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BEST APPROXIMATION BY RIDGE FUNCTIONS IN L ,-SPACES

V. E. Maiorov UDC 517.5

We study the approximation of the classes of functions by the manifold R;, formed by all possible linear
combinations of n ridge functions of the form r(a - x)). It is proved that, forany 1 < g < p < oo, the
deviation of the Sobolev class Wpr from the set R, of ridge functions in the space L4 (B d) satisfies the

sharp order n=7/(d=1)

1. Introduction

In the present work, we continue the investigation of approximation of multivariate functions by classes formed
by linear combinations of ridge functions started in [9, 10, 11, 5]. Ridge functions are defined as functions on R4
of the form r(a - x) with parameters a € R? and r:R — R, and a - x is the ordinary inner product. Let
Ly =L, (Bd), 1 < g < oo, be a Banach space of all g-integrable functions on the unit ball B9 = {Ix] < 1},

where |x|? = x7 4 ... + x3, with the norm

1/q

1fllg = /If(x)lqu
Bd

Let A be a set on the unit sphere S~ = {|x| = 1} in R?. We introduce the set of ridge functions
R(A) = {ra i=r(a-x):reLlyi(R) ae A},

where r runs over the class Ly joc(R) of square integrable functions on all compact subsets of R and a runs over
A. Denote R = R(Sd_l). Let n be a natural number. Consider a class of functions

R,=R+...4+ R,

formed by all possible linear combinations of n functions from the set R.

Approximation by ridge functions has been studied by several authors. In [26] and [6], necessary and sufficient
conditions are established for the closure of the set R(A) on a set A to coincide with the space of continuous
functions. In addition, Lin and Pinkus [7] proved that, for any fixed 7, the set R, is not dense in the spaces of
continuous functions on compact sets. The approximation properties of ridge manifolds were studied by Barron
[1], DeVore, Oskolkov, and Petrushev [2], Maiorov [9], Maiorov and Meir [12]. Makovoz [14], Mhaskar and
Micchelli [16], Mhaskar [15], Oskolkov [17], Petrushev [18], Pinkus [19], and Temlyakov [21]. In [5], Gordon,
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Maiorov, Meyer, and Reisner considered the results about the best approximation by ridge functions in the Banach
space Lp.

In the present work, we study the problems of the best approximation of multivariate functions from the
Sobolev classes W by the class R, in the space L4, where the parameters p and g satisfy the inequalities
1 < g < p < oo. Earlier, the asymptotic estimates of approximation by R, were studied in [5, 9] but only for
2=<q=p=oo.

Let p = (p1,...,p4) be a multiindex vector, i.e., p is a vector with nonnegative integer coordinates and
lp| = p1 + ...+ pg. We introduce a differential operator D? = 9Pl /9P1 x| ... 9Pdx .

Let r be any natural number. In the space L, = L,(B 4 we consider the Sobolev class of functions [23]

Wy = f: I lwy =1 flp+ D IDPfllp <1

lo|=r

For subsets W, V' C L4, we define the deviation of W from V' as follows:

e(W,V)y = sup e(f,V)q.
few

where e(f, V) = vlglff | f—vllg-

Theorem 1. Letd > 2, r >0, and 1 < p < q < oo be arbitrary numbers. Then the following asymptotic
inequality holds for the deviation of the Sobolev class Wy from the class Ry :

e(W,, Rn)g =< pr/d=1,

We now present a brief description of the proof of Theorem 1. In order to obtain the lower bound in Theorem
1, we construct, for any 7, a function f € W, depending on n such that the distance of f from the class R,
is greater than cn™" /(d=1) The construction of the function f is realized in the following way: In Section 2, we
introduce an orthonormal system {Pk (x)};zil of polynomials on the ball B¢ and study the Fourier coefficients
(ra, Pr) of the ridge function r(a - x) with respect to the system {Pk (x)}. In particular, we show that the co-
efficients allow the separation of variables r and a (see [13, 9, 10]), namely, the identity (rq, Pr) = u(a)v(r),
where u is a function of a and v is a linear functional of r, holds for any k. In Section 3, we estimate the
Vapnik—Chervonenkis dimension of the projection PrgR,, of the class of ridge functions R, onto the polynomial
space P;i. In Section 4, we prove Theorem 1 by using the results of Sections 2 and 3. In the Appendix, we present
the well-known results from the theory of orthogonal polynomials on the segment and from the theory of harmonic
analysis on the sphere used in the proof of Theorem 1.

