ϕ(xn+1)

〉]

= nE
[
(1 + c)

〈
ϕ(xn+1), (C + nλI)−1ϕ(xn+1)

〉]
,

which leads to E
[

tr
(
(Σ̂ +λI)−1Σ

)]
6
(
1+ R2

λn

)
E
[〈
ϕ(xn+1), (C+nλI)−1ϕ(xn+1)

〉]
. Thus,

using that the variables (x1, . . . , xn+1) are exchangeable:

E

[
tr
(
(Σ̂ + λI)−1Σ

)]

6

(
1 +

R2

λn

) 1

n+ 1

n+1∑

i=1

E
[〈
ϕ(xi),

(
C + nλI

)−1
ϕ(xi)

〉]

=
(

1 +
R2

λn

) 1

n+ 1
E
[

tr
(
C(C + nλI)−1)

]
since C =

n+1∑

i=1

ϕ(xi)⊗ ϕ(xi)

6

(
1 +

R2

λn

) 1

n+ 1

[
tr
(
E[C](E[C] + nλI)−1)

]
by Jensen’s inequality,14

=
(

1 +
R2

λn

) 1

n+ 1
tr
(
(n+ 1)Σ((n+ 1)Σ + nλI)−1

)

6

(
1 +

R2

λn

)
tr
(
Σ(Σ + λI)−1

)
, which is exactly Eq. (7.18).

To prove Eq. (7.19), we use the same technique, that is,

E
[
(Σ̂ + λI)−1Σ(Σ̂ + λI)−1

]
= E

[
(Σ̂ + λI)−1ϕ(xn)⊗ ϕ(xn)(Σ̂ + λI)−1

]

= n2(1 + c)2
[
(C + nλI)−1ϕ(xn+1)

]
⊗
[
(C + nλI)−1ϕ(xn+1)

]
.
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This leads to:

E
[〈
g, (Σ̂ + λI)−1Σ(Σ̂ + λI)−1g

〉]

= n2
E

[
(1 + c)2

〈
(C + nλI)−1ϕ(xn+1), g〉2

]

6 n2
(
1 +

R2

λn

)2
E

[〈
(C + nλI)−1ϕ(xn+1), g〉2

]

=
n2

n+ 1

(
1 +

R2

λn

)2
E

[〈
g, (C + nλI)−1C(C + nλI)−1g

〉]
by exchangeability,

6
1

λ

n

n+ 1

(
1 +

R2

λn

)2
E

[〈
g, C(C + nλI)−1g

〉]

6
1

λ

n

n+ 1

(
1 +

R2

λn

)2〈
g,E[C](E[C] + nλI)−1g

〉
by Jensen’s inequality,

=
1

λ
n
(
1 +

R2

λn

)2〈
g,Σ((n+ 1)Σ + nλI)−1g

〉
6 λ−1

(
1 +

R2

λn

)2〈
g, (Σ + λI)−1Σg

〉
.

7.6.4 Analysis for well-specified problems (�)

In this section, we assume that f∗ ∈ H. We have the following result for the excess risk,
whose proof consists in applying Lemma 7.1 to Eq. (7.17).

Proposition 7.6 (Well-specified model kernel ridge regression) Assume i.i.d.
data (xi, yi) ∈ X × R, for i = 1, . . . , n, and yi = f∗(xi) + εi, with E[εi|xi] = 0 and
E[ε2i |xi] 6 σ2, and f∗ ∈ H. Assume ‖ϕ(x)‖H 6 R. We have:

E
[
‖f̂λ − f∗‖2L2(p)

]
6
σ2

n

(
1+

R2

λn

)
tr
(
(Σ+λI)−1Σ

)
+ λ

(
1+

R2

λn

)2

〈f∗,Σ(Σ+λI)−1f∗〉.
(7.21)

This is to be contrasted with Eq. (7.10): we obtain a similar result with Σ̂ replaced by Σ,
but with some extra multiplicative constants that are close to one if R2/(λn) is small.

We can further bound tr
(
(Σ+λI)−1Σ

)
6 R2

λ and 〈f∗,Σ(Σ+λI)−1f∗〉 6 〈f∗, f∗〉, to get
the bound

E
[
‖f̂λ − f∗‖2L2(p)

]
6 σ2R

2

λn

(
1+

R2

λn

)
+ λ

(
1+

R2

λn

)2

‖f∗‖2H,

which is a random design version of the developments in the proof of Prop. 3.8. In such a
situation, the choice λ = R2/

√
n (which does not impose any knowledge of ‖f∗‖H) leads

to a bound on the excess risk proportional to (σ2 +R2‖f∗‖2H)/
√
n.

In finite feature dimensions d, we can alternatively bound tr
(
(Σ+λI)−1Σ

)
6 R2

λ by d,
then leading to a natural choice λ of order R2/n, and an upper-bound of the excess risk
proportional to σ2d/n+R2‖f∗‖2H/n.

The last two paragraphs lead to different choices of the regularization parameter,
proportional to R2/

√
n or R2/n, two classical rules of thumbs within kernel methods.
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Bounds in high-probability (��). Instead of obtaining bounds in expectation (with
respect to the training data), we can obtain high-probability bounds, as briefly shown
below for the simplest bound; see, more refined bounds by Rudi et al. (2015); Rudi
and Rosasco (2017). Note that they do not rely on Rademacher averages but on direct
probabilistic arguments that can only be applied to the square loss.

Proposition 7.7 (High-probability bound for kernel ridge regression) Assume
i.i.d. data (xi, yi) ∈ X × R, for i = 1, . . . , n, and yi = f∗(xi) + εi, with E[εi|xi] = 0 and

ε2i 6 σ2 almost surely, and f∗ ∈ H. Assume ‖ϕ(x)‖H 6 R and n >
(
4
3 + R2

8λ

)
log 14R2

λδ .
We have, with a probability greater than 1− δ,

‖f̂λ − f∗‖2L2(p)
6

8σ2R2

λn
+ 4λ‖f∗‖2H +

16σ2R2

λn
log

2

δ
. (7.22)

Proof We first apply Prop. 1.7 with Mi = Σ(Σ+λI)−1− (Σ+λI)−1/2ϕ(xi)⊗ϕ(xi)(Σ+

λI)−1/2, for which we have V = R2

λ Σ(Σ + λI)−1, σ2 = R2

λ , c = 1, and t = 1, leading to

λmax

[
(Σ + λI)−1/2(Σ− Σ̂)(Σ + λI)−1/2

]
6

1

2

with probability greater than 1−7R
2

λ exp
[
− n

4/3+R2/(8λ)

]
, as soon as 1

2 > 1
3n + R√

λn
. This

probability is greater than 1− δ/2 as soon as n > (4/3 +R2/(8λ)) log 14R2

λδ .

This implies Σ − Σ̂ 4 1
2 (Σ + λI), 1

2 (Σ + λI) 4 Σ̂ + λI, and thus (Σ̂ + λI)−1 4

2(Σ + λI)−1. Using the  Lojasiewicz inequality (Lemma 5.1) on the regularized empirical

risk R̂λ(f) = 1
2n 〈f − f∗, Σ̂(f − f∗)〉 −

〈
1
n

∑m
i=1 εiϕ(xi), f

〉
+ λ

2 ‖f‖2H, we get:

R̂λ(f∗)− R̂λ(f̂λ) 6
1

2λ
‖R̂′

λ(f∗)‖2H.

Using R̂λ(f∗)− R̂λ(f̂λ) = 1
2 〈f∗− f̂λ, (Σ̂+λI)(f∗− f̂λ)〉 > 1

4 〈f∗− f̂λ, (Σ+λI)(f∗− f̂λ)〉 =
1
4‖f̂λ − f∗‖2L2(p)

, we get

‖f̂λ − f∗‖2L2(p)
6

2

λ

∥∥∥ 1

n

m∑

i=1

εiϕ(xi) + λf∗
∥∥∥
2

H
6

4

λ

∥∥∥ 1

n

n∑

i=1

εiϕ(xi)
∥∥∥
2

H
+ 4λ‖f∗‖2H.

We thus need a high-probability bound for
∥∥ 1
n

∑n
i=1 εiϕ(xi)

∥∥
H

, which we can obtain,
with probability greater than 1− δ/2, from McDiarmid’s inequality, as

∥∥ 1
n

∑n
i=1 εiϕ(xi)

∥∥
H

6 Rσ√
n

(
1 +

√
2 log 2

δ

)
.

Before analyzing the last proposition and balancing bias and variance, we show how
this can be applied beyond well-specified models.
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7.6.5 Analysis beyond well-specified problems (�)

In the bound in Eq. (7.21), the only term that requires potentially that f∗ ∈ H is the
bias term λ〈f∗, (Σ + λI)−1Σf∗〉. The following simple lemma is the key to extending to
all functions f∗ in the closure of H.

Lemma 7.2 Given the covariance operator Σ and any function f∗ ∈ H, then

λ〈f∗, (Σ + λI)−1Σf∗〉 = inf
f∈H

{
‖f − f∗‖2L2(p)

+ λ‖f‖2H
}
.

Proof The optimization problem above can be written as inff∈H

{
‖Σ1/2(f − f∗)‖2H +

λ‖f‖2H
}

, using Eq. (7.12), with solution f = (Σ +λI)−1Σf∗ and we can simply put back
the value in the objective function to get the desired result.

Target function in the closure of H. By using a limiting argument, we can extend
the formula of the bias term in Prop. 7.6 to the general case of f∗ ∈ L2(p) with Eq. (7.23),
in the closure of H in L2(p) (because all functions in the closure can be approached by a
function in H), leading to

(
1+

R2

λn

)2
inf
f∈H

{
‖f − f∗‖2L2(p)

+ λ‖f‖2H
}
, (7.23)

For translation-invariant kernels in Rd (which are dense in L2(R
d)), this allows estimating

any target function.

Final result. Combining the two cases above, we can now show the upper bound for
kernel ridge regression in the potentially misspecified case.

Proposition 7.8 (Mis-specified model kernel ridge regression) Assume i.i.d. data
(xi, yi) ∈ X×R, for i = 1, . . . , n, and yi = f∗(xi)+εi, with E[εi|xi] = 0 and E[ε2i |xi] 6 σ2.
Assume ‖ϕ(x)‖H 6 R and f∗ in the closure of H in L2(p). We have:

E
[
‖f̂λ−f∗‖2L2(p)

]
6
σ2

n

(
1+

R2

λn

)
tr
(
(Σ+λI)−1Σ

)
+
(

1+
R2

λn

)2

inf
f∈H

{
‖f−f∗‖2L2(p)

+λ‖f‖2H
}
.

(7.24)

△! Be careful with homogeneity of formulas; e.g., R2

λn is indeed a constant.

7.6.6 Balancing bias and variance (�)

We can now balance the bias and variance term in the following upper-bound on the
expected excess risk,

σ2

n

(
1+

R2

λn

)
tr
(
(Σ+λI)−1Σ

)
+
(

1+
R2

λn

)2

inf
f∈H

{
‖f − f∗‖2L2(p)

+ λ‖f‖2
}
.
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For this section, we will assume that X = Rd and that the target function belongs to
a Sobolev kernel of order t > 0, while the RKHS is a Sobolev space of order s > d/2.

We have seen in Section 7.5.2 that the bias term is of order
(
1+R2

λn

)2
λt/s when s > t.

For the variance term, we need to study the so-called “degrees of freedom”.

Degrees of freedom. This is the quantity tr
[
Σ(Σ + λI)−1

]
, which is decreasing in λ,

from +∞ for λ = 0 to 0 for λ = +∞. If we know that the eigenvalues (λm)m>0 of the
covariance operator satisfy

λm 6 C(m+ 1)−α,

for α > 1, then one has, with the change of variable u = λC−1tα below,

tr
[
Σ(Σ + λI)−1

]
=

∑

m>0

λm
λm + λ

6
∑

m>0

1

1 + λC−1(m+ 1)α
6

∫ ∞

0

1

1 + λC−1tα

6

∫ ∞

0

λ−1/αC1/α 1

α
u1/α−1 du

1 + u
6 O(λ−1/α).

It turns out that if the distribution of inputs has a bounded density with respect to
the Lebesgue measure, then for our chosen Sobolev space, we have α = 2s/d (see, e.g.,
Harchaoui et al., 2008, Appendix D).

Balancing terms (Sobolev spaces). We thus need to balance λt/s with 1
nλ

−1/α, lead-

ing to an optimal λ proportional to n−(1/α+t/s)−1

, and a rate proportional to n−αt/(αt+s).

This rate is only achievable through our analysis when R2

nλ remains bounded, that is, es-
sentially λ > R2/n, thus, 1

α + t
s > 1.

For α = 2s/d, we obtain the rate 1
n2t/(2t+d) , which is valid as long as d

2 + t > s > t.
We can make the following observations:

• Except for the constraint d
2 + t > s > t, the upper-bound on the rate obtained after

optimizing over λ does not depend on the kernel.

• We obtain some form of adaptivity, that is, the rate improves with the regularity
of the target function, from the slow rate 1

n2/(2+d) when t = 1 (recovering the same
rate as for local averaging methods15 in Chapter 6), and that can only be achieved
when s 6 d/2 + 1, e.g., with the exponential kernel), to the rate 1

n2s/(2s+d) when
t = s, the rate is then always better than 1/

√
n because of the constraint s > d/2.

• In order to allow for regularization parameters λ which are less than 1/n, other as-
sumptions are needed. See, e.g., Pillaud-Vivien et al. (2018) and references therein.

15In Chapter 6, we assumed the target function to be Lipschitz-continuous, which can be made an
element of the Sobolev space of order t = 1, with the construction at the end of Section 7.5.2.
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7.7 Experiments

We consider one-dimensional problems to highlight the adaptivity of kernel methods to
the regularity of the target function, with one smooth target and one non-smooth target,
and three kernels: exponential kernel corresponding to the Sobolev space of order 1 (top
of Figure 7.3), Matern kernel corresponding to the Sobolev space of order 3 (middle), and
Gaussian kernel (bottom). In the right plots, dotted lines are affine fits to the log-log
learning curves. The regularization parameter for ridge regression is selected to minimize
expected risk, and learning curves are obtained by averaging over 20 replications. See
results in Figure 7.3. The data

We observe adaptivity for the three kernels: learning is possible even with irregular
functions, and the rates are better for smooth target functions. We also note that for
kernels with smaller feature spaces (Matern and Gaussian), the performance on the non-
smooth target function is worse than for the large feature space (exponential kernel). As
highlighted by Bach (2013), this drop in performance is primarily due to a numerical
issue (the eigenvalues of the kernel matrix decay exponentially fast, and finite precision
arithmetic prevents the use of regularization parameters that are too small).

7.8 Conclusion

In this chapter, we have shown how models that are linear in their parameters can be
made infinite-dimensional. Algorithmically, this is made possible using the kernel trick
that uses only dot-products between the feature maps. Statistically, this leads to models
that can adapt to complex prediction functions using the appropriate kernels.

Since algorithms presented in Section 7.4 rely on convex optimization, we obtain
precise generalization guarantees that can take into account, estimation, approximation,
and optimization errors. A key benefit of positive-definite kernel methods compared to
local-averaging techniques is the adaptivity to the smoothness of the prediction function.
What is still missing is adaptivity to problems where the optimal prediction function only
depends on a subset of the original variables (when applying to inputs in Rd). This will
be achieved by neural networks in Chapter 9 at the expense of non-convex optimization
problems.
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Figure 7.3: Comparison of three kernels, Sobolev space of order 1 (top), Matern kernel
corresponding to the Sobolev space of order 3 (middle), and Gaussian kernel (bottom).
We consider two different target functions and plot on the right plots the excess risks.
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Chapter 8

Sparse methods

Chapter summary
– Model selection can be performed by adding a specific “sparsity-inducing” penalty

on top of the empirical risk.
– ℓ0-penalty: For fixed design linear regression, if the optimal predictor has k non-

zeros, then we can replace the rate σ2d
n by σ2k log d

n with an ℓ0-penalty on the square
loss (which is computationally hard).

– ℓ1-penalty: With few assumptions, we can get a slow rate proportional to k
√

log d
n

with an ℓ1-penalty and efficient algorithms, while fast rates require strong assump-
tions on the design matrix in the fixed design setting. In the random design setting,
fast rates can be obtained with invertible population covariance matrices.

8.1 Introduction

In previous chapters, we have seen the strong effect of the dimensionality of the input
space X on the generalization performance of supervised learning methods in two settings:

• When the target function f∗ was only assumed to be Lipschitz-continuous on
the set X = Rd, we saw that the excess risk for k-nearest-neigbors, Nadaraya-
Watson estimation (Chapter 6), or positive kernel methods (Chapter 7), was scaling
as n−2/(d+2).

• When the target function is linear in some features ϕ(x) ∈ Rd, then the excess risk
for unregularized least-squares was scaling as d/n.

In these two situations, efficient learning is generally impossible when d is too large (of
course, much larger in the linear case).

207
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To improve upon these rates, we study two techniques in this book. The first one is
regularization, e.g., by the ℓ2-norm, that allows obtaining dimension-independent bounds
that cannot improve over the bounds above in the worst-case but are typically adaptive
to additional regularity (see Chapter 3 and Chapter 7).

In this chapter, we consider another framework, namely variable selection, whose aim
is to build predictors that depend only on a small number of variables. The key difficulty
is that the identity of the selected variables is not known in advance.

In practice, variable selection is used in mainly two ways:

• The original set of features is already large (for example, in text or web data).

• Given some input x ∈ X, a large-dimensional feature vector ϕ(x) is built where
features are added that could potentially help predict the response, but from which
we expect only a small number to be relevant.

△! If no good predictor with a small number of active variables exists, these
methods are not supposed to work better.

Linear variable selection. In this chapter, we focus on linear methods, where we
assume that we have a feature vector ϕ(x) ∈ Rd, and we aim to minimize

E[ℓ(y, ϕ(x)⊤θ)]

with respect to θ ∈ Rd, for some loss function ℓ : Y × R → R. We will consider two
variable selection techniques, namely the penalization by ‖θ‖0 the number of non-zeros
in θ (often called abusively the “ℓ0-norm”), or the ℓ1-norm. See extensions in Section 8.5.

Non-linear variable selection corresponds to selecting a subset of variables from the d
available features ϕ(x)1, . . . , ϕ(x)d, but with a potentially non-linear model on top of
them. This is considered in the context of neural networks in Chapter 9.

Main focus on least-squares. These two types of penalties can be applied to all losses,
but in this chapter, for simplicity, we will primarily consider the square loss and, in most
cases, the fixed design setting (see a thorough description of this setting in Section 3.5),
and assume that we have n observations (xi, yi) ∈ X × Y, such that there exists θ∗ ∈ Rd

for which for i ∈ {1, . . . , n},
yi = ϕ(xi)

⊤θ∗ + εi,

where xi is assumed deterministic, and εi has zero mean and variance σ2 (we also assume
independence from xi, and sometimes stronger regularity, such as bounded almost surely,
or Gaussian). The goal is then to find θ ∈ Rd, such that

1

n
‖Φ(θ − θ∗)‖22 = (θ − θ∗)⊤Σ̂(θ − θ∗)

is as small as possible, where Φ ∈ Rn×d is the design matrix and Σ̂ = 1
nΦ⊤Φ the non-

centered empirical covariance matrix. We recall from Chapter 3 that for the ordinary
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least-squares estimator, the expectation of this excess risk is less than σ2d/n. This is the
best possible performance if we make no assumption on θ∗. In this chapter, we assume
that θ∗ is sparse, that is, only a few of its components are non-zero, or in other words,
‖θ∗‖0 = k is small compared to d.

The results presented in this section extend beyond the square loss, e.g., to the logistic
loss, in a straightforward way for slow rates in 1/

√
n (see the end of Section 8.3.3), with

significant additional work for fast rates in O(1/n) (see the end of Section 8.3.4).

8.1.1 Dedicated proof technique for constrained least-squares

In this chapter, we consider a more refined proof technique1 that can extend to constrained
versions of least-squares (while our technique in Chapter 3 heavily relies on having a closed
form for the estimator, which is not possible in constrained or regularized cases except in
few instances, such as ridge regression).

We denote by θ̂ a minimizer of 1
n‖y − Φθ‖22 with the constraint that θ ∈ Θ, for some

subset Θ of Rd. If θ∗ ∈ Θ, then we have, by optimality of θ̂:

‖y − Φθ̂‖22 6 ‖y − Φθ∗‖22.

By expanding with y = Φθ∗ +ε, we get ‖ε−Φ(θ̂−θ∗)‖22 6 ‖ε‖22, leading to, by expanding
the norms:

‖ε‖22 − 2ε⊤Φ(θ̂ − θ∗) + ‖Φ(θ̂ − θ∗)‖22 6 ‖ε‖22,

and thus

‖Φ(θ̂ − θ∗)‖22 6 2ε⊤Φ(θ̂ − θ∗).

We can write it as

‖Φ(θ̂ − θ∗)‖22 6 2‖Φ(θ̂ − θ∗)‖2 · ε⊤
( Φ(θ̂ − θ∗)

‖Φ(θ̂ − θ∗)‖2

)
.

This reformulation is difficult to deal with because θ̂ also appears on the right side of the
equation. Like done for upper-bounding estimation errors in Chapter 4, we can maximize
with respect to θ ∈ Θ to get rid of this randomness, which leads to

‖Φ(θ̂ − θ∗)‖22 6 2‖Φ(θ̂ − θ∗)‖2 · sup
θ∈Θ

ε⊤
( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)
, (8.1)

where θ̂ has disappeared from the right-hand side. Finally, isolating ‖Φ(θ̂−θ∗)‖22, we get:

‖Φ(θ̂ − θ∗)‖22 6 4 sup
θ∈Θ

[
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)]2
. (8.2)

1Taken from Philippe Rigollet’s lecture notes, see https://math.mit.edu/~rigollet/. See also Rigol-
let and Tsybakov (2007) for an example of application.

https://math.mit.edu/~rigollet/
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This inequality is true almost surely, and we can take expectation (with respect to ε) to
obtain bounds. Therefore, in this chapter, we will compute expectations of maxima of
quadratic forms in ε.

For example, when Θ = Rd (no constraints), we get, by taking z = Φ(θ−θ∗)
‖Φ(θ−θ∗)‖2

, with

ΠΦ = Πim(Φ) the orthogonal projector on the image space im(Φ) (which has dimension
rank(Φ)):

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 4E

[
sup

z∈im(Φ),‖z‖2=1

[
ε⊤z

]2]
.

By a simple geometric argument (see below),

im(Φ)

ε

Πim(Φ)ε

we have
sup

z∈im(Φ),‖z‖2=1

[
ε⊤z

]2
= sup

z∈im(Φ),‖z‖2=1

[
(ΠΦε)

⊤z
]2

= ‖ΠΦε‖2,

leading to

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 4E

[
‖ΠΦε‖2

]
= 4σ2

E tr(Π2
Φ) = 4σ2rank(Φ).

We thus get a bound on the excess risk equal to 4σ2d/n, which is (because of the con-
stant 4) slightly worse than the direct computation from Chapter 3 (Prop. 3.5) but allows
extensions to more complex situations.

This reasoning also allows getting high-probability bounds by adding assumptions on
the noise ε. Finally, this also extends to penalized problems (see Section 8.2.2).

8.1.2 Probabilistic and combinatorial lemmas

In the proof technique above, we will need to bound expectations of maxima of squared
norms of Gaussians, which we now consider. We start with two probabilistic lemmas.

Lemma 8.1 If z ∈ Rn has a Gaussian distribution with mean 0 and covariance ma-
trix σ2I, then, if s < 1

2σ2 , E
[
es‖z‖

2
2

]
= (1− 2σ2s)−n/2.

Proof We have, for σ = 1 (from which we can derive the result for all σ), and s < 1/2
(using independence among the components of z):

E
[
es‖z‖

2
2
]

= E
[
es

∑n
i=1 z

2
i
]

=

n∏

i=1

E
[
esz

2
i
]

=
1

(2π)n/2

n∏

i=1

∫ ∞

−∞
e(s−

1
2 )z

2
i dzi

=
1

(2π)n/2

n∏

i=1

√
2π

(
1− 2s)−1/2 = (1− 2s)−n/2.
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Lemma 8.2 Let u1, . . . , um be m random variables which are potentially dependent, and
s > 0. Then, E

[
max{u1, . . . , um}

]
6 1

s log
(∑m

i=1 E
[
esui

])
.

Proof Following the reasoning from Section 1.2.4 in Chapter 1, for any s ∈ R,

E
[

max{u1, . . . , um}
]
6

1

s
log

(
E
[
esmax{u1,...,um}]) =

1

s
log

(
E
[

max{esu1 , . . . , esum}
])
,

which is thus less than 1
s log

(∑m
i=1 E

[
esui

])
.

The previous two lemmas can be combined to upper-bound the expectation of squared
norms of Gaussian random variables: if z1, . . . , zm ∈ Rn are centered (that is, zero-mean)
Gaussian random vectors which are potentially dependent, but for which the covariance
matrix of zi has eigenvalues less than σ2, we can first use the rotational invariance of
Gaussian densities, to assume without loss of generality that the Gaussians have diagonal
covariance matrices with components σ2

ij 6 σ2 (for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}),
then, we have from Lemma 8.1,

E[es‖zi‖
2
2 ] =

n∏

j=1

E[esz
2
ij ] 6

n∏

j=1

(1− 2σ2
ijs)

−1/2 6 (1− 2σ2s)−n/2.

Thus, for s = 1
4σ2 , E[es‖zi‖

2
2 ] 6 2n/2 for all i ∈ {1, . . . ,m}, and from Lemma 8.2,

E[max{‖z1‖22, . . . , ‖zm‖22}] 6 4σ2 log(m2n/2) = 2nσ2 log(2) + 4σ2 log(m),

which is to be compared to the expectation of each argument of the max, which is less
than σ2n. We pay an additive factor proportional to σ2 log(m). This will be applied to
m ∝ dk, leading to the additional term in σ2k log(d) for methods based on the ℓ0-penalty.
The term in dk comes from the following lemma.

Lemma 8.3 Let d > 0 and k ∈ {1, . . . , d}. Then log
(
d
k

)
6 k(1 + log d

k ).

Proof By recursion on k, the inequality is trivial for k = 1, and if
(
d

k−1

)
6

(
ed
k−1

)k−1
,

then
(
d

k

)
=

(
d

k−1

)
d−k+1

k
6
( ed

k−1

)k−1 d

k
6

(ed
k

)k−1(
1+

1

k−1

)k−1 d

k
6

(ed
k

)k−1
e
d

k
=
(ed
k

)k
,

where we use for α > 0, (1 + 1
α )α = exp(α log(1 + 1/α)) 6 exp(1) = e.

We now consider two types of variable selection frameworks, one based on ℓ0-penalties
and one based on ℓ1-penalties.

Exercise 8.1 (Concentration of chi-squared variables) We consider n independent
standard normal variables z1, . . . , zn and the variables y = z21+· · ·+z2n. Using Lemma 8.1,

show that for any ε > 0, P(y > n(1 + ε)) 6
(

1+ε
exp(ε)

)n/2
, and for any ε ∈ (0, 1),

P(y 6 n(1− ε)) 6
(

1−ε
exp(−ε)

)n/2
.
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8.2 Variable selection by the ℓ0-penalty

In this section, we assume that the target vector θ∗ has k non-zero components, that
is, ‖θ∗‖0 = k. We denote by A = supp(θ∗) the “support” of θ∗, that is, the subset of
{1, . . . , d} composed of j such that (θ∗)j 6= 0. We have |A| = k.

Price of adaptivity. If we knew the set A, then we could simply perform least-squares
with the design matrix ΦA ∈ Rn×|A|, where ΦB denotes the sub-matrix of Φ obtained
by keeping only the columns from B, with an excess risk proportional to σ2k/n (this is
what we call the “oracle” in Section 8.4). Thus, as long as k is small compared to n, we
can estimate θ∗ correctly, regardless of the potentially large value of d.

However, we do not know A in advance, and we have to estimate it. We will see that
this will lead to an extra factor of log

(
d
k

)
6 log d due to the potentially large number of

models with k variables.

8.2.1 Assuming k is known

We start by assuming that the cardinality k is known in advance, and we consider Gaus-
sian noise for simplicity (this extends to sub-Gaussian noise as well; see note below).

Proposition 8.1 (Model selection - known k) Assume y = Φθ∗ + ε, with ε ∈ Rn

a vector with independent Gaussian components of zero mean and variance σ2, with
‖θ∗‖0 6 k, for k 6 d/2. Let θ̂ be the minimizer of ‖y − Φθ‖22 with the constraint that
‖θ‖0 6 k. Then, the (fixed design) excess risk is upper-bounded as:

E
[
(θ̂ − θ∗)⊤Σ̂(θ̂ − θ∗)

]
= E

[ 1

n
‖Φ(θ̂ − θ∗)‖22

]
6 32σ2 k

n

(
log

(d
k

)
+ 1

)
.

Proof For any θ such that ‖θ‖0 6 k, we have ‖θ− θ∗‖0 6 2k. Thus, we have, using the
bounding technique from Section 8.1.1:

‖Φ(θ̂ − θ∗)‖22 6 4 sup
θ∈Rd,‖θ‖06k

[
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)]2
from Eq. (8.2),

6 4 sup
θ∈Rd,‖θ−θ∗‖062k

[
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)]2
from the discussion above,

= 4 sup
B⊂{1,...,d}, |B|62k

sup
supp(θ−θ∗)⊂B

[
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)]2

by separating by supports. Thus, using the same argument as in Section 8.1.1,

‖Φ(θ̂ − θ∗)‖22 6 4 sup
B⊂{1,...,d}, |B|62k

sup
z∈im(ΦB),‖z‖2=1

[
ε⊤z

]2

6 4 sup
B⊂{1,...,d}, |B|62k

‖ΠΦBε‖2 6 4 sup
B⊂{1,...,d}, |B|=2k

‖ΠΦBε‖2,

because ‖ΠΦBε‖2 is non-decreasing in B.
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The random variable ‖ΠΦBε‖2 has an expectation which is less than 2k. Given

that there are
(
d
2k

)
6

(
ed
2k

)2k
sets B of cardinality 2k (bound from Lemma 8.3), we

should expect, with concentration inequalities from Section 8.1.2, that we pay a price of

log
[(
ed
2k

)2k] ≈ k log d
k . We will make this reasoning formal.

Indeed, ΠΦBε is normally distributed with isotropic covariance matrix of dimension
|B| 6 2k, and thus we have for sσ2 < 1/2, from Lemma 8.1:

E
[
es‖ΠΦB

ε‖2]
6 (1− 2σ2s)−k.

Therefore, with s = 1/(4σ2), for which (1 − 2σ2s)−k = 2k, we get, from Lemma 8.2:

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 16σ2 log

(( d

2k

)
2k
)

6 16σ2 log
(( ed

2k

)2k

2k
)

= 16σ2
(

2k log
(d
k

)
+ (2− log 2)k

)
.

This leads to the desired result.

We can make the following observations:

• The term k log(d/k) comes from the logarithm of the number m of subsets of
{1, . . . , d} of size 2k, which is a result of the expectation of the maximum of m
squared norms of Gaussians.

• The assumption that k < d/2 is not a real issue, as when k > d/2, then the classical
bound σ2d/n is of the same order as σ2k log(d/k)/n.

• The result extends beyond Gaussian noise, that is, for all sub-Gaussian εi, for which
E[esεi ] 6 es

2τ2

for all s > 0 (for some τ > 0), or, equivalently P(|εi| > t) = O(e−ct
2

)
for some c > 0.

• The result extends if the minimization of the empirical risk is only done approxi-
mately.

• This result is not improvable by any algorithm (polynomial time or not), see, e.g.,
Giraud (2014, Theorem 2.3) and Chapter 15.

Algorithms. In terms of algorithms, essentially all subsets of size k have to be looked
at for exact minimization, with a cost proportional to O(dk), which is a problem when k
gets large. There are, however, two simple algorithms that only come with guarantees
when such fast rates are available for ℓ1-regularization (see Section 8.3.4, and Zhang,
2009).

• Greedy algorithm: Starting from the empty set, variables are added one by one,
maximizing the resulting cost reduction. This is often referred to as orthogonal
matching pursuit (Pati et al., 1993).

• Iterative sorting: Starting from θ0 = 0, the iterative algorithm goes as follows
at iteration t; the upper bound (based on the L-smoothness of the quadratic loss,



214 CHAPTER 8. SPARSE METHODS

with L = λmax( 1
nΦ⊤Φ), see Chapter 5):

1

n
‖y − Φθt−1‖22 −

2

n
(y − Φθt−1)⊤Φ(θ − θt−1) + L‖θ− θt−1‖22

on the cost function 1
n‖y−Φθ‖22 is built and minimized with respect to ‖θ‖0 6 k to

obtain θt. This is done (proof left as an exercise) by computing the unconstrained
minimizer θt−1 + 1

L
1
nΦ⊤(y − Φθt−1), and selecting the k largest components.

8.2.2 Estimating k (�)

In practice, regardless of the computational cost, one also needs to estimate k. A classical
idea to consider penalized least-squares and minimize

1

n
‖y − Φθ‖22 + λ‖θ‖0. (8.3)

This is a hard problem to solve, which essentially requires looking at all 2d subsets. For
a well-chosen λ, this (almost) leads to the same performance as if k were known.

Proposition 8.2 (Model selection - ℓ0-penalty) Assume y = Φθ∗ + ε, with ε ∈ Rn

a vector with independent Gaussian components of zero mean and variance σ2, with

‖θ∗‖0 6 k. Let θ̂ be a minimizer of Eq. (8.3). Then, for λ = 8σ2

n log(2d), we have:

E

[ 1

n
‖Φ(θ̂ − θ∗)‖22

]
6

16kσ2

n

[
2 + log(d)

]
+

16σ2

n
.

Proof We follow the same proof technique than in Section 8.1.1, but now for regularized
problems. We have by optimality of θ̂:

‖y − Φθ̂‖22 + nλ‖θ̂‖0 6 ‖y − Φθ∗‖22 + nλ‖θ∗‖0,

which leads to, using the inequality 2ab 6 2a2 + 1
2b

2, and the same arguments that led
to Eq. (8.1):

‖Φ(θ̂ − θ∗)‖22 6 2‖Φ(θ̂ − θ∗)‖2 · ε⊤
( Φ(θ̂ − θ∗)

‖Φ(θ̂ − θ∗)‖2

)
+ nλ‖θ∗‖0 − nλ‖θ̂‖0

6 2
(
ε⊤

( Φ(θ̂ − θ∗)

‖Φ(θ̂ − θ∗)‖2

))2

+
1

2
‖Φ(θ̂ − θ∗)‖22 + nλ‖θ∗‖0 − nλ‖θ̂‖0,

leading to, by taking the supremum over θ ∈ Rd:

‖Φ(θ̂ − θ∗)‖22 6 sup
θ∈Rd

{
4
(
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

))2

+ 2nλ‖θ∗‖0 − 2nλ‖θ‖0
}
.
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We then take the supremum by layers, as sup
θ∈Rd

= sup
k′∈{1,...,d}

sup
|B|=k′

sup
supp(θ)⊂B

, that is, using

the same derivations as for Prop. 8.1 (A is the support of θ∗):

E
[
‖Φ(θ̂ − θ∗)‖22

]

6 E

[
sup

k′∈{1,...,d}
sup

|B|=k′
sup

supp(θ)⊂B

{
4
(
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

))2

+ 2nλ‖θ∗‖0 − 2nλk′
}]

6 2nλ‖θ∗‖0 + 4E

[
sup

k′∈{1,...,d}
sup

|B|=k′

{
‖ΠΦA∪Bε‖2 −

nλ

2
k′
}]
.

We thus get with the same reasoning as in Section 8.2.1 (based on the probabilistic
lemmas from Section 8.1.2), using s = 1

4σ2 within Lemma 8.2:

E
[
‖Φ(θ̂ − θ∗)‖22

]

6 2nλ‖θ∗‖0 + 16σ2 log
( d∑

k′=1

(
d

k′

)
2k

′+‖θ∗‖0 exp
(
− nλk′

8σ2

))

6 2nλ‖θ∗‖0 + 16σ2‖θ∗‖0 log(2) + 16σ2 log
( d∑

k′=1

(
d

k′

)
exp

(
k′
(

log(2)− nλ

8σ2

)))

6 (2nλ+ 16 log(2)σ2)‖θ∗‖0 + 16σ2d log
(

1 + exp
(

log(2)− nλ

8σ2

))
.

To find a good regularization parameter, we can then approximately minimize the bound
above with respect to λ. We obtain a good balance of the two terms by having − log d =

log(2)− nλ
8σ2 , that is, λ = 8σ2

n log(2d), for which we get:

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 (2nλ+ 16 log(2)σ2)‖θ∗‖0 + 16σ2 6 16σ2

(
(log(d) + 2)‖θ∗‖0 + 1

)
,

and get the desired result.

We can make the following observations:

• Penalties on the number of parameters on top of the empirical risk can be obtained
from various perspectives, for square loss depending on whether the noise variance
is known or more generally for other losses. For example, the Bayesian information
criterion (BIC) penalizes by penalty proportional to ‖θ‖0 logn (often a smaller
penalty than proposed here).

• Note that we need to know σ2 in advance to compute λ, which can be a problem
in practice. See Giraud et al. (2012) for more details and alternative formulations.

• The three most important aspects are that: (1) the bound does not require any
assumption on the design matrix Φ, (2) we observe a positive high-dimensional
phenomenon, where d only appears as log d

n , but (3) only exponential-time algo-
rithms are possible for solving the problem with guarantees (see algorithms below).

Exercise 8.2 (�) With a penalty proportional to ‖θ‖0 log d
‖θ‖0

, show the same bound

than for k known.
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Algorithms. We can extend the two algorithms from Section 8.2.1 for the penalized
case:

• Forward-backward algorithm to minimize a function of a set B: Starting
from the empty set B = ∅, at every step of the algorithm, one tries both a for-
ward algorithm (adding a node to B) and a backward algorithm (removing a node
from B), and only perform a step if it decreases the overall cost function. See an
analysis by Zhang (2011).

• Iterative hard-thresholding: compared to the constrained case, we minimize

1

n
‖y − Φθt−1‖22 −

2

n
(y − Φθt−1)⊤Φ(θ − θt−1) + L‖θ − θt−1‖22 + λ‖θ‖0,

with L = λmax( 1
nΦ⊤Φ), which can also be computed in closed form (by iterative

hard thresholding). That is, with θt = θt−1+ 1
nLΦ⊤(y−Φθt−1), all components (θt)j

such that |(θt)j |2 > λ
L , are left unchanged and all others are set to zero. Indeed, for

one-dimensional problems, the minimizer of |θ− y|2 +λ1θ 6=0 is θ∗λ(y) = 0 if |y|2 6 λ
and θ∗λ(y) = y otherwise (see below).

y

θ
∗
λ
(y)

√
λ

−
√
λ

This is referred to as “iterative hard thresholding” (while for the ℓ1-norm, this
will be iterative soft thresholding) because a component is either kept intact or set
exactly to zero, leading to a discontinuous behavior. See an analysis by Blumensath
and Davies (2009).

8.3 Variable selection by ℓ1-regularization

We now consider a computationally efficient alternative to ℓ0-penalties, namely using
ℓ1-penalties, by minimizing, for the square loss:

1

2n
‖y − Φθ‖22 + λ‖θ‖1. (8.4)

This is a convex optimization problem on which algorithms from Chapter 5 can be applied
(see instances below). It is often called the “Lasso” problem, for “least absolute shrinkage
and selection operator” (Tibshirani, 1996).
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We first present algorithms dedicated to solving the optimization problem, then
present “slow rate” analyses leading to excess risks in O(1/

√
n), first in the random

design case with Lipschitz-continuous losses, and then in the fixed design case with the
square loss. We then present “fast rate” analyses leading to excess risks in O(1/n).

8.3.1 Intuition and algorithms

Sparsity-inducing effect. Unlike the squared ℓ2-norm used in ridge regression, the ℓ1-
norm is non-differentiable, and its non-differentiability is not limited to θ = 0 but occurs
in many other points. To see this, we can look at the ℓ1-ball and its different geometry
compared to the ℓ2-ball. This is directly relevant to situations where we constrain the
value of the norm instead of penalizing it.

θ1

θ2

θ1

θ2

As shown above, where we represent the level set of a potential loss function, the
solution of minimizing the loss subject to the ℓ1-constraint (in green) is obtained when
level sets are “tangent” to the constraint set. In the right part, this is obtained at a
point away from the axes, but on the left part, this is achieved at one of the corners of
the ℓ1-ball, which are points where one of the components of θ is equal to zero. Such
corners are “attractive”, that is, minimizers tend to be precisely at these corners, and
this exactly leads to sparse solutions.

The ℓ1-norm is also often introduced as the “convex relaxation” of the ℓ0-penalty.
Indeed, the ℓ1-norm is the convex envelope (the largest convex function which is a lower-
bound) of the ℓ0-penalty on the set [−1, 1]d (proof left as an exercise). While this provides
some intuition about the ℓ1-norm and its potential generalization to other sparse situa-
tions, this does not directly justify its good behavior on sparse problems.

One-dimensional problem. Another classical way to understand the sparsity-inducing
effect is to consider the one-dimensional problem:

min
θ∈R

F (θ) =
1

2
(y − θ)2 + λ|θ|.

Since F is strongly-convex, it has a unique minimizer θ∗λ(y). For λ = 0 (no regularization),
we have θ∗0(y) = y, while for λ > 0, by computing left and right derivatives at zero (to
be done as an exercise), one can check that θ∗λ(y) = 0 if |y| 6 λ, and θ∗λ(y) = y − λ
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for y > λ, and θ∗λ(y) = y + λ for y < −λ, which can be put all together as θ∗λ(y) =
max{|y| − λ, 0} sign(y), which is depicted below. This is referred to as iterative soft
thresholding (this will be useful for proximal methods below).

y

θ
∗
λ
(y)

λ

−λ

Note that the minimizer is either sent to zero or shrunk toward zero.

Optimization algorithms. We can adapt algorithms from Chapter 5 to the problem
in Eq. (8.4).

• Iterative soft-thresholding: We can apply proximal methods to the objective
function of the form F (θ) + λ‖θ‖1 for F (θ) = 1

2n‖y − Φθ‖22, for which the gradient
is F ′(θ) = − 1

nΦ⊤(y−Φθ). The plain (non-accelerated) proximal method recursion
is

θt = arg min
θ∈Rd

F (θt−1) + F ′(θt−1)⊤(θ − θt−1) +
L

2
‖θ − θt−1‖22 + λ‖θ‖1,

with L = λmax( 1
nΦ⊤Φ). This leads to (θt)j = max{|(ηt)j |−λ, 0} sign((ηt)j), for ηt =

θt−1 − 1
LF

′(θt−1). This simple algorithm can also be accelerated. The convergence
rate then depends on the invertibility of 1

nΦ⊤Φ (if invertible, we get an exponential
convergence rate in t, with only O(1/t) otherwise).

• Coordinate descent: Although the ℓ1-norm is a non-differentiable function, co-
ordinate descent can be applied (because the ℓ1-norm is “separable”). At each
iteration, we select a coordinate to update (at random or by cycling) and optimize
with respect to this coordinate, which is a one-dimensional problem that can be
solved in closed form. The convergence properties are similar to proximal meth-
ods (Fercoq and Richtárik, 2015).

Exercise 8.3 Provide a closed-form expression for the iteration of the coordinate
descent algorithm described above.

η-trick. The non-differentiability of the ℓ1-norm may also be treated through the simple
identity:

|θj | = inf
ηj>0

θ2j
2ηj

+
ηj
2
,
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where the minimizer is attained at ηj = |θj |. See below an example in one dimension,
with |θ| and several quadratic upper bounds.

-4 -2 0 2 4
0

1

2

3

4
| |

2/(2 )+ /2

This leads to the reformulation of Eq. (8.4) as

inf
θ∈Rd

1

2n
‖y − Φθ‖22 + λ‖θ‖1 = inf

η∈R
d
+

inf
θ∈Rd

1

2n
‖y − Φθ‖22 +

λ

2

d∑

j=1

θ2j
ηj

+
λ

2

d∑

j=1

ηj ,

and alternating optimization algorithms can be used: (a) minimizing with respect to η
when θ is fixed can be done in closed form as ηj = |θj |, while minimizing with respect
to θ when η is fixed is a quadratic optimization problem which can be solved by a linear
system.2

Optimality conditions (�). To study the estimator defined by Eq. (8.4), it is often
necessary to characterize when a certain θ is optimal or not, that is, to derive optimality
conditions.

Since the objective function H(θ) = F (θ) + λ‖θ‖1 is not differentiable, we need other
tools than having the gradient equal to zero. The gradient looks only at d directions
(along the coordinate axis), while, in the non-smooth context, we need to look at all
directions, that is, for all ∆ ∈ Rd, we require that the directional derivative,

∂H(θ,∆) = lim
ε→0

1

ε

[
H(θ + ε∆)−H(θ)

]
,

is non-negative. That is, we need to go up in all directions. When H is differentiable
at θ, then ∂H(θ,∆) = H ′(θ)⊤∆, and the positivity for all ∆ is equivalent to H ′(θ) = 0.

For H(θ) = F (θ) + λ‖θ‖1, we have:

∂H(θ,∆) = F ′(θ)⊤∆ + λ
∑

j, θj 6=0

sign(θj)∆j + λ
∑

j, θj=0

|∆j |.

2See more details in https://www.di.ens.fr/~fbach/ltfp/etatrick.html and by Bach et al. (2012a,
Section 5).

https://www.di.ens.fr/~fbach/ltfp/etatrick.html
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Figure 8.1: Regularization path for a Lasso problem in dimension d = 32 and n = 32 input
observations sampled from a standard Gaussian distribution with 4 non-zero weights equal
to −1 or +1, and outputs generated with additive Gaussian noise with unit variance. The
random seed was chosen so that at least one weight comes in and out in the regularization
path.

It is separable in ∆j , j = 1, . . . , d, and it is non-negative for all j, if and only if all
components that depend on ∆j are non-negative.

When θj 6= 0, then this requires F ′(θ)j + λ sign(θj) = 0, while when θj = 0, then we
need F ′(θ)j∆j + λ|∆j | > 0 for all ∆j , which is equivalent to |F ′(θ)j | 6 λ. This leads to
the set of conditions:

{
F ′(θ)j + λ sign(θj) = 0, ∀j ∈ {1, . . . , d} such that θj 6= 0,
|F ′(θ)j | 6 λ, ∀j ∈ {1, . . . , d} such that θj = 0.

See Giraud (2014) for more details. Note that we could have also used subgradients to
derive these optimality conditions (derivations left as an exercise).

Homotopy method (��). We assume for simplicity that Φ⊤Φ is invertible so that
the minimizer θ(λ) is unique. Given a certain sign pattern for θ, optimality conditions
are all convex in λ and thus define an interval in λ where the sign is constant. Given the
sign, then the solution θ(λ) is affine in λ, leading to a piecewise affine function in λ (see
an example of a regularization path in Figure 8.1).

If we know the breakpoints in λ and the associated signs, we can compute all solutions
for all λ. This is the source of the homotopy algorithm for Eq. (8.4), which starts with
large λ and builds the path of solutions by computing break points one by one. See more
details by Osborne et al. (2000); Mairal and Yu (2012).
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8.3.2 Slow rates - random design

In this section, we consider Lipschitz-continuous loss functions and, thus, an empirical
risk of the form

R̂(θ) =
1

n

n∑

i=1

ℓ(yi, ϕ(xi)
⊤θ),

with ℓ having Lipschitz constant G with respect to the second variable. We assume that
the expected risk R(θ) = E[ℓ(y, ϕ(x)⊤θ)] is minimized at a certain θ∗ ∈ Rd and, for

simplicity, we consider the estimator θ̂D obtained by minimizing R̂(θ) with the constraint
that ‖θ‖1 6 D, where we will use tools from Section 4.5.4 (we could also consider penalized
formulation using Section 4.5.5). We assume that ‖ϕ(x)‖∞ 6 R almost surely.

From Section 4.5.4, we get that,

E
[
R(θ̂D)

]
6 inf

‖θ‖16D
R(θ) + 4GRn(FD),

where Rn(FD) is the Rademacher complexity of the set of linear predictors with weight
vectors bounded by D in ℓ1-norm, which we can compute as:

Rn(FD) = E

[
sup

‖θ‖16D

1

n

n∑

i=1

εRi ϕ(xi)
⊤θ

]
= DE

[∥∥∥ 1

n

n∑

i=1

εRi ϕ(xi)
∥∥∥
∞

]
,

where εRi ∈ {−1, 1} are Rademacher random variables. We can now compute a bound
on the expectation, first conditioned on the data. Indeed, εRi ϕ(xi) has conditional zero
mean and is bounded in absolute value by R. It is thus sub-Gaussian with constant R (see
Section 1.2.1, which implies that 1

n

∑n
i=1 ε

R
i ϕ(xi) is sub-Gaussian with constant R2/n2).

We can then use Prop. 1.4, to get that the maximum of the 2d sub-Gaussian variables is

less than
(
2R2 log(2d)/n2

)1/2
. This leads to:

E
[
R(θ̂D)

]
6 inf

‖θ‖16D
R(θ) +

GRD
√

log(2d)√
n

.

When D is large enough, e.g., D = ‖θ∗‖1, then we get an excess risk bounded by
GRD

√
log(2d)/

√
n. If θ∗ has only k non-zero, its ℓ1-norm will typically grow as O(k),

and we see a high-dimensional phenomenon with a bound proportional to k
√

log d/
√
n,

where d can be much larger than n, as long as k2 log(d)/n is small. This is a “slow” rate
because of the dependence in n, which is O(1/

√
n) rather than in O(1/n).

8.3.3 Slow rates - fixed design (square loss)

We now look at the fixed design setting with the square loss. We first consider an analysis
based on simple tools with no assumptions on the design matrix Φ. We will see that we
can deal with high-dimensional inference problems where d can be large, but it will be
with rates in 1/

√
n and not 1/n, hence the denomination “slow”.
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We study the penalization by a general norm Ω : Rd → R with dual norm Ω∗ defined
as Ω∗(z) = supΩ(θ)61 z

⊤θ (see Exercise 8.4 below for classical examples). We thus denote

by θ̂ a minimizer of
1

2n
‖y − Φθ‖22 + λΩ(θ). (8.5)

We start with a lemma characterizing the excess risk in two situations: (a) where λ
is large enough and (b) in the general case.

Lemma 8.4 Let θ̂ be a minimizer of Eq. (8.5).

(a) If Ω∗(Φ⊤ε) 6 nλ
2 , then we have Ω(θ̂) 6 3Ω(θ∗) and 1

n‖Φ(θ̂ − θ∗)‖22 6 3λΩ(θ∗).

(b) In all cases, 1
n‖Φ(θ̂ − θ∗)‖22 6 4

n‖ε‖22 + 4λΩ(θ∗).

Proof We have, like in Section 8.1.1, by optimality of θ̂ for Eq. (8.5):

‖Φ(θ̂ − θ∗)‖22 6 2ε⊤Φ(θ̂ − θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂).

Then, with the dual norm Ω∗(z) = supΩ(θ)61 z
⊤θ, assuming that Ω∗(Φ⊤ε) 6 nλ

2 , and
using the triangle inequality:

‖Φ(θ̂ − θ∗)‖22 6 2Ω∗(Φ⊤ε)Ω(θ̂ − θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂)

6 nλΩ(θ̂ − θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂)

6 nλΩ(θ̂) + nλΩ(θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂) 6 3nλΩ(θ∗)− nλΩ(θ̂).

This implies that Ω(θ̂) 6 3Ω(θ∗) and 1
n‖Φ(θ̂ − θ∗)‖22 6 3λΩ(θ∗).

We also have a general bound through:

‖Φ(θ̂ − θ∗)‖22 6 2‖ε‖2‖Φ(θ̂ − θ∗)‖2 + 2nλΩ(θ∗),

which leads to, using the identity 2ab 6 1
2a

2 + 2b2,

‖Φ(θ̂ − θ∗)‖22 6
1

2
‖Φ(θ̂ − θ∗)‖22 + 2‖ε‖22 + 2nλΩ(θ∗),

which leads to the desired bound.

Exercise 8.4 For p ∈ [1,∞], show that the dual of the ℓp-norm is the ℓq-norm, for
1
p + 1

q = 1.

We can now use the lemma above to compute the excess risk of the Lasso, for which
Ω = ‖·‖1 and Ω∗(Φ⊤ε) = ‖Φ⊤ε‖∞.3 The key is to note that since ‖Φ⊤ε‖∞ is a maximum
of 2d zero-mean terms that scale as

√
n, according to Section 1.2.4, its maximum scales

as
√
n log(d), and we will apply the lemma above when λ is larger than

√
log(d)/n. We

denote by ‖Σ̂‖∞ the largest element of the matrix Σ̂ in absolute value.

3Developments similar to Prop. 4.7 in Section 4.5.5 for general norms could also be carried out.
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Proposition 8.3 (Lasso - slow rate) Assume y = Φθ∗ + ε, with ε ∈ Rn a vector with

independent Gaussian components of zero mean and variance σ2. Let θ̂ be the minimizer

of Eq. (8.4). Then, for λ = 2σ√
n

√
2‖Σ̂‖∞

√
log(d) + log 1

δ , we have, with probability greater

than 1− δ:
1

n
‖Φ(θ̂ − θ∗)‖22 6 3‖θ∗‖1 ·

2σ√
n

√
2‖Σ̂‖∞

√
log(d) + log

1

δ
.

Proof For each j, the random variable (Φ⊤ε)j is Gaussian with mean zero and variance

nσ2Σ̂jj . Thus, we get from the union bound and from the fact that for a standard
Gaussian variable z, P(|z| > t) 6 exp(−t2/2):4

P

(
‖Φ⊤ε‖∞ >

nλ

2

)
6

d∑

j=1

P

(
|Φ⊤ε|j >

nλ

2

)
6

d∑

j=1

exp
( −nλ2

8σ2Σ̂jj

)
6 d exp

( −nλ2

8σ2‖Σ̂‖∞

)
= δ.

Thus, with probability greater than 1 − δ, we can apply the first part of Lemma 8.4,
and therefore the error is less than 3λ‖θ∗‖1. For a result in expectation, see the exercise
below.

△! Check homogeneity!

We already observe some high-dimensional phenomenon with the term
√

log d
n , where n

can be much larger than d (if, of course, we assume that the optimal predictor θ∗ is sparse,
so that ‖θ∗‖1 does not grow with d). Note that the proposed regularization parameter
depends on the unknown noise variance. A simple trick known as the “square root Lasso”
allows to avoid that dependence on σ (see Giraud, 2014, Section 5.4), by minimizing
1√
n
‖y − Φθ‖2 + λ‖θ‖1.

The proposition above suggests a regularization parameter λ proportional to 1/
√
n,

which does enable estimation in high-dimensional situations but can also add a significant
bias because all non-zero components of θ̂ are shrunk towards zero. See Section 8.5 for
methods to alleviate this effect.

Exercise 8.5 (�) With the same assumptions as Prop. 8.3, and with the choice of reg-

ularization parameter λ = 4σ
√

log(dn)
n

√
‖Σ̂‖∞, show the following bound in expectation:

E
[
1
n‖Φ(θ̂ − θ∗)‖22

]
6 32σ

√
log(dn)
n

√
‖Σ̂‖∞‖θ∗‖1 + 32

n σ
2.

Beyond square loss. The slow rates proportional to ‖θ∗‖1
√

(log d)/n for regulariza-
tion by the ℓ1-norm can also be achieved for Lipschitz-continuous losses (such as the
logistic loss and the hinge loss), as shown in Prop. 4.7 in Section 4.5.5.

4We have for t > 0: et
2/2P(|z| > t) = 2√

2π

∫+∞
t et

2/2−s2/2dt 6 2√
2π

∫+∞
t e−(s−t)2/2dt = 1.
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8.3.4 Fast rates (�)

We now consider conditions to obtain a fast rate with a leading term proportional to
σ2 k log d

n , which is the same as for ℓ0-penalty, but with tractable algorithms. This will
come with extra (very) strong conditions on the design matrix Φ.

We start with a simple (but crucial) lemma, characterizing the solution of Eq. (8.4)
in terms of the support A of θ∗.

Lemma 8.5 Let θ̂ be a minimizer of Eq. (8.5). Assume ‖Φ⊤ε‖∞ 6 nλ
2 . If ∆ = θ̂ − θ∗,

then ‖∆Ac‖1 6 3‖∆A‖1 and ‖Φ∆‖22 6 3nλ‖∆A‖1.
Proof We have, like in previous proofs (e.g., Lemma 8.4), with ∆ = θ̂ − θ∗, and A the
support of θ∗:

‖Φ∆‖22 6 2ε⊤Φ∆ + 2nλ‖θ∗‖1 − 2nλ‖θ̂‖1.
Then, assuming that ‖Φ⊤ε‖∞ 6 nλ

2 ,

‖Φ∆‖22 6 2‖Φ⊤ε‖∞‖∆‖1 + 2nλ‖θ∗‖1 − 2nλ‖θ̂‖1
‖Φ∆‖22 6 nλ‖∆‖1 + 2nλ‖θ∗‖1 − 2nλ‖θ̂‖1.

We then use, by using the decomposability of the ℓ1-norm and the triangle inequality:

‖θ∗‖1−‖θ̂‖1 = ‖(θ∗)A‖1−‖θ∗+∆‖1 = ‖(θ∗)A‖1−‖(θ∗+∆)A‖1−‖∆Ac‖1 6 ‖∆A‖1−‖∆Ac‖1,
to get

‖Φ∆‖22 6 nλ‖∆‖1 + 2nλ(‖θ∗‖1 − ‖θ̂‖1) 6 nλ‖∆‖1 + 2nλ(‖∆A‖1 − ‖∆Ac‖1)

6 nλ(‖∆A‖1 + ‖∆Ac‖1) + 2nλ(‖∆A‖1 − ‖∆Ac‖1) = 3nλ‖∆A‖1 − nλ‖∆Ac‖1.
This leads to ‖∆Ac‖1 6 3‖∆A‖1 and the other desired inequality.

We can now add an extra assumption that will make the proof go through, namely
that there exists a constant κ > 0 such that

1

n
‖Φ∆‖22 > κ‖∆A‖22 (8.6)

for all ∆ that satisfies the condition ‖∆Ac‖1 6 3‖∆A‖1. This is called the “restrictive
eigenvalue property” because if the smallest eigenvalue of 1

nΦ⊤Φ is greater than κ, the
condition is satisfied (but this is only possible if n > d). The relevance of this assumption
is discussed in Section 8.3.5.

This leads to the following proposition.

Proposition 8.4 (Lasso - fast rate) Assume y = Φθ∗ + ε, with ε ∈ R
n a vector with

independent Gaussian components of zero mean and variance σ2. Let θ̂ be the minimizer

of Eq. (8.4). Then, for λ = 2σ√
n

√
2‖Σ̂‖∞

√
log(2d) + log 1

δ , we have, if Eq. (8.6) is

satisfied, and with probability greater than 1− δ:

E

[ 1

n
‖Φ(θ̂ − θ∗)‖22

]
6

72|A|σ2

n

‖Σ̂‖∞
κ

(
log(2d) + log

1

δ

)
.
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Proof (�) We have, when λ is large enough, and by application of Lemma 8.5, and using
Eq. (8.6):

‖∆A‖1 6 |A|1/2‖∆A‖2 6
|A|1/2√
nκ
‖Φ∆‖2 6

|A|1/2√
nκ

√
3nλ‖∆A‖1,

which leads to ‖∆A‖1 6
3|A|λ
κ

. We then get 1
n‖Φ∆‖22 6

9|A|λ2

κ , which leads to the desired

result.

The dominant part of the rate is proportional to σ2k log d
n , which is a fast rate but depends

crucially on a very strong assumption. Such results can be extended beyond the square
loss using the notion of self-concordance (see, e.g., Ostrovskii and Bach, 2021b, and
references therein).

Exercise 8.6 (��) With the same assumptions as Prop. 8.4, with the choice of regular-

ization parameter λ = 4σ
√

log(dn)
n

√
‖Σ̂‖∞, show that we have the bound in expectation

E
[
1
n‖Φ(θ̂ − θ∗)‖22

]
6

144|A|σ2‖Σ̂‖∞

κ
log(dn)
n + 24

n σ
2 + 32

dn2 ‖θ∗‖1σ
√

log(dn)
n

√
‖Σ̂‖∞.

8.3.5 Zoo of conditions (��)

Conditions to obtain fast rates are plentiful: they all assume low correlation among
predictors, which is rarely the case in practice (in particular, if there are two equal
features, they are never satisfied).

Restricted eigenvalue property (REP). The most direct condition is the so-called
restricted eigenvalue property (REP), which is exactly Eq. (8.6), with the supremum
taken over the unknown set A of cardinality less than k:

inf
|A|6k

inf
‖∆Ac‖163‖∆A‖1

‖Φ∆‖22
n‖∆A‖22

> κ > 0. (8.7)

Mutual incoherence condition. A simpler one to check, but stronger, is the mutual
incoherence condition:

sup
i6=j
|Σ̂ij | 6

minj∈{1,...,d} Σ̂jj

14k
, (8.8)

which states that all cross-correlation coefficients are small (pure decorrelation would set
them to zero).

This is weaker than the REP condition above. Indeed, by expanding, we have:

‖Φ∆‖22 = ‖ΦA∆A + ΦAc∆Ac‖22 = ‖ΦA∆A‖22 + 2∆⊤
AΦ⊤

AΦAc∆Ac + ‖ΦAc∆Ac‖22
> ‖ΦA∆A‖22 + 2∆⊤

AΦ⊤
AΦAc∆Ac .



226 CHAPTER 8. SPARSE METHODS

Moreover, we have:

∆⊤
AΣ̂AA∆A = ∆⊤

A Diag(diag(Σ̂AA))∆A + ∆⊤
A(Σ̂AA −Diag(diag(Σ̂AA))∆A

> min
j∈{1,...,d}

Σ̂jj
(
‖∆A‖22 −

1

14k
‖∆A‖21

)
,

and

|∆⊤
AΦ⊤

AΦAc∆Ac | 6 minj∈{1,...,d} Σ̂jj

14k
‖∆Ac‖1‖∆A‖1 6

3 minj∈{1,...,d} Σ̂jj

14k
‖∆A‖21.

This leads to 1
n‖Φ∆‖22 > minj∈{1,...,d} Σ̂jj

(
‖∆A‖22 − 7

14k‖∆A‖21
)
, which is greater than

minj∈{1,...,d} Σ̂jj
(
‖∆A‖22 − 7k

14k‖∆A‖22
)

= κ‖∆A‖22, with κ = minj∈{1,...,d} Σ̂jj/2, thus
leading to the REP condition in Eq. (8.7).

Restricted isometry property. One of the earlier conditions was the restricted isom-
etry property: all eigenvalues of submatrices of Σ̂ of size less than 2k, are between 1− δ
and 1 + δ for δ small enough. See Giraud (2014); Wainwright (2019) for details.

Gaussian designs (�). It is not obvious that the conditions above are non-trivial (that
is, there may exist no matrix with good sizes d and n for k large enough). For our results
to be non-trivial, we need that k log d

n to be small but not too small. In this paragraph, we
show, without proof, that when sampling from Gaussian distributions, the assumptions
above are satisfied. This is a first step towards a random design assumption.

