
JMLR: Workshop and Conference Proceedings vol 49:1–23, 2016

Benefits of depth in neural networks

Matus Telgarsky MTELGARS@CS.UCSD.EDU

University of Michigan, Ann Arbor

Abstract
For any positive integer k, there exist neural networks with Θ(k3) layers, Θ(1) nodes per layer, and
Θ(1) distinct parameters which can not be approximated by networks withO(k) layers unless they
are exponentially large — they must possess Ω(2k) nodes. This result is proved here for a class
of nodes termed semi-algebraic gates which includes the common choices of ReLU, maximum,
indicator, and piecewise polynomial functions, therefore establishing benefits of depth against not
just standard networks with ReLU gates, but also convolutional networks with ReLU and maxi-
mization gates, sum-product networks, and boosted decision trees (in this last case with a stronger
separation: Ω(2k

3

) total tree nodes are required).
Keywords: Neural networks, representation, approximation, depth hierarchy.

1. Setting and main results

A neural network is a model of real-valued computation defined by a connected directed graph
as follows. Nodes await real numbers on their incoming edges, thereafter computing a function
of these reals and transmitting it along their outgoing edges. Root nodes apply their computation
to a vector provided as input to the network, whereas internal nodes apply their computation to the
output of other nodes. Different nodes may compute different functions, two common choices being
the maximization gate v 7→ maxi vi (where v is the vector of values on incoming edges), and the
standard ReLU gate v 7→ σR(〈a, v〉 + b) where σR(z) := max{0, z} is called the ReLU (rectified
linear unit), and the parameters a and b may vary from node to node. Graphs in the present work
are acyclic, and there is exactly one node with no outgoing edges whose computation is the output
of the network.

Neural networks distinguish themselves from many other function classes used in machine
learning by possessing multiple layers, meaning the output is the result of composing together
an arbitrary number of (potentially complicated) nonlinear operations; by contrast, the functions
computed by boosted decision stumps and SVMs can be written as neural networks with a constant
number of layers.

The purpose of the present work is to show that standard types of networks always gain in
representation power with the addition of layers. Concretely: it is shown that for every positive
integer k, there exist neural networks with Θ(k3) layers, Θ(1) nodes per layer, and Θ(1) distinct
parameters which can not be approximated by networks with O(k) layers and o(2k) nodes.

1.1. Main result

Before stating the main result, a few choices and pieces of notation deserve explanation. First, the
target many-layered function uses standard ReLU gates; this is by no means necessary, and a more
general statement can be found in Theorem 3.12. Secondly, the notion of approximation is the L1

c© 2016 M. Telgarsky.

ar
X

iv
:1

60
2.

04
48

5v
2

 [
cs

.L
G

]
 2

7
M

ay
 2

01
6

TELGARSKY

distance: given two functions f and g, their pointwise disagreement |f(x)− g(x)| is averaged over
the cube [0, 1]d. Here as well, the same proofs allow flexibility (cf. Theorem 3.12). Lastly, the
shallower networks used for approximation use semi-algebraic gates, which generalize the earlier
maximization and standard ReLU gates, and allow for analysis of not just standard networks with
ReLU gates, but convolutional networks with ReLU and maximization gates (Krizhevsky et al.,
2012), sum-product networks (where nodes compute polynomials) (Poon and Domingos, 2011),
and boosted decision trees; the full definition of semi-algebraic gates appears in Section 2.

Theorem 1.1 Let any integer k ≥ 1 and any dimension d ≥ 1 be given. There exists f : Rd → R
computed by a neural network with standard ReLU gates in 2k3 + 8 layers, 3k3 + 12 total nodes,
and 4 + d distinct parameters so that

inf
g∈C

∫
[0,1]d

|f(x)− g(x)|dx ≥ 1

64
,

where C is the union of the following two sets of functions.

• Functions computed by networks of (t, α, β)-semi-algebraic gates in ≤ k layers and ≤
2k/(tαβ) nodes. (E.g., as with standard ReLU networks or with convolutional neural net-
works with standard ReLU and maximization gates; cf. Section 2.)

• Functions computed by linear combinations of ≤ t decision trees each with ≤ 2k
3
/t nodes.

(E.g., the function class used by boosted decision trees; cf. Section 2.)

Analogs to Theorem 1.1 for boolean circuits — which have boolean inputs routed through
{and, or, not} gates — have been studied extensively by the circuit complexity community, where
they are called depth hierarchy theorems. The seminal result, due to Håstad (1986), establishes
the inapproximability of the parity function by shallow circuits (unless their size is exponential).
Standard neural networks appear to have received less study; closest to the present work is an in-
vestigation by Eldan and Shamir (2015) analyzing the case k = 2 when the dimension d is large,
showing an exponential separation between 2- and 3-layer networks, a regime not handled by The-
orem 1.1. Further bibliographic notes and open problems may be found in Section 5.

The proof of Theorem 1.1 (and of the more general Theorem 3.12) occupies Section 3. The
key idea is that just a few function compositions (layers) suffice to construct a highly oscillatory
function, whereas function addition (adding nodes but keeping depth fixed) gives a function with
few oscillations. Thereafter, an elementary counting argument suffices to show that low-oscillation
functions can not approximate high-oscillation functions.

1.2. Companion results

Theorem 1.1 only provides the existence of one network (for each k) which can not be approximated
by a network with many fewer layers. It is natural to wonder if there are many such special functions.
The following bound indicates their population is in fact quite modest.

Specifically, the construction behind Theorem 1.1, as elaborated in Theorem 3.12, can be seen
as exhibiting O(2k

3
) points, and a fixed labeling of these points, upon which a shallow network

hardly improves upon random guessing. The forthcoming Theorem 1.2 similarly shows that even
on the more simpler task of fitting O(k9) points, the earlier class of networks is useless on most
random labellings.

2

BENEFITS OF DEPTH IN NEURAL NETWORKS

In order to state the result, a few more definitions are in order. Firstly, for this result, the notion
of neural network is more restrictive. Let a neural net graph G denote not only the graph structure
(nodes and edges), but also an assignment of gate functions to nodes, of edges to the inputs of gates,
and an assignment of free parameters w ∈ Rp to the parameters of the gates. Let N (G) denote the
class of functions obtained by varying the free parameters; this definition is fairly standard, and is
discussed in more detail in Section 2. As a final piece of notation, given a function f : Rd → R, let
f̃ : Rd → {0, 1} denote the corresponding classifier f̃(x) := 1[f(x) ≥ 1/2].

Theorem 1.2 Let any neural net graph G be given with ≤ p parameters in ≤ l layers and ≤ m
total (t, α, β)-semi-algebraic nodes. Then for any δ > 0 and any n ≥ 8pl2 ln(8emtαβp(l + 1)) +
4 ln(1/δ) points (xi)

n
i=1, with probability ≥ 1− δ over uniform random labels (yi)

n
i=1,

inf
f∈N (G)

1

n

n∑
i=1

1[f̃(xi) 6= yi] ≥
1

4
.

This proof is a direct corollary of the VC dimension of semi-algebraic networks, which in turn
can be proved by a small modification of the VC dimension proof for piecewise polynomial net-
works (Anthony and Bartlett, 1999, Theorem 8.8). Moreover, the core methodology for VC dimen-
sion bounds of neural networks is due to Warren, whose goal was an analog of Theorem 1.2 for
polynomials (Warren, 1968, Theorem 7).

Lemma 1.3 (Simplification of Lemma 4.2) Let any neural net graph G be given with ≤ p pa-
rameters in ≤ l layers and ≤ m total nodes, each of which is (t, α, β)-semi-algebraic. Then

VC(N (G)) ≤ 6p(l + 1)
(

ln(2p(l + 1)) + ln(8emtα) + l ln(β)
)
.

The proof of Theorem 1.2 and Lemma 1.3 may be found in Section 4. The argument for the
VC dimension is very close to the argument for Theorem 1.1 that a network with few layers has few
oscillations; see Section 4 for further discussion of this relationship.

2. Semi-algebraic gates and assorted network notation

The definition of a semi-algebraic gate is unfortunately complicated; it is designed to capture a
few standard nodes in a single abstraction without degrading the bounds. Note that the name semi-
algebraic set is standard (Bochnak et al., 1998, Definition 2.1.4), and refers to a set defined by
unions and intersections of polynomial inequalities (and thus the name is somewhat abused here).

Definition 2.1 A function f : Rk → R is (t, α, β)-sa ((t, α, β)-semi-algebraic) if there exist t
polynomials (qi)

t
i=1 of degree ≤ α, and m triples (Uj , Lj , pj)

m
j=1 where Uj and Lj are subsets of

[t] (where [t] := {1, . . . , t}) and pj is a polynomial of degree ≤ β, such that

f(v) =

m∑
j=1

pj(v)

∏
i∈Lj

1[qi(v) < 0]

∏
i∈Uj

1[qi(v) ≥ 0]

 .