In what follows, by ¢, ¢/, cg, c1, ..., etc. we denote positive constants independent of the parameter n which
may depend only on r, d, p, or q. For two positive sequences {a,} and {b,}, n = 0,1,..., we write a, < b,
if there exist positive constants c¢; and ¢, such that ¢; < a,/b, <cp foralln =0,1,....

2. Projection of R, onto the Polynomial Space

In the present section, we construct special orthonormal systems of polynomials on the unit ball B?. The
orthogonal systems of polynomials on the ball play an important role in the problems of approximation of mul-
tivariable functions by the manifolds of linear combinations of ridge functions (plane waves) (see [2, 18, 9, 10]).
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In [2, 18], these methods were developed for the construction of orthogonal projections on polynomial subspaces
and approximation by ridge functions. The system of Gegenbauer orthogonal polynomials is the main tool used
for the construction of orthogonal systems of polynomials on the ball [8]. Note that, in a special case d = 2, the
Gegenbauer polynomials coincide with the Chebyshev polynomials of second kind.

In the present work, the system of orthogonal polynomials on the unit ball is obtained, in a certain sense, by the
convolution of two orthogonal systems. These are the system of Gegenbauer polynomials on the segment [—1, 1]
and the system of spherical harmonics on the unit sphere S?~1. We now describe this construction.

Let L,(S¢~!) be the Hilbert space formed by all complex-valued square-integrable functions A(£) on the
sphere S9=1 with inner product

(h1.ha) = f M ERa©)dE, b1 ha € LyS4),
Sgd—1

where d & denotes the normalized Lebesgue measure on the sphere S d-1,

In the space L »(S91), we consider (see the Appendix) a subspace H of the restrictions of harmonic functions
defined on R? to S4~1. Let #; be the subspace of 7 generated by all spherical harmonics of degree at most s,
i.e., all harmonic polynomials of degree at most s. Let ’H?"m be the subspace of H; formed by all homogeneous
spherical harmonics of degree s. The functions {hg }xcks (see Appendix) generate a basis in the space ™.

The space Hs = ’Hg"m ® HIM & ... @ HIO™ is the direct sum of orthogonal subspaces of the spherical
harmonics of degrees 0, 1, ..., s. Denote by N; the dimension of the space H;. We have Ny = s4=1 Indeed, by
using the relation dim H?om = 42 (see (A.2)) we obtain

Ny = dim Hs = dim HE™ 4 dim HEO™ + .. + dim #0o™ < 5971,

In the space H, we introduce a family of functions B(S?~1) := {hi}72,, formed (see (A.2)) by all ordered
spherical harmonics, i.e., the functions

o0
s sdkexs,

s=0

where K* is defined in the Appendix. The set B(S?~!) is an orthonormal basis in the space H, i.e., for the
subscripts i # i’, we have (h;, h;’) = 8;;/, where 8;;; = 0 for i #i’, and 8;; = 1.

cd/?

We now consider (see the Appendix) the Gegenbauer polynomials (t), t € R, of degree n associated

with d/2. Every polynomial Cnd /2 is normed by a factor, i.e., we set

_—1/2,d)2 _ a2(d)aT ((d + 1)/2)
unlt) = vy TGO v = T2

where (a)o =1, and (@), = a(a+1)...(a+n—1).
Let i and j be any two indices from Z . In R4, we construct a function

: 1/2
(J + 1)d—1) 0

@ =y [ memeode = (Y05
Sd—1
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It follows from (1) that, for any i, j € Z4 the function P;; is a polynomial on R4 of degree j. Note that if the
indices i and j are such that the degrees of the polynomials /; and u; satisfy the inequality degh; > degu; = j,
then P;j(x) = 0 (see (A.8)). Assume that the set I consists of the couples of nonnegative integers (i, j) such that
degh; < j and the numbers degh; and j have the same parity. Let I be a subset of / formed by the couples
(i, j) with degh; < j <s. We construct a system of polynomials

Il:= [(BY) := {Pi}i.nyer ()

and consider a finite subsystem Il = {Pjj}(, j)er, of the system I formed by the polynomials of degree at
most .