Proposition 8.5 (Wainwright, 2019, Theorem 7.16) If sampling ϕ(x) from a Gaus-
sian with mean zero and covariance matrix Σ, then with probability greater than 1 −
e−n/32

1−e−n/32 , the REP property is satisfied with κ = 1
16λmin(Σ) as soon as k log d

n 6 1
3200

λmin(Σ)
‖Σ‖∞

.

The proposition above is hard to prove; the following exercise proposes to establish a
weaker result, showing that the guarantees for the maximal cardinality k of the support
have to be smaller.

Exercise 8.7 (���) If sampling ϕ(x) from a Gaussian with mean zero and covariance

matrix identity, then with large probability, for n greater than a constant times k2
log d

n
,

the mutual incoherence property in Eq. (8.8) is satisfied.

Model selection and irrepresentable condition (�). Given that the Lasso aims
at performing variable selection, it is natural to study its capacity to find the support
of θ∗, that is, the set of non-zero variables. It turns out that it also depends on some
conditions on the design matrix, which are stronger than the REP conditions, and called
the “irrepresentable condition”, and also valid for Gaussian random matrices with similar
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scalings between n, d, and k. See Giraud (2014); Wainwright (2019) for details.

△!
Algorithmic and theoretical tools are similar to “compressed sensing”,
where the design matrix represents a set of measurements, which the
user/theoretician can choose. In this context, sampling from i.i.d. Gaussians
makes sense. For machine learning and statistics, the design matrix is the
data and comes as it is, often with strong correlations.

8.3.6 Random design (�)

In this section, we study the Lasso in the random design setting instead of the fixed
design setting. For slow rates in 1/

√
n, we can directly use Section 4.5.5 to get the exact

same slow rate as for fixed design. In this section, we will only consider fast rates.

We now consider the well-specified Lasso case, where the expected risk is equal to

R(θ) = σ2

2 + 1
2 (θ− θ∗)⊤Σ(θ− θ∗). We assume that λmin(Σ) > µ > 0, that is, the expected

risk is µ-strongly convex (and not the empirical risk).

We assume that yi = ϕ(xi)
⊤θ∗+εi, and denote Φ ∈ Rn×d the design matrix, as well as

ε ∈ Rn the vector of noises, which we assume independent and sub-Gaussian. Therefore
we have

R̂(θ) =
1

2n
‖Φ(θ− θ∗)− ε‖22 =

1

2
(θ− θ∗)⊤Σ̂(θ− θ∗)− (θ− θ∗)⊤

( 1

n
Φ⊤ε

)
+

1

2n
‖ε‖22, (8.9)

where Σ̂ = 1
n

∑n
i=1 ϕ(xi)ϕ(xi)

⊤ = 1
nΦ⊤Φ ∈ Rd×d is the empirical non-centered covariance

matrix.

We will need that
∥∥ 1
nΦ⊤ε

∥∥
∞ =

∥∥ 1
n

∑n
i=1 εiϕ(xi)

∥∥
∞ is small enough, as well as the

error in the covariance matrix
∥∥Σ̂−Σ

∥∥
∞. Assuming that ε is sub-Gaussian with constant

σ2, and that ‖ϕ(x)‖∞ 6 R almost surely, we get that, using results from Section 1.2.1,

P

(∥∥ 1

n
Φ⊤ε

∥∥
∞ >

σRt√
n

)
6 2d exp(−t2/2) and P

(∥∥Σ̂−Σ
∥∥
∞ >

R2t√
n

)
6 2d(d+1)/2 exp(−t2/2).

Thus, the probability that at least one is satisfied is less than d(d + 3) exp(−t2/2) 6

4d2 exp(−t2/2).

We now assume that
∥∥ 1
nΦ⊤ε

∥∥
∞ 6 σRt√

n
and

∥∥Σ̂ − Σ
∥∥
∞ 6 R2t√

n
, which happens with

probability at least 1−4d2 exp(−t2/2). From Lemma 8.5, we know that if λ > 2
∥∥ 1
nΦ⊤ε

∥∥
∞,

then we have, with ∆̂ = θ̂λ − θ∗, and A the support of θ∗:

‖∆̂Ac‖1 6 3‖∆̂A‖1 and ‖θ̂λ‖1 6 3‖θ∗‖1.
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Let v = R(θ̂λ)− R(θ∗). We have:

v 6 R(θ̂λ)− R(θ∗)− R̂λ(θ̂λ) + R̂λ(θ∗) since θ̂λ minimizes R̂λ,

= R(θ̂λ)− R(θ∗)− R̂(θ̂λ) + R̂(θ∗) + λ‖θ∗‖1 − λ‖θ̂λ‖1 by definition of R̂λ,

=
1

2
∆̂⊤(H − Ĥ)∆̂ + ∆̂⊤

( 1

n
Φ⊤ε

)
+ λ‖θ∗‖1 − λ‖θ̂λ‖1 using Eq. (8.9) ,

6
1

2

∥∥Σ̂− Σ
∥∥
∞ · ‖∆̂‖

2
1 +

∥∥ 1

n
Φ⊤ε

∥∥
∞ · ‖∆̂‖1 + λ‖∆̂‖1 using norm inequalities,

6
σRt√
n
· ‖∆̂‖1 +

R2t

2
√
n
· ‖∆̂‖21 + λ‖∆̂‖1 using our assumptions.

Moreover, we have, since λmin(Σ) > µ, v = R(θ̂λ) − R(θ∗) >
µ
2 ‖∆̂‖22 >

µ
2|A|‖∆̂A‖21,

leading to ‖∆̂‖1 6 4‖∆̂A‖1 6 4
√

2|A|v
µ . We also have ‖∆̂‖1 6 ‖θ∗‖1+‖θ̂λ‖1 6 ‖θ∗‖1+

3‖θ∗‖1 6 4‖θ∗‖1. We thus get, with λ = 2σRt√
n

, two inequalities:

v 6
3σRt√
n
· ‖∆̂‖1 +

R2t

2
√
n
· ‖∆̂‖21 and ‖∆̂‖1 6 4

√
2|A|v
µ

. (8.10)

If 1 > 32R2t√
n

|A|
µ , then the last term in the first inequality in Eq. (8.10) is less than v

2 , and

we get v
2 6 3σRt√

n
4
√

2|A|v
µ , that is,

√
v 6 24σRt√

n

√
2|A|
µ . This leads to, with λ = 2σR√

n
t =

2σR√
n

√
2 log 4d2

δ , with probability greater than 1− δ,

R(θ̂λ)− R(θ∗) 6 2304 · R
2

µ

σ2|A|
n

log
4d2

δ
.

Exercise 8.8 With the notations above, show that if µ = 0, from Eq. (8.10) we can

recover the slow rate R(θ̂λ)− R(θ∗) 6
4R‖θ∗‖1√

n
(3σ + 2R‖θ∗‖1)

√
2 log

4d2

δ
.

8.4 Experiments

In this section, we perform a simple experiment on Gaussian design matrices, where all
entries in Φ ∈ Rn×d are sampled independently from a standard Gaussian distribution,
with n = 64, and varying d. Then θ∗ is taken to be zero except on k = 4 components
where it is randomly equal to −1 or 1. We consider σ =

√
k (to have a constant signal-to-

noise ratio when k varies). We perform 128 replications. For each method and each value
of its hyperparameter, we averaged the test risk over the 128 replications and reported
the minimum value (with respect to the hyperparameter). We compare the following
three methods in Figure 8.2:

• Ridge regression: penalty by λ‖θ‖22.
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Figure 8.2: Comparison of estimators on least-squares regression: problem with sparse
optimal predictor (left), and non-sparse optimal predictor (right).

• Lasso regression: penalty by λ‖θ‖1.

• Orthogonal matching pursuit (greedy forward method), with hyperparameter k (the
number of included variables).

We compare two situations: (1) non-rotated data (exactly the model above), and (2)
rotated data, where we replace Φ by ΦR and θ∗ by R⊤θ∗, where R is a random rotation
matrix. For the rotated data, we do not expect sparse solutions. Hence, sparse methods
are not expected to work better than ridge regression (and OMP performs significantly
worse because once the support is chosen, there is no regularization). Note that the two
curves for ridge regression are exactly the same (as expected from rotation invariance
of the ℓ2-norm). The oracle performance corresponds to the estimator where the true
support is given.

△! Sparse methods make assumptions regarding the best predictor. Like all as-
sumptions, when this assumed prior knowledge is not correct, the method does
not perform better.

8.5 Extensions

Sparse methods are more general than the ℓ1-norm and can be extended in several ways:

• Group penalties: in many cases, {1, . . . , d} is partitioned into m subsets A1, . . . ,
Am, and the goal is to consider “group sparsity,” that is, if we select one variable
within a group Aj , the entire group should be selected. Such behavior can be
obtained using the penalty

∑m
i=1 ‖θAi‖2 or

∑m
i=1 ‖θAi‖∞. This is particularly used

when the output y is multi-dimensional (such as in multivariate regression or multi-
category classification) to select variables relevant to all outputs. See, e.g., Giraud
(2014) for details.

Exercise 8.9 Assuming that the design matrix Φ is orthogonal, compute the min-
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imizer of 1
2n‖y − Φθ‖22 + λ

∑m
i=1 ‖θAi‖2.

• Structured sparsity: It is also possible to favor other specific patterns for the
selected variables, such as blocks, trees, etc., when such prior knowledge is needed.
See Bach et al. (2012b) for details.

Exercise 8.10 We consider the d (overlapping) sets Ai = {1, . . . , i}, and the norm∑d
i=1 ‖θAi‖2. Show that penalization with this norm will tend to select patterns of

non-zeros of the form {i+ 1, . . . , d}.

• Nuclear norm: When learning on matrices, a natural form of sparsity is for a
matrix to have a low rank. This can be achieved by penalizing the sum of singular
values of a matrix, a norm called the nuclear norm or the trace norm. See Bach
(2008) and references therein.

Exercise 8.11 Compute the minimizer of 1
2n‖Y − Θ‖2F + λ‖Θ‖∗, where ‖M‖F is

the Frobenius norm and ‖M‖∗ the nuclear norm.

• Multiple kernel learning: the group penalty can be extended when the groups
have an infinite dimension and ℓ2-norms are replaced by RKHS norms defined in
Chapter 7. This becomes a tool for learning the kernel matrix from data. See Bach
et al. (2012a) for details.

• Elastic net: often, when both effects of the ℓ1-norm (sparsity) and the squared
ℓ2-norm (strong-convexity) are desired, we can sum the two, which is referred to
as the “elastic net” penalty. This leads to a strongly-convex optimization problem,
which is numerically better behaved.

• Concave penalization and debiasing: to obtain a sparsity-inducing effect, the
penalty in the ℓ1-norm has to be quite large, such as in 1/

√
n, which often creates

a strong bias in the estimation once the support is selected. There are several ways
of debiasing the Lasso, an elegant one being to use a “concave” penalty. That is, we
use

∑d
i=1 a(|θi|) where a is a concave increasing function on R+, such as a(u) = uα

for α ∈ (0, 1). This leads to a non-convex optimization problem, where iterative
weighted ℓ1-minimization provides natural algorithms (see Mairal et al., 2014, and
references therein).

8.6 Conclusion

In this chapter, we have considered sparse methods based on the penalization by the ℓ0 or
ℓ1 penalties of the weight vector of a linear model. For the square loss, ℓ0-penalties led to
an excess risk proportional to σ2k log(d)/n, with a price of adaptivity of log(d), with few
conditions on the problem, but no provably computationally efficient procedures. On the
contrary, ℓ1-norm penalization can be solved efficiently with appropriate convex optimiza-
tion algorithms (such as proximal methods) but only obtained a slow rate proportional
to

√
log(d)/n, exhibiting a high-dimensional phenomenon, but a worse dependence in n.
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Fast rates can only be obtained with stronger assumptions on the covariance matrix of
the features.

This chapter was limited to linear models, and in the next chapter on neural networks,
we will see how models that are non-linear in their parameters can lead to non-linear
variable selection, still exhibiting a high-dimensional phenomenon but at the expense of
a harder optimization.
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Chapter 9

Neural networks

Chapter summary
– Neural networks are flexible models for non-linear predictions. They can be studied

in terms of the three errors usually related to empirical risk minimization: optimiza-
tion, estimation, and approximation errors. In this chapter, we focus primarily on
single hidden layer neural networks, which are linear combinations of simple affine
functions with additional non-linearities.

– Optimization error: as the prediction functions are non-linearly dependent on their
parameters, we obtain non-convex optimization problems with only guaranteed
convergence to stationary points.

– Estimation error: the number of parameters is not the driver of the estimation
error, as the norms of the various weights play an important role, with explicit
rates in O(1/

√
n) obtained from Rademacher complexity tools.

– Approximation error: for the “ReLU” activation function, the universal approxi-
mation properties can be characterized and are superior to kernel methods because
they are adaptive to linear latent variables.

9.1 Introduction

In supervised learning, the main focus has been put on methods to learn from n obser-
vations (xi, yi), i = 1, . . . , n, with xi ∈ X (input space) and yi ∈ Y (output/label space).
As presented in Chapter 4, a large class of methods relies on minimizing a regularized
empirical risk with respect to a function f : X → R where the following cost function is
minimized:

1

n

n∑

i=1

ℓ(yi, f(xi)) + Ω(f),

233
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where ℓ : Y × R → R is a loss function, and Ω(f) is a regularization term. Typical
examples were:

• Regression: Y = R and ℓ(yi, f(xi)) = 1
2 (yi − f(xi))

2.

• Classification: Y = {−1, 1} and ℓ(yi, f(xi)) = Φ(yif(xi))) where Φ is convex,
e.g., Φ(u) = max{1 − u, 0} (hinge loss leading to the support vector machine) or
Φ(u) = log(1 + exp(−u)) (leading to logistic regression). See more examples in
Section 4.1.1.

The class of prediction functions we have considered so far were (with their “pros”
and “cons”):

• Linear functions in some explicit features: given a feature map ϕ : X→ R
d,

we consider f(x) = θ⊤ϕ(x), with parameters θ ∈ Rd, as analyzed in Chapter 3 (for
least-squares) and Chapter 4 (for Lipschitz-continuous losses).

– Pros: Simple to implement, as this leads to convex optimization with gradient
descent algorithms, with running time complexity in O(nd), as shown in Chapter 5,
and theoretical guarantees which are not necessary scaling badly with dimension d
if regularizers are used (ℓ2 or ℓ1).
– Cons: Only applies to linear functions on explicit (and fixed feature spaces), so
they can underfit the data.

• Linear functions in some implicit features through kernel methods: the
feature map can have arbitrarily large dimension, that is, ϕ(x) ∈ H where H is a
Hilbert space, accessed through the kernel function k(x, x′) = 〈ϕ(x), ϕ(x′)〉H, as
presented in Chapter 7.

– Pros: Non-linear flexible predictions, simple to implement, can be used as convex
optimization algorithms with strong guarantees. Provides adaptivity to the reg-
ularity of the target function, allowing higher-dimensional applications than local
averaging methods from Chapter 6.
– Cons: Running-time complexity up to O(n2) with algorithms from Section 7.4
(but this scaling can be improved with appropriate techniques also discussed in the
same section, such as column sampling or random features). The method may still
suffer from the curse of dimensionality for target functions that are not smooth
enough.

This chapter aims to explore another class of functions for non-linear predictions,
namely neural networks, that come with additional benefits, such as more “adaptivity
to linear latent variables”, but comes with some potential drawbacks, such as a harder
optimization problem.
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9.2 Single hidden layer neural network

We consider X = Rd and the set of prediction functions that can be written as

f(x) =

m∑

j=1

ηjσ(w⊤
j x+ bj), (9.1)

where wj ∈ Rd, bj ∈ R, j = 1, . . . ,m, are the “input weights”, ηj ∈ R, , j = 1, . . . ,m, are
the “output weights”, and σ is an “activation function”. This is often represented as a
graph (see below). The same architecture can also be considered with ηj ∈ Rk, for k > 1
to deal with multi-category classification (see Section 13.1).

f(x) =
m∑

j=1

ηjσ(w
⊤

j x+ bj)x

w, b

η

The activation function is typically chosen from one of the following examples (see
plot below):

• sigmoid σ(u) = 1
1+e−u ,

• step function σ(u) = 1u>0,

• “rectified linear unit” (ReLU) σ(u) = (u)+ = max{u, 0}, which will be the main
focus of this chapter.

• hyperbolic tangent σ(u) = tanh(u) = eu−e−u

eu+e−u .
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The function f is defined as the linear combination of m functions x 7→ σ(w⊤
j x + bj),
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which are the “hidden neurons”.1

△! The constant terms bj are sometimes referred to as “biases”, which is unfor-
tunate in a statistical context, as it already has a precise meaning within the
bias/variance trade-off (see Chapter 3).

△! Do not get confused by the name “neural network” and its biological inspira-
tion. This inspiration is not a proper justification for its behavior on machine
learning problems.

Cross-entropy loss and sigmoid activation function for the last layer. Following
standard practice, we are not adding a non-linearity to the last layer; note that if we were
to use an additional sigmoid activation and consider the cross-entropy loss for binary
classification, we would exactly be using the logistic loss on the output without an extra
activation function.

Indeed, if we consider g(x) = 1
1+exp(−f(x)) ∈ [0, 1], and given an output variable y ∈

{−1, 1}, the so-called “cross-entropy loss”, an instance of maximum likelihood (see more
details in Chapter 14), is equal to − 1+y

2 log g(x)− 1−y
2 log(1−g(x)). It can be rewritten as

log
(
1 + exp(−yf(x))

)
, which is exactly the logistic loss defined in Section 4.1.1, applied

to f(x).

Theoretical analysis of neural networks. As with any method based on empirical
risk minimization, we have to study the three classical aspects: (1) optimization (con-
vergence properties of algorithms for minimizing the risk), (2) estimation error (effect of
having a finite amount of data on the prediction performance), and (3) approximation
error (effect of having a finite number of parameters or a constraint on the norm of these
parameters).

9.2.1 Optimization

To find parameters θ = {(ηj), (wj), (bj)} ∈ Rm(d+2), empirical risk minimization can be
applied, and the following optimization problem has to be solved:

min
θ∈Rm(d+2)

1

n

n∑

i=1

ℓ
(
yi,

m∑

j=1

ηjσ(w⊤
j xi + bj)

)
,

with potentially additional regularization (often squared ℓ2-norm of all weights).

△! Note that (as discussed in Chapter 5) the true objective is to perform well on unseen
data, and the optimization problem above is just a means to an end.

This is a non-convex optimization problem where the gradient descent algorithms from
Chapter 5 can be applied without a strong guarantee beyond obtaining a vector with a

1See https://playground.tensorflow.org/ for a nice interactive illustration.

https://playground.tensorflow.org/
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small gradient norm (Section 5.2.6). See below for recent results on providing qualitative
global convergence guarantees when m is large.

While stochastic gradient descent remains an algorithm of choice (with also a good
generalization behavior as discussed in Section 5.4), several algorithmic improvements
have been observed to lead to better stability and performance: specific step-size decay
schedules, preconditioning like presented in Section 5.4.2 (Duchi et al., 2011), momen-
tum (Kingma and Ba, 2014), batch-normalization (Ioffe and Szegedy, 2015) or layer-
normalization (Ba et al., 2016) to make the optimization better behaved, but overall,
the objective function is non-convex, and it remains challenging to understand precisely
why gradient-based methods perform well in practice, particularly for deeper networks
(some elements are presented below and in Chapter 12). See also boosting procedures in
Section 10.3 and Chapter 12, which learn neuron weights incrementally.

Global convergence of gradient descent for infinite widths (�). It turns out
that global convergence can be shown for this non-convex optimization problem (Chizat
and Bach, 2018; Bach and Chizat, 2022), with tools that go beyond the scope of this
book and which are partially described in Chapter 12.2

We simply show some experimental evidence below for a simple one-dimensional set-
up, where we compare several runs of stochastic gradient descent (SGD) where observa-
tions are only seen once (so no overfitting is possible) and with random initializations,
on a regression problem with deterministic outputs, thus with the optimal testing error
(the Bayes rate) being equal to zero. We show in Figure 9.1 the estimated predictors and
the corresponding testing errors with 20 different initializations. We see that small errors
are never achieved when m = 5 (which is sufficient to attain zero testing errors). With
m = 20 neurons, SGD finds the optimal predictor for most restarts. When m = 100, all
restarts have the desired behaviors, highlighting the benefits of over-parameterization.

9.2.2 Rectified linear units and homogeneity

From now on, we will mostly focus on the rectified linear unit σ(u) = u+. The main
property we will leverage is its “positive homogeneity”, that is, for α > 0, (αu)+ = αu+.
This implies that in the definition of the prediction function as the sum of terms ηj(w

⊤
j x+

bj)+, we can freely multiply ηj ∈ R by a positive scalar αj and divide (wj , bj) ∈ Rd+1 by
the same αj , without changing the prediction function.

This has a particular effect when using a squared ℓ2-regularizer on all weights, which
is standard, either explicitly (by adding a penalty to the cost function) or implicitly (see
Section 12.1). Indeed, we consider penalizing η2j +‖wj‖22 + b2j/R

2 for each j ∈ {1, . . . ,m},
where we have added the factor R2 on the constant term for homogeneity reasons between
the slope wj and the constant term bj (R will be a bound on the ℓ2-norm of input data).
Dealing with unit homogeneity between ηj and (wj , bj/R) does not matter, because of
the invariance by rescaling described below.

2See also https://francisbach.com/gradient-descent-neural-networks-global-convergence/ for
more details.

https://francisbach.com/gradient-descent-neural-networks-global-convergence/
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Figure 9.1: Comparison of optimization behavior for different numbers m of neurons,
for ReLU activations (left: m = 5, middle: m = 20, and right: m = 100). The neural
network used to generate the data (without noise) has 4 hidden neurons. Top: examples
of final prediction functions at convergence, bottom: plot of test errors vs. number of
iterations.
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Optimizing with respect to a scaling factor αj above (which impacts only the regular-
izer), we have to minimize α2

jη
2
j+

(
‖wj‖22+b2j/R

2
)
/α2

j , with α2
j =

[
(‖wj‖22+b2j/R

2)1/2
]
/|ηj |

as a minimizer, and with the optimal value of the penalty equal to 2|ηj |(‖wj‖22+b2j/R
2)1/2.

For the theoretical analysis, we can thus choose to normalize each (wj , bj) to have
unit norm ‖wj‖22 + b2j/R

2 = 1, and use the penalty |ηj | for each j ∈ {1, . . . ,m}, and thus
use an overall ℓ1-norm penalty on η, that is, ‖η‖1 (we will consider other normalizations
for the input weights below, either to ease the exposition, or to induce another behavior,
e.g., by using ℓ1-norms on the wj ’s). We now focus on this choice of regularization in the
following sections.

△! In this chapter, R denotes an almost upper-bound on x directly, and not on a
feature map ϕ(x) (as done in earlier chapters).

9.2.3 Estimation error

To study the estimation error, we will consider that the parameters of the network are
constrained, that is, ‖wj‖22 + b2j/R

2 6 1 for each j ∈ {1, . . . ,m}, and ‖η‖1 6 D. This

defines a set Θ of allowed parameters. Note that we use ‖wj‖22 + b2j/R
2 6 1 instead of

‖wj‖22 + b2j/R
2 = 1 (as suggested above) as it does not impact the bound on estimation

error (and uniform convergence results on a bigger set of functions apply to a smaller
set).

We can then compute the Rademacher complexity of the associated class F of functions
we just defined, using tools from Chapter 4 (Section 4.5). We assume that almost surely,
‖x‖2 6 R, that is, the input data are bounded in ℓ2-norm by R.

Following the developments of Section 4.5 on Rademacher averages, we denote by
G = {(x, y) 7→ ℓ(y, f(x)), f ∈ F}, the set of loss functions for a prediction function f ∈ F

(which is here the set of neural network models fθ with parameters θ such that θ ∈ Θ).
Note that following Section 4.5.3, we consider a constraint on ‖η‖1, but we could also
penalize, which is closer to practice and can be tackled with tools from Section 4.5.5.

We have, by definition of the Rademacher complexity Rn(G) of G, and taking expec-
tations with respect to the data (xi, yi), i = 1, . . . , n (which are assumed i.i.d.) and the
independent Rademacher random variables εi ∈ {−1, 1}, i = 1, . . . , n:

Rn(G) = E

[
sup
θ∈Θ

1

n

n∑

i=1

εiℓ(yi, fθ(xi))
]
.

This quantity is known to provide an upper-bound on the expected risk (e.g., testing

error) R(f̂) of the minimizer f̂ ∈ F of the empirical risk, through the estimation error,
as (using symmetrization from Prop. 4.2 and Eq. (4.8) from Section 4.4):

E

[
R(f̂)− inf

f∈F
R(f)

]
6 4Rn(G).

We can now use properties of Rademacher complexities presented in Section 4.5, particu-
larly their nice handling of non-linearities. Assuming the loss is almost surelyG-Lipschitz-
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continuous with respect to the second variable, using Proposition 4.3 from Chapter 4 that
allows getting rid of the loss, we get the bound:

Rn(G) 6 G · E
[

sup
θ∈Θ

1

n

n∑

i=1

εifθ(xi)
]

= G · E
[

sup
θ∈Θ

1

n

n∑

i=1

m∑

j=1

ηjεiσ(w⊤
j xi + bj)

]
.

Using the ℓ1-constraint on η and using sup‖η‖16D z
⊤η = D‖z‖∞, we can directly

maximize with respect to η ∈ Rm, leading to (note that another ℓp-constraint on η, with
p 6= 1, would be harder to deal with):

Rn(G) 6 G · E
[

sup
j∈{1,...,m}

sup
‖wj‖2

2+b
2
j/R

261

D
∣∣∣ 1

n

n∑

i=1

εiσ(w⊤
j xi + bj)

∣∣∣
]
.

Since the ReLU activation function σ is 1-Lipschitz continuous and satisfies σ(0) = 0,
we get, this time using the extension of Proposition 4.3 from Chapter 4 to Rademacher
complexities defined with an absolute value (that is, Prop. 4.4), which adds an extra
factor of 2:

Rn(G) 6 2GD · E
[

sup
j∈{1,...,m}

sup
‖wj‖2

2+b
2
j/R

261

∣∣∣w⊤
j

( 1

n

n∑

i=1

εixi

)
+ bj

( 1

n

n∑

i=1

εi

)∣∣∣
]
.

We can now perform the optimization with respect to (wj , bj) in closed form (which can
be done using Cauchy-Schwarz inequality), with the same value for all j ∈ {1, . . . ,m},
leading to:

Rn(G) 6 2GD · E
[(∥∥∥ 1

n

n∑

i=1

εixi

∥∥∥
2

2
+R2

( 1

n

n∑

i=1

εi

)2)1/2]
.

We thus get, using Jensen’s inequality (here of the form E[Z] 6
√
E[Z2]), as well as the

independence, zero mean, and unit variance of ε1, . . . , εn:

Rn(G) 6 2GD

(
E

[∥∥∥ 1

n

n∑

i=1

εixi

∥∥∥
2

2
+R2

( 1

n

n∑

i=1

εi

)2])1/2

(9.2)

= 2GD

(
1

n
E[‖x‖22] +

R2

n

)1/2

6
2GDR

√
2√

n
.

Thus, we get the following proposition, with a bound proportional to 1/
√
n with no

explicit dependence in the number of parameters.

Proposition 9.1 Let G be the class of functions (y, x) 7→ ℓ(y, f(x)) where f is a neural
network defined in Eq. (9.1), with the constraint that ‖η‖1 6 D, ‖wj‖22 + b2j/R

2 6 1
for all j ∈ {1, . . . ,m}. If the loss function is G-Lipschitz-continuous and the activation
function σ is the ReLU, the Rademacher complexity is upper bounded as

Rn(G) 6
4GDR√

n
.
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The proposition above allows for the estimation error to be bounded for neural networks,
as the maximal deviation between expected risk and empirical risk over all potential net-
works with bounded parameters is bounded in expectation by four times the Rademacher
complexity above.

This will be combined with a study of the approximation properties in Section 9.3,
with a summary in Section 9.4.

△! For the estimation error, the number of parameters is irrelevant!
What counts is the overall norm of the weights.

We will see in Chapter 12 some recent results showing how optimization algorithms
add an implicit regularization that leads to provable generalization in over-parameterized
neural networks (that is, networks with many hidden units).

Exercise 9.1 (�) Provide a bound similar to Prop. 9.1 for the constraint ‖wj‖1+|bj |/R 6

1, where R denotes the supremum of ‖x‖∞ over all x in the support of its distribution.

Before moving on to approximation properties of neural networks, we note that the
reasoning above to compute the Rademacher complexity can be extended by recursion
to deeper networks, as the following exercise shows (see, e.g., Neyshabur et al., 2015, for
further results).

Exercise 9.2 (�) We consider a 1-Lipschitz-continuous activation function σ such that
σ(0) = 0, and the classes of functions defined recursively as F0 = {x 7→ θ⊤x, ‖θ‖2 6 D0},
and, for i = 1, . . . ,M , Fi = {x 7→∑mi

j=1 θjσ(fj(x)), fj ∈ Fi−1, ‖θ‖1 6 Di}, corresponding
to a neural network with M layers. Assuming that ‖x‖2 6 R almost surely, show by

recursion that the Rademacher complexity satisfies Rn(FM ) 6 2M R√
n

∏M
i=0Di.

9.3 Approximation properties

As seen above, the estimation error for constrained output weights grows as ‖η‖1/
√
n,

where η is the vector of output weights and is independent of the number m of neurons.
Three important questions will be tackled in the following sections:

• Universality: Can we approximate any prediction function with a sufficiently large
number of neurons?

• Bound on approximation error: What is the associated approximation error so
that we can derive generalization bounds? How can we use the control of the
ℓ1-norm ‖η‖1, particularly when the number of neurons m is allowed to tend to
infinity?

• Finite number of neurons: What is the number of neurons required to reach such a
behavior?

Matthew Buchholz

Matthew Buchholz
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For this, we need to understand the space of functions that neural networks span
and how they relate to the smoothness properties of the function (like we did for kernel
methods in Chapter 7).

In this section, like in the previous section, we focus primarily on the ReLU activation
function, noting that universal approximation results exist as soon as σ is not a polyno-
mial (Leshno et al., 1993). We start with a simple non-quantitative argument to show
universality in one dimension (and then in all dimensions) before formalizing the function
space obtained by letting the number of neurons go to infinity.

9.3.1 Universal approximation property in one dimension

We start with simple non-quantitative arguments.

Approximation of piecewise affine functions. Since each individual function x 7→
ηj(wjx + bj)+ is piecewise affine, the output of a neural network has to be piecewise
affine. It turns out that all piecewise affine functions with m − 2 kinks in the open
interval (−R,R) can be represented by m neurons on [−R,R].

Indeed, as illustrated below with m = 8, if we assume that the function f is such
that f(−R) = 0, with kinks a1 < · · · < am−2 on (−R,R), we can approximate it
on [−R, a1] by the function v1(x + R)+ where v1 is the slope of f on [−R, a1]. The
approximation is tight on [−R, a1]. To have a tight approximation on [a1, a2] without
perturbing the approximation on [−R, a1], we can add to the approximation v2(x− a1)+
where v2 is exactly what is needed to compensate the change in slope of f . By pursuing
the reasoning, we can represent the function on [−R,R] exactly with m− 1 neurons.

−R Ra1 a2 a3 a4 a5 a6

x

x

f(x)

To remove the constraint that f(−R) = 0, we can simply notice that 1
2R (x + R)+ +

1
2R (−x+R)+ is equal to 1 on [−R,R]. Thus, with one additional neuron (only one since
(x + R)+ has already been used), we can represent any piecewise-affine function with
m− 2 kinks with m neurons.

Matthew Buchholz
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Universal approximation properties. Now that we can represent precisely all piece-
wise affine functions on [−R,R], we can use classical approximation theorems for functions
on [−R,R]. They come in different flavors depending on the norm we use to characterize
the approximation. For example, continuous functions can be approximated by piece-
wise affine functions with arbitrary precision in L∞-norm (defined as the maximal value
of |f(x)| for x ∈ [−R,R ]) by simply taking the piecewise interpolant from a grid (see
quantitative arguments in Section 9.3.3). With a weaker criterion such as the L2-norm
(with respect to the Lebesgue measure), we can approximate any function in L2 (see, e.g.,
Rudin, 1987). This can be extended to any dimension d by using the Fourier transform

representation as f(x) = 1
(2π)d

∫
Rd f̂(ω)eiω

⊤xdω and approximating the one-dimensional

functions sine and cosine as linear superpositions of ReLU’s. See a more formal quanti-
tative argument in Section 9.3.4.

To obtain precise bounds in all dimensions, in terms of the number of kinks or the
ℓ1-norm of output weights, we first need to define the limit when the number of neurons
can be unbounded.

9.3.2 Infinitely many neurons and variation norm

In this section, we consider neural networks of the form f(x) =
∑m

j=1 ηjσ(w⊤
j x+bj), where

the input weights are constrained, that is, (wj , bj/R) ∈ K, for K a compact subset of
R
d+1, such as the unit ℓ2-sphere (but we will consider a slightly different set at the end of

this section). In subsequent sections, we will primarily consider the ReLU activation σ,
but this is not needed in this section (where boundedness or Lipschitz-continuity are
sufficient).

In this section, for a function f : X → R, where X is the ℓ2-ball of radius R and
center 0 in Rd, we want to study the limit when m→∞, of the smallest ℓ1-norm of η for
a function f representable with m neurons and output weights η, that is,

γ
(m)
1 (f)= inf

ηj∈R,(wj ,bj)∈K, ∀j∈{1,...,m}
‖η‖1 such that ∀x ∈ X, f(x) =

m∑

j=1

ηjσ(w⊤
j x+ bj).

The index 1 in γ
(m)
1 will become natural when we compare with kernels in Section 9.5.

When f is not representable by m neurons, we let γ
(m)
1 (f) = +∞. By construction the

sequence γ
(m)
1 (f) is non-increasing in m, and non-negative. Thus, it has a limit when m

tends to ∞, which we denote γ1(f), which is infinite when f cannot be approximated
by a neural network with finitely many neurons and output weights bounded in ℓ1-norm.
The function γ1 is positively homogeneous, that is γ1(λf) = λγ1(f) when λ > 0 and
sub-additive, that is, γ1(f + g) 6 γ1(f) + γ1(g). Moreover, one can show that γ1(f) = 0
implies that f = 0 (proofs left as an exercise). Thus, γ1 is a norm on the set of functions
f : X → R such that γ1(f) < +∞. It is possible to “complete” this space by adding
limits of functions such that their γ1-norm remains bounded. We then obtain a Banach
space F1 of functions, with a norm γ1, often referred to as the “variation norm” (Kurková
and Sanguineti, 2001). This characterizes the set of functions that can be represented

Matthew Buchholz
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by neural networks with bounded ℓ1-norm of output weights, regardless of the number of
neurons.

Formulation through measures. We can write f(x) =
∑m
j=1 ηjσ(w⊤

j x + bj), as

f(x) =
∫
K

(w⊤x + b)+dν(w, b), for ν the measure ν =
∑m

j=1 ηjδ(wj ,bj) where δ(wj ,bj) is

the Dirac measure at (wj , bj). Then, the penalty can be written as ‖η‖1 =
∫
K |dν(w, b)|,

which is the “total variation” of ν.3 We can therefore see γ1(f) as the infimum of all∫
K |dν(w, b)| such that ∀x ∈ X, f(x) =

∫
K(w⊤x + b)+dν(w, b), and ν is supported on a

countable set. By a density argument (every measure is the “weak” limit of empirical
measures), we can remove the constraint on the support and get that

γ1(f) = inf
ν∈M(K)

∫

K

|dν(w, b)| such that ∀x ∈ X, f(x) =

∫

K

σ(w⊤x+ b)dν(w, b), (9.3)

where M(K) is the set of measures on K with finite total variation (see Bach, 2017, and
references therein for more details and formal definitions). This formulation is typically
easier to deal with for sufficiently smooth functions, as the optimal measure ν is typically
not a finite sum of Diracs (see examples below, in particular in one dimension). Note
that when K is a compact convex set, then the norm γ1 is the same when using K in
its definition or replacing it by its boundary (that is, we can choose the unit ℓ2-sphere or
the unit ℓ2-ball).

Studying the approximation properties of F1. Now that we have defined the
function space through Eq. (9.3), we need to describe the set of functions with finite norm
and relate this norm to classical smoothness properties (like done for kernel methods in
Chapter 7). To do so, we consider a smaller set than the unit ℓ2-ball, that is, the set
of (w, b/R) such that ‖w‖2 = 1/

√
2 and |b| 6 R/

√
2, which is enough to obtain upper-

bounds on the approximation errors. For simplicity, and losing a factor
√

2, we consider
the normalization K = {(w, b) ∈ Rd+1, ‖w‖2 = 1, |b| 6 R}, and consider the norm γ1
defined in Eq. (9.3) with this set K. Note that for d = 1, we have K = {(w, b) ∈ R2, w ∈
{−1, 1}, |b| 6 R}. We could stick to the ℓ2-sphere, but our particular choice of K leads
to simpler formulas.

9.3.3 Variation norm in one dimension

The ReLU activation function is specific and leads to simple approximation properties
in the interval [−R,R ]. As already qualitatively described in Section 9.3.1, we start
with piecewise affine functions, which, given the shape of the ReLU activation, should
be easy to approximate (and immediately lead to universal approximation results as all
“reasonable” functions can be approximated by piecewise affine functions). See more
details by Breiman (1993); Barron and Klusowski (2018).

3When ν has a density dν/dτ with respect to a base measure τ , then the total varia-
tion is defined as the integral

∫
K |dν/dτ(w, b)|dτ(w, b) and is independent of the choice of τ .

See https://en.wikipedia.org/wiki/Total_variation for more details.

https://en.wikipedia.org/wiki/Total_variation
Matthew Buchholz
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Piecewise affine functions. We can make the reasoning in Section 9.3.1 quantitative.
We consider a continuous piecewise affine function on [−R,R] with specific knots at each
R = a0 < a1 < · · · < am−2 < am−1 = R, so that on [aj , aj+1], f is affine with slope vj ,
for j ∈ {0, . . . ,m− 2}.

−R=a0 am−1=Ra1 a2 a3 a4 a5 a6

x

x

f(x)− f(−R)

v0x+◦

v1x+◦

v2x+◦

v3x+◦

vm−2x+◦

v4x+◦

v5x+◦

We can first start to fit the function x 7→ f(x)−f(−R) (which is equal to 0 at x = R)
on [a0, a1] = [−R, a1], as g0(x) = v0(x − a0)+. For x > a0, this approximation has
slope v0. In order for the approximation to be exact on [a1, a2] (while not modifying the
function on [a0, a1]), we consider g1(x) = g0(x) + (v1 − v0)(x− a1)+, which is now exact
on [a0, a2]; we can pursue recursively by considering, for j ∈ {1, . . . ,m− 2}

gj(x) = gj−1(x) + (vj − vj−1)(x − aj)+,

which is equal to f(x) − f(−R) for x ∈ [a0, aj+1]. We can thus represent f(x) − f(−R)
on [a0, am−1] = [0, R] exactly with gm−2(x). We have:

gm−2(x) = v0(x − a0)+ +

m−2∑

j=1

(vj − vj−1)(x− aj)+.

In other words, we can represent any piecewise affine function as (using that on [−R,R],
(x− a0)+ = (x+R)+ = x+R):

f(x) = f(−R) + v0(x+R) +

m−2∑

j=1

(vj − vj−1)(x − aj)+. (9.4)

To obtain a representation that is invariant by a sign change, we also consider the same
representation starting from the right (which can, for example, be obtained by applying
the one above to x 7→ f(−x)):

f(x) = f(R) + vm−2(R− x) +

m−2∑

j=1

(vj−1 − vj)(aj − x)+. (9.5)
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Note that this also shows that such representations are not unique. By averaging Eq. (9.4)
and Eq. (9.5), and using that 1

2R (x + R)+ + 1
2R (−x + R)+ is equal to 1 on [−R,R], we

get:

f(x) =
1

2

[
f(R) + f(−R)

][ 1

2R
(x+R)+ +

1

2R
(−x+R)+

]

+
1

2
v0(x+R)+ −

1

2
vm−2(−x+R)++

1

2

m−2∑

j=1

(vj − vj−1)
[
(x− aj)+ + (aj − x)+

]
,

and thus, by construction of the norm γ1, we have

γ1(f) 6
1

2

∣∣∣ 1

2R
[f(−R) + f(R)] + v0

∣∣∣ +
1

2

∣∣∣ 1

2R
[f(−R) + f(R)]− vm−2

∣∣∣ +
m−2∑

j=1

|vj − vj−1|.

The norm is thus upper-bounded by the values of f and its derivatives at the boundaries
of the interval and the sums of the changes in slope.

Twice continuously differentiable functions. We consider a twice continuously
differentiable function f on [−R,R ], and we would like to express it as a continuous
linear combination of functions x 7→ (±x + b)+. We will consider two arguments: one
through approximation by piecewise affine functions and one through the Taylor formula
with integral remainder.

Piecewise-affine approximation. We consider equally-spaced knots aj = −R+ j
sR,

for j ∈ {0, . . . , 2s}, and the piecewise affine interpolation from values aj , f(aj), with
j ∈ {0, . . . , 2s}, for s that will tend to infinity (see illustration below, where we have
m− 1 = 2s).

−R = a0 a2s = Ra
−m+1 aj aj+1 a2s−1

For the approximant f̂ , the value v0 is equal to s[f(−R + 1/s)− f(−R)] ∼ f ′(−R),
and v2s−1 = s[f(R)− f(R− 1/s)] ∼ f ′(R) when s tends to infinity, while the differences
in slopes |vj − vj−1| are equal to

∣∣ s
R

(
f( j+1

s R)− f( jsR)
)
− s

R

(
f( jsR)− f( j−1

s R)
)∣∣= s

R

∣∣f( j+1
s R)− 2f( jsR) + f( j−1

s R)
∣∣,

which is equivalent to R
s

∣∣f ′′( jsR)
∣∣ when s→ +∞ (using a second-order Taylor expansion).
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Thus, the approximant f̂ has γ1-norm bounded asymptotically as

γ1(f̂) 6
1

2

∣∣∣ 1

2R
[f(−R)+f(R)]+f ′(−R)

∣∣∣+ 1

2

∣∣∣ 1

2R
[f(−R)+f(R)]−f ′(R)

∣∣∣+R
s

2s−1∑

j=1

∣∣f ′′(
j

s
R)

∣∣.

The last term R
s

∑2s−1
j=1

∣∣f ′′( jsR)
∣∣ tends to

∫ R
−R |f ′′(x)|dx. Thus, letting s tend to infinity,

we get (informally here, as the reasoning below will make it more formal):

γ1(f) 6
1

2

∣∣∣ 1

2R
[f(−R)+f(R)]+f ′(−R)

∣∣∣+ 1

2

∣∣∣ 1

2R
[f(−R)+f(R)]−g′(R)

∣∣∣+
∫ R

−R
|f ′′(x)|dx.

(9.6)
This notably shows that if the number of neurons is allowed to grow, then the ℓ1-norm of
the weights remain bounded by the quantity above to represent the function f exactly.

Direct proof through Taylor formula. Eq. (9.6) above can be extended to con-
tinuous functions, which are only twice differentiable almost everywhere with integrable
second-order derivatives. In this section, we assume that the function f is twice contin-
uously differentiable and can extend to only integrable second-derivatives by a density
argument (see, e.g., Rudin, 1987). For such a function, using the Taylor formula with
integral remainder, we have, for x ∈ [−R,R], using the fact that (x− b)+ = 0 as soon as
b > x:

f(x) = f(−R) + f ′(−R)(x+R) +

∫ x

−R
f ′′(b)(x − b)db

= f(−R) + f ′(−R)(x+R) +

∫ R

−R
f ′′(b)(x − b)+db.

We also have the symmetric version (obtained by applying the one above to x 7→ f(−x),
replacing x by −x, and by a change of variable b→ −b in the integral):

f(x) = f(R)− f ′(R)(R − x) +

∫ R

−R
f ′′(b)(−x− b)+db.

By averaging the two equalities, we get:

f(x) =
1

2

[f(−R) + f(R)

2R
+ f ′(−R)

]
(x +R) +

1

2

[f(−R) + f(R)

2R
− f ′(−R)

]
(R− x)

+
1

2

∫ R

−R
f ′′(b)(x− b)+db −

1

2

∫ R

−R
f ′′(b)(−x− b)+db.

This leads to the exact same upper-bound on γ1(f) as obtained from piecewise affine
interpolation:

γ1(f) 6
1

2

∣∣∣ 1

2R
[f(−R)+f(R)]+f ′(−R)

∣∣∣+ 1

2

∣∣∣ 1

2R
[f(−R)+f(R)]−f ′(R)

∣∣∣+
∫ R

−R
|f ′′(x)|dx.

(9.7)
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One can check that the upper bound is indeed a norm (left as an exercise). Moreover,
the upper bound happens to be tight (see the exercise below).

We will also use a simpler upper-bound, obtained from the triangle inequality:

γ1(f) 6
1

2R

∣∣f(−R) + f(R)
∣∣ +

1

2

∣∣f ′(R) + f ′(−R)
∣∣ +

∫ R

−R
|f ′′(x)|dx. (9.8)

Exercise 9.3 (�) Show that the upper-bound in Eq. (9.7) is in fact an equality.

Exercise 9.4 (�) Show that the minimum norm interpolant from ordered observations
−R < x1 < · · · < xn < R, y1, . . . , yn ∈ R, is equal to the piecewise-affine interpolant
on [x1, xn].

9.3.4 Variation norm in arbitrary dimension

If we assume that f is continuous on the ball of center zero and radius R, then the

Fourier transform f̂(ω) =
∫
Rd f(x)e−iω

⊤xdx is defined everywhere, and we can write f as

the inverse Fourier transform of f̂ , that is,

f(x) =
1

(2π)d

∫

Rd

f̂(ω)eiω
⊤xdω. (9.9)

To compute an upper-bound on γ1(f), it suffices to upper-bound for each ω ∈ Rd,

γ1(x 7→ eiω
⊤x) (using complex-valued functions, for which the developments of the previ-

ous section still apply, or using sines and cosines), which is possible because we have the
representation from Section 9.3.3 and Eq. (9.8) applied to g : u 7→ eiu‖ω‖2 , for u ∈ [−R,R],

eiu‖ω‖2 =

∫ R

−R
η+(b, ‖ω‖2)(u− b)+db +

∫ R

−R
η−(b, ‖ω‖2)(−u− b)+db,

with

∫ R

−R
|η+(b, ‖ω‖2)|db+

∫ R

−R
|η−(b, ‖ω‖2)|db 6

1

R
+‖ω‖2+2R‖ω‖22 6

2

R
(1+2R2‖ω‖22).

We can, therefore, decompose the function defined on the ball of center 0 and radius R:

eiω
⊤x = ei(x

⊤ω/‖ω‖2)‖ω‖2

=

∫ R

−R
η+(b, ‖ω‖2)(x⊤(ω/‖ω‖2)− b)+db+

∫ R

−R
η−(b, ‖ω‖2)(x⊤(−ω/‖ω‖2)− b)+db,

with weights being in the correct constraint set (unit norm for the slopes ω/‖ω‖2 and
constant terms |b| 6 R), leading to

γ1(x 7→ eiω
⊤x) 6

2

R
(1 + 2R2‖ω‖22).

Thus, we obtain, from Eq. (9.9) and the triangular inequality for the norm γ1:

γ1(f) 6
1

(2π)d

∫

Rd

|f̂(ω)|γ1(x 7→ eiω
⊤x)dω 6

1

(2π)d
2

R

∫

Rd

|f̂(ω)|(1 + 2R2‖ω‖22)dω. (9.10)

Matthew Buchholz
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Given a function g : Rd → R,
∫
Rd |ĝ(ω)|dω is a measure of smoothness of g, and so

γ1(f) being finite imposes that f and all second-order derivatives of f have this form of
smoothness. The right-hand side of Eq. (9.10) is often referred to as the “Barron norm”,
named after Barron (1993, 1994). See Klusowski and Barron (2018) for more details.

To relate the norm γ1 to other function spaces such as Sobolev spaces, we will consider
further upper bounds (and relate them to another norm γ2 in Section 9.5).

9.3.5 Precise approximation properties

Precise rates of approximation. In this section, we will relate the space F1 to
Sobolev spaces, bounding, using Cauchy-Schwarz inequality, the norm γ1 as:

γ1(f) 6
1

(2π)d
2

R

∫

Rd

|f̂(ω)|(1 + 2R2‖ω‖22)dω from Eq. (9.10),

=
1

(2π)d
2

R

∫

Rd

|f̂(ω)|(1 + 2R2‖ω‖22)d/4+5/4 dω

(1 + 2R2‖ω‖22)d/4+1/4

6
1

(2π)d
2

R

√∫

Rd

|f̂(ω)|2(1+2R2‖ω‖22)d/2+5/2dω

√∫

Rd

dω

(1+2R2‖ω‖22)d/2+1/2
, (9.11)

which is a constant times
√∫

Rd |f̂(ω)|2(1 + 2R2‖ω‖22)sdω, which is exactly the Sobolev

norm from Chapter 7, with s = d
2 + 5

2 derivatives, which is a reproducing kernel Hilbert
space (RKHS) since s > d/2.

Thus, all approximation properties from Chapter 7 apply (see there for precise rates,
and their application to generalization bounds in Section 9.4). Note, however, that, using
this reasoning, if we start from a Lipschitz-continuous function, then to approximate it
up to L2(Rd)-norm ε requires a γ1-norm growing as ε−(s−1) > ε−(d/2+3/2) (as obtained at
the end of Section 7.5.2 of Chapter 7). Thus, in the generic situation where no particular
directions are preferred, using F1 (neural networks) is not really more advantageous than
using kernel methods (see also more details in Section 9.4 and Section 9.5). This changes
drastically when such linear structures are present, as shown below.

Adaptivity to linear latent variables. We consider a target function f∗ that depends
only on a r-dimensional projection of the data, that is, f∗ is of the form f∗(x) = g(V ⊤x),
where V ∈ Rd×r is full rank and has all singular values less than 1, and g : Rr → R.
Without loss of generality, we can assume that V has orthonormal columns. Then if γ1(g)
is finite (for the function g defined on R

r), it can be written as

g(z) =

∫

Rr+1

(w⊤z + b)+dµ(w, b),

with µ supported on {(w, b) ∈ Rr+1, ‖w‖2 6 1, |b| 6 R}, and γ1(g) =
∫
Rr+1 |dµ(w, b)|.

We can then use this representation of g to obtain a representation of f∗ as:

f∗(x) = g(V ⊤x) =

∫

Rr+1

((V w)⊤x+ b)+dµ(w, b).

Matthew Buchholz
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Since ‖V w‖2 6 1 as soon as ‖w‖2 6 1, and V have orthonormal columns, the measure µ
on (w, b) defines a measure for (V w, b) on {(w′, b) ∈ Rd+1, ‖w′‖2 6 1, |b| 6 R} with a
total variation which is less than the one of µ. Thus γ1(f∗) 6

∫
Rr+1 |dµ(w, b)| = γ1(g). In

other words, the approximation properties of g translate to f∗, and thus, we pay only the
price of these r dimensions and not all d variables, without the need to know V in advance.
For example, (a) if g has more than r/2 + 5/2 squared integrable derivatives, then γ1(g)
and thus γ1(f∗) is finite, or (b) if g is Lipschitz-continuous, then both g and f can be
approached in L2(Rd) with error ε with a function with γ1-norm of order ε−(r/2+5/2),
thus escaping the curse of dimensionality. See Bach (2017) for more details and precise
learning rates in Section 9.4.

△! Kernel methods do not have such adaptivity. In other words, as shown in
Section 9.5, using the ℓ2-norm instead of the ℓ1-norm on the output weights
leads to worse performance.

We will combine these approximation results with the estimation error results in
Section 9.4.

9.3.6 From the variation norm to a finite number of neurons (�)

Given a measure µ on Rd, and a function g : Rd → R such that γ1(g) is finite, we would
like to find a set of m neurons (wj , bj) ∈ K ⊂ Rd+1 (which is the compact support of all
measures that we consider), such that the associated function defined through

f(x) =

m∑

j=1

ηjσ(w⊤
j x+ bj)

is close to g for the norm L2(µ).

Since input weights are fixed in K, the bound on γ1(g) should translate to a bound
on the ℓ1-norm of η: ‖η‖1 6 γ1(g). The set of functions f such that γ1(f) 6 γ1(g) is the
convex hull of functions sγ1(g)σ(w⊤x+ b), for s ∈ {−1, 1}, and ‖w‖2 = 1, |b| 6 R. Thus,
we are faced with the problem of approximating elements of a convex hull as an explicit
linear combination of extreme points, if possible, with as few extreme points as possible.

In finite dimension, Carathéodory’s theorem says that the number of such extreme
points can be taken equal to the dimension to get an exact representation. In our case
of infinite dimensions, we need an approximate version of Carathéodory’s theorem. It
turns out that we can create a “fake” optimization problem of minimizing the squared
L2-norm (for the input data distribution p) ‖f − g‖2L2(p)

such that γ1(f) 6 γ1(g), whose
solution is f = g, with an algorithm that constructs an approximate solution from extreme
points. This will be achieved by the Frank-Wolfe algorithm (a.k.a. conditional gradient
algorithm). This algorithm is applicable more generally; for more details, see Jaggi (2013);
Bach (2015).
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Frank-Wolfe algorithm. We thus make a detour by considering an algorithm defined
in a Hilbert space H, such that K is a bounded convex set and J a convex, smooth
function from H to R, that is such that there exists a gradient function J ′ : H → H

such that for all elements f, g of H (which is the traditional smoothness condition from
Section 5.2.3):

J(g) + 〈J ′(g), f − g〉H 6 J(f) 6 J(g) + 〈J ′(g), f − g〉H +
L

2
‖f − g‖2H.

The goal is to minimize J on the bounded convex set K, with an algorithm that only re-
quires access to the set K through a “linear minimization” oracle (i.e., through minimizing
linear functions), as opposed to the projection oracle that we required in Section 5.2.5.

We consider the following recursive algorithm, started from a vector f0 ∈ K:

f̄t ∈ arg min
f∈K

〈J ′(ft−1), f − ft−1〉H,

ft =
t− 1

t+ 1
ft−1 +

2

t+ 1
f̄t = ft−1 +

2

t+ 1
(f̄t − ft−1). (9.12)

K

−J ′(ft−1)

ft−1

f̄t = argmin
f∈K

〈J ′(ft−1), f − ft−1〉

ft

Because f̄t is obtained by minimizing a linear function on a bounded convex set,
we can restrict the minimizer f̄t to be extreme points of K, so that, ft is the convex
combination of t such extreme points f̄1, . . . , f̄t (note that the first point f0 disappears
from the convex combination). We now show that

J(ft)− inf
f∈K

J(f) 6
2L

t+ 1
diamH(K)2.

Proof of convergence rate (�). This is obtained by using smoothness:

J(ft) 6 J(ft−1) + 〈J ′(ft−1), ft − ft−1〉H +
L

2
‖ft − ft−1‖2H

= J(ft−1) +
2

t+ 1
〈J ′(ft−1), f̄t − ft−1〉H +

4

(t+ 1)2
L

2
‖f̄t − ft−1‖2H

6 J(ft−1) +
2

t+ 1
min
f∈K

〈J ′(ft−1), f − ft−1〉H +
4

(t+ 1)2
L

2
diamH(K)2.
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By convexity of J , we have for all f ∈ K, J(f) > J(ft−1) + 〈J ′(ft−1), f − ft−1〉H, leading
to inff∈K J(f) > J(ft−1) + inff∈K〈J ′(ft−1), f − ft−1〉H. Thus, we get

J(ft)− inf
f∈K

J(f) 6
[
J(ft−1)− inf

f∈K
J(f)

] t− 1

t+ 1
+

4

(t+ 1)2
L

2
diamH(K)2

leading to

t(t+ 1)
[
J(ft)− inf

f∈K
J(f)

]
6 (t− 1)t

[
J(ft−1)− inf

f∈K
J(f)

]
+ 2LdiamH(K)2

6 2Lt diamH(K)2 by using a telescoping sum,

and thus J(ft)− inf
f∈K

J(f) 6
2L

t+ 1
diamH(K)2, as claimed earlier.

Exercise 9.5 Show that if we replace Eq. (9.12) by ft = t−1
t ft−1+ 1

t f̄t, ft is the uniform

convex combination of f̄1, . . . , f̄t, and that, J(ft)− inff∈K J(f) 6 2L log(t+1)
t+1 diamH(K)2.

Application to approximate representations with a finite number of neurons.
We can apply this to H = L2(Rd) and J(f) = ‖f − g‖2L2(p)

, leading to L = 2, with

K = {f ∈ L2(Rd), γ1(f) 6 γ1(g)} for which the set of extreme points are exactly single
neurons sσ(w⊤ ·+b) scaled by γ1(g) and with an extra sign s ∈ {−1, 1}.

We thus obtain after t steps a representation of f with t neurons for which

‖f − g‖2L2(p)
6

4γ1(g)2

t+ 1
sup

(w,b)∈K

‖σ(w⊤ ·+b)‖2L2(p)
.

Thus, it is sufficient to have t of order O(γ1(g)2/ε2) to achieve ‖f−g‖L2(µ) 6 ε. Therefore,
the norm γ1(g) directly controls the approximability of the function g by a finite number
of neurons and tells us how many neurons should be used for a given target function. For

the ReLU activation, the bound above becomes: ‖f − g‖2L2(p)
6

16R2γ1(g)
2

t+1 ; note that the

dependence of the number of neurons in ε as ε−2 is not optimal, as it can be improved
to ε−2d/(d+3) (see Bach, 2017, and references therein).

Application to neural network fitting. The Frank-Wolfe algorithm can be used to
fit a neural network from data by minimizing the empirical risk of a function f , which
is constrained to have a norm γ1 bounded by a fixed constant D. After t iterations,
the general convergence result above leads to an approximate minimizer with an explicit
provable convergence guarantee in O(1/t).

However, as above, the corresponding set of extreme points are single neurons of
the form sσ(w⊤ · +b) scaled by D and with an extra sign s ∈ {−1, 1}. Therefore, to
implement the linear minimization oracle, given the derivative αi of the loss function
associated with the i-th observation, for i = 1, . . . , n, we need to minimize with respect
to s, w, b the quantity

∑n
i=1 sαiσ(w⊤xi + b), for input observations xi ∈ Rd, i = 1, . . . , n,
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for which there is no known polynomial-time algorithms. Thus, we do not obtain through
the Frank-Wolfe algorithm a polynomial-time algorithm (see more details by Bach, 2017).

This incremental approach to estimating a neural network is related to boosting pro-
cedures that we present in Section 10.3.

9.4 Generalization performance for neural networks

We can now consider putting both estimation and approximation errors together, using
tools from Section 7.5.1, that give a rate for constrained optimization (this is done for
simplicity, as using tools from Section 4.5.5, we could get similar results for penalized
problems).

We thus minimized the empirical risk for a G-Lipschitz-continuous loss subject to
γ1(f) 6 D. From Section 9.2.3, we get an estimation error less than 16GDR√

n
, on which we

need to add G infγ1(f)6D ‖f − f∗‖L2(p), where f∗ is the target function, minimizer of the
expected risk. Following the same reasoning as in Section 7.5.1, optimizing over D leads
to an upper-bound of the form (where the constant is 256 rather than 16 in Eq. (7.8)
because the extra factor of 4 in the estimation error):

εn = 2G

√
inf
f∈F1

{
‖f − f∗‖2L2(p)

+
256R2

n
γ1(f)2

}
. (9.13)

As shown in Section 7.5, given this bound, we can recover the bound D as
√
n

16RGεn, and
thus, using Section 9.3.6 which shows how to approximate a function in F1 by finitely
many neurons, we will lose an additional factor εn with a number of neurons greater

than m > 16D2R2G2

ε2n
which is exactly equal to a constant times n, that is, with this

analysis, there is no need to have a number of neurons that greatly exceeds the number
of observations.

We can now look at a series of structural assumptions on the target function f∗, for
which we will see that neural networks provide adaptivity if the regularization parameter
is well-chosen:

• No assumption: If we assume that f∗ is Lipschitz-continuous on the ball of center 0
and radius R, then, as shown at the end of Section 7.5.2, f∗ can be extended to
a function in the Sobolev space of order 1. Using the comparison of γ1 with the
Sobolev norm of order s = d

2 + 5
2 in Eq. (9.11), we can reuse the results from kernel

methods in Section 7.5.2, and obtain a rate of O(1/n1/(2s)) = 1/n1/(d+5), which
exhibits the curse of dimensionality, which cannot anyway be much improved, as
the optimal performance has to be larger than 1/n1/(d+2) (see Chapter 15).

• Linear latent-variable: If we now assume that f∗ depends on an r-dimensional
unknown subspace, then we can reuse the same reasoning on the projected subspace,
compare the norm γ1 projected to the subspace (like done in Section 9.3.5) to the
Sobolev norm on the same projected subspace, thus of order s = r/2 + 5/2 (instead
of d/2 + 5/2). This leads to an estimation rate for the excess risk proportional
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1/n1/(r+5) (with constants independent from d). This is where neural networks
have a strong advantage over kernel methods and sparse methods: they can perform
variable selection with non-linear predictions.

• “Teacher network”: if we assume that f∗ is the linear combination of k hidden
neurons, then we obtain a convergence rate proportional to k/

√
n, as the norm

γ1(f∗) is proportional to k.

Exercise 9.6 Consider target functions of the form f∗(x) =
∑k
j=1 fj(w

⊤
j x) for one-

dimensional Lipschitz-continuous functions. Provide an upper bound on excess risk pro-
portional to k/n1/6.

Note that these rates are not as good as Bach (2017), since the exponent s = d
2 + 5

2
is not optimal, and in fact, a more careful analysis, as outlined in Section 9.5 would lead
s = d

2 + 3
2 , with a similar dependence on dimension.

Non-linear variable selection (�). In this chapter, we focus primarily on ℓ2-norm
constraints or penalty on the weight vectors w1, . . . , wm ∈ Rd of a neural network, but
all developments can be carried out with the ℓ1-norm, leading to the high-dimensional
behavior detailed in Section 8.3.3, but this time selecting variable with a non-linear
prediction on top of them. For the rest of this section, we assume that ‖x‖∞ 6 R almost
surely.

The analysis has to be adapted for both the estimation error and the approximation
error. For the estimation error, in the derivations of Section 9.2.3, we simply need to
replace Eq. (9.2) by

Rn(G) 6 2GD

(
E

[∥∥∥ 1

n

n∑

i=1

εixi

∥∥∥
2

∞
+R2

( 1

n

n∑

i=1

εi

)2])1/2

(9.14)

6 2GD

(
E

[∥∥∥ 1

n

n∑

i=1

εixi

∥∥∥
2

∞

])1/2

+ 2GDR

(
E

[( 1

n

n∑

i=1

εi

)2])1/2

6 2GDR

√
2 log(2d)√

n
+

2GDR√
n

6 4GRD

√
log(4d)

n
,

using expectations of maxima from Section 1.2.4.

