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Abstract
The expressivity of neural networks as a func-
tion of their depth, width and type of activation
units has been an important question in deep learn-
ing theory. Recently, depth separation results for
ReLU networks were obtained via a new con-
nection with dynamical systems, using a gen-
eralized notion of fixed points of a continuous
map f , called periodic points. In this work, we
strengthen the connection with dynamical systems
and we improve the existing width lower bounds
along several aspects. Our first main result is
period-specific width lower bounds that hold un-
der the stronger notion of L1-approximation error,
instead of the weaker classification error. Our sec-
ond contribution is that we provide sharper width
lower bounds, still yielding meaningful exponen-
tial depth-width separations, in regimes where
previous results wouldn’t apply. A byproduct of
our results is that there exists a universal constant
characterizing the depth-width trade-offs, as long
as f has odd periods. Technically, our results
follow by unveiling a tighter connection between
the following three quantities of a given function:
its period, its Lipschitz constant and the growth
rate of the number of oscillations arising under
compositions of the function f with itself.

1. Introduction
Deep Neural Networks (NNs) with many hidden layers are
now at the core of modern machine learning applications and
can achieve remarkable performance that was previously
unattainable using shallow networks. But why are deeper
networks better than shallow? Perhaps intuitively, one can
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understand that the nature of computation done by deep and
shallow networks is different; simple one hidden layer NNs
extract independent features of the input and return their
weighted sum, while deeper NNs can compute features of
features, making the features computed by deeper layers
no longer independent. Another line of intuition ((Poole
et al., 2016)), is that highly complicated manifolds in input
space can actually turn into flattened manifolds in hidden
space, thus helping with downstream tasks (e.g., classifica-
tion).

To make the above intuitions formal and understand the ben-
efits of depth, researchers try to understand the expressivity
of NNs and prove depth separation results. Early results in
this area sometimes referred to as universality theorems (Cy-
benko, 1989; Hornik et al., 1989), state that NNs of just one
hidden layer, equipped with standard activation units (e.g.,
sigmoids, ReLUs etc.) are “dense” in the space of con-
tinuous functions, meaning that any continuous function
can be represented by an appropriate combination of these
activation units. There is a computational caveat however,
since the width of this one hidden layer network can be
unbounded and grow arbitrarily with the input function. In
practice, resources are bounded, hence the more meaningful
questions have to do with depth separations.

This is a foundational question not only in deep learning
theory but also in other computational models (e.g., boolean
circuit complexity (Hastad, 1986; Kane & Williams, 2016))
with a rich history of prior work, bringing together ideas and
techniques from boolean functions, Fourier and harmonic
analysis, special functions, fractal geometry, differential ge-
ometry and more recently dynamical systems and chaos. At
a high level, all these works define an appropriate notion
of “complexity” and later demonstrate how deeper mod-
els are significantly more powerful than shallower models.
A partial list of the different notions of complexity that
have been considered include global curvature (Poole et al.,
2016) and trajectory length (Raghu et al., 2017), number
of activation patterns (Hanin & Rolnick, 2019) and linear
regions (Montufar et al., 2014; Arora et al., 2016), frac-
tals (Malach & Shalev-Shwartz, 2019), the dimension of
algebraic varieties (Kileel et al., 2019), Fourier analysis (El-
dan & Shamir, 2016; Bresler & Nagaraj, 2020), number of
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oscillations (Schmitt, 2000; Telgarsky, 2016; 2015) and pe-
riods of continuous maps (Chatziafratis et al., 2020).

In this work, we build upon the works by (Telgarsky, 2016)
that relied on the number of oscillations of continuous func-
tions and by (Chatziafratis et al., 2020) that relied on peri-
odic points present in a continuous map and connections to
dynamical systems to derive depth separations (see Section 2
for definitions). We ask the following question:

Can we exploit further connections to dynamical systems to
derive improved depth-width trade-offs?

We are indeed able to do this and improve the known depth
separations along several aspects:

• We show that there exist real-valued functions f , ex-
pressible by deep NNs, for which shallower networks,
even with exponentially larger width, incur large L1

error instead of the weaker1 notion of classification
error that was previously shown (Chatziafratis et al.,
2020; Telgarsky, 2015).