3

TELGARSKY

A notable trait of the definition is that the number of terms m does not need to enter the name
as it does not affect any of the complexity estimates herein (e.g., Theorem 1.1 or Theorem 1.2).

Distinguished special cases of semi-algebraic gates are as follows in Lemma 2.3. The standard
piecewise polynomial gates generalize the ReLU and have received a fair bit of attention in the
theoretical community (Anthony and Bartlett, 1999, Chapter 8); here a function σ : R → R is
(t, α)-poly if R can be partitioned into ≤ t intervals so that σ is a polynomial of degree ≤ α
within each piece. The maximization and minimization gates have become popular due to their use
in convolutional networks (Krizhevsky et al., 2012), which will be discussed more in Section 2.1.
Lastly, decision trees and boosted decision trees are practically successful classes usually viewed
as competitors to neural networks (Caruana and Niculescu-Mizil, 2006), and have the following
structure.

Definition 2.2 A k-dt (decision tree with k nodes) is defined recursively as follows. If k = 1, it is
a constant function. If k > 1, it first evaluates x 7→ 1[〈a, x〉 − b ≥ 0], and thereafter conditionally
evaluates either a left l-dt or a right r-dt where l + r < k. A (t, k)-bdt (boosted decision tree)
evaluates x 7→

∑t
i=1 cigi(x) where each ci ∈ R and each gi is a k-dt.

Lemma 2.3 (Example semi-algebraic gates)

1. If σ : R → R is (t, β)-poly and q : Rd → R is a polynomial of degree α, then the standard
piecewise polynomial gate σ ◦ q is (t, α, αβ)-sa. In particular, the standard ReLU gate v 7→
σR(〈a, v〉+ b) is (1, 1, 1)-sa.

2. Given polynomials (pi)
r
i=1 of degree≤ α, the standard (r, α)-min and -max gates φmin(v) :=

mini∈[r] pi(v) and φmax(v) := maxi∈[r] qi(v) are (r(r − 1), α, α)-sa.

3. Every k-dt is (k, 1, 0)-sa, and every (t, k)-bdt is (tk, 1, 0).

The proof of Lemma 2.3 is mostly a matter of unwrapping definitions, and is deferred to Ap-
pendix A. Perhaps the only interesting encoding is for the maximization gate (and similarly the
minimization gate), which uses maxi vi =

∑
i vi(

∏
j<i 1[vi > vj])(

∏
j>i 1[vi ≥ vj]).

2.1. Notation for neural networks

A semi-algebraic gate is simply a function from some domain to R, but its role in a neural network
is more complicated as the domain of the function must be partitioned into arguments of three types:
the input x ∈ Rd to the network, the parameter vector w ∈ Rp, and a vector of real numbers coming
from parent nodes.

As a convention, the input x ∈ Rd is only accessed by the root nodes (otherwise “layer” has
no meaning). For convenience, let layer 0 denote the input itself: d nodes where node i is the
map x 7→ xi. The parameter vector w ∈ Rp will be made available to all nodes in layers above
0, though they might only use a subset of it. Specifically, an internal node computes a function
f : Rp × Rd → R using parents (f1, . . . , fk) and a semi-algebraic gate φ : Rp × Rk → R,
meaning f(w, x) := φ(w1, . . . , wp, f1(w, x), . . . , fk(w, x)). Another common practice is to have
nodes apply a univariate activation function to an affine mapping of their parents (as with piecewise
polynomial gates in Lemma 2.3), where the weights in the affine combination are the parameters
to the network, and additionally correspond to edges in the graph. It is permitted for the same

4

BENEFITS OF DEPTH IN NEURAL NETWORKS

parameter to appear multiple times in a network, which explains how the number of parameters in
Theorem 1.1 can be less than the number of edges and nodes. The entire network computes some
function FG : Rp × Rd → R, which is equivalent to the function computed by the single node with
no outgoing edges.

As stated previously, G will denote not just the graph (nodes and edges) underlying a network,
but also an assignment of gates to nodes, and how parameters and parent outputs are plugged into the
gates (i.e., in the preceding paragraph, how to write f via φ). N (G) is the set of functions obtained
by varying w ∈ Rp, and thus N (G) := {FG(w, ·) : w ∈ Rp} where FG is the function defined
as above, corresponding to computation performed by G. The results related to VC dimension,
meaning Theorem 1.2 and Lemma 1.3, will use the class N (G).

Some of the results, for instance Theorem 1.1 and its generalization Theorem 3.12, will let not
only the parameters but also network graph G vary. Let Nd((mi, ti, αi, βi)

l
i=1) denote a network

where layer i has ≤ mi nodes where each is (ti, αi, βi)-sa and the input has dimension d. As a
simplification, letNd(m, l, t, α, β) denote networks of (t, α, β)-sa gates in≤ l layers (not including
layer 0) each with≤ m nodes. There are various empirical prescriptions on how to vary the number
of nodes per layer; for instance, convolutional networks typically have an increase between layer
0 and layer 1, followed by exponential decrease for a few layers, and finally a few layers with the
same number of nodes (Fukushima, 1980; LeCun et al., 1998; Krizhevsky et al., 2012).

3. Benefits of depth

The purpose of this section is to prove Theorem 1.1 and its generalization Theorem 3.12 in the
following three steps.

1. Functions with few oscillations poorly approximate functions with many oscillations.

2. Functions computed by networks with few layers must have few oscillations.

3. Functions computed by networks with many layers can have many oscillations.

3.1. Approximation via oscillation counting

f g

Figure 1: f crosses more than g.

The idea behind this first step is depicted at right. Given
functions f : R → R and g : R → R (the multivariate
case will come soon), let If and Ig denote partitions of
R into intervals so that the classifiers f̃(x) = 1[f(x) ≥
1/2] and g̃ are constant within each interval. To formally
count oscillations, define the crossing number Cr(f) of f
as Cr(f) = |If | (thus Cr(σR) = 2). If Cr(f) is much
larger than Cr(g), then most piecewise constant regions of g̃ will exhibit many oscillations of f , and
thus g poorly approximates f .

Lemma 3.1 Let f : R → R and g : R → R be given, and take If to denote the partition of R
given by the pieces of f̃ (meaning |If | = Cr(f)). Then

1

Cr(f)

∑
U∈If

1[∀x ∈ U � f̃(x) 6= g̃(x)] ≥ 1

2

(
1− 2

(
Cr(g)

Cr(f)

))
.

5

TELGARSKY

The arguably strange form of the left hand side of the bound in Lemma 3.1 is to accommodate
different notions of distance. For the L1 distance with the Lebesgue measure as in Theorem 1.1,
it does not suffice for f to cross 1/2: it must be regular, meaning it must cross by an appreciable
distance, and the crossings must be evenly spaced. (It is worth highlighting that the ReLU easily
gives rise to a regular f .) However, to merely show that f and g give very different classifiers f̃ and
g̃ over an arbitrary measure (as in part of Theorem 3.12), no additional regularity is needed.
Proof (of Lemma 3.1) Let If and Ig respectively denote the sets of intervals corresponding to f̃
and g̃, and set sf := Cr(f) = |If | and sg := Cr(g) = |Ig|.

For every J ∈ Ig, set XJ := {U ∈ If : U ⊆ J}. Fixing any J ∈ Ig, since g̃ is constant on J
whereas f̃ alternates, the number of elements inXJ where g̃ disagrees everywhere with f̃ is |XJ |/2
when |XJ | is even and at least (|XJ |−1)/2 when |XJ | is odd, thus at least (|XJ |−1)/2 in general.
As such,

1

sf

∑
U∈If

1[∀x ∈ U � f̃(x) 6= g̃(x)] ≥ 1

sf

∑
J∈Ig

∑
U∈XJ

1[∀x ∈ U � f̃(x) 6= g̃(x)] ≥ 1

sf

∑
J∈Ig

|XJ | − 1

2
.

(3.1)

To control this expression, note that every XJ is disjoint, however X := ∪J∈IjXj can be smaller
than If : in particular, it misses intervals U ∈ If whose interior intersects with the boundary of an
interval in Ig. Since there are at most sg − 1 such boundaries,

sf = |If | ≤ sg − 1 + |X| ≤ sg +
∑
J∈Ig

|XJ |,

which rearranges to gives
∑

J∈Ig |XJ | ≥ sf − sg. Combining this with eq. (3.1),

1

sf

∑
U∈If

1[∀x ∈ U � f̃(x) 6= g̃(x)] ≥ 1

2sf
(sf − sg − sg) =

1

2

(
1− 2sg

sf

)
.