Thus, in estimation rates, we need to consider instead of Eq. (9.13)

εn = 2G

√
inf
f∈F1

{
‖f − f∗‖2L2(p)

+
256R2log(4d)

n
γ1(f)2

}

(note the extra factor log(4d) and the definition of R as an ℓ∞-bound). Regarding
approximation error, we simply use the bound ‖w‖1 6

√
k‖w‖2 if w has only k non-zero

elements. Thus, if the target function f∗ is a Lipschitz-continuous of only k (unknown)
variables, we can use the approximation result for ℓ2-norm constraints, with an extra
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dependence on k (which we already had). Thus, overall, the estimation rate of the excess

risk is proportional to a constant depending on k, times
( log(4d)

n

)1/(k+3)
, thus with a

high-dimensional estimation rate, where d only appears logarithmically.

9.5 Relationship with kernel methods (�)

In this section, we relate our function space F1 to a simpler function space F2 that will,
in the overparameterized regime when m tends to +∞, correspond to only optimizing
the output layer.

9.5.1 From a Banach space F1 to a Hilbert space F2 (�)

Following the notations of Section 9.3.2, given a fixed probability measure τ on K ⊂ Rd+1,
we can define another norm as

γ22(f)= inf
ν∈M(K)

∫

K

∣∣∣dν(w, b)

dτ(w, b)

∣∣∣
2

dτ(w, b) such that ∀x ∈ X, f(x)=

∫

K

σ(w⊤x+ b)dν(w, b).

(9.15)
By construction (and by Jensen’s inequality), γ1(f) 6 γ2(f), so the space F2 of functions f
such that γ2(f) < +∞ is included in F1 (moreover, γ2 depends on the choice of the base
measure τ , while γ1 does not).

Moreover, as shown in the proposition below, the space F2 is a reproducing kernel
Hilbert space on X = {x ∈ Rd, ‖x‖2 6 R}, as defined in Chapter 7.

Proposition 9.2 The space F2 is the reproducing kernel Hilbert space associated with
the positive definite kernel function

k(x, x′) =

∫

K

σ(w⊤x+ b)σ(w⊤x′ + b)dτ(w, b). (9.16)

Proof For a formal proof for all compact sets K, see Bach (2017, Appendix A). We
only provide a proof for finite K and τ the uniform probability measure on K, we then
have, γ22(f) = infν∈RK

1
|K|

∑
(w,b)∈K ν

2
k such that f(x) = 1

|K|
∑

(w,b)∈K νkσ(w⊤x + b),

which corresponds to penalizing the ℓ2-norm of θ = 1√
|K|

ν ∈ RK for f(x) = θ⊤ϕ(x),

and ϕ(x)(w,b) = 1
|K|1/2σ(w⊤x + b). We thus exactly get the desired kernel k(x, x′) =

1
|K|

∑
(w,b)∈K σ(w⊤x+ b)σ(w⊤x′ + b).

Interpretation in terms of random features. As already mentioned in Section 7.4,
the kernel defined in Eq. (9.16) can be approximated by sampling uniformly at random
from τ , m points (wj , bj), j = 1, . . . ,m, and approximating k(x, x′) by

k̂(x, x′) =
1

m

m∑

j=1

σ(w⊤
j x+ bj)σ(w⊤

j x
′ + bj).
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This corresponds to using f(x) =
∑m

j=1 ηjσ(w⊤
j x + bj), with a penalty proportional

to m‖η‖22. Thus random features correspond to only optimizing with respect to the
output weights while keeping the input weights fixed (while for γ1, we optimize over all
weights).

Therefore, infinite width networks where input weights are random and only output
weights are learned are, in fact, kernel methods in disguise (Neal, 1995; Rahimi and Recht,
2008).

This kernel can be computed in closed form for simple activations and distributions
of weights; see Section 9.5.2 and Cho and Saul (2009); Bach (2017). Thus, the same
regularization properties may be achieved with algorithms from Chapter 7 (which are
based on convex optimization and therefore come with guarantees). Note that, as shown
in Section 7.4, a common strategy for kernels defined as expectations is to use the ran-
dom feature approximation k̂(x, x′), that is, here, use the neural network representation
explicitly.

△! The kernel approximation corresponds to input weights wj , bj sampled ran-
domly and held fixed. Only the output weights ηj are optimized.

△! Because Dirac measures are not square integrable, the prediction function
x 7→ σ(w⊤x+ b), that is, a single neuron, is typically not in the RKHS, which
is typically composed of smooth functions. See the examples below.

Link between the two norms. To relate the two norms more precisely, we rewrite γ1
using the fixed probability measure τ , as

γ1(f) = inf
η:K→R

∫

K

|η(w, b)|dτ(w, b) such that ∀x ∈ X, f(x) =

∫

K

σ(w⊤x+b)η(w, b)dτ(w, b).

The only difference with the squared RKHS norm above is that we consider the L1-norm
instead of the squared L2-norm of η (with respect to the probability measure τ). The
minimum achievable norm is exactly γ1(f).

Note that typically, the infimum over all η is not achieved as the optimal measure in
Eq. (9.3) may not have a density with respect to τ . Because we use an L1-norm penalty,
the measures µ(w, b) = η(w, b)τ(w, b) can span in the limit all measures µ(w, b) with finite

total variation

∫

Rd+1

|dµ(η, b)| =
∫

Rd+1

|η(w, b)|dτ(w, b).

Overall, we have the following properties (see Table 9.1 for a summary):

• Because of Jensen’s inequality, we have γ1(f) 6 γ2(f), and thus F2 ⊂ F1, that is
the space F1 contains many more functions.

• △! A single neuron is in F1 with γ1-norm less than one, as the mass of a Dirac is
equal to one.
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F2 F1

Hilbert space Banach space∣∣∣∣γ2(f)2 = inf

∫

Rd+1

|η(w, b)|2dτ(w, b)

∣∣∣∣γ1(f) = inf

∫

Rd+1

|η(w, b)|dτ(w, b)

s. t.

∣∣∣∣f(x)=

∫

Rd+1

η(w, b)σ(w⊤x+b)dτ(w, b) s. t.

∣∣∣∣f(x)=

∫

Rd+1

η(w, b)σ(w⊤x+b)dτ(w, b)

Smooth functions Potentially non-smooth functions
Single neurons /∈ F2 Single neurons ∈ F1

Table 9.1: Summary of properties of the norms γ1 and γ2.

9.5.2 Kernel function (��)

We can compute in closed form the kernel function, which is only useful computationally
if the number of random features m is larger than the number of observations (when
using the kernel trick is advantageous, as outlined in Section 7.4).

In one dimension, with w uniform on the unit sphere, that is, w ∈ {−1, 1}, and with b
uniform on [−R,R], we have the following kernel

k(x, x′) =
1

4R

∫ R

−R

(
(x− b)+(x′ − b)+ + (−x− b)+(−x′ − b)+

)
db.

After a short calculation left as an exercise (see also Bach, 2023b), we can compute it in
closed form as:

k(x, x′) =
R2

6
+
xx′

2
+

1

24R
|x− x′|3.

In higher dimension, we have:

k(x, x′) =

∫

‖w‖2=1

1

2R

∫ R

−R
(w⊤x+ b)+(w⊤x′ + b)+dbdτ(w),

where τ is the uniform distribution on the sphere. After a longer calculation, also left as
an exercise (see Bach, 2023b), we get:

k(x, x′) =
R2

6
+

1

2d
x⊤x′ +

1

24R

Γ(2)Γ(d2 )

Γ(12 )Γ(d2 + 3
2 )
‖x− x′‖32. (9.17)

See Figure 9.2 for comparing the RKHS (corresponding to m = +∞ neurons) and the
approximation with finite m.
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Figure 9.2: Examples of functions in the reproducing kernel Hilbert space F2 and its
approximation based on random features, withm = 20, 100, and 200. All functions are the
minimum norm interpolators of the green points. This is to be contrasted with the Banach
space F1, where the minimum norm interpolator is the piecewise affine interpolator (see
Exercise 9.4), and can be achieved with m = n neurons, where n is the number of observed
points.

9.5.3 Upper-bound on RKHS norm (��)

We can now find upper bounds on the norm γ2. We can either use the kernel function
from Eq. (9.17) or the random feature interpretation from Eq. (9.15). We first use the
random feature interpretation in one dimension.

Upper-bound on RKHS norm γ2 in one dimension. Using the same reasoning as
the end of Section 9.5, we can get an upper-bound on γ2(f) by decomposing f as

f(x) =

∫ R

−R
η+(b)(x− b)+

db

4R
+

∫ R

−R
η−(b)(−x− b)+

db

4R
,

with now γ2(f)2 6

∫ R

−R
η+(b)2

db

4R
+

∫ R

−R
η−(b)2

db

4R
.

By using as in Section 9.3.3 the Taylor expansion with integral remainder, we get, for
any twice differentiable function f on [−R,R]:

f(x) =
1

2
f(−R) +

1

2
f(R) +

1

2
f ′(−R)(x+R)− 1

2
f ′(R)(−x+R)

+
1

2

∫ R

−R
f ′′(b)(x− b)+db −

1

2

∫ R

−R
f ′′(b)(−x− b)+db

=
1

2

[
f ′(R) + f ′(−R)

]
+

1

2

[
R(f ′(−R)− f ′(R)) + f(−R) + f(R)

]

+
1

2

∫ R

−R
f ′′(b)(x− b)+db −

1

2

∫ R

−R
f ′′(b)(−x− b)+db.
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We can now use explicit representations of constants and linear functions, without Diracs,
as we need finite L2-norms, as:

x =

∫ R

−R

(x− b)+ − (−x− b)+
2R

db =

∫ R

−R

x

2R
db

−R
2

6
=

∫ R

−R
b(x− b)+

db

4R
+

∫ R

−R
b(−x− b)+

db

4R
.

After a short calculation left as an exercise, this leads to

γ2(f)2 6 2R

∫ R

−R
f ′′(x)2dx+

[
f ′(R)+f ′(−R)

]2
+3

[
R(f ′(R)−f ′(−R))−f(−R)−f(R)

]2
,

(9.18)
which happens to be an equality (which can be shown by showing that this defines a
dot-product, for which 〈f, k(·, x)〉 = f(x), see Bach, 2023b).

Exercise 9.7 Show that the upper bound on γ2 from Eq. (9.18) is larger than the bound
on γ1 from Eq. (9.7).

The main difference with γ1 is that the second-derivative is penalized by an L2-norm
and not by an L1-norm, and that this L2-norm can be infinite when the L1-norm is finite,
the classic example being for the hidden neuron functions (x− b)+.

△! The RKHS is combining infinitely many hidden neuron functions (x − b)+, none of
them are inside the RKHS,

△! This smoothness penalty does not allow the ReLU to be part of the RKHS. However,
this is still a universal penalty (as the set of functions with squared integrable second
derivative is dense in L2).

Upper-bound on RKHS norm γ2 in all dimensions. We can first find a bound
directly from the one on γ1 in Eq. (9.10), which is exactly Eq. (9.11), ending up with the
restriction on the ball of center 0 and radius R of the Sobolev space corresponding to
square integrable s = d

2 + 5
2 derivatives on R

d. It turns out this provides a bound on γ2
(as can be shown by reproducing the reasoning from Section 9.3.4).

However, this bound is not optimal, which can already be seen in dimension d = 1,
where we obtain s = 3 instead of s = 2. It turns out that, in general, it is possible to
show γ2 is less than a Sobolev norm with index s = d

2 + 3
2 . This can be done by drawing

links with multivariate splines (Wahba, 1990; Bach, 2023b).

9.6 Experiments

We consider the same experimental set-up as Section 7.7, that is, one-dimensional prob-
lems to highlight the adaptivity of neural network methods to the regularity of the target
function, with smooth targets and non-smooth targets. We consider several values for the
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Figure 9.3: Fitting one-dimensional functions with various numbers of neurons m and no
additional regularization (top: m = 5, middle: m = 32, bottom: m = 100), with four
different prediction problems (one per column).

number m of hidden neurons, and we consider a neural network with ReLU activation
functions and an additional global constant term. Training is done by stochastic gradient
descent with a small constant step-size and random initialization.

Note that for small m, while a neural network with the same number of hidden
neurons could fit the data better, optimization is unsuccessful (SGD gets trapped in a
bad local minimum). Moreover, between m = 32 and m = 100, we do not see any
overfitting, highlighting the potential under-fitting behavior of neural networks. See also
https://francisbach.com/quest-for-adaptivity/.

9.7 Extensions

Fully-connected single-hidden layer neural networks are far from what is used in practice,
particularly in computer vision and natural language processing. Indeed, state-of-the-art
performance is typically achieved with the following extensions:

• Going deep with multiple layers: The most simple form of deep neural network

https://francisbach.com/quest-for-adaptivity/
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is a multilayer fully connected neural network. Ignoring the constant terms for
simplicity, it is of the form f(x(0)) = y(L) with input x(0) and output y(L) given by:

y(k) = (W (k))⊤x(k−1)

x(k) = σ(y(k)),

where W (ℓ) is the matrix of weights for layer ℓ. For these models, obtaining sim-
ple and powerful theoretical results is still an active area of research, in terms of
approximation, estimation, or optimization errors. See, e.g., Lu et al. (2020); Ma
et al. (2020); Yang and Hu (2021). Among these results, the “neural tangent ker-
nel” provides another link between neural networks and kernel methods beyond the
one described in Section 9.5 and that applies more generally (see, e.g., Jacot et al.,
2018; Chizat et al., 2019).

• Residual networks: An alternative to stacking layers one after the other like
above is to introduce a different architecture of the form:

y(k) = (W (k))⊤x(k−1)

x(k) = x(k−1) + σ(y(k)).

The direct modeling of x(k) − x(k−1) instead of x(k) through an extra non-linearity,
originating from He et al. (2016), can be seen as a discretization of an ordinary
differential equation (Chen et al., 2018).

• Convolutional neural networks: To tackle large data and improve performances,
it is important to leverage prior knowledge about the typical data structure to pro-
cess. For instance, for signals, images, or videos, it is important to take into account
the translation invariance (up to boundary issues) of the domain. This is done by
constraining the linear operators involved in the linear part of the neural networks
to respect some form of translation invariance and, thus, to use convolutions. See
Goodfellow et al. (2016) for details. This can be extended beyond grids to topologies
expressed in terms of graphs, leading to graph neural networks (see, e.g., Bronstein
et al., 2021).

9.8 Conclusion

In this chapter, we have focused primarily on neural networks with one-hidden layers and
provided guarantees on the approximation and estimation errors, which show that this
class of models, if empirical risk minimization can be performed, leads to a predictive
performance that improves on kernel methods from Chapter 7, by being adaptive to
linear latent variables (e.g., dependence on an unknown linear projection of the data). In
particular, we highlight that having a number of neurons in the order of the number of
observations is not detrimental to good generalization performance, as long as the norm
of the weights is controlled.

We pursue the study of over-paramaterized models in Chapter 12, where we show how
optimization algorithms can both globally converge and leads to implicit biases.
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Chapter 10

Ensemble learning

Chapter summary
– Combining several predictors learned on modified versions of the original dataset

can have computational and/or statistical benefits.
– Averaging predictors on several reshuffled/resampled/uniformly projected data sets

will typically lower the estimator’s variance with a potentially limited increase in
bias.

– Boosting: iteratively refining the prediction function by re-training on a reweighted
dataset in a greedy fashion is an efficient way of building task-dependent features.

Given a supervised learning algorithm A that goes from datasets D to prediction
rules A(D) : X → Y, can we run it several times on different datasets constructed from
the same original one, and combine the results to get a better overall predictor? The
combination is typically a “linear” combination: like for local averaging methods, which
combine labels from close-by inputs, we combine the predicted labels from the estimators
learned on different datasets. For regression (Y = R), this is done by simply linearly
combining predictions; for classification, this is done by a weighted majority vote or by
linearly combining real-valued predictions when convex surrogates are used (such as the
logistic loss). For linear models (in their parameters), such linear combinations do not
lead to new functions that could not be accessed initially. Still, for non-linear models,
this leads to new functions with typically better approximation properties.

The construction of a new dataset given an old one D = {(x1, y1), . . . , (xn, yn)}, is
typically done by giving a different weight vi ∈ R+ to each (xi, yi). When the weights are
integer-valued, this can be implemented by duplicating the corresponding observations
several times (as many times as the integer weight) and then using an existing algorithm
for (regularized) empirical risk minimization on the enlarged dataset. In particular, for

265
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stochastic gradient descent on the empirical risk, this can be implemented by sampling
each observation (xi, yi) according to its weight vi (which then does not need to be
an integer). Note, however, that most learning techniques, particularly those based on
empirical risk minimization, can directly accommodate arbitrary weights.

In this chapter, we consider two classes of techniques:

• Bagging / averaging techniques : datasets are constructed in parallel, and the weights
are typically random and “uniform” (for example, distributed uniformly or con-
stant). A similar effect can be obtained by modifying the original dataset using
random projections. This is studied in Section 10.1 and in Section 10.2.

• Boosting techniques : datasets are constructed sequentially, and these weights are
adapted from previous datasets and thus not uniformly distributed. This is studied
in Section 10.3.

The benefits of each combination technique will depend strongly on the original pre-
dictor, with three classes that we have considered in earlier chapters:

• Local averaging methods: they will be well-adapted to all ensemble learning tech-
niques, in particular for predictors with high-variance, such as 1-nearest-neighbor
estimation.

• Empirical risk minimization with non-linear models: from a set of functions ϕ(w, ·),
with w ∈W, then linear combinations increase the set of models to

∫
W
ϕ(w, x)dν(w),

for ν a signed measure on W. These will be adapted to boosting techniques (we
already saw some of them in Chapter 9 in the context of neural networks).

• Empirical risk minimization with linear models (linearity in the model’s param-
eters): the overall model class remains the same by taking linear combinations.
Thus, these are typically not adapted to ensemble learning techniques unless some
variable/feature selection is added (as we do in Section 10.2).

10.1 Averaging / bagging

In this section, for simplicity, we consider the regression case with the square loss where
we have an explicit bias/variance decomposition, noting that most results extend beyond
that situation. See Exercise 10.1 below.

10.1.1 Independent datasets

The idea of bagging, and more generally of averaging methods, is to average predictions
from estimators learned from datasets that are as independent as possible. In an idealized
situation, we have m independent datasets of size n, composed of i.i.d. observations from

the same distribution p(x, y) on X × Y. We obtain for each of them an estimator f̂
(j)
λ ,

where j ∈ {1, . . . ,m}, and λ is an associated hyperparameter specific to the learning

procedure. The new predictor is f̂bag
λ is simply the average of all f̂

(j)
λ , j = 1, . . . ,m.

If we denote bias(j)(x) = E[f̂
(j)
λ (x)]−f∗(x), and var(j)(x) = var

[
f̂
(j)
λ (x)

]
(assuming x
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is fixed and only taking expectations with respect to the data), then they are the same

for all j ∈ {1, . . . ,m}, and the bias of f̂bag
λ is the same as the base bias for a single dataset

(and thus so is the squared bias). At the same time, the variance is divided by m because
the datasets are assumed to be independent.

Thus, in the bias/variance trade-off, the selected hyperparameter will typically select
a higher variance (or equivalently lower bias) estimator than for m = 1. We now give a
few examples.

k-nearest neighbor regression. We consider the analysis from Section 6.3.2 on pre-
diction problems over X ⊂ Rd, where we showed in Prop. 6.2 that the (squared) bias was

upper-bounded by 8B2diam(X)2
(
2k
n

)2/d
(for d > 2). At the same time, the variance was

bounded by σ2

k , where σ2 is a bound on the noise variance on top of the target function f∗,
while B is the Lipschitz-constant of the target function. Thus, with m replications, we
get an excess risk upper-bounded by

σ2

km
+ 8B2diam(X)2

(2k

n

)2/d

.

When optimizing the bound above with respect to k, we get that k1+2/d ∝ n2/d

m , leading

to k ∝ 1
md/(2+d)n

2/(2+d). Compared to Section 6.3.2, we obtain a smaller number of
neighbors (which is consistent with favoring higher variance estimators). The overall
excess risk ends up being proportional to 1/(mn)2/(d+2), which is exactly the rate for a
dataset of N = mn observations.

Thus, dividing a dataset of N observations in m chunks of n = N/m observations,
estimating independently, and combining linearly does not lead to an overall improved
statistical behavior compared to learning all at once. Still, it can have significant com-
putational advantages when the m estimators can be computed in parallel (and totally
independently). We thus obtain a distributed algorithm with the same worst-case pre-
dictive performance as for a single machine.

Note here that there is an upper bound on the number of replications (and thus the
ability for parallelization) to get the same (optimal rate), as we need k to be larger than
one, and thus, m cannot grow larger than n2/d.

Exercise 10.1 We consider k-nearest neighbor multi-category classification with a ma-
jority vote rule. What is the optimal choice of m when using independent datasets?

Ridge regression. Following the analysis from Section 7.6.6, the variance of the ridge

regression estimator was proportional to σ2

n λ
−1/α and the bias proportional to λt/s (see

precise definitions in Section 7.6.6). With m replications, we thus get an excess risk

proportional to σ2

nmλ
−1/α+λt/s, and the averaged estimator behaves like having N = nm

observations. Again, with the proper choice of regularization parameter (lower λ than for
the full dataset), there is no statistical advantage. Still, there may be a computational
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one, not only for parallel processing but also with a single machine, as the training time
for ridge regression is super-linear in the number of observations (see the exercise below).

Exercise 10.2 Assuming that obtaining an estimator for ridge regression has running-
time complexity O(nβ) for β > 1 for n observations, what is the complexity of using a
split of the data into m chunks? What is the optimal value of m?

Beyond independent datasets. Having independent datasets may not be possible,
and one typically needs to artificially “create” such replicated datasets from a single one,
which is precisely what bagging methods will do in the next section, with still a reduced
variance, but this time a potentially higher bias.

10.1.2 Bagging

We consider data sets D(b), obtained with random weights v
(b)
i ∈ R+, i = 1, . . . , n. For

the bootstrap, we consider n samples from the original n data points with replacement,

which corresponds to v
(b)
i ∈ N, i = 1, . . . , n, that sum to n. Such sets of weights are

sampled independently m times. We study m =∞ for simplicity, that is, infinitely many
replications (in practice, the infinite m behavior can be achieved with moderate m’s).
Infinitely many bootstrap replications lead to a form of stabilization, which is important
for highly variable predictors (which usually imply a large estimation variance).

For linear estimators (in the definition of Section 6.2.1) with the square loss, such as
kernel ridge regression or local averaging, this leads to another linear estimator. There-
fore, this provides alternative ways of regularizing, which typically may not provide a
strong statistical gain over existing methods but provide a computational gain, in par-
ticular when each estimator is very efficient to compute. Overall, as shown below for
1-nearest-neighbor, bagging will lower variance while increasing the bias, thus leading to
trade-offs that are common in regularizing methods. See also the end of Section 10.2 for
a short description of “random forests”, which is also (partially) based on bagging.

For simplicity, we will consider averaging estimators obtained by randomly selecting s
observations from the n available ones, doing this many times (infinitely many for the
analysis), and averaging the predictions.

Exercise 10.3 Show that when sampling n elements with replacement from n items, the
expected fraction of distinct items is 1− (1− 1/n)n, and that it tends to 1− 1/e when n
tends to infinity.

One-nearest neighbor regression. We focus on the 1-nearest neighbor estimator
where the strong effect of bagging is striking. The analysis below follows from Biau et al.
(2010). The key observation is that if we denote (x(i)(x), y(i)(x)) the pair of observations
which is the i-th nearest neighbor of x from the dataset x1, . . . , xn (ignoring ties), then
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we can write the bagged estimate as

f̂(x) =

n∑

i=1

Viy(i)(x),

where the non-negative weights Vi sum to one, and do not depend on x. The weight Vi
is the probability that the i-th nearest neighbor of x is the 1-nearest-neighbor of x in
a uniform subsample of size s. We consider sampling without replacement and leave
sampling with replacement as an exercise (see Biau et al., 2010, for more details). We
assume s > 2.

To select the i-th nearest neighbor as the 1-nearest-neighbor in a subsample, we need
that the i-th nearest neighbor is selected but none of the closer neighbors, which leaves
s− 1 elements to choose among n− i possibilities. This shows, that if i > n− s+ 1, then

Vi = 0, while otherwise Vi =
(
n
s

)−1(n−i
s−1

)
, as the total number of subsets of size s is

(
n
s

)

and there are
(
n−i
s−1

)
relevant ones.

We can now use the reasoning from Section 6.3.2. Since for any x, the weights given
to each observation (once they are ordered in terms of distance to x) are V1, . . . , Vn, the
variance term is equal to

∑n
i=1 V

2
i . To obtain a bound, we note that for i 6 n− s+ 1,

Vi =
s

n− s+ 1

∏s−2
j=0(n− i− j)
∏s−2
j=0(n− j)

=
s

n− s+ 1

s−2∏

j=0

(
1− i

n− j
)
6

s

n− s+ 1

s−2∏

j=0

(
1− i

n

)
,

leading to, upper-bounding the sum by an integral:

n∑

i=1

V 2
i 6

s2

(n− s+ 1)2

n∑

i=1

(
1− i

n

)2(s−1)
6

ns2

(n− s+ 1)2

∫ 1

0

(1 − t)2(s−1)dt

6
ns2

(n− s+ 1)2
1

2s− 1
6

ns

(n− s+ 1)2
=
s

n

1

(1 + 1/n− s/n)2
.

For the bias term, we need to bound
∑n
i=1 Vi ·E

[
‖x−x(i)(x)‖2

]
, where the expectation

is with respect to the data and the test point x. We note here that by definition of Vi,
and conditioning on the data and x, this is the expectation of the distance to the first
nearest neighbor from a random sample of size s, and thus, by Lemma 6.1, less than
4diam(X)2 1

s2/d
if d > 2 (which we now assume).

Thus, the overall excess risk is less than

4B2diam(X)2
1

s2/d
+
s

n

1

(1 + 1/n− s/n)2
,

which we can balance by choosing s1+2/d ∝ n, leading to the same performance as k-
nearest neighbor for a well chosen k, but now with a bagged esimate.

In Figure 10.1, simulations in one dimension are plotted, showing the regularizing
effects of bagging; we see that when s = n (no subsampling), we recover the 1-nearest
neighbor estimate, and when s decreases, the variance indeed decreases, while the bias
increases.
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Figure 10.1: Subsampling estimates with m = 20 subsampled datasets, for varying sub-
sampling ratios n/s, with an estimation of the testing error. When n/s is equal to one,
we recover the 1-nearest neighbor classifier (which overfits), and when n/s grows, we get
better fits until underfitting kicks in.

10.2 Random projections and averaging

In the previous section, we reweighted observations to be able to re-run the original
algorithm. This can also be done through random projections of all observations. Such
random projections can be performed in several ways: (a) for data in Rd by selecting s
of the d variables, (b) still for data in Rd, by projecting the data in a more general s-
dimensional subspace, (c) for kernel methods, using random features such as presented
in Section 7.4. Such random projections can also reduce the number of samples while
keeping the dimension fixed.

In this section, we consider random projections for ordinary least-squares (with the
same notation as in Chapter 3, with y ∈ Rn the response vector and Φ ∈ Rn×d the design
matrix), in two settings:

(a) Sketching: replacing minθ∈Rd ‖y−Φθ‖22 by minθ∈Rd ‖Sy−SΦθ‖22, where S ∈ R
s×n is

an i.i.d. Gaussian matrix (with independent zero mean and unit variance elements).
This is an idealization of subsampling done in the previous section. Here we typically
have n > s > d (more observations than the feature dimension), and one of the
benefits of sketching is to be able to store a reduced representation of the data
(Rs×d instead of Rn×d).

(b) Random projection: replacing minθ∈Rd ‖y − Φθ‖22 by minη∈Rs ‖y − ΦSη‖22, where
S ∈ Rd×s is a more general sketching matrix. Here, we typically have d > n > s
(high-dimensional situation). The benefits of random projection are two-fold: re-
duction in computation time and regularization. This corresponds to replacing the
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corresponding feature vectors ϕ(x) ∈ Rd by S⊤ϕ(x) ∈ Rs. We will consider Gaus-
sian matrices, but also subsampling, and draw connections with kernel methods.

In the following sections, we study these precisely for the ordinary least-squares frame-
work (it could also be done for ridge regression). We first briefly mention a commonly
used related approach.

Random forests. A popular algorithm called random forests (Breiman, 2001) mixes
both dimension reduction by projection and bagging: decision trees are learned on a
bootstrapped sample of the data, with selecting a random subset of features at every
splitting decision. This algorithm has nice properties (invariance to rescaling of the
variables, robustness in high dimension due to the random feature selection) and can be
extended in many ways. See Biau and Scornet (2016) for details.

10.2.1 Gaussian sketching

Following Section 3.3 on ordinary least-squares, we consider a design matrix Φ ∈ Rn×d

with rank d (that is, Φ⊤Φ ∈ R
d×d invertible), which implies n > d. We consider s > d

Gaussian random projections, with typically s 6 n, but this is not necessary in the
analysis below.

The estimator θ̂(j) is obtained by using S(j) ∈ Rs×n, with j = 1, . . . ,m, where m
denotes the number of replications. We then consider θ̂ = 1

m

∑m
j=1 θ̂

(j). When m = 1,
this is a single sketch.

We will consider the same assumptions as in Section 3.5, that is, y = Φθ∗ + ε, where
ε ∈ Rn has independent zero-mean components with variance σ2, and θ∗ ∈ Rd. Our goal
is to compute the fixed design error 1

nEε,S‖Φθ̂−Φθ∗‖22, where we take both expectations,
with respect to the learning problem (in the fixed design setting, the noise vector ε) and
the added randomization (the sketching matrices S(j), j = 1, . . . ,m).

To compute this error, we first need to compute expectations and variances with
respect to the random projections, assuming that ε is fixed.

Since the Gaussian matrices S(j) are invariant by left and right multiplication by an
orthogonal matrix, we can assume that the singular value decomposition of Φ = UDV ⊤,
where V ∈ R

d×d is orthogonal (i.e., V ⊤V = V V ⊤ = I), D ∈ R
d×d is an invertible

diagonal matrix, and U ∈ Rn×d has orthonormal columns (i.e., U⊤U = I), is such that

U =
(
I
0

)
, and that we can write S(j) =

(
S
(j)
1 S

(j)
2

)
with S

(j)
1 ∈ Rs×d and S

(j)
2 ∈ Rs×(n−d).

We can also split y as y =
(
y1
y2

)
for y1 ∈ Rd and y2 ∈ Rn−d.

We can write down the normal equations that define θ̂(j) ∈ Rd, for each j ∈ {1, . . . ,m},
that is, (Φ⊤(S(j))⊤S(j)Φ)θ̂(j) = Φ⊤(S(j))⊤S(j)y, leading to the following closed-form

estimators θ̂(j) = (Φ⊤(S(j))⊤S(j)Φ)−1Φ⊤(S(j))⊤S(j)y.1 Using the assumptions above

regarding the SVD of Φ, we have: S(j)Φ = S
(j)
1 DV ⊤. We can then expand the prediction

1If s > d, then S(j)Φ has almost surely rank d, and thus θ̂(j) is uniquely defined.
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vector in Rn as:

Φθ̂(j) = Φ(Φ⊤(S(j))⊤S(j)Φ)−1Φ⊤(S(j))⊤S(j)y

=

(
I

0

)
DV ⊤(V D(S

(j)
1 )⊤S

(j)
1 DV ⊤)−1V D(S

(j)
1 )⊤S(j)y

=

(
I

0

)
((S

(j)
1 )⊤S(j)

1 )−1(S
(j)
1 )⊤S(j)y =

(
I

0

)
((S

(j)
1 )⊤S(j)

1 )−1(S
(j)
1 )⊤(S

(j)
1 y1+S

(j)
2 y2)

=

(
y1 + ((S

(j)
1 )⊤S(j)

1 )−1(S
(j)
1 )⊤S(j)

2 y2
0

)
.

Thus, since E[S
(j)
2 ] = 0 and S

(j)
2 is independent of S

(j)
1 , we get ES(j)

[
Φθ̂(j)

]
=

(
y1
0

)
, which

happens to be exactly the OLS estimator Φθ̂OLS = Φ(Φ⊤Φ)−1Φ⊤y =
(
I 0
0 0

)
y. Moreover,

we have the model y = Φθ∗ + ε and, if we split ε as ε =
(
ε1
ε2

)
, we have y =

(
I
0

)
DV ⊤θ∗ + ε,

and thus y2 = ε2. We thus get:

ES(j)

[∥∥Φθ̂(j) − ES(j)Φθ̂(j)
∥∥2
]

= ES(j)

[
‖((S(j)

1 )⊤S(j)
1 )−1(S

(j)
1 )⊤S(j)

2 ε2‖22
]
.

Taking the expectation with respect to ε, and using expectations for the (inverse) Wishart
distribution,2 this leads to

Eε,S(j)

[∥∥Φθ̂(j)−ES(j)Φθ̂(j)
∥∥2

]
= σ2

ES(j)

[
tr
(
(S

(j)
2 )⊤(S

(j)
1 ((S

(j)
1 )⊤S(j)

1 )−2(S
(j)
1 )⊤S(j)

2

)]

= (n−d)σ2
E
S

(j)
1

[
tr
(
((S

(j)
1 )⊤S(j)

1 )−1
)]

=
d

s−d−1
(n−d)σ2.

We can now compute the overall expected generalization error:

1

n
Eε,S(j)

[∥∥∥ 1

m

m∑

j=1

Φθ̂(j) − Φθ∗
∥∥∥
2

2

]
=

1

n
Eε

[∥∥∥ 1

m

m∑

j=1

ES(j)

[
Φθ̂(j)

]
− Φθ∗

∥∥∥
2

2

]

+
1

nm
Eε,S(1)

[∥∥Φθ̂(1) − ES(1)Φθ̂(1)
∥∥2
]

=
1

n
Eε

[∥∥Φθ̂OLS − Φθ∗
∥∥2
2

]
+ σ2 d

nm

n− d
s− d− 1

= σ2 d

n
+ σ2 d

nm

n− d
s− d− 1

.

Thus, when m or s tends to infinity, we recover the traditional OLS behavior, while for m
and s finite, the performance degrades gracefully. Moreover, when s = n, even for m = 1,
we get essentially twice the performance of the OLS estimator. We note that to get the
same performance as OLS (up to a factor of 2), we need m = n−d

s−d−1 ∼ n
s replications.

2If S ∈ Ra×b has independent standard Gaussian components, then E[(S⊤S)−1] = 1
a−b−1

I if a > b+1,

and E[SS⊤] = bI; see https://en.wikipedia.org/wiki/Inverse-Wishart_distribution.

https://en.wikipedia.org/wiki/Inverse-Wishart_distribution
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As in the previous section, there is no statistical gain (here, compared to OLS),
but only potentially a computational one (because some computations may be done in
parallel and of reduced storage). See, e.g., Dobriban and Liu (2019) for other criteria and
sketching matrices.

Beyond Gaussian sketching. In this section, we have chosen a Gaussian sketching
matrix S. This made the analysis simple because of the properties of the Gaussian
distribution (invariance by rotation and availability of exact expectations for inverse
Wishart distributions). The analysis can be extended with more complex tools to other
random sketching matrices with more attractive computational properties, such as with
many zeros, leading to subsampling observations or dimensions. See Wang et al. (2018);
Dobriban and Liu (2019) and references therein. For random projections below, our
analysis will apply to more general sketches.

10.2.2 Random projections

We also consider the fixed design set-up, with a design matrix Φ ∈ Rn×d and a response
vector of the form y = Φθ∗ + ε. We now assume that d > n (high-dimensional set-up)
and that the rank of Φ is n. For each j ∈ {1, . . . , n}, we consider a sketching matrix
S(j) ∈ Rd×s, for s 6 n sampled independently from a distribution to be determined
(we only assume that almost surely, its rank is equal to s). We then consider η̂(j) as a
minimizer of minη∈Rs ‖y−ΦS(j)η‖22. For simplicity, we assume that the matrix ΦS(j) has
rank s, which is the case almost surely for Gaussian projections; this implies that η̂(j) is
unique, but our result applies in all situations as we are only interested in the denoised
response vector. We now consider the average θ̂ = 1

m

∑m
j=1 S

(j)η̂(j).

We thus consider the estimator η̂(j) =
(
(S(j))⊤Φ⊤ΦS(j)

)−1
(S(j))⊤Φ⊤y ∈ R

s, ob-

tained from the normal equation (S(j))⊤Φ⊤ΦS(j)η̂(j) = (S(j))⊤Φ⊤y, with denoised re-
sponse vector

ŷ(j) = ΦS(j)η̂(j) = ΦS(j)
(
(S(j))⊤Φ⊤ΦS(j)

)−1
(S(j))⊤Φ⊤y ∈ R

n.

Denoting Π(j) = ΦS(j)
(
(S(j))⊤Φ⊤ΦS(j)

)−1
(S(j))⊤Φ⊤, it is of the form ŷ(j) = Π(j)y. The

matrix Π(j) is almost surely an orthogonal projection matrix into an s-dimensional vector
space, and its expectation is denoted ∆ ∈ R

n×n, and is such that tr(∆) = s. We have
moreover 0 4 ∆ 4 I, that is, all eigenvalues of ∆ are between 0 and 1.

We can then compute expectations and variances:

ES(j)

[
ŷ(j)

]
= ES(j)

[
Π(j)y

]
= ∆y = ∆

[
Φθ∗ + ε] = ∆ε+ ∆Φθ∗

ES(j)

[
ŷ(j)

]
− Φθ∗ = ∆ε + [∆− I]Φθ∗

ES(j)

∥∥ŷ(j)−ES(j)

[
ŷ(j)

]∥∥2

2
= ES(j)

∥∥(Π(j) −∆)y
∥∥2
2

= y⊤ES(j)

[(
Π(j) −∆

)2]
y

= y⊤ES(j)

[
Π(j)−∆Π(j)−Π(j)∆+∆2

]
y since Π(j)Π(j) =Π(j),

= y⊤
(
∆−∆2

)
y.
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Thus, the overall (fixed design) expected generalization error is equal to:

1

n
Eε,S

∥∥∥∥
1

m

m∑

j=1

ŷ(j) − Φθ∗

∥∥∥∥
2

2

=
1

n
Eε

[∥∥ES(1)

[
ŷ(1)

]
− Φθ∗

∥∥2
2

+
1

m
ES(1)

∥∥ŷ(1) − ES(1)

[
ŷ(1)

]∥∥2
2

]

by taking expectations with respect to all S(j),

=
1

n
Eε

[∥∥∆ε+ [∆− I]Φθ∗
∥∥2
2

+
1

m
y⊤

(
∆−∆2

)
y
]

using the expressions above,

=
σ2

n
tr(∆2) +

1

n
θ⊤∗ Φ⊤[I −∆]2Φθ∗ +

1

nm

[
σ2(tr(∆)− tr(∆2)) + θ⊤∗ Φ⊤(∆−∆2

)
Φθ∗

]

using the model y = Φθ∗ + ε and the fact that E[ε] = 0 and E[εε⊤] = σ2I,

=
σ2

n

(
1− 1

m

)
tr(∆2) +

σ2s

nm
+

1

n
θ⊤∗ Φ⊤[∆− I]2Φθ∗ +

1

nm
θ⊤∗ Φ⊤(∆−∆2

)
Φθ∗

=
σ2

n

(
1− 1

m

)
tr(∆2) +

σ2s

nm
+

1

n
θ⊤∗ Φ⊤[I −∆ + (

1

m
− 1)(∆−∆2)

]
Φθ∗

6
σ2s

n
+

1

n
θ⊤∗ Φ⊤[I −∆

]
Φθ∗, since ∆2 4 ∆,

which is the value for m = 1 (single replication). Note that the expectation (before taking
the bound) decreases in m. We now follow Kabán (2014); Thanei et al. (2017) to bound
the matrix I −∆.

Since ∆ is the expectation of a projection matrix, we already know that 0 4 ∆ 4 I.

We omit the superscript0(j) for clarity, and consider Π = ΦS
(
S⊤Φ⊤ΦS

)−1
S⊤Φ. For any

vector z ∈ Rn, we consider:

z⊤(I −∆)z = ES

[
z⊤(I −Π)z

]
= ES

[
z⊤z − z⊤ΦS

(
S⊤Φ⊤ΦS

)−1
S⊤Φ⊤z

]

= ES

[
min
u∈Rs

‖z − ΦSu‖22
]

by definition of projections,

6 ES

[
min
v∈Rd

‖z − ΦSS⊤v‖22
]

by minimizing over a smaller subspace,

6 min
v∈Rd

ES

[
‖z − ΦSS⊤v‖22

]
by properties of the expectation.

We can expand to get:

ES

[
‖z − ΦSS⊤v‖22

]
= ‖z‖22 − 2z⊤ΦES

[
SS⊤]v + v⊤ES

[
SS⊤Φ⊤ΦSS⊤]v,

leading to, after selecting the optimal v as v =
(
ES

[
SS⊤Φ⊤ΦSS⊤])−1

ES

[
SS⊤]Φ⊤z,

z⊤(I −∆)z 6 z⊤
(
I − ΦES

[
SS⊤](

ES

[
SS⊤Φ⊤ΦSS⊤])−1

ES

[
SS⊤]Φ⊤

)
z.

We then need to apply to z = Φθ∗, and get:

θ⊤∗ Φ⊤[I −∆
]
Φθ∗ 6 θ⊤∗ Φ⊤

(
I − ΦES

[
SS⊤](

ES

[
SS⊤Φ⊤ΦSS⊤])−1

ES

[
SS⊤]Φ⊤

)
Φθ∗.
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Thus, we get an overall upper bound of

σ2s

n
+

1

n
θ⊤∗ Φ⊤

(
I − ΦES

[
SS⊤](

ES

[
SS⊤Φ⊤ΦSS⊤])−1

ES

[
SS⊤]Φ⊤

)
Φθ∗.

As shown below for special cases, we obtain a bias-variance trade-off similar to Eq. (3.6)
for ridge regression in Section 3.6, but now with random projections. Note that in the
fixed design setting, there is no explosion of the testing performance when s = n (as
opposed to the random design setting studied in Section 12.2 in the context of “double
descent”).

Gaussian projections. If we assume Gaussian random projections, with S ∈ Rd×s

with independent standard Gaussian components, we get, from properties of the Wishart
distribution:3

ES [SS⊤] = sI and ES

[
SS⊤Φ⊤ΦSS⊤] = s(s+ 1)Φ⊤Φ + s tr(Φ⊤Φ)I.

We then get:

θ⊤∗ Φ⊤[I −∆
]
Φθ∗ 6 θ⊤∗ Φ⊤

(
I − ΦES

[
SS⊤](

ES

[
SS⊤Φ⊤ΦSS⊤])−1

ES

[
SS⊤]Φ⊤

)
Φθ∗

= θ⊤∗ Φ⊤
(
I − s2Φ

(
s(s+ 1)Φ⊤Φ + s tr(Φ⊤Φ)I

)−1
Φ⊤

)
Φθ∗

= θ⊤∗ Φ⊤Φ
(
Φ⊤Φ + tr(Φ⊤Φ)I

)(
(s+ 1)Φ⊤Φ + tr(Φ⊤Φ)I

)−1
θ∗

6 2 tr(Φ⊤Φ) · θ⊤∗ Φ⊤Φ
(
(s+ 1)Φ⊤Φ + tr(Φ⊤Φ)I

)−1
θ∗

6 2 tr(Φ⊤Φ)
‖θ∗‖22
s+ 1

.

The overall excess risk is then less than

σ2s

n
+

2

n
tr(Φ⊤Φ)

‖θ∗‖22
s+ 1

, (10.1)

which is exactly of the form obtained for ridge regression in Eq. (3.6) with s ∼ tr(Φ⊤Φ)
λ .

We can consider other sketching matrices with additional properties, such as sparsity (see
the exercise below).

Exercise 10.4 We consider a sketching matrix S ∈ Rd×s, where each column is equal to
one of the d canonical basis vectors of Rd, selected uniformly at random and independently.
Compute E[SS⊤], as well as, ES

[
SS⊤Φ⊤ΦSS⊤], as well as a bound similar to Eq. (10.1).

Kernel methods. (�) The random projection idea can be extended to kernel methods
from Chapter 7. We consider the kernel matrix K = ΦΦ⊤ ∈ Rn×n, and the assumption

3If W = S1S⊤
1 for S1 ∈ Rn×s with independent standard Gaussian components, then E[W ] = sI and

for an n× n diagonal matrix D we have E[WD2W ] = s(s+ 1)D2 + s tr(D2)I.
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y = Φθ∗ + ε with ‖θ∗‖2 bounded, is turned into y = y∗ + ε with y⊤∗ K
−1y∗ bounded.

This corresponds to y∗ = Kα, with an RKHS norm α⊤Kα. We then consider a random
“sketch” Φ̂ ∈ Rn×s and an approximate kernel matrix K̂. We then obtain an estimate
ŷ = Φ̂(Φ̂⊤Φ̂)−1Φ̂⊤y. The matrix Π above is then Π = Φ̂(Φ̂⊤Φ̂)−1Φ̂⊤, and for the analysis,
we need to compute its expectation ∆. We have, following the same reasoning as above,
for an arbitrary deterministic z ∈ Rn:

z⊤(I −∆)z = EΦ̂

[
z⊤(I −Π)z

]
= EΦ̂

[
z⊤z − z⊤Φ̂

(
Φ̂⊤Φ̂

)−1
Φ̂⊤z

]

= EΦ̂

[
min
u∈Rs

‖z − Φ̂u‖22
]

by definition of projections,

6 EΦ̂

[
min
v∈Rn

‖z − Φ̂Φ̂⊤v‖22
]

by minimizing over a smaller subspace,

6 min
v∈Rn

EΦ̂

[
‖z − Φ̂Φ̂⊤v‖22

]
by properties of the expectation.

We can expand to get:

EΦ̂

[
‖z − Φ̂Φ̂⊤v‖22

]
= ‖z‖22 − 2z⊤EΦ̂

[
Φ̂Φ̂⊤]v + v⊤EΦ̂

[
Φ̂Φ̂⊤Φ̂Φ̂⊤]v,

leading to, after selecting the optimal v as v =
(
EΦ̂

[
Φ̂Φ̂⊤Φ̂Φ̂⊤])−1

EΦ̂

[
Φ̂Φ̂⊤]z,

z⊤(I −∆)z 6 z⊤
(
I − EΦ̂

[
Φ̂Φ̂⊤](

EΦ̂

[
Φ̂Φ̂⊤Φ̂Φ̂⊤])−1

EΦ̂

[
Φ̂Φ̂⊤])z.

We then need to apply to z = y∗, we get that

θ⊤∗ Φ⊤[I −∆
]
Φθ∗ 6 y⊤∗

(
I − EΦ̂

[
Φ̂Φ̂⊤](

EΦ̂

[
Φ̂Φ̂⊤Φ̂Φ̂⊤])−1

EΦ̂

[
Φ̂Φ̂⊤])y∗.

We can, for example, consider each column of Φ̂ to be sampled from a normal distribution
with mean zero and covariance matrix K, for which we have:

EΦ̂

[
Φ̂Φ̂⊤] = sK and EΦ̂

[
Φ̂Φ̂⊤Φ̂Φ̂⊤] = s(s+ 1)K2 + s tr(K) ·K.

This leads to the bound
σ2s

n
+

2

n
tr(K)

y⊤∗ K
−1y∗

s+ 1
, which is exactly the bound in Eq. (10.1)

in the kernel context. However, it is not interesting in practice as it requires the compu-
tation of the kernel matrix K and typically a square root to sample from the multivariate
Gaussian distribution, which has running-time complexity O(n3).

In practice, many kernels come with a random feature expansion of the form k(x, x′) =
Ev

[
ϕ(x, v)ϕ(x′, v)

]
, such that |ϕ(x, v)| 6 R almost surely (as presented in Section 7.4).

We can then take for each column of Φ̂ the vector (ϕ(x1, v), . . . , ϕ(xn, v))⊤ ∈ Rn, for
a random independent v. We have then E

[
Φ̂Φ̂⊤] = sK by construction, while a short

calculation left as an exercise shows that the second-order moment can be bounded as

EΦ̂

[
Φ̂Φ̂⊤Φ̂Φ̂⊤] 4 s(s− 1)K + nsR2K.

This leads to the bound
σ2s

n
+

2

n
R2 y

⊤
∗ K

−1y∗
s+ 1

, which is almost the same as above, but

with now an efficient practical algorithm.
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Figure 10.2: Polynomial regression in dimension 20, with polynomials of degree at most 2,
with n = 100. Top left: training and testing errors for ridge regression in the fixed
design setting (the input data are fixed, and only the noise variables are resampled for
computing the test error). All other plots: training and testing errors for Gaussian
random projections, with different numbers of random projections, m = 1 (top right),
m = 10 (bottom left), and m = 100 (bottom right). All curves are averaged over 100
replications (of the noise variables and the random projections).

Experiments. In Figure 10.2, we consider a polynomial regression problem in dimen-
sion dX = 20, with polynomials of degree at most 2, and thus a feature space of dimension
d = 1 + dX + dX(dX + 1)/2 = 231, and compare ridge regression with Gaussian random
projections. We see a better performance as m grows, consistent with our bounds.

Johnson-Lindenstrauss lemma (�). A related classical result in Gaussian random
projections shows that n feature vectors ϕ1, . . . , ϕn ∈ Rd can be “well-represented” in
dimension s by Gaussian random projections, with s growing only logarithmically in n,
and independently of the underlying dimension. The following lemma shows that all
pairwise distances are preserved (a small modification would lead to all dot-products).

Lemma 10.1 (Johnson and Lindenstrauss, 1984) Given ϕ1, . . . , ϕn ∈ R
d, let S ∈

Rd×s be random matrix with independent standard Gaussian random variables. Then for

any ε ∈ (0, 1/2) and δ ∈ (0, 1), if s > 6
ε2 log n2

δ , with probability greater than 1 − δ, we
have:

∀i, j ∈ {1, . . . , n}, (1−ε)‖ϕi − ϕj‖22 6
∥∥s−1/2S⊤ϕi − s−1/2S⊤ϕj‖22 6 (1+ε)‖ϕi − ϕj‖22.

(10.2)

Proof (�) Let ψ ∈ Rd with ℓ2-norm equal to one. The random variable y = ψ⊤SS⊤ψ is
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the sum of s random variables ψ⊤S·jS⊤
·jψ, for S·j the j-th column of S, j ∈ {1, . . . , s}.

Each of these is the square of S⊤
·jψ which is Gaussian with mean zero and variance equal

to ‖ψ‖22 = 1. Thus, y is a chi-squared random variable. We can thus apply concentration
results from Exercise 8.1, leading to

P
(
|y − s| > sε

)
6

( 1− ε
exp(−ε)

)s/2
+

( 1 + ε

exp(ε)

)s/2
.

We can then use the inequality log(1 + u) 6 u − u2

3 for any |u| 6 1/2, leading to the

probability bound P
(
|y − s| > sε

)
6 2 exp

(
− s

2
ε2

3

)
. We then apply the reasoning above

to the n(n−1)/2 vectors ϕi−ϕj , for i 6= j, leading to, using a union bound, a probability
that Eq. (10.2) is not satisfied with probability less than n2 exp(−sε2/6), leading to the
desired result.

In our context of least-squares regression, the Johnson-Lindenstrauss lemma shows that
the kernel matrix is preserved by random projections so that predictions with the pro-
jected data should be close to predictions with the original data. The results in this section
provide a direct proof aiming at characterizing directly the predictive performance of such
random projections.

10.3 Boosting

In the previous section, we focused on uniformly combining the outputs (e.g., plain aver-
aging) of estimators obtained by randomly reweighted versions of the original datasets.
Reweighting was performed independently of the performance of the resulting prediction
functions, and the training procedures for all predictors could be done in parallel. In this
section, we explore sequential reweightings of the training datasets that depend on the
mistakes made by the current prediction functions.

In the early boosting procedures adapted to binary classification, the original learning
procedure was used directly on a reweighted version, e.g., Adaboost (see, e.g., Freund
et al., 1999). Our analysis will be carried out for boosting procedures, often referred to
as “gradient boosting”, which are adapted to real-valued outputs, as done in the rest of
the book (noting that for classification, we can use convex surrogates).

The theory of boosting is rich, with many connections, and in this section, we only
provide a consistency proof in the simplest setting. See Schapire and Freund (2012) for
more details.

10.3.1 Problem set-up

Given an input space X, and n observations (xi, yi) ∈ X × R, i = 1, . . . , n, we are given
a set of predictors ϕ(w, ·) : X → R, for w ∈ W, with W typically a compact subset of a
finite-dimensional vector space.

The main assumption is that given weights α ∈ Rn, one can “easily” find the func-
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tion ϕ(w, ·) that minimizes with respect to w ∈W

n∑

i=1

αiϕ(w, xi),

that is, the dot-product between α and the n outputs of ϕ(w, ·) on the n observations. In
this section, for simplicity, we assume that this minimization can be done exactly. This
is often referred to as the “weak learner” assumption. Many examples are available, such
as:

• Linear stumps for X = R
d: ϕ(w, x) = ±(w⊤

0 x+w1)+, with sometimes the restriction
that w has only non-zero components along a single coordinate (where the weak
learning tractability assumption is indeed verified). This will lead to a predictor,
which is a one-hidden layer neural network, but learned sequentially (rather than
by gradient descent on the empirical risk). In the context of binary classification,
the weak learners are sometimes thresholded to values in {−1, 1} by taking their
signs.

• Decision trees for X = Rd: we consider here the space of piecewise constant functions
of x, where the pieces with constant values are obtained by recursively partitioning
the input space into half-spaces with normals along one of the coordinate axes. In
this situation, the set of functions is more easily characterized through the estima-
tion algorithm. See Chen and Guestrin (2016) for an efficient implementation of a
boosting algorithm based on decision trees (referred to as “XGBoost”).

In this section, we assume bounded features, that is, for all w ∈W, and inputs x ∈ X,
|ϕ(x,w)| 6 R. Moreover, for simplicity, we assume that the set of feature functions
{ϕ(·, w), w ∈W} is centrally symmetric, which is the case for the examples above.

Boosting procedures will make sequential calls to the weak learner oracle that out-
puts w1, . . . , wt ∈ W with t the number of iterations, and linearly combine the function
ϕ(w1, ·), . . . , ϕ(wt, ·). Therefore, the set of predictors that are explored are not only the
functions ϕ(w, ·), but all linear combinations, that is, functions of the form

f(x) =

∫

W

ϕ(w, x)dν(w), (10.3)

for ν a (signed) measure on W, which we assume to have finite mass.

To avoid overfitting, some norm that will be explicitly or implicitly controlled needs to
be defined. As done in Section 9.3.2 with neural networks, we will consider an L1-norm,
namely the total variation of ν, that is:

∫

W

|dν(w)|.

Note that since we have assumed that the features are centrally symmetric, assuming
that ν is a positive measure does not change anything.

For functions f : X→ R that can be represented as integrals in Eq. (10.3), the minimal
value of

∫
W
|dν(w)| is referred to as the “variation norm” (Kurková and Sanguineti,
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2001), or the “atomic norm” (Chandrasekaran et al., 2012), of f , and the set of functions
with finite norm will be denoted F1, with a norm γ1. Like in Section 9.3.2, this is to

distinguish it from the squared norm
∫
W

∣∣dν(w)
dτ(w)

∣∣2dτ(w) for a fixed positive measure τ ,

which corresponds to a reproducing kernel Hilbert space (see Chapter 7).

Note that by definition, for any w ∈ W, γ1(ϕ(w, ·)) 6 1, since we can represent this
function by the measure ν = δw. Since we will optimize over the realizations of the
features on the data, we denote by ψ(w) ∈ Rn the vector so that ψ(w)i = ϕ(xi, w). Since
|ϕ(x,w)| 6 R for all w and x, ‖ψ(w)‖2 6 R

√
n for all w. By restricting to values on

x1, . . . , xn, we obtain a penalty defined on Rn with a definition similar to γ1 defined on
functions from X to R, with more properties we will need for our proofs.

Gauge function. We define the function γ : Rn → R as the infimum of
∫
W
|dν(w)| over

all positive measures such that u =
∫
W
ψ(w)dν(w). This function is usually referred to

as the “gauge” function associated with the convex hull of all ψ(w), w ∈W (Rockafellar,
1997). The gauge function γ is always convex and positively homogeneous. Since we
further assumed central symmetry of the features, that is, the set {ψ(w), w ∈ W} ⊂
Rn is centrally symmetric, γ(−u) = γ(u) for all u ∈ Rn. Given our bounded norm
assumption ‖ψ(w)‖2 6 R

√
n, we have, for any u such that γ(u) is finite (and with

associated measure ν), ‖u‖2 =
∥∥ ∫

W
ψ(w)dν(w)

∥∥
2
6

∫
W
‖ψ(w)‖2|dν(w)| 6 R

√
nγ(u).

The gauge function may not be a norm since it may not be finite everywhere, that
is, there may exist u ∈ Rn which cannot be expressed as a linear combination of feature
vectors ψ(w), w ∈ W. We may, however, define a notion of dual gauge function, called
a “polar” gauge γ∗ : Rn → R, as γ∗(v) = supw∈W ψ(w)⊤v, which leads to a form a
Cauchy-Schwarz inequality, as u⊤v 6 γ(u)γ∗(v) (see Rockafellar, 1997, Chapter 15, for
more details).

Assumptions. Following our traditional empirical risk minimization framework pre-
sented in Chapter 4, we consider a loss function ℓ : Y × R → R, both for regression
and classification. Since we will need differentiable loss functions, our developments are
restricted to the logistic loss, the exponential loss, and the square loss. We denote by
ℓi : R → R the loss the observation (xi, yi), that is, ℓi(ui) = ℓ(yi, ui). We thus consider
the logistic loss ℓi(ui) = log(1+exp(−yiui)) and the exponential loss ℓi(ui) = exp(−yiui)
when yi ∈ {−1, 1}, or the square loss ℓi(ui) = 1

2 (yi − ui)2 when yi ∈ R.

In our optimization convergence proofs in Section 10.3.5, we will need that each loss ℓi
is smooth, with smoothness constant G2 (e.g., 1/4 for the logistic loss and 1 for the square
loss, and +∞ for the exponential loss). This leads to a loss function F : Rn → R, defined
as F (u) = 1

n

∑n
i=1 ℓi(ui), which is (G2/n)-smooth. For the statistical consistency proof,

we will also need that the loss functions are G1-Lipschitz continuous, which only applies
to logistic regression, and that ℓi(0) has a uniform bound G0 (for logistic regression,
G0 = log 2).

Finite W. While boosting methods can be applied for any compact set W (as long as
the minimization oracle is available), an interesting special case corresponds to finite sets
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W = {w1, . . . , wd}. The optimization problem that we aim to solve is the minimization
of F (u), for u in the span of all ψ(w1), . . . , ψ(wd), which we can rewrite as:

min
u∈Rn

F (u) such that ∃α ∈ R
d, u =

d∑

j=1

αjψ(wj) = min
α∈Rd

F

( d∑

j=1

αjψ(wj)

)
. (10.4)

We can thus either see this as an optimization problem in u or in α, and, given our
assumptions regarding central symmetry, the norm γ on u is upper-bounded by the
ℓ1-norm of α. Seeing Eq. (10.4) as a problem in u may be advantageous because of
strong-convexity properties that could be lost for the problem in α (in particular when
n 6 d): for example, for the square loss, where F is strongly-convex, the optimization
problem in u is strongly-convex, and thus exhibits linear convergence, while the problem
in α is not strongly-convex (but still exhibits linear convergence for other reasons, see
Section 12.1.1).

10.3.2 Incremental learning

The simplest version of boosting-like algorithms aims to construct linear combinations of
functions of the form x 7→ ϕ(wt, x) by selecting incrementally wt ∈W. Starting from the
function g0 = 0, we thus consider the simplest update

gt = gt−1 + btϕ(wt, ·), (10.5)

where the linear combination coefficients for ϕ(w1, ·), . . . , ϕ(wt−1, ·) are not changed once

they are computed. Given the empirical risk R̂(f) = 1
n

∑n
i=1 ℓ(yi, f(xi)), a natural crite-

rion for the choice of bt ∈ R and wt ∈W is to solve the optimization problem

min
bt∈R+, wt∈W

R̂
(
gt−1 + btϕ(wt, ·)

)
. (10.6)

With our notations, and since only values at x1, . . . , xn are used for the functions gt, we
can represent them with their values on these points, that is, by a vector ut ∈ Rn such
that (ut)i = gt(xi) for all i ∈ {1, . . . , n}. The update in Eq. (10.5) then becomes

ut = ut−1 + btψ(wt),

and the update in Eq. (10.6) becomes

min
bt∈R+, wt∈W

F
(
ut−1 + btψ(wt)

)
. (10.7)

This minimization is easily done in two situations: for the square loss, leading to
matching pursuit (Mallat and Zhang, 1993) and for the exponential loss, leading to Ad-
aboost (Freund and Schapire, 1996). We now present these two classical algorithms and
some elements of analysis of their convergence rates for optimizing the empirical risk.
We then analyze the expected risk, which is more involved when the goal is to obtain a
convergence rate with early stopping.
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10.3.3 Matching pursuit

Matching pursuit corresponds to the iteration in Eq. (10.7) for the square loss, with ap-
plications beyond machine learning, in particular in signal processing (Mallat and Zhang,
1993). For simplicity, only in this section, we assumed that each x 7→ ϕ(x,w), for w ∈W,
is normalized on the data, that is

∑n
i=1 ϕ(xi, w)2 = ‖ψ(w)‖22 = n. This implies that for

all u ∈ Rn, ‖u‖2 6
√
nγ(u).

In our context of empirical risk minimization, the square loss corresponds to F (u) =
1
2n‖y − u‖22, and, because of the normalization, we have:

F (ut) = F (ut−1) + F ′(ut−1)⊤(ut − ut−1) +
1

2n
‖ut − ut−1‖22

= F (ut−1) + F ′(ut−1)⊤btψ(wt) +
b2t
2
.

Optimizing with respect to bt ∈ R leads to bt = −F ′(ut−1)⊤ψ(wt), leading to the optimal
value

F (ut−1)− 1

2
|F ′(ut−1)⊤ψ(wt)|2.

Since F ′(ut−1) = 1
n (ut−1−y), the iteration can then be written as, initialized with u0 = 0,

for t > 1:
{
wt = arg max

w∈W

∣∣(ut−1 − y)⊤ψ(w)
∣∣

ut = ut−1 − 1
n

∣∣(ut−1 − y)⊤ψ(wt)
∣∣ψ(wt) = ut−1 − 1

nγ
∗(ut−1 − y)ψ(wt),

by definition of the polar gauge function γ∗.

Slow convergence. The minimizer of F (u) = 1
2n‖u−y‖22 is u∗ = y. It may or may not

be such that γ(y) is finite. In this section on matching pursuit, we assume it is, but we
consider the general case in Section 10.3.5. It turns out that the penalty γ(y) provides
an explicit control of the convergence rate of ut towards y. Indeed, it can be shown that
the matching pursuit algorithm converges with a rate proportional to γ(y), that is,

1

n
‖y − ut‖22 6 γ(y)2t−1/3.

See DeVore and Temlyakov (1996) for a detailed result (proved in Exercise 10.6), Sec-
tion 10.3.5 for a related result for all smooth loss functions (and with a detailed proof),
and Sil’nichenko (2004) for an improved dependence on t, and Klusowski and Siegel (2023)
for lower bounds.