• We obtain width lower bounds that are sharper across
all regimes for the periodic orbits in f and surprisingly
we show that there is a universal constant characteriz-
ing the depth-width trade-offs, as long as f contains
points of odd period. This was not known before as the
trade-offs were becoming increasingly less pronounced
(approaching the trivial value 1) when f ’s period was
growing.

• Finally, the obtained period-specific depth-width trade-
offs are shown to hold against shallow networks
equipped with semi-algebraic units as defined in (Tel-
garsky, 2016) and can be extended to the case of high-
dimensional input functions by an appropriate projec-
tion.

Technically, our improved results are based on a tighter
eigenvalue analysis of the dynamical systems arising from
the periodic orbits in f and on some new connections be-
tween the Lipschitz constant of f , its (prime) period, and
the growth rate of the oscillatory behaviour of repeatedly
composing f with itself. This latter connection allows us to
lower bound the L1 error of shallow (but wide) networks,
yielding period-specific depth-width lower bounds.

At a broader perspective, we completely answer a question
raised by (Telgarsky, 2016), regarding the construction of
large families of hard-to-represent functions. Our results are
tight, as one can explicitly construct examples of functions
that achieve equality in our bounds (see Lemma 3.6). En

1The word “weaker” here is justified because the goal is to
prove a lower bound on the approximation error. Notice that there
exist cases where the classification error is large, but the L1 error
is small (e.g., see example in Figure 1).

route to our results, we unify and extend previous methods
for depth separations (Telgarsky, 2016; Chatziafratis et al.,
2020; Schmitt, 2000).

Last but not least, we complement our theoretical findings
with experiments on a synthetic data set to validate our
obtained L1 bounds and also contextualize the fact that
depth can indeed be beneficial for some simple learning
tasks involving functions of certain periods.

1.1. Background on dynamical systems

Here we give the necessary background from dynamical
systems in order to later state our results more formally.
From now on, f : [a, b]→ [a, b] is assumed to be continu-
ous.

Periods: The notion of a periodic point (a generalization
of a fixed point) will be important:

Definition 1.1. We say f contains period n or has a point of
period n ≥ 1, if there exists a point x0 ∈ [a, b] such that2:

fn(x0) = x0 and fk(x0) 6= x0,∀ 1 ≤ k ≤ n− 1.

In particular, C := {x0, f(x0), f(f(x0)), . . . , fn−1(x0)}
has distinct elements (each of which is a point of period n)
and is called a cycle (or orbit) with period n.

Observe that since f : [a, b]→ [a, b] is continuous, it must
have a point of period 1, i.e., a fixed point.

Sharkovsky’s Theorem: Recently, (Chatziafratis et al.,
2020) used the period of f to derive period-specific depth-
width trade-offs via Sharkovsky’s theorem (Sharkovsky,
1964; 1965) from dynamical systems that provides restric-
tions on the allowed periods f can have:

Definition 1.2. Define the following (decreasing) ordering
. called Sharkovsky’s ordering:

3 . 5 . 7 . . . . . 2 · 3 . 2 · 5 . 2 · 7 . . . .

. . . . 22 · 3 . 22 · 5 . 22 · 7 . . . . . 23 . 22 . 2 . 1
We write l . r or r / l whenever l is to the left of r and this
gives a total ordering on the natural numbers.

Observe that the number 3 is the largest according to this
ordering. Sharkovsky showed a surprising and elegant result
about his ordering: it describes which numbers can be pe-
riods for a continuous map on an interval; allowed periods
must be a suffix of his ordering:

Theorem 1.1 (Sharkovsky’s Theorem). If f contains period
n and n . n′, then f also contains period n′.

2As usual, fn(x0) denotes the composition of f with itself n
times, evaluated at point x0.
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According to Sharkovsky’s Theorem, 3 is the maximum
period, so one important and easy-to-remember corollary is
that period 3 implies all periods.3

We finally need the definition of a prime period for
f :

Definition 1.3 (Prime period). A function f has prime pe-
riod n as long as it contains period n, but has no periods
greater than n, according to the Sharkovsky . ordering.