Lemma 1 (see [10]).
(a) The set of polynomials Tl forms an orthonormal basis in the space of polynomials ng.
(b) The set of polynomials TLI(B?) is a complete orthonormal system of functions in the space L,(B?).

Let ¢ € S?~1 be an arbitrary vector and let A be an orthogonal matrix such that ¢ = Ae, where e =
(1,0,...,0). Also let A* be the matrix adjoint to A. We denote a* = A*e.

Lemma 2. Let ry, = r(a - x) be an arbitrary ridge function from the class R. Then any Fourier coefficient
of the function rq with respect to the orthonormal system Il = {P;j} admits separation of the variables a and
r, i.e., can be represented in the form

(ra, Pij) = hi(@™) j,
where

fj :/r(t)uj(t)wd/z(t)dt

1
is the jth Fourier—Gegenbauer coefficient of the function r.

Proof. In view of the invariance of the measures dx and d§ under rotations in R¢ and S¢, we conclude that

[ ranpyar =y [raxax [ nue oa
sd—1

B4 B4

v, [rte-ndx [ hiaTu; 60 as
Sd—1

B4

=v; / hi(A*E)dE / r(e-x)u;j(§-x)dx.
Sd—1 Bd
Further, we decompose the function r in the Fourier—Gegenbauer serious

r(t) =) Pug ()

k=0
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in the space L,(/, w). By using properties (A.2) and (A.3) established in the Appendix, we find

/r(e-x)uj(é-x)dxz ka/uk(e-x)uj(é-x)dx
Bd k=0 gp4

uj(e-§)

:fj[uj(e-x)uj(g.x)dx=fj W)

Bd
It follows from property (A.4) that

v; 7
uj(1)

Vj / hi(A*E)dE / r(e-x)u;(§-x)dé = /hi(A*E)uj(e-E) dx = Fjhi(A*e).
Sd—1 B4 Ssd

The lemma is proved.

By m = dim Psd we denote the dimension of the space Pf . Let r(x) = ZZ

from the class of ridge functions R,. Consider the projection of the function r onto the space 7351

_, & (ag - x) be any function

Pryr(x) := Z (r, Pij) Pij(x). 3)

Pl'j elly

According to Lemma 2, we can write

n

Pror(x) = > > hiag) F; Pij(x), )

k=1 P;; ellg
where 7y is the j th Fourier—Gegenbauer coefficient of the function gy.

3. Vapnik-Chervonenkis Dimension of the Class PriR,,

We now recall the notion of Vapnik—Chervonenkis dimension (for details, see [24]). Consider a function
sgna = 1 for a > 0 and sgna = —1 for a < 0. For a vector h = (hy,...,hy) in R", by sgnh we denote the
vector (sgnhy,...,sgnhy). Let H = {h} be a set of real-valued functions defined on R¥. By sgn H we denote
the set of all vectors {sgnh}, h € H.