Fast convergence of the empirical risk. As already obtained by Mallat and Zhang
(1993), exponential rates can be obtained with the stronger assumption that γ is a norm
on Rn, and then we have by equivalence of norms:

√
nκγ(u) 6 ‖u‖2, and γ∗(v) >

κ
√
n‖v‖2, for a constant κ > 0 which has to be less than 1, since ‖u‖2 6

√
nγ(u). For

finite sets W = {w1, . . . , wd}, this corresponds to the kernel matrix
∑d
i=1 ψ(wi)ψ(wi)

⊤ ∈
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Rn×n being invertible. As shown below, this ensures constant multiplicative progress
across matching pursuit iterations. Indeed, we then have:

1

2n
‖y − ut‖22 =

1

2n
‖y − ut−1‖22 −

1

2n2
γ∗(ut−1 − y)2 6 (1− κ2) · 1

2n
‖y − ut−1‖22,

leading to exponential convergence.

Exercise 10.5 (�) Orthogonal matching pursuit is a modification of matching pursuit
which, once wt ∈W has been selected, defines ut as the minimizer of F over the span of
all previously selected feature vectors ψ(w1), . . . , ψ(wt). Show that 1

n‖y−ut‖22 6 γ(y)2t−1.

10.3.4 Adaboost

Adaboost (Freund and Schapire, 1996) corresponds to the binary classification case, where
we assume that ϕ(x,w) ∈ {−1, 1}, that is, all weak learners are already classification
functions, or, equivalently, ψ(w) ∈ {−1, 1}n, and we use the exponential loss, that is,

F (u) =
1

n

n∑

i=1

exp(−yiui).

We can then implement Eq. (10.7) by solving

min
bt∈R,wt∈W

F (ut−1 + btψ(wt)) = min
bt∈R,wt∈W

1

n

n∑

i=1

exp(−yi(ut−1)i) exp(−btyiψ(wt)i).

Using the fact that yiψ(wt)i ∈ {−1, 1} for all i ∈ {1, . . . , n}, this is equivalent to

min
bt∈R,wt∈W

n∑

i=1

{e−bt
n

1 + yiψ(wt)i
2

+
ebt

n

1− yiψ(wt)i
2

}
e−yi(ut−1)i ,

with an objective function proportional to
∑n
i=1

{
e−bt

n
1+yiψ(wt)i

2 + ebt

n
1−yiψ(wt)i

2

}
πi, where π

is a vector in the simplex defined as πi = e−yi(ut−1)i
∑n

j=1 e
−yj (ut−1)j

.

Given wt ∈ W, the optimal bt is obtained by minimizing a function of the form
e−bta− + ebta+, for some constants a+ and a−, which is attained as bt = 1

2 log a−
a+

, with

optimal value equal to 2
√
a−a+. Thus, the optimal bt is equal to

bt =
1

2
log

1 +
∑n
i=1 yiψ(wt)iπi

1−∑n
i=1 yiψ(wt)iπi

,

and the resulting objective function (that depends on wt) is equal to

F (ut−1)
[
1−

( n∑

i=1

yiψ(wt)iπi

)2]
.
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We can thus obtain wt by maximizing
∣∣∑n

i=1 yiψ(wt)iπi
∣∣. Since we have assumed central

symmetry of the weights, we can equivalently maximize
∑n

i=1 yiψ(wt)iπi, which corre-
sponds to finding the weak learner with minimal 0-1 classification error weighted by π.
We thus get the following iteration:





πi =
e−yi(ut−1)i

∑n
j=1 e

−yj(ut−1)j
for i ∈ {1, . . . , n}

wt ∈ arg max
w∈W

n∑

i=1

yiψ(wt)iπi

ut = ut−1 +
1

2
log

1 +
∑n

i=1 yiψ(wt)iπi
1−

∑n
i=1 yiψ(wt)iπi

ψ(wt).

After this iteration, we have

F (ut) = F (ut−1)
[
1−

( n∑

i=1

yiψ(wt)iπi

)2]
.

Therefore, the empirical risk (with the exponential loss) strictly decreases if the weak
learner gets an empirical weighted 0-1 loss strictly less than 1/2 (corresponding to the dot
product with y being strictly positive). If the error rate is always less than a constant,
an assumption referred to as weak learnability, we obtain a linear convergence. Note
that if we make the same assumption as in matching pursuit in Section 10.3.3, then∑n

i=1 yiψ(wt)iπi = γ∗(π ◦ y) > ρ
√
n‖π‖2 > ρ‖π‖1 > ρ, and we have a similar exponential

convergence rate.

10.3.5 Greedy algorithm based on gradient boosting

In this section, we describe a boosting algorithm which, at each iteration, performs a
first-order Taylor expansion at the current point (which requires to compute derivatives
of the loss functions) and find the weak learner x 7→ ϕ(w, x) that makes most progress
for this approximation of the risk. We thus consider the following “greedy” algorithm,
starting from the zero function g0 = 0, and iterating over t > 1:

• Loss gradient computations: compute αi = ℓ′i(gt−1(xi)) for i ∈ {1, . . . , n}.
• Weak learner: compute wt ∈ W that minimizes

∑n
i=1 αiϕ(w, xi) with respect to

w ∈W. Equivalently, using our notations in Rn, we minimize F ′(ut−1)⊤ψ(w) with
respect to w ∈W.

• Function update: take gt = gt−1 +btϕ(wt, ·) for a coefficient bt ∈ R+ that optimizes
an upper-bound on the empirical risk. This corresponds to ut = ut−1 + btψ(wt).

After time t, the prediction function gt will be a linear combination of the functions
ϕ(wu, ·), for u ∈ {1, . . . , t}, with only t atoms, thus leading to sparse combinations (in
other words, the estimated measure ν is a sum of Diracs). For the square loss, this will
exactly be the matching pursuit algorithm presented in Section 10.3.3. In general, these
algorithms are often referred to as “gradient boosting” procedures (Friedman, 2001).



10.3. BOOSTING 285

We first provide a generic convergence result for the empirical risk (which goes beyond
machine learning problems), before proving a convergence rate for the expected risk in
Section 10.3.6. We focus on smooth loss functions for the optimization result, while we
require a smooth and Lipschitz-continuous loss function for the statistical analysis (such
as the logistic loss). For consistency results for the exponential loss, see Bartlett and
Traskin (2007).

With our smoothness assumption, we can define the upper-bound on F (ut) as (using
the definition of smoothness in Eq. (5.10)):

F (ut) 6 F (ut−1) + F ′(ut−1)⊤(ut − ut−1) +
L

2
‖ut − ut−1‖22

6 F (ut−1) + btF
′(ut−1)⊤ψ(wt) +

L

2
b2t‖ψ(wt)‖22

using the expression ut = ut−1 + btψ(wt),

6 F (ut−1) + btF
′(ut−1)⊤ψ(wt) +

L

2
b2tC

2, (10.8)

if L is the smoothness constant of F and C an uniform upper-bound on all ‖ψ(w)‖2,
w ∈W. This naturally leads to the iteration

{
wt ∈ arg max

w∈W
F ′(ut−1)⊤ψ(w)

ut = ut−1 − 1
LC2F

′(ut−1)⊤ψ(wt),
(10.9)

which we can now analyze, to obtain upper-bounds on both function values and the gauge
functions of the iterates.

Proposition 10.1 (convergence of gradient boosting algorithm) We consider an
L-smooth function F : Rn → R; we assume that ψ : W → Rn is such that ‖ψ(w)‖2 6 C
for all w ∈W, and the associated gauge function γ is centrally symmetric. Consider the
iteration in Eq. (10.9). Then for any v ∈ R

n, and t > 0, we have:

(
F (ut)− F (v)

)
+
6

(2LC2γ(u0 − v)2(F (u0)− F (v))4+
t

)1/5

,

and

γ(ut) 6 γ(u0) +

√
t

LC2

(
2LC2[F (u0)− F (ut)]

)1/2

.

Proof We have by construction of the iteration and from Eq. (10.8):

F (ut)− F (v) 6 F (ut−1)− F (v)− 1

2LC2
γ∗(F ′(ut−1))2. (10.10)

Moreover, using the convexity of F and properties of gauge functions, we have:

F (ut)− F (v) 6 F ′(ut)
⊤(ut − v) 6 γ∗(F ′(ut))γ(ut − v). (10.11)

Finally, using the triangular inequality for γ, we obtain, from Eq. (10.9), γ(ut − v) 6

γ(ut−1 − v) + 1
LC2 γ

∗(F ′(ut−1)), leading to, by recursion, γ(ut − v) 6 Γt, where Γt =
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γ(u0 − v) + 1
LC2 γ

∗(F ′(ut−1)) + · · · + 1
LC2 γ

∗(F ′(u0)). We define ∆t = (F (ut) − F (v))+.
From Eq. (10.10), we get:

∆t ≤
(
∆t−1 − 1

2LC2 γ
∗(F ′(ut−1))2

)
+
, (10.12)

and from Eq. (10.11), we get ∆t 6 Γtγ
∗(F ′(ut)). Thus,

∆tΓ
−2
t 6 ∆tΓ

−2
t−1 6

(
∆t−1Γ−2

t−1 − 1
2LC2 Γ−2

t−1γ
∗(F ′(ut−1))2

)
+

6
(
∆t−1Γ−2

t−1 − 1
2LC2 (∆t−1Γ−2

t−1)2
)
+
.

This leads to4

∆tΓ
−2
t 6

1
t

2LC2 + Γ2
0∆−1

0

6
2LC2

t
. (10.13)

Moreover, by definition of Γt and using Eq. (10.11), we have:

Γt = Γt−1 +
1

LC2
γ∗(F ′(ut−1)) 6 Γt−1

(
1 +

1

LC2

γ∗(F ′(ut−1)2

∆t−1

)
.

Thus, by taking the product of the square of Eq. (10.12) and the previous inequality, we
get:

Γt∆
2
t 6 Γt−1∆2

t−1

(
1 +

1

LC2
γ∗(F ′(ut−1))2

)(
1− 1

2

1

LC2
γ∗(F ′(ut−1))2

)2

+
.

Since (1 − ε/2)2+(1 + ε) 6 1 for all ε > 0, this leads to Γt∆
2
t 6 Γt−1∆2

t−1, and thus
Γt∆

2
t 6 Γ0∆2

0. Taking the product of the square of the inequality above with Eq. (10.13),
this leads to

∆5
t = (Γt∆

2
t )

2 ·∆tΓ
−2
t 6 (Γ0∆2

0)2
2LC2

t
,

which leads to the first result.

We can also bound the norm γ(ut) as follows, using Eq. (10.10):

γ(ut) 6 γ(u0) +
1

LC2

t∑

i=1

γ∗(F ′(ui−1)) 6 γ(u0) +

√
t

LC2

( t∑

i=1

γ∗(F ′(ui−1))2
)1/2

6 γ(u0) +

√
t

LC2

(
2LC2[F (u0)− F (ut)]

)1/2

.

We will need the flexibility of having an arbitrary v ∈ Rn in the statistical consistency
proof, but when v is chosen as the minimizer u∗ of F (then assumed to exist), we get a
more traditional optimization bound:

F (ut)− F (u∗) 6
(2LC2γ(u0 − u∗)2(F (u0)− F (u∗))4

t

)1/5

6
LC2γ(u0 − u∗)2

t1/5
,

4We can use the following lemma, whose proof is left as an exercise: if (at) is a non-increasing
non-negative sequence such that at 6 (at−1 − ca2t−1)+ for all t > 1, then at 6 1

t/c+1/a0
for all t > 0.
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which can be compared to the bound for regular gradient descent (Prop. 5.5), which is
L
2t‖u0 − u∗‖22 6 LC2

2t γ(u0 − u∗), with a better dependence on t, but with iterates that
cannot be expressed as linear combinations of at most t iterates.

As done in the next section, assuming that u0 = 0 and F is non-negative everywhere,
this leads to:

(
F (ut)− F (v)

)
+
6

(2LC2γ(v)2F (0)4

t

)1/5

and γ(ut) 6

√
2t√
LC2

F (0)1/2.

The proposition above shows that the gauge function γ controls the convergence of
the gradient-boosting algorithm, in the same way that the Euclidean norm controls the
convergence of gradient descent. For finite sets W, where the gauge function is essentially
an ℓ1-norm in a reparameterization, the link with ℓ1-norm penalization can be made
explicit (see, e.g., Rosset et al., 2004, for details).

Exercise 10.6 (�) Show that when the function F is quadratic, then have the guaran-

tee: F (ut) − F (u∗) 6 LC2

2t1/3
γ(u0 − u∗)2. Hint: replace Eq. (10.11) by F (ut) − F (u∗) =

1
2F

′(ut)⊤(ut − u∗).

10.3.6 Convergence of expected risk

In order bound the expected risk, we need to relate empirical risk R̂ and expected risk R,
for functions f with bounded penalty γ1(f). To study the generalization performance of
constraining or penalizing by the variation norm defined above, we can naturally use the
general framework of Rademacher complexities presented in Section 4.5.

Statistical performance through Rademacher complexities. The uniform devi-
ations for the set of predictors g : X → R such that γ1(g) 6 D on i.i.d. data x1, . . . , xn
are controlled by the quantity

E

[
sup

γ1(g)6D

1

n

n∑

i=1

εig(xi)
]

= D · E
[

sup
w∈W

1

n

n∑

i=1

εiϕ(xi, w)
]
, (10.14)

where the expectation is taken both with respect to the data x1, . . . , xn and the indepen-
dent Rademacher random variables ε1, . . . , εn ∈ {−1, 1}.

In Section 9.2.3, we computed an upperbound proportional to DR/
√
n for ϕ(x,w)

of the form σ(x⊤w) (which corresponds to learning a one-hidden layer neural network),
with an extra factor of

√
log d for ℓ1-norm constraint on neural network weights, showing

that although the set W is infinite, we can bound the uniform deviations. See another
example in the exercise below. In the following, we will assume that

E

[
sup

γ1(g)6D

1

n

n∑

i=1

εig(xi)
]
6
DR√
n
ρϕ, (10.15)

for a universal constant ρϕ > 0.



288 CHAPTER 10. ENSEMBLE LEARNING

Exercise 10.7 Given a metric space X with distance d and finite diameter, we consider
ϕ(w) = σ(d(x,w)), for w ∈ W = X. Compute an upper-bound on the Rademacher
complexity in Eq. (10.14).

Generalization bound. We can now state our main statistical result about gradient
boosting. To obtain such bounds, an additional norm (see, e.g., Lugosi and Vayatis, 2004)
or cardinality (Barron et al., 2008) constraint is often added. In this section, we show
how early stopping is enough to obtain rates of convergences for the gradient-boosting
procedures defined in Section 10.3.5.

Proposition 10.2 Assume the feature maps ϕ form a centrally symmetric set and that
they are uniformly bounded by R, and satisfy Eq. (10.15). Assume the loss function ℓ is
non-negative, G2-smooth and G1-Lipschitz-continuous with respect to the second variable,
and that ℓ(y, 0) 6 G0 almost surely. If gt denotes the t-th iterate of the gradient boosting
procedure, then, for any function f : X→ R,

E
[
R(gt)

]
6 R(f) +

[√
2t
G

1/2
0

G
1/2
2

+Rγ1(f)
]
·2G1 ·

ρϕ√
n

+
(Rγ1(f))2/5

t1/5
(2G2G

4
0)1/5. (10.16)

Proof For any function f such that γ1(f) is finite, we have:

R(gt)−R(f) = R(gt)−R̂(gt) + R̂(gt)−R̂(f) + R̂(f)−R(f)

6 sup
γ1(g)6γ1(gt)

{
R(g)−R̂(g)

}
+ sup
γ1(g)6γ1(f)

{
R̂(g)−R(g)

}
+ R̂(gt)−R̂(f).

We then apply Proposition 10.1 with C = R
√
n and L = G2/n, with F (0) 6 G0.

This leads to γ1(gt) 6
√
2t√

G2R2G
1/2
0 , and R̂(gt)−R̂(f) 6

( 2G2R
2γ1(f)

2G4
0

t

)1/5
. Thus, using

properties of Rademacher averages from Section 4.5,

E
[
R(gt)− R(f)

]
6

[ √
2t√

G2R2
G

1/2
0 + γ1(f)

]
· 2G1 ·

ρϕR√
n

+
(2G2R

2γ1(f)2G4
0

t

)1/5

,

which leads to the desired result.

Up to constants, the bound in Eq. (10.16) is of the form R(f)+
√
t√
n

+Rγ1(f)√
n
·ρϕ+ (Rγ1(f))

2/5

t1/5
.

We can optimize with respect to the number t of iterations, and if we take it of order

t ∼ n5/7(Rγ1(f))4/7, then this leads to R(f) + Rγ1(f)√
n
· ρϕ +

(Rγ1(f)√
n

)2/7
.

Assuming for simplicity that ρϕ is a constant (like for neural networks), the dominant

term is R(f) +
(Rγ1(f)√

n

)2/7
. If the Bayes predictor f∗ is such that γ1(f∗) is finite, we

immediately get an excess risk that goes to zero as
(Rγ1(f∗)√

n

)2/7
. If the model we consider

is misspecified, then, like in Section 7.5.1 for kernel methods, and Section 9.4 for neural
networks, we could compute the resulting approximation error to obtain precise rates
depending on properties of the Bayes predictor f∗.
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Comparison with explicit constraint on γ1. The bound above is obtained by
early-stopping the boosting algorithms before they overfit. An alternative method is
to minimize the empirical risk subject to the constraint γ1(f) 6 D, which can be done
with the Frank-Wolfe algorithm described in Section 9.3.6, with the same access to the
weak-learner oracle and an optimization error proportional to R2D2/t after t iterations.
Together with the estimation error in ρϕ

RD√
n

, we can take t = RDn1/2 steps of the Frank-

Wolfe algorithms to get an excess risk less than R(f) plus a constant times
ρϕRD√

n
for any

f such that γ1(f) 6 D. With the optimal choice of D, this leads to R(f) plus a constant

times
ρϕRγ1(f)√

n
, which is significantly better than for boosting. This, however, requires to

set the constant D.

Comparison with early stopping for gradient descent. Compared to Section 5.3,
where we used gradient descent, and the rates obtained for early stopping were the same
as for constrained optimization, our analysis of boosting leads to consistent estimation,
but with slightly worse rates.
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Figure 10.3: Matching pursuit algorithm on a problem with a sparse solution (top) and
a non-sparse solution (bottom). Left: plots of training and testing errors. Right: plots
of weights.
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10.3.7 Experiments

In this section, we compare the boosting / conditional gradient algorithm described ear-
lier on a simple linear regression task with feature selection. This corresponds to us-
ing F (u) = 1

2n‖y − u‖22, which is (1/n)-smooth and (1/n)-strongly convex, and γ(u) =
infw∈Rd ‖w‖1 such that u = Φw.

We consider n = 100 observations in dimension d = 1000, sampled from a standard
Gaussian random vector. A predictor β∗ with k = 5 non-zero values in {−1, 1} and data
are generated from a linear model with Gaussian noise. We then compare the iterates of
the boosting algorithm in terms of prediction errors (left plots) and variations of weights
across iterations (right plots).

We also consider a rotation of the data so that this is no longer a sparse problem
(bottom plot). We observe linear convergence of the training errors, as proved above, but
with overfitting at convergence, strong for the non-sparse case and weak for the sparse
case.

10.4 Conclusion

In this chapter, we have presented a brief overview of ensemble learning procedures,
which rely on using the same “base” learning procedures on several datasets. Bagging
procedures consider several often parallel and independent runs on randomly modified
datasets, while boosting changes the weight on each observation sequentially. Moreover,
boosting is an instance of computational regularization, where overfitting is avoided by
early stopping an optimization algorithm that would converge to a minimizer of the
empirical risks if not stopped. The implicit bias in boosting is that of an ℓ1-norm; in
Section 12.1, we analyze the implicit bias of gradient decent, when run to convergence,
with a link to ℓ2-penalties.



Chapter 11

From online learning to bandits

Chapter summary
– Beyond empirical and expected risk minimization, more complex settings can be

considered.
– Online convex optimization with gradients: stochastic gradient descent still works

with the regret criterion and potentially adversarial functions, with essentially the
same rates. The mirror descent framework is adapted to non-Euclidean geometries.

– Zero-th order optimization: Randomization can be used to obtain a stochastic
gradient from function values with an additional dimension dependence.

– Multi-armed bandits: in the regret minimization framework, to tackle explo-
ration/exploitation trade-offs, several algorithms can be used, from simple algo-
rithms based on alternating exploration and exploitation to more refined ones uti-
lizing the principle of “optimism in the face of uncertainty.”

In traditional stochastic optimization such as presented in Chapter 5 (e.g., Sec-
tion 5.4), we observe a sequence of gradients of loss functions obtained from a pair of
observations (xt, yt) ∈ X× Y:

F ′
t (θt−1) =

∂ℓ(yt, fθ(xt))

∂θ

∣∣∣
θ=θt−1

,

and our performance measure was

E
[
F (θt)

]
− F∗,

where the expectation is taken with respect to the training data, and F (θ)=E[ℓ(ys, fθ(xs))]
is the expected test error, assuming that all (xs, ys) (and thus the individual loss functions
Fs(θ) = ℓ(ys, fθ(xs))), s = 1, . . . , t, are independent and identically distributed, and F∗
is the minimal value of F , that is, F∗ = infθ∈C F (θ), where C is the optimization domain.
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There are several important extensions corresponding to specific applications:

• Regret instead of final performance: The performance criterion can take into
account performance along iterations such as 1

t

∑t
s=1 F (θs−1), and not only at the

last iteration, that is F (θt). This is important when the loss functions can be
interpreted as actual financial losses incurred while learning the parameter θ (such
as in applications in advertising or finance).

Performance measures such as the regret can then be considered, here equal to

1

t

t∑

s=1

F (θs−1)− inf
θ∈C

F (θ),

often after taking the expectation (since θs is random because it depends on the
past data).

△! In this book, we choose to study what is often called the normalized regret
since we divide

∑t
s=1

[
F (θs) − infθ∈C F (θ)

]
by t. This is done to make

comparisons with the usual stochastic framework easier.

• Adversarial instead of stochastic: The consideration of the regret criterion
opens up the possibility for functions Fs to be different or sampled from different
distributions, with a potentially adversarial choice that depends on the past. The
regret is then 1

t

∑t
s=1 Fs(θs−1) − infθ∈C

1
t

∑k
s=1 Fs(θ), which is the comparison to

the optimal constant prediction. This allows it to be robust to adversarial functions
and adapted to non-stationary environments where very few assumptions can be
made. Note here that the regret can be negative. This is presented in Section 11.1.

• Partial feedback (zero-th order): Independently of the regret framework, the
feedback given to the algorithm may be less precise than the full gradient (e.g.,
only the function value). This is crucial in applications where function values are
expensive to obtain without access to gradients.

This is the domain of zero-th order optimization, which can be treated through
gradient-based algorithms (Section 11.2) or the framework of multi-armed bandits
(Section 11.3).

In this chapter, we briefly cover three topics from this large body of literature. For
more details, see Shalev-Shwartz (2011); Bubeck and Cesa-Bianchi (2012); Hazan (2022);
Slivkins (2019); Lattimore and Szepesvári (2020). This chapter aims to give the main
ideas, how they differ from classical learning theory (using the unified notations we provide
in this book), and to encourage readers to study these references.

11.1 First-order online convex optimization

In this section, we consider a sequence of arbitrary deterministic real-valued convex func-
tions Fs : Rd → R, s > 1, and a compact convex set C. The goal of online convex
optimization is, starting from a certain θ0 ∈ C, to obtain a sequence (θs)s>1 so that the
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regret at time t, defined as

1

t

t∑

s=1

Fs(θs−1)− inf
θ∈C

1

t

t∑

s=1

Fs(θ), (11.1)

is as small as possible.

We assume that at time s, we can access a gradient of Fs at any point θs−1 ∈ C that
depends on past information. We also consider the possibility that we only observe a
random, unbiased version gs, that is, if Fs denotes the information up to (and including)
time s,

E
[
gs|Fs−1

]
= F ′

s(θs−1).

Given the added randomness, we consider the expected regret as a criterion.

For simplicity, we assume that almost surely, ‖gs‖22 6 B2 (which in the context of
machine learning corresponds to Lipschitz-continuous loss functions, which include the
logistic loss, the hinge loss, and the square loss since we have assumed that we optimize
on a bounded set1).

Applications. This is adapted to a non-stationary environment, where the data dis-
tribution varies over time, either stochastically or even adversarially (based on earlier
predictions).

In this section, we only present the non-smooth case. The smooth case will be pro-
posed as exercises but leads to similar results compared to the regular stochastic case.

11.1.1 Convex case

We consider the projected stochastic gradient descent recursion:

θs = ΠC(θs−1 − γsgs),

for a certain positive step-size γs (which we assume deterministic for simplicity), where ΠC

is the orthogonal projection onto the set C. We then have, for any θ ∈ C (as opposed to
a fixed θ = η∗ the global optimum, like in regular optimization in Chapter 5),

‖θs − θ‖22 6 ‖θs−1−θ‖22−2γsg
⊤
s (θs−1−θ)+γ2sB

2 by contractivity of projections,

E
[
‖θs−θ‖22

∣∣Fs−1

)
6 ‖θs−1−θ‖22 − 2γsF

′
s(θs−1)⊤(θs−1 − θ) + γ2sB

2,

using the unbiasedness of the gradient,

6 ‖θs−1−θ‖22 − 2γs
[
Fs(θs−1)− Fs(θ)

]
+ γ2sB

2, using convexity.

Taking full expectations and isolating Fs(θs−1)− Fs(θ), we get:

E
[
Fs(θs−1)− Fs(θ)

]
6

1

2γs

(
E
[
‖θs−1 − θ‖22

]
− E

[
‖θs − θ‖22

])
+
γs
2
B2.

1The square loss is not Lipschitz-continuous on an unbounded domain, but is, once constrained to a
bounded domain.
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We can then sum between s = 1 to s = t, to obtain

1

t

t∑

s=1

E
[
Fs(θs−1)

]
− 1

t

t∑

s=1

Fs(θ) 6
1

t

t∑

s=1

1

2γs

(
E
[
‖θs−1−θ‖22

]
−E

[
‖θs−θ‖22

])
+

1

t

t∑

s=1

γs
2
B2.

At this point, the proof is exactly the same as the one of Prop. 5.7, with only the
appearances of functions Fs that depend on s.

In Chapter 5 (that is, the proof of Prop. 5.7), we considered non-uniform averaging,
which is not adapted to the online setting (because the regret is based on a uniform
average). We could also use a constant step-size that depends on the horizon t (which
then needs to be known in advance). By using Abel’s summation formula (discrete
integration by part), we can use a time-dependent step-size sequence (γs), as, using the
notation δs = E

[
‖θs − θ‖22

]
, and for decreasing step-sizes:

1

t

t∑

s=1

E
[
Fs(θs−1)

]
− 1

t

t∑

s=1

Fs(θ) 6
1

t

t∑

s=1

1

2γs

(
δs−1−δs

)
+

1

t

t∑

s=1

γs
2
B2

from the last equation,

=
1

t

t−1∑

s=1

δs
( 1

2γs+1
− 1

2γs

)
+

δ0
2tγ1

− δt
2tγt

+
1

t

t∑

s=1

γs
2
B2

using Abel’s summation formula,

6
1

t

t−1∑

s=1

diam(C)2
( 1

2γs+1
− 1

2γs

)
+

diam(C)2

2tγ1
+

1

t

t∑

s=1

γs
2
B2

using that δs 6 diam(C)2 for all s,

=
diam(C)2

2tγt
+

1

t

t∑

s=1

γs
2
B2.

By choosing γs = diam(C)
B
√
s

, we get, using the same inequalities as for the proof of Prop. 5.7:

1

t

t∑

s=1

E
[
Fs(θs−1)

]
− 1

t

t∑

s=1

Fs(θ) 6
3Bdiam(C)

2
√
t

. (11.2)

This is exactly the expected regret and essentially the same bound as stochastic opti-
mization in Section 5.4. Note that from such a bound, if all Fs’s are equal, we can do an
“online-to-batch” conversion using Jensen’s inequality and exactly get the bound for reg-
ular projected stochastic gradient descent (which is no surprise, as the proof is essentially
the same).

We show in Section 11.1.4 that the rate in Eq. (11.2) is, up to constants, the best
possible over all Lipschitz-continuous functions over a compact set.

Exercise 11.1 (�) In the unconstrained online optimization with smooth functions, that
is, assuming that each Ft is L-smooth, and C = Rd, provide a regret bound for online
gradient descent.
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11.1.2 Strongly-convex case (�)

Assuming strong-convexity (e.g., by adding µ
2 ‖θ‖22 to the objective function), we will

get a rate proportional to B2 log(k)/(µk). Indeed, assuming that the functions Fs are
all µ-strongly-convex on C. We can indeed modify the proof above with the step-size
γs = 1/(µs), to get (with modifications in red):

‖θs − θ‖22 6 ‖θs−1 − θ‖22 − 2γsg
⊤
s (θs−1 − θ) + γ2sB

2

E
[
‖θs − θ‖22

∣∣Fs−1

)
6 ‖θs−1 − θ‖22 − 2γsF

′
s(θs−1)⊤(θs−1 − θ) + γ2sB

2

6 ‖θs−1 − θ‖22 − 2γs
[
Fs(θs−1)− Fs(θ)+

µ

2
‖θs−1 − θ‖22

]
+ γ2sB

2.

Taking full expectations and isolating function values, we get:

E
[
Fs(θs−1)− Fs(θ)

]
6

( 1

2γs
−µ

2

)
E
[
‖θs−1 − θ‖22

]
− 1

2γs
E
[
‖θs − θ‖22

])
+
γs
2
B2.

We can then use the specific form of step-size to get

E
[
Fs(θs−1)− Fs(θ)

]
6
µ

2
(s− 1)E

[
‖θs−1 − θ‖22

]
− µ

2
sE

[
‖θs − θ‖22

]
+

1

2µs
B2.

Then, summing between s = 1 to s = t, we obtain, with a telescoping sum:

1

t

t∑

s=1

E
[
Fs(θs−1)

]
− 1

t

t∑

s=1

Fs(θ) 6
1

t

t∑

s=1

1

2µs
B2 6

1

2µt
(1 + log t),

using the classical log(t) upper bound on the harmonic series. Note the appearance
of log(t), which would not be the case if we had used the step-size γs = 2

s+1 like in Exer-
cise 5.29 (but which would require a different averaging scheme with weights proportional
to s). For online learning, it turns out that the logarithmic term is unavoidable (Hazan
and Kale, 2014).

11.1.3 Online mirror descent (�)

In this section, we extend the online stochastic gradient descent recursion analysis from
Section 11.1.1 to the online mirror descent framework, which will apply to the regular
stochastic case as well.

Mirror map. We assume given a “mirror map” Φ : CΦ → R, which is differentiable
and µ-strongly convex (on the set C ⊂ CΦ) with respect to a norm ‖ · ‖, that is,

Φ(η) > Φ(θ) + Φ′(θ)⊤(η − θ) +
µ

2
‖η − θ‖2, ∀η, θ ∈ C.

We also assume that the gradient Φ′ is a bijection from CΦ to Rd. Classical examples are:

• Squared Euclidean norm: Φ(θ) = 1
2‖θ‖22 with full domain, and norm ‖ · ‖ = ‖ · ‖2,

with µ = 1.
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• Entropy: Φ(θ) =
∑d
i=1 θi log θi with domain CΦ = (R∗

+)d, and norm ‖ · ‖ = ‖ · ‖1,
with µ = 1 (a result which is equivalent to Pinsker inequality2).

• Squared ℓp-norms: Φ(θ) = 1
2‖θ‖2p with full domain, for p ∈ (1, 2], and norm ‖ · ‖ =

‖ · ‖p, with µ = p− 1 (see proof of strong-convexity by Ball et al., 2002).

See also Exercise 13.2 in Chapter 13 for an example of mirror map for matrices.

Online mirror descent. We consider the same set-up as the beginning of Section 11.1.1,
that is, we have convex Lipschitz-continuous functions Fs, for s > 1, and we access an
unbiased (sub)gradient gs, that is, if Fs denotes the information up to (and including)
time s,

E
[
gs|Fs−1

]
= F ′

s(θs−1).

The online mirror descent iteration is defined by:

θt = arg min
θ∈C

g⊤t (θ − θt−1) +
1

γ
DΦ(θ, θt−1), (11.3)

where C is a compact convex set, DΦ(θ, η) = Φ(θ)−Φ(η)−Φ′(η)⊤(θ− η) is the Bregman
divergence associated with the mirror map Φ, and γ is a step-size. If C ⊂ CΦ, then the
update is simply defined by Φ′(θt) = Φ(θt−1)− γgt.
Proposition 11.1 Given the mirror descent recursion in Eq. (11.3), assume that each
stochastic gradient has bounded expected squared norm E[‖gs‖2∗|Fs−1] 6 B, for all s > 1.
Then, for every θ ∈ C, we have:

1

t

t∑

s=1

E
[
Fs(θs−1)− Fs(θ)

]
6

1

γt
DΦ(θ, θ0) +

B2γ

2µ
.

Proof The proof follows the same structure as for online stochastic gradient descent
in Section 11.1.1. From the optimality conditions of the update in Eq. (11.3), we have
(θ − θt)⊤

(
γgt + Φ′(θt)− Φ′(θt−1)) > 0 for all θ ∈ C. Given θ ∈ C, we have:

DΦ(θ, θt)−DΦ(θ, θt−1)

= Φ(θt−1) + Φ′(θt−1)⊤(θ − θt−1)− Φ(θt)− Φ′(θt)
⊤(θ − θt)

= Φ(θt−1)− Φ(θt) + Φ′(θt−1)⊤(θt − θt−1) + (Φ′(θt−1)− Φ′(θt))
⊤(θ − θt)

6 Φ(θt−1)− Φ(θt) + Φ′(θt−1)⊤(θt − θt−1) + γg⊤t (θ − θt)
= −DΦ(θt, θt−1)− γg⊤t (θt−1 − θ)− γg⊤t (θt − θt−1)

6 −µ
2
‖θt − θt−1‖2 − γg⊤t (θt−1 − θ) + γ‖gt‖∗ ·‖θt − θt−1‖ 6

‖gt‖2∗γ2
2µ

− γg⊤t (θt−1 − θ),

using the strong-convexity of Φ and the bound on gradients. By taking conditional
expectation, we get:

E
[
DΦ(θ, θt)−DΦ(θ, θt−1)

∣∣Ft−1

]
6
B2γ2

2µ
− γF ′

t(θt−1)⊤(θt−1 − θ). (11.4)

2see https://en.wikipedia.org/wiki/Pinsker%27s_inequality.

https://en.wikipedia.org/wiki/Pinsker%27s_inequality


11.1. FIRST-ORDER ONLINE CONVEX OPTIMIZATION 297

This leads to the desired result by using a telescoping sum and the convexity property
Ft(θt−1)− Ft(θ) 6 F ′

t (θt−1)⊤(θt−1 − θ).
We can make the following observations:

• We can optimize for the step-size when the optimization horizon t is known. Indeed,
for D2 = 2 supθ,θ′∈CDΦ(θ, θ′), and the choice γ = D

√
µ/(B

√
t), this leads to

the regret bound DB/
√
µt. Alternatively, decaying step-sizes can be used like

for regular SGD (which corresponds precisely to the feature map Φ = 1
2‖ · ‖22).

• With the online-to-batch conversion, we also get the same bound when all Ft’s are
equal for the averaged iterate.

• A classical application is for the simplex C = {θ ∈ Rd+,
∑d

j=1 θj = 1}, and the
entropy feature map. The update becomes θt ∝ θt−1 ◦ exp(−γgt) (where ◦ denotes
the component-wise product), with then a normalization step to sum to one, which
is a multiplicative update, and the regret bound is equal to B

√
2 log(d)/

√
t. This

regret bound would be of order
√
d (instead of

√
log d) if the Euclidean feature map

was used.

Exercise 11.2 (Stochastic mirror descent for ℓ1-regularization) In the context of
Prop. 11.1, we consider equal functions Ft = F , and assume that E[‖gs‖2∞|Fs−1] 6 B2

for all s > 1, and that θ0 = 0. Show that using mirror descent with the mirror map
Φ(θ) = 1

2‖θ‖2p for p ∈ (1, 2], we get, for the average iterate θ̄t = 1
t

∑t−1
s=1 θs, the bound

E
[
F (θ̄t)

]
6 F (θ) + 1

2γt‖θ‖21 + B2d2−2/pγ
2(p−1) . For d > 2, show that with p = 1 + 1

log d , the last

term is less than 2B2γ log d, and, if θ∗ is the minimizer of F , with an appropriate choice

of γ, E
[
F (θ̄t)

]
− F (θ∗) 6 2B‖θ∗‖1

√
log d√

t
.

11.1.4 Lower bounds (��)

In order to prove a lower bound, following Abernethy et al. (2008), we consider the set

C = {θ ∈ Rd, ‖θ‖∞ 6 1}, and the linear (hence convex) function F
(ε)
t : Rd → R defined

as F
(ε)
t (θ) = ε⊤t θ, for εs ∈ {−1, 1}d for all s ∈ {1, . . . , t}. The gradient vectors gt are

then simply equal to εt. We here have the exact deterministic gradient, with constants
B =

√
d and diam(C) = 2

√
d.

To obtain a lower bound of performance, it suffices to show that for any sequence (θs),

sup
ε∈E

1

t

t∑

s=1

F (ε)
s (θs−1)− inf

θ∈C

1

t

t∑

s=1

F (ε)
s (θ)

is lower-bounded for E a well-chosen set. As already used in proving lower bounds in
Section 3.7 and in Chapter 15, this is lower-bounded by the expectation for any distribu-
tion on E, which we take to be all independent Rademacher random variables (note that
the algorithm is deterministic, with no noise in the gradients, but the problem itself is
random).
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The regret of any algorithm is 1
t

∑t
s=1 ε

⊤
s θs−1, which has zero expectation because θs−1

does not use the information of εs. Moreover, using that the ℓ1-norm is dual to the ℓ∞-
norm:

inf
θ∈C

1

t

t∑

s=1

ε⊤s θ = −
∥∥∥1

t

t∑

s=1

εs

∥∥∥
1

= −d
∣∣∣1
t

t∑

s=1

(εs)1

∣∣∣.

Therefore, from the following lemma, the regret is greater than d
∣∣ 1
t

∑t
s=1(εs)1

∣∣ > d/(8
√
t),

which is equal to Bdiam(C)/(16
√
t), a lower bound that matches the upper-bound from

SGD from Eq. (11.2), up to a constant factor.

Lemma 11.1 (Khintchine’s inequality) Let η ∈ {−1, 1}t be a vector of independent
Rademacher random variables (with equal probabilities for −1 and +1) and x ∈ Rd. Let
p ∈ [0,∞). Then

(
E
[
|x⊤η|p

])1/p
6 Bp‖x‖2, (11.5)

with Bp =
(
p2p/2Γ(p/2)

)1/2
, where Γ is the Gamma function.3 The bound Bp is less than

3
√
p for p > 1 and 3

2

√
p for p > 2. Moreover, if p > 2,

(
E
[
|x⊤η|p

])1/p
> ‖x‖2, and if

p 6 2, we have: (
E
[
|x⊤η|p

])1/p
> B

2−p/2
4−p ‖x‖2. (11.6)

We also have when p > 1, with 1/p+ 1/q = 1,
(
E
[
|x⊤η|p

])1/p
> B−1

q ‖x‖2.
Proof (�) We have, for s = x⊤η, and p > 0:

E[|s|p] = p

∫ +∞

0

λp−1
P(|s| > λ)dλ,

(which can be checked using Fubini’s theorem). We then compute directly:

E[ets] =

d∏

i=1

(1

2
ets +

1

2
e−ts

)
=

d∏

i=1

cosh(txi) 6 exp(t2‖x‖22/2),

using that coshα 6 exp(α2/2) for any α ∈ R. Thus, for λ > 0,

P(|s| > λ) 6 2P(s > λ) = 2P(ets > etλ) 6 2 inf
t>0

e−λtE[ets] using Markov’s inequality,

6 2 inf
t>0

e−λt exp(t2‖x‖22/2) = 2 exp(−λ2/(2‖x‖22)), with t = λ/‖x‖2.

Thus, through the change of variable µ = λ/‖x‖2:

E[|s|p] 6 2p

∫ +∞

0

λp−1 exp(−λ2/(2‖x‖22))dλ = ‖x‖p2 × 2p

∫ +∞

0

µp−1 exp(−µ2/2)dµ.

3See https://en.wikipedia.org/wiki/Gamma_function.

https://en.wikipedia.org/wiki/Gamma_function
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Thus, for Eq. (11.5), we can take Bpp = 2p
∫ +∞
0

λp−1e−λ
2/2dλ = p2p/2

∫ +∞
0

up/2−1e−udu =

p2p/2Γ(p/2), with the change of variable u = λ2/2. Through Stirling formula Γ(p/2)1/p ∼√
p/(2e), and thus Bp ∼

√
p/e, and one can then check the bound Bp 6 3

√
p for p > 1,

and Bp 6
3
2

√
p for p > 2.

Assuming ‖x‖2 = 1 without loss of generality, we have, using Hölder’s inequality:

1 = E[|x⊤η|2] 6
(
E[|x⊤η|p]

)1/p(
E[|x⊤η|q]

)1/q
,

which leads to the last lower bound.

Moreover, for p > 2, we have directly ‖x‖2 6
(
E
[
|x⊤η|p

])1/p
, and to prove Eq. (11.6),

for p ∈ [0, 2], we have by Cauchy-Schwarz inequality:

1 = E[|x⊤η|2] = E[|x⊤η|p/2|x⊤η|2−p/2] 6
(
E[|x⊤η|p]

)1/2(
E[|x⊤η|4−p]

)1/2

6
(
E[|x⊤η|p]

)1/2
B

2−p/2
4−p .

The optimal constant in Eq. (11.5) is Bp = 1 for p ∈ (0, 2], and Bp =
√

2(Γ(p/2 +
1/2)/

√
π)1/p if p > 2, while the optimal constant in Eq. (11.6) is Ap = 1 if p > 1, and

Ap = 21/2−1/p if p < 1.847.4

Thus, with the notations of the lemma above:

(
E[|x⊤η|p]

)1/p
> B

1−4/p
4−p ‖x‖2.

This leads to E|x⊤η| > ‖x‖2B−3
3 > ‖x‖2(3 · 23/2Γ(3/2))−1 > ‖x‖2/8 for the lower bound

for online learning.

Exercise 11.3 (�) What would upper and lower bounds be if the regret criterion is re-
placed by E

[∑t
s=1 αsFs(θs−1)

]
− infθ∈C

1
t

∑t
s=1 αsFs(θ) for an arbitrary sequence (αs) of

positive numbers?

11.2 Zero-th order convex optimization

In this section, we consider the task of unconstrained minimization of a convex func-
tion F , given only access to function values, which is typically referred to as zero-th
order optimization (since the function value is the zero-th order derivative of F , while
the gradient is the vector of first-order derivatives).

If the function values are accessible with no noise and the function is smooth, then
one can get a gradient by finite differences by defining the following estimate:

F̂ ′(θ) =

d∑

i=1

1

δ

[
F (θ + δei)− F (θ)

]
ei ∈ R

d, (11.7)

4See https://en.wikipedia.org/wiki/Khintchine_inequality.

https://en.wikipedia.org/wiki/Khintchine_inequality
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where (ei)i∈{1,...,d} is the canonical orthonormal basis of Rd, with arbitrary precision
when δ tends to zero. Indeed, using the smoothness inequality from Eq. (5.10):

‖F̂ ′(θ) − F ′(θ)‖22 =
1

δ2

d∑

i=1

[
F (θ + δei)− F (θ)− F ′(θ)⊤δei

]2
6

d

δ2
(
Lδ2/2)2 =

dL2δ2

4
.

Therefore, assuming for simplicity that algorithms have infinite numerical precision at
the expense of d+1 noiseless function evaluations (one at θ, and d at each θ+δei), we can
compute the exact gradient, and use gradient descent. Note also that for many functions,
the gradient can be computed easily with automatic differentiation techniques (see, e.g.,
Baydin et al., 2018, and references therein). The problem is more interesting with noisy
evaluations.

In this section, we first consider for simplicity the case where f is convex and smooth
(that is, essentially with bounded second-order derivatives) but only accessible with a
stochastic first-order oracle (unbiased, with variance σ2), for which, in Eq. (11.7), the
noise in the function values explodes when δ goes to zero.

That is, we will consider the iteration

θt = θt−1 − γ
[1

δ

(
F (θt−1 + δzt) + ζt − F (θt−1)− ζ′t

)
zt
]
,

where ζt and ζ′t are zero-mean random variables with variance σ2, corresponding to the
additive noise on the two function evaluations. By writing εt = ζt − ζ′t, we get:

θt = θt−1 − γ
[1

δ

(
F (θt−1 + δzt)− F (θt−1) + εt

)
zt
]
, (11.8)

where εt corresponds to the noise with the two function evaluations at θt−1 and θt−1+δzt,
thus of variance 2σ2, and zt is sampled from a distribution so that the mean is E[zt] = 0
and the covariance matrix is E[ztz

⊤
t ] = I.

There are two natural candidates: (1) z a signed canonical basis vectors selected
uniformly at random (that is, ±

√
dei, with i selected uniformly at random in {1, . . . , d},

and a factor
√
d to obtain an identity covariance matrix), which corresponds to a single

coordinate change like in Eq. (11.7), or (2) z standard Gaussian vector (with mean zero
and identity covariance matrix). We consider the second option, as this will lead to an
interesting property relating the stochastic gradient estimate to the gradient of a modified
function.

Note that if F is defined as an expectation F (θ) = Eξ

[
f(θ, ξ)

]
, the stochasticity at

time t comes from a sample ξt. We then compute the function values f(θ, ξt) at two
different points with the same ξt, and we can get an improved bound (see the end of
Section 11.2.1).

The key in analyzing the iteration in Eq. (11.8) is to study g = 1
δ

(
F (θ+ δz)−F (θ)

)
z,

for a certain θ and z and a standard Gaussian vector.
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For δ small, a simple Taylor expansion around θ leads to

g =
1

δ

(
F (θ + δz)− F (θ)

)
z =

1

δ

(
δz⊤F ′(θ) +O(δ2)

)
z = zz⊤F ′(θ) +O(δ).

Thus, by taking an expectation with respect to z, we get E[g] = F ′(θ) +O(δ), that is, we
have an almost unbiased gradient (for δ small), and we can thus expect to use stochastic
gradient techniques. It turns out that the analysis will be made even simpler through
integration by parts and the property of the Gaussian distribution.

In terms of variance linked to noisy evaluations, the term 1
δ εtzt has zero mean, but

its squared norm has expectation E
[∥∥ 1

δ εtzt
∥∥2

2

]
= 1

δ2 2σ2d. Thus, it explodes when δ goes
to zero, thus leading to some trade-offs we now look at.

11.2.1 Smooth stochastic gradient descent

For simplicity, we consider an L-smooth function F defined on Rd (see next section for
the non-smooth version).

An important tool will be to consider the function Fδ : Rd → R defined as

Fδ(θ) = Ez∼N(0,I)[F (θ + δz)], (11.9)

which is the expectation of F taken at point distributed as a Gaussian with mean θ and
covariance matrix δ2I.

Approximation properties. We can analyze the difference between F and Fδ when F
is L-smooth:

∀θ ∈ R
d, Fδ(θ) − F (θ) = Ez∼N(0,I)

[
F (θ + δz)− F (θ)− δF ′(θ)⊤z

]
.

Thus, using Jensen’s inequality, we get Fδ(θ) > F (θ) and using the smoothness bound
from Eq. (5.10), we get:

∀θ ∈ R
d, 0 6 Fδ(θ) − F (θ) 6

Lδ2

2
Ez∼N(0,I)[‖z‖22] =

L

2
δ2d. (11.10)

Moreover, we can compute the expectation of the squared norm of the gradient estimate

E

[∥∥1

δ

(
F (θ + δz)− F (θ)

)
z
∥∥2
2

]

6 2E
[∥∥1

δ

(
F (θ + δz)− F (θ)− δF ′(θ)⊤z

)
z
∥∥2
2

]
+ 2E

[
‖zz⊤F ′(θ)‖22

]

6 2E
[L2δ2

4
‖z‖62

]
+ 2F ′(θ)⊤E

[
‖z‖22zz⊤

]
F ′(θ) using smoothness,

=
L2δ2

2
d(d+ 2)(d+ 4) + 2‖F ′(θ)‖22 · 3d 6

L2δ2

2
15d3 + 6d‖F ′(θ)‖22, (11.11)

where we have used that ‖z‖22 is a chi-squared random variable and that we get in closed
form E[‖z‖62] = d(d+ 2)(d+ 4) and E

[
‖z‖22zz⊤

]
= 3dI (see the exercise below).
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Exercise 11.4 Show that for a standard Gaussian vector z ∈ Rd (with zero mean and
covariance matrix identity), then E[‖z‖62] = d(d+ 2)(d+ 4) and E

[
‖z‖22zz⊤

]
= 3dI.

Stochastic gradient descent. We can now analyze gradient descent and take condi-
tional expectations given the information Fs−1 up to time s − 1, and use the standard
manipulations from Chapter 5, starting from:

θs − θ∗ = θs−1 − θ∗ − γ
1

δ

(
F (θs−1 + δzs)− F (θs−1)

)
zs −

γ

δ
εszs,

to get, by expanding the squared norm:

E
[
‖θs − θ∗‖22|Fs−1

]

6 ‖θs−1 − θ∗‖22 − 2γF ′
δ(θs−1)⊤(θs−1 − θ∗)

+2γ2E
[
‖1

δ

(
F (θs−1 + δzs)− F (θs−1)

)
zs‖22

∣∣Fs−1

]
+ 2

γ2

δ2
E[ε2s‖zs‖22]

6 ‖θs−1 − θ∗‖22 − 2γF ′
δ(θs−1)⊤(θs−1 − θ∗)

+2γ2 ·
[L2δ2

2
15d3 + 6d‖F ′(θs−1)‖22

]
+ 2

γ2

δ2
· 2dσ2 using Eq. (11.11),

6 ‖θs−1 − θ∗‖22 − 2γ
[
Fδ(θs−1)− Fδ(θ∗)

]

+15γ2L2δ2d3 + 24Lγ2d
[
F (θs−1)− F (θ∗)

]
+ 4d

γ2

δ2
σ2 using co-coercivity,

6 ‖θs−1 − θ∗‖22 − 2γ
[
F (θs−1)− F (θ∗)

]
+ 2γ · L

2
δ2d

+15γ2L2δ2d3 + 24Lγ2d
[
F (θs−1)− F (θ∗)

]
+ 4d

γ2

δ2
σ2, using Eq. (11.10).

Thus, if γ 6 1
24dL , we have 24Lγ2d 6 γ, and we get:

E
[
‖θs − θ∗‖22|Fs−1

]
6 ‖θs−1 − θ∗‖22 − γ

[
F (θs−1)−F (θ∗)

]
+ γLδ2d

+
15

24
γLδ2d2 + 4d

γ2

δ2
σ2

6 ‖θs−1 − θ∗‖22 − γ
[
F (θs−1)−F (θ∗)

]
+ 2γLδ2d2 + 4d

γ2

δ2
σ2,

leading to, taking full expectations:

E
[
F (θs−1)

]
− F (θ∗) 6

1

γ

(
E
[
‖θs−1 − θ∗‖22

]
− E

[
‖θs − θ∗‖22

])
+ 2Lδ2d2 + 4d

γ

δ2
σ2.

Summing from s = 1 to s = t, we get

1

t

t∑

s=1

E
[
F (θs−1)

]
− F (θ∗) 6

1

γt
‖θ0 − θ∗‖22 + 2Lδ2d2 + 4d

γ

δ2
σ2. (11.12)

We can now analyze various situations depending on the presence or absence of noise (see
empirical illustration in Figure 11.1):
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• If σ = 0, then we can take δ as close to zero as possible and get the rate, with
γ = 1

24dL , for the average iterate θ̄t = 1
t

∑t
s=1 θs−1, and using Jensen’s inequality:

E
[
F (θ̄t)

]
− F (θ∗) 6

24Ld

t
‖θ0 − θ∗‖22. (11.13)

As suggested at the beginning of Section 11.2, we only lose a factor of d compared
to regular gradient descent in Section 5.2.4.

• If σ > 0, we can optimize over δ to get (assuming σ is known), with the choice
δ4 = 2γσ2L−1d−1, E

[
F (θ̄t)

]
− F (θ∗) 6 1

γt‖θ0 − θ∗‖22 + 2
√

2 · γ1/2L1/2σd3/2. With

the maximal allowed step-size γ = 1
24dL , this leads to

E
[
F (θ̄t)

]
− F (θ∗) 6

24Ld

t
‖θ0 − θ∗‖22 + σd.

There is convergence only up to the noise level with a limiting bound σd. We can
also use a step-size γ that depends on the horizon t, by taking γ = 1

24Ld t
−2/3,

leading to:

E
[
F (θ̄t)

]
− F (θ∗) 6

d

t1/3
[
24L‖θ0 − θ∗‖22 + σ

]
.

We not only lose a factor of d in the bound, but the dependence in t is worsened
from 1/t to 1/t1/3. Note that (a) the natural rate for convex stochastic first-order
methods is O(1/

√
t), and (b) the dependence in σ could be improved if the noise

level were known.

Extensions. We can also consider the case where we can do two function evaluations,

where one can check that we can essentially remove the variance term in dγ
2

δ2 σ
2 due to

two noisy evaluations, removing in Eq. (11.12) the last term, and thus with improved
behavior. For related lower bounds, see Duchi et al. (2015).

Exercise 11.5 When two function evaluations are available, compute optimal values of δ
and γ and provide an improved convergence rate.

11.2.2 Stochastic smoothing (�)

In this section, we consider the case where F may not be smooth, which leads to consid-
ering the nice effect of randomized smoothing. This randomized smoothing can simply
be explained by seeing Fδ as the convolution of the function F by the density of the
Gaussian distribution with mean zero and covariance matrix δ2I. Since this density is in-
finitely differentiable, a continuous function will be turned into an infinitely differentiable
function. One particular instance of this phenomenon is shown precisely below.
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Figure 11.1: Zero-th order optimization with Gaussian smoothing on a quadratic func-
tion F in dimension d = 10, with step-size γ = 1/(4Ld): two different levels of noise
added to the function values, σ = 0.01 (top), and σ = 0.1 (bottom), with three different
smoothing constants, δ = 0.01 (left), δ = 0.1 (middle), and δ = 10 (right). Performance
improves with smaller noise variance σ2, while δ should be chosen not too large (then too
much bias) and not too small (too much variance).
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Proposition 11.2 (Randomized smoothing) Assume F is B-Lipschitz-continuous.
Then the function Fδ : Rd → R defined in Eq. (11.9) is also B-Lipschitz-continuous.

Morerover, it is
(√

d
δ B)-smooth, with gradient equal to

F ′
δ(θ) =

1

δ
Ez∼N(0,I)

[
F (θ + δz)z

]
=

1

δ
Ez∼N(0,I)

[
(F (θ + δz)− F (θ))z

]
.

Moreover, ∀θ ∈ Rd, |Fδ(θ)− F (θ)| 6 Bδ
√
d.

Proof If F is B-Lipschitz-continuous, then for any θ, θ′ ∈ R
d, we have

|Fδ(θ)− Fδ(θ′)| =
∣∣E
[
F (θ + δz)− F (θ′ + δz)

]∣∣ 6 E
[
|F (θ + δz)− F (θ′ + δz)|

]

6 E
[
B‖θ − θ′‖2

]
= B‖θ − θ′‖2,

which shows Lipschitz-continuity of Fδ. In terms of approximation, we have:

∀θ ∈ R
d, |Fδ(θ)−F (θ)| 6 Ez∼N(0,I)

[
|F (θ+δz)−F (θ)|

]
6 BδEz∼N(0,I)[‖z‖2] 6 Bδ

√
d.

We can now use the expression of the multivariate standard Gaussian density to get:

Fδ(θ) =
1

(2π)d/2

∫

Rd

F (θ + δη) exp
(
− 1

2
‖η‖22

)
dη.

Then, assuming for simplicity that we can differentiate through the expectation, we get,
by integration by parts:

F ′
δ(θ) =

1

(2π)d/2

∫

Rd

F ′(θ + δη) exp
(
− 1

2
‖η‖22

)
dη

=
1

(2π)d/2
1

δ

∫

Rd

δF ′(θ + δη) exp
(
− 1

2
‖η‖22

)
dη

=
1

(2π)d/2
1

δ

∫

Rd

∂F (θ + δη)

∂η
exp

(
− 1

2
‖η‖22

)
dη

= − 1

(2π)d/2
1

δ

∫

Rd

F (θ + δη)
∂ exp

(
− 1

2‖η‖22
)

∂η
dη by integration by parts,

= − 1

(2π)d/2
1

δ

∫

Rd

F (θ + δη) exp
(
− 1

2
‖η‖22

)(
− η)dη = E

[1

δ
F (θ + δz)z

]
.
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That is, the gradient is equal to

F ′
δ(θ) = E

[1

δ
F (θ + δz)z

]
= E

[1

δ

(
F (θ + δz)− F (θ)

)
z
]
.

The function Fδ is
(√

d
δ B)-smooth, since for θ, θ′ ∈ Rd,

‖F ′
δ(θ)−F ′

δ(θ
′)‖2 6

1

δ
Ez∼N(0,I)

[
|F (θ+δz)−F (θ′+δz)|‖z‖

]
6
B

δ
‖θ−θ′‖2Ez∼N(0,I)[‖z‖2].

In other words, the expectation of the gradient estimate happens to be exactly the gra-
dient of a smoothed version Fδ of F . This will be used in the proof below. More-
over, the expression of F ′

δ as an expectation leads naturally to the stochastic gradient

F̂ ′
δ(θ) = 1

δF (θ + δz)z − 1
δF (θ)z, for which we have: E[F̂ ′

δ(θ)] = F ′
δ(θ) and

E
[
‖F̂ ′

δ(θ)‖22
]
6 E

[
B2‖z‖42

]
6 4B2d2.

Stochastic gradient descent. We have, for θ∗ a minimizer of F on R
d, by expanding

the square,

‖θs − θ∗‖22 = ‖θs−1 − θ∗‖22 − 2
γ

δ

([
F (θs−1 + δzs)− F (θs−1) + εs

]
zs
)⊤

(θs−1 − θ∗)

+
γ2

δ2

∥∥[F (θs−1 + δzs)− F (θs−1) + εs
]
zs
∥∥2
2
.

We have, using the previous inequalities:

E
[
‖θs − θ‖22|Fs−1

]
= ‖θs−1 − θ‖22 − 2γF ′

δ(θs−1)⊤(θs−1 − θ) + 2γ2 · 4B2d2 + 2
γ2

δ2
· σ2d,

leading to

Fδ(θs−1)− Fδ(θ) 6
1

2γ

(
E
[
‖θs−1 − θ‖22

]
− E

[
‖θs − θ‖22

])
+ 4γB2d2 +

γ

δ2
σ2d

F (θs−1)− F (θ) 6
1

2γ

(
E
[
‖θs−1 − θ‖22

]
− E

[
‖θs − θ‖22

])
+ 4γB2d2 +

γ

δ2
σ2d+ 2Bδ

√
d.

We thus get

1

t

t∑

s=1

F (θs−1)− F (θ) 6
1

2γt
‖θ0 − θ‖22 + 4γB2d2 +

γ

δ2
σ2d+ 2Bδ

√
d.

This leads to a similar discussion as for the smooth case in Section 11.2.1, for the choice
of step-sizes:

• When σ = 0 (no noise in function evaluations), we can take δ as small as possible
so that rounding errors do not perturb the finite differences, and we then only lose
a factor of d compared to the standard subgradient method studied in Section 5.3.
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• When σ > 0, then we can optimize over δ, with δ3 = γσ2B−1
√
d. We then get

1

t

t∑

s=1

F (θs−1)− F (θ) 6
1

2γt
‖θ0 − θ‖22 + 4γB2d2 + 3d2/3γ1/3σ2/3B2/3.

To optimize the rate for large values of t, we can take γ = 1
B2d1/2t3/4

for a final rate

d1/2

2t1/4

(
B2‖θ0 − θ‖22 + 6σ2/3

)
+ 4

d3/2

t3/4
.

11.2.3 Extensions

In this section on zero-th order algorithms, we have focused on optimization algorithms
with potentially stochastic noise, with a criterion which is the function values at the final
time. This can be extended to online learning formulations with a different function Ft at
time t, then using the regret criterion in Eq. (11.1). Online zero-th order optimization is
significantly more complicated, and in the next section, we will focus only on multi-armed
bandits, which are optimization problems over finite sets and already lead to significant
theoretical and practical developments. For more general cases, see Hazan (2022).

11.3 Multi-armed bandits

This section aims to provide the simplest results for multi-armed stochastic bandits.
There is extensive and rich literature; see Bubeck and Cesa-Bianchi (2012); Lattimore
and Szepesvári (2020); Slivkins (2019) for a more detailed account.

Multi-armed bandits are the simplest model of sequential decision problems where
information is gathered as decisions are made and losses incurred, where the “exploration-
exploitation” dilemma occurs. Beyond being a stepping stone for many more complex
models, it directly applies to clinical trials or routing in networks.

We consider k potential “arms” with associated means µ(1), . . . , µ(k) ∈ R. Every time
we select the arm i, we receive a reward sampled independently of all other rewards
and the previous arm choices from a sub-Gaussian distribution with mean µ(i), and sub-
Gaussian parameter σ. At time s, we select the arm is based on the information Fs−1 up
to time s− 1 (that is, the rewards received before time s− 1) and receive the reward rs.
In this chapter, we focus on “plain” bandits, noting that many variations exist where
limited feedback is given to the algorithm, in particular “contextual” bandits, where a
feature vector is observed before each arm is selected and where rewards are unknown
functions of the feature vectors.

Criterion for reward maximization. Our criterion is the expected regret (adapted
to the maximization of rewards), equal to

Rt = t · max
i∈{1,...,k}

µ(i) −
t∑

s=1

E[rs].
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△! As opposed to online learning in the previous section, here we are not dividing
the regret by t.

Denoting ∆(j) = maxi∈{1,...,k} µ
(i) − µ(j) > the difference between the mean of the

best arm and the mean of arm j, and n
(j)
t the number of times the arm j was selected in

the first t iterations, we can express the regret as

Rt =

k∑

j=1

∆(j)
E
[
n
(j)
t

]
. (11.14)

Thus, the regret is a direct function of the number of times each arm is selected. For all
algorithms, we consider the natural unbiased estimate of the arm means at time s, that
is,

µ̂
(j)
t =

1

n
(j)
t

t∑

s=1

rs1is=j =
1

n
(j)
t

n
(j)
t∑

a=1

x(j)a ,

where we imagine we select rewards from a sequence of i.i.d. samples x
(i)
a with mean µ(i)

from each arm. This implies that as we select some arms multiple times, we get a

more accurate estimate of µ(i) as the expected squared distance between µ̂
(j)
t and µ(i) is

proportional to 1/n
(j)
t . To simplify the exposition, we ignore the equality cases among

the various estimated µ̂
(j)
t , which is safe as long as the distributions of the arm values are

absolutely continuous with respect to the Lebesgue measure.

11.3.1 Need for an exploration-exploitation trade-off

We can now consider two extreme algorithms, highlighting the need to both “explore”
and “exploit”.