Notice that for f(x) = 1 − x, its prime period is 2, since
f(f(x)) = 1− (1− x) = x, which implies that it also has
fixed point (f( 1

2 ) = 1
2 ).

1.2. Classification, L1 and L∞ errors

(Telgarsky, 2016) proved that f can be the output of a deep
NN, for which any function g belonging to a family of shal-
low, yet extremely wide NNs, will incur high approximation
error. He used the most satisfying measure for lower bound-
ing the approximation error between f and g, which was the
L1 error. We say L1 is satisfying, because if the L1 distance
between two functions is large, then certainly there are sets
of positive measure in the domain where they differ. Just
to make the point clear, if L∞ was used, it wouldn’t imply
good depth separations, since L∞ is extremely sensitive
even to single point differences. Of course, the situation
gets reversed if instead the goal is to obtain distance upper
bounds, for which L∞ is the most desirable. On the other
hand, the classification error used in (Chatziafratis et al.,
2020; Telgarsky, 2015) (for exact definition, see Section 2)
is a much weaker notion of approximation, that does not
seem appropriate for comparing continuous functions, since
f and g can have large classification distance, yet still be the
same, almost everywhere (i.e., their L1 is arbitrarily close to
zero). An explanation for this is depicted in Figure 1.

To get his L1 bound, Telgarsky presented a simple and
highly symmetric construction based on the triangle (or
tent) map, which can be thought of as a combination of just
two ReLUs. Later he used it to argue that repeated compo-
sitions of this map with itself (equivalently, concatenating
layers one after the other) yield highly oscillatory outputs.
Since functions g generated by shallow networks cannot
possibly have so rapidly changing oscillations, he relied on
symmetries due to the triangle map and he estimated areas
where the two functions differ in order to get a lower bound
between g and the triangle compositions.

However, here we can no longer use the specific tent map,

3On a historical plot twist, this special case was proved a decade
later by James Yorke and Tien-Yien Li, in their seminal paper
called “Period Three Implies Chaos” (Li & Yorke, 1975); this is
a celebrated result that introduced the term “chaos” as used in
Mathematics (chaos theory).

Figure 1. A comparison between two functions that agree almost
everywhere. Suppose, the true function has many oscillations, but
over a small interval ε and suppose the NN approximates this with
a single bump as shown. In this case, theL1 error is small, however
the classification error can be artificially inflated, hence leading
to separations, based on unsatisfactory notions of approximation.
Similarly, one should not rely on using L∞ error to get separation
results, which is also large in this example.

since we generalize the constructions based only on the
periods of the functions; hence all the symmetries and reg-
ularities used to derive the L1 bound are gone. For us, the
challenge will be to bound the L1 error based on the peri-
ods. For example, in a special case of our result, when the
function f has period 3, only 3 values of the function are
known on 3 points in the domain. Can one use such limited
information to bound the L1 error against shallow NNs?
The natural question that arises is the following:

Is it possible to obtain period-specific depth-width
trade-offs based on L1 error instead of classification error

using only information about the periods?

Surprisingly, the answer is yes and at a high level, we show
that the oscillations arising by function compositions are not
pathologically concentrated only on “tiny” sets in the do-
main. Specifically, we carry this out by exploiting some new
connections between the prime period of f , its Lipschitz
constant and the growth rate of the number of oscillations
when taking compositions with itself.

1.3. Periods, Lipschitz constant and Oscillations

A byproduct of our analysis will be that given two “design”
parameters for a function f , its prime period and Lipschitz
constant, we will be able to construct hard-to-represent
functions with these parameters, or say it is impossible.
This gives a better understanding between those apparently
unrelated quantities. To do this we rely on the oscillations
that appear after composing f with itself multiple times, as
the underlying thread connecting the above notions.