3.2. Few layers, few oscillations

As in the preceding section, oscillations of a function f will be counted via the crossing number
Cr(f). Since Cr(·) only handles univariate functions, the multivariate case is handled by first choos-
ing an affine map h : R→ Rd (meaning h(z) = az + b) and considering Cr(f ◦ h).

Before giving the central upper bounds and sketching their proofs, notice by analogy to poly-
nomials how compositions and additions vary in their impact upon oscillations. By adding together
two polynomials, the resulting polynomial has at most twice as many terms and does not exceed the
maximum degree of either polynomial. On the other hand, composing polynomials, the result has
the product of the degrees and can have more than the product of the terms. As both of these can
impact the number of roots or crossings (e.g., by the Bezout Theorem or Descartes’ Rule of Signs),
composition wins the race to higher oscillations.

Lemma 3.2 Let h : R→ Rd be affine.

6

BENEFITS OF DEPTH IN NEURAL NETWORKS

1. Suppose f ∈ Nd((mi, ti, αi, βi)
l
i=1) with mini min{αi, βi} ≥ 1. Setting α := maxi αi, β :=

maxi βi, t := maxi ti, m :=
∑

imi, then Cr(f ◦ h) ≤ 2(2tmα/l)lβl
2
.

2. Let k-dt f : Rd → R and (t, k)-bdt g : Rd → R be given. Then Cr(f ◦ h) ≤ k and
Cr(g ◦ h) ≤ 2tk.

Lemma 3.2 shows the key tradeoff: the number of layers is in the exponent, while the number
of nodes is in the base.

Rather than directly controlling Cr(f ◦ h), the proofs will first show f ◦ h is (t, α)-poly, which
immediately bounds Cr(f ◦ h) as follows.

Lemma 3.3 If f : R→ R is (t, α)-poly, then Cr(f) ≤ t(1 + α).

Proof The polynomial in each piece has at most α roots, which thus divides each piece into≤ 1+α
further pieces within which f̃ is constant.

A second technical lemma is needed to reason about combinations of partitions defined by
(t, α, β)-sa and (t, α)-poly functions.

Lemma 3.4 Let k partitions (Ai)
k
i=1 of R each into at most t intervals be given, and setA := ∪iAi.

Then there exists a partition B of R of size at most kt so that every interval expressible as a union
of intersections of elements of A is a union of elements of B.

Figure 2: Three partitions.

The proof is somewhat painful owing to the fact that there is no
convention on the structure of the intervals in the partitions, namely
which ends are closed and which are open, and is thus deferred to
Appendix A. The principle of the proof is elementary, and is de-
picted at right: given a collection of partitions, an intersection of
constituent intervals must share endpoints with intervals in in the
intersection, thus the total number of intervals bounds the total num-
ber of possible intersections. Arguably, this failure to increase com-
plexity in the face of arbitrary intersections is why semi-algebraic
gates do not care about the number of terms in their definition.

Recall that (t, α, β)-sa means there is a set of t polynomials of degree at most α which form the
regions defining the function by intersecting simpler regions x 7→ 1[q(x) ≥ 0] and x 7→ 1[q(x) <
0]. As such, in order to analyze semi-algebraic gates composed with piecewise polynomial gates,
consider first the behavior of these predicate polynomials.

Lemma 3.5 Suppose f : Rk → R is polynomial with degree ≤ α and (gi)
k
i=1 are each (t, γ)-poly.

Then h(x) := f(g1(x), . . . , gk(x)) is (tk, αγ)-poly, and the partition defining h is a refinement of
the partitions for each gi (in particular, each gi is a fixed polynomial (of degree ≤ γ) within the
≤ tk pieces defining h).

Proof By Lemma 3.4, there exists a partition of R into ≤ tk intervals which refines the partitions
defining each gi. Since f is a polynomial with degree ≤ α, then within each of these intervals, its
composition with (g1, . . . , gk) gives a polynomial of degree ≤ αγ.

This gives the following complexity bound for composing (s, α, β)-sa and (t, γ)-poly gates.

7

TELGARSKY

Lemma 3.6 Suppose f : Rk → R is (s, α, β)-sa and (g1, . . . , gk) are (t, γ)-poly. Then h(x) :=
f(g1(x), . . . , gk(x)) is (stk(1 + αγ), βγ)-poly.

Proof By definition, f is polynomial in regions defined by intersections of the predicates Ui(x) =
1[qi(x) ≥ 0] and Li(x) = 1[qi(x) < 0]. By Lemma 3.5, qi(g1, . . . , gk) is (tk, αγ)-poly, thus Ui
and Li together define a partition of R which has Cr(x 7→ qi(g1(x), . . . , gk(x))) pieces, which by
Lemma 3.3 has cardinality at most tk(1+αγ) and refines the partitions for each gi. By Lemma 3.4,
these partitions across all predicate polynomials (qi)

s
i=1 can be refined into a single partition of size

≤ stk(1 + αγ), and which thus also refines the partitions defined by (g1, . . . , gk). Thanks to these
refinements, h over any element U of this final partition is a fixed polynomial pU (g1, . . . , gk) of
degree ≤ βγ, meaning h is (stk(1 + αγ), βγ)-poly.

The proof of Lemma 3.2 now follows by Lemma 3.6. In particular, for semi-algebraic networks,
the proof is an induction over layers, establishing node j is (tj , αj)-poly (for appropriate (tj , αj)).

3.3. Many layers, many oscillations

The idea behind this construction is as follows. Consider any continuous function f : [0, 1]→ [0, 1]
which is a generalization of a triangle wave with a single peak: f(0) = f(1) = 0, and there is some
a ∈ (0, 1) with f(a) = 1, and additionally f strictly increases along [0, a] and strictly decreases
along [a, 1].

Now consider the effect of the composition f ◦ f = f2. Along [0, a], this is a stretched copy
of f , since f(f(a)) = f(1) = 0 = f(0) = f(f(0)) and moreover f is a bijection between [0, a]
and [0, 1] (when restricted to [0, a]). The same reasoning applies to f2 along [a, 1], meaning f2 is
a function with two peaks. Iterating this argument implies fk is a function with 2k−1 peaks; the
following definition and lemmas formalize this reasoning.

Definition 3.7 f is (t, [a, b])-triangle when it is continuous along [a, b], and [a, b] may be divided
into 2t intervals [ai, ai+1] with a1 = a and a2t+1 = b, f(ai) = f(ai+2) whenever 1 ≤ i ≤ 2t− 1,
f(a1) = 0, f(a2) = 1, f is strictly increasing along odd-numbered intervals (those starting from
ai with i odd), and strictly decreasing along even-numbered intervals.

Lemma 3.8 If f is (s, [0, 1])-triangle and g is (t, [0, 1])-triangle, then f ◦g is (2st, [0, 1])-triangle.

Proof Since g([0, 1]) = [0, 1] and f and g are continuous along [0, 1], then f ◦ g is continuous
along [0, 1]. In the remaining analysis, let (a1, . . . , a2s+1) and (c1, . . . , c2t+1) respectively denote
the interval boundaries for f and g.

Now consider any interval [cj , cj+1] where j is odd, meaning the restriction gj : [cj , cj+1] →
[0, 1] of g to [cj , cj+1] is strictly increasing. It will be shown that f ◦ gj is (s, [cj , cj+1])-triangle,
and an analogous proof holds for the strictly decreasing restriction gj+1 : [cj+1, cj+2] → [0, 1],
whereby it follows that f ◦ g is (2st, [0, 1]) by considering all choices of j.

To this end, note for any i ∈ {1, . . . , 2s + 1} that g−1j (ai) exists and is unique, thus set
a′i := g−1j (ai). By this choice, for odd i it holds that f(gj(a

′
i)) = f(gj(g

−1
j (ai))) = f(ai) =

f(a1) = 0 and f ◦ gj is strictly increasing along [a′i, a
′
i+1] (since gj is strictly increasing every-

where and f is strictly increasing along [gj(a
′
i), gj(a

′
i+1)] = [ai, ai+1]), and similarly even i has

f(gj(a
′
i)) = f(a2) = 1 and f ◦ gj is strictly decreasing along [a′i, a

′
i+1].

8

BENEFITS OF DEPTH IN NEURAL NETWORKS

Corollary 3.9 If f ∈ N1(m, l, t, α, β) is (t, [0, 1])-triangle with p distinct parameters, then fk ∈
N1(m, kl, t, α, β) is (2k−1tk, [0, 1])-triangle with p distinct parameters and Cr(fk) = (2t)k + 1.