Definition. The Vapnik—Chervonenkis dimension dimyc H of a set of functions H = {h} is defined as the
maximum natural number m for which there exists a collection {&1, ... ,&m} in R such that the cardinality of
the set of “sgn” vectors

S = {(sgnh(&y),...,sgnh(&y,)):h € H}

is equal to 2™. Thus, the set S coincides with the set of all vertices of the unit cube in the space R™.
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Let {&1,...,&,} be any collection of points in R Consider a set of vectors in R?
Mg = {(PE1 + 1), PEm +1): P €Pr Ry, 1 € RO}

It is necessary to estimate the cardinality |sgn I1,, s .| of the set of “sgn” vectors sgn I1,, s . To this end, we
use the following result:

Lemma 3 ([9], Lemma 3). Let m, s, [, and q be any natural numbers such that | + q < m/2. Also let
meg(0), « = 1,....m, B = 1,...,q be any fixed polynomials with real coefficients in the variables o € R,
each of degree 2s. Consider m polynomials in the | + q variables b € R? and o € R!

q
ma(b,0) =Y bpmap(0).  a=1,....m, (5)
B=1

and a polynomial manifold in R™

n ., = {(m(b,a), o 7tm(b,0)): (b,o) € RY x Rl}.

m,s,l,g —

Then the following estimate holds for the cardinality of the set sgn H;’,‘L 50"

m

2em )l+q

[senTT%, p 0l < @) +q +1)'F? (z Ty

Lemma 4. There exist absolute constants cg, c1, and ¢ such that

con < s4-1 < 2con, clsd <m< czsd,

and the cardinality of the set sgn I, s, satisfies the inequality
|sgn Hm,s,nl <2¢m

where ¢ < 1/4 is an absolute constant.

Proof. Consider a polynomial space PSd with orthonormal basis Ty = {P; j }, jyer,- Let P € Prg R, be an
arbitrary polynomial. Then

P(x)= Y (r. Piy)P;(x). (6)

@,7)els

where the function r(x) = Z:_l rr(ar - x) belongs to the manifold R,. We show that, for any point ¢ € R¥,

the polynomial P(§ + ) can be represented as a linear combination of polynomials in the variables a7, ..., a;.

and 7. It follows from identity (4) that

P(x)=) > hi(ap)f; Pij(x). (7)

k=1(i,j)el;
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Recall that the set /; consists of the couples (i, j) from the set I satisfying the inequality degh; < j <'s.
For any j, we introduce a set I formed by all numbers i such that degh; = j. Then the polynomial P(x) can
be rewritten as

P(x) =YY Fij > hi(ag)Pij(x). ®)

k=1j=1 " jer/

Since {Pj,j}(,j)eI, is an orthonormal basis in the space 73;1 , for any ¢, there exists a nondegenerate matrix

_ i/j/
F(t) - {VU (t)}(i,j),(i’,j’)els’

where (i, j) and (i’, j') are, respectively, the column and row subscripts of the matrix I"(¢), such that

PiE+n= > v/ ©P®. )

(UPITE
Note that all functions )/l.i]fj / (¢) are polynomials from the space Psd. Hence, it follows from (8) and (9) that
n s L
PE+D =Y > Fj Y. Y. v Ohi(af)Pijs(§). (10)
k=1j=1 jerj ('.j)els

We enumerate the set {(k,j):l <k<sn 1<j< s} in {8 =1,....q}, where ¢ = ns and put bg = ;.
For any point £y, o« = 1,...,m, and subscript 8 = 1,...,ns we define a function on R@+D" a5 follows:

naﬁ(a’f,...,a;:,t)zz Z V;;j/(f)hi(aZ)Pi’j’(Sa)-

ierd (.J)els

Thus, identity (10) can be rewritten as

q
P(E—i—t):Zbﬁnaﬂ(af,...,a;,t), a=1,...,m.
B=1

We introduce variables 0 = (a7, ...,ay,t) from the polynomial space Pés with [ = (d + 1)n. Thus, the

vector set I1,, 5, belongs to the set H;,zs, l.q with ¢ = sn. This and Lemma 3 imply that

2em \ T4
—) . (11D

[sgn T 25,0] < (85) (L + + 1) ( ,
+4q

Let co and ¢; < ¢ be positive numbers (they are chosen in what follows). Assume that the numbers m, s,
and [ satisfy the conditions

con < s4-1 < 2c¢on, clsd <m< czsd, and I =(d + Dn. (12)
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Substituting these conditions in inequality (11), we complete the proof of Lemma 4.
Lemma 4 directly yields the following corollary:

Corollary 1. The Vapnik—Chervonenkis dimension of the polynomial class Prs R, satisfies the estimate

2
dimyc PryRy < [logy(ds) + (I + 2)logy (I + ¢ + 1) + (I + q) logz(l i”;)

4. Approximation of the Class ’Psd by Ridge Functions

Let

o<yl

be a cube lying in the unit ball B 4 We define a function on R?