We can show that the Lipschitz constant always dominates
the growth rate of the number of oscillations as we take
compositions of f with itself. Moreover, whenever its Lips-
chitz constant matches this growth rate, we can prove that
its repeated compositions cannot be approximated by shal-
low NNs (where the depth of the NN is sublinear in the
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number of compositions). Finally, we can characterize the
number of oscillations in terms of the prime period of the
function of interest. These findings provide bounds between
the three quantities,: prime period, Lipschitz constant and
oscillations.

1.4. Our contributions

We now have the vocabulary to state and interpret our results.
For simplicity, we will give informal statements that hold
against ReLU NNs, but everything goes through for semi-
algebraic gates and for higher dimensions as well. Our first
result connects the periods with the number of oscillations
and improves upon the bounds obtained in (Chatziafratis
et al., 2020).

Theorem 1.2. Let f : [a, b]→ [a, b] have odd prime period
p > 1. Then, there exist points x < y ∈ [a, b], so that the
number of oscillations between x and y is rhot where ρ is
the root greater than one of the polynomial:

zp−1 − zp−2 −
p−3∑
j=0

(−z)j = 0.

We derived the above polynomial as the characteristic poly-
nomial of an adjacency matrix describing some interval
mapping relations of the dynamical system of f and its com-
positions. For example, if p = 3, the adjacency matrix is
that of the Fibonacci sequence and the characteristic polyno-
mial z2 − z − 1 = 0 is zero when z = φ, where φ = 1+

√
5

2
is the golden ratio.

Our second result ties the Lipschitz constant with the depth-
width trade-offs under the L1 approximation.

Theorem 1.3. Let f : [a, b]→ [a, b] be L-Lipschitz, and g
be any ReLU NN with u units per layer and l layers. Suppose
there exist numbers x, y ∈ [a, b], such that the oscillations
of f t between x, y are at least ρt for some constant ρ > 1.
As long as L = ρ, then for any NN g that has width-depth
such that4 (2u)l ≤ ρt/8, we get the desired L1-separation:

min
g

∫ b

a

|f t(z)− g(z)|dz ≥ c(x, y) > 0,

where c(x, y) depends on x, y but not on t.

The above theorem implies depth separations, since if the
depth of the “shallow” network g is l = o(t), then even
exponential width u will not suffice for a good approxima-
tion.

4We arbitrarily selected the denominator to be 8 here; instead
of 8, any denominator > 2 would still result in a (strictly positive)
constant L1 separation independent of t.

Given the above understanding regarding the Lipschitz con-
stant, the periods and the number of oscillations, it is now
easy to construct infinite families of functions that are tight
in the sense that they achieve the depth-width trade-offs
bounds promised by our theorem for any period p (see
Lemma 3.6).

Observe that the largest root of the polynomial in the state-
ment of Theorem 1.2 is always larger than

√
2. This implies

a sharp transition for the depth-width trade-offs, since the
oscillations growth rate will be at least

√
2, whenever f con-

tains an odd period. Previous results, only acquired a base
in the exponent that would approach 1, as the (odd) period p
increased, and it is known that if f does not contain odd fac-
tors in its prime period, then the oscillations can grow only
polynomially quickly (Chatziafratis et al., 2020).

Finally, in our experimental section we give a simple re-
gression task based on periodic functions, that validates our
obtained L1 bound and we also demonstrate how the error
drops as we increase the depth.

2. Preliminaries
In this section we provide some important definitions and
facts that will be used for the proofs of our main results.
First we define the notion of crossings/oscillations.

Definition 2.1 (Crossings/Oscillations). A continuous func-
tion f : [a, b] → [a, b] crosses the interval [x, y] with
x, y ∈ [a, b] if there exist c, d ∈ [a, b], such that f(c) = x
and f(d) = y. Moreover we denote Cx,y(f) the number of
times f crosses [x, y]. It holds Cx,y(f) = t if there exist
numbers a1, b1 < a2, b2 < . . . < at, bt in [a, b] so that
f(ai) = x and f(bi) = y for all 1 ≤ i ≤ t.