Pure exploration. If we select a random arm at each step, then, from Eq. (11.14) and

E[n
(j)
t ] = t

k , the expected regret is t · 1k
∑k

j=1 ∆(j) and depends linearly in t, that is, we
have a “linear regret”. At time step t, we get a reasonable estimate of the best arm, but
this incurs a strong loss along the iterations.

Pure exploitation. The previous strategy was ignoring the online estimates µ̂
(j)
t . The

pure exploitation strategy does the opposite by only selecting the arm with the current
largest estimate, assuming that the first k steps are dedicated to selecting each arm only
once. This has linear regret because there is a non-zero probability that the best arm
will never be selected again.

Exercise 11.6 Provide a lower bound on the regret of the pure exploitation strategy.
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11.3.2 “Explore-then-commit”

If we considermk steps where we select exactly each armm times, we can build the m esti-
mates µ̂(1), . . . , µ̂(k), which are all independent random variables, with means µ(1), . . . , µ(k)

and with sub-Gaussian parameters σ2/m. Let i∗ be the optimal arm.

We then select the arm with maximal µ̂
(j)
mk for all remaining t− km steps. The regret

for this algorithm is then equal to, using Eq. (11.14), for t > mk:

Rt = m

k∑

j=1

∆(j) + (t−mk)

k∑

j=1

∆(j)
P(µ̂

(j)
mk > µ̂

(i)
mk, ∀i 6= j),

where the first term corresponds to the first m steps, for which this is the exact contri-
bution of the regret, and the second term corresponds to the other (t−mk) steps, where

the arm j is selected if µ̂
(i)
mk is maximized for i = j.

We can now upper-bound the second term by only imposing that an arm j is selected

if µ̂
(j)
mk > µ̂

(i∗)
mk (noting that ∆(i∗) = 0):

Rt 6 m

k∑

j=1

∆(j) + (t−mk)

k∑

j=1

∆(j)
P(µ̂

(j)
mk > µ̂

(i∗)
mk )

6 m
∑

j 6=i∗
∆(j) + t

∑

j 6=i∗
∆(j) exp

(
− (∆(j))2m

4σ2

)
,

by using sub-Gaussian tail bounds (see Section 1.2.1) on the difference of the m arm

values between j and i∗ (that is, µ̂
(i∗)
mk − µ̂

(j)
mk is a sub-Gaussian random variable with

mean ∆(j) and sub-Gaussianity parameter 2σ2/m).

Two arms (k = 2). For k = 2 arms, the upper-bound is, with ∆ = ∆(i) for i 6= i∗:

m∆ + t∆ exp
(
− ∆2m

4σ2

)
,

and we can minimize approximately with respect to m by taking the gradient with respect
to m (assuming for a moment it is not restricted to be an integer), leading to ∆ =

t ∆3

4σ2 exp
(
− ∆2m

4σ2

)
, that is, we consider the candidate m∗ =

⌊
4σ2

∆2 log ∆2t
4σ2

⌋
.

If t > 4σ2

∆2 exp
(
4σ2

∆2

)
, then m∗ > 1, while it is always less than t/2. We then have a

regret less than (using logα 6 α− 1):

4σ2

∆
log

∆2t

4σ2
+ t∆ exp

[
− ∆2

4σ2

(4σ2

∆2
log

∆2t

4σ2
− 1

)]
=

4σ2

∆

[
exp(∆2/(4σ2)) + 2 log

∆
√
t

2σ

]

6
4σ2

∆

(
exp(∆2/(4σ2))− 2 + 2

∆
√
t

2σ

)
,

which is less than a constant plus 4σ
√
t. As shown below, this simple algorithm will

achieve the lower bound (up to constant factors) for all possible algorithms. However,
this requires knowing ∆ and t in advance to select m∗ appropriately.
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More than two arms (k > 2). We consider the event A = {∀i 6= i∗, µ̂(i) − µ(i) 6
r√
m
, µ̂(i∗) − µ(i∗) > − r√

m
}, where r is a constant to be determined later. This event

is true if suboptimal arms are not too overestimated while the optimal arm is not too
underestimated. If the event A is true, then the loss in rewards for the last t−mk steps
is less than 2 r√

m
(since only arms with means that are less than 2 r√

m
away from the

optimal one can be selected), while it is less than δ = maxi6=i∗ ∆i otherwise. Moreover,

using sub-Gaussian tail bounds and the union bound, P(Ac) 6 k exp(− r2

2σ2 ).

Thus, the regret is less than

Rt 6 mkδ + 2
rt√
m

+ δkt exp
(
− r2

2σ2

)
,

where the first term corresponds to the explore phase and the last two terms to the
commit phase.

With m3/2 ≈ rt/(kδ), we can minimize the first two terms and get

Rt 6 3(rt)2/3(kδ)1/3 + δkt exp
(
− r2

2σ2

)
.

With r = σ
√

2 log(kt), we then get Rt 6 δ+3t2/3k1/3δ1/3σ2/3
(
2 log(kt))1/3, which grows

as t2/3 and does not achieve the lower bound (see a better algorithm in Section 11.3.3).

ε-greedy. We can mix exploration and exploitation with the “ε-greedy” strategy, which
will update estimates µ̂(i) but spread the exploration phase over iterations by selecting
with some positive probability a random arm. The final regret is similar to explore-and-
commit (Auer et al., 2002a).

11.3.3 Optimism in the face of uncertainty (�)

We consider the classical “upper confidence bound” (UCB) algorithm (Auer et al., 2002a),
whose principle is simple. As arms are being selected, confidence intervals for the values

of each arm are maintained as [µ̂
(i)
t − ν

(i)
t , µ̂(i) + ν

(i)
t ]. The arm that is selected is the

one with maximal upper-confidence bound µ̂
(i)
t + ν

(i)
t . This is one instance of the general

principle of optimism in the face of uncertainty (Munos et al., 2014).

The precise algorithm is as follows (assuming that σ is known):

• For the first k rounds, select each arm exactly once, and form µ̂
(i)
k as the reward

received for arm i, with ν
(i)
k =

√
2ρσ2 log(k)/n

(i)
k =

√
2ρσ2 log(k), with ρ > 0 to

be determined later.

• For all other t > k, select the arm it which maximizes µ̂
(i)
t−1+ν

(i)
t−1, receive the reward,

and update, for all i, µ̂
(i)
t as the average reward received for all arms i ∈ {1, . . . , k},

with the interval width ν
(i)
t =

√
2ρσ2 log(t)/n

(i)
t .



11.3. MULTI-ARMED BANDITS 311

The confidence interval lenght for arm i is naturally proportional to σ/

√
n
(i)
t with an

extra factor that ensures sub-linear regret.

Thus, as illustrated below for k = 4, we have k confidence intervals, and we select the
arm with the largest upper confidence bound (here i = 4).

µ̂
(1)
t

µ̂
(1)
t + ν

(1)
t

µ̂
(1)
t + ν

(1)
t

µ̂
(2)
t

µ̂
(2)
t + ν

(2)
t

µ̂
(2)
t + ν

(2)
t

µ̂
(3)
t

µ̂
(3)
t + ν

(3)
t

µ̂
(3)
t + ν

(3)
t

µ̂
(4)
t

µ̂
(4)
t + ν

(4)
t

µ̂
(4)
t + ν

(4)
t

The analysis consists in upper-bounding E
[
n
(i)
t

]
for i 6= i∗ and using Eq. (11.14), that

is, Rt =
∑

i6=i∗ ∆(i)E
[
n
(i)
t

]
, to obtain the regret bound. We follow the proof technique

from Garivier and Cappé (2011). For simplicity, we assume that there is a single arm i∗
with maximal mean.

The main idea of the proof is to compare the upper-confidence bounds to the optimal
arm mean µ(i∗). That is, for i 6= i∗, we have:

E
[
n
(i)
t

]
=

t∑

u=1

P(iu = i)

=
t∑

u=1

P(iu = i, µ̂
(i)
u−1 + ν

(i)
u−1 > µ(i∗)) +

t∑

u=1

P(iu = i, µ̂
(i)
u−1 + ν

(i)
u−1 6 µ(i∗))

6

t∑

u=1

P
(
iu = i, µ̂

(i)
u−1 + ν

(i)
u−1 > µ(i∗)

)
+

t∑

u=1

P
(
µ̂
(i∗)
u−1 + ν

(i∗)
u−1 6 µ(i∗)

)
, (11.15)

since if we select arm i at time u (i.e., iu = i), then µ̂
(i∗)
u−1 + ν

(i∗)
u−1 6 µ̂

(i)
u−1 + ν

(i)
u−1.

In order to bound P
(
µ̂
(i∗)
u−1 + ν

(i∗)
u−1 6 µ(i∗)

)
, it is tempting to apply a concentration

inequality for the average of n
(i∗)
u−1 independent random variables distributed from the

optimal arm distribution. However, these variables are not independent because the
obtained reward and the choice of arms are not independent. Instead, we need to use

our sequence of i.i.d. samples x
(i∗)
a , a > 1, with mean µ(i∗), and bound the probability

that at least one of these u− 1 averages of i.i.d. random variables is less than the desired
bound. Thus, we have, from sub-Gaussian tail bounds, for u ∈ {1, . . . , t}:

P
(
µ̂
(i∗)
u−1 + ν

(i∗)
u−1 6 µ(i∗)

)
6

u−1∑

s=1

exp(−ρ log(s)) 6
1

uρ−1
6

1

tρ−1
.

Thus, the right term in Eq. (11.15) is less than t2−ρ.
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We now bound the left term in Eq. (11.15), as follows, for t > k:

t∑

u=1

P
(
iu = i, µ̂

(i)
u−1 + ν

(i)
u−1 > µ(i∗)

)

=

t∑

u=1

P

(
iu = i, µ̂

(i)
u−1 +

√
2ρσ2log(u)/n

(i)
u−1 > µ(i∗)

)

6

t∑

u=1

P

(
iu = i, µ̂

(i)
u−1 +

√
2ρσ2log(t)/n

(i)
u−1 > µ(i∗)

)
since u 6 t,

=
t∑

u=1

u−1∑

s=1

P

(
iu = i, n

(i)
u−1 = s,

1

s

s∑

a=1

x(i)a +
√

2ρσ2log(t)/s > µ(i∗)
)
.

We can now swap the two summations to get the bound

t−1∑

s=1

t∑

u=s+1

P

(
iu = i, n

(i)
u−1 = s,

1

s

s∑

a=1

x(i)a +
√

2ρσ2log(t)/s > µ(i∗)
)

6

t−1∑

s=1

P

(1

s

s∑

a=1

x(i)a +
√

2ρσ2log(t)/s > µ(i∗)
)

because the events {iu = i, n
(i)
u−1 = s}, for u ∈ {s+ 1, . . . , t} are mutually exclusive. We

can then use sub-Gaussian tail bounds, which are non-trivial (that is, less than 1) as soon
as ∆(i) >

√
2ρσ2log(t)/s, leading to a bound

+∞∑

s=1

exp
[
−
(
∆(i) −

√
2ρσ2log(t)/s

)2
+
s/(2σ2)

]
.

When s >
8ρσ2 log(t)
(∆(i))2

, then the summand is less than exp
[
− s

4 (∆(i))2/(2σ2)
]
, and that

part of the sum is less than, with κ = 1
4 (∆(i))2/(2σ2):

∞∑

s=1

exp(−sκ) =
e−κ

1− e−κ =
1

eκ − 1
6

1

κ
=

8σ2

(∆(i))2
.

Otherwise, we bound the probability by one, and get a term equal to 8ρσ2 log(t)
(∆(i))2

. Thus,

overall we get that

E
[
n
(i)
t

]
6 t2−ρ +

8ρσ2 log(t)

(∆(i))2
+

8σ2

(∆(i))2
.

For ρ = 2, this leads to a regret bound

Rt 6
∑

i6=i∗
∆(i)

(
1 +

σ2

(∆(i))2
(16 log t+ 8)

)
,
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Figure 11.2: Upper-confidence bounds for k = 10 Bernoulli arms with random means:
plot of upper and lower bounds as a function of time t (left), and regret (right).

which happens to achieve the lower bound (up to constants, see below). We can also
obtain a regret that does not blow up when ∆(i) goes to zero. Indeed, we always have∑k

i=1 n
(i)
t 6 t, leading to

Rt =
∑

i, ∆(i)<∆

∆(i)
E[n

(i)
t ] +

∑

i, ∆(i)>∆

∆(i)
E[n

(i)
t ] for a certain ∆,

6 t∆ +
∑

i, ∆(i)>∆

∆(i)
(

1 +
σ2

(∆(i))2
(16 log t+ 8)

)

6 t∆ +
∑

i

∆(i) + k
σ2

∆
(16 log t+ 8) 6

∑

i

∆(i) + 8σ
√
kt(log t+ 2),

by optimizing over ∆, which is also optimal up to logarithmic terms (see below).

If ρ > 2, then we only pay an increase in the bound proportional to ρ, while if ρ < 2,
the upper-bound on regret can start to be super-linear (and thus vacuous).

Lower bounds. It turns out that with k arms, the best that can be achieved is a regret

of order σ
√
kt, and for the instance-dependent problem, or order log(t)

∑
i6=i∗

σ2

∆(i) (see,
e.g., Bubeck and Cesa-Bianchi, 2012).

Illustration. In Figure 11.2, we plot the performance of the UCB algorithm with k = 10
arms. In particular, the right plot highlights that the upper confidence bounds for all
arms tend to be equal.

11.3.4 Adversarial bandits (�)

We finish this section on multi-armed bandits by studying a non-stochastic set-up referred
to as the adversarial set-up. We now have arbitrary reward vectors µt ∈ [0, 1]k, t > 1, that
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may vary with time and are assumed deterministic, and at each time step, we choose an

arm it, and we receive reward µ
(it)
t . This context where the reward vectors are selected

in advance (but arbitrary and unknown) is referred to as an “oblivious” adversary, as
opposed to an “adaptive” adversary where the functions can depend on past information.

The regret is then

max
i∈{1,...,k}

t∑

s=1

µ(i)
s −

t∑

s=1

µ(is)
s .

Note that in this set-up, there is no randomness in the environment and that we receive
rewards that are elements of [0, 1] and not sampled in {0, 1} from that quantity. The
stochastic setting can be seen as a particular subcase (but for which other algorithms,
such as UCB, can be applied; see a comparison at the end of this section).

Impossibility of deterministic policies. If the choice of it ∈ {1, . . . , k} is determin-
istic (and function of the past information), then there exists a reward sequence (µt) so

that µ
(it)
t = 0 and µ

(i)
t = 1 for i 6= it. After t steps, at least one arm has been chosen less

than t/k times. For that arm
∑t
s=1 µ

(i)
s > t − t/k, and thus the regret is greater than

t(1− 1/k) which is linear in t.

We, therefore, consider expectations from a randomized algorithm.

Hedge algorithm (�). We start with the situation where a full reward vector µt ∈
[0, 1]k is observed at every iteration (after the choice of action, which is sampled from the
probability vector πt−1 in the simplex in k dimensions). The expectation of the reward
is then π⊤

t−1µt. The Hedge algorithm (Freund and Schapire, 1997) consists in starting
with π0 uniform and updating πt as follows:

∀i ∈ {1, . . . , n}, π(i)
t =

π
(i)
t−1 exp(γµ

(i)
t )

∑k
j=1 π

(j)
t−1 exp(γµ

(j)
t )

,

where γ > 0 is a free parameter. This happens to be exactly the online mirror descent
algorithm from Section 11.1.3, with no randomness, applied to Ft(π) = µ⊤

t π, with the
entropy mirror map. We thus get immediately an expected normalized regret (with
respect to the randomization of the algorithm) less than

√
2 log(k)/

√
t for the choice

γ =
√

2 log(k)/
√
t. We therefore get a (unnormalized) regret proportional to

√
t log(k).

Exp3 algorithm (��). To tackle the bandit case with limited feedback, we follow the
same strategy as the Hedge algorithm but with an unbiased estimator of the vector µt ∈
[0, 1]k, from which we only observe the component µ

(it)
t , where it is sampled from πt−1.

The estimator suggested by Auer et al. (2002b) is an importance sampling estimator

and leads to the “Exp3” algorithm. It is defined as µ̂
(i)
t = µ

(it)
t 1i6=it/π

(i)
t−1; it thus has

expectation µt, and variance E
[
‖µ̂t‖2∞

]
6 E

[
‖µ̂t‖22

]
6

∑k
i=1 1/π

(i)
t−1, which is not enough

to get a non-explosive bound. However, an improvement on Prop. 11.1 may be obtained
for the simplex.
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Proposition 11.3 The mirror descent recursion in Eq. (11.3), for C the simplex and Φ

the entropy mirror map, is equal to θ
(i)
t =θ

(i)
t−1 exp(−γg(i)t )/

∑d
j=1θ

(j)
t−1 exp(−γg(j)t ) for all

i ∈ {1, . . . , d}. Then, assuming that gt has almost surely non-negative components and

E[
∑d

i=1 θ
(i)
s−1(g

(i)
s )2|Fs−1

]
6 B2 almost surely for all s > 1, for every θ ∈ C, we have:

1

t

t∑

s=1

E
[
Fs(θs−1)− Fs(θ)

]
6

1

γt
DΦ(θ, θ0) +

γB2

2
.

Proof Following the proof of Prop. 11.1, we have DΦ(θt, θt−1) + γg⊤t (θt − θt−1) =

−γ∑d
i=1 θ

(i)
t−1g

(i)
t − log

∑d
i=1 exp(−γg(i)t ), which, using Exercise 1.14, is greater than

− γ2

2

∑d
i=1 θ

(i)
t−1(g

(i)
t )2. This leads to the desired result.

We can now provide a regret bound for the Exp3 algorithm by using Prop. 11.3 and

noticing that we need to bound E[
∑d

i=1 π
(i)
s−1(µ̂

(i)
s )2|Fs−1

]
=

∑d
i=1(µ

(i)
t )2 6 k. This

leads to, after optimizing with respect to the step-size, a non-normalized regret bound
proportional to

√
kt log k.

From adversarial to stochastic. In the stochastic set-up, the UCB algorithms pro-
vided an un-normalized regret of order

√
kt log k, which is the same as the regret of the

Exp3 algorithm, which is aimed at the adversarial setting. For an analysis of Exp3 in the
stochastic case, see Seldin et al. (2013) for a similar regret bound.

11.4 Conclusion

In this chapter, we have provided extensions to the classical independent and identically
distributed setting that is the book’s main focus. In the convex case, algorithms and
analysis were similar to the classical case, and seamlessly allowed arbitrary sequences
of functions to be optimized. In the bandit setting, where only partial information was
provided, a dedicated algorithmic framework was presented (optimism in front of un-
certainty). There are multiple extensions, as described byShalev-Shwartz (2011); Bubeck
and Cesa-Bianchi (2012); Hazan (2022); Slivkins (2019); Lattimore and Szepesvári (2020).
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Chapter 12

Over-parameterized models

Chapter summary
– A model is said to be over-parameterized when it has sufficiently many parameters

to fit the training data perfectly. While many overparameterized models can signif-
icantly overfit the data, the ones learned by (stochastic) gradient descent typically
do not.

– Implicit regularization of gradient descent: for linear models, when there are several
minimizers (typically for over-parameterized models), gradient descent techniques
tend to converge to the one with minimum Euclidean norm.

– Double descent: for unregularized models learned with gradient descent techniques,
when the number of parameters grows and when gradient descent is used to fit the
model, the performance can exhibit a second descent after the test error blows up
when the number of parameters goes beyond the number of observations.

– Global convergence of gradient descent for two-layer neural networks: in the infinite
width (and thus strongly over-parameterized) limit, gradient descent exhibits some
globally convergent behavior for a non-convex problem, which can be analyzed for
simple architectures.

In this chapter, we will cover three recent topics within learning theory, all related to
high-dimensional models (such as neural networks) in the “over-parameterized” regime,
where the number of parameters is larger than the number of observations. When regu-
larization is added to the estimation procedures, we have seen in Chapters 7, 8, and 9,
that estimation can be numerically and statistically efficient by adding penalties to the
empirical risk. In this section, we consider primarily non-penalized problems, with a

317
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regularization coming from the choice of optimization algorithm (here, gradient descent).

△! The number of parameters is not what generally characterizes the general-
ization capabilities of regularized learning methods. See Section 3.6 and Sec-
tion 9.2.3.

12.1 Implicit bias of gradient descent

Given an optimization problem whose aim is to minimize some function F (θ) over with
respect to a parameter θ ∈ Rd, if there is a unique global minimizer θ∗, then the goal of
optimization algorithms is to find this minimizer, that is, we want that the t-th iterate θt
converges to θ∗. When there are multiple minimizers (thus for a function which cannot
be strongly convex), we showed only that F (θt) − infθ∈Rd F (θ) is converging to zero for
convex functions F (and only if a minimizer exists, see Chapter 5).

With some extra assumptions, it can be shown that the algorithm converges to one of
the multiple minimizers of F (Bolte et al., 2010) (note that when F is convex, this set is
also convex). But which one? This is referred to as the implicit regularization properties
of optimization algorithms, and here, gradient descent and its variants.

This is interesting in machine learning because, when F (θ) is the empirical loss on
n observations, d is much larger than n, and no regularization is used, there are multi-
ple minimizers. An arbitrary empirical risk minimizer is not expected to work well on
unseen data, and a classical solution is to use explicit regularization (e.g., ℓ2-norms like
in Chapter 3 and Chapter 7, or ℓ1-norms like in Chapters 8 and 9). In this section, we
show that optimization algorithms have a similar regularizing effect. In a nutshell, gradi-
ent descent usually leads to minimum ℓ2-norm solutions, in a similar way that boosting
algorithms were related to ℓ1-norm regularization in Section 10.3. This shows that the
chosen empirical risk minimizer is not arbitrary.

This will be explicitly shown for the quadratic loss and partially only for the logistic
loss. These results will be used in subsequent sections.

12.1.1 Least-squares

We consider the least-squares objective function1 F (θ) = 1
2n‖y −Xθ‖22 from Chapter 3,

with y ∈ Rn, X ∈ Rn×d such that d > n and (for simplicity) XX⊤ ∈ Rn×n invertible (this
is the kernel matrix). There are thus infinitely many (a whole affine subspace) solutions
such that y = Xθ, since the column space of X is the entire space Rn and θ has dimension
d > n. We apply gradient descent with step-size γ 6 1

L = λmax( 1
nX

⊤X)−1, which is equal
to λmax( 1

nXX
⊤)−1, starting from θ0 = 0, leading to θt = θt−1 − γ

nX
⊤(Xθt−1 − y), and

1We use X as a notation for the design matrix to highlight that in this section we will consider
predictions that are also linear in x.
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thus we have

Xθt − y = Xθt−1 − y −
γ

n
XX⊤(Xθt−1 − y) =

(
I − γ

n
XX⊤)(Xθt−1 − y),

leading to, by recursion,

Xθt − y =
(
I − γ

n
XX⊤)t(Xθ0 − y) =

(
I − γ

n
XX⊤)t(−y). (12.1)

We thus get ‖Xθt−y‖22 6
(
1− γ

nλmax(XX⊤)
)2t‖y‖22 and hence linear convergence of Xθt

towards y, with a convergence rate depending on the condition number of the kernel
matrix XX⊤.

Moreover, when started at θ0 = 0, gradient descent techniques (stochastic or not) will
always have iterates θt that are linear combinations of rows of X , that is, of the form
θt = X⊤αt for some αt ∈ Rn. This is an alternative algorithmic version of the representer
theorem from Chapter 7.

Since Xθt converges to y, Xθt = XX⊤αt converges to y. Since K = XX⊤ is in-
vertible, this means that αt is converges to K−1y, and thus θt = X⊤αt converges to
X⊤K−1y. It turns out that this is exactly the minimum ℓ2-norm solution as by standard
Lagrangian duality (Boyd and Vandenberghe, 2004):

inf
θ∈Rd

1

2
‖θ‖22 such that y = Xθ = inf

θ∈Rd
sup
α∈Rn

1

2
‖θ‖22 + α⊤(y −Xθ)

= sup
α∈Rn

α⊤y − 1

2
‖X⊤α‖22 with θ = X⊤α at optimum,

= sup
α∈Rn

α⊤y − 1

2
α⊤Kα.

The last problem is exactly solved for α = K−1y, with at optimum θ = X⊤α. Note that
in Chapter 7, we used this formula for function interpolation to compare different RKHSs
(see Prop. 7.2).

Lojasiewicz’s inequality (�). It turns out that the linear convergence obtained from
Eq. (12.1) can be obtained directly for any L-smooth function, for which we have the
so-called Lojasiewicz’s inequality:

∀θ ∈ R
d, F (θ)− F (θ∗) 6

1

2µ
‖F ′(θ)‖22, (12.2)

for some µ > 0.

In Chapter 5, we have seen that this is a consequence of µ-strong-convexity (Lemma 5.1),
but this can be satisfied without strong convexity. For example, for the least-squares ex-
ample, we have, for any minimizer θ∗:

‖F ′(θ)‖22 =
∥∥∥ 1

n
X⊤X(θ − θ∗)

∥∥∥
2

2
=

1

n2
(θ − θ∗)⊤X⊤XX⊤X(θ − θ∗)

>
λ+min(XX⊤)

n2
(θ − θ∗)⊤X⊤X(θ − θ∗),
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where λ+min(XX⊤) = λ+min(X⊤X) is the smallest non-zero eigenvalue of XX⊤ (which is
also the one of X⊤X). Thus, we have

‖F ′(θ)‖22 >
λ+min(K)

n2
‖X(θ − θ∗)‖22 =

2λ+min(K)

n
[F (θ)− F (θ∗)].

Thus, Eq. (12.2) is satisfied with µ = 1
nλ

+
min(K). Note that this includes also the strongly-

convex case since λ+min(X⊤X) > λmin(X⊤X).

When Eq. (12.2) is satisfied, we have for the t-th iterate of gradient descent with
step-size γ = 1/L, following the analysis of Chapter 5 (Prop. 5.3):

F (θt)− F (θ∗) 6 F (θt−1)− F (θ∗)− 1

2L
‖F ′(θt−1)‖22 6

(
1− µ

L

)[
F (θt−1)− F (θ∗)

]
.

Moreover, we can then show that the iterates xt are also converging to a minimizer of F
(see Bolte et al., 2010; Karimi et al., 2016, for more details).

12.1.2 Separable classification

We now consider logistic regression, that is, for yi ∈ {−1, 1}, i = 1, . . . , n,

F (θ) =
1

n

n∑

i=1

log(1 + exp(−yix⊤i θ)), (12.3)

with X ∈ Rn×d the design matrix (with rows equal to the input vectors x1, . . . , xn) such
that d > n and the kernel matrix XX⊤ ∈ Rn×n is invertible. In the regression setting,
interpolation corresponds to Xθ = y; in the classification setting, we predict perfectly
if and only if sign(Xθ) = y, which happens when y ◦ (Xθ) (where ◦ is the component-
wise product) has strictly positive components. Such an interpolator always exists (for
example, the one for regression on y).

Maximum margin classifier. Since XX⊤ is invertible, there exists η ∈ Rd of unit
norm such that ∀i ∈ {1, . . . , n}, yix⊤i η > 0 (e.g., as mentioned earlier, y = X⊤(XX⊤)−1y).
We denote by η∗ the one such that

min
i∈{1,...,n}

yix
⊤
i η

is maximal (and thus strictly positive). We denote by 1
ρ > 0 its value. This η∗ solves the

following problem, which can be rewritten as, using Lagrange duality:

1

ρ
= sup

‖η‖261

min
i∈{1,...,n}

yix
⊤
i η = sup

‖η‖261,t∈R

t such that ∀i ∈ {1, . . . , n}, yix⊤i η > t

= inf
α∈R

n
+

sup
‖η‖261,t∈R

t+
n∑

i=1

αi(yix
⊤
i η − t)

= inf
α∈R

n
+

∥∥∥
n∑

i=1

αiyixi

∥∥∥
2

such that

n∑

i=1

αi = 1, (12.4)
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with η ∝ ∑n
i=1 αiyixi at optimum. Moreover, by complementary slackness, a non-

negative αi is non zero only for i attaining the minimum in mini∈{1,...,n} yix
⊤
i η.

Reformulation as an SVM. Because of positive homogeneity, we aim to have the
quantity mini∈{1,...,n} yix

⊤
i η large and ‖η‖2 small, and we can decide to constrain the

first and minimize the second one. In other words, we can see η∗ as the unit-norm
direction of the solution θ∗ of the following optimization problem (with now non-negative
Lagrange multipliers α1, . . . , αn):

inf
θ∈Rd

1

2
‖θ‖22 such that Diag(y)Xθ > 1n = inf

θ∈Rd
sup
α∈R

n
+

1

2
‖θ‖22 + α⊤(1n −Diag(y)Xθ)

= sup
α∈R

n
+

α⊤1n −
1

2
‖X⊤ Diag(y)α‖22

with θ = X⊤ Diag(y)α at optimum.

Note that above, Diag(y)Xθ > 1n is the compact formulation of the inequality constraints
∀i ∈ {1, . . . , n}, yix⊤i θ > 1. Given η, θ is equal to η/mini∈{1,...,n} yix

⊤
i η, so that the

optimal value of the problem above is 1
2ρ

2.

The vector θ∗ above is the solution of the separable SVM from Section 4.1.2 with
vanishing regularization parameter, that is, of 1

2‖θ‖22 + C
∑n

i=1(1 − yix⊤i θ)+ for C large
enough. See Section 4.1.2 for an illustration.

Divergence and convergence of directions. Because the logistic loss plotted below
is strictly positive and tends to zero at infinity, the function F in Eq. (12.3) has an
infimum equal to zero, which is not attained. However, for any sequence θt such that all
yix

⊤
i θt, i = 1, . . . , n, tend to +∞, we have F (θt)→ infθ∈Rd F (θ) = 0.

yϕ(x)⊤θ

loss

In such a situation, gradient descent cannot converge to a point, and it has to diverge
to achieve small values of F . It turns out that it diverges along a direction, that is,
‖θt‖2 → +∞, with 1

‖θt‖2
θt → η for some η ∈ Rd of unit ℓ2-norm. That direction η has

to lead to perfect classification (that is yix
⊤
i η > 0 for all i ∈ {1, . . . , n}). Among all

of them, the direction η is exactly the maximum margin one, that is, which maximizes
mini∈{1,...,n} yix

⊤
i η > 0. See Gunasekar et al. (2018) for a detailed proof. Here, we just

give a simple argument on a slightly modified problem.
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Gradient flow on the exponential loss (�). We consider instead the logarithm of
the empirical risk associated with the exponential loss G(θ) = log

[
1
n

∑n
i=1 exp(−yix⊤i θ)

]
,

which is asymptotically equivalent to the logistic loss for yix
⊤
i θ tending to infinity for all

i ∈ {1, . . . , n} (which is the case when gradient descent diverges). Moreover, we replace
the gradient descent recursion θt = θt−1 − γG′(θt−1) by the gradient flow

ξ′(τ) = −G′(ξ(τ)). (12.5)

This ordinary differential equation approximates gradient descent for vanishing step-sizes,
as ξ(γt) ≈ θt for γ tending to zero. The use of gradient flows instead of gradient descent
is a standard theoretical simplification that allows the use of differential calculus (see,
e.g., Scieur et al., 2017, and references therein).

We have, for all θ ∈ Rd:

G′(θ) =
−∑n

i=1 yixi exp(−yix⊤i θ)∑n
i=1 exp(−yix⊤i θ)

= −
n∑

i=1

αiyixi,

for αi =
exp(−yix⊤

i θ)∑n
j=1 exp(−yjx⊤

j θ)
, for i ∈ {1, . . . , n}, leading to α in the simplex (with non-

negative components and summing to one). Thus, from Eq. (12.4) defining the maximum
margin hyperplane, we get:

‖G′(θ)‖ > 1

ρ
. (12.6)

Moreover, comparing maxima and soft-maxima,2, we get:

− log(n)− min
i∈{1,...,n}

yix
⊤
i θ 6 G(θ) 6 − min

i∈{1,...,n}
yix

⊤
i θ.

We thus have a flow τ 7→ ξ(τ) that cannot converge as by Eq. (12.5) and Eq. (12.6),
‖ξ′(τ)‖2 > 1/ρ. Moreover, it maximizes a function that is a constant away from the
margin. Therefore, it has to diverge along a direction that maximizes this margin. We
now make this reasoning precise.

By integration by part, using d
dτG(ξ(τ)) = G′(ξ(τ))⊤ξ′(τ) = −‖G′(ξ(τ))‖22 and

Eq. (12.6) twice:

min
i∈{1,...,n}

yix
⊤
i ξ(τ) > −G(ξ(τ)) − log(n)

= −G(ξ(0)) +

∫ τ

0

‖G′(ξ(u))‖22du− log(n)

> −G(ξ(0)) +
1

ρ

∫ τ

0

‖G′(ξ(u))‖2du− log(n) (12.7)

> −G(ξ(0)) +
1

ρ2
τ − log(n) (12.8)

2We use 0 > log
(
1
n

∑n
i=1 e

zi
)
−maxi∈{1,...,n} zi = log

(
1
n

∑n
i=1 e

zi−maxj∈{1,...,n} zj
)
> log(1/n).
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(note that Eq. (12.7) is not needed to derive Eq. (12.8), but will be used later). Thus,
from Eq. (12.8), for τ > ρ2

[
log(n) + G(ξ(0))

]
, we have a non-negative lower bound.

Moreover the derivative of τ 7→ ‖ξ(τ)‖2 is τ 7→ −G′(ξ(τ))
⊤( ξ(τ)

‖ξ(τ)‖2

)
, and its magnitude

is less than ‖G′(ξ(τ))‖2. This implies by integration that

‖ξ(τ)‖2 6 ‖ξ(0)‖2 +

∫ τ

0

‖G′(ξ(u))‖2du.

We thus get from Eq. (12.7) and Eq. (12.6):

min
i∈{1,...,n}

yix
⊤
i

( ξ(τ)
‖ξ(τ)‖2

)
>
−G(ξ(0)) + 1

ρ

∫ τ
0 ‖G′(ξ(u))‖2du− log(n)

‖ξ(0)‖2 +
∫ τ
0
‖G′(ξ(u))‖2du

=
−G(ξ(0))+ 1

ρ

(
‖ξ(0)‖2+

∫ τ
0
‖G′(ξ(u))‖2du

)
− 1
ρ‖ξ(0)‖2−log(n)

‖ξ(0)‖2 +
∫ τ
0 ‖G′(ξ(u))‖2du

=
1

ρ
+
−G(ξ(0))− 1

ρ‖ξ(0)‖2 − log(n)

‖ξ(0)‖2 +
∫ τ
0
‖G′(ξ(u))‖2du

>
1

ρ
−
G(ξ(0))+ 1

ρ‖ξ(0)‖2+log(n)

‖ξ(0)‖2 + τ/ρ
, since

∫ τ

0

‖G′(ξ(u))‖2du>
τ

ρ
.

The lower bound above tends to 1
ρ when τ tends to infinity, which is the maximal value.

We thus get convergence to the maximum margin hyperplane.

Alternative proof (�). We provide another informal derivation based on gradients.
The gradient F ′(θ) of the original objective function based on the logistic loss is equal to

F ′(θ) = − 1
n

∑n
i=1

exp(−yix⊤
i θ)

1+exp(−yix⊤
i θ)

yixi.

Asymptotically, θt will behave as ‖θt‖η, with ‖θt‖2 tending to infinity. Thus, because
we have a sum of exponentials with arguments that go to infinity, the dominant term
in F ′(θt) corresponds to the indices i for which −yix⊤i η is the largest. Moreover, all
of these values must be negative (indeed, we can only attain zero loss for well-classified
training data). We denote by I this set. Thus, asymptotically,

F ′(θt) ∼ −
1

n

∑

i∈I
yi exp(−‖θt‖2yix⊤i η)xi.

Moreover, if we admit for simplicity that F ′(θt) diverges in the direction −η, thus η has
to be proportional to a vector

∑
i∈I αiyixi, where α > 0, and αi = 0 as soon as i is

not among the minimizers of yix
⊤
i η. This is exactly the optimality condition for η∗ in

Eq. (12.4). Thus η = η∗.

Summary. Overall, we obtain a classifier corresponding to a minimum ℓ2-norm sepa-
rating hyperplane. See examples in two dimensions in Figure 12.1. Note that gradient
descent on the logistic regression problem may not be the most efficient way to obtain
a maximum margin hyperplane. See convergence rates by Soudry et al. (2018); Ji and
Telgarsky (2018) and a simpler subgradient algorithm below.
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t = 1 t = 2 t = 3 t = 4 t = 6 t = 8

t = 11 t = 16 t = 23 t = 32 t = 45 t = 64

t = 91 t = 128 t = 181 t = 256 t = 362 t = 512

Figure 12.1: Logistic regression on separable data estimated with gradient descent on the
unregularized empirical risk, at various numbers of iterations t. This is implemented by
minimizing the logistic loss function with data

(
xi

1

)
∈ R3. The dotted line represents the

maximum margin hyperplane, while the plain line represents the current classification
hyperplane.

Subgradient method for the hinge loss and perceptron (�). For linearly sepa-
rable data, dedicated algorithms exist that are explicitly or implicitly based on the hinge
loss. If we consider the “margin” ρ > 0 defined as

ρ2 = inf
θ∈Rd

‖θ‖22 such that Diag(y)Xθ > 1n. (12.9)

To obtain a linear separator, one can use the subgradient method from Section 5.3 applied
to the cost function

F (θ) = max
i∈{1,...,n}

(1− yix⊤i θ)+.

The iteration is
θt = θt−1 + γ1yitx⊤

it
θt−1<1yitxit , (12.10)

where it ∈ arg mini∈{1,...,n} yix
⊤
i θt−1, and γ is the step-size. With θ∗ being the minimizer

in Eq. (12.9), we have F (θ∗) = 0 = minθ∈Rd F (θ), and after t steps, following the analysis
of Prop. 5.6, we get:

min
u6t

F (θu) 6
γR2

2
+

ρ2

2γt
.

The quantity above is less than ε as soon as γR2

2 + ρ2

2γt 6 ε, which can be achieved by

γ = ε
R2 and t = ρ2

γε = ρ2R2

ε2 , thus an objective function less than ρR√
t
. If F (θt) < 1,

then, following Section 4.1), we have linearly separated the data, which happens as soon
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as we have t > (ρR)2. The iteration in Eq. (12.10) is a variation on the perceptron
algorithm (Rosenblatt, 1958; Novikoff, 1962), presented in the exercise below.

Exercise 12.1 Extend the analysis above to the stochastic gradient algorithm for the
objective function F (θ) = 1

n

∑n
i=1(1 − yix⊤i θ)+. What can be concluded when the data

are i.i.d. and a single pass over the data is made?

Exercise 12.2 (perceptron) In the same set-up as above, we consider the iteration,
started at θ0, that at time t looks for an it ∈ {1, . . . , n} such that yitx

⊤
itθt−1 6 0 and, if

found, implements the update θt = θt−1 + yitxit . Show that all points are well-classified
if the number of iterations is greater than (ρR)2.

12.1.3 Beyond convex problems (�)

The implicit bias of gradient descent can be observed and analyzed in various models,
beyond linear ones. In this section, we focus on diagonal linear networks, where the
analysis of gradient flows is reasonably simple. We highlight the potential difference in
implicit biases depending on the chosen learning algorithm.

We consider our traditional least-squares model with design matrix X ∈ R
n×d and

response vector y ∈ Rn, with the least-squares objective function: F (θ) = 1
2n‖y −Xθ‖22,

where d > n, and with an invertible kernel matrix XX⊤ ∈ Rn×n, leading to infinitely
many minimizers. We consider different learning dynamics, which we study in continuous
time for simplicity.

From gradient flow to mirror flow. The gradient flow dynamics on θ is the ordinary
differential equation (ODE):

d

dt
θ(t) = −F ′(θ(t)) = − 1

n
X⊤(Xθ(t)− y).

As shown in Section 12.1.1, θ(t) converges exponentially fast to the minimum ℓ2-norm
interpolator. This can extended to the continuous-time limit of mirror descent presented
in Section 11.1.3. If we consider a µ-strongly convex mirror map Φ : R

d → R, the
mirror descent recursion is defined as Φ′(θ̃k+1) = Φ′(θ̃k) − γF ′(θ̃k), and we obtain the
continuous-time limit by setting θ(γk) = θ̃k, leading to the ODE:

d

dt
Φ′(θ(t)) = −F ′(θ(t)), (12.11)

which is equivalent to Φ′′(θ(t)) ddtθ(t) = −F ′(θ(t)) = − 1
nX

⊤(Xθ(t)− y). This leads to

d

dt

[
Xθ(t)− y

]
= − 1

n
XΦ′′(θ(t))−1X⊤[Xθ(t)− y

]
,
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which in turn leads to

d

dt

[
‖Xθ(t)− y‖22

]
= − 2

n

[
Xθ(t)− y

]⊤XΦ′′(θ(t))−1X⊤[Xθ(t)− y
]

6 −2λmin(XX⊤)

nµ
‖Xθ(t)− y‖22.

Thus, like for the gradient flow dynamics, Xθ(t) converges exponentially fast to y. Since
from Eq. (12.11), Φ′(θ) is of the form Φ′(θ0) +X⊤α for some α ∈ Rn, the corresponding
limit α∞ (with the corresponding θ∞ such that Φ′(θ∞) = Φ′(θ0) + X⊤α∞) of α(t)
when t tends to infinity is such Xθ∞ = y and Φ′(θ∞) = Φ′(θ0) + X⊤α∞, which is
exactly the interpolator of the data with minimum value of the Bregman divergence
DΦ(θ, θ0) = Φ(θ)− Φ(θ0)− Φ′(θ0)⊤(θ − θ0).3

Diagonal linear networks. Following Woodworth et al. (2020), we consider “diagonal
linear networks”, which are simple hidden layer neural networks defining a prediction
function of the form

f(x) = (u ◦ v)⊤x =

d∑

j=1

ujvjxj ,

for u, v ∈ Rd, and u ◦ v denoting the pointwise product. This is thus an alternative
(non-linear) way of defining a linear model defined by θ = u ◦ v. We study the gradient
flow dynamics for the objective function G(u, v) = F (u ◦ v), that is,

d

dt
u(t) = −∂G

∂u
(u(t), v(t)) = −F ′(u(t) ◦ v(t)) ◦ v(t)

d

dt
v(t) = −∂G

∂v
(u(t), v(t)) = −F ′(u(t) ◦ v(t)) ◦ u(t).

We thus have d
dt [u◦u(t)−v◦v(t)] = 0, and therefore u◦u−v◦v is a constant function. If we

initialize v = 0 and u the constant vector equal to α ∈ R, we have u◦u(t)−v◦v(t) = α21d
for all t > 0. Thus, for θ(t) = u ◦ v(t), we have:

d

dt
θ(t) = u(t) ◦ d

dt
v(t) + v(t) ◦ d

dt
u(t) = −F ′(θ(t)) ◦ (u ◦ u(t) + v ◦ v(t)).

Moreover, we have θ◦θ(t) = (u◦u)◦(v◦v)(t) = 1
4 [u◦u(t)+v◦v(t)]2− 1

4 [u◦u(t)−v◦v(t)]2.
Thus, we obtain the following ODE for each component θj of θ:

d

dt
θj(t) = −F ′(θ(t))j

√
4θj(t)2 + α4.

It can be exactly cast as a mirror flow with mirror map Φ(θ) =
∑d

j=1 q(θj) for q a

convex function such that q′′(η) = (4η2 + α4)−1/2. By integrating twice, one obtains,

3By duality, we have infXθ=y Φ(θ) − Φ′(θ0)⊤θ = supα∈Rn infθ∈Rd Φ(θ) − Φ′(θ0)⊤θ + α⊤(y − Xθ),

which is equal to supα∈Rn α⊤y−Φ∗(Ψ′(θ0) +X⊤α), with optimality conditions Φ′(θ) = Φ′(θ0) +X⊤α
and Xθ = y.
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with imposing q′(0) = 0:

q′(η) =
1

2
arg sinh(2η/α2) = − logα+

1

2
log

[
2η +

√
α4 + 4η2

]
,

and then, imposing q(0) = 0, we get an even function of η defined as:

q(η) =
η

2
arg sinh(2η/α2) +

α2

4

[
1−

√
4η2/α4 + 1

]

=
η

2
log

[
2η +

√
α4 + 4η2

]
− 1

4

√
4η2 + α4 +

α2

4
− η

2
logα2.

When α tends to +∞, we get q(η) ∼ η2

α2 , and thus the implicit bias converges to the
Euclidean norm, and we recover the traditional geometry of gradient descent directly
on θ.

However, when α tends to zero, we get q(η) ∼ |η| log 1
α , and thus the implicit bias

corresponds to the ℓ1-norm, showing how non-convex optimization can lead to a different
implicit bias. See more details by Woodworth et al. (2020), and an analysis of the extra
regularizing effect of stochastic gradient descent by Pesme et al. (2021).4 Note that the
analysis above for diagonal networks explicitly shows quantitative global convergence of
the gradient flow for a non-convex objective; we consider in Section 12.3 qualitative results
which apply more generally.

Beyond linear networks. Characterizing the implicit bias of gradient descent can be
done in more complex situations. For example, Chizat and Bach (2020) show that with a
neural network with ReLu activations and infinitely many neurons estimated by gradient
descent on the empirical logistic loss, then in the infinite width limit, we get a predictor
that interpolates the data, with a minimum specific norm, for norms which are exactly
the ones obtained in Section 9.3.5

12.2 Double descent

In this section, we consider a recent and interesting phenomenon described in several
recent works (Belkin et al., 2019; Mei and Montanari, 2022; Geiger et al., 2020; Hastie
et al., 2019), which shows a particular behavior for overparameterized models learned by
gradient descent.

12.2.1 The double descent phenomenon

As seen in Chapter 2 and Chapter 4, typical learning curves look like the one below.

4See https://francisbach.com/implicit-bias-sgd/.
5See https://www.di.ens.fr/~fbach/ltfp/wide_implicit_bias.html for more details.

https://francisbach.com/implicit-bias-sgd/
https://www.di.ens.fr/~fbach/ltfp/wide_implicit_bias.html
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“size” of function space

Errors

test

train

overfittingunderfitting

Typically, the “capacity” of the space of functions H used to estimate the prediction
function is controlled either by the number of parameters or by some norms of its param-
eters. In particular, when there is zero training error at the extreme right of the curve,
the testing error may be arbitrarily bad. The bound that we have used in Chapter 4,
such as Rademacher averages for H controlled by the ℓ2-norm of some parameters (with
a bound D), grows as D/

√
n, which can typically be quite large. These bounds were

true for all empirical risk minimizers. In this section, we will focus on a particular one,
namely the one obtained by unconstrained gradient descent.

When the model is over-parameterized (in other words, the capacity gets very large),
that is, when the number of parameters is large, or the norm constraint allows for exact
fitting, a new phenomenon occurs, where after the test error explodes as the capacity
grows, it goes down again, as illustrated below.

“size” of function space

Errors

test

train

overfittingunderfitting over-parameterized regime

interpolation threshold

This section aims to understand why, starting from empirical evidence.

△! There may be no double descent phenomenon if other empirical risk minimizers
are used instead of the one obtained by (stochastic) gradient descent.

12.2.2 Empirical evidence

Toy example with random features. We consider a random feature models like in
Chapter 7 and Chapter 9, with features (v⊤x)+, for neurons v ∈ Rd sampled uniformly
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on the unit sphere. We consider n = 200, d = 5 with input data distributed uniformly

on the unit sphere, and we consider outputs y =
(
1
4 + (v⊤∗ x)2

)−1
+ N(0, σ2), with σ = 2,

for some random v∗.

We sample m random features v1, . . . , vm ∈ Rd uniformly at random on the sphere,
and we learn parameters θ ∈ Rm by minimizing

1

n

n∑

i=1

(
yi −

m∑

j=1

θj(v
⊤
j xi)+

)2

+ λ‖θ‖22. (12.12)

We report in Figure 12.2 train and test errors after learning with gradient descent
until convergence: (left) varying m with λ = 0, (right) varying λ with m = +∞ (we can
perform estimation for m = +∞ efficiently because we can compute the corresponding
positive-definite kernel k(x, x′) = Ev[(v⊤x)+(v⊤x′)+], see Section 9.5).
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Figure 12.2: Classical learning curve: (left) train and test errors as functions of the
number of random features, always less than the number of observations, (right) train
and test errors for ridge regression with the same features (i.e., using ℓ2-regularization).

In the left plot of Figure 12.2, the number of random features m is less than n as
the test error diverges. But, when this number m is allowed to grow past n, we see the
double descent phenomenon in Figure 12.3. Similar experiments are shown by Belkin et al.
(2019); Geiger et al. (2020); Mei and Montanari (2022), in particular for neural networks.

No phenomenon when using regularization. When an extra regularizer is used,
that is λ 6= 0 in Eq. (12.12), then the double descent phenomenon is reduced. In par-
ticular, if the regularization parameter λ is adapted for each m, then the phenomenon
totally disappears (see Mei and Montanari, 2022, for more details).

12.2.3 Linear regression with Gaussian projections (�)

To provide some theoretical justification for the double descent phenomenon, we consider
a linear regression model in the random design setting, with Gaussian inputs and Gaussian
noise.
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Figure 12.3: Double descent curve: train and test errors as functions of the number of
random features. For m 6 n = 200, this is exactly the curves from Figure 12.2 (left).

That is, we consider a Gaussian random variable with mean 0 and covariance matrix Σ
the identity matrix, with n observations x1, . . . , xn, and responses yi = x⊤i θ∗ +εi, with εi
normal with mean zero and variance σ2I.

To have a unique prediction problem with a varying number of features, we consider
additional random projections, that is, like in Section 10.2.2,6 we consider a random
matrix S ∈ Rd×m with independent components all sampled from a standard Gaussian
distribution (mean 0 and variance 1). The main differences are that (a) we will per-
form an analysis in the random design setting, and (b) we will also need to tackle the
overparameterized regime m > n.

We will compute the expectation of the risk of the minimum norm empirical risk
minimizer (as detailed in Section 12.1.1), which is the one gradient descent converges to.
See Bach (2023a) for further more precise asymptotic results using random matrix theory.

We denote by X ∈ Rn×d the design matrix, and Σ̂ = 1
nX

⊤X the non-centered
covariance matrix, and by K = XX⊤ ∈ Rn×n the kernel matrix. We will need to
compute expectations with respect to the data X, ε and the random projection matrix S.
The estimator θ̂ is equal to Sη̂ with η̂ ∈ Rm a minimizer of ‖y −XSη‖22.

The excess risk is denoted R(θ̂) = (θ̂ − θ∗)Σ(θ̂ − θ∗), and we now consider the two
regimes m > n (underparameterized) and m > n (overparameterized). In both cases,
as already seen in Chapter 3, the expectation of the excess risk will be composed of two
terms: a (squared) “bias term” R(bias)(θ̂) corresponding to σ = 0, and a “variance term”

R(var)(θ̂) corresponding to θ∗ = 0.

Underparameterized regime. In the under-parameterized regime where n > d, the
minimum norm empirical risk minimizer is simply the ordinary least-squares estimator.
We denote by η∗ = (S⊤ΣS)−1S⊤Σθ∗ ∈ Rm the minimizer of (θ∗ − Sη)⊤Σ(θ∗ − Sη). We
have Sη∗ = ΠSθ∗ with ΠS = S(S⊤ΣS)−1S⊤Σ ∈ Rd×d, which is a projection matrix such
that ΠSS = S, Π2

S = ΠS , and Π⊤
SΣΠS = ΣΠS .

6For an analysis without random projections, see Hastie et al. (2019).
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If m 6 n, the estimator is obtained from the normal equations S⊤X⊤XSη̂ = S⊤X⊤y,
and can be expanded using θ∗ as follows:

θ̂ = Sη̂ = S(S⊤X⊤XS)−1S⊤X⊤y

= S(S⊤X⊤XS)−1S⊤X⊤Xθ∗ + S(S⊤X⊤XS)−1S⊤X⊤ε using y = Xθ∗ + ε,

= Nθ∗ + S(S⊤X⊤XS)−1S⊤X⊤ε,

with N = S(S⊤X⊤XS)−1S⊤X⊤X . Conditioned on S and X , the expected excess risk
is equal to:

Eε

[
R(θ̂)

]
= σ2 tr

(
XS(S⊤X⊤XS)−1S⊤ΣS(S⊤X⊤XS)−1S⊤X⊤) +

∥∥Σ1/2
(
Nθ∗ − θ∗

)∥∥2

2

= σ2 tr
(
S⊤ΣS(S⊤X⊤XS)−1

)
+ tr

((
Nθ∗ − θ∗

)⊤
Σ
(
Nθ∗ − θ∗

))
.

For the variance term (first term above), for S fixed, since X has a Gaussian distribution,
the matrix S⊤X⊤XS is distributed as a Wishart distribution with parameter S⊤ΣS and
n degrees of freedom (see, e.g., Haff, 1979, for computations of moments of the Wishart
distribution). Thus, if n > m+ 1, we have:

EX

[
(S⊤X⊤XS)−1

]
=

1

n−m− 1
(S⊤ΣS)−1,

which in turn implies ES,X,ε

[
R(var)(θ̂)

]
= EX,ε

[
R(var)(θ̂)

]
=

σ2m

n−m− 1
, independently of

the choice of the sketching matrix S.

For the bias term, the computation is more involved. We expand

EX,ε

[
R(bias)(θ̂)

]
= EX

[
tr
((
Nθ∗ − θ∗

)⊤
Σ
(
Nθ∗ − θ∗

))]

= θ⊤∗ Σθ∗ + 2θ⊤∗ ΣS(S⊤X⊤XS)−1S⊤X⊤Xθ∗

+θ⊤∗ X
⊤XS(S⊤X⊤XS)−1S⊤ΣS(S⊤X⊤XS)−1S⊤X⊤Xθ∗.

To compute the expectation, we will first condition onXS and use the Gaussian condition-
ing formulas from Section 1.1.3, which leads to, for any matrices A and B of appropriate
sizes (proof left as an exercise):

E
[
X |XS

]
= XS(S⊤ΣS)−1S⊤Σ = XΠS

E
[

tr(AX⊤BX)|XS
]

= tr
(
AΠ⊤

SX
⊤BXΠS

)
+ tr(B) tr(AΣ(I −ΠS)).

This leads to, with S assumed fixed, using the identities above:

EX,ε

[
R(bias)(θ̂)

]
= θ⊤∗ Σθ∗ + EX

[
2θ⊤∗ ΣS(S⊤X⊤XS)−1S⊤X⊤XΠSθ∗

]

+EX

[
θ⊤∗ Π⊤

SX
⊤XS(S⊤X⊤XS)−1S⊤ΣS(S⊤X⊤XS)−1S⊤X⊤XΠSθ∗

]

+EX

[
tr
(
XS(S⊤X⊤XS)−1S⊤ΣS(S⊤X⊤XS)−1S⊤X⊤) · tr

(
θ∗θ

⊤
∗ Σ(I −ΠS)

)]
.
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Now, using properties of ΠS , we get:

EX,ε

[
R(bias)(θ̂)

]
= θ⊤∗ Σθ∗ + EX

[
2θ⊤∗ ΣS(S⊤ΣS)−1S⊤Σθ∗

]

+EX

[
θ⊤∗ ΣS(S⊤ΣS)−1S⊤ΣS(S⊤ΣS)−1S⊤Σθ∗

]

+EX

[
tr
(
S⊤ΣS(S⊤X⊤XS)−1

)
· tr

(
θ∗θ

⊤
∗ Σ(I − S(S⊤ΣS)−1S⊤Σ)

)]
.

We can now group some terms and use Π⊤
SΣΠS = ΣΠS to get:

EX,ε

[
R(bias)(θ̂)

]
= θ⊤∗ Σ(I −ΠS)θ∗ ·

[
1 + EX

[
tr
(
S⊤ΣS(S⊤X⊤XS)−1

)]]

= θ⊤∗ Σ(I −ΠS)θ∗ ·
(

1 + tr
( 1

n−m− 1
(S⊤ΣS)−1S⊤ΣS

))
,

using expectations of Wishart random variables. Overall, we get:

EX,ε

[
R(bias)(θ̂)

]
= θ⊤∗ Σ(I −ΠS)θ∗ ·

n− 1

n−m− 1

= θ⊤∗
(
Σ− ΣS(S⊤ΣS)−1S⊤Σ

)
θ∗ ·

n− 1

n−m− 1
.

We can further bound the bias term; we have, for S Gaussian, following the same rea-
soning as in Section 10.2.2:

ES

[
θ⊤∗ (I−ΠS)⊤Σ(I−ΠS)θ∗

]

= ES

[
min
η∈Rm

(θ∗ − Sη)⊤Σ(θ∗ − Sη)
]

by definition of ΠS ,

6 ES

[
min
ξ∈Rd

(θ∗−SS⊤ξ)⊤Σ(θ∗−SS⊤ξ)
]

with η constrained in the column space of S⊤,

6 min
ξ∈Rd

ES

[
(θ∗ − SS⊤ξ)⊤Σ(θ∗ − SS⊤ξ)

]
by swapping minimum and expectation,

= min
ξ∈Rd

(
θ⊤∗ Σθ∗ − 2ξ⊤E

[
SS⊤]Σθ∗ + ξ⊤E

[
SS⊤ΣSS⊤]ξ

)
by developing,

= θ⊤∗

(
Σ− ΣE

[
SS⊤]

(
E
[
SS⊤ΣSS⊤])−1

E
[
SS⊤]Σ

)
θ∗ by minimizing in closed form,

= θ⊤∗

(
Σ−mΣ

(
(m+ 1)Σ + tr(Σ)I

)−1
Σ
)
θ∗ using Wishart expectations,

= θ⊤∗ (Σ + tr(Σ)I)
(
(m+ 1)Σ + tr(Σ)I

)−1
Σθ∗

6
2 tr(Σ)

m+ 1
· θ⊤∗

(
Σ +

tr(Σ)

m+ 1
I
)−1

Σθ∗ 6
2 tr(Σ)

m+ 1
· ‖θ∗‖22, using Σ 4 tr[Σ] · I.

Overall, for the underparameterized regime, we obtain an upper-bound equal to 1
1−m/n

times σ2m
n + 2 tr(Σ)

m+1 · ‖θ∗‖22, which a similar excess risk bound as for ridge regression
from Section 3.6 and Section 7.6.4, with tr(Σ)/m playing the role of the regularization
parameter, but with the extra term 1/(1−m/n) due to the random design setting and the
lack of regularization. This leads to a classical bias-variance trade-off with a U-shaped
curve. See Bach (2023a) for sharper results.
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Overparameterized regime. In the overparameterized regime, when m > n, then
the kernel matrix is almost surely invertible, and the minimum ℓ2-norm interpolator θ̂ is
equal to (using the formulas from Section 12.1.1)

θ̂ = Sη̂ = SS⊤X⊤(XSS⊤X⊤)−1(Xθ∗ + ε).

We can decompose the expectation with respect to ε of the excess risk R(θ̂) as follows:

Eε

[
R(θ̂)

]
= σ2 tr

(
(XSS⊤X⊤)−1XSS⊤ΣSS⊤X⊤(XSS⊤X⊤)−1

)

+
∥∥Σ1/2

(
SS⊤X⊤(XSS⊤X⊤)−1X − I

)
θ∗‖22.

We can now use the same reasoning as in the under-parameterized regime, but now taking
expectation with respect to S (with X fixed). We have for any symmetric matrices A
and B of compatible sizes (proof left as an exercise):

E
[

tr(ASBS⊤)|S⊤X⊤] = tr
(
X⊤(XX⊤)−1XAX⊤(XX⊤)−1XSBS⊤)

+ tr(B) tr
[
A(I −X⊤(XX⊤)−1X)

]

E
[
S|S⊤X⊤] = X⊤(XX⊤)−1XS.

Therefore, for the variance term proportional to σ2, for which we take A = Σ and
B = S⊤X⊤(XSS⊤X⊤)−2XS, we obtain two parts from the identities above. The second
part of the variance term becomes:

tr
[
S⊤X⊤(XSS⊤X⊤)−2XS

]
· tr

[
Σ(I −X⊤(XX⊤)−1X)

]

= tr
[
(XSS⊤X⊤)−1

]
· tr

[
Σ(I −X⊤(XX⊤)−1X)

]
.

The first part of the variance term is:

tr
(
X⊤(XX⊤)−1XΣX⊤(XX⊤)−1XSS⊤X⊤(XSS⊤X⊤)−2XSS⊤)

= tr
(
(XX⊤)−1XΣX⊤(XX⊤)−1

)
.

Thus, using the expectation of the inverse Wishart distribution, the variance term is

Eε,S [R(var)(θ̂)] = σ2 tr
(
(XX⊤)−1XΣX⊤(XX⊤)−1

)

+σ2 tr
(
(XX⊤)−1

)

m− n− 1
· tr

[
Σ(I −X⊤(XX⊤)−1X)

]
.

For the bias term, we have:

∥∥Σ1/2
(
SS⊤X⊤(XSS⊤X⊤)−1X − I

)
θ∗‖22

= θ⊤∗ Σθ∗ + θ⊤∗ X
⊤(XSS⊤X⊤)−1XSS⊤ΣSS⊤X⊤(XSS⊤X⊤)−1Xθ∗

−2θ⊤∗ ΣSS⊤X⊤(XSS⊤X⊤)−1Xθ∗

= θ⊤∗ Σθ∗ + tr(ASBS⊤)−2θ⊤∗ ΣSS⊤X⊤(XSS⊤X⊤)−1Xθ∗,
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with A = Σ, and B = S⊤X⊤(XSS⊤X⊤)−1Xθ∗θ⊤∗ X
⊤(XSS⊤X⊤)−1XS, with condi-

tional expectation given XS, simplifying the product XSS⊤X⊤(XSS⊤X⊤)−1 = I, and
using XSBS⊤X⊤ = Xθ∗θ⊤∗ X

⊤:

θ⊤∗ Σθ∗

+tr
(
X⊤(XX⊤)−1XΣX⊤(XX⊤)−1Xθ∗θ

⊤
∗ X

⊤(XSS⊤X⊤)−1XSS⊤)

+tr(S⊤X⊤(XSS⊤X⊤)−1Xθ∗θ
⊤
∗ X

⊤(XSS⊤X⊤)−1XS) · tr
[
Σ(I −X⊤(XX⊤)−1X)

]

−2θ⊤∗ ΣX⊤(XX⊤)−1XSS⊤X⊤(XSS⊤X⊤)−1Xθ∗

= θ⊤∗ Σθ∗

+θ⊤∗ X
⊤(XX⊤)−1XΣX⊤(XX⊤)−1Xθ∗

+tr((XSS⊤X⊤)−1Xθ∗θ
⊤
∗ X

⊤) · tr
[
Σ(I −X⊤(XX⊤)−1X)

]

−2θ⊤∗ ΣX⊤(XX⊤)−1Xθ∗ by simplifying,

= θ⊤∗ (I −X⊤(XX⊤)−1X)Σ(I −X⊤(XX⊤)−1X)θ∗

+ tr((XSS⊤X⊤)−1Xθ∗θ
⊤
∗ X

⊤) · tr
[
Σ(I −X⊤(XX⊤)−1X)

]
,

by grouping terms. This leads to, by rearranging terms,

Eε,S [R(bias)(θ̂)] = θ⊤∗ (I −X⊤(XX⊤)−1X)Σ(I −X⊤(XX⊤)−1X)θ∗

+
1

m− n− 1
θ⊤∗ X

⊤(XX⊤)−1Xθ∗ · tr
[
Σ(I −X⊤(XX⊤)−1X)

]
.