Proof It suffices to perform k − 1 applications of Lemma 3.8.

Next, note the following examples of triangle functions.

Lemma 3.10 The following functions are (1, [0, 1])-triangle.

1. f(z) := σR(2σR(z)− 4σR(z − 1/2)) ∈ N1(2, 1, 1, 1, 1).

2. g(z) := min{σR(2z), σR(2− 2z)} ∈ N1(2, 1, 2, 1, 1).

3. h(z) := 4z(1− z) ∈ N1(1, 1, 0, 2, 0). Cf. Schmitt (2000).

Lastly, consider the first example f(z) = σR(2σR(z)−4(σR(z−1/2))) = min{σR(2z), σR(2−
2z)}, whose graph linearly interpolates (in R2) between (0, 0), (1/2, 1), and (1, 0). Consequently,
f ◦ f along [0, 1/2] linear interpolates between (0, 0), (1/4, 1), and (1/2, 1), and f ◦ f is analogous
on [1/2, 1], meaning it has produced two copies of f and then shrunken them horizontally by a
factor of 2. This process repeats, meaning fk has 2k−1 copies of f , and grants the regularity needed
to use the Lebesgue measure in Theorem 1.1.

Lemma 3.11 Set f(z) := σR(2σR(z) − 4σR(z − 1/2)) ∈ N1(2, 1, 1, 1, 1) (cf. Lemma 3.10).
Let real z ∈ [0, 1] and positive integer k be given, and choose the unique nonnegative integer
ik ∈ {0, . . . , 2k−1} and real zk ∈ [0, 1) so that z = (ik + zk)2

1−k. Then

fk(z) =

{
2zk when 0 ≤ zk ≤ 1/2,

2(1− zk) when 1/2 < zk < 1.

3.4. Proof of Theorem 1.1

The proof of Theorem 1.1 now follows: Lemma 3.11 shows that a many-layered ReLU network can
give rise to a highly oscillatory and regular function fk, Lemma 3.2 shows that few-layered networks
and (boosted) decision trees give rise to functions with few oscillations, and lastly Lemma 3.1 shows
how to combine these into an inapproximability result.

In this last piece, the proof averages over the possible offsets y ∈ Rd−1 and considers univariate
problems after composing networks with the affine map hy(z) := (z, y). In this way, the result
carries some resemblance to the random projection technique used in depth hierarchy theorems for
boolean functions (Håstad, 1986; Rossman et al., 2015), as well as earlier techniques on complexi-
ties of multivariate sets (Vitushkin, 1955, 1959), albeit in an extremely primitive form (considering
variations along only one dimension).
Proof (of Theorem 1.1) Set h(z) := σR(2σR(z) − 4σR(z − 1/2)) (cf. Lemma 3.10), and define
f0(z) := hk

3+4(z) and f : Rd → R as f(x) = f0(x1). Let If denote the pieces of f̃0, meaning
|If | = Cr(f0), and Corollary 3.9 grants Cr(f0) = 2k

3+4 + 1. Moreover, by Lemma 3.11, for any
U ∈ If , f0 − 1/2 is a triangle with height 1/2 and base either 2−k−1 (when 0 ∈ U or 1 ∈ U) or

9

TELGARSKY

2−k, whereby
∫
U |f0(x) − 1/2|dx ≥ 2−k−1/4 ≥ |If |/16 (which has thus made use of the special

regularity of h).
Now for any y ∈ Rd−1 define the map py : R→ Rd as py(z) := (z, y). If g is a semi-algebraic

network with ≤ k layers and m ≤ 2k/(tαβ) total nodes, then Lemma 3.2 grants Cr(g ◦ py) ≤
2(2tmα/k)kβk

2 ≤ 4(tmαβ)k
2 ≤ 2k

3+2. Otherwise, g is (t, 2k
3
/t)-bdt, whereby Lemma 3.2 gives

Cr(g ◦ py) ≤ 2t2k
3
/t ≤ 2k

3+2 once again.
By Lemma 3.1, for any y ∈ Rd−1, Cr(f ◦ py) = Cr(f0), and∫

[0,1]
|f(py(z))− g(py(z))|dz =

∑
U∈If

∫
U
|(f ◦ py)(z)− (g ◦ py)(z)|dz

≥
∑
U∈If

∫
U
|(f ◦ py)(z)− 1/2|1[∀z ∈ U � ˜(f ◦ py)(z) 6= ˜(g ◦ py)(z)]dz

≥ 1

16|If |
∑
U∈If

1[∀z ∈ U � ˜(f ◦ py)(z) 6= ˜(g ◦ py)(z)]dz

≥ 1

32

(
1− 2Cr(g ◦ py)

Cr(f ◦ py)

)
≥ 1

32

(
1− 2(2k

3+2)

2k3+4

)
≥ 1

64
.

To finish,∫
[0,1]d

|f(x)− g(x)|dx =

∫
[0,1]d−1

∫
[0,1]
|(f ◦ py)(z)− (g ◦ py)(z)|dzdy ≥

1

64
.

Using nearly the same proof, but giving up on continuous uniform measure, it is possible to
handle other distances and more flexible target functions.

Theorem 3.12 Let integer k ≥ 1 and function f : R → R be given where f is (1, [0, 1])-triangle,
and define h : Rd → R as h(x) := fk(x1). For every y ∈ Rd−1, define the affine function
py(z) := (z, y). Then there exist Borel probability measures µ and ν over [0, 1]d where ν is discrete
uniform on 2k+1 points and µ is continuous and positive on exactly [0, 1]d so that every g : Rd → R
with Cr(g ◦ py) ≤ 2k−2 for every y ∈ Rd−1 satisfies∫

|h− g|dµ ≥ 1

32
,

∫
|h̃− g̃|dµ ≥ 1

8
,

∫
|h− g|dν ≥ 1

8
,

∫
|h̃− g̃|dν ≥ 1

4
.

4. Limitations of depth

Theorem 3.12 can be taken to say: there exists a labeling of Θ(2k
3
) points which is realizable by a

network of depth and size Θ(k3), but can not be approximated by networks with depth k and size
o(2k). On the other hand, this section will sketch the proof of Theorem 1.2, which implies that these
Θ(k3) depth networks realize relatively few different labellings. The proof is a quick consequence
of the VC dimension of semi-algebraic networks (cf. Lemma 1.3) and the following fact, where
Sh(·) is used to denote the growth function (Anthony and Bartlett, 1999, Chapter 3).

10

BENEFITS OF DEPTH IN NEURAL NETWORKS

Lemma 4.1 Let any function class F and any distinct points (xi)
n
i=1 be given. Then with proba-

bility at least 1− δ over a uniform random draw of labels (yi)
n
i=1 (with yi ∈ {−1,+1}),

inf
f∈F

1

n

n∑
i=1

1[f̃(xi) 6= yi] ≥
1

2

(
1−

√
ln(Sh(F ;n)) + ln(1/δ)

2n

)
.

The proof of the preceding result is similar to proofs of the Gilbert-Varshamov packing bound
via Hoeffding’s inequality (Duchi, 2016, Lemma 13.5). Note that a similar result was used by War-
ren to prove rates of approximation of continuous functions by polynomials, but without invoking
Hoeffding’s inequality (Warren, 1968, Theorem 7).

The remaining task is to control the VC dimension of semi-algebraic networks. To this end, note
the following generalization of Lemma 1.3, which further provides that semi-algebraic networks
compute functions which are polynomial when restricted to certain polynomial regions.

Lemma 4.2 Let neural network graph G be given with ≤ p parameters, ≤ l layers, and ≤ m total
nodes, and suppose every gate is (t, α, β)-sa. Then

VC(N (G)) ≤ 6p(l + 1)
(

ln(2p(l + 1)) + ln(8emtα) + l ln(β)
)
.

Additionally, given any n ≥ p data points, there exists a partition S of Rp where each S ∈ S
is an intersection of predicates 1[q � 0] with � ∈ {<,≥} and q has degree ≤ αβl−1, such that
FG(xi, ·) restricted to each S ∈ S is a fixed polynomial of degree ≤ βl for every example xi, with
|S| ≤

(
8enmtαβl

)pl and Sh(N (G);n) ≤
(
8enmtαβl

)p(l+1)

The proof follows the same basic structure of the VC bound for networks with piecewise poly-
nomial activation functions (Anthony and Bartlett, 1999, Theorem 8.8). The slightly modified proof
here is also very similar to the proof of Lemma 3.2, performing an induction up through the layers of
the network, arguing that each node computes a polynomial after restricting attention to some range
of parameters. The proof of Lemma 4.2 manages to be multivariate (unlike Lemma 3.2), though
this requires arguments due to Warren (1968) which are significantly more complicated than those
of Lemma 3.2 (without leading to a strengthening of Theorem 1.1).