1
1, xe-=Q,
o(x) = 2
0, xeR9\Q,

and continue this functions to the space R so that » belongs to the class W (R?) and 0 < w(x) < 1 for all
x € R4, Let A and m be any natural numbers such that ml/d <A< 2m1/4  Consider a lattice subset from the
cube 2 formed by m points as follows:

W12 g4 1)2
m:{(“jz){ ,...,ldjm/ ):il,...,idz—x,...,k—l}.

]

Let &1, ..., &, be the points of the set E”. We introduce a set
Em={8:(81,...,8m): g = +1, i—l,...,m}

of sign vectors in R™. Consider a collection of functions
m
FM = {fg(x) =QA)7" Zsia) 2A(x —&i)): e € Em}
i=1

Clearly, every function f; from F™ belongs to the Sobolev class W/ . Denote by g, the polynomial of the best
approximation of the function f; in the L,o-norm of the space Psd , 1.e., such that

[ fe — gelloo = mind I fe — glloo-
gEPs

It is known [22] that the error of the best approximation of any function f € W/, from the polynomial space
P;i in the Lo-norm is bounded above as follows,

[ fe — gelloo < es™".
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Hence, we arrive at the following result:

Proposition 1. Consider a set of polynomials
G!' ={gs:e € E™}.
Then the deviation of the set F™ from the space G satisfies the inequality
e(F™,GM) oo <cs™".

Let Q be a set of functions from the space L(B%). By Pr,Q = {Pryg:q € Q} we denote the projection of
the set QO onto the subspace 7351.

LemmaSs. Let 1 < g < oo be an arbitrary number and let P € Psd be an arbitrary polynomial. Then
e(P’ Rn)q Z e(Pv PrSRn)Q'

Proof. We have

n
e(P,R = inf P(x)— ri(ai - x (13)
Folnda = 8 apeme | ,_Zl (i)
= q
Further, we fix a set of vectors a = {ay,...,a,} and consider a linear subspace of functions

Uy(a) := {u = Zui(a,- -X): u; € Lz,IOC(R)}.

i=1

Let Uy (a)*+ = {v € Lg:(v,u) =0 forall u € Uy (a)} be the annihilator subspace in L, for the subspace
Uy (a). We define a number ¢’ such that 1/g + 1/¢" = 1. In view of the duality in the space L,, we get

inf ||P—uly= sup (P,v) > sup (P, v).
uely, (a) veUu(a)*, vl <1 veU,(@)LnP¢, vl <1

Since
Un(@)r NP4 = {v e P (v, Uy(a)) = 0} = {v: (v, Pry Up(a))) = 0},

by using the duality in the space PSd once again, we obtain

e(P, Un(a))q > sup <P, U) = inf ||P _ h”q (14)
vePr, Uy (@)L NPE, vl <1 hePr; Uy (a)

It follows from (13) and (14) that

e(P,Ry)g = . infa e(P,Uy(a))g = inf inf  ||P —hllg =e(P,PrsRy)q.

15---5n at,-.san hGPrsUn(a)

Lemma 5 is proved.
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5. Proof of Theorem 1

Consider a space [{" formed by vectors x € R™ and equipped with a norm ||x ||y = [x1| + ... + [xm[. In
the space /{" we consider a subset E™ = {e: €1y Em = j:l}. The following lemma is proved in [9]. For the
sake of completeness, we present its proof in what follows.

Lemma 6. Assume that all conditions of Lemma 4 are satisfied. Then there is a vector €* € E™ such that

e(e*, Mnsn)ym == _inf  |&* —x|ym = am,
X€llm. s.n

where a is an absolute strictly positive constant.