We next mention the definition of covering relation between
two intervals I1, I2. This notion is crucial because as we
shall see later, it enables us to define a graph and analyze
the spectral properties of its adjacency matrix. Bounding
the spectral norm of the adjacency matrix from below will
enable us to give lower bounds on the number of cross-
ings/oscillations.

Definition 2.2 (Covering relation). Let f be a function and
I1, I2 be two closed intervals. We say that I1 covers I2

under f , denoted by I1
f−→ I2 whenever I2 ⊆ f(I1).

We conclude this section with the definition of L1 and clas-
sification error.

Definition 2.3 (L1 error). For two functions f, g : [a, b]→
[a, b], their L1 distance is:∫

[a,b]
|f(x)− g(x)|dx.
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Definition 2.4 (Classification error). If we specify a collec-
tion of n points (xi, yi)ni=1 with yi ∈ {0, 1}, one can define
the classification error of a function g to be:

R(g) = 1
n

n∑
i=1

1[g̃(xi) 6= yi],

where g̃(z) = 1[g(z) ≥ v] is the thresholded value of g
based on some chosen threshold v (e.g., v could be 1

2 ).

3. Lipschitz constant and Oscillations
In this section, we provide characterizations of continuous
L-Lipschitz functions f : [a, b]→ [a, b], the compositions
of which cannot be approximated (in terms of L1 error) by
shallow NNs. For the rest of this section, we assume that
there exist x, y ∈ [a, b] with x < y, such that the number
of oscillations is: Cx,y(f t) ≥ Cρt,∀t ∈ N, where ρ is a
constant greater than one (we shall call ρ the growth rate of
the oscillations) and C is some positive constant.

The lemma below formalizes the idea that a highly oscil-
latory function needs to have large Lipschitz constant, by
showing that L ≥ ρ.

Lemma 3.1 (Lower bound on L). Let f : [a, b] → [a, b]
be as above. It holds that Lt is at least C ′ρt, where C ′ is
another positive constant.

Proof. Without loss of generality let n be even, and let
it denote the number of oscillations between x, y of the
function f t, i.e., n ≥ Cρt. Let a ≤ a0 < a1 < . . . < an ≤
b be the points such that f t(a2r+1) = x and f t(a2r) = y
for 0 ≤ r ≤ n

2 . Since f t has Lipschitz constant Lt, it holds
that y−xLt ≤ ai+1−ai for all 0 ≤ i ≤ n−1. By adding these
inequalities, we get a telescoping sum, and we conclude:

n · (y − x)
Lt

≤
n−1∑
i=0

(ai+1 − ai) = an − a0 ≤ b− a.

Therefore Lt ≥ (y−x)n
b−a ≥ C ′ρt, where C ′ = C · (y−x)

b−a is a
positive constant.

An immediate corollary of Lemma 3.1 is L ≥ ρ as de-
sired.

3.1. Lipschitz matches oscillations rate for L1

error

In this section, we give sufficient conditions for a class of
functions f , so that it cannot be approximated (in L1 sense)
by shallow ReLU NNs, and we will later extend it to semi-
algebraic gates. The key statement is that the Lipschitz
constant of such a function should match the growth rate of
the number of oscillations.

Assume that g : [a, b] → [a, b] is a neural network with
l layers and u nodes (activations) per layer. It is known
that a ReLU NN with u ReLU’s per layer and with l layers
is piecewise affine with at most (2u)l pieces (Telgarsky,
2015).

From now on, let h := f t for ease of presentation. We de-
fine as h̃(z) = 1[h(z) ≥ x+y

2 ] and g̃(z) = 1[g(z) ≥ x+y
2 ]

for some chosen values of x, y ∈ [a, b] to be defined later
(as we shall see, x, y are just points for which h oscillates
between them). Let Ih,x,y, Ig,x,y be the partition of [a, b],
where h̃, g̃ are piecewise constant respectively. We also
define J̃h,x,y ⊆ Ih,x,y the collection of intervals with the
extra assumption that there exists w in each of them such
that h(w) = y or h(w) = x. Finally define a maximal (in
cardinality) sub-collection of intervals Jh,x,y ⊆ J̃h,x,y in
such a way that if U1, U2 are consecutive intervals in J̃h,x,y ,
the image h(U1) contains x and the image of h(U2) con-
tains y (or vice-versa), that is there is an alternation between
x, y. It follows (Telgarsky, 2015) that

1
|Jh,x,y|

∑
U∈Jh,x,y

1[∀z ∈ U.h̃(z) 6= g̃(z)]

≥ 1
2

(
1− 2 |Ig,x,y|

|Jh,x,y|

)
.