One minor departure from the VC dimension proof of piecewise polynomial networks (cf. (An-
thony and Bartlett, 1999, Theorem 8.8)) is the following lemma, which is used to track the number
of regions with the more complicated semi-algebraic networks. Despite this generalization, the VC
dimension bound is basically the same as for piecewise polynomial networks.

Lemma 4.3 Let a set of polynomials Q be given where each Q 3 q : Rp → R has degree ≤ α.
Define an initial family S0 of subsets of Rp as S0 :=

{
{a ∈ Rp : q(a) � 0} : q ∈ Q, � ∈ {<,≥}

}
.

Then the collection S of all nonempty intersections of elements of S0 satisfies |S| ≤ 2
(
4e|Q|α
p

)p
.

5. Bibliographic notes and open problems

Arguably the first approximation theorem of a big class by a smaller one is the Weierstrass Approx-
imation Theorem, which states that polynomials uniformly approximate continuous functions over
compact sets (Weierstrass, 1885). Refining this, Kolmogorov (1936) gave a bound on how well
subspaces of functions can approximate continuous functions, and Vitushkin (1955, 1959) showed

11

TELGARSKY

a similar bound for approximation by polynomials in terms of the polynomial degrees, dimension,
and modulus of continuity of the target function. Warren (1968) then gave an alternate proof and
generalization of this result, in the process effectively proving the VC dimension of polynomials
(developing tools still used to prove the VC dimension of neural networks (Anthony and Bartlett,
1999, Chapters 7-8)), and producing an analog to Theorem 1.2 for polynomials.

The preceding results, however, focused on separating large classes (e.g., continuous functions
of bounded modulus) from small classes (polynomials of bounded degree). Aiming to refine this,
depth hierarchy theorems in circuit complexity separated circuits of a certain depth from circuits
of a slightly smaller depth. As mentioned in Section 1, the seminal result here is due to Håstad
(1986). For architectures closer to neural networks, sum-product networks (summation and product
nodes) have been analyzed by Bengio and Delalleau (2011) and more recently Martens and Meda-
balimi (2015), and networks of linear threshold functions in 2 and 3 layers by Kane and Williams
(2015); note that both polynomial gates (as in sum-product networks) and linear threshold gates are
semi-algebraic gates. Most closely to the present work (excluding (Telgarsky, 2015), which is a
vastly simplified account), Eldan and Shamir (2015) analyze 2- and 3-layer networks with general
activation functions composed with affine mappings, showing separations which are exponential in
the input dimension. Due to this result and also recent advances in circuit complexity (Rossman
et al., 2015), it is natural to suppose Theorem 1.1 can be strengthened to separating k and k + 1
layer networks when dimension d is large; however, none of the earlier works give a tight sense of
the behavior as d ↓ 1.

The triangle wave target functions considered here (e.g., cf. Lemma 3.10) have appeared in
various forms throughout the literature. General properties of piecewise affine highly oscillating
functions were investigated by Szymanski and McCane (2014) and Montúfar et al. (2014). Also,
Schmitt (2000) investigated the map z 7→ 4z(1 − z) (as in Lemma 3.10) to show that sigmoidal
networks can not approximate high degree polynomials via an analysis similar to the one here,
however looseness in the VC bounds for sigmoidal networks prevented exponential separations and
depth hierarchies.

A tantalizing direction for future work is to characterize not just one difficult function (e.g., tri-
angle functions as in Lemma 3.10), but many, or even all functions which are not well-approximated
by smaller depths. Arguably, this direction could have value in machine learning, as discovery of
such underlying structure could lead to algorithms to recover it. As a trivial example of the sort
of structure which could arise, considering the following proposition, stating that any symmetric
signal may be repeated by pre-composing it with the ReLU triangle function.

Proposition 5.1 Set f(z) := σR(2σR(z)−4σR(z−1/2)) (cf. Lemma 3.10), and let any g : [0, 1]→
[0, 1] be given with g(z) = g(1 − z). Then h := g ◦ fk satisfies h(x) = h(x + i2k) = g(x2k) for
every real x ∈ [0, 2−k] and integer i ∈ {0, . . . , 2−k − 1}; in other words, h is 2k repetitions of g
with graph scaled horizontally and uniformly to fit within [0, 1]2.

Acknowledgments

The author is indebted to Joshua Zahl for help navigating semi-algebraic geometry and for a sim-
plification of the multivariate case in Theorem 1.1, and to Rastislav Telgársky for an introduction
to this general topic via Kolmogorov’s Superposition Theorem (Kolmogorov, 1957). The author
further thanks Jacob Abernethy, Peter Bartlett, Sébastien Bubeck, and Alex Kulesza for valuable
discussions.

12

BENEFITS OF DEPTH IN NEURAL NETWORKS

References

Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, 1999.

Yoshua Bengio and Olivier Delalleau. Shallow vs. deep sum-product networks. In NIPS, 2011.

Jacek Bochnak, Michal Coste, and Marie-Françoise Roy. Real Algebraic Geometry. Springer, 1998.

Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning
algorithms. pages 161–168, 2006.

John Duchi. Statistics 311/electrical engineering 377: Information theory and statistics. Stanford
University, 2016.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. 2015.
arXiv:1512.03965 [cs.LG].

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193–202, 1980.

Johan Håstad. Computational Limitations of Small Depth Circuits. PhD thesis, Massachusetts
Institute of Technology, 1986.

Daniel Kane and Ryan Williams. Super-linear gate and super-quadratic wire lower bounds for
depth-two and depth-three threshold circuits. 2015. arXiv:1511.07860v1 [cs.CC].

Andrei Kolmogorov. Über die beste annäherung von funktionen einer gegebenen funktionenklasse.
Annals of Mathematics, 37(1):107–110, 1936.

Andrey Nikolaevich Kolmogorov. On the representation of continuous functions of several variables
by superpositions of continuous functions of one variable and addition. 114:953–956, 1957.

Alex Krizhevsky, Ilya Sutskever, and Geoffery Hinton. Imagenet classification with deep convolu-
tional neural networks. In NIPS, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

James Martens and Venkatesh Medabalimi. On the expressive efficiency of sum product networks.
2015. arXiv:1411.7717v3 [cs.LG].

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In NIPS, 2014.

Hoifung Poon and Pedro M. Domingos. Sum-product networks: A new deep architecture. In UAI
2011, pages 337–346, 2011.

Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth hierarchy theorem
for boolean circuits. In FOCS, 2015.

13

TELGARSKY

Michael Schmitt. Lower bounds on the complexity of approximating continuous functions by sig-
moidal neural networks. In NIPS, 2000.

Lech Szymanski and Brendan McCane. Deep networks are effective encoders of periodicity. IEEE
Transactions on Neural Networks and Learning Systems, 25(10):1816–1827, 2014.

Matus Telgarsky. Representation benefits of deep feedforward networks. 2015.
arXiv:1509.08101v2 [cs.LG].

Anatoli Vitushkin. On multidimensional variations. GITTL, 1955. In Russian.

Anatoli Vitushkin. Estimation of the complexity of the tabulation problem. Fizmatgiz., 1959. In
Russian.

Hugh E. Warren. Lower bounds for approximation by nonlinear manifolds. Transactions of the
American Mathematical Society, 133(1):167–178, 1968.

Karl Weierstrass. Über die analytische darstellbarkeit sogenannter willkürlicher functionen einer
reellen veränderlichen. Sitzungsberichte der Akademie zu Berlin, pages 633–639, 789–805, 1885.

Appendix A. Deferred proofs

This appendix collects various proofs omitted from the main text.

A.1. Deferred proofs from Section 2

The following mechanical proof shows that standard piecewise polynomial gates, maximization/minimization
gates, and decision trees are all semi-algebraic gates.
Proof (of Lemma 2.3)

1. To start, since σ : R→ R is piecewise polynomial, σ ◦ q can be written

σ(q(z)) := p1(q(z))1[q(z) �1 b1] +
t−1∑
i=2

pi(q(z))1[−q(z) ∗i−1 −bi−1]1[q(z) �i bi]

+ pt(q(z))1[−q(z) ∗t −bt]

where for each i ∈ [t], pi has degree ≤ β, �i ∈ {<,≤}, ∗i = “ < ” when �i = “ ≤ ” and
otherwise ∗i = “ ≤ ”, and bi ∈ R. As such, setting qi(z) := q(z)− b1 whenever �i = “ < ”
and qi(z) := bi − q(z) otherwise, it follows that σ ◦ q is (t, α, αβ)-sa.