Proof. Let a < 1 be an absolute constant satisfying the equation

47

1
1-— 5(1 —2a)210g26 =

(i,e.,a =0.19...). Weset IT = sgn Il s ,. Let w be any vector from II. Consider a subset of E™
m
E; = {8 € E™: Z|8,~ —mi| < 2am}.
i=1

Since m; = £1, we have the following estimate for the cardinality of the set E :

|En| =

e 3 1<am :[in:]('?).

igi=1 i=0

{s € E™: Z(si +1)< 2am}

i=1

Further, by using the well-known estimate (see, e.g., [3], Chapter 8), we find

[am]
Z (m) < om ,—2m(1/2—)> < obm.
izo \!
where
_ 1 47
B =m Ham] and b=1—5(1—2a)210g2e=a.

Hence, |E;| < 247™/6% In E™ we now consider a subset E/ = (e (E™ \ Ex) and estimate the cardinality
of E’ as follows:

|E'| =

E™\ | Ex

neH

22m—|H|malgI(|Eﬂ| > o™ _ |[1|2W7/68m (15)
Te

By Lemma 4, we conclude that |TI| < 2”/4. This and (15) imply that |E’| > 2™ —2(63/64)m - () Therefore,
there exists a vector ¢* such that the following inequality holds for any vector 7 € IT:
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le* = wllym > 2am.

This yields the inequality

1
e(e™, Mn,s,n)im > Ee(s*,sgn M, s,0)im > am.
Lemma 6 is proved.

Lemma 7. Assume the natural numbers m, s, and n satisfy the conditions of Lemma 4. Then there exists
fex € F™ such that

e(fex,PryRy)1 > C3n_r/(d_1) >
where c3 is an absolute strictly positive constant.

Proof. Let f, and P be any functions from the sets 7" and Prg R, respectively. We have

||f8—P||1z/|f8(x>—P<x)|dx= / SO fele + 1) — P +0)|dr.
Q

Q/(2a) =1

We now define a function @ (¢) = (2A) " w(2A t). Since f.(&; +1) = w(t)e;, for every vector &, we conclude
that, for any ¢ from the cube Q/(21),

m

Z\fs(éz+t)—P(§z+t)|> inf > |@()e — P& + 1)

d
-1 PeEPrR;,, TER =1

=  inf @) |e— PE + 1)

PePrgR,,, TeRY P

Thus, we get

I fo — P||1>l inf __|&()] inf Z|g, P& +1)| =

e(e, pm s, 17")-
m teQ/(2A) PePrR,, T€ER

(21)’

Recall (see (12)) that the numbers m, s, and n satisfy the conditions con < 5471 < 2con, c15% <m < cp59,
and m'/4 < A < 2m'/4. Applying Lemma 6, we conclude that there is a function f.+ € F™ satisfying the
inequality

3d ~r/(d—1) c3d
[ fex — Pt > > can”’ :
’ (24 /4 2co)

for any polynomial P € PrgR;,.
Lemma 7 is proved.

Lemma 8. The deviation of the set F™ from the class Ry, satisfies the inequality

e(F™, Rp)1 = cqn /@71,
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Proof. Let f € F™ be an arbitrary function. According to Proposition 1, one can find a polynomial g € G7*
such that

If = gloo < 57" 16)
By using Lemma 5 and (twice) inequality (16), we obtain
e(F™,Rp)1 = e(GY", Ry, L) —cs™"
> e(GY', PrsRy)1 —cs™ " > e(F™,PrgRp)1 — 2¢s™ .
We choose ¢, and cqg such that ¢4 > 2c¢. Then it follows from Lemma 7 that
e(F™, Ry)1 > can~ @7 oy /@D
Lemma 8 is proved.

We now prove Theorem 1. It is known that the collection of functions " belongs to the class W/ . Therefore,
by using Holder’s inequality for 1 < ¢ < p < oo and Lemma 8, we get

e(Wy, Rn)qg > e(Wa, Rn)1 > e(F™, Ry)1 > en~T/@=1
The upper bound
e(W] . Rp)q < cn™"/@=D

was established in [9].
The proof of Theorem 1 is completed.