(1)

Moreover, one can show the following claim for any interval
U ∈ Jh,x,y , and we will use this later:

Claim 1. Let U ∈ Jh,x,y , then∫
U

∣∣∣∣h(z)− x+ y

2

∣∣∣∣ dz ≥ (y−x)2

8Lt .

Proof. Firstly, observe that h is Lipschitz with constant Lt

by definition and without loss of generality let’s assume
x < y. In what follows, we make use of the intermediate
value theorem for continuous functions.

First we consider the case where there exists a w ∈ U such
that h(w) = y.

Let c < d, with c, d ∈ U so that h(c) = h(d) = y
2 + x+y

4
and h(z) ≥ y

2 + x+y
4 for z ∈ [c, d] and w ∈ [c, d] with

f(w) = y. It is clear that∫
U

∣∣∣∣h(z)− x+ y

2

∣∣∣∣ dz ≥ y − x
4 (d− c).

Finally, by the fact that h is Lipschitz with constant Lt, it
follows that (d− c) = (d−w) + (w− c) ≥ y−x

4Lt + y−x
4Lt =

y−x
2Lt . The claim for the case there exists w ∈ U with
h(w) = y follows by substitution. See also Figure 2.

Similarly, we consider the case in which there exists a w ∈
U such that h(w) = x. Let c < d, with c, d ∈ U so that
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h(c) = h(d) = x
2 + x+y

4 and h(z) ≤ x
2 + x+y

4 for z ∈ [c, d]
and w ∈ [c, d] with f(w) = x. It is clear that∫

U

∣∣∣∣h(z)− x+ y

2

∣∣∣∣ dz ≥ y − x
4 (d− c).

Again using the fact that h is Lipschitz with constant Lt, it
follows that (d− c) = (d−w) + (w− c) ≥ y−x

4Lt + y−x
4Lt =

y−x
2Lt . The claim for the case in which there exists a w ∈ U
such that h(w) = x follows by substitution.

As mentioned in the beginning, a sufficient condition for a
function f to be hard-to-represent, is that its Lipschitz con-
stant should be exactly equal to the base in the growth rate
of the number of oscillations. In Telgarsky’s paper, the func-
tion used was the tent map that has Lipschitz constant equal
to 2, and the oscillations growth rate under repeated compo-
sitions also had growth rate 2. This is not a coincidence and
here we generalize this observation.

Theorem 3.2 (Lipschitz matches oscillations). Let f :
[a, b]→ [a, b] be L-Lipschitz, and g be any ReLU NN with
u units per layer and l layers. Suppose there exist x, y such
that the oscillations of f t between x, y are ρt for some con-
stant ρ > 1. As long as L = ρ (by Lemma 3.1 we already
know that L ≥ ρ) and (2u)l ≤ ρt

α , where α > 2 then we
get the desired L1-separation:

min
g

∫ b

a

|f t(z)− g(z)|dz ≥ c(x, y) > 0,

where c(x, y) depends on x, y (and α) but not on t.

Proof. We will prove a lower bound for the L1 distance
between h := f t and an arbitrary g from the aforementioned
family of NNs with (2u)l ≤ ρt

α .∫ b

a

|h(z)− g(z)| dz =
∑

U∈Ih,x,y

∫
U

|h(z)− g(z)| dz

≥
∑

U∈Jh,x,y

∫
U

|h(z)− g(z)| dz

≥
∑

U∈Jh,x,y

∫
U

∣∣∣∣h(z)− x+ y

2

∣∣∣∣ 1[∀z ∈ U.h̃(z) 6= g̃(z)]dz

≥ |Jh,x,y|(y − x)2

16Lt

(
1− 2 |Ig,x,y|

|Jh,x,y|

)
.