2. Since mini∈[r] xi = −maxi∈[r]−xi, it suffices to handle the maximum case, which has the
form

φmax(v) =
d∑
i=1

pi(v)

∏
j<i

1[pi(v) > pj(v)]

∏
j>i

1[pi(v) ≥ pj(v)]

 .

Constructing polynomials qi,j = pj−pi when j < i and qi,j = pi−pj when j > i, it follows
that φmax is (r(r − 1), α, α)-sa.

14

BENEFITS OF DEPTH IN NEURAL NETWORKS

3. First consider a k-dt f , wherein the proof follows by induction on tree size. In the base case
k = 1, f is constant. Otherwise, there exist functions fl and fr which are respectively l- and
r-dt with l + r < k, and additionally an affine function qf so that

f(x) = fl(x)1[qf (x) < 0] + fr(x)1[qf (x) ≥ 0]

=

ml∑
j=1

p
(l)
j (v)1[qf (x) < 0]

 ∏
i∈L(l)

j

1[q
(l)
i (v) < 0]


 ∏
i∈U(l)

j

1[q
(l)
i (v) ≥ 0]


+

mr∑
j=1

p
(r)
j (v)1[qf (x) ≥ 0]

 ∏
i∈L(r)

j

1[q
(r)
i (v) < 0]


 ∏
i∈U(r)

j

1[q
(r)
i (v) ≥ 0]

 .

where the last step expanded the semi-algebraic forms of fl and fr. As such, by combining
the sets of predicate polynomials for fl and fr together with {qf} (where the former two have
cardinalities≤ l and≤ r by the inductive hypothesis), and unioning together the triples for fl
and fr but extending the triples to include 1[qf < 0] for triples in fl and 1[qf ≥ 0] for triples
in fr, it follows by construction that f is (k, 1, 0)-semi-algebraic.

Now consider a (t, k)-bdt g. By the preceding expansion, each individual tree fi is (k, 1, 0)-
sa, thus their sum is (tk, 1, 0) by unioning together the sets of polynomials, triples, and adding
together the expansions.

A.2. Deferred proofs from Section 3

The first proof shows that a collection of partitions may be refined into a single partition whose
size is at most the total number of intervals across all partitions. As discussed in the text, while
the proof has a simple idea (one need only consider boundaries of intervals across all partitions),
it is somewhat painful since there is not consistent rule for whether specific endpoints endpoints of
intervals are open or closed.
Proof (of Lemma 3.4) If k = 1, then the result follows with B = A = A1 (since all intersections
are empty), thus suppose k ≥ 2. Let {a1, . . . , aq} denote the set of distinct boundaries of intervals of
A, and iteratively construct the partition B as follows, where the construction will maintain that Bj
is a partition whose boundary points are {a1, . . . aj}. For the base case, set B0 := {R}. Thereafter,
for every i ∈ [q], consider boundary point ai; since the boundary points are distinct, there must exist
a single interval U ∈ Bi−1 with ai ∈ U . Bi will be formed from Bi−1 by refining U in one of the
following two ways.

• Consider the case that each partition Al which contains the boundary point ai has exactly two
intervals meeting at ai and moreover the closedness properties are the same, meaning either
ai is contained in the interval which ends at ai, or it is contained in the interval which starts
at ai. In this case, partition U into two intervals so that the treatment of the boundary is the
same as those Al’s with a boundary at ai.

15

TELGARSKY

• Otherwise, it is either the case that some Al have ai contained in the interval ending at ai
whereas others have it contained in the interval starting at ai, or simply some Al have three
intervals meeting at ai: namely, the singleton interval [al, al] as well as two intervals not
containing al. In this case, partitionU into three intervals: one ending at ai (but not containing
it), the singleton interval [ai, ai], and an interval starting at ai (but not containing it).

(These cases may also be described in a unified way: consider all intervals of A which have ai as
an endpoint, extend such intervals of positive length to have infinite length while keeping endpoint
ai and the side it falls on, and then refine U by intersecting it with all of these intervals, which as
above results in either 2 or 3 intervals.)

Note that the construction never introduces more intervals at a boundary point than exist in A,
thus |B| ≤ |A| = kt.

It remains to be shown that a union of intersections of elements of A is a union of elements of
B. Note that it suffices to show that intersections of elements of A are unions of elements of B,
since thereafter these encodings can be used to express unions of intersections of A as unions of B.
As such, consider any intersection U of elements of A; there is nothing to show if U is empty, thus
suppose it is nonempty. In this case, it must also be an interval (e.g., since intersections of convex
sets are convex), and its endpoints must coincide with endpoints ofA. Moreover, if the left endpoint
of U is open, then U must be formed from an intersection which includes an interval with the same
open left endpoint, thus there exists such an interval in A, and by the above construction of B, there
also exists an interval with such an open left endpoint inB; the same argument similarly handles the
case of closed left endpoints, as well as open and closed right endpoints, namely giving elements
in B which match these traits. Let ar and as denote these endpoints. By the above construction of
B, intervals with endpoints {aj , aj+1} for j ∈ {r, . . . , s− 1} will be included in B, and since B is
a partition, the union of these elements will be exactly U . Since U was an arbitrary intersection of
elements of A, the proof is complete.

Next, the tools of Section 3.2 (culminating in the composition rule for semi-algebraic gates
(Lemma 3.6)) are used to show crossing number bounds on semi-algebraic networks and boosted
decision trees.
Proof (of Lemma 3.2)

1. This proof first shows f ◦h is (2itiαi
∏
j≤i−1 tjαjβ

i−j+1
j kj ,

∏
j≤i βj)-poly, and then relaxes

this expression and applies Lemma 3.3 to obtain the desired bound.

First consider the case d = 1 and h is the identity map, thus f ◦ h = f . For convenience, set

Ai :=
∏
j≤i

αj , Bi :=
∏
j≤i

βj , Ci :=
∏
j≤i

βi−j+1
j =

∏
j≤i

Bj , Mi :=
∏
j≤i

mj , Ti :=
∏
j≤i

tj .

The proof proceeds by induction on the layers of f , showing that each node in layer i is
(2iTiAiCi−1Mi−1, Bi)-poly.

For convenience, first consider layer i = 0 of the inputs themselves: here, node i outputs the
ith coordinate of the input, and is thus affine and (1, 1)-poly. Next consider layer i > 0, where
the inductive hypothesis grants that each node in layer i−1 is (2i−1Ti−1Ai−1Ci−2Mi−2, Bi−1)-
poly. Consequently, since any node in layer i is (ti, αi, βi)-sa, Lemma 3.6 grants it is also

16

BENEFITS OF DEPTH IN NEURAL NETWORKS

(2i−1tiTi−1Ai−1Ci−2Mi−2mi−1(1+αiBi−1), βiBi−1)-poly as desired (since 1+αiBi−1 ≤
2αiBi−1).

Next, consider the general case d ≥ 1 and h : R → Rd is an affine map. Since every
coordinate of h is affine (and thus (1, 1)-poly), composing h with every polynomial in the
semi-algebraic gates of layer 1 gives a function g ∈ N1((mi, ti, αi, βi)

l
i=1) which is equal to

f ◦ h everywhere and whose gates are of the same semi-algebraic complexity. As such, the
result follows by applying the preceding analysis to g.

Lastly, the simplified terms give f ◦ h is ((2tα)lβl(l−1)/2
∏
j≤l−1mj , β

l(l+1)/2)-poly. Since
ln(·) is strictly increasing and concave and ml = 1,

ln

 ∏
j≤l−1

mj

 = ln

∏
j≤l

mj

 =
∑
j≤l

ln(mj) ≤ l ln(m/l) = ln((m/l)l).

It follows that f ◦ h is ((2tmα/l)lβl(l−1)/2, βl(l+1)/2)-poly, whereby the crossing number
bound follows by Lemma 3.3.

2. Given any k-dt f , the affine function evaluated at each predicate may be composed with h
to yield another affine function, thus f ◦ h : R → R is still a k-dt, and thus (k, 1, 0)-sa by
Lemma 2.3. As such, by Lemma 3.6 (with g1(z) = z as the identity map), f ◦ h is (k, 0)-
poly. (Invoking Lemma 3.6 without massaging in h introduces a factor d.) Similarly, for a
(t, k)-bdt g, g ◦ h : R → R is another (t, k)-bdt after pushing h into the predicates of the
constituent trees, thus Lemma 2.3 grants g ◦ h is (tk, 1, 0)-sa, and Lemma 3.6 grants it is
(tk(1 + 1), 0)-poly. The desired crossing number bounds follow by applying Lemma 3.3.