6. Appendix

We now discuss some well-known results connected with the orthogonal polynomials used in the present work.

Gegenbauer Polynomials. The Gegenbauer polynomials are usually defined via the generating function:
o0
(1-2tz + 22)_)k = Z C,?(t)zk,
k=0

where |z| < 1, |t] < 1, and A > 0. The coefficients C]é(t) are algebraic polynomials of degree k. They are
called the Gegenbauer polynomials associated with A.
The Gegenbauer polynomials possess the following properties:

1. The family of polynomials {C ,?} is a complete orthogonal system for a weighted space L, (1, w), where
I =[-1,1], w() = wy(t) ;== (1 —12)*1/2 and

0, m#n, a2, T(A + 1/2)
Ap A _ i = z
[ ciwciouaar - with v = = SR

7 UpA, M =0,

(A.1)
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Here, we use the ordinary notation: (a)g := 0 and (a)y :(=a(@a+1)...(a+ N —1).

2. Let P, be the set of all algebraic polynomials of total degree n in d real variables. We set u, () =

v;1/2 d/z(t) where

_ 72@)l (@ + 1)/2)
T T+ d/onTd)2)

The polynomials u, (£ - x), £ € S471, are in P, and the polynomials u, (& - x) are orthogonal to P,_;
in L,(B?) (see [18)):

/ un(§-x)p(x)dx =0  VEe S9! and Vp e Pu_1. (A.2)
B4

3. Forany &,7 € $4=1 we have (see [18])

f (& - (- x)dx = 22 EN. (A3)

un(1)
B4

4. For any polynomial h(x) € P, such that h(x) = (—1)"h(—x) forall x € R?, we have (see [18])

/ hEun(§ - md§ = un—(l)h(ﬂ), where v, = (4 Da—1

o = Sami (A4)

An Orthogonal System of Polynomials on the Sphere. We now present some facts (see [4, 25, 20]) from
the theory of harmonic analysis on the sphere. Let s be an arbitrary positive integer. Consider a space H; formed
by homogeneous harmonic polynomials of degree s in d variables xi,...,xz. Any polynomial from Hy is
decomposable in a linear combination of polynomials of the form

—kj-1+1 4 L2tk ((Xd—j .
her(x) = Agk l_[ o k k_;+1 ! (ﬁ) (xp & ixp)ka—2, (A.5)

where rﬁ_j = xf + ...+ x32 4_ ;- The vector k with integer coordinates belongs to the set

- {k — (kovk1s.. kg niekg n): 0<kgo<..<k <ko=s, &= il},

and Ay is the normalization factor. It is known that the dimension of the space H; is given by the formulas

—1 _
dim s = |K*| = (Hf )— (Stfz 3), (A.6)
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for s > 2, dimHo = 1, and dim#; = d. Itis easy to see that the dimension of H; is asymptotically given by

dimH = (2 + c(s,d))s(s +1)...(s+d-3) = 5472, A7)

2
ta-a

where 0 < ¢(s,d) <1 is a function depending only on s and d.
The family of functions {Ag}xexs is an orthonormal system in the space L,(S?~1), i.e., the following
relation holds for any multiindices k, k" € K*:

(hsk>hskr) = / hsic(§)hsir (§)dE = Spyer. (A.8)
Sdfl

Note that, for s # s’, the spaces Hs and Hy are orthogonal with respect to the inner product (A.8). The
family of functions | 5o o{/sk }keks is a complete orthonormal system in the space Lo (S d—1y

The set of polynomials of degree < n on the sphere {p: p € P,} is contained in the space HoDH1D...DH,,
which is the direct sum of the orthogonal subspaces Ho, H1, . . ., Hn. This implies that the following equality holds
for any polynomial p € P, and any function & € Hp4+1 D Hu42 D ... :

[ PEREE = 0.

Sd—1
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