It is clear that |Jh,x,y| is at least the number of crossings
C(f t), hence we conclude that |Jh,x,y| is ρt. It follows that

∫ b

a

|h(z)− g(z)| dz ≥
(
ρ
L

)t (y − x)2

16

(
1− 2 |Ig,x,y|

ρt

)
.

Here, |Ig,x,y| ≤ (2u)l and as long as (2u)l ≤ ρt

α , and since
L = ρ, we conclude that∫ b

a

|h(z)− g(z)| dz ≥ (α− 2)(y − x)2

16α .

Larger Lipschitz: Observe that if we didn’t require that
L = ρ and instead L > ρ, no meaningful L1 guarantee
could be derived since the term ( ρL )t would shrink for large
t (see also Figure 2).

Semi-algebraic activation units: Our results can be easily
generalized for the general class of semi-algebraic units
(see (Telgarsky, 2016) for definitions). The idea works as
follows: Any neural network that has activation units that
are semi-algebraic, it is piecewise polynomial, therefore
piecewise monotone (the pieces depend on the degree of the
polynomial, which in turn depends on the specifications of
the activation units). Therefore, the function g̃ (as defined
above) is piecewise constant and defines a partition of the
domain [a, b]. The crucial observation is that the size of this
partition is bounded by a number that depends exponentially
on the number of layers (i.e., layers appear in the exponent)
and polynomially on the number of units per layer (i.e.,
width is in the base). Finally, our results can be applied for
the multivariate case. As in (Telgarsky, 2016), we handle
this case by first choosing an affine map µ : R → Rd
(meaning µ(z) = κz + ν) and considering functions f t ◦ µ.

3.2. Periodicity and Lipschitz constant

In this subsection, we improve the result of (Chatziafratis
et al., 2020), by showing that functions f of odd period
p > 1 have points x < y so that the number of oscillations
between x and y is ρt, where ρ is the root greater than one
of the polynomial equation

zp−1 − zp−2 −
p−3∑
j=0

(−z)j = zp − 2zp−2 − 1
z + 1 = 0.

This consists an improvement from the previous result in
(Chatziafratis et al., 2020) that states that the growth rate
of the oscillations of compositions of a function with p-
periodic point is the root greater than one of the polynomial
zp−1 − zp−2 − 1 = 0 (observe that the two aforementioned
polynomials coincide for p = 3). This is true because if
ρ, ρ′ are the roots of z

p−2zp−2−1
z+1 and zp−1−zp−2−1, then

ρ > ρ′, unless p = 3 for which we have ρ = ρ′. This
gives better depth-width trade-offs for any value of the (odd)
period.

Moreover, if ρ is the Lipschitz constant of f , then
Lemma 3.2 applies and any shallow neural network g (with
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(a) An illustration of the area computed by the integral
in the case of a piecewise concave function (red curve).
However note that composition of concave functions may
not be concave.

(b) The lower bound for the integral would not necessarily
hold in the case of piecewise convex functions, as the area
could become arbitrarily small.

Figure 2. Graphs demonstrating the proof described in Claim 1 with respect to the Lipschitz constant. The lower bound on the area
computed by the integral would hold even if the repeated compositions created piecewise concave functions (left); however, for convex
functions no guarantee on the area of the triangle (hence no L1 separation) can be derived (right).

(2u)l ≤ ρt

α ) has L1 distance bounded away from zero for
any number of compositions of f .

We first need the following structural lemma (Alsedà et al.,
2000).

Lemma 3.3 (Monotonicity (Alsedà et al., 2000)). Let p > 1
be an odd number and consider f : [a, b] → [a, b] with
prime period p. Then there exists a cycle of period p with
points {x1, ..., xp} such that

xp < xp−2 < ... < x3 < x1 < x2 < x4 < ... < xp−1.