Next, elementary computations verify that the three functions listed in Lemma 3.10 are indeed
(1, [0, 1])-triangle.
Proof (of Lemma 3.10)

1-2. By inspection, f(0) = f(1) = 0 and f(1/2) = 1. Moreover, for x ∈ [0, 1/2], f(x) = 2x
meaning f is increasing, and x ∈ [1/2, 1] means f(x) = 2(1− x), meaning f is decreasing.
Lastly, the properties of g follow since f = g.

3. By inspection, h(0) = h(1) = 0 and h(1/2) = 1. Moreover h is a quadratic, thus can cross
0 at most twice, and moreover 1/2 is the unique critical point (since g′ has degree 1), thus g
is increasing on [0, 1/2] and decreasing on [1/2, 1].

In the case of the ReLU (1, [0, 1])-triangle function f given in Lemma 3.10, the exact form of
fk may be established as follows. (Recall that this refined form allows for the use of Lebesgue
measure in Theorem 1.1, and also the repetition statement in Proposition 5.1.)

17

TELGARSKY

Proof (of Lemma 3.11) The proof proceeds by induction on the number of compositions l. For the
base case l = 1,

f1(z) = f(z) =


2z when z ∈ [0, 1/2],

2(1− z) when z ∈ (1/2, 1],

0 otherwise.

For the inductive step, first note for any z ∈ [0, 1/2], by symmetry of f l around 1/2 (i.e., f l(z) =
f l(1− z) by the inductive hypothesis), and by the above explicit form of f1,

f l+1(z) = f l(f(z)) = f l(2z) = f l(1−2z) = f l(f(1/2−z)) = f l(f(z+1/2)) = f l+1(z+1/2),

meaning the case z ∈ (1/2, 1] is implied by the case z ∈ [0, 1/2]. Since the unique nonnegative
integer il+1 and real zl+1 ∈ [0, 1) satisfy 2z = 2(il+1 + zl+1)2

−l−1 = (il+1 + zl+1)2
−l, the

inductive hypothesis grants

(f l ◦ f)(z) = f l(2z) =

{
2zl+1 when 0 ≤ zl+1 ≤ 1/2,

2(1− zl+1) when 1/2 < zl+1 < 1,

which completes the proof.

The proof of the slightly more general form of Theorem 1.1 is as follows; it does not quite imply
Theorem 1.1, since the constructed measure is not the Lebesgue measure even for the ReLU-based
(1, [0, 1])-triangle function from Lemma 3.10.
Proof (of Theorem 3.12) First note some general properties of fk. By Corollary 3.9, fk is (2k−1, [0, 1])-
triangle, which means there exist s := 2k + 1 points (zi)

s
i=1 so that fk(zi) = 1[i is odd], and

moreover fk is continuous and equal to 1/2 at exactly 2k points (by the strict increasing/decreasing
part of the triangle wave definition), which is a finite set of points and thus has Lebesgue measure
zero. Taking py : R → Rd to be the map py(z) = (z, y) where y ∈ Rd−1, then (h ◦ py)(z) =

h((z, y)) = fk(z), thus letting I denote the 2k pieces within which f̃k is constant, it follows that
h̃ ◦ py is constant within the same set of pieces and thus Cr(h ◦ py) = s.

Now consider the discrete case, where ν denotes the uniform measure over the s points (xi)
s
i=1

defined as xi := p0(zi) ∈ Rd. Further consider the two types of distance.

• Since zi < zi+1 and f̃k(zi) 6= f̃k(zi+1), then taking (Ui)
s
i=1 to denote the intervals of I

sorted by their left endpoint, zi ∈ Ui for i ∈ [s]. By Lemma 3.1,∫
|h̃− g̃|dν =

1

s

s∑
i=1

|h̃(xi)− g̃(xi)| =
1

s

s∑
i=1

|f̃k(zi)− g̃ ◦ p0(zi)|

≥ 1

s

s∑
i=1

1[∀z ∈ Ui � f̃k(z) 6= g̃ ◦ p0(z)]

≥ 1

2

(
1− 2

(
2k−2

s

))
≥ 1

4
.

• Since fk(zi) ∈ {0, 1}, then f̃k(zi) 6= g̃(xi) implies |fk(zi)− g(xi)| ≥ 1/2, thus
∫
[0,1]d |h−

g|dν ≥
∫
[0,1]d |h̃− g̃|dν/2 ≥ 1/8.

18

BENEFITS OF DEPTH IN NEURAL NETWORKS

Construct the continuous measure µ as follows, starting with the construction of a univariate
measure µ0. Since fk is continuous, there exists a δ ∈ (0,mini∈[s−1] |zi−zi+1|/2) so that |fk(z)−
fk(zi)| ≤ 1/4 for any i ∈ [s] and z with |z−zi| ≤ δ. As such, let µ0 denote the probability measure
which places half of its mass uniformly on these s balls of radius δ (which must be disjoint since fk

alternates between 0 and 1 along (zi)
s
i=1), and half of its mass uniformly on the remaining subset of

[0, 1]. Finally, extend this to a probability measure µ on [0, 1]d uniformly, meaning µ is the product
of µ0 and the measure µ1 which is uniform over [0, 1]d−1. Now consider the two types of distances.

• By Lemma 3.1,∫
|h̃− g̃|dµ(x) =

∫∫
|f̃k(py(z))− g̃(py(z))|dµ0(z)dµ1(y)

=

∫ ∑
U∈I

∫
1[z ∈ U ∧ f̃k(z)) 6= g̃(py(z))]dµ0(z)dµ1(y)

≥
∫

1

2s

∑
U∈I

1[∀z ∈ U � f̃k(z)) 6= g̃ ◦ py(z)]dµ1(y)

≥ 1

4

(
1− 2

(
2k−2

s

))
≥ 1

8
.

• For any y ∈ Rd−1 and Ui ∈ I (with corresponding zi ∈ Ui), if f̃k(z) 6= g̃ ◦ py(z) for every
z ∈ Ui, then∫
Ui

|fk(z)−g(py(z))|dµ0(z) ≥
∫
|z−zi|≤δ

|fk(z)−1/2|dµ0(z) ≥
1

4
µ0({z ∈ Ui : |z−zi| ≤ δ}) ≥

1

8s
.

By Lemma 3.1,∫
|h− g|dµ(x) =

∫∫
|h(py(z))− g(py(z))|dµ0(z)dµ1(y)

≥
∫ ∑

U∈I
1[∀z ∈ U � f̃k(z) 6= g̃(py(z))]

∫
U
|fk(z)− g(py(z))|dµ0(z)dµ1(y)

≥
∫

1

8s

∑
U∈I

1[∀z ∈ U � f̃k(z) 6= g̃ ◦ py(z)]dµ1(y)

≥ 1

16

(
1− 2

(
2k−2

s

))
≥ 1

32
.

As a closing curiosity, Theorem 3.12 implies the following statement regarding polynomials.

Corollary A.1 For any integer k ≥ 1, there exists a polynomial h : Rd → R with degree 2k

and a corresponding continuous measure µ which is positive everywhere over [0, 1]d so that every
polynomial g : Rd → R of degree ≤ 2k−3 satisfies

∫
|h− g|dµ ≥ 1/32.

19

TELGARSKY

Proof Set f(z) = 4z(1 − z), which by Lemma 3.10 is (1, [0, 1])-triangle, thus fk is (2k−1, [0, 1])-
triangle with Cr(fk) = 2k + 1 by Corollary 3.9, and fk has degree 2k directly; thus set h(x) =
fk(x1). Next, for any polynomial g : Rd → R of degree ≤ 2k−3, g ◦ py : R → R is still a poly-
nomial of degree ≤ 2k−3 for every y ∈ Rd−1 (where py(z) = (z, y) as in Theorem 3.12), and so
Lemma 3.3 grants Cr(g ◦ py) ≤ 1 + 2k−3 ≤ 2k−2. The result follows by Theorem 3.12.

A.3. Deferred proofs from Section 4

First, the proof of a certain VC lower bound which mimics the Gilbert-Varshamov bound; the proof
is little more than a consequence of Hoeffding’s inequality.
Proof (of Lemma 4.1) For convenience, set m := Sh(F ;n), and let (a1, . . . , am) denote these
dichotomies (meaning aj ∈ {0, 1}n), and with foresight set ε :=

√
ln(m/δ)/(2n). Let (Yi)

n
i=1

denote fair Bernoulli random labellings for each point, and note by symmetry of the fair coin that
for any fixed dichotomy aj ,

Pr

[
1

n

n∑
i=1

|(aj)i − Yi| < 1/2− ε

]
= Pr

[
1

n

n∑
i=1

Yi < 1/2− ε

]
.