Pulling together bias and variance, when m tends to infinity, we get the performance:

Eε,S [R∞(θ̂)] = θ⊤∗ (I −X⊤(XX⊤)−1X)Σ(I −X⊤(XX⊤)−1X)θ∗

+σ2 tr
(
(XX⊤)−1XΣX⊤(XX⊤)−1

)
.

Overall, we get:

Eε,S [R(θ̂)] = Eε,S [R∞(θ̂)] +
1

m−n−1
tr
[
Σ(I−X⊤(XX⊤)−1X)

]

·
(
θ⊤∗ X

⊤(XX⊤)−1Xθ∗ + σ2 tr((XX⊤)−1)
)
.

Thus, as a function of m, we get a descent curve on the right of m = n. See Bach (2023a)
for a detailed expression obtained after taking the expectation with respect to X . While
the limiting bias term typically has a better value than for the under-parameterized
regime, for the variance term, the limit when m tends to +∞ does not always go to zero
when n tends to infinity. See Bartlett et al. (2020) for conditions under which the end of
the double descent curve can lead to good performance when σ2 > 0. See illustration in
Figure 12.4.

12.3 Global convergence of gradient descent

In Section 9.2.1, we alluded to the property of gradient descent for overparameterized
neural networks, which converges to a global minimum of the objective function despite
being non-convex. We present more formal arguments in this section, with a general
result without proof, as well as a detailed proof for linear neural networks.
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Figure 12.4: Example of a double descent curve, for linear regression with random pro-
jections with n = 200 observations, in dimension d = 400 and a non-isotropic covariance
matrix. The data are normalized so that predicting zero leads to an excess risk of 1 and
the noise so that the optimal expected risk is 1/4. The empirical estimate is obtained
by sampling 20 datasets and 20 different random projections from the same distribution
and averaging the corresponding excess risks

12.3.1 Mean field limits

In this section, we present results from Chizat and Bach (2018), following closely the
exposition from Bach and Chizat (2022).7 More precisely, we consider neural networks
with one infinitely wide hidden layer, and we first rescale the prediction function by 1/m
(which can be obtained by rescaling all output weights by 1/m) and express it explicitly
as an empirical average as

f(x) =
1

m

m∑

j=1

ηjσ(w⊤
j x+ bj)

where ηj ∈ R is the output weight associated to the j-th neuron, and (wj , bj) ∈ Rd+1

the corresponding vector of input weights. The key observation is that the prediction
function h is the average of m prediction functions x 7→ ηjσ(w⊤

j x+ bj), for j = 1, . . . ,m,
with no sharing of the parameters (which is not true if extra layers of hidden neurons are
added).

To highlight this parameter separability, we define vj =
[
ηj , w

⊤
j , bj

]⊤ ∈ Rd+2 the set
of weights associated to the hidden neuron j ∈ {1, . . . ,m}, and we define the function
Ψ(v) = Ψ(η, w⊤, b) : x 7→ ησ(x⊤w+b), so that the prediction function h is parameterized
by v1, . . . , vm ∈ Rd+2, which is now

h =
1

m

m∑

j=1

Ψ(vj). (12.13)

The expected risk is of the form

R(h) = E
[
ℓ(y, h(x))

]
,

7See also https://www.di.ens.fr/~fbach/ltfp/wide_convergence.html.

https://www.di.ens.fr/~fbach/ltfp/wide_convergence.html
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which is convex in h for convex loss functions (which is the case throughout the book,
even for neural networks, such as the logistic or square loss), but typically non convex
in V = (v1, . . . , vm). Note that the resulting problem of minimizing a convex function
R(h) for h = 1

m

∑m
j=1 Ψ(vj) applies beyond neural networks, for example, for sparse

deconvolution (Chizat, 2021).

Reformulation with probability measures. We now define by P(V) the set of prob-
ability measures on V = Rd+2. We can rewrite Eq. (12.13) as

h = h(·, v1, . . . , vm) =

∫

V

Ψ(v)dµ(v),

where µ = 1
m

∑m
j=1 δvj is an average of Dirac measures at each v1, . . . , vm ∈ V. Follow-

ing a physics analogy, we will refer to each wj as a particle. When the number m of
particles grows, then the empirical measure 1

m

∑m
j=1 δwj may converge in distribution to

a probability measure with a density, often referred to as a mean field limit. Our main
reformulation will thus consider an optimization problem over probability measures.

The optimization problem we are faced with is equivalent to

inf
µ∈P(V)

R

( ∫

V

Ψ(v)dµ(v)
)
, (12.14)

with the constraint that µ is an average of m Dirac measures. We now follow a long line
of work in statistics and signal processing (Barron, 1993; Kurková and Sanguineti, 2001),
and consider the optimization problem without this constraint, and relate optimization
algorithms for finite but large m (thus acting on V = (v1, . . . , vm) in Vm) to a well-defined
algorithm in P(V), like we already did in Section 9.3.2.

Note that we now have a convex optimization problem, with a convex objective in µ
over a convex set (all probability measures). However, it is still an infinite-dimensional
space that requires dedicated finite-dimensional algorithms. In this section, we focus on
gradient descent on w, corresponding to standard practice in neural networks (e.g., back-
propagation). For algorithms based on classical convex optimization algorithms such as
the Frank-Wolfe algorithm, see Section 9.3.6.

From gradient descent to gradient flow. Our general goal is to study the gradient
descent recursion on V = (v1, . . . , vm) ∈ Vm, defined as

Vk = Vk−1 − γmG′(Vk−1), (12.15)

with

G(V ) = R
(
h(·, v1, . . . , vm)

)
= R

( 1

m

m∑

j=1

Ψ(vj)
)
.

In the context of neural networks, this is exactly the back-propagation algorithm. We
include the factor m in the step-size to obtain a well-defined limit when m tends to infinity
(see below).
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For convenience in the analysis, we look at the limit when the step-size γ goes to
zero. If we consider a function W : R → Vm, with values W (kγ) = Vk at t = kγ, and
we interpolate linearly between these points, then we obtain exactly the standard Euler
discretization of the ordinary differential equation (ODE) (Suli and Mayers, 2003):

Ẇ = −mG′(W ). (12.16)

This gradient flow will be our main focus in this paper. As highlighted above, and
with extra regularity assumptions, it is the limit of the gradient recursion in Eq. (12.15)
for vanishing step-sizes γ. Moreover, under appropriate conditions, stochastic gradient
descent, where we only observe an unbiased noisy version of the gradient, also leads in
the limit γ → 0 to the same ODE (Kushner and Yin, 2003). This allows us to apply
our results to probability distributions of the data (x, y), which are not the observed
empirical distribution but the unseen test distribution, where, for a single over the data,
the stochastic gradients come from the gradient of the loss from a single observation.

Wasserstein gradient flow. Above, we have described a general framework where we
want to minimize a function F defined on probability measures:

F (µ) = R

(∫

V

Ψ(v)dµ(v)
)
, (12.17)

with an algorithm minimizing G(v1, . . . , vm) = R
(

1
m

∑m
j=1 Ψ(vj)

)
through the gradient

flow V̇ = −mG′(V ), with V = (v1, . . . , vm).

As shown in a series of works concerned with the infinite width limit of two-layer
neural networks (Nitanda and Suzuki, 2017; Chizat and Bach, 2018; Mei et al., 2018;
Sirignano and Spiliopoulos, 2020; Rotskoff and Vanden-Eijnden, 2018), this converges to
a well-defined mathematical object called a Wasserstein gradient flow (Ambrosio et al.,
2008). This is a gradient flow derived from the Wasserstein metric on the set of probability
measures, which is defined as (Santambrogio, 2015),

W2(µ, ν)2 = inf
γ∈Π(µ,ν)

∫
‖v − w‖22dγ(v, w),

where Π(µ, ν) is the set of probability measures on V × V with marginals µ and ν. In a
nutshell, the gradient flow is defined as the limit when γ tends to zero of the extension
of the following discrete-time dynamics:

µ(t+ γ) = inf
ν∈P(V)

F (ν) +
1

2γ
W2(µ(t), ν)2.

When applying such a definition in a Euclidean space with the Euclidean metric, we
recover the usual gradient flow µ̇ = −F ′(µ), but here with the Wasserstein metric, this
defines a specific flow on the set of measures. When the initial measure is a weighted sum
of Diracs, this is precisely asymptotically (when γ → 0) equivalent to backpropagation.
When initialized with an arbitrary probability measure, we obtain a partial differential
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equation (PDE), satisfied in the sense of distributions. Moreover, when the sum of Diracs
converges in distribution to some measure, the flow converges to the solution of the
PDE. More precisely, assuming Ψ : Rd+1 → H a Hilbert space (in our neural network
example, H is the space of square-integrable functions on Rd), and R′(h) ∈ H the gradient
of R, we consider the mean potential

J(v|µ) =
〈

Ψ(v),R′
( ∫

V

Ψ(w)dµ(w)
)〉
, (12.18)

so that the gradient flow equation on each particle becomes v̇j = −J ′(vj |µ) (where µ is
the time-dependent aggregation of all particles).

The PDE is then the continuity equation (see, e.g., Evans, 2022):

∂tµt(v) = div(µt(v)J ′(v|µt)), (12.19)

which is understood in the sense of distributions. The following result formalizes this
behavior (see Chizat and Bach (2018) for details and a more general statement).

Theorem 12.1 Assume that R : H → [0,+∞[ and Ψ : V = Rd+2 → H are (Fréchet)
differentiable with Lipschitz differentials, and that R is Lipschitz on its sublevel sets.
Consider a sequence of initial weights (vj(0))j≥1 contained in a compact subset of V and
let µt,m = 1

m

∑m
j=1 vj(t) where (v1(t), . . . , vm(t)) solves the ODE (12.16). If µ0,m weakly

converges to some µ0 ∈ P(V) then µt,m weakly converges to µt where (µt)t≥0 is the unique
weakly continuous solution to (12.19) initialized with µ0.

In the following paragraph, we will study the solution of this PDE (i.e., the Wasserstein
gradient flow), interpreting it as the limit of the gradient flow in Eq. (12.16) when the
number of particles m tends to infinity.

Global convergence. We consider the Wasserstein gradient flow defined above, which
leads to the PDE in Eq. (12.19). We aim to understand when we can expect that when
t→∞, µt converges to a global minimum of F defined in Eq. (12.17). Obtaining a global
convergence result is not out of the question because F is a convex functional defined
on the convex set of probability measures. However, it is nontrivial because, with our
choice of the Wasserstein geometry on measures, which allows an approximation through
particles, the flow has some stationary points that are not the global optimum.

We only consider an informal general result without technical assumptions before
referring to Bach and Chizat (2022) for a formal simplified result and Chizat and Bach
(2018) for the general result.

Theorem 12.2 (Informal) If the support of the initial distribution includes all direc-
tions in Rd+1, and if the function Ψ is positively 2-homogeneous, then if the Wasserstein
gradient flow weakly converges to a distribution, it can only be to a global optimum of F .

Chizat and Bach (2018) present another version of this result that allows for par-
tial homogeneity (e.g., with respect to a subset of variables) of degree 1 is proven, at
the cost of a more technical assumption on the initialization. For neural networks, we
have Ψ(η, w⊤, b)(x) = mησ(w⊤x + b), and this more general version applies. For the
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classical ReLU activation function u 7→ max{0, u}, we get a positively 2-homogeneous
function, as required in the previous statement. A simple way to spread all directions
is to initialize neural network weights from Gaussian distributions, which is standard in
applications (Goodfellow et al., 2016).

From qualitative to quantitative results? Our result states that for infinitely many
particles, we can only converge to a global optimum (note that we cannot show that the
flow always converges). However, it is only a qualitative result in comparison with what
is known for convex optimization problems in Chapter 5:

• This is only for m = +∞, and we cannot provide an estimation of the number of
particles needed to approximate the mean-field regime that is not exponential in t
(see such results, e.g., by Mei et al., 2019).

• We cannot provide an estimation of the performance as a function of time that
would give an upper bound on the running time complexity.

Moreover, our result does not apply beyond a single hidden layer, and understand-
ing the non-linear infinite width limits for deeper networks is an important research
area (Nguyen and Pham, 2020; Araújo et al., 2019; Fang et al., 2021; Hanin and Nica,
2019; Sirignano and Spiliopoulos, 2021; E and Wojtowytsch, 2020; Yang and Hu, 2020).

In the remainder of this section, to present a simpler analysis, we focus on linear
neural networks and first reformulate them as optimizing over positive definite matrices.

12.3.2 From linear networks to positive definite matrices

We consider “linear” neural networks, that is, neural networks with no activation function.
For example, for x ∈ Rd, we consider f(x) = UV ⊤x ∈ Rk, where U ∈ Rk×m and
V ∈ Rd×m. This is a linear function f(x) = Θx, with Θ of the form Θ = UV ⊤ ∈ Rk×d.
Assuming that we minimize some smooth convex risk function G : Rk×d → R, we aim to
minimize G(UV ⊤).

It can be rewritten as the function G applied to a linear projection of the matrix(
U
V

)(
U
V

)⊤
=

(
UU⊤ UV ⊤

V U⊤ V V ⊤

)
, which is of the form WW⊤ with W =

(
U
V

)
∈ R

(k+d)×m.

Thus, we can analyze instead the minimization of functions of the form G(WW⊤) for
W ∈ Rd×m, whereG is a smooth convex function defined on positive semidefinite matrices
of size d.

The goal of this section is now to minimize a convex function G over positive-
semidefinite (PSD) matrices, using plain gradient descent techniques on a non-linear
parameterization of such matrices. This is done to illustrate optimization for neural net-
works, noting that faster algorithms based on projected gradient descent presented in
Chapter 5 could also be used. We already studied a special case in Section 12.1.3, where
the ordinary differential equation could be integrated in closed form, while, here, we rely
on more qualitative arguments.
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12.3.3 Global convergence for positive definite matrices

We consider a twice continuously differentiable convex function G : Rd×d → R (which
only needs to be defined on symmetric matrices). We consider m vectors w1, . . . , wm ∈ Rd

put into a matrix W = (w1, . . . , wm) ∈ Rd×m, and the cost function F (W ) = G
(
WW⊤),

where we haveWW⊤ =
∑m

j=1 wjw
⊤
j . This is thus an instance of the framework developed

in Section 12.3.1, but, since the space of quadratic functions is finite-dimensional, there
is no need to let m tend to infinity, and we can keep m 6 d.

We consider the gradient flow Ẇ = − 1
2F

′(W ), that is, W ′(t) = − 1
2F

′(W (t)), where
the factor 1

2 was added so simplify formulas later. Since F is twice differentiable, this
ordinary differential equation (ODE) is defined for all t > 0. To compute the gradient of
F , we perform an asymptotic expansion as follows:

F (W + ∆) = G
(
WW⊤ + ∆W⊤ +W∆⊤ + o(‖∆‖2)

)

= F (W ) + tr
[
G′(WW⊤)(∆W⊤ +W∆⊤)] + o(‖∆‖2)

= F (W ) + 2 tr
[
∆⊤G′(WW⊤)W

]
+ o(‖∆‖2),

so that F ′(W ) = 2G′(WW⊤)W , and the flow becomes Ẇ = −G′(WW⊤)W . By project-
ing onto each of the m columns of W , this leads to the following flow for each “particle”
wj ∈ Rd:

ẇj = −G′(WW⊤)wj ,

which is a linear ODE, but with a time-dependent matrix G′(WW⊤) which depends on
the aggregation of all particles since WW⊤ =

∑m
j=1 wjw

⊤
j .

We denote M = WW⊤ and A = G′(M), which are functions of time defined for all
time t > 0. We then have:

Ṁ = ẆW⊤ +WẆ⊤ = −G′(M)M −MG′(M) = −AM −MA.

Preservation of rank. If at time zero M = WW⊤ has full rank, then the rank is
preserved throughout the flow. This is a simple consequence of the ODE for r(M) =
log det(M), equal to

ṙ = tr
[
M−1Ṁ

]
= tr

[
M−1(−AM −MA)

]
= −2 tr(A).

Thus, since A is continuous for all positive times, the log determinant is finite for all
times as soon as it exists at initialization, and we thus obtain a full rank matrix. If
m > d, which corresponds to an over-parameterized situation, and the columns of W
are initialized randomly (e.g., from a standard Gaussian random variable), then WW⊤

indeed has full rank.

Exercise 12.3 (�) Show that if at initialization, M = WW⊤ has rank r 6 min{d,m},
then M has rank r at all times.
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Global optimality conditions. The problem of minimizing G(M) over PSD matrices
has the following optimality condition: (a) tr[MG′(M)] = 0 and (b) G′(M) < 0. Note
that once (b) is satisfied, (a) is equivalent to MG′(M) = 0.8

• Necessary conditions (no need for convexity). If M is optimal, then for all ∆
such that M + ∆ < 0, G(M + ∆) − G(M) > 0. When ∆ is small, this leads to
tr[∆G′(M)] > 0.

Taking ∆ small along −M or M , we get: tr[MG′(M)] = 0 as necessary condition.

Taking ∆ = uu⊤ for all u ∈ Rd, we get G′(M) < 0 as a necessary condition.

• Sufficient conditions. If the conditions are met, then for any matrix N < 0, we get
from the subgradient inequality for the convex function R:

G(N) > G(M) + tr
[
G′(M)(N −M)

]
.

Using condition (a), we get : tr
[
G′(M)M

]
= 0, while condition (b) ensures that

tr
[
G′(M)N

]
> 0. Thus, M is a global optimum.

If M is invertible, the optimality conditions simplify to G′(M) = 0.

Global convergence. (�) If the flow in M is initialized with a full-rank matrix and
converges to some M∞,9 we now show that it satisfies the two optimality conditions above
(and thus, it has to be a global optimum). Note that while we know that M is invertible
for all time t > 0, it is often not the case for M∞ (see examples below).

The first condition (a) is a direct consequence of −G′(M∞)M∞ −M∞G′(M∞) = 0
(by taking the trace), which is satisfied at convergence (this is the stationary condition,
stating that all particles stop). The difficult part is to show the second condition (b),
which can be interpreted as ensuring that no other potential particles could enter and
increasing the rank of M while reducing the cost function.

We now assume that A∞ = G′(M∞) is not PSD, that is, λmin(A∞) < 0. We choose
η > 0 such that λmin(A∞) < −η, and −η is not an eigenvalue of A∞ (which is possible
because there are at most d distinct eigenvalues). This implies that for u such that
‖u‖2 = 1 and u⊤A∞u = −η,

η = −u⊤A∞u < ‖u‖2‖A∞u‖2 = ‖A∞u‖2

by Cauchy-Schwarz inequality and the impossibility of having A∞u = −ηu (which is the
equality condition for Cauchy-Schwarz inequality). We denote by β > η the minimal
value of such ‖A∞u‖2 (for all u that satisfies ‖u‖2 = 1 and u⊤A∞u = −η).

The idea is to show that sufficiently close to convergence, once a particle has a direction
in

K =
{
u ∈ R

d, ‖u‖2 = 1, u⊤A∞u < −η
}
,

8For two PSD matrices A and B of the same sizes, AB = 0 ⇔ tr(AB) = 0.
9It does under basic assumptions on R, such as piecewise analyticity, see Bolte et al. (2006).
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its direction never gets out of K, and that it leads to a contradiction (the set K is not
empty because λmin(A∞) < −η).

We now introduce the time dependence explicitly.

Choice of particle close to convergence (�). We have M(t) → M∞. Thus there
exists t0 such that ‖A(t)−A∞‖op 6 ε, for all t > t0, with ε well chosen (small enough).

Let y0 ∈ R+K, y0 6= 0 (it exists since K is not empty). Since W (t0) ∈ Rd×m has full
rank equal to d, then there exists α0 ∈ Rm such that y0 = W (t0)α0.

We then consider a particle z(t) = W (t)α0 ∈ Rd. By construction, z′(t) = Ẇ (t)α0 =
−A(t)W (t)α0 = −A(t)z(t), and z(t0) = y0 ∈ R+K. We now show by contradiction that
we must have z(t) ∈ R+K for all t > t0. If t1 is the smallest t > t0 such that z(t) /∈ R+K
(which is assumed to exist by contradiction), then by continuity, z(t1) ∈ R+∂K, that
is, z(t1)⊤A∞z(t1) = −ηz(t1)

⊤z(t1). We then have, with z1 = z(t1), and using that
z′(t1) = −A(t1)z(t1):

d

dt

z(t)⊤A∞z(t)

z(t)⊤z(t)

∣∣∣
t=t1

= 2
z(t1)

⊤A∞z′(t1)

z(t1)⊤z(t1)
− 2

z(t1)
⊤A∞z(t1)

z(t1)⊤z(t1)

z′(t1)⊤z(t1)

z(t1)⊤z(t1)

= −2
z⊤1 A∞A(t1)z1

z⊤1 z1
+ 2

z⊤1 A∞z1
z⊤1 z1

z⊤1 A(t1)z1

z⊤1 z1

= −2
z⊤1 A

2
∞z1

z⊤1 z1
+ 2

z⊤1 A∞(A∞ −A(t1))z1

z⊤1 z1
+ 2

z⊤1 A∞z1
z⊤1 z1

z⊤1 A(t1)z1

z⊤1 z1
.

Using that ‖A(t1)−A∞‖op 6 ε and z(t1)⊤A∞z(t1) = −ηz(t1)⊤z(t1), this leads to

d

dt

z(t)⊤A∞z(t)

z(t)⊤z(t)

∣∣∣
t=t1

6 −2
z⊤1 A

2
∞z1

z⊤1 z1
+ 2
‖A∞z1‖2ε
‖z1‖2

+ 2η2 + 2ηε

6 −2β2 + 2η2 + 2‖A∞‖opε+ 2ηε,

which is strictly negative for ε small enough, which is a contradiction because it would

imply that for t just above t1, z(t)⊤A∞z(t)
z(t)⊤z(t)

< z(t1)
⊤A∞z(t1)

z(t1)⊤z(t1)
= −η, and thus, z(t) ∈ R+K.

Final contradiction. (�) We now have that the particule z(t) is in R+K for all t > t0.
We then have for all t > t0,

d

dt
z(t)⊤z(t) = −2z(t)⊤A(t)z(t) > 2

(
− z(t)⊤A∞z(t)− ‖z(t)‖22ε

)
> 2(η − ε)‖z‖22,

leading to, after integration, ‖z(t)‖22 > ‖z(t0)‖22 exp(2(η−ε)(t−t0)), and thus a divergence.
This contradicts the convergence of z(t) = W (t)α0.

12.3.4 Special case of Oja flow

As an illustration of the convergence results above, we consider the function

G(M) =
1

2
‖M − C‖2F ,
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for a symmetric matrix C ∈ Rd×d, for which the flow can integrated in closed form. We
have G′(M) = M − C, and thus the following gradient flows:

Ẇ = −G′(WW⊤)W = CW −WW⊤W and Ṁ = CM +MC − 2M2.

If we initialize W (0) = V ∈ Rd×m, we obtain a solution in closed-form (as can be checked
by taking derivatives and showing that Ṁ = CM +MC − 2M2), as

M = WW⊤ = exp(Ct)V
(
I + V ⊤C−1(exp(2Ct)− 1)V

)−1
V ⊤ exp(Ct).

This is the Oja flow, up to a change of variable (Yan et al., 1994). It is interesting to note
that if we use m 6 d particles, the rank of WW⊤ is always less than m 6 d, and in fact,
the same as the rank of the initialization. The global minimizer of R on PSD matrices
is the positive part of C, whose rank can be strictly smaller than m, and thus, it cannot
converge to the global optimum of R. The minimum number of particles is the number
of positive eigenvalues of C.

Vanishing initialization. If V =
√
αI ∈ Rd×d, we get:

M = α exp(2Ct)
(
I + αC−1(exp(2Ct)− 1)

)−1
.

Then, M is a spectral variant of C, thus with the same eigenvectors, and eigenvalues

m = αe2ct

1+αc−1(e2ct−1) ≈ c
1+e−2ctc/α for small α, where c is the corresponding eigenvalue

of c.

Thus, when α tends to zero (and therefore closer to the stationary point), the eigen-
values m stay at zero until they increase to the final positive values c, and this increase
happens around t = 1

2c log 1
α . We thus observe incremental learning of each eigenvector,

with each eigenvector corresponding to a positive eigenvalue c, which is a very different
optimization dynamic from the one obtained from projected gradient descent, which cor-
responds to m = c(1 − e−t) where all eigenvectors come in together. This incremental
learning at different time scales is common in non-convex optimization, see Saxe et al.
(2019); Gidel et al. (2019) for linear networks, and Berthier (2023); Pesme and Flammar-
ion (2023) for diagonal linear networks, where precise statements can be made.

12.4 Lazy regime and neural tangent kernels (�)

For over-parameterized one-hidden layer neural networks, with prediction functions of
the form (note the rescaling by 1/m):

f(x) =
1

m

m∑

j=1

ηjσ(w⊤
j x+ bj) =

1

m

m∑

j=1

Ψ(vj),

with Ψ defined in Section 12.3.1, we have seen two types of learning procedures in Chap-
ter 9 when the number of neurons grows unbounded:
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• Optimizing over all layers, leading to the mean-field limit presented in Section 12.3.1
and with the non-Hilbertian norm γ1. This corresponds to all parameters being
initialized with a scaling that does not depend on m.

• Optimizing over the last layer only, leading to the kernel regime, with the Hilbertian
norm γ2 defined in Section 9.5. The input weights (wj , bj) are all sampled without
scaling. For the output weights, ηj can be O(1) or O(

√
m) if initialized with zero-

mean (so that the overall norm of the prediction function remains bounded in high
probability). Since this is a convex optimization problem, scaling does not matter
as much.

Lazy training. We now consider a third regime, which we refer to as the “lazy” regime,
following Chizat et al. (2019). It corresponds to initializing each ηj with a scaling pro-
portional to

√
m. This is made possible by having zero mean initializations so that a

mean of m terms is of order O(1/
√
m) and not O(1) (leading to an overall predictor that

remains O(1)). We will formalize this training regime by seeing this model as a diverging
constant α (here

√
m) times a classical model with a mean-field limit.

We thus consider the minimization of the objective function G(V ) = R(h(V )) with
respect to V = (v1, . . . , vm). In the lazy regime, we end up minimizing R(αh(V )) with a
scaling factor α that tends to infinity, using a gradient flow on V , started at V (0) such
that αh(V (0)) remains bounded. In our neural network example, α =

√
m, and h is the

regular neural network.

We consider the gradient flow to minimize G(V ), with a step-size 1/α2 (scaling
adapted to have a non-trivial dynamic), that is,

d

dt
V (t) = − 1

α
Dh(V )⊤R′(αh(V (t))), (12.20)

where Dh(V ) is the differential of h at V (that is, a linear function from R
(d+2)×m to H).

For the predictor αh(V ), we get:

d

dt
[αh(V (t))] = −Dh(V (t))Dh(V (t))⊤R′(αh(V (t))). (12.21)

At initialization t = 0, αh(V (t)) remains bounded by construction, and since the op-
timization will tend to make the predictor better and better, we can expect it to re-
main bounded. Thus, we can expect R(αh(V (t))) and R′(αh(V (t))) to be O(1). Thus,
from Eq. (12.20), we obtain that the parameters V change at rate O(1/α), while from
Eq. (12.21) the predictor changes at a rate which is independent of α. Thus, in the
limit of large α, the parameters only move infinitesimally, while the predictor still makes
significant progress, hence the name lazy training (see more formal arguments by Chizat
et al., 2019).

Equivalent linear model. Since parameters move infinitesimally, the model αh(V )
behaves like an affine model, αh(V (0)) + αDh(αV (0))(V − V (0)), and thus the corre-
sponding cost function R(αh(V )) behaves like a convex function, hence leading to at-
tractive global convergence results for neural network training (see, e.g. Du et al., 2018).
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However, since we have an explicit linear model, the lazy regime also leads to a posi-
tive definite kernel, which we now define (with the same properties as traditional kernel
methods in Chapter 7).

Neural tangent kernel (�). If we assume that h(V (0)) = 0 (e.g., for neural networks,
assuming that all initial neurons come by pairs with the same input weights and opposite
output weights), then the affine model has a linear part proportional to Dh(αV (0))V .
We can thus associate to it a kernel, referred to as the neural tangent kernel (Jacot et al.,
2018).

To make things concrete, for neural networks with one hidden layer, h(x, v1, . . . , vm) =
1√
m

∑m
j=1 ηjσ(w⊤

j x+ bj), the corresponding features, for each j ∈ {1, . . . ,m}, are

derivative with respect to ηj :
1√
m
σ(wj(0)⊤x+ bj(0))

derivative with respect to wj :
1√
m
ηj(0)σ′(wj(0)⊤x+ bj(0))x

derivative with respect to bj :
1√
m
ηj(0)σ′(wj(0)⊤x+ bj(0)).

When the initialization of neuron weights is random, we get the equivalent kernel by the
law of large numbers:

k(x, x′) = E
[
σ(w⊤x+ b)σ(w⊤x′ + b) + E

[
σ′(w⊤x+ b)σ′(w⊤x′ + b)(x⊤x′ + 1)

]
,

whose first part is the traditional random feature kernel, but which has an additional part,
which makes for a richer model but cannot correct the limitations of kernel methods (see,
e.g., Bietti and Bach, 2021, and references therein).

12.5 Conclusion

In this chapter, we have presented a series of results related to over-parameterized models,
confirming that some form of regularization is needed: as opposed to previous chapters,
where (except for boosting procedures in Section 10.3) an explicit penalty was put on
the model parameters, overfitting is avoided by “computational regularization”, that is,
through the implicit bias of gradient descent techniques. This was formally shown for
linear models, but this extends more generally (see, e.g., Lyu and Li, 2019; Chizat and
Bach, 2020)

We also described how over-parameterization, while not detrimental to generalization
performance, can be a blessing in terms of optimization, with qualitative results showing
global convergence for infinitely overparameterized problems. Obtaining non-asymptotic
results (in terms of convergence times of number of neurons) remains an active area of
research.
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Chapter 13

Structured prediction

Chapter summary
– With appropriate modifications, we can design convex surrogates for output spaces

that are arbitrarily complex and with generic loss functions, starting with multi-
category classification.

– Like for binary classification, these convex surrogates lead to efficient algorithms
that predict optimally given infinite amounts of data (Fisher consistency).

– Quadratic surrogates that extend the square loss lead to simple, intuitive, and con-
sistent estimation procedures with well-defined decoding steps once a score function
has been learned. They can be extended to smooth surrogates.

– Non-smooth surrogates can be defined in the general structured prediction frame-
work, that extends the support vector machine.

In most of this book on supervised learning, we have focused on regression or binary
classification, which led to estimating real-valued prediction functions directly when pre-
dicting a real-valued output (least-squares regression) or indirectly through convex surro-
gates (support vector machine or logistic regression) where the binary output in {−1, 1}
was obtained by taking the sign function. As shown in Section 4.1, the use of convex
surrogates comes with strong theoretical guarantees in terms of achieving the Bayes error
(that is, the optimal performance on unseen data).

In this chapter, we tackle arbitrary output spaces Y, with arbitrary loss functions,
which are ubiquitous in practice (see examples in Section 13.2). Most developments from
Section 4.1 will extend with appropriate modifications.

We start in Section 13.1 with the natural extension to multi-category classification
with the 0-1 loss, which directly extends binary classification, before describing in Sec-
tion 13.2 a more general class of problems, referred to as structured prediction. We then

347
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present surrogate methods in Section 13.3 and their desirable properties before describ-
ing the two main classes, that is, smooth surrogates in Section 13.4 and non-smooth
surrogates in Section 13.5. We then present generalization bounds in Section 13.6 and
experiments in Section 13.7.

13.1 Multi-category classification

We dealt with binary classification with Y = {−1, 1} in Section 4.1.1 by estimating real-
valued prediction functions and taking their signs. Going from 2 to k > 2 classes requires
multi-dimensional vector-space valued functions. To preserve symmetry among classes,
we will consider k-dimensional outputs. That is, for Y = {1, . . . , k}, we will estimate a
function g : X→ Rk, and predict as f(x) ∈ arg maxj∈{1,...,k} gj(x) ⊂ Y.

When k = 2, we recover our traditional framework by mapping {1, 2} to {−1, 1}
and taking the sign of g2(x) − g1(x), highlighting the general fact (valid for all k) that
predictions are invariant by the addition of a constant vector to g(x) ∈ Rk.

In the binary case, the convex surrogates we considered were all of the form Φ(yg(x)).
In the multi-category case, there is significantly more diversity. In Section 13.1.1 below,
we describe the most commonly used convex surrogates and, when possible, the corre-
sponding optimal predictors and their relationship with the Bayes predictor for the 0-1
loss, equal to arg maxz∈{1,...,k} P(y = z|x). Generalization bounds will then be derived,
first for stochastic gradient descent used on linear models in Section 13.1.2 because it
does not require any new developments, and then using Rademacher complexities in Sec-
tion 13.1.3. In later sections, we show how this can be generalized to general output
spaces.

Throughout this section on multi-category classification, we will identify elements y of
{1, . . . , k} with the corresponding canonical basis vector in R

k, that is, the vector ȳ ∈ R
k

with all zero components except a one at index y.

13.1.1 Extension of classical convex surrogates

All binary convex surrogates presented in Section 4.1.1 have natural extensions that we
now present. We consider a label y ∈ {1, . . . , k} (also identified to a canonical basis
vector ȳ), and a vector-valued function g : X → R

k. Our goal is to build a convex
surrogate S(y, g(x)) (which is convex with respect to its second variable).

Softmax loss. We can extend the logistic loss and its relationship with maximum
likelihood by considering the conditional model:

P(y = j|x) =
exp(gj(x))

∑k
i=1 exp(gi(x))

= softmax(g(x))j ,

by definition of the softmax function from R
k to the simplex in R

k, defined as softmax(u)j =

exp(uj)/
∑k
i=1 exp(ui).
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The negative log-likelihood (often referred to as the cross-entropy loss) for this model
is then equal to

S(y, g(x)) = − log
exp(gy(x))

∑k
i=1 exp(gi(x))

= −gy(x) + log
( k∑

j=1

exp(gj(x))
)

= −ȳ⊤g(x) + log
( k∑

j=1

exp(gj(x))
)
.

The minimizer of the surrogate expected risk E[S(y, g(x))] is then equal to g∗(x)j =
logP(y = j|x)+c(x), for any function c : X→ R; thus, the predictor arg maxj∈{1,...,k} g

∗(x)j
is the Bayes predictor, which will lead to consistent estimation. A calibration function
relating the excess surrogate risk and the 0-1 excess risk will be derived in Section 13.4 in
the more general structured prediction case (with the same square root behavior as for
logistic regression).

Square loss. The square loss has a natural extension S(y, g(x)) = ‖ȳ − g(x)‖22, with a
minimizer of the surrogate expected risk equal to g∗(x) = E[ȳ|x]. Again, the predictor
arg maxj∈{1,...,k} g

∗(x)j is the Bayes predictor (note that this is an instance of the “one
vs. all” framework presented below), with a calibration function derived in Section 13.4,
also with a square root behavior typical of smooth surrogates.

Hinge loss. The maximum-margin framework presented in Section 4.1.2 can be ex-
tended in several ways. We present the one that has natural extensions in structured
prediction. The goal is to make gy(x) strictly larger than all others gj(x), for j 6= y, with
potential slack, that is, we aim at finding the lowest ξ > 0, such that

∀j 6= y, gy(x) > gj(x) + 1− ξ.

The lowest such ξ can obtained in closed form, leading to the surrogate:

S(y, g(x)) = sup
j∈{1,...,k}

{
1y 6=j + g(x)j − g(x)y

}
.

Finding the minimizer of the expected surrogate risk is not as easy. We have for a given
x ∈ X,

E[S(y, g(x))|x] =

k∑

i=1

P(y = i|x) sup
j∈{1,...,k}

{
1i6=j + g(x)j − g(x)i

}
.

Assuming without loss of generality that posterior probabilities given x are non-increasing,
the global minimizer of the quantity above can be shown (proof left as an exercise) to be
achieved for g1(x) > g2(x) = · · · = gk(x), and we thus need to minimize

P(y = 1|x)(1 + g1(x) − g2(x))+ + (1 − P(y = 1|x))(1 + g2(x)− g1(x))+.

If P(y = 1|x) > 1/2, then the optimal g1(x) − g2(x) can be shown to be equal to 1, and
the prediction is optimal. Otherwise, it is not, hence, we lose consistency in general,
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as for k > 2, it is not always the case that the posterior probability of the most likely
class exceeds 1/2. A consistent version of the non-smooth hinge loss will be discussed in
Section 13.5.

One vs. all (�). This class of techniques essentially solve k different binary opti-
mization problems, by solving independently for each gj(x) predicting yj ∈ {0, 1}. Using
convex surrogates for these problems and taking into account the mapping from {0, 1} to
{−1, 1}, the overall cost function is:

S(y, g(x)) =

k∑

j=1

Φ((2yj − 1)gj(x)),

with Φ one of the convex surrogates from Section 4.1.1. For the square loss, we recover
the multivariate square loss, but other losses can be used as well. The expected surrogate
risk given x ∈ X, is then equal to

E[S(y, g(x))|x] =
k∑

j=1

{
P(y = j|x)Φ(gj(x)) + (1− P(y = j|x))Φ(−gj(x))

}
.

For a differentiable strictly convex function such that Φ(z) < Φ(−z) for z > 0 (which
excludes the hinge loss), minimizing it is done by setting P(y = j|x)Φ′(gj(x)) = (1 −
P(y = j|x))Φ′(−gj(x)). One can then show that gj(x) is a strictly increasing function
of P(y = j|x), and thus we get consistent predictions (in the population case), with also
calibration functions (see Zhang, 2004b, Theorem 11).

Beyond. As reviewed by Zhang (2004b), there are many examples of convex surrogates
to estimate the k functions g1, . . . , gk : X → R, based on several principles. Reductions
to binary classification problems go beyond one vs. all approaches, for example, by con-
sidering several subsets A of {1, . . . , k} and solving the binary classification problems of
deciding y ∈ A vs. y /∈ A. This approach based on error-correcting codes (Dietterich and
Bakiri, 1994) will also be considered within the general surrogate framework.

Exercise 13.1 Consider the following surrogate S(y, g(x)) =
∑
i6=y Φ(−gi(x)), with the

additional constraint that
∑k
i=1 gi(x) = 0, with a strictly convex decreasing function Φ.

Show that if g∗ is the minimizer of E[S(y, g(x)], then for all i, j ∈ {1, . . . , k}, P(y = i|x) >
P(y = j|x)⇒ g∗i (x) > g∗j (x). Conclude on the consistency of this convex surrogate.

13.1.2 Generalization bound I: stochastic gradient descent

In these following two sections, we will consider generalization bounds for Lipschitz-
continuous losses (all losses in the section above are Lipschitz-continuous, potentially once
restricted to a bounded set), like done in Chapter 4 with estimation errors controlled by
Rademacher complexities, and Chapter 5 using single-pass stochastic gradient descent
(SGD). We start with SGD because the analysis can be done without the need for new
tools.



13.1. MULTI-CATEGORY CLASSIFICATION 351

Linear models. Since we will leverage convergence results for convex optimization
algorithms, we need to consider linear models. We thus assume that we have a feature
vector ϕ : X → Rd almost surely bounded by R in ℓ2-norm, and that the vector-valued
function g : X→ Rk is parameterized linearly as g(θ)(x) = θ⊤ϕ(x), with θ = (θ1, . . . , θk) ∈
Rd×k. We aim to estimate θ restricted to a ball of radius D for a certain norm Ω.

Several candidates are natural for the norm Ω: the simplest one is the Frobenius norm
defined through its square ‖θ‖2F =

∑k
i=1 ‖θi‖22 =

∑k
i=1

∑d
j=1 θ

2
ji, which corresponds to

the Euclidean norm for the matrix θ seen as a vector, and for which all results related to
SGD will apply. Another classical norm is the nuclear norm (a.k.a. trace norm) defined
as the sum of singular values of θ, which will push for low-rank θ with similar properties
as the ℓ1-norm in Section 8.3. Other norms, such as the ℓ1-norm or “grouped” norms,
could also be considered for variable selection. For these norms, optimization tools such
as stochastic mirror descent from Section 11.1.3 are needed (see Exercise 13.2 for the
nuclear norm).

Note finally that we could use (positive definite) kernel methods with the kernel trick
from Section 7.4.5 to deal with infinite-dimensional feature vectors.

Sampling assumptions. Following the rest of the book, we assume that we have n
i.i.d. pairs of observations (xi, yi) ∈ X × {1, . . . , k}, i = 1, . . . , n. Given the function
g(θ) : X → Rk defined through the linear model above, we consider the expected risk
R(f) for the predictor f : X→ {1, . . . , k} defined as f(x) ∈ arg maxi∈{1,...,k} g

(θ)(x)i and
the 0-1 loss. As already mentioned and shown in the subsequent section, the excess risk
R(f) − R∗ (where R∗ is the minimum risk overall measurable functions, not only the
ones obtained from the model), will be bounded by an increasing function of the excess
surrogate risk RS(g)−R∗

S (again R∗
S is the minimal value across all measurable functions).

We thus focus on the excess surrogate risk.

Using the same decomposition as in Section 4.5.4, we consider an estimator θ̂ ∈ Rd×k

that depends on the observations and subject to the constraint ‖θ‖F 6 D (other norms
could also be considered) for some real value D. A bound on the expected excess risk
is obtained by the sum of the approximation error inf‖θ‖F6D RS(g(θ)) − R∗

S and the

estimation error RS(g(θ̂))−inf‖θ‖F6D RS(g(θ)). We focus on the latter quantity, a random
quantity we bound through its expectation.

We assume that the convex surrogate S : Y × Rk → R is Lipschitz-continuous with
respect to its second variable, that is, its subgradients S′(y, u) ∈ Rk are bounded by G
in ℓ2-norm.

Single-pass SGD. We consider the following SGD iteration, for t ∈ {1, . . . , n}, with
an arbitrary subgradient of the surrogate S:

θt = ΠD

(
θt−1 − γtϕ(xt)S

′(yt, θ
⊤
t−1ϕ(xt))

⊤).
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The analysis of Section 5.4 exactly applies, and with the choice γt = D
RG

√
n

, we obtain

the following generalization bound:

E
[
RS(g(θn))− inf

‖θ‖F6D
RS(g(θ))

]
6
DRG√

n
, (13.1)

which is exactly the same as for real-valued predictions.

Exercise 13.2 (Mirror descent for trace-norm penalty (�)) We consider the fol-
lowing mirror map on Rd×k, Ψ(θ) = 1

2‖σ(θ)‖2p, where σ(θ) is the vector of singular
values of θ. Show that for p ∈ (1, 2) is (p − 1)-strongly-convex with respect to the norm
‖σ(·)‖p. Show how to apply stochastic mirror descent on a nuclear norm ball and provide
a convergence rate.

13.1.3 Generalization bound II: Rademacher complexities (�)

Another approach we followed in this book is to assume we can compute a minimizer
of the empirical risk beyond linear models (in particular for neural networks). We thus
assume a generic space of functions G of functions from X → Rk, and define ĝ ∈ G

as the minimizer of the empirical surrogate risk R̂(g) = 1
n

∑n
i=1 S(yi, g(xi)) over g ∈ G.

Following Section 4.2 and Section 4.5, the expected estimation error RS(ĝ)− infg∈G RS(g)
is then less than twice the Rademacher complexity

Rn(S,G) = E

[
sup
g∈G

1

n

n∑

i=1

εiS(yi, g(xi))
]
,

where the expectation is taken with respect to the data and the Rademacher random
variables ε1, . . . , εn ∈ {−1, 1}. In the real-valued case, we used a contraction principle
(Prop. 4.3) that allows us to get rid of the surrogate cost S as long as it is Lipschitz-
continuous. Such a contraction principle also exists for vector-valued prediction func-
tions (Maurer, 2016) and is presented in Prop. 13.1 below. Its application leads to

Rn(S,G) 6
√

2G · E
[

sup
g∈G

1

n

n∑

i=1

(ε′i)
⊤g(xi)

]
, (13.2)

where now each ε′i ∈ {−1, 1}k, i = 1, . . . , n, is a vector of independent Rademacher
random variables. This bound allows us to obtain a bound for all the function spaces
that we considered in this book. We consider linear models below (and compare them to
the SGD bound from above) and leave neural networks as an exercise.
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Linear models. In the set-up of the previous section (linear models with Frobenius
bound), we can further upper-bound in Eq. (13.2) as:

Rn(S,G) 6
√

2G · E
[

sup
g∈G

1

n

n∑

i=1

(ε′i)
⊤g(xi)

]
=
√

2G · E
[

sup
‖θ‖F6D

1

n

n∑

i=1

(ε′i)
⊤θ⊤ϕ(xi)

]

=
D

n

√
2G · E

[∥∥∥
n∑

i=1

ϕ(xi)(ε
′
i)

⊤
∥∥∥
F

]
6
DG

n

√
2·
(
E

[∥∥∥
n∑

i=1

ϕ(xi)(ε
′
i)

⊤
∥∥∥
2

F

])1/2

=
DG

n

√
2·
(
E

[ n∑

i=1

‖ϕ(xi)‖22‖ε′i‖22‖2F
])1/2

6
DGR

√
2k√

n
.

We thus obtain the same bound as in Eq. (13.1), but with an extra factor of
√
k, showing

that the Rademacher average technique, as opposed to the real-valued case, does not
lead to the same result as SGD. However, it applies more generally to non-convex loss
functions (as long as they are Lipschitz-continuous) and non-linear predictors.

Contraction principle (�). We now provide a proof for the vector-valued contraction
principle, taken from Maurer (2016). The proof follows the same structure as the proof
of Prop. 4.3 for k = 1, and we start from a key lemma.

Lemma 13.1 Given any functions b : Θ → R, a : Θ → Rk (no assumption) and c :
Rk → R any 1-Lipschitz-functions (with respect to the ℓ2-norm), we have, for ε ∈ {1, 1}
a Rademacher random variable, and ε′ ∈ Rn a vector of independent Rademacher random
variables:

E

[
sup
θ∈Θ

{
b(θ) + εc(a(θ))

}]
6 E

[
sup
θ∈Θ

{
b(θ) +

√
2

k∑

j=1

ε′jaj(θ)
}]
.

Proof (��) Writing down explicitly the expectation with respect to ε, we get:

Eε

[
sup
θ∈Θ

{
b(θ) + εc(a(θ))

}]
=

1

2
sup
θ∈Θ

{
b(θ) + c(a(θ))

}
+

1

2
sup
θ∈Θ

{
b(θ)− c(a(θ))

}

= sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+
c(a(θ)) − c(a(θ′))

2
.

By taking the supremum over (θ, θ′) and (θ′, θ), and using Lipschitz-continuity of c, we
further get the bound

sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+
|c(a(θ)) − c(a(θ′))|

2
6 sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+
‖a(θ)− a(θ′)‖2

2
.

In the proof of Prop. 4.3 (for k = 1), we then applied the same set of equalities to obtain
the desired result without the constant

√
2. Here, we can use Khintchine’s inequality

from Lemma 11.1, that is, for any vector v ∈ Rk, ‖v‖2 6
√

2 · E
[∣∣∑k

j=1 ε
′
jvj

∣∣] for any
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vector v ∈ Rk and independent Rademacher random variables ε′1, . . . , ε
′
n. This leads to

the bound:

sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+

√
2

2
E

[∣∣∣
k∑

j=1

ε′j(aj(θ) − aj(θ′))
∣∣∣
]

6 E

[
sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+

√
2

2

∣∣∣
k∑

j=1

ε′j(aj(θ)− aj(θ′))
∣∣∣
]

using properties of expectations and suprema,

= E

[
sup
θ,θ′∈Θ

b(θ) + b(θ′)

2
+

√
2

2

k∑

j=1

ε′j(aj(θ) − aj(θ′))
]

by symmetry,

6 E

[
sup
θ∈Θ

{
b(θ) +

√
2

k∑

j=1

ε′jaj(θ)
}]

which is the desired result.

Proposition 13.1 (Vector-valued contraction principle) Given any functions b :
Θ → R, ai : Θ → Rk (no assumption) and ci : Rk → R any 1-Lipschitz-functions (with
respect to the ℓ2-norm), for i = 1, . . . , n, we have, for ε ∈ Rn a vector of independent
Rademacher random variables, and ε′ ∈ R

n×k a matrix of independent Rademacher ran-
dom variables:

E

[
sup
θ∈Θ

{
b(θ) +

n∑

i=1

εici(ai(θ))
}]

6 E

[
sup
θ∈Θ

{
b(θ) +

√
2

n∑

i=1

k∑

j=1

ε′ijaij(θ)
}]
.

Proof (��) We consider a proof by induction on n. The case n = 0 is trivial, and we show

how to go from n > 0 to n+1. We thus consider Eε1,...,εn+1

[
sup
θ∈Θ

{
b(θ)+

n+1∑

i=1

εici(ai(θ))
}]

and apply Lemma 13.1 with fixed ε1, . . . , εn, leading to the bound

Eε1,...,εn,ε′n+1

[
sup
θ∈Θ

{
b(θ) +

k∑

j=1

ε′n+1,jan+1,j(θ) +

n∑

i=1

εici(ai(θ))
}]
,

and apply the induction hypothesis with ε′n+1 fixed to obtain the desired result.

Exercise 13.3 (Multi-cateagory classification with neural networks (�)) We
consider the neural network with outputs in Rk, that is, using the notations from Sec-
tion 9.2, f(x) =

∑m
j=1 σ(w⊤

j x + bj)ηj, with now ηj ∈ Rk. Extend the estimation error

analysis from Section 9.2.3 by imposing a constraint on
∑m

j=1 ‖ηj‖2.

13.2 General set-up and examples

Now that the multi-category classification has been presented, we consider the same
general set-up presented earlier in Section 2.2, that is, we want to predict a variable
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y ∈ Y from some x ∈ X, and given a prediction z ∈ Y, we incur the loss ℓ(y, z), with the
loss function ℓ : Y× Y→ R.

Like in Section 2.2, given a test distribution p on X × Y, we can define the Bayes
predictor

f∗(x) ∈ arg min
z∈Y

∫

Y

ℓ(y, z)dp(y|x) (13.3)

in the usual way. While it led to simple closed-form formulas for the 0–1 loss and binary
classification, this will not always be the case. Nevertheless, our goal will still be to
achieve its (optimal) performance at a reasonable computational cost.

13.2.1 Examples

We now consider classic examples with their applicative motivations in natural language
processing, biology, or computer vision—see more examples by Nowak et al. (2019) and
Ciliberto et al. (2020):

• Multi-category classification: Y = {1, . . . , k} and a loss matrix L ∈ R
k×k, with

ℓ(i, j) = Lij . The usual 0-1 loss from Section 13.1 corresponds to Lij = 1i6=j , but in
most applications, errors do not have the same cost (for example, in spam prediction,
classifying a legitimate email as spam costs much more than the opposite).

• Robust regression: Y = R, with ℓ(y, z) = ρ(y − z) and typically ρ non convex.
When ρ is convex, such as ρ(δ) = |δ| or ρ(δ) = δ2, there is no need for a surrogate
framework, but then regression may be non-robust to strong outlier perturbations.
Having a non-convex ρ, such as, ρ(δ) = 1− exp(−δ2) leads to robust regression.

• Ordinal regression: this is a particular case of the situation above, where the loss
matrix has a specific structure where the loss Lij is increasing in |i − j|. This is
common when using a rating system with a few discrete levels. One possibility is
to ignore the discrete structure of the loss and use least-squares regression together
with rounding, but this does not lead to optimal predictions.

• Multiple labels: Y = {−1, 1}k, with cardinality 2k, with the traditional Hamming
loss ℓ(y, z) = 1

2‖y − z‖1 = 1
4‖y − x‖22, which counts the number of mistakes and

will be a running example in this chapter. Other scores, such as precision/recall1

or F -scores2, are typically used (and may not be symmetric) and can be treated as
well with the frameworks presented in this chapter. These are detailed by Nowak
et al. (2019).

Multiple label prediction is common in multimedia applications, where there are
potentially k objects in a document, and one wants to predict which ones are
present.

• Permutations: Y is the set of permutations among m elements, that is, y a bijec-
tion from {1, . . . ,m} to {1, . . . ,m}. We have then |Y| = m!. A common loss func-
tion is the “pairwise disagreement”, equal to ℓ(y, z) =

∑m
i,j=1 1y(i)>y(j)1z(i)<z(j),

1See https://en.wikipedia.org/wiki/Precision_and_recall.
2See https://en.wikipedia.org/wiki/F-score.

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F-score
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but other losses such as the discounted cumulative gain3 can be used, or losses of
the form

∑m
i=1 ℓi(ay(i)− b(y(i)) for vectors a, b ∈ Rm and functions ℓi : R→ R. Pre-

dicting permutations occurs in information retrieval and ranking problems where
the permutation encodes a user’s preferences over a set of m items. See Nowak
et al. (2019) and references therein for a review of classical losses used in practice.

• Sequences: Y is the set of sequences of potentially arbitrary lengths over some
alphabet; this has applications in natural language processing (e.g., translation
from one language to another), computational biology (DNA basis or amino-acid
sequences), or econometrics/finance (prediction of time series, where the alphabet is
usually not finite). The cardinality of y is thus large (or infinite), and the Hamming
loss is commonly used.

• Trees, graphs: Y is set of potentially labelled graphs over some vertices. Classic
examples include the prediction of molecules (which can be represented as graphs)
or the grammatical analysis of sentences in natural language processing.

Why is it difficult? Structured prediction is challenging for two reasons:

• Computationally: we need to predict large structured (often discrete) objects from
real-valued outputs.

• Statistically: there is a potential curse of dimensionality in both k (the underlying
dimension of the problem, to be defined later precisely) and the input d, in addition
to a complicated combinatorial structure.

Our goal is to obtain polynomial-time algorithms in k, n, and d to attain the optimal
prediction, that is, we aim to obtain:

1. Computational tractability by introducing convex surrogates (to use convex opti-
mization) and efficient decoding steps (often dedicated algorithms).

2. Fisher consistency (excess risk goes to zero in the population case) and calibration
(sub-optimality for the convex surrogate leads to sub-optimality for the true risk).

Following the rest of the book, we will always go through vector-space valued predic-
tion functions. Thus, there will always be two components:

1. Learning some scores from data, implicitly and explicitly, in a Hilbert space H

or Rk, where k is the (potentially implicit) “affine dimension” of Y.

2. Decoding step to go from score functions to predictions (obvious and somewhat
overlooked in the binary classification case, as this was simply the sign).

From one learning framework per situation to a general framework. The de-
velopment of structured prediction methods has seen two streams of work: first, methods
dedicated to specific instances (in particular, cost-sensitive multi-category classification,
ranking, or learning with multiple labels), then generic frameworks that encompass all
the particular cases. In this book, we focus on the latter set of techniques.

3See https://en.wikipedia.org/wiki/Discounted_cumulative_gain.

https://en.wikipedia.org/wiki/Discounted_cumulative_gain
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13.2.2 Structure encoding loss functions

To achieve guaranteed predictive performance, we will need to impose some low-dimension
vectorial structure, which in turn imposes some specific structure within Y, hence the
name “structured prediction”. More precisely, we will assume that we have two embed-
dings of the label space Y into the same Hilbert space H, that is, two maps χ, ψ : Y→ H

and a constant c ∈ R, such that

∀(y, z) ∈ Y× Y, ℓ(y, z) = c+ 〈χ(z), ψ(y)〉. (13.4)

This assumption is called “structure encoding loss function” (SELF) (Ciliberto et al.,
2020). This can be an implicit or explicit embedding (see examples below). Note that
the representation is not unique as given a pair (χ, ψ), any pair (V χ, V −∗ψ) is valid for
any invertible operator.

△! There are two different embeddings of outputs in Y, while typically one for the inputs
in X.

Bayes predictor. With the assumption in Eq. (13.4) above, we can now express the
optimal predictor in Eq. (13.3) as:

f∗(x) ∈ arg min
z∈Y

〈
χ(z),

∫

Y

ψ(y)dp(y|x)
〉
. (13.5)

Thus, to obtain Fisher consistency, it is sufficient to estimate well the conditional ex-
pectation

∫
Y
ψ(y)dp(y|x) ∈ H; this is what smooth surrogates will do in Section 13.4.

However, what is only needed is, in fact, sufficient knowledge of this conditional expecta-
tion to perform the computation of f∗(x) above. This will lead to non-smooth surrogates
in Section 13.5.

Examples. We can now revisit the list of losses described in Section 13.2.1 to check if a
SELF decomposition exists. In our analysis, we will need a bound on Rℓ = supz∈Y ‖χ(z)‖,
which we also provide here.

• Binary classification, with Y ∈ {−1, 1} and the 0-1 loss: H = R, χ(y) = −y/2
and ψ(z) = z, since ℓ(y, z) = 1y 6=z = 1

2 −
yz
2 , with Rℓ = 1/2.

• Multi-category classification: Y = {1, . . . , k} and a loss matrix L ∈ Rk×k,
with ℓ(i, j) = Lij . This corresponds to the usual “one-hot” encoding of discrete
distributions, where ψ(i) ∈ R

k is the i-th element of the canonical basis. We then
have ℓ(i, j) = Lij = ψ(i)⊤Lψ(j), that is, χ(j) = Lψ(j). For this case, we have
Rℓ = supj∈{1,...,k} ‖L(:, j)‖2. In particular, for the 0-1 loss, we have Lij = 1i6=j , and

we can write ℓ(i, j) = 1− ψ(i)⊤ψ(j), and we can take χ(i) = −ψ(i), with Rℓ = 1.

We can also choose to have a feature map ψ with values in {−1, 1} instead of {0, 1},
in particular for the general reduction to binary classification problems.

• Robust regression: Y = R, with the loss ℓ(y, z) = 1−exp
[
−(y−z)2

]
, which can be

written as, using the Fourier transform, ℓ(y, z) = 1− 1
2
√
π

∫∞
−∞ exp(−ω2/4) cosω(x−

z)dω, which leads to the existence of an infinite-dimensional H.
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Indeed, we can select H to be the set of square integrable functions from R to

R2, with ψ(y)(ω) = e−ω
2/8

(
cosωy
sinωy

)
, and χ(z)(ω) = − 1

2
√
π
e−ω

2/8
(
cosωz
sinωz

)
, leading to

R2
ℓ = 1

4π

∫∞
−∞ exp(−ω2/4) = 1

2
√
π

.

• Multiple labels: for Y = {−1, 1}k, the traditional Hamming loss can be rewritten
as ℓ(y, z) = k

2 − 1
2y

⊤z. We then have, ψ(y) = y and χ(z) = −z/2, and Rℓ =
√
m.

Note here that choosing the 0-1 loss is not advocated as it is non-zero as soon as a
single mistake is made, and it requires a lot of observations in practice (as can be
seen by having a constant Rℓ that grows exponentially in k.

• Permutations: for the pairwise disagreement, we have directly H = R
k with

k = m(m − 1), with ψ(y)ij = 1y(i)>y(j) and χ(z)ij = 1z(i)<z(j) for i 6= j, and
Rℓ 6 m. For the loss ℓ(y, z) =

∑m
i=1(ay(i) − b(y(i))

2, we have ψ(y) = y and

χ(z) = −2 ∗ z, with Rℓ 6
√

2(m+ 1).

• Sequences: we consider binary sequences for simplicity, that is, Y = {−1, 1}m, but
it extends more generally to all factor graphs (Wainwright and Jordan, 2008) and
types of labels. Using the Hamming loss like for multiple labels ignores the sequen-
tial structure and does not enforce any notion of consistency between two successive
elements of the sequence. On top of the feature y1, . . . , ym ∈ {−1, 1}, we can add
the features y1y2, y2y3, . . . , ym−1ym ∈ {−1, 1}, that allows to consider losses that
encourages perfectly predicted sequence of size 2, for example, by considering the
loss ℓ(y, z) =

∑m−1
j=1 1yj 6=zj or yj+1 6=zj+1 =

∑m−1
j=1

{
yjzj + yj+1zj+1− yjzjyj+1zj+1

}
.

△! Like for binary classification or regression, the loss choice is independent of
the function space considered (local averaging, kernels, neural nets).

Reduction to binary problems. We have encountered several examples above, where
the feature map Ψ has binary values in {−1, 1}m. We will see below that natural convex
surrogates end up simply considering each of the m labels independently (ignoring their
potential dependency, i.e., in the ranking case, where components of Ψ(y) are 1y(i)<y(j),
not all values are possible). This can be useful in structured cases like sequence models
or ranking, but also in multi-category classification with the 0-1 loss.

13.3 Surrogate methods

In this section, our main concern will be to obtain consistent convex surrogates, convex so
that we can run efficient algorithms from Chapter 5, consistent so that we are sure that
given sufficient amounts of data and sufficiently flexible models, predictions are optimal.
In particular, this will allow us to derive generalization bounds in Section 13.6.
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13.3.1 Score functions and decoding step

Binary classification. In this book, we have performed binary classification by learn-
ing a real-valued function g : X → R, and then predicting with f(x) = sign(g(x)) ∈
{−1, 1}. In the language of this chapter, we have learned a real-valued score function and
applied a specific decoding step from R to {−1, 1} (the sign function). We now present
the general surrogate framework.

General surrogate framework. In this chapter, we will consider functions f : X→ Y

that can be written as:

f(x) = dec ◦ g(x),

where

• g : X → H is a function with values in the vector space H, referred to as a score
function.4

• dec : H→ Y is the decoding function.

We then need a surrogate loss S : Y ×H → R, that will be used to form empirical and
expected surrogate risks:

R̂S(g) =
1

n

n∑

i=1

S(yi, g(xi)) and RS(g) = E
[
S(y, g(x))

]
.

For binary classification where Y = {−1, 1}, we had S(y, g(x)) = Φ(yg(x)) for Φ a
convex function.

13.3.2 Fisher consistency and calibration functions

Following the same definition as in Section 4.1, we denote R∗
S the minimim S-risk, that

is the infimum over all functions from X to H of RS(g) = E
[
S(y, g(x))

]
. It is equal to:

R∗
S = E

[
inf
h∈H

E
[
S(y, h)|x

]]
.

The loss is said “Fisher-consistent” if we can get an arbitrary small excess risk R(f)−R∗

for f = dec ◦ g, as soon as the excess S-risk of g is sufficiently small. In other words,
perfectly minimizing the S-risk should lead to the Bayes predictor.

A stronger property that enables the transfer of convergence rates for the excess S-risk
to the excess risk is the existence of a calibration function, that is, an increasing function
H : R+ → R+ such that R(dec ◦ g)−R∗ ≤ H

[
RS(g)−R∗

S

]
. Note that, like in the binary

classification case in Section 4.1.3, a more refined notion of consistency can be defined
and studied, see, e.g., Long and Servedio (2013).

4In statistics, the score function often refers to the gradient of the log-density with respect to param-
eters. There is no link between these two definitions.
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13.3.3 Main surrogate frameworks

As described in Section 4.1, for binary classification, we saw two classes of convex surro-
gates:

• Smooth surrogates, where the predictor minimizing the expected surrogate risk led
to a complete description of the conditional distribution of y given x, that is, since
we had only two outcomes, knowledge of E[y|x]. Classic examples were the square
loss and the logistic loss. Then, when going from the excess surrogate risk to the
true excess risk, the calibration function was the square root.