Consequently, by a union bound over all dichotomies and lastly by Hoeffding’s inequality,

Pr

[
∃f ∈ F �

1

n

n∑
i=1

|f̃(xi)− Yi| < 1/2− ε

]
≤

m∑
j=1

Pr

[
1

n

n∑
i=1

|(vj)i − Yi| < 1/2− ε

]

= mPr

[
1

n

n∑
i=1

Yi < 1/2− ε

]
≤ m exp(−2nε2) ≤ δ,

where the last step used the choice of ε.

The remaining deferred proofs do not exactly follow the order of Section 4, but instead the order
of dependencies in the proofs. In particular, to control the VC dimension, first it is useful to prove
Lemma 4.3, which is used to control the growth of numbers of regions as semi-algebraic gates are
combined.
Proof (of Lemma 4.3) Fix some ordering (q1, q2, . . . , q|Q|) of the elements of Q, and for each
i ∈ [|Q|] define two functions li(a) := 1[qi(a) < 0] and ui(a) := 1[qi(a) ≥ 0], as well as two sets
Li := {a ∈ Rp : li(a) = 1} and Ui := {a ∈ Rp : ui(a) = 1}. Note that

S :=
{

(∩i∈ALi) ∩ (∩i∈B) : A ⊆ [|Q|], B ⊆ [|Q|]
}
\ {∅}.

Additionally consider the set of sign patterns

V :=
{(
l1(a), ui(a), . . . , l|Q|(a), u|Q|(a)

)
: a ∈ Rp

}
.

Distinct elements of S correspond to distinct sign patterns in V : namely, for any C ∈ S, using the
ordering of Q to encode A and B as binary vectors of length |Q|, the corresponding interleaved

20

BENEFITS OF DEPTH IN NEURAL NETWORKS

binary vector of length 2|Q| is distinct for distinct choices of (A,B). (For each i that appears in
neither A nor B, there two possible encodings in V : having both coordinates corresponding to i set
to 1, and having them set to 0. On the other hand, a more succinct encoding based just on (li)

|Q|
i=1

fails to capture those sets arising from intersections of proper subsets of Q.) As such, making use
of growth function bounds for sets of polynomials (Anthony and Bartlett, 1999, Theorem 8.3),

|S| ≤ |V | ≤ 2

(
4eα|Q|
p

)p
.

Thanks to Lemma 4.3, the proof of the VC dimension bound Lemma 4.2 follows by induction
over layers, effectively keeping track of a piecewise (regionwise?) polynomial function as with the
proof of Lemma 3.2 (but now in the multivariate case).
Proof (of Lemma 4.2) First note that this proof follows the scheme of a VC dimension proof for net-
works with piecewise polynomial activation functions (Anthony and Bartlett, 1999, Theorem 8.8),
but with Lemma 4.3 allowing for the more complicated semi-algebraic gates, and some additional
bookkeeping for the (semi-algebraic) shapes of the regions of the partition S .

Let examples (xj)
n
j=1 be given with n ≥ p, let mi denote the number of nodes in layer i

(whereby m1 + · · · + ml = m), and let f := FG : Rp × Rd → R denote the function evaluating
the neural network (as in Section 2.1), where the two arguments are the parameters w ∈ Rp and the
input example x ∈ Rd. The goal is to upper bound the number of dichotomies

K := Sh(N (G);n) = |{(sgn(f(w, x1)), . . . , sgn(f(w, xn))) : w ∈ Rp}| .

The proof will proceed by producing a sequence of partitions (Si)l0=1 of Rp and two corresponding
sequences of sets of polynomials (Pi)li=0 and (Qi)li=0 so that for each i, Pi has polynomials of
degree at most βi, Qi has polynomials of degree at most αβi−1, and over any parameters S ∈ Si,
there is an assignment of elements of Pi to nodes of layer i so that for each example xj , every
node in layer i evaluates the corresponding fixed polynomial in Pi; lastly, the elements of Si are
intersections of sets of the form {w ∈ Rp : q(w) � 0} where q ∈ Qi and � ∈ {<,≥}, and the
partition Si+1 refines Si for each i (meaning for each U ∈ Si+1 there exists S ⊇ U with S ∈ Si).
Setting the final partition S := Sl, this in turn will give an upper bound on K, since the final output
within each element of S is a fixed polynomial of degree at most βl, whereby the VC dimension of
polynomials (Anthony and Bartlett, 1999, Theorem 8.3) grants

K ≤
∑
S∈S
|{(sgn(f(w, x1)), . . . , sgn(f(w, xn))) : w ∈ S}| ≤ 2|S|

(
2enβl

p

)p
. (A.1)

To start, consider layer 0 of the input coordinates themselves, a collection of d affine maps.
Consequently, it suffices to set S0 := {Rp},Q0 := ∅, and P0 to be the nd possible coordinate maps
corresponding to all d coordinates of all n examples.

For the inductive step, consider some layer i + 1. Restricted to any S ∈ Si, the nodes of the
previous layer i compute fixed polynomials of degree βi. Each node in layer i + 1 is (t, α, β)-sa,
meaning there are t predicates, defined by polynomials of degree≤ α, which define regions wherein
this node is a fixed polynomial. Let QS denote this set of predicates, where |QS | ≤ tnmi+1 by

21

TELGARSKY

considering the n possible input examples and the t possible predicates encountered in each of the
mi+1 nodes in layer i + 1, and set Qi+1 := Qi

⋃
(∪S∈SiQS) . By the definition of semi-algebraic

gate, each node in layer i + 1 computes a fixed polynomial when restricted to a region defined
by an intersection of predicates which moreover are defined by Qi+1. As such, defining Si+1 as
the refinement of Si+1 which partitions each S ∈ Si according to the intersections of predicates
encountered in each node, then Lemma 4.3 on each QS grants

|Si+1| ≤
∑
S∈Si

|{all nonempty intersections of QS}| ≤ 2|Si|
(

4enmi+1tαβ
i

p

)p
, (A.2)

which completes the inductive construction.
The upper bound on K may now be estimated. First, |S| may be upper bounded by applying

eq. (A.2) recursively:

|S| ≤ |S0|
l∏

i=1

(
8enmitαβ

i−1

p

)p
≤
(

8enmtαβl−1
)pl

.

Continuing from Equation (A.1),

K ≤ 2|S|
(

2emβl

p

)p
≤
(

8enmtαβl
)p(l+1)

.

To compute VC(N (G)), it suffices to find N such that Sh(N (G);N) < 2N , which in turn is
implied by p(l+ 1) ln(N) + p(l+ 1) ln(8emtαβl) < N ln(2). Since ln(N) = ln(N/(2p(l+ 1)) +
ln(2p(l + 1)) ≤ N/(2p(l + 1))− 1 + ln(2p(l + 1)) and ln(2)− 1/2 > 1/6, it suffices to show

6p(l + 1)
(

ln(2p(l + 1)) + ln(8emtαβl)
)
≤ N.

As such, the left hand side of this expression is an upper bound on VC(N (G)).

The proofs of Lemma 1.3 and Theorem 1.2 from Section 1 are now direct from Lemma 4.2 and
Lemma 4.1.
Proof (of Lemma 1.3) This statement is the same as Lemma 4.2 with some details removed.

Proof (of Theorem 1.2) By the bound on Sh(N (G);n) from Lemma 4.2,

n =
n

2
+
n

2
≥ 2 ln(1/δ) + 4pl2 ln(8emtαβp(l + 1)) +

n

2

≥ 2 ln(1/δ) + 2p(l + 1) ln(8emtαβl) + 2p(l + 1)

(
ln(p(l + 1))) +

n

2p(l + 1)
− 1

)
≥ 2 ln(1/δ) + 2p(l + 1) ln(8emtαβl) + 2p(l + 1) ln(n)

≥ 2 ln(1/δ) + 2 ln(Sh(N (G);n)).

The result follows by plugging this into Lemma 4.1.

22

BENEFITS OF DEPTH IN NEURAL NETWORKS

A.4. Deferred proofs from Section 5

Proof (of Proposition 5.1) Immediate from Lemma 3.11.

23

	1 Setting and main results
	1.1 Main result
	1.2 Companion results

	2 Semi-algebraic gates and assorted network notation
	2.1 Notation for neural networks

	3 Benefits of depth
	3.1 Approximation via oscillation counting
	3.2 Few layers, few oscillations
	3.3 Many layers, many oscillations
	3.4 Proof of fact:main

	4 Limitations of depth
	5 Bibliographic notes and open problems
	References
	A Deferred proofs
	A.1 Deferred proofs from sec:sa
	A.2 Deferred proofs from sec:apx
	A.3 Deferred proofs from sec:vc
	A.4 Deferred proofs from sec:bib