• Non-smooth surrogates, where the predictor minimizing the expected surrogate
risk already provided a thresholded version, that is, sign(E[y|x]). The calibration
function, however, did not exhibit a square root behavior but rather a (better)
linear behavior.

In this chapter, we will present extensions of these two sets of surrogates: (1) least-
squares (or more generally smooth surrogates), (2) max-margin (non-smooth that esti-
mates the discrete estimator directly), as they come with efficient algorithms and guar-
antees. But there are other related frameworks that we will not study (Osokin et al.,
2017; Lee et al., 2004; Blondel et al., 2020). In particular, probabilistic graphical models
in the form of conditional random fields are popular (Sutton and McCallum, 2012).

13.4 Smooth/quadratic surrogates

We first look at a class of techniques that extends the square and logistic losses beyond
binary classification for the whole class of structure encoding loss functions. We first
start with quadratic surrogates, following Ciliberto et al. (2020), where the analysis is
the simplest and most elegant.

13.4.1 Quadratic surrogate

Given the SELF decomposition in Eq. (13.4), we consider estimating a score function
g : X→ H with the following surrogate function:

S(y, g(x)) = ‖ψ(y)− g(x)‖2,

for the Hilbert norm ‖ · ‖. In other words, we aim at directly estimating E
[
ψ(y)|x

]
for

every x ∈ X. The decoding function is then naturally

dec(s) ∈ arg min
z∈Y
〈χ(z), g(x)〉,

since, when g(x) = E
[
ψ(y)|x

]
, it leads to arg min

z∈Y
E
[
〈χ(z), ψ(y)〉|x

]
= arg min

z∈Y
E
[
ℓ(y, z)|x

]
,

which is the optimal predictor.

For the binary classification case, it leads to the square loss framework from Sec-
tion 4.1.1, but in the general case, it extends to the many situations alluded to earlier.
The decoding steps will be described in Section 13.4.3.
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When the loss function is induced by a positive-definite kernel, then this framework
is also referred to as output kernel regression (see, e.g., Brouard et al., 2016), or kernel
dependency estimation (Weston et al., 2002).

13.4.2 Theoretical guarantees

For the framework proposed above, we can prove a precise calibration result by leveraging
the properties of the square loss. We first notice that

RS(g)− R∗
S = E

[∥∥g(x)− E[ψ(y)|x]
∥∥2

]
. (13.6)

Moreover, by construction, the function defined by g∗(x) = E[ψ(y)|x] is the minimizer of
the expected S-risk, and the Bayes predictor is indeed f∗ = dec ◦ g∗.

We can then express the excess risk using the decomposition of the loss as:

R(dec ◦ g)− R∗

= R(dec ◦ g)− R(dec ◦ g∗)

= E

[
E
[
ℓ(y, dec ◦ g(x))− ℓ(y, dec ◦ g∗(x))

∣∣x
]]

= E

[
E
[〈
ψ(y), χ(dec ◦ g(x))− χ(dec ◦ g∗(x))

〉∣∣x
]]

by the SELF decomposition,

= E

[〈
E
[
ψ(y)|x

]
, χ(dec ◦ g(x)) − χ(dec ◦ g∗(x))

〉]]
by moving expectations,

= E

[〈
E
[
ψ(y)|x

]
−g(x), χ(dec ◦ g(x)) − χ(dec ◦ g∗(x))

〉]]

+E

[〈
g(x), χ(dec ◦ g(x))− χ(dec ◦ g∗(x))

〉]]
,

by adding and subtracting g(x). The definition of the decoding function implies the
negativity of the second term. Thus, we get:

R(dec ◦ g)−R∗ 6 E

[〈
E
[
ψ(y)|x

]
− g(x), χ(dec ◦ g(x)) − χ(dec ◦ g∗(x))

〉]]

6 2 sup
z∈Y

‖χ(z)‖·E
[∥∥E

[
ψ(y)|x

]
−g(x)

∥∥
]

using Cauchy-Schwarz inequality,

6 2 sup
z∈Y

‖χ(z)‖ ·
√
·E
[∥∥〈E

[
ψ(y)|x

]
− g(x)

∥∥2
]

using Jensen’s inequality,

= 2Rℓ ·
√
RS(g)− R∗

S because of Eq. (13.6),

which is precisely a calibration function result. A key feature of this result is that the
constantRℓ typically does not explode, even for sets Y with large cardinality (see examples
in Section 13.2.2). To get a learning bound, we then need to use learning bounds for
multivariate least-squares regression, which behave similarly to univariate least-squares
regression (see Section 13.6). For example, if we assume that the target function g∗(x) =
E[ψ(y)|x] from X → H is in the space of functions that we are using for learning, then
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penalized least-squares with the proper choice of regularization parameter will lead to
explicit convergence rates. Otherwise, we need to let the parameter go to zero to obtain
universal consistency. See Ciliberto et al. (2020) for more details.

13.4.3 Linear estimators and decoding steps

When the function g is linear in the observations ψ(yi), i = 1, . . . , n (e.g., local averaging
methods from Section 6.2.1, or kernel methods from Section 7.6.1), that is,

g(x) =

n∑

i=1

wi(x)ψ(yi),

for well-defined functions wi : X→ R, we see that the decoding step is

dec(s) ∈ arg min
z∈Y

〈
χ(z),

n∑

i=1

wi(x)ψ(yi)
〉

= arg min
z∈Y

n∑

i=1

wi(x)ℓ(yi, z), (13.7)

that is, there is no need to know the loss decomposition to run the algorithm. This makes
the decoding step even easier with the following examples:

• Robust regression: Y = R, with the loss ℓ(y, z) = 1− exp
[
− (y−z)2

]
. Eq. (13.7)

then leads to

arg max
z∈R

n∑

i=1

wi(x) exp
[
− (yi − z)2

]
,

which is a one-dimensional optimization problem that can be solved by grid search.

• Multi-category classification: Y = {1, . . . , k} and a loss matrix L ∈ Rk×k, with
ℓ(i, j) = Lij . Eq. (13.7) then leads to arg maxz∈{1,...,k}

∑n
i=1 wi(x)Liz .

• Multiple labels: Y = {−1, 1}k with ℓ(y, z) = k
2 − 1

2y
⊤z. Eq. (13.7) then leads to

arg maxz∈{−1,1}k z⊤
∑n
i=1 wi(x)yi, which leads to a closed-form formula for z.

• Permutations: for the pairwise disagreement, the optimization problem does not
have a closed form anymore and is an instance of a hard combinatorial problem
(“minimum weighted feedback arc set”), which can be solved for small m, and with
simple approximation algorithms otherwise (see Ciliberto et al., 2020).

• Sequences: When using separable loss functions, we return to the classical multiple-
label setups. However, when using losses over consecutive pairs, we need to minimize
with respect to z ∈ {−1, 1}m a function of the form

∑m
j=1 ujzj +

∑m−1
j=1 vjzjzj+1,

which can be done in time O(m) by message passing algorithms (see, e.g., Murphy,
2012).

13.4.4 Smooth surrogates (�)

Following Nowak-Vila et al. (2019) and as done in Section 4.1, we can also consider
smooth surrogate functions of the form:

S(y, g(x)) = c(y)− 2〈ψ(y), g(x)〉+ 2a(g(x)),
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where a : H → R is convex and β-smooth, that is, for any h, h′ ∈ H, a(h′) 6 a(h) +
〈a′(h), h′ − h〉 + β

2 ‖h − h′‖2. We also assume that a(0) = 0 and that the domain of its
Fenchel conjugate includes all ψ(y) for y ∈ Y. The square loss corresponds to a(h) =
1
2‖h‖2 and c(y) = ‖ψ(y)‖2.

We consider the decoding function dec : H→ Y equal to

dec(h) ∈ arg min
z∈H

χ(z)⊤a′(h).

For the square loss, we recover exactly the quadratic surrogate.

Examples. Three examples are particularly interesting:

• Softmax regression: for multi-category classification, we can always take ψ(y) =
ȳ ∈ R

k the “one-hot” encoding of y ∈ {1, . . . , k}. The convex hull of all ψ(y)
for y ∈ Y is then the simplex in Rk. Softmax regression corresponds to a(y) =

log
(∑k

j=1 exp(xj)
)
.

• Reduction to binary logistic regression: when ψ(y) ∈ {−1, 1}m, we can con-
sider a(h) =

∑m
i=1 log 1

2 (exp(hi/2) − exp(−hi/2)), leading to independent logistic
regression

• Graphical models (�): The examples above can be made more general using the
graphical model framework. We consider sequences in {−1, 1}m for simplicity, but
this extends to more general situations, that is, more complex graphical models (see,
e.g., Murphy, 2012). For ψ(y) composed of all yj and yjyj+1. To build the function
a, we consider the convex hull of all ψ(y), for y ∈ Y, and for any elements of this
convex hull (which corresponds to a probability distribution on Y), we consider its
negative entropy which is a convex function b. We then take a to be the Fenchel
conjugate of b.

For ψ(y) = y, we recover independent logistic regression, while for the sequence
models, we recover conditional random fields (Sutton and McCallum, 2012).

• “Perturb-and-MAP”: In situations where one can efficiently maximize linear
functions of ψ(y) with respect to y ∈ Y. In other words, we can compute the convex
function a0(z) = maxy∈Y ψ(y)⊤z. Then we can make it smooth using stochastic
smoothing, as presented in Section 11.2, that is, define aσ = E

[
a0(z + σu)

]
for a

random variable u ∈ Rk (typically a Gaussian). When we use Gumbel distributions
for u, and Y = {1, . . . , k} with ψ(y) = ȳ, we recover the softmax function, but the
framework is mode generally applicable (see Berthet et al., 2020).

Calibration function. We then have, by definition of the Fenchel-conjugate a∗(u) =
suph∈H〈u, h〉 − a(h):

RS(g) = E
[
E[c(y)|x]− 2〈E[ψ(y)|y], g(x)〉 + 2a(g(x))

]

R∗
S = E

[
E[c(y)|x] + inf

h∈H
−2〈E[ψ(y)|x], h〉 + 2a(h)

]

= E
[
E[c(y)|x]− 2a∗(E[ψ(y)|x])

]
, by definition of a∗,
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leading to a compact expression of the excess S-risk and a lower bound:

RS(g)− R∗
S = E

[
− 2〈E[ψ(y)|x], g(x)〉 + 2a(g(x)) + 2a∗(E[ψ(y)|x])

]

>
1

β
E
[
‖a′(g(x))− E[ψ(y)|x]‖2

]
,

where we have used the (1/β)-strong-convexity of a∗.

Moreover, like in the previous section, we can express the excess risk as:

R(dec ◦ g)− R∗ = R(dec ◦ g)− R(dec ◦ g∗)

= E

[
E
[
ℓ(y, dec ◦ g(x))− ℓ(y, dec ◦ g∗(x))

∣∣x
]]

= E

[
E
[〈
ψ(y), χ(dec ◦ g(x))− χ(dec ◦ g∗(x))

〉∣∣x
]]

= E

[〈
E
[
ψ(y)|x

]
, χ(dec ◦ g(x))− χ(dec ◦ g∗(x))

〉]]

= E

[〈
E
[
ψ(y)|x

]
− a′(g(x)), χ(dec ◦ g(x))− χ(dec ◦ g∗(x))

〉]]

+E

[〈
a′(g(x)), χ(dec ◦ g(x))− χ(dec ◦ g∗(x))

〉]]
.

By definition of the decoding step, we get:

R(dec ◦ g)− R∗ 6 E

[〈
E
[
ψ(y)|x

]
− a′(g(x)), χ(dec ◦ g(x))− χ(dec ◦ g∗(x))

〉]]

6 2 sup
z∈Y

‖χ(z)‖ · E
[∥∥E

[
ψ(y)|x

]
− a′(g(x))

∥∥
]

6 2 sup
z∈Y

‖χ(z)‖ ·
√
·E
[∥∥E

[
ψ(y)|x

]
− g(x)

∥∥2
]

= 2
√
βRℓ ·

√
RS(g)− R∗

S ,

We thus have the same calibration function as for the quadratic surrogate but with
an extra factor of

√
β. For example, this applies to softmax regression.

Comparison with quadratic surrogates. The comparison between quadratic and
smooth surrogates for structured prediction mimics the one for binary classification from
Section 4.1. While both lead to consistent predictions and similar calibration functions,
they differ in their Bayes predictors, with typically smooth surrogates leading to more
natural assumptions (see, e.g., Section 13.7.2).

13.5 Max-margin formulations

Rather than extending the square or logistic loss from binary classification to structured
prediction, we can also extend the hinge loss, leading to “max-margin formulations” in
reference to the geometric interpretation from Section 4.1.2. In this section, we assume
that for any y ∈ Y, z 7→ ℓ(z, y) is minimized at y, that is, the loss provides a measure of
dissimilarity with y.
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13.5.1 Structured SVM

Following Taskar et al. (2005); Tsochantaridis et al. (2005), we consider a traditional
extension of the support vector machine with a simple interpretation.

We consider a score function, which is a function of x ∈ X and y ∈ Y, with the decoder
arg maxz∈Y h(x, z). The score S(y, h(x, ·)) is defined as the minimal ξ ∈ R+ such that for
all z ∈ Y,

h(x, y) > h(x, z) + ℓ(z, y)− ℓ(y, y)− ξ.
The intuition behind this definition is that we aim at making h(x, y) larger for the ob-
served y than for the other h(x, z), with a difference that is stronger when y and z are
further apart, as measured by the loss.

If we take the particular form h(x, z) = 〈ψ(z), g(x)〉 for g : X→ H, then the constraint
becomes

〈ψ(y), g(x)〉 > 〈ψ(z), g(x)〉+ 〈χ(y), ψ(z)〉 − 〈χ(y), ψ(y)〉 − ξ,
which is equivalent to

ξ > 〈ψ(z)− ψ(y), χ(y) + g(x)〉,
and thus the score function is:

S(y, g(x)) = max
z∈Y
〈ψ(z)− ψ(y), χ(y) + g(x)〉. (13.8)

For binary classification with the 0-1 loss, this recovers exactly the SVM. Moreover, this
convex loss is computable as soon as we can maximize linear functions of χ(z); thus, this
applies to many combinatorial problems, in particular those described earlier.

However, this approach is not consistent; that is, even in the population case where the
test distribution is known, it does not lead to the optimal predictor in general; note that
there are subcases, such as multi-category classification with the 0-1 loss and a “majority
class”, where the approach is consistent (Liu, 2007) (see exercise below).

Exercise 13.4 (�) For the multi-category classification with the 0–1 loss, show that the
structural SVM is Fisher-consistent if for all x ∈ X, maxj∈{1,...,k} P(y = j|x) > 1

2 .

13.5.2 Max-min formulations (��)

Following Fathony et al. (2016); Nowak-Vila et al. (2020), we can provide a non-smooth
surrogate, which is both consistent and comes with a calibration function that does not
have a square root. In the binary case, the support vector machine led to a target
surrogate function, which was exactly the Bayes predictor, in values in {−1, 1}. We will
see that it is possible to reproduce in the general case. We still assume that for any y ∈ Y,
z 7→ ℓ(z, y) is minimized at y, that is, the loss provides a measure of dissimilarity with y.

Given the expression of the Bayes predictor in Eq. (13.5), that is,

f∗(x) ∈ arg min
z∈Y

〈
χ(z),E[ψ(y)|x]

〉
,
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we can define the function g∗(x) = χ(f∗(x)) ∈ H, which is defined as

g∗(x) ∈ arg min
h∈χ(Y)

〈
h,E[ψ(y)|x]

〉
,

which happens to be a subgradient at E[ψ(y)|x] of the function

b : µ 7→ − min
h∈χ(Y)

〈h, µ〉 = −min
y′∈Y
〈χ(y′), µ〉.

Thus, if we can design a surrogate function S so that E[S(y, g(x))|x] has minimizer g∗(x)
defined above, we can consider the decoder function with our desired consistent behavior:

dec ◦ g(x) ∈ arg min
y′∈Y

ψ(y′)⊤g(x),

for which

dec ◦ g∗(x) ∈ arg min
y′∈Y

ψ(y′)⊤g∗(x) = arg min
y′∈Y

ψ(y′)⊤χ(f∗(x))

= arg min
y′∈Y

ℓ(y′, f∗(x)) = f∗(x),

because of our assumption on the loss ℓ(y, z) being minimizer with respect to y at z.

To have a subgradient g∗(x) of b at E[ψ(y)|x], to be a minimizer of E[S(y, g(x))|x], it
is sufficient to consider (this is not the only choice):

S(y, g(x)) = b∗(g(x)) − 〈g(x), ψ(y)〉,

where b∗ is the Fenchel conjugate of b restricted to M(ψ) ⊂ H the closure of the convex
hull of all ψ(z), z ∈ Y, that is,

b∗(h) = max
µ∈M(ψ)

〈µ, h〉 − b(µ) = max
µ∈M(ψ)

〈µ, h〉+ min
y′∈Y
〈χ(y′), µ〉.

We thus have:

S(y, g(x)) = max
µ∈M(ψ)

〈g(x), µ〉+ min
y′∈Y
〈χ(y′), µ〉 − 〈g(x), ψ(y)〉 (13.9)

= max
µ∈M(ψ)

min
y′∈Y

〈g(x) + χ(y′), µ− ψ(y)〉+ ℓ(y, y′).

Note the similarity with the maximum-margin SVM loss in Eq. (13.8), which considers
y′ = y instead of the minimization with respect to y′ ∈ Y. This extra minimization makes
the surrogate loss function more complicated to minimize (though it is still convex) but
leads to a Fisher-consistent estimator.

Fisher consistency. We now prove that any minimizer g∗ of E
[
S(y, g(x))

]
over all

measurable functions from X to H leads to the optimal prediction, with

dec ◦ g∗(x) = arg max
y′∈Y

ψ(y′)⊤g∗(x) = f∗(x).
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As in Section 13.4.4, for x ∈ X, any minimizer g∗ has a value g∗(x) that minimizes

E
[
S(y, g(x))|x

]
= a(g(x)) −

〈
g(x),E[ψ(y)|x]

〉
.

By definition of a, g∗(x) is a minimizer of h 7→ 〈h,E[ψ(y)|x]
〉

over h ∈M(χ). Thus, given
the expression of the Bayes predictor in Eq. (13.5), we get g∗(x) = χ(f∗(x)) ∈ H. This
leads to dec◦g∗(x) = f∗(x) because of the assumption that z 7→ ℓ(z, y) is minimized at y.
We can also get a linear calibration function in generic situations; see Nowak-Vila et al.
(2020) for details.

Optimization algorithms. In this book, we have focused on optimization methods
based on subgradients. For the loss defined in Eq. (13.9), this requires to have an optimizer
µ ∈M(ψ), which requires solving a min-max problem in general. Below, we consider the
multi-category classification problem with 0-1 loss, where this can be achieved, and refer
to Nowak-Vila et al. (2020) for algorithms based on primal-dual formulations.

Binary classification with the 0-1 loss. In this situation, we can compute a∗(µ) =
1
2 |µ| with domain [−1, 1], leading to a(v) = (|v| − 1/2)+, and a formulation that is close
to the binary SVM (but non-identical).

Multi-category classification. for Y = {1 . . . , k} and the 0-1 loss, a short exercise
shows that we obtain

S(y, g(x)) = max
A⊂{1,...,k}, A 6=∅

∑
j∈A gj(x) + |A| − 1

|A| ,

where the maximizers in A can be obtained in closed form (together with the subgradient).

13.6 Generalization bounds (�)

In this section, we provide generalization bounds for the structured prediction problem
with smooth convex surrogates defined in Section 13.4. For simplicity, we will assume
a linear model with feature vector ϕ : X → Rd, and that the feature vector is flexible
enough so that the minimizer of the expected surrogate risk is indeed a linear function
of ϕ, that is, g(θ)(x) = θ⊤ϕ(x). Taking care of an approximation error would lead to
developments similar to Section 7.5.1.

For real-valued prediction functions and linear models, we looked at two frameworks
to obtain generalization bounds: one based on Rademacher complexities and one based
on stochastic gradient descent. For multi-category classification in Section 13.1, we con-
sidered both and only considered SGD in this section as it leads to better bounds. More-
over, we could use kernel methods when ϕ is only known through the associated kernel
function (using in particular Section 7.4.5), but we stick to explicit feature maps for sim-
plicity. Finally, for least-squares, we could directly extend the ridge regression analysis
from Section 7.6, which does not use Rademacher complexities. We instead focus on
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Lipschitz-continuous losses, that is, we assume that a has gradients bounded by G in
ℓ2-norm.

We thus assume that there exists θ∗ ∈ Rd×k such that a′(E[ψ(y)|x)]) = θ⊤∗ ϕ(x),
and thus R∗

S = E
[
S(y, θ⊤∗ ϕ(x))]. We assume i.i.d. observations (x1, y1), . . . , (xn, yn) ∈

X × Y, and the single pass gradient descent recursion, initialized at 0 and defined for
t ∈ {1, . . . , n}, as

θt = θt−1 − γtϕ(xt)S
′(yt, θ

⊤
t−1ϕ(xt))

⊤M,

for a positive definite matrix M1/2, which will allow to include some penalty function of
the form tr[θθ⊤M−1].

The analysis of Section 5.4 exactly applies, and with the choice γt = γ, we obtain the
following generalization bound:

E
[
RS(g(θn))

]
− RS(g(θ∗)) 6

1

2γn
tr[θ⊤∗ M

−1θ∗] +
γG2R2

2
.

With the optimal choice of γ, we get:

E
[
RS(g(θn))

]
− RS(g(θ∗)) 6

GR
(

tr[θ⊤∗ M
−1θ∗])1/2√

n
.

We can then use the calibration result to obtain a consistency result for the structured
prediction problem with a bound in n−1/4.

Examples of structured regularization. The prediction function is characterized
by a matrix θ ∈ Rd×k, and without further knowledge, it is natural to use the Frobenius
norm or the nuclear norm as regularization or constraint. In particular, set-ups where
the k columns have a specific structure, some particular squared norm tr[θθ⊤M−1] can
be natural.

For example, in the ranking problem with the pairwise disagreement loss, where ψ(y)
is indexed by two indices i, j ∈ {1, . . . ,m}, it is natural to consider θij = ηi − ηj for a
matrix η ∈ Rd×m (see Section 13.7.2 for more details).

13.7 Experiments

In this section, we present two experiments highlighting the benefits of structured pre-
diction and illustrating the results from this chapter.

13.7.1 Robust regression

We consider a toy robust regression problem to illustrate the use of the quadratic sur-
rogates presented in Section 13.4.1. We use a simple one-dimensional robust regression
problem, where we compare the square loss and the loss ℓ(y, z) = 1− exp(−(y− z)2). We
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Figure 13.1: Robust regression in one dimension, with heavy-tail noise (fifth power of
Gaussian noise): regular square loss (left), vs. robust loss (right).

generate data with heavy-tail additive noise and plot below the best performance for ker-
nel ridge regression with the Gaussian kernel, with the optimal regularization parameter
(selected for test performance).

Since we use a kernel method, we can use Section 13.4.3, that is, once the n data-
dependent weight functions w1(x), . . . , wn(x) are estimated using ridge regression, we
need at test time to compute arg minz∈R

∑n
i=1 wi(x)ℓ(yi, z) = arg minz∈R

∑n
i=1 wi(x)(1−

exp(−(yi − z)2)), which can be done by grid search. See results in Figure 13.1, where we
see that the robust loss is indeed more robust to outliers.

13.7.2 Ranking

We illustrate structured prediction on a ranking problem, where Y is the set of permuta-
tions from {1, . . . ,m} to {1, . . . ,m}. We consider two different loss functions:

• Square loss: ℓ(y, x) =
∑m

i=1(y(i)− z(i))2, with ψ(y) = y ∈ {1, . . . ,m}m. For this
loss, we only consider the square loss. We thus need to fit a function h : X → Rm

using least-squares directly on y. The decoding step a for test point x is then simply
to sort the m components of h(x).

• Pairwise disagreement: ℓ(y, z) =
∑m

i,j=1

(
1y(i)<y(j) − 1z(i)<z(j)

)2
, with the fea-

ture ψ(y) ∈ {−1, 1}m(m−1)/2 defined as ψ(y)ij = 1y(i)<y(j) for i < j. We thus

need to learn a function g : X → Rm(m−1)/2; we consider the square loss, where
we minimize expectations of ‖ψ(y) − h(x)‖22, as well as the logistic loss, where we
minimize the expectation of

∑
i<j log

(
1 + exp(−ψ(y)ijhij(x))

)
.

In terms of decoding, given the function h, at test point x, we need to maximize∑
i<j gij(x)1z(i)<z(j) with respect to a permutation z when using the square loss,

while we need to maximize
∑
i<j tanh(gij(x))1z(i)<z(j) when using the logistic loss.

This is an instance of the “minimum feedback arc set problem”, which is an NP-
hard problem with known approximation algorithms (Ailon et al., 2008). When the
weights gij(x) are of the form u(hj(x)− hi(x)) for a non-decreasing function u and
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a function g : X → Rm, then it can be solved by sorting h. Thus, when either the
square loss or the logistic loss is used, using a specific model gij = hi − hj leads
to simpler decoding. For the square loss, using this specific model leads exactly to
performing least-squares on y ∈ Rm.
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Figure 13.2: Top Left: utilities h1, . . . , hm, top right: empirical utilities h1 +η1, . . . , hm+
ηm. Bottom: population permutations y∗(x) ∈ {1, . . . ,m} (left) and conditional expec-
tation E[y|x] ∈ [1,m] (right).

Placket-Luce model. We generate data from the Plackett-Luce model (Marden, 1996),
that is, from m functions h1(x), . . . , hm(x), with the random permutation obtained by
sorting the m real values h1(x) + η1, . . . , hm(x) + ηm in ascending order, where each ηi,
i = 1, . . . ,m, is a Gumbel random variable. Our convention is that y(i) is the position
of item i, that is, y(i) = 1 if hi(x) + ηi is the lowest, and y(i) = m is hi(x) + ηi is the
largest.

If πi(x) = softmax(h(x)), this happens to be equivalent to the model where y(m) is
selected with probability vector π(x), and then y(m− 1) with probability vector propor-
tional to π(x) (but without the possibility of taking y(1). In other words, the probability
of selecting a permutation z is equal to:

π(x)z(m)

π(x)z(m−1)

1− π(x)z(m)

π(x)z(m−2)

1− π(x)z(m) − π(x)z(m−1)
· · · πz(2)

πz(1) + π(z(2))
.

Moreover, we also have E[1y(i)<y(j)|x] =
πj(x)

πj(x)+πi(x)
=

exp(hj(x))
exp(hi(x))+exp(hj(x))

, so that a

logistic regression model for predicting 1y(i)<y(j) has a target function equal to hj − hi.
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However, the target function for the square loss, E[y|x], can be expressed as products of
softmax functions of subsets of h1, . . . , hm, and thus are not linear in these functions.

We consider X = [0, 1] and consider functions h1, . . . , hm which are linear combinations
of cosine functions cos(2πkx) and sine function cos(2πkx) for k ∈ {0, 1} for the generating
functions. See Figure 13.2 for an illustration.
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Figure 13.3: Top: using the square loss ℓ(y, z) = ‖y − z‖22 with the square surrogate.
Bottom: using the pairwise disagreement loss ℓ(y, z) = ‖ψ(y)− ψ(z)‖22, with the square
surrogate, and logistic surrogate.

We consider situations where the prediction model we use for the functions g and h
includes the ones generating the data, hence a well-specified model for the logistic loss,
but not for the square loss. In Figure 13.3, we provide learning curves where we vary
the number n of observations, for three classes of prediction functions based on sines
and cosines: for the small model, we use exactly the same model class as for h1, . . . , hm,
that is, k ∈ {0, 1}, while for the middle model, k ∈ {0, . . . , 3}, and for the large model,
k ∈ {0, . . . , 15}. We use a fixed regularization parameter proportional to 1/n.

In the top-left plot of Figure 13.3, the quadratic surrogate with ψ(y) = y is considered,
and the small model is not well-specified. Thus, when n grows, the testing error does not
go down to zero, similarly for the bottom-left plot where the square loss is used with the
pairwise disagreement loss function. For the logistic loss, however, where even the small
model is well-specified, we obtain a learning curve that goes closer to zero.
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13.8 Conclusion

In this chapter, we explored surrogate frameworks beyond binary classification, focus-
ing on convex surrogates. These convex formulations can be used with any prediction
functions (linear in the parameter, such as kernel methods, or not, such as neural net-
works) and come with guarantees for linear models. We presented several principles,
e.g., margin-based techniques or frameworks with probabilistic interpretation through
maximum likelihood.



Chapter 14

Probabilistic methods

Chapter summary
– Probabilistic models can lead to intuitive algorithmic formulations but sometimes

misleading interpretations. In particular, maximum a posteriori (MAP) estimation
does not work best when the parameters are generated from the prior distribution.
Minimum mean-square estimation (MMSE) is preferable (for the square loss).

– Generative models (such as linear discriminant analysis) that explicitly try to model
the input data with simple models can lead to biased but efficient estimators in
large dimensions compared to their discriminative counterparts (such as logistic
regression).

– Bayesian inference can be used naturally for model selection using the marginal
likelihood, both for model selection among a finite number of choices or with Gaus-
sian processes.

– PAC-Bayesian analysis: aggregating estimators provide natural statistically effi-
cient estimators with an elegant link with Bayesian inference.

In this chapter, we first consider probabilistic modeling interpretations of several
learning methods, focusing primarily on identifying losses and priors with log-densities
but drawing clear distinctions between what this analogy brings and what it does not.
We then show how Bayesian inference naturally leads to model selection criteria and end
the chapter with a description of PAC-Bayes analysis.

14.1 From empirical risks to log-likelihoods

Many methods in machine learning may be given a probabilistic interpretation through
maximum likelihood or “maximum a posteriori” (MAP ) estimation. For example, con-

373
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sider the regularized empirical risk as:

R̂(θ) =
1

n

n∑

i=1

ℓ(yi, fθ(xi)) +
λ

n
Ω(θ),

multiply by −n and take the exponential to get:

exp(−nR̂(θ)) = exp
(
−

n∑

i=1

ℓ(yi, fθ(xi))− λΩ(θ)
)

=

n∏

i=1

exp
[
− ℓ(yi, fθ(xi))

]
· exp

[
− λΩ(θ)

]
. (14.1)

We can give a probabilistic interpretation by considering a likelihood, that is, a density
(with respect to a well-defined base measure),

p(yi|xi, θ) ∝ exp
[
− ℓ(yi, fθ(xi))

]
,

and a prior density

p(θ) ∝ exp
[
− λΩ(θ)

]
,

so that we have:

exp(−nR̂(θ)) ∝
n∏

i=1

p(yi|xi, θ) · p(θ),

which is precisely the (conditional) likelihood for the model where θ is a parameter and
where, given θ, all pairs (xi, yi) are independent and identically distributed.

△! Overloading of notations for probability densities, where the symbol p is used for all
random variables.

△! Note the difference between conditional likelihood and likelihood.

△!
There is more to probabilistic interpretation than simply taking the exponen-
tial, e.g., generative models, Bayesian inference for hyperparameter learning
(as done in later sections), dealing with missing data through the expectation-
maximization algorithm, etc.

△! We only scratch the surface here, and from a learning theory point of view.
See Murphy (2012); Bishop (2006) for many more details.

In this section, we primarily focus on the formulation in Eq. (14.1) and now look at
specific examples for data likelihoods and priors.
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14.1.1 Conditional likelihoods

For logistic regression where Y ∈ {−1, 1}, we can interpret the loss as the conditional
log-likelihood of the model where

P(yi = 1|xi) =
1

1 + exp(−fθ(xi))
,

which can be put in a compact way as p(yi|xi) = 1
1+exp(−yifθ(xi))

= σ(yifθ(xi)).

△! To apply logistic regression, there is no need to assume that the model is
well-specified, that is, there exists a θ∗ so that the data are actually generated
from the model above. For the non-parametric analysis, this is often assumed.

For least-squares regression, we can interpret the loss 1
2 (yi − fθ(xi))2 as a Gaussian

model with mean fθ(xi) and variance 1. We can also estimate a more general variance
parameter that is uniform across all x (homoscedastic regression) or depends on x (het-
eroscedastic regression).

△! No need to have Gaussian noise! Simply zero mean and bounded variance are
enough for the analysis.

Exercise 14.1 Show that the negative log-density of the Gaussian distribution with mean
µ and variance σ2, that is, − log p(y|µ, σ) = 1

2σ2 (x−µ)2+ 1
2 log(2π)+ 1

2 log σ2 is not convex
in (µ, σ2), but is jointly convex in (µ/σ2, σ−2).

14.1.2 Classical priors

We can interpret classical regularizers that we have already encountered in previous
chapters. For the squared ℓ2-norm with Ω(θ) = λ

2 ‖θ‖22, this corresponds to a Gaussian
distribution with mean zero and covariance matrix λ−1I.

For the ℓ1-norm with Ω(θ) = λ‖θ‖1, this is the so-called Laplace (or double exponen-
tial) prior:

p(θ) =

d∏

j=1

λ

2
exp(−λ|θj |).

Exercise 14.2 Show that the variance of a Laplace-distributed random variable is equal
to 2

λ2 .

The interactions between regularization terms and priors can go both ways, and we can
consider other classical priors. One that will be useful later in the Bayesian setting is the
multivariate Student distribution (often used marginally for independent components):

p(θ) ∝
(
β + 1

2‖θ‖22
)−α−d/2

,
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Figure 14.1: Classical priors in one dimension, all normalized to zero mean and unit
variance: (left) densities, (right) negative log-densities.

leading to the regularizer (α + d/2) log(β + 1
2‖θ‖22), which is not convex in θ. This will

be used within sparse priors in the next section.

Exercise 14.3 (�) We consider a random vector θ which is Gaussian with mean zero and
covariance matrix ηI, with 1/η being distributed as a Gamma random variable with pa-

rameters α and β, that is, η with density p(η) = βα

Γ(α) (1/η)α+1 exp(−β/η). Show that the

marginal density of θ is the Student distribution with density p(θ) = c(β + 1
2‖θ‖22)−α−d/2,

with c = 1
(2π)d/2

βαΓ(α+d/2)
Γ(α) , and that E

[
θθ⊤

]
= β

α−1I if α > 1.

△! This can be misleading as even when the target function is sampled from the
prior, MAP estimation may not work. See Section 14.1.4.

The expression of regularizers as log-densities may lead to the impression that MAP
estimation is particularly well suited when (1) the conditional model is well-specified,
that is, there exists θ∗ such that p(y|x) is indeed proportional to exp(−ℓ(y, fθ∗)), and (2)
the optimal θ∗ is sampled from the prior distribution proportional to exp(−λΩ(θ)). As
we now explain, this is not the case at all.

14.1.3 Sparse priors

As shown in the next section, the Laplace prior is not a good prior for sparse data. We
consider the following ones instead. For each one-dimensional component, we consider:

• Generalized Gaussians: p(θ) =
α

2

λ1/α

Γ(1/α)
exp(−λ|θ|α), with variance λ−2/α Γ(3/α)

Γ(1/α) .

• Student: p(θ) = 1
(2π)1/2

βαΓ(α+1/2)
Γ(α) 1(β + 1

2θ
2)−α−1/2, with variance β

α−1 if α > 1.

• Mixture of two Gaussians: p(θ) = αN(θ|0, σ2
0) + (1 − α)N(θ|0, τ2), with variance

ασ2
0 + (1− α)τ2.
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Figure 14.2: Sparse priors in two dimensions.

It turns out that all of these examples happen to be “scale mixtures of Gaussians”, that
is, they can be seen as the (potentially continuous) mixtures of Gaussian distributions
with zero mean but different variances:

p(θ) =

∫ +∞

0

1√
2πη

e−
1
2

θ2

η dq(η),

where q is a probability measure on R+. For the third example, this is straightforward,
with q being a weighted sum of two Diracs at σ2

0 and τ2. For the Laplace distribution
(generalized Gaussians with α = 1), one can check by direct integration that we can

take q to be an exponential distribution, that is, with density q(η) = λ2

2 exp(−ηλ2/2),
while for the Student distribution, q has an inverse Gamma distribution, with density
q(η) = βα

Γ(α)η
−α−1e−β/η (see Exercise 14.3).

As we show in Section 14.3.2, this hierarchical model can be used with marginal
likelihood maximization, leading to reweighted least-squares algorithms that are close to
the “η-trick” from Section 8.3.1, and thus provides a Bayesian interpretation.

Exercise 14.4 A density p(θ) on R is said super-Gaussian if log p(θ) is convex in θ2

and non-increasing. Show that scale mixtures of Gaussians are super-Gaussian.1

14.1.4 On the relationship between MAP and MMSE (�)

In this section, following Gribonval (2011), we consider a very simple conditional model
of the form

y = θ + ε, (14.2)

where ε is normal with zero mean and covariance matrix σ2I, assuming σ2 is known. We
have prior knowledge on θ in the form of a prior density q(θ). Given the observation of y,
our goal is to obtain an estimator of θ with the most favorable properties, which we define
here as the minimum squared error (this estimator will be generalized in Section 14.3).

That is, given an estimator θ̂(y), we consider the criterion:

J(θ̂) =

∫

Rd

q(θ)‖θ − θ̂(y)‖22dθ.

1The converse is not true, see Palmer et al. (2005).
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As shown in Section 2.2.3, the optimal estimator (i.e., function) θ̂ : Rd → Rd is the a
posteriori mean, that is

θ̂MMSE(y) = E
[
θ|y

]
,

assuming that θ is sampled according to q(θ) and y follows the model in Eq. (14.2). Here,
MMSE stands for “minimum mean-square error”. We now want to compare it with the
maximum a posteriori parameter

θ̂MAP(y) ∈ arg max
θ∈Rd

p(θ|y) = arg max
θ∈Rd

q(θ)p(y|θ).

Gaussian prior. When q is a Gaussian distribution with mean zero and covariance
matrix τ2I, then (θ, y) is a Gaussian vector and from conditioning results presented in
Section 1.1.3, we have

θ̂MMSE(y) = E
[
θ|y

]
=

τ2

τ2 + σ2
y,

while the MAP estimate is also equal to τ2

τ2+σ2 y because, for Gaussians, the mean and
the mode are the same, but, as we will show later, Gaussian priors are the only ones for
which these two are equal.

Simple expression of the MMSE. We denote by p(y) the density of y, that is,

p(y) =

∫

Rd

p(y, θ)dθ =

∫

Rd

p(θ)p(y|θ)dθ

=

∫

Rd

q(θ)
1

(2πσ2)d/2
exp

(
− 1

2σ2
‖θ − y‖22

)
dθ,

using the expression of the Gaussian density. We can now express the a posteriori mean
as, introducing the gradient of the Gaussian density:

θ̂MMSE(y) = E
[
θ|y

]
=

∫

Rd

p(θ, y)

p(y)
θdθ

= y + σ2

∫

Rd

p(y|θ)p(θ)
p(y)

1

σ2
(θ − y)dθ

= y +
σ2

p(y)

∫

Rd

q(θ)
1

(2πσ2)d/2
exp

(
− 1

2σ2
‖θ − y‖22

) 1

σ2
(θ − y)dθ

= y − 1

(2πσ2)d/2
σ2

p(y)

∫

Rd

q(θ)
∂

∂θ

[
exp

(
− 1

2σ2
‖θ − y‖22

)]
dθ.

Thus, using integration by parts, we get:

θ̂MMSE(y) = y +
1

(2πσ2)d/2
σ2

p(y)

∫

Rd

q′(θ) exp
(
− 1

2σ2
‖θ − y‖22

)
dθ

= y +
1

(2πσ2)d/2
σ2

p(y)

∫

Rd

q′(y − η) exp
(
− 1

2σ2
‖η‖22

)
dη

= y +
σ2

p(y)
p′(y) = y + σ2 d

dy
(log p(y)). (14.3)
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Figure 14.3: Comparison of MMSE and MAP for the spike-and-slab and Laplace priors:
MMSE for the spike-and-slab prior (left), MMSE for the Laplace prior (middle), MAP
for the Laplace prior (right).

We thus get an explicit expression of the minimum mean square error estimate. Note
that for a Gaussian prior, y is (marginally) normally distributed; hence, the gradient
of log p(y) is a linear function, and the MMSE is affine in y if and only if the prior is
Gaussian.

Exercise 14.5 (�) Show that the posterior covariance matrix can be expressed as var(θ|y) =

σ2I + σ4 d2

dydy⊤
(log p(y)).

Expression of the MAP estimate. If q(θ) = exp(−h(θ)), then the MAP estimate is

θ̂MAP(y) ∈ arg max
θ∈Rd

1

2σ2
‖θ − y‖22 + h(θ),

with optimality condition, for differentiable h, θ − y − σ2 d
dθ (log q(θ)) = 0; thus we have:

θ̂MAP(y) = y + σ2 d

dy
(log q)

[
θ̂MAP(y)

]
. (14.4)

Exercise 14.6 (��) We denote by f(y) = − log p(y). Show that the MMSE estimator

θ̂MMSE(y) = y − σ2f ′(y) defined in Eq. (14.3) is the MAP estimator for the negative

log-prior g that satisfies g(θ̂MMSE(y)) = f(y)− σ2

2 ‖f ′(y)‖22 for all y ∈ Rd.

Differences between MMSE and MAP. Given the expressions in Eq. (14.3) and
Eq. (14.4), we can now study how the two estimators differ for the various sparse priors
that we have described above, where we consider the one-dimensional case for simplicity
(which extends to independent marginal priors in the multi-dimensional case) (see plots
in Figure 14.3):
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• Spike-and-slab: this is the model essentially used in the analysis of the Lasso in
Chapter 8, for which MAP with the Laplace prior (that is, the Lasso) is shown to
have favorable properties. We consider the prior, which is the mixture of a Dirac at
zero (with weight α) and a Gaussian with mean zero and variance τ2. The variance
is then equal to (1 − α)τ2, and p(y) is the mixture of two Gaussian distributions,
centered in zero, with variances σ2 and σ2 + τ2.

Exercise 14.7 Show that the marginal density p(y) for the spike-and-slab prior is

equal to p(y) = α 1
(2πσ2)1/2

exp
(
− y2

2σ2

)
+ (1 − α) 1

(2π(σ2+τ2))1/2
exp

(
− y2

2(σ2+τ2)

)
.

Provide an expression of θ̂MMSE(y) and of θ̂MAP(y).

• Laplace: this is the model for which the MAP estimation leads to the Lasso method.
For q(θ) = 2

λ exp(−λ|θ|), the variance is equal to 2/λ2. We can compute the MMSE
by explicitly computing p(y) by integrating separately over positive and negative
numbers (see the exercise below). We see in Figure 14.3 that the MMSE is very far
from the soft-thresholding operator from Section 8.3.1. In other words, the Lasso
is not adapted to signals that are sampled from the Laplace distribution but rather
to signals sampled from the spike-and-slab prior.

Exercise 14.8 Show that the marginal density p(y) for the Laplace prior can be
expressed using the Gauss error function erf(α) = 2√

π

∫ α
0 exp(−t2)dt, as: p(y) =

λ
4 exp

(
λ2σ2

2 −λy
)[

1− erf
(λσ− y

σ√
2

)]
+ λ

4 exp
(
λ2σ2

2 +λy
)[

1− erf
(λσ+ y

σ√
2

)]
. Provide an

expression of θ̂MMSE(y) and of θ̂MAP(y).

Exercise 14.9 When q is a Gaussian distribution with mean zero and covariance ma-
trix C, provide an expression of the MMSE and MAP estimates.

Exercise 14.10 (�) Provide a closed-form expression for the marginal density p(y) for
the Student prior.

14.2 Discriminative vs. generative models

We consider a traditional supervised learning set-up, with (x, y) ∈ X× Y. The goal is for
any x ∈ X to obtain a good conditional predictive model of y given x, that is, to get a
good model for p(y|x).

We can first directly model p(y|x) with a parameterized conditional model (like done
for least-squares or logistic regression). This will be called the discriminative approach.

We can also consider a joint density p(x, y), and obtain p(y|x) = p(x,y)
p(x) ∝ p(x, y)

using Bayes rule. Most often (in particular for classification problems), the joint model
is obtained by modeling y and x|y, that is, the conditional model of the inputs given the
outputs, with a particularly simple model. This will be called the generative approach.
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14.2.1 Linear discriminant analysis and softmax regression

We consider a generative model with Gaussian class-conditional densities with a common
covariance matrix, with x ∈ Rd and y ∈ {1, . . . , k}:

y ∼ multinomial(π)

x|y = i ∼ Gaussian(µi,Σ).

We can then compute the distribution of y given x as (removing all parts that are inde-
pendent of i):

P(y = i|x) ∝ P(y = i, x) = πi exp
[
− 1

2 (x− µi)⊤Σ−1(x− µi)
]

∝ πi exp
[
− 1

2µ
⊤
i Σ−1µi

]
exp(µ⊤

i Σ−1x).

This implies that, defining the softmax function softmax : Rk → Rk through softmax(v)j =
evj

ev1+···+evk :

P(y = i|x) = softmax
[
(µ⊤
i Σ−1x+ log πi − 1

2µ
⊤
i Σ−1µi)i

]
= softmax

[
(w⊤

i x+ bi)i
]
i
,

that is, the conditional model is the softmax function of a linear model, which is pre-
cisely the definition of softmax regression from Section 13.1.1, with wi = Σ−1µi, and
bi = log πi − 1

2µ
⊤
i Σ−1µi. The availability of a generative model will lead to alternative

parameter estimation algorithms (see below). Note that (a) for k = 2, we recover logis-
tic regression and that (b) we can apply the softmax regression model for any set of k
prediction functions f1, . . . , fk beyond affine functions.

Note, finally, that the common covariance matrix is often restricted to be diagonal.

Maximum likelihood estimation. Given observations (x1, y1), . . . , (xn, yn), the pa-
rameters of the model above can be estimated naturally by maximum likelihood. It turns
out that for the particular case of multinomial and Gaussian random variables, this is
equivalent to computing empirical moments (proof left as an exercise), that is, the estima-
tor or π is the vector of empirical proportions of each class. In contrast, the estimator of
each mean µi is the empirical mean of observations with class i, and the joint covariance
is a weighted combination of the empirical covariances of each class.

Exercise 14.11 (Quadratic discriminant analysis) Assume that the class-conditional
covariance matrices are different for each class. Show that the conditional model is still
a softmax function, but now of “affine + quadratic” functions of x.

14.2.2 Naive Bayes

We consider discrete data, that is x ∈ {1, . . . ,m}d and y ∈ {1, . . . , k}, and the following
generative model

y ∼ multinomial(π)

x|y = i ∼
d∏

j=1

multinomial(xj |θji),
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where π ∈ Rk, and each θji is in the simplex in Rm. In other words, given y, the d
components x1, . . . , xd are independent.

Using the usual “one-hot” encoding of discrete distribution, we see each xj in Rm as
one of the canonical basis vectors so that the probability of xj |y = i is equal to

∏m
a=1 θ

xja

jia .
We can then compute

P(y = i|x) ∝ P(y = i, x) =

k∏

i=1

πyii

k∏

i=1

d∏

j=1

m∏

a=1

θ
xjayi
jia

logP(y = i|x) ∝
n∑

i=1

yi

(
log πi +

d∑

j=1

m∑

a=1

(log θjia)xja

)
.

Like for linear discriminant analysis, we thus also get a softmax model softmax
[
(w⊤

i x+

bi)i
]
, with bi = log πi, and wi with components log θjia. Also, like for linear discriminant

analysis, we can obtain maximum likelihood estimates for each parameter of multinomial
variables using empirical proportions.

14.2.3 Maximum likelihood estimations

As shown above, for linear discriminant analysis and naive Bayes, we obtain conditional
models corresponding to softmax regression, for which we can use optimization algorithms
to get the relevant parameters (this is the discriminative approach followed in this book).

However, we can also use the generative models to estimate parameters in closed form.
For example, for linear discriminant analysis, the maximum likelihood estimates for the
class proportions are the empirical class proportions π̂i, the means are the empirical
means, and Σ̂ =

∑k
i=1 π̂iΣ̂i, which allows us to compute ŵi and b̂i, through the formula

above, instead of having to solve a convex problem. The key question is: which one is
better?

Discriminative vs. generative learning. When making an even simpler assumption
of Σ diagonal, we can study the potential benefits of the discriminative and the generative
set-up, following Ng and Jordan (2001): the generative approach has a stronger bias but
potentially a lower variance.

For both linear discriminant analysis (LDA2) in Section 14.2.1 and Naive Bayes in
Section 14.2.2, if we use the conditional log-likelihood as a criterion, the discriminative
approaches in the population case optimize the correct criterion directly, and thus must
lead to better or equal performance. However, in the unregularized case, to approach the
population case for logistic regression, we need a number of samples proportional to d
(e.g., by considering our bounds on Rademacher complexities in Section 4.5 with data
with equal variance in all directions). For LDA or Naive Bayes, we need to estimate
d separate quantities simultaneously, and when using concentration inequalities and the

2Not to be mixed with Latent Dirichlet Allocation (Blei et al., 2003), which is a generative model for
collections of text documents.
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Figure 14.4: Comparison of LDA with full covariance matrix, LDA with diagonal co-
variance matrix, and logistic regression, on a well-specified binary classification problem
(Gaussian class-conditional densities with same covariance matrix), with independent
components and non-independent components (with a smooth transition, which is linear
in the matrix logarithm). For independent components (left parts of the plots), linear
discriminant analysis with the independence assumptions leads to better performance.

union bound, we should expect to have n larger than a constant times log d to attain
the population performance. We thus get a larger bias with generative approaches but
significantly less variability. See the experiments in Figure 14.4, more details by Ng and
Jordan (2001), and a similar approach to variable selection in regression (Fan and Lv,
2008).

14.3 Bayesian inference

For simplicity, in this section, we consider random observations z ∈ Z that could be the
traditional pair (x, y) ∈ X×Y in supervised learning, but we note that Bayesian inference
applies much more generally. See more details by Robert (2007).

We assume that we have a set of probability distributions over z, with densities with
respect to some base measure, which are parameterized by some vector θ ∈ Θ (a subset
of a vector space), and which we denote p(z|θ), and refer to as the likelihood function. We
assume some prior distribution with density q(θ) with respect to the Lebesgue measure. In
the Bayesian methodology, we assume that θ is sampled once from the prior distribution
and that we obtain i.i.d. observations z1, . . . , zn ∈ Z sampled from p(z|θ).

By independence and identical distributions, the overall joint distribution of the data
and θ is

p(z1, . . . , zn, θ) = q(θ)

n∏

i=1

p(zi|θ).

We can then obtain the posterior distribution of θ given the data (z1, . . . , zn), which is
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proportional to p(z1, . . . , zn, θ), and with density:

p(θ|z1, . . . , zn) =
q(θ)

∏n
i=1 p(zi|θ)∫

Θ
q(η)

∏n
i=1 p(zi|η)dη

.

As already noted, the mode of the posterior distribution is the “maximum a posteriori”
(MAP) estimate, which is rarely used within Bayesian inference (see some reasons in
Section 14.1.4). Other estimates or estimation procedures are preferred, all using the
posterior distribution as the main source. Thus, being able to characterize this posterior
distribution is the computational tool (see below).

Posterior mean. A good summary of the posterior distribution is the posterior mean∫
Θ θp(θ|z1, . . . , zn)dθ and is traditionally associated with parameter estimation with the

square loss. This was called the MMSE in Section 14.1.4.

Bayesian model averaging. Given the multiple models characterized by the posterior
distribution, we can consider performing inference on unseen data through the mixture
distribution ∫

Θ

p(z|θ)p(θ|z1, . . . , zn)dθ.

Thus, overall, Bayesian inference naturally leads to parameter estimation procedures
that can be studied both from a computational perspective (see Section 14.3.1) and a
statistical perspective, as part of the “PAC-Bayes” framework described in Section 14.4.
But it can also be used for model selection, as described in Section 14.3.2.

14.3.1 Computational handling of posterior distributions

This section gives only a brief account of algorithms to characterize posterior distribu-
tions. See many more details by Gelman et al. (1995); Robert (2007).

Conjugate priors. In rare instances, the posterior distribution has a simple form. Two
classic examples are the Gaussian prior on the mean parameter of a Gaussian variable
and the Dirichlet prior on the parameters of a multinomial distribution.

Gaussian approximation (Laplace method). When the number of observations
gets large, then, the integral defining the normalizing factor of the posterior distribution
can be written as:

∫

Θ

q(η)
n∏

i=1

p(zi|η)dη =

∫

Θ

exp
[
n×

( 1

n
log q(η) +

1

n

n∑

i=1

log p(zi|η)dη
)]
,

and thus as
∫
Θ

exp(nh(θ))dθ for a certain function h. The Laplace method is a traditional
approximation technique for approximating integrals of that form when the function h
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has a global maximum within the interior of Θ.3 This maximizer is exactly the MAP
estimate θ̂MAP, and the approximation is exactly equivalent to modeling the posterior
density as a Gaussian with mean θ̂MAP and covariance matrix 1

nh
′′(θ̂MAP)−1.

Sampling. Obtaining independent samples from the posterior distribution is often
enough for inference purposes, and many algorithms exist, such as Markov chain Monte
Carlo methods (Robert and Casella, 2005).

Variational inference. An alternative to sampling is to approximate the posterior
distribution by a family of simple tractable distributions that are made to fit the posterior
as closely as possible. See Blei et al. (2017) and references therein.

14.3.2 Model selection through marginal likelihood

Probabilistic models are often naturally defined hierarchically, with prior distributions
that have themselves parameters (which we can call hyperparameters), themselves with
their own prior distribution (often called hyperprior distribution). For example, using
the above notations, the prior distribution is q(θ|λ) with a hyperprior r(λ), with often a
data distribution that depends on both θ and λ.

While we could still treat λ as a random variable on which Bayesian inference is
performed, it is common to perform maximum-likelihood estimation on λ, or more gen-
erally, maximum a posteriori estimation. This is sometimes called “type II maximum
likelihood” or “empirical Bayes”. This leads to a form of hyperparameter selection for λ.
More precisely, we maximize

p(λ|z1, . . . , zn) ∝ p(λ, z1, . . . , zn) =

∫

Θ

p(λ, θ, z1, . . . , zn)dθ

∝ r(λ)

∫

Θ

n∏

i=1

p(zi|θ, λ)q(θ|λ)dθ.

The quantity
∫
Θ

∏n
i=1 p(zi|θ)q(θ|λ)dθ is referred to as the marginal likelihood, and its

maximization is a generic tool for hyparameter selection, with many applications. We
present briefly two of them below.

Selection among finitely many models. A classical application of marginal likeli-
hood maximization is to consider m different models, that is, m different distribution
pj(z|θj), with potentially parameters θj ∈ Θj living in different spaces, with prior distri-
bution qj(θj). With a uniform distribution on the models, model selection is performed
by maximizing with respect to j ∈ {1, . . . ,m}:

∫

Θj

n∏

i=1

pj(zi|θj)qj(θj)dθj .

3See https://francisbach.com/laplace-method/ for details.

https://francisbach.com/laplace-method/
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Let’s consider the Gaussian approximation obtained from the Laplace approximation.
One can show that we obtain penalized maximum log-likelihood with a penalty equal to
dj
2 log n, where dj is the dimension of Θj , leading to the Bayesian information criterion

(BIC) (see Robert, 2007, Chapter 7). See the discussion in Section 8.2.2.

Sparsity with automatic relevance determination. As mentioned in Section 14.1.3,
we consider a prior distribution q(θ|η) which is Gaussian with mean zero and covariance
matrix ηI. Maximizing the penalized marginal likelihood ends up being similar to the
“η-trick” from Section 8.3.1. Indeed, when we consider regression with Gaussian noise,
that is, when y given θ is normal with mean Φθ and covariance matrix σ2I, then y given η
is Gaussian with mean Φ Diag(η)Φ⊤ + σ2I, and thus we can compute the log-likelihood
in closed form, which leads to a natural (non-convex) cost function to estimate η.

Gaussian processes. The example above may be extended to kernel methods pre-
sented in Chapter 7. Indeed, it is possible to define a probabilistic model of random
function from a set X to R such that the marginal distribution of f(x1), . . . , f(xn) is
Gaussian with mean zero and covariance matrix K ∈ Rn×n where Kij = k(xi, xj), where
k is a positive definite kernel function. This allows us to combine Bayesian inference with
non-parametric kernel learning. See more details by Rasmussen and Williams (2006).

14.4 PAC-Bayesian analysis

In this section, we briefly review a generic framework to obtain generalization guarantees
for randomized or averaged predictors like those from Bayesian inference. For more
details, see Alquier (2021) and the many references therein.

14.4.1 Set-up

We consider the classical supervised learning framework that we have been following
throughout the book, namely, with n pairs of i.i.d. observations (xi, yi) from a distribution
p on X×Y, a loss function ℓ : Y×R→ R. We assume that we have a family of prediction
functions fθ : X → R, parameterized by θ ∈ Θ (which is a subset of a vector space
equipped with the Lebesgue measure).

We consider predictors that are not based on selecting a single θ ∈ Θ, but a probability
distribution ρ over θ. Given that probability distribution, we can consider:

(a) a randomized predictor fθ, where θ is sampled from ρ. Then the generalization per-
formance will be considered with this extra randomness (on top of the randomness
of the training data),

(b) the posterior mean x 7→
∫
Θ fθ(x)dρ(θ) which is a function from X to R and then

only the randomness of the training data need to be considered. Note that in this
situation, the final prediction function is not in the set of all fθ, θ ∈ Θ, and is often
called an “aggregated predictor”.
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The generalization bounds that will be presented will be valid for all potential probability
distributions ρ, including ones that depend on the data, which implies that we can then
optimize the bounds over the distribution, leading to a candidate which is very close to
the Bayesian posterior distribution (but with an added temperature). Like in Bayesian
inference, we consider a fixed probability distribution q on Θ, which we will refer to as
the prior.

We use the notation R(θ) = E
[
ℓ(y, fθ(x)

]
for the expected risk (a deterministic func-

tion of θ), and R̂(θ) = 1
n

∑n
i=1 ℓ(yi, fθ(xi)) for the empirical risk (which is a random

function of with expectation R).

14.4.2 Uniformly bounded loss functions

We assume that almost surely, for all θ ∈ Θ, we have: ℓ(y, fθ(x)) ∈ [0, ℓ∞] (for example,
with the 0-1 loss for binary classification, or with bounded predictors for regression).
Following the exposition of Alquier (2021); Catoni (2003), in the proof of Hoeffding’s
inequality in Section 1.2.1, we saw that for all θ ∈ Θ and s ∈ R+, we have:

E
[

exp
(
s(R(θ) − R̂(θ))

)]
6 exp

(s2ℓ2∞
8n

)
.

Integrating over θ, we get

∫

Θ

E
[

exp
(
s(R(θ) − R̂(θ))

)]
dq(θ) 6 exp

(s2ℓ2∞
8n

)
.

We now use the variational formulation of the log-partition function (also known as the

Donsker-Varadhan formula), with h(θ) = s(R(θ) − R̂(θ)).

log

∫

Θ

exp(h(θ))dq(θ) = sup
ρ∈P(θ)

∫

Θ

h(θ)dρ(θ) −D(ρ‖q),

with P(θ) the set of probability distribution on Θ and D(ρ‖q) the Kullback-Leibler di-
vergence between ρ and q, defined as (see also Section 15.1.3):

D(ρ‖q) =

∫

Θ

log
(dρ
dq

(θ)
)
dρ(θ).

This leads to

E

[
exp

(
sup
ρ∈P(θ)

∫

Θ

s(R(θ)− R̂(θ))dρ(θ) −D(ρ‖q)
)]

6 exp
(s2ℓ2∞

8n

)
. (14.5)

Thus, using Chernoff bound,4 we obtain that with probability greater than 1− δ,

sup
ρ∈P(θ)

∫

Θ

s(R(θ)− R̂(θ))dρ(θ) −D(ρ‖q) 6 s2ℓ2∞
8n

+ log
1

δ
,

4See https://en.wikipedia.org/wiki/Chernoff_bound.

https://en.wikipedia.org/wiki/Chernoff_bound
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or, in other words, for all ρ ∈ P(θ),
∫

Θ

R(θ)dρ(θ) 6

∫

Θ

R̂(θ)dρ(θ) +
1

s
D(ρ‖q) +

1

s
log

1

δ
+
sℓ2∞
8n

.

We thus get a bound on the average generalization error based on the average empirical
error. The bound can be empirically computed for any ρ and minimized, with the optimal
distribution being proportional to exp(−sR̂(θ))dq(θ), which is often called the Gibbs
posterior distribution. With s = n, this is exactly the Bayesian posterior distribution.
Denoting ρ̂s this distribution, we get with probability greater than 1− δ, that

∫

Θ

R(θ)dρ̂s(θ) 6 inf
ρ∈P(Θ)

∫

Θ

R̂(θ)dρ(θ) +
1

s
D(ρ‖q) +

1

s
log

1

δ
+
sℓ2∞
8n

.

Beyond integrated risks. For convex loss functions, by Jensen’s inequality, the risk
of the posterior mean x 7→

∫
Θ fθ(x)dρ(θ) is less than the integrated risk, so the bound

applies.

Moreover, by applying Jensen’s inequality to Eq. (14.5), we can get a bound in ex-
pectation as for all ρ ∈ P(θ) (again ρ may depend on the data):

E

[ ∫

Θ

R(θ)dρ(θ)
]
6 E

[ ∫

Θ

R̂(θ)dρ(θ) +
1

s
D(ρ‖q) +

sℓ2∞
8n

]
.

Moreover, for the Gibbs posterior, by applying Jensen’s inequality, we get:

E

[ ∫

Θ

R(θ)dρ̂s(θ)
]
6 inf

ρ∈P(Θ)

∫

Θ

R(θ)dρ(θ) +
1

s
D(ρ‖q) +

sℓ2∞
8n

. (14.6)

Finite set of models. We consider m prediction functions f̂1, . . . , f̂n. By considering
all Diracs in Eq. (14.6), we get that

E

[ ∫

Θ

R(θ)dρ̂s(θ)
]

6 inf
θ∈Θ

R(θ) +
1

s
log

1

q(θ)
+
sℓ2∞
8n

.

With q(θ) = 1/m and optimizing over s, we get the usual ℓ∞

√
logm
n like we obtained for

empirical risk minimization in Section 4.4.3.

Lipschitz-continuous losses, linear predictions, and Gaussian priors. See the
tutorial from Alquier (2021) to recover rates similar to ones that can be obtained with
Rademacher complexities in Chapter 4.

Application to sparse regression. PAC-Bayesian analysis can be considered in many
settings, including the sparse linear regression problems as dealt with in Chapter 8. For
example, Alquier and Lounici (2011); Rigollet and Tsybakov (2011) consider the combi-
nation of all least-squares predictors with supports restricted to a set A ⊂ {1, . . . , d} for
all such sets A. The combination is performed with exponential weights, and the estima-
tor is shown to exhibit the same performance as the ℓ0-penalty from Section 8.2.2, but
now requires sampling as an estimation algorithm instead of combinatorial optimization.



14.5. CONCLUSION 389

14.5 Conclusion

Probabilistic modeling is an important part of machine learning. In this chapter, we sim-
ply highlighted some topics related to learning theory, namely (1) the link between prior
models and predictive performance, where we showed that maximum a-priori estimation
may not correctly leverage the knowledge of the prior distribution, namely (2) the use
of generative models to obtain alternatives to discriminative estimators, and (3) the link
between Bayesian inference.
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Chapter 15

Lower bounds on performance

Chapter summary
– Statistical lower bounds: for least-squares regression, the optimal performance of

supervised learning with target functions that are linear in some feature vector or
in Sobolev spaces on Rd happens to be achieved by several algorithms presented
earlier in the book. The lower bounds can be obtained through information theory
or Bayesian analysis.

– Optimization lower bounds: for the classical problem classes from Chapter 5, hard
functions can be designed so that gradient-descent-based algorithms that linearly
combine gradients are shown to be optimal.

– Lower bounds for stochastic gradient descent: The rates proportional to O(1/
√
n)

for convex functions and O(1/nµ) for µ-strongly convex problems are optimal.

In this textbook, we have shown various convergence rates for statistical procedures
when the number of observations n goes to infinity, and optimization methods, as the
number of iterations t goes to infinity. Most were non-asymptotic upper bounds on the
error measures, with a precise dependence on the problem parameters (e.g., smoothness
of the target function or the objective function).

In this chapter, we are looking at lower bounds on performance, that is, we aim to
show that for a particular problem class and a specific class of algorithms, the error
measures cannot go to zero too quickly. Lower bounds are useful, in particular when
they match upper bounds up to constants (we can then claim that we have an “optimal”
method). They sometimes provide hard problems (like for optimization), sometimes not

391
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(when they are based on information theory, such as for prediction performance).

△!
Lower bounds will be obtained in a “minimax” setting where we look at the
worst-case performance over the entire problem class. As for upper bounds,
looking at worst-case performance is, in essence, pessimistic, and algorithms
often behave better than their bounds. The key is to identify classes of prob-
lems that are not too large (or the bounds will be very bad) but still contain
interesting problems.

The chapter is naturally divided into three sections: Section 15.1 considers statistical
lower bounds, Section 15.2 considers optimization lower bounds, while Section 15.3 con-
siders lower bounds for stochastic gradient methods. All of these provide bounds related
to the setups encountered in earlier chapters.

15.1 Statistical lower bounds

In this section, our goal is to obtain lower bounds for regression problems in Rd with
the square loss when assuming the target function f∗ : Rd → R (here the conditional
expectation of y given x) is in a particular set, such as:

• linear function of some d-dimensional features, that is, f∗(x) = 〈θ∗, ϕ(x)〉, for θ∗ ∈
Rd, potentially in a ℓ2-ball, and/or with less than k non-zero elements,

• functions with all partial derivatives up to order s bounded in L2-norm (e.g., Sobolev
spaces).

Since we are looking for lower bounds, we are free to make extra assumptions (that
can only make the problem simpler) and lower the lower bounds. For example, we will
focus on Gaussian noise with constant variance σ2 that is independent of x.

We can either consider fixed design assumptions or random designs with the simplest
input distributions (that can only make the problem simpler).

Classification. Lower bounds for classification problems are more delicate and out of
scope (see, e.g., Yang, 1999). However, we can get lower bounds for the convex surrogates
that are typically used (but note that this does not translate to lower bounds for the 0-1
loss), see for example Section 15.3 for Lipschitz-continuous loss functions.

15.1.1 Minimax lower bounds

We consider a set of probability distributions indexed by some set Θ (that can characterize
input distributions and the smoothness of the target function). We consider some data D,
generated from this distribution, and we denote Eθ expectations with respect to data
coming from the distribution indexed by θ.

We consider an estimator A(D) of θ ∈ Θ, with some squared distance d2 between two
elements of Θ, so that d(θ, θ′)2 measures the performance of θ′ when the true estimator
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is θ. The performance of A when the data come from θ∗ is

Eθ∗

[
d(θ∗,A(D))2

]
.

The goal is to find an algorithm so that sup
θ∗∈Θ

Eθ∗

[
d(θ∗,A(D))2

]
is as small as possible,

and the lower bound of performance is thus:

inf
A

sup
θ∗∈Θ

Eθ∗

[
d(θ∗,A(D))2

]
. (15.1)

This is often referred to as “minimax” lower bounds.

Since by Markov’s inequality, Eθ∗

[
d(θ∗,A(D))2

]
> APθ∗

(
d(θ∗,A(D))2 > A

)
, it is

sufficient to lower bound

inf
A

sup
θ∗∈Θ

Pθ∗

(
d(θ∗,A(D))2 > A

)
, (15.2)

for some arbitrary A > 0. This will be useful for techniques based on information theory.

We will see two principles for obtaining statistical minimax lower bounds:

• Reduction to a hypothesis test: by selecting a finite subset {θ1, . . . , θM} of
distributions Θ which is maximally spread, a good estimator leads to a good hy-
pothesis test that can identify which θj (among the M possibilities) was used to
generate the data. We can then use information theory to lower-bound the proba-
bility of error of such a test. This versatile technique can handle most situations,
from fixed to random design.

• Bayesian analysis: We can lower bound the supremum for all Θ by any expecta-
tion over a distribution supported on Θ. Once we have an expectation, we can use
the same decision-theoretic argument as the ones we used to compute the Bayes risk
is Chapter 4, e.g., for Hilbertian or Euclidean performance measures, the optimal
estimator is the conditional expectation E[θ∗|D]. The key is choosing distributions
so they can be computed in closed form. This approach is less flexible but the
simplest in situations where it can be applied (fixed design regression on balls, with
potentially sparse assumptions).

15.1.2 Reduction to a hypothesis test

The principle is simple: pack the set Θ with “balls” of some radius 4A, that is, find
θ1, . . . , θM ∈ Θ such that

∀i 6= j, d(θi, θj)
2 > 4A, (15.3)

and transform the estimation problem into a hypothesis test, that is, an algorithm going
from the data D to one out of M potential outcomes (see illustration below).
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Θ

θ1

θ2

θ3

θ4

θ5

θ6

θ8

θ16

θ17

θ9

θ15

θ14

θ13

θ10

θ11

θ12

√

A

Then, because we take the supremum over a smaller set:

sup
θ∗∈Θ

Pθ∗

(
d(θ∗,A(D))2 > A

)
> max

j∈{1,...,M}
Pθj

(
d(θj ,A(D))2 > A

)
. (15.4)

Any algorithm A(D) ∈ Θ gives a “test”, that is, a function g◦A : D→ {1, . . . ,m} defined
as

g(A(D)) = arg min
j∈{1,...,m}

d(θj ,A(D)) ∈ {1, . . . ,m},

where ties are broken arbitrarily (e.g., by selecting the minimal index). Because of the
packing condition in Eq. (15.3), the performance of A can be lower-bounded by the
classification performance of g ◦A (with the 0-1 loss).

Indeed, if, for some j ∈ {1, . . . ,M}, g(A(D)) 6= j, there exists k 6= j, such that
d(θk,A(D)) < d(θj ,A(D)). Moreover, using the triangle inequality for d, we get:

d(θj , θk)2 6 2
[
d(θj ,A(D))2 + d(θk,A(D))2

]
,

then,

d(θj ,A(D))2 >
1

2
d(θj , θk)2 − d(θk,A(D))2

>
1

2
d(θj , θk)2 − d(θj ,A(D))2 by the choice of k,

which implies d(θj ,A(D))2 > 1
4d(θj , θk)2 > A. Thus, we have the following inequality for

the probabilities of these two events:

Pθj

(
d(θj ,A(D))2 > A

)
> Pθj

(
g(A(D)) 6= j

)
,

leading to, using Eq. (15.2) and Eq. (15.4),

inf
A

sup
θ∗∈Θ

Eθ∗

[
d(θ∗,A(D))2

]
> A · inf

h
max

j∈{1,...,M}
Pθj

(
g(D) 6= j

)

> A · inf
h

1

M

M∑

j=1

Pθj

(
g(D) 6= j

)
, (15.5)
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where h is any function from D to {1, . . . ,M}. We have thus lower-bounded the mini-
max statistical performance by the minimax performance of a hypothesis test h : D →
{1, . . . ,M}. Information theory can then be used to lower-bound this minimax error. We
first provide a quick review of information theory (see Cover and Thomas, 1999, for more
details).

15.1.3 Review of information theory

Entropy. Given a random variable y taking finitely many values in Y, its entropy is
equal to

H(y) = −
∑

y′∈Y

P(y = y′) logP(y = y′).

Since P(y = y′) ∈ [0, 1], the entropy is always non-negative. Moreover, using Jensen’s in-
equality for the logarithm, we haveH(y) =

∑
y′∈Y

P(y = y′) log 1
P(y=y′) 6 log

(∑
y′∈Y

P(y =

y′) 1
P(y=y′)

)
= log |Y|.

The entropy H(y) represents the uncertainty associated with the random variable y,
going from H(y) = 0 if y is deterministic (that is P(y = y′) = 1 for some y′ ∈ Y), to
log |Y| when y has a uniform distribution.

Joint and conditional entropies. Given two random variables x, y with finitely many
values in X and Y, we can define the joint entropy

H(x, y) = −
∑

x′∈X

∑

y′∈Y

P(x = x′, y = y′) logP(x = x′, y = y′).

It can be decomposed as

H(x, y) = −
∑

x′∈X

∑

y′∈Y

P(y = y′, x = x′) log
[
P(y = y′|x = x′)P(x = x′)

]

= −
∑

x′∈X

∑

y′∈Y

P(y = y′, x = x′) logP(y = y′|x = x′)

−
∑

x′∈X

∑

y′∈Y

P(y = y′, x = x′) logP(x = x′)

=
∑

x′∈X

P(x = x′) logH(y|x = x′) +H(x),

where H(y|x = x′) is the entropy of the conditional distribution of y given x = x′. By
defining the conditional entropy H(y|x) as H(y|x) =

∑
x′∈X

P(x = x′)H(y|x = x′), we
exactly have:

H(x, y) = H(y|x) +H(x).

This leads to a first version of Fano’s inequality, which lower bounds the probability
that y 6= ŷ from the conditional entropy H(y|ŷ); the main idea is that if y remains very
uncertain given ŷ, then the probability that they are equal cannot be too large.
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Proposition 15.1 (Fano’s inequality) If the random variables y and ŷ have values in
the same finite set Y, then

P(ŷ 6= y) >
H(y|ŷ)− log 2

log |Y| .

Proof Let e = 1y 6=ŷ ∈ {0, 1} be the indicator function of errors; by decomposing the
joint entropy through conditional and marginal entropies in the two different ways, we
get:

H(e|ŷ) +H(y|e, ŷ) = H(e, y|ŷ) = H(y|ŷ) +H(e|y, ŷ).

We then haveH(e|y, ŷ) = 0 (since e is deterministic given y and ŷ), H(e|ŷ) 6 H(e) 6 log 2
(because e ∈ {0, 1}), and H(y|e, ŷ) = P(e = 1)H(y|ŷ, e = 1) + P(e = 0)H(y|ŷ, e = 0) =
P(e = 1)H(y|ŷ, e = 1) + 0 6 P(ŷ 6= y) log |Y|. Expressing P(ŷ 6= y) in function of the
other quantities leads to the desired result.

Data processing inequality. A fundamental result in information theory allows to
lower-bound conditional entropies where conditional independencies are present. That is,
if we have three random variables x, y, z, such that z and x are conditionally independent
given y, thenH(x|z) > H(x|y): in words, the uncertainty of x given z has to be larger than
the uncertainty of x|y, which is “normal” because the statistical dependence between x
and z is occurring through y. In other words, the sequence x → y → x forms a Markov
chain.

The data processing inequality is a simple application of the concavity of the entropy
as a function of the probability mass function; indeed, using that by conditional indepen-
dence P(x = x′|z = z′) =

∑
y′∈Y

P(x = x′, y = y′|z = z′) =
∑

y′∈Y
P(x = x′|y = y′)P(y =

y′|z = z′), and Jensen’s inequality for the function t 7→ −t log t, we have:

H(x|z) =
∑

z′∈Z

P(z = z′)H(x|z = z′)

>
∑

z′∈Z

P(z = z′)
∑

y′∈Y

P(y = y′|z = z′)H(x|y = y′)

=
∑

y′∈Y

P(y = y′)H(x|y = y′) = H(x|y).

This leads immediately to the following full version of Fano’s inequality:

Proposition 15.2 (Fano’s inequality) If the random variable y and ŷ have values in
the same finite set Y, and if we have a Markov chain y → z → ŷ, then

P(ŷ 6= y) >
H(y|ŷ)− log 2

log |Y| >
H(y|z)− log 2

log |Y| .

We need a last concept from information theory, namely mutual information and Kullback-
Leibler divergence, both for discrete and continuous-valued random variables.
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Mutual information. Given two random variables x and y, then we can define their
mutual information as

I(x, y) = H(x) −H(x|y) = H(x) +H(y)−H(x, y) = H(y)−H(y|x).

This can be seen as the uncertainty reduction in x when observing y. It is symmetric,
always less than log |X| and log |Y|. Moreover, it can be written as:

I(x, y) = H(x) +H(y)−H(x, y)

=
∑

x′∈X

∑

y′∈Y

P(x = x′, y = y′) log
P(x = x′, y = y′)

P(x = x′)P(y = y′)
,

which can be seen as the Kullback-Leibler (KL) divergence between the distribution of
(x, y) and the product of marginals of x and y. Indeed, given two distributions on Z, p
and q (which are non-negative functions on Z that sum to one), then the KL divergence
is defined as

DKL(p||q) =
∑

z∈Z

p(z) log
p(z)

q(z)
.

The KL divergence is always non-negative by convexity of the function t 7→ t log t, and
equal to zero, if and only if p = q. Moreover, the KL divergence is jointly convex in
(p, q). Thus, one can see the mutual information between the KL divergences between
the joint distribution of (x, y) and the corresponding product of marginals (which is thus
non-negative).

From discrete to continuous distributions. Many of the information theory con-
cepts can be extended to continuous random variables on R

d by replacing the probability
mass function with the probability density with respect to some base measures. Then,
many properties (which were obtained through convex arguments) extend. In particular,
the data processing inequality and Fano’s inequality when z is continuous-valued (see
more details by Cover and Thomas, 1999).

Moreover, the KL divergence between two distributions can be defined as

DKL(p||q) = Ep

[
log

dp

dq
(x)

]
.

A short calculation shows that for two normal distributions of means µ1, µ2 and equal
covariance matrices Σ, the KL divergence is equal to 1

2 (µ1 − µ2)⊤Σ−1(µ1 − µ2).

15.1.4 Lower-bound on hypothesis testing based on information
theory

We consider a joint random variable (y,D) distributed as y uniform in {1, . . . ,M}, and,
given y = j, D distributed as the distribution associated with θj . We consider ŷ = h(D).
This defines a Markov chain: y → D→ h(D), that is, even for a randomized test h (with
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extra randomization), h(D) is independent of y given D. By construction, the last term
in Eq. (15.5) is exactly the probability that ŷ 6= y. This is exactly what Fano’s inequality
from information theory gives us, leading to the following corollary.

Corollary 15.1 (Fano’s inequality for multiple hypothesis testing) GivenM prob-
ability distributions pj on D, then

inf
h

1

M

M∑

j=1

Ppj

(
h(D) 6= j

)
> 1− 1

M2 logM

M∑

j,j′=1

DKL(pj ||pj′ )−
log 2

logM
. (15.6)

Proof We consider a joint random variable (y,D) distributed as y uniform in {1, . . . ,M},
and, given y = j, D distributed as the distribution pj. We have:

H(y|z) = H(y)− I(y, z) = logM − 1

M

M∑

j=1

DKL

(
pj
∥∥ 1

M

M∑

j′=1

pj′
)

> logM − 1

M2

M∑

j,j′=1

DKL(pj‖pj′),

by the convexity of the Kullback-Leibler divergence. We can then apply Prop. 15.2 and
conclude.

Using Gaussian noise to compute KL divergences. For regression with Gaussian
errors such as yi = fθ(xi) + εi, with ε ∼ N(0, σ2I), then, for fixed designs (all xi’s
deterministic), we get exactly

DKL(pθj ||pθj′ ) =
1

2σ2

n∑

i=1

[
fθj(xi)− fθj′ (xi)

]2
=

n

2σ2
d(θj , θj′)

2,

where d(θ, θ′)2 = 1
n

∑n
i=1

[
fθ(xi) − fθ′(xi)

]2
is the empirical mean squared difference be-

tween two models.

For random designs, we consider distributions on (xi, yi)i=1,...,n. If we consider a
common distribution p for x, then

DKL(pθj ||pθj′ ) =
1

2σ2

∫

X

[
fθj(x) − fθj′ (x)

]2
dp(x) =

1

2σ2
‖fθj − fθj′‖2L2(p)

,

which we define to be 1
2σ2 d(θj , θj′)

2.

Overall, to obtain a lower bound with Gaussian noise, we need to find θ1, . . . , θM in Θ
such that:

•

1

M2

M∑

j,j′=1

n

2σ2
d(θj , θj′)

2 6 log(M)/4. and log 2/ logM 6 1/4 (that is M > 16), so

that Eq. (15.6) leads to a lower bound of A/2.
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• minj 6=k d(θj , θk)2 > 4A, so that we can apply Eq. (15.5).

Then, the minimax lower bound is A/2. Thus, the lower bound is essentially the largest
possible A for a given M such that we can find M points in Θ, which are all 2

√
A apart.

There are two main tools to find such packings: (1) a direct volume argument and (2)
using Varshamov-Gilbert’s lemma. We present them before going over examples.

Volume argument. The following lemma provides the simplest argument.

Lemma 15.1 (Packing ℓ2-balls) Let M be the maximal number of elements of the Eu-
clidean ball of radius 1, which are at least 2ε-apart in ℓ2-norm. Then (2ε)−d 6 M 6

(1 + ε−1)d.

Proof Let θ1, . . . , θM be the corresponding M points.

(a) All balls of center θj and radius ε are disjoint and included in the ball of radius
1 + ε. Thus, the sum of the volumes of the small balls is smaller than the volume of the
large balls, that is, Mεd 6 (1 + ε)d.

(b) Since M is maximal, for any θ such that ‖θ‖2 6 1, there exists a j ∈ {1, . . . ,M}
such that ‖θj − θ‖2 6 2ε (otherwise, we can add a new point to {θ1, . . . , θM} and M is
not maximal). Thus, the ball of radius 1 is covered by the M balls of radius θj and radius
2ε. Thus, by using volumes, we get 1 6M(2ε)d.

Packing with Varshamov-Gilbert lemma. The maximal number of points in the
hypercube {0, 1}d that are at least d/4-apart in Hamming loss (i.e., ℓ1-distance) is greater
than than exp(d/8), with a nice probabilistic argument.

Lemma 15.2 (Varshamov-Gilbert’s lemma) For any α ∈ (0, 1), there exists a sub-
set B of the hypercube {0, 1}d such that

(a) for all x, x′ ∈ B such that x 6= x′, ‖x− x′‖1 > (1− α)d2 ,

(b) |B| > exp(dα2/2).

Proof We consider the largest family satisfying (a). By maximality, the union of ℓ1-balls
of radius (1 − α)d2 includes all of {0, 1}d . Therefore, by comparing cardinalities,

2d 6
∑

x∈B

∣∣{y ∈ {0, 1}d, ‖y − x‖1 6 (1 − α)
d

2

}∣∣.

Consider a random variable z, which is binomial with parameters d and 1/2 (that is, the
sum of d independent uniform Bernoulli random variables). Then,

2−d
∣∣{y ∈ {0, 1}d, ‖y−x‖22 = ‖y−x‖1 6 (1−α)

d

2

}∣∣ = P
(
z 6 (1−α)

d

2

)
= P

(
z > (1+α)

d

2

)
.

Using Hoeffding’s inequality (Prop. 1.1), we get P(z > (1 + α)d2 ) = P( zd −
E[z]
d > αd2 ) 6

exp(−2d(α/2)2) = exp(−dα2/2). This leads to the result.
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15.1.5 Examples

Fixed design linear regression. We consider linear regression with Φ ∈ Rn×d a
design matrix with 1

nΦ⊤Φ = I (which imposes n > d). We consider the ball Θ =
{θ ∈ Rd, ‖θ‖2 6 D}. By rotational invariance of the Gaussian distribution of the noise
variable ε, we can assume that the first d rows of Φ are equal to

√
nI and the rest of the

rows are equal to zero. Thus we can assume the model y = θ∗ + 1√
n
ε, where ε ∈ R

d with

normal distribution with mean zero and covariance σ2I, and y ∈ Rd. We are thus in the
situation where d(θ, θ′)2 = ‖θ − θ′‖22.

In order to find M points in Θ = {θ ∈ Rd, ‖θ‖2 6 D}, we consider the M >

exp(d/8) elements x1, . . . , xM of {0, 1}d from Lemma 15.2 with α = 1/2, and define
θi = β(2xi − 1d) ∈ {−β, β}. Thus ‖θi‖22 = β2d, and, for i 6= j,

‖θi − θj‖22 6 4β2d 6 32β2 log(M) and ‖θi − θj‖22 > β2d.

We thus need, β2d 6 D2, and 32β2 log(M) n
2σ2 6

logM
4 , that is, 64β2 n

σ2 6 1. Thus, the
optimal rate is greater than

1

8
β2d >

1

8
min

{
D2,

σ2d

64n

}
.

Therefore, when D2 > σ2d
64n , we get a lower bound of

σ2d

512n
, which is the upper-bound

obtained in Chapter 3 (note that in Section 3.7 we provided a sharper lower-bound using
similar tools as in Section 15.1.6).

The sparse regression setting could also be considered with the same tool, but the
proof is simpler with the Bayesian arguments from Section 15.1.6. We now turn to the
random design setting.

Exercise 15.1 Use Lemma 15.1 instead of Lemma 15.2 to obtain the same result.

Random design linear regression. We consider the same model as above, but with
(xi, yi) sampled i.i.d. from a given distribution such that E[ϕ(x)ϕ(x)⊤ ] = I, so that
d(θ, θ′)2 = ‖θ− θ′‖22. Thus, the result above for fixed design regression also applies to the
random design setting.

Non-parametric estimation with Hilbert spaces (�). We consider random design
regression with a fixed distribution for the inputs, with Gaussian independent noise and
target functions in a certain ellipsoid of L2(p). That is, we assume that there exists a
compact self-adjoint operator T on L2(p) such that 〈θ, T−1θ〉L2(p) 6 D2. We denote by
(λm)m>1 the non-increasing sequence of eigenvalues of T , with the associated eigenvectors
ψm in L2(p).

We consider a certain integer K, and M > exp(K/8) elements x1, . . . , xM of {0, 1}K.

We define θi = β
∑K
m=1(2(xi)m−1)ψm. Then 〈θ, T−1θ〉L2(p) = β2

∑K
m=1 λ

−1
m 6 Kβ2λ−1

K ,
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and, for i 6= j,

‖θi − θj‖2L2(p)
6 4β2K 6 32β2 log(M) and ‖θi − θj‖2L2(p)

> β2K.

We thus need, β2K 6 D2λK , and 32β2 log(M) n
2σ2 6

logM
4 , that is, 64β2 n

σ2 6 1. Thus,
the minimax lower bound is greater than

1

8
β2K >

1

8
min

{
D2λK ,

σ2K

64n

}
.

We can now specialize to Sobolev spaces where it can be shown that for compact sup-
ports with piecewise smooth boundaries. The sum of all L2-norms of partial derivatives
corresponds to an operator for which λK > C ·K−α, with α = 2s/d when all s-th order
derivatives are taken, for a constant C (Adams and Fournier, 2003). The lower bound
becomes

max
K>1

1

8
min

{
D2CK−α,

σ2K

64n

}
,

which can be balanced to obtain K ∝
(
nD2

σ2

)1/(1+α)
, leading to lower bound proportional

to

D2/(1+α)
(σ2

n

)α/(1+α)
.

For α = 2s/d, we get α/(1+α) = 2s
2s+d , and the lower matches the upper-bound obtained

with kernel ridge regression in Chapter 7. It turns out that the lower bound on the
minimax rate for Lipschitz-continuous functions is the same as for s = 1 (Tsybakov,
2008, Section 2.6).

15.1.6 Minimax lower bounds through Bayesian analysis

We can use a Bayesian analysis as outlined for least-squares in Section 3.7. We consider
a particular probability distribution p(θ∗) whose support is included in Θ. Then we have:

inf
A

sup
θ∗∈Θ

Eθ∗

[
d(θ∗,A(D))2

]
> inf

A
Ep(θ∗) Eθ∗

[
d(θ∗,A(D))2

]
.

This reasoning is particularly simple when the optimal algorithm A is simple to estimate,
which is the case in particular where d is a Euclidean norm so that A∗(D) = E

[
θ∗|D

]
.

If the prior p(θ∗) and the likelihood p(D|θ∗) are simple enough, then the conditional
expectation can be computed in closed form. In Section 3.7, these were all Gaussians,
which was possible for the prior distribution on Θ because Θ was unbounded. When
dealing with bounded balls, we need to use different distributions, as used originally by
Donoho and Johnstone (1994).

Least-squares on a Euclidean ball. We consider linear regression with a fixed design
like in the previous section (with a bound ‖θ∗‖2 6 D), which corresponds to the model
y = θ∗ + 1√

n
ε, where ε ∈ Rd with normal distribution with mean zero and covariance

σ2I, and y, θ∗ ∈ Rd.
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We then consider a prior distribution on θ∗ as θ∗ = βx, where x ∈ {−1, 1}d are inde-
pendent Rademacher random variables. We need β2d 6 D2 to be in the correct set. We
then need to compute E[θ∗|y]. The posterior probability of θ∗ is supported on β{−1, 1}n.
Moreover, given the independence by component, we can treat each separately. Then, by
keeping only terms that depend on the posterior value, we get:

P((θ∗)i = ±β|yi) ∝ exp(− n

2σ2
(yi −±β)2) ∝ exp(± n

σ2
yiβ).

Thus,

E
[
(θ∗)i|yi

]
=β

exp( nσ2 yiβ)−exp(−nσ2 yiβ)

exp( nσ2 yiβ)+exp(−nσ2 yiβ)
=β

1− exp(−2n
σ2 yiβ)

1 + exp(−2n
σ2 yiβ)

=β
[
2sigmoid

(2n

σ2
yiβ

)
− 1

]
,

where sigmoid(α) = 1/(1 + exp(−α)).

The posterior variance for the i-th component is equal to

E
[(

(θ∗)i − E
[
(θ∗)i|yi

])2]
=

1

2
Eεi

(
β − β

[
2sigmoid

(
2
n

σ2
β(β + εi/

√
n)
)
− 1

])2

+
1

2
Eεi

(
− β − β

[
2sigmoid

(
2
n

σ2
β(−β + εi/

√
n)
)
− 1

])2

= 4β2
Eεi∼N(0,σ2)

[(
sigmoid

(
− 2

n

σ2
β2 + 2

√
n

σ2
βεi)

)2]

= 4β2
Eε̃i∼N(0,1)

[(
sigmoid(−2

n

σ2
β2 + 2

β
√
n

σ
ε̃i)

)2]
.

We consider the function ψ : α 7→ Eε∼N(0,1)

[(
sigmoid(−2α2 + 2αε)

)2]
. We have ψ(0) =

1/4, and ψ(α) → 0 when α → +∞, and ψ(α) > 1
4Pε∼N(0,1)(ε > α) > 1

8 exp(−α2), by
using simple Gaussian tail bounds (and since the sigmoid function is greater than 1/2 for
positive numbers).

Thus, the total posterior variance E
[∥∥θ∗ − E

[
θ∗|y

]∥∥2
2

]
is greater than

β2d

2
exp(−nβ2/σ2) =

σ2d

n
× β2n

2σ2
exp(−nβ2/σ2),

which is maximized for β2 ∝ σ2/n, and thus if σ2d/n is smaller than D2, we obtain the
usual σ2d/n, while if it is greater then D2, we take β2

2 = D2/d, to obtain the lower bound

D2 exp(−4nD2/(σ2d)) > D2 exp(−4),

which leads to the same bound as the previous section but with a more direct argument.

Sparse case (�). To deal with the sparse case, we could consider a prior on θ∗ that
only selects k non-zero elements out of d and perform an analysis based on the posterior
probability of θ∗. Following Donoho and Johnstone (1994), it is easier to divide the set
of d variables into k blocks of size d/k (for simplicity, we assume that d/k is an integer).



15.1. STATISTICAL LOWER BOUNDS 403

We then consider a prior probability defined independently on each of the k blocks by
selecting one of the d/k variables uniformly at random and setting its value to β. In
contrast, all others are set to zero.

To compute the posterior probability of θ∗, we can treat each block independently
and sum the posterior variances; we thus consider the first block, composed of d/k vari-
ables, and compute the probability that the selected variable is the j-th one, which is
proportional to

exp(−n/(2σ2)(yj − β)2)
∏

i6=j
exp(−n/(2σ2)(yi)

2) ∝ exp(nβyj/σ
2).

The conditional expectation of θ∗ then satisfies

E[(θ∗)i|y] = β
exp(nβyi/σ

2)
∑d/k

j=1 exp(nβyj/σ2)
.

To compute the posterior variance, we need to sample from the prior θ∗. By symmetry,
we may consider that θ1 = β. If y1 6 maxj 6=1 yj , then

E[(θ∗)1|y] = β
exp(nβy1/σ

2)
∑d/k
j=1 exp(nβyj/σ2)

6 βt
exp(nβy1/σ

2)

exp(nβy1/σ2) + exp(nβmaxj 6=1 yj/σ2)
6 β/2,

and then the risk is at least (β − E[(θ∗)1|y])2 > β2/4.

In order to lower-bound the probability that y1 6 maxj 6=1 yj , we can consider the
events {y1 6 β} and {β 6 maxj 6=1 yj}. The probability that y1 = β + ε1 is less than β is
greater than 1/2. Moreover, by independence of all yj, j 6= 1,

P
(
{β 6 max

j 6=1
yj}

)
> 1−

(
1− Pt∼N(0,1)(t > β

√
n/σ)

)d/k−1
.

Thus, the lower bound is greater than

k
β2

8

[
1−

(
1− Pt∼N(0,1)(t > β

√
n/σ)

)d/k−1
]
> k

β2

8

[
1−

(
1− 1

2
exp(−β2n/σ2)

)d/k−1]
,

using the Gaussian tail bound Pt∼N(0,1)(t > z) > 1
2 exp(−z2). We can then consider

β2 = σ2

n

√
2 log(d/k), leading to a lower bound

σ2k

4n
log(d/k)

[
(1− (1− 1

2 (k/d))d/k−1
]
,

which is greater than σ2k
8n log(d/k) if k 6 2d. We obtain the same lower-bound as the

upper-bound for ℓ0-penalty-based methods in Chapter 8.
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15.2 Optimization lower bounds

In this section, we consider ways of obtaining lower bounds of performance for optimiza-
tion algorithms corresponding to upper-bounds derived in Chapter 5 for gradient-based
algorithms. While the statistical lower bounds from the previous section were not ob-
tained by explicitly building hard problems, the algorithmic lower bounds of this section
will explicitly build such hard problems.

15.2.1 Convex optimization

To obtain computational lower bounds for convex optimization, which is notoriously hard
in general in computer science, we will rely on a simple model of computation; that is,
we will restrict ourselves to methods that access gradients of the objective function and
combine them linearly to select a new query point.

We follow the results from Nesterov (2018, Section 2.1.2) and Bubeck (2015, Section
3.5), and assume that we want to minimize a convex function F defined on Rd. The
algorithm starts from θ0 = 0 and can only query points in the span of the observed
gradients or some sub-gradients of F at the previously observed points.

The key is finding functions with the proper regularity properties, for which we know a
few iterations provably lead to suboptimal performance. These functions will only reveal
one new variable at each iteration and, after k iterations, can only achieve the minimum
on the first k variables.

Non-smooth functions. We consider the following function, which will be dedicated
to a given number of iterations k:

F (θ) = η max
i∈{1,...,k+1}

θi +
µ

2
‖θ‖22,

for k < d, and η, µ positive parameters that will be set later.

The subdifferential of F (θ) is equal to

µθ + η · hull
({
ei, θi = max

i′∈{1,...,k+1}
θi′

})
,

which is bounded in ℓ2-norm on the ball of radius R, by µR+ η (here ei denotes the i-th
basis vector). We consider the oracle where the output gradient is µθ + ηei, where i is
the smallest index within maximizers of θi′ .

Starting from θ0 = 0, θ1 is supported on the first variable, and by recursion, after
k 6 d steps of subgradient descent, θk is supported on the first k variables. Since k < d,
then (θk)k+1 = 0, so F (θk) > 0. Minimizing over the span of the first k + 1 variables

leads to, by symmetry, θ∗ = κ
∑k+1
i=1 ei, for a certain κ which minimizes ηκ+ (k+1)µ

2 κ2, so

that κ = − η
µ(k+1) , and thus θ∗ = − η

µ(k+1)

∑k+1
i=1 ei, with value F (θ∗) = − η2

2µ(k+1) . Thus

F (θk)− F (θ∗) > 0− F (θ∗) =
η2

2µ(k + 1)
,
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with ‖θ∗‖22 = η2

µ2(k+1) .

In order to build a B-Lipschitz-continuous function on a ball of center 0 and radius D,

we can take η = B/2, and D = B/(2µ), and we get a lower bound of B2

8µk .

With µ = B
D

1
1+

√
k+1

and η = B
√
k+1

1+
√
k+1

, we also get a B-Lipschitz continuous function,

and we get the lower bound DB
2(1+

√
k+1)

, which is valid as long as k < d.

△! The lower bounds are only valid for k < d because there exist algorithms that are
linearly convergent in this setting with a constant that depends on d, such as the ellipsoid
method or the center of mass method (see Bubeck, 2015, for details).

Smooth functions (�). We consider a sequence of quadratic functions on Rd. We
need that the gradient for iterates supported on the first i components is supported on
the first i + 1 components, so that the k-th iterate starting from 0 only has its first k
coordinates that can be non-zero. We consider the example from Nesterov (2018, Section
2.1.2), and highlight the main arguments without proof:

Fk(θ) =
L

4

{1

2

[
θ21 + θ2k +

k−1∑

i=1

(θi − θi+1)2
]
− θ1

}
.

The function Fk is convex and smooth, with a smoothness constant less than L. Moreover,

its global minimizer is attained at θ
(k)
∗ such that (θ

(k)
∗ )i = 1− i

k+1 for i ∈ {1, . . . , k} and

0 otherwise, with an optimal value of Fk(θ
(k)
∗ ) = L

8
−k
k+1 , and with

‖θ(k)∗ ‖22 =

k∑

i=1

(
1− i

k + 1

)2
6
k + 1

3
.

By construction, if θ is supported in the first i components for i < k, then F ′
k(θ) is

supported on the first i+ 1 components. Thus, the i-th iterate is supported on the first i

components, and therefore the lowest attainable value is Fi(θ
(i)
∗ ).

Given this set of functions, for a given k such that k 6 d−1
2 , we consider F2k+1, for

which θ
(2k+1)
∗ is the global minimizer with value L

8
−2k−1
2k+2 , while after k iterations, we can

only achieve Fk(θ
(k)
∗ ) = L

8
−k
k+1 . Thus, we have:

F2k+1(θk)− F ∗
2k+1

‖θ0 − θ∗‖22
>
L

8

1
k+1 − 1

2k+2
2k+2

3

>
3L

32

1

(k + 1)2
.

We thus obtain the lower bounds corresponding to the upper bounds obtained from
Nesterov acceleration.

△! The number of iterations has to be less than half the dimension for the lower bound
to hold.
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Smooth strongly-convex functions (�). Following Nesterov (2018), we consider a
function defined on the space ℓ2 of square-summable sequences as

F (θ) =
L− µ

4

{1

2

[
θ21 +

∞∑

i=1

(θi − θi+1)2
]
− θ1

}
+
µ

2
‖θ‖22.

This function is L-smooth and µ-strongly convex. Its global minimizer is θ∗ such that

(θ∗)k =
(1−

√
µ/L

1 +
√
µ/L

)k
= qk,

with ‖θ∗‖22 =
∑∞

k=1 q
2k = q2

1−q2 . Moreover, it can be shown that ‖θk−θ∗‖22 >
∑∞
i=k+1 q

2i =

q2k‖θ∗‖22. This leads to F (θk)− F∗ >
µ
2 ‖θk − θ∗‖22 > q2k‖θ0 − θ∗‖22.

15.2.2 Non-convex optimization (�)

While upper and lower bounds can have good behavior with respect to dimension in the
convex case, this is not the case when removing the convexity assumption. In this section,
we show that when optimizing a Lipschitz-continuous function on a compact subset of Rd,
we cannot hope to have guarantees which are not exponential in dimension.

△! This does not mean that all problem instances will require exponential time,
but that in the worst-case sense, for any algorithm, there will always be a bad
function.

We consider minimizing a function F on a bounded subset Θ of Rd, based only
on function evaluations, a problem often referred to as zero-th order optimization or
derivative-free optimization (see algorithms for convex functions in Section 11.2). No
convexity is assumed in this section, so we should not expect fast rates and, again, no
efficient algorithms that can provably find a global minimizer. Clearly, such algorithms
are not made to be used to find millions of parameters for logistic regression or neural
networks. Still, they are often used for hyperparameter tuning (regularization parameters,
size of neural network layers, etc.). See, e.g., Snoek et al. (2012) for applications.

We will assume some regularity for the functions we want to minimize, typically
bounded derivatives. We will thus assume that f ∈ F, for a space F of functions from Θ
to R. We will take a worst-case approach, where we characterize convergence over all
members of F. That is, we want our guarantees to hold for all functions in F. Note that
this worst-case analysis may not predict well what is happening for a particular function;
in particular, it is (by design) pessimistic.

An algorithm A will be characterized by (a) the choice of points θ1, . . . , θn ∈ Θ

to query the function, and (b) the algorithm to output a candidate θ̂ ∈ Θ such that

F (θ̂) − infθ∈Θ F (θ) is small. The estimate θ̂ can only depend on (θi, F (θi)), for i ∈
{1, . . . , n}. In this section, the choice of points θ1, . . . , θn is made once (without seeing
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any function values).1

Given a selection of points and the algorithm A, the rate of convergence is the supre-
mum over all functions F ∈ F of the error F (θ̂)− infθ∈Θ F (θ). This is a function εn(A) of
the number n of sampled points (and of the class of functions F). The optimal algorithm
(minimizing εn(A)) will lead to a rate we denote εoptn , and which we aim to characterize.

Direct lower/upper bounds for Lipschitz-continuous functions. The argument
is particularly simple for a bounded metric space Θ with distance δ, and F the class of
L-Lipschitz-continuous functions, that is, such that for all θ, θ′ ∈ Θ, |F (θ) − F (θ′)| 6
Lδ(θ, θ′). This is a very large set of functions, so we expect weak convergence rates.

Like in Section 4.4.4, we will need to cover the set Θ with balls of a given radius.
The minimal radius r of a cover of Θ by n balls of radius r is denoted rn(Θ, δ). This
corresponds to n ball centers θ1, . . . , θn. See example below for the unit cube Θ = [0, 1]2

and the metric obtained from the ℓ∞-norm, with n = 16, and rn([0, 1]2, ℓ∞) = 1/8.

θ1 θ2 θ3 θ4

θ5

θ9

θ13 θ14

θ10

θ6 θ7

θ11

θ15 θ16

θ12

θ8

r

More generally, for the unit cube Θ = [0, 1]d, we have rn([0, 1]d, ℓ∞) ≈ 1
2n

−1/d (which
is not an approximation when n is the d-th power of an integer). For other normed
metrics (since all norms are equivalent), the scaling as rn ∼ diam(Θ)n−1/d is the same
on any bounded set in Rd (with an extra constant that depends on d).

Naive algorithm. Given the ball centers θ1, . . . , θn, outputting the minimum of func-
tion values F (θi) for i = 1, . . . , n, leads to an error which is less than Lrn(Θ, δ), as the
optimal θ∗ ∈ Θ is at most at distance rn(Θ, δ) from one of the cluster centers, let’s say
θk, and thus F (θk) − F (θ∗) 6 Lδ(θk, θ∗) 6 Lrn(Θ, δ). This provides an upper bound on
εoptn . The algorithm we just described seems naive, but it turns out to be optimal for this
class of problems.

Lower bound. Consider any optimization algorithm, with its first n point queries and
its estimate θ̂. By considering the functions that are zero in these n + 1 points, the
algorithm can only output an arbitrary fixed real number for the optimal value (let’s say

1It turns out that going adaptive, where the point θi+1 is selected after seeing (θj , F (θj)) for all j 6 i,
does not bring much (at least in the worst-case sense) (Novak, 2006).
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zero). We now simply need to construct a function F ∈ F such that F is zero at these
points but maximally smaller than zero at a different point.

Given the n+ 1 points above, there is at least a point η ∈ Θ which is at a distance at
most rn+1(Θ, δ) from all of them (otherwise, we obtain a cover of Θ with n+ 1 points).
We can then construct the function

F (θ) = −L
(
rn+1(Θ, δ)− δ(θ, η)

)
+

= −Lmax
{
rn+1(Θ, δ)− d(θ, η), 0

}
,

which is L-Lipschitz-continuous, equal to zero on all points of the algorithm and the
output point θ̂, and with minimum value −Lrn+1(Θ, δ) attained at η. Thus, we must
have εoptn > 0 − (−Lrn+1(Θ, δ)) = Lrn+1(Θ, δ). This difficult function is plotted below
in one dimension.

0 1

θ

Thus, the performance of any algorithm from n function values has to be larger than
Lrn+1(Θ, δ). Thus, so far, we have shown that

Lrn+1(Θ, δ) 6 εoptn 6 Lrn(Θ, δ).

For Θ ⊂ Rd, rn(Θ, δ) is typically of order diam(Θ)n−1/d, and thus the difference be-
tween n and n + 1 above is negligible. Note that the rate in n−1/d is very slow and
symptomatic of the classical curse of dimensionality. The appearance of a covering num-
ber is not totally random here and comes from the equivalence in terms of worst-case
guarantees between optimization and uniform approximation (Novak, 2006).

Random search. We can have a similar bound up to logarithmic terms for random
search, that is, after selecting independently n points θ1, . . . , θn, uniformly at random
in Θ, and selecting the points with smallest function value F (θi). The performance can
be shown to be proportional to Ldiam(Θ)(log n)1/dn−1/d in high probability, leading to an
additional logarithmic term (the proof can be obtained with a simple covering argument,
see exercise below). Therefore, random search is optimal up to logarithmic terms for
optimizing this very large class of functions.

To go beyond Lipschitz-continuous functions, we can leverage smoothness like in su-
pervised learning and hopefully avoid the dependence in n−1/d. This can be done by a
somewhat surprising equivalence between worst-case guarantees from optimization and
worst-case guarantees for uniform approximation.2

Exercise 15.2 (�) Consider sampling independently and uniformly in Θ n points θ1, . . . , θn.

(a) For a given L-Lipschitz-continuous function F , show that the worst-case perfor-
mance of outputting the lower function value is less than Lmaxθ∈Θ mini∈{1,...,n} δ(θ, θi).

2See https://francisbach.com/optimization-is-as-hard-as-approximation/ for more
details, as well as Novak (2006).

https://francisbach.com/optimization-is-as-hard-as-approximation/
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(b) Considering an optimal cover with m points and radius r = rm(Θ, d), show that

P

(
max
θ∈Θ

min
i∈{1,...,n}

δ(θ, θi) > 2r
)
6 m(1− 1/m)n.

(c) By the appropriate choice of m, show that when r ∼ m−1/ddiam(X), we get an

overall performance proportional to L
(
logn
n

)1/d
with probability greater than 1− log n

n .

15.3 Lower bounds for stochastic gradient descent (�)

In this section, our goal is to show that the convergence rates for stochastic gradient
descent (SGD) shown in Section 5.4 are “optimal”, in a sense to be made precise. We
consider a class F of functions, here the convex B-Lipschitz-continuous functions on the
ball of center zero and radius D (for the Euclidean norm). We consider the class A of
algorithms that can sequentially access independent random, unbiased estimates of the
gradients of a function F in F, with squared norm bounded by B2. We denote At(F ) ∈ Rd

the output of algorithm A. Our goal is to find upper and lower bounds on

εt(A,F) = inf
A∈A

sup
f∈F

E
[
F (At(F )) − inf

‖θ‖26D
F (θ)

]
.

SGD is an algorithm in A achieving a bound proportional to BD/
√
t, thus, up to a

constant, εt(A,F) 6 BD/
√
t. We now prove a matching lower-bound by exhibiting a set

of functions that will make any algorithm have this desired performance. Note that, as
opposed to Section 15.2.1 on deterministic convex optimization, we make no assumption
on the running-time complexity of algorithms in A.

We follow the exposition from Agarwal et al. (2012) and consider a function

Fα(θ) =
B

2d

d∑

i=1

{(1

2
+ αiδ

)
·
∣∣θi +

1

2

∣∣ +
(1

2
− αiδ

)
·
∣∣θi −

1

2

∣∣
}
, (15.7)

with α ∈ {−1, 1}d a well chosen vector and δ ∈ (0, 1/4], and B > 0. One element of the
sum is plotted below.

1/2−1/2 θi

(1
2
+ δ)|θi +

1

2
|+ (1

2
− δ)|θi −

1

2
|

The function Fα is convex and Lipschitz-continuous with gradients bounded in L2-
norm by B/(2

√
d). Moreover, the global minimizer of Fα is θ = −α2 , with an optimal

value equal to F ∗
α = B

4 (1 − 2δ). That is, minimizing Fα on [−1/2, 1/2]d exactly corre-
sponds to finding an element of the hypercube α. Moreover, it turns out that minimizing
it approximately also leads to identifying α among a set of α’s, which are sufficiently
different.
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Lemma 15.3 If α, β ∈ {−1, 1}d, and Fα(θ)−F ∗
α 6 ε, then Fβ(θ)−F ∗

β > Bδ
2d ‖α−β‖1−ε.

Proof (�) We have: Fβ(θ) − F ∗
β = Fβ(θ) + Fα(θ) − F ∗

β − F ∗
α + [F ∗

α − Fα(θ)]. We then

notice that for all θ ∈ Rd,

Fβ(θ) + Fα(θ)− F ∗
β − F ∗

α >
B

2d

∑

i, αi 6=βi

{∣∣θi +
1

2

∣∣ +
∣∣θi −

1

2

∣∣ + 2δ − 1
}
>
Bδ

2d
‖α− β‖1.

Thus, if we consider M points α(1), . . . , α(M) ∈ {−1, 1}d such that ‖α(i) − α(j)‖1 > d
2

(with potentially M > exp(d/8) such points from Lemma 15.2), then, if ε < Bδ
8 , because

of Lemma 15.3, minimizing up to ε exactly identifies which of the functions Fα(i) was
being minimized.

Moreover, if θ̂ is random then, denoting A = {α(1), . . . , α(M)}, following the same
reasoning as in Section 15.1.2:

sup
α∈A

Eα

[
Fα(θ̂)− F ∗

α

]
> ε · sup

α∈A

Pα

(
Fα(θ̂)− F ∗

α > ε
)
> ε · 1

|A|
∑

α∈A

Pα

(
Fα(θ̂)− F ∗

α > ε
)
.

From an estimate θ̂, we can build a test g(θ̂) ∈ A by selecting the (unique if ε < Bδ
8 )

α ∈ A such that Fα(θ̂) − F ∗
α 6 ε if it exists, and uniformly at random in A otherwise.

Therefore, the minimax performance is greater than ε times the probability of a mistake
in the best possible test.

We consider the following stochastic oracle:

(1) pick some coordinate i ∈ {1, . . . , d} uniformly at random,

(2) draw a Bernoulli random variable bi ∈ {0, 1} with parameter 1
2 + αiδ,

(3) consider F̂ (θ) = bi
∣∣θi + 1

2

∣∣ + (1− bi)
∣∣θi − 1

2

∣∣, with gradient with components

F̂ ′
α(θ)i =

B

2

[
bi sign(θi + 1/2) + (1− bi) sign(θi − 1/2)

]
.

The stochastic gradients have an ℓ2-norm bounded by B and are unbiased. Moreover,
observation of the gradient for a θ ∈ [−1/2, 1/2]d reveals the outcome of the Bernoulli
random variable bi.

Therefore, after t steps, we can apply Fano’s inequality to the following set-up: the
random variable α ∈ A is uniform, and given α, we sample independently t times, one
variable i in {1, . . . , d} and observe (a potentially noisy version of) a Bernoulli random
variable b, with parameter αi.

We then need to upper bound the mutual information between α and (i, b) and mul-
tiply the result t times because each of the t gradients is sampled independently.

The mutual information can be decomposed as

I(α, (i, b)) = I(α, i) + I(α, b|i) = 0 + EiEα

[
DKL(p(b|i, α)||p(b|i))

]
,
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where p(b|i, α) and p(b|i) denotes the probability distribution of b. Thus, by convexity of
the KL divergence,

I(α, (i, b)) = EiEα

[
DKL

(
p(b|i, α)

∥∥∥ 1

|A|
∑

α′∈A

p(b|i, α′)
)]

6
1

|A|
∑

α′∈A

EiEα

[
DKL(p(b|i, α)||p(b|i, α′))

]
.

Since p(b|i, α) is Bernoulli random variable with parameter 1
2 + δ or 1

2 − δ, the KL
divergences above are bounded by the KL between two Bernoulli random variables with
the two different parameters, that is,

I(α, (i, b)) 6
(1

2
+ δ

)
log

1
2 + δ
1
2 − δ

+
(1

2
− δ

)
log

1
2 − δ
1
2 + δ

= 2δ log
1 + 2δ

1− 2δ

= 2δ log
(

1 +
4δ

1− 2δ

)
6

8δ2

1− 2δ
6 16δ2 if δ ∈ [0, 1/4].

Therefore, applying Corollary 15.1, the minimax lower bound is greater than

ε
(

1− 16tδ2 − log 2

logM

)
> ε

(
1− 16tδ2 − log 2

d/8

)
.

Thus, we need 256tδ2 > d, and then Bδ/4 is the lower bound on the rate so that the
lower bound is

1

16

√
d

t
,

which is the desired lower-bound (up to a constant) εt(A,F) > DB/
√
t where D is

the diameter of the set of θ. The lower-bound is thus the same as the upper-bound
achieved by stochastic gradient descent in Chapter 5. The result above can be extended
to strongly-convex problems (Agarwal et al., 2012).

15.4 Conclusion

This chapter was entirely dedicated to lower bounds of performance associated with the
upper bounds presented in the rest of the book. Statistical lower bounds are obtained by
reducing the learning problem to a hypothesis test where information theory is brought
to bear. In comparison, optimization lower bounds are obtained by designing functions
that are explicitly hard to optimize for the proposed computational model of combining
gradients linearly.
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A. Joulin, É. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient text
classification. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers, pages 427–431,
2017. (cited on page 184)

A. Juditsky and A. Nemirovski. First order methods for nonsmooth convex large-scale
optimization, i: general purpose methods. Optimization for Machine Learning, pages
121–148, 2011a. (cited on page 126)

A. Juditsky and A. Nemirovski. First order methods for nonsmooth convex large-scale
optimization, ii: utilizing problems structure. Optimization for Machine Learning, 30
(9):149–183, 2011b. (cited on page 126)

A. Kabán. New bounds on compressive linear least squares regression. In Proceedings
of the International Conference on Artificial Intelligence and Statistics, 2014. (cited on

page 274)

H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-



BIBLIOGRAPHY 423

gradient methods under the Polyak-Lojasiewicz condition. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases, pages 795–811.
Springer, 2016. (cited on page 320)

G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. Journal
of Mathematical Analysis and Applications, 33:82–95, 1971. (cited on page 171)

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. Technical Report
1412.6980, arXiv, 2014. (cited on pages 135 and 237)

J. M. Klusowski and A. R. Barron. Approximation by combinations of relu and squared
relu ridge functions with ℓ1 and ℓ0 controls. IEEE Transactions on Information Theory,
64(12):7649–7656, 2018. (cited on page 249)

J. M. Klusowski and J. W. Siegel. Sharp convergence rates for matching pursuit. Technical
Report 2307.07679, arXiv, 2023. (cited on page 282)

V. Koltchinskii. Oracle inequalities in empirical risk minimization and sparse recovery
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G. Lecué and S. Mendelson. Performance of empirical risk minimization in linear aggre-
gation. Bernoulli, 22(3):1520–1534, 2016. (cited on page 62)

M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes,
volume 23. Springer Science & Business Media, 1991. (cited on pages 89 and 90)

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines: Theory and
application to the classification of microarray data and satellite radiance data. Journal
of the American Statistical Association, 99(465):67–81, 2004. (cited on page 360)

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with
a nonpolynomial activation function can approximate any function. Neural Networks,
6(6):861–867, 1993. (cited on page 242)



424 BIBLIOGRAPHY

D. Liberzon. Calculus of Variations and Optimal Control Theory: a Concise Introduction.
Princeton University Press, 2011. (cited on page 40)

A. Lindholm, N. Wahlström, F. Lindsten, and T. B. Schön. Machine Learning: a First
Course for Engineers and Scientists. Cambridge University Press, 2022. (cited on page x)

Y. Liu. Fisher consistency of multicategory support vector machines. In Artificial Intel-
ligence and Statistics, pages 291–298, 2007. (cited on page 365)

P. Long and R. Servedio. Consistency versus realizable H-consistency for multiclass
classification. In International Conference on Machine Learning, pages 801–809, 2013.
(cited on pages 80 and 359)

J. Lu, Z. Shen, H. Yang, and S. Zhang. Deep network approximation for smooth functions.
Technical Report 2001.03040, arXiv, 2020. (cited on page 261)

G. Lugosi and N. Vayatis. On the Bayes-risk consistency of regularized boosting methods.
The Annals of statistics, 32(1):30–55, 2004. (cited on page 288)

K. Lyu and J. Li. Gradient descent maximizes the margin of homogeneous neural net-
works. In International Conference on Learning Representations, 2019. (cited on page 345)

C. Ma, S. Wojtowytsch, and L. Wu. Towards a mathematical understanding of neural
network-based machine learning: what we know and what we don’t. Technical Report
2009.10713, arXiv, 2020. (cited on page 261)

J. Mairal and B. Yu. Complexity analysis of the Lasso regularization path. In Proceedings
of the International Coference on International Conference on Machine Learning, 2012.
(cited on page 220)

J. Mairal, F. Bach, and J. Ponce. Sparse modeling for image and vision processing.
Foundations and Trends in Computer Graphics and Vision, 8(2-3):85–283, 2014. (cited

on pages 39 and 230)

S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41(12):3397–3415, 1993. (cited on pages 281 and 282)

J. I. Marden. Analyzing and Modeling Rank Data. CRC Press, 1996. (cited on page 370)

P.-G. Martinsson and J. A. Tropp. Randomized numerical linear algebra: Foundations
and algorithms. Acta Numerica, 29:403–572, 2020. (cited on page 122)

A. Maurer. A vector-contraction inequality for Rademacher complexities. In International
Conference on Algorithmic Learning Theory, pages 3–17, 2016. (cited on pages 352 and 353)

S. Mei and A. Montanari. The generalization error of random features regression: Precise
asymptotics and the double descent curve. Communications on Pure and Applied
Mathematics, 75(4):667–766, 2022. (cited on pages 327 and 329)

S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer
neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–
E7671, 2018. (cited on page 337)

S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural net-
works: dimension-free bounds and kernel limit. In Conference on Learning Theory,



BIBLIOGRAPHY 425

pages 2388–2464. PMLR, 2019. (cited on page 339)

R. Meir and T. Zhang. Generalization error bounds for Bayesian mixture algorithms.
Journal of Machine Learning Research, 4(Oct):839–860, 2003. (cited on page 89)

S. Minsker. On some extensions of Bernstein’s inequality for self-adjoint operators. Statis-
tics & Probability Letters, 127:111–119, 2017. (cited on page 19)

M. Mohri and A. Rostamizadeh. Stability bounds for stationary ϕ-mixing and β-mixing
processes. Journal of Machine Learning Research, 11(2), 2010. (cited on page 97)

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT
Press, 2018. (cited on page x)

J. Mourtada. Exact minimax risk for linear least squares, and the lower tail of sample
covariance matrices. Technical Report 1912.10754, arXiv, 2019. (cited on pages 57, 61,

and 62)

J. Mourtada and L. Rosasco. An elementary analysis of ridge regression with random
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pěstováńı matematiky, 113(4):337–341, 1988. (cited on page 123)

Y. Nesterov. Introductory Lectures on Convex Optimization: a Basic Course. Kluwer,
2004. (cited on page 120)

Y. Nesterov. Gradient methods for minimizing composite objective function. Center for
Operations Research and Econometrics (CORE), Catholic University of Louvain, Tech.
Rep, 76, 2007. (cited on pages 120 and 122)

Y. Nesterov. Lectures on Convex Optimization, volume 137. Springer, 2018. (cited on

pages 103, 113, 114, 143, 404, 405, and 406)

Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017. (cited on page 106)

B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in neural net-
works. In Conference on Learning Theory, pages 1376–1401, 2015. (cited on page 241)

A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: a comparison



426 BIBLIOGRAPHY

of logistic regression and naive Bayes. In Advances in Neural Information Processing
Systems, 2001. (cited on pages 382 and 383)

P.-M. Nguyen and H. T. Pham. A rigorous framework for the mean field limit of multilayer
neural networks. Technical Report 2001.11443, arXiv, 2020. (cited on page 339)

H. Niederreiter. Random number generation and quasi-Monte Carlo methods. SIAM,
1992. (cited on page 18)

A. Nitanda and T. Suzuki. Stochastic particle gradient descent for infinite ensembles.
Technical Report 1712.05438, arXiv, 2017. (cited on page 337)

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999. (cited on page 116)

E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis. Springer,
2006. (cited on pages 407 and 408)

A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium
on the Mathematical Theory of Automata, 1962. (cited on page 325)

A. Nowak, F. Bach, and A. Rudi. Sharp analysis of learning with discrete losses. In In-
ternational Conference on Artificial Intelligence and Statistics, pages 1920–1929, 2019.
(cited on pages 355 and 356)

A. Nowak-Vila, F. Bach, and A. Rudi. A general theory for structured prediction with
smooth convex surrogates. Technical Report 1902.01958, arXiv, 2019. (cited on page 362)

A. Nowak-Vila, F. Bach, and A. Rudi. Consistent structured prediction with Max-Min
Margin Markov Networks. In Proceedings of the International Conference on Machine
Learning (ICML), 2020. (cited on pages 365 and 367)

R. I. Oliveira. The lower tail of random quadratic forms, with applications to ordinary
least squares and restricted eigenvalue properties. Technical Report 1312.2903, arXiv,
2013. (cited on page 62)

M. R. Osborne, B. Presnell, and B. A. Turlach. On the Lasso and its dual. Journal of
Computational and Graphical statistics, 9(2):319–337, 2000. (cited on page 220)

A. Osokin, F. Bach, and S. Lacoste-Julien. On structured prediction theory with cali-
brated convex surrogate losses. In Advances in Neural Information Processing Systems,
volume 30, 2017. (cited on page 360)

D. Ostrovskii and F. Bach. Finite-sample analysis of M-estimators using self-concordance.
Electronic Journal of Statistics, 15(1):326–391, 2021a. (cited on page 101)

D. M. Ostrovskii and F. Bach. Finite-sample analysis of M-estimators using self-
concordance. Electronic Journal of Statistics, 15:326–391, 2021b. (cited on page 225)

J. Palmer, K. Kreutz-Delgado, B. Rao, and D. Wipf. Variational EM algorithms for
non-Gaussian latent variable models. In Advances in Neural Information Processing
Systems, volume 18, 2005. (cited on page 377)

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit: Recur-
sive function approximation with applications to wavelet decomposition. In Proceedings
of the Asilomar Conference on Signals, Systems and Computers, pages 40–44, 1993.



BIBLIOGRAPHY 427

(cited on page 213)

S. Pesme and N. Flammarion. Saddle-to-saddle dynamics in diagonal linear networks.
Advances in Neural Information Processing Systems, 2023. (cited on page 343)

S. Pesme, L. Pillaud-Vivien, and N. Flammarion. Implicit bias of SGD for diagonal
linear networks: a provable benefit of stochasticity. Advances in Neural Information
Processing Systems, 34, 2021. (cited on page 327)

L. Pillaud-Vivien, A. Rudi, and F. Bach. Statistical optimality of stochastic gradient
descent on hard learning problems through multiple passes. In Advances in Neural
Information Processing Systems, pages 8114–8124, 2018. (cited on page 203)

J. Platt. Using analytic QP and sparseness to speed training of support vector machines.
Advances in Neural Information Processing Systems, 11, 1998. (cited on page 74)

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems, pages 1177–1184, 2008. (cited on pages 186

and 256)

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006. (cited on pages 181, 182, and 386)

M. Reed and B. Simon. Methods of Modern Mathematical Physics, Volume 2. Academic
press, 1978. (cited on page 180)

P. Rigollet and A. Tsybakov. Exponential screening and optimal rates of sparse estima-
tion. The Annals of Statistics, 39(2):731–771, 2011. (cited on page 388)

P. Rigollet and A. B. Tsybakov. Linear and convex aggregation of density estimators.
Mathematical Methods of Statistics, 16(3):260–280, 2007. (cited on page 209)

C. P. Robert. The Bayesian choice: from decision-theoretic foundations to computational
implementation, volume 2. Springer, 2007. (cited on pages 383, 384, and 386)

C. P. Robert and G. Casella. Monte Carlo statistical methods, volume 2. Springer, 2005.
(cited on page 385)

R. T. Rockafellar. Convex Analysis. Princeton University Press, 1997. (cited on pages 123

and 280)

F. Rosenblatt. The perceptron: a probabilistic model for information storage and orga-
nization in the brain. Psychological Review, 65(6):386, 1958. (cited on page 325)

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin
classifier. Journal of Machine Learning Research, 5:941–973, 2004. (cited on page 287)

G. M. Rotskoff and E. Vanden-Eijnden. Parameters as interacting particles: long time
convergence and asymptotic error scaling of neural networks. In Advances in Neural
Information Processing Systems, volume 31, pages 7146–7155, 2018. (cited on page 337)

A. Rudi and L. Rosasco. Generalization properties of learning with random features. In
Advances in Neural Information Processing Systems, pages 3215–3225, 2017. (cited on

pages 186, 198, and 201)



428 BIBLIOGRAPHY

A. Rudi, R. Camoriano, and L. Rosasco. Less is more: Nyström computational regu-
larization. In Advances in Neural Information Processing Systems, pages 1657–1665,
2015. (cited on pages 186, 198, and 201)

W. Rudin. Real and Complex Analysis. McGraw-Hill, 1987. (cited on pages 243 and 247)

F. Santambrogio. Optimal Transport for Applied Mathematicians. Springer, 2015. (cited

on page 337)

A. M. Saxe, J. L. McClelland, and S. Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences,
116(23):11537–11546, 2019. (cited on page 343)

R. E. Schapire and Y. Freund. Boosting: Foundations and Algorithms. MIT Press, 2012.
(cited on page 278)

M. Schmidt, N. Roux, and F. Bach. Convergence rates of inexact proximal-gradient
methods for convex optimization. Advances in Neural Information Processing Systems,
24, 2011. (cited on page 128)

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 162(1-2):83–112, 2017. (cited on page 138)

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001. (cited on pages 169

and 188)

B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In
International Conference on Computational Learning Theory, 2001. (cited on page 171)

D. Scieur, V. Roulet, F. Bach, and A. d’Aspremont. Integration methods and optimization
algorithms. In Advances in Neural Information Processing Systems, volume 30, 2017.
(cited on pages 117 and 322)
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