This lemma will help us define an appropriate covering rela-
tion, to be used later in order to bound the number of oscil-
lations in f t. Towards this goal, we set I0 = [x1, x2], Ij =
[x2j , x2j+2] for 1 ≤ j ≤ p−3

2 and Jj = [x2j+1, x2j−1]
for 1 ≤ j ≤ p−1

2 . From Lemma 3.3, we trivially have the
following covering relations.

Corollary 3.4. It holds that

• I0 → I0 ∪ J1.

• Ij → Jj+1, for 1 ≤ j ≤ p−3
2 .

• Jj → Ij , for 1 ≤ j ≤ p−3
2 .

• J p−1
2
→ I0 ∪ I1 ∪ ... ∪ I p−3

2
.

Let A ∈ R(p−1)×(p−1) be the adjacency matrix of the cov-
ering relation graph above (the intervals denote the nodes

of the graph):

Aji = 1 , if i = 0, j = 0
Aji = 1 , if j = i+ p−1

2 and 0 ≤ i ≤ p− 2
Aji = 1 , if j = i+ 1− p−1

2 and p−1
2 ≤ i ≤ p− 2

Aji = 1 , if i = p− 2 and 0 ≤ j ≤ p−3
2

Aji = 0 , otherwise
(2)

We define δt which is in Np−1 to keep track of how many
times f t crosses specific intervals. The coordinate δti cap-
tures the number of times f t crosses interval Ii for i ≤ p−3

2
and the coordinate δt

i+ p−1
2

captures the number of times f t

crosses interval Ji. We get that


δt+1

0
δt+1

1
...

δt+1
p−1

 ≥ A


δt0
δt1
...

δtp−1

 , (3)

where δ0 = (1, . . . , 1) (all ones vector).

Claim 2. The characteristic polynomial ofA> has the same
roots as (proof in Section A of supplement)

πp(λ) = λp−1 − λp−2 −
p−3∑
j=0

(−λ)j = λp − 2λp−2 − 1
λ+ 1 .

(4)
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I0 J1

f

f

f

(a) Covering relations as given by
Corollary 3.4 for a cycle of period
three.

I0 J1

I1 J2

I2 J3

I p−3
2

J p−1
2

(b) Covering relations as given by
Corollary 3.4 for a cycle of an odd pe-
riod p greater than three. The directed
dashed edge from J p−1

2
indicates that

the edge goes to every node between
I2 and I p−3

2
. We omit f from the ar-

rows for ease of presentation.

Figure 3. The covering relations of intervals from Corollary 3.4 are shown here. Note the existence of more directed edges when the
period is odd and greater than 3, compared to the graph used to quantify the growth in (Chatziafratis et al., 2020). This allows us to obtain
improved bounds for p > 3.

The following corollary establishes a connection between
the growth rate of the oscillations of compositions of func-
tion f with its prime period. Also, we establish a universal
sharp threshold phenomenon demonstrating that the width
needs to grow at a rate at least as large as

√
2, as long

as the function contains an odd period (this is in contrast
with previous depth separation results where the growth rate
converges to one as the period p goes to infinity).

Corollary 3.5. Let f : [a, b] → [a, b] be a continuous
function with prime odd period p > 1. There exist x, y
such that the number of oscillations between x, y of f t is
Θ(ρtp) where ρp is the positive root greater than one of
qp(λ) := λp − 2λp−2 − 1 = 0. Moreover, ρp is decreasing
in p and ρp >

√
2, for all p.

Proof. The proof appears in Section B of the supplementary
material.

Remark We note that ρp >
√

2 (the growth rate is at least√
2) whereas the growth rate in (Chatziafratis et al., 2020)

was converging to one as p→∞.

We now provide tight constructions for a family of func-
tions f that have points of period p (thus the number of
oscillations of t compositions of f scales as ρtp, i.e., the
growth rate is ρp) and moreover the Lipschitz constant is

ρp. By Theorem 3.2, this family cannot be approximated by
shallow neural networks in L1 sense.

Lemma 3.6. Let p > 1 be an odd number and ρp be the
largest positive root greater than one of the polynomial
λp − 2λp−2 − 1 = 0. The function f : [−1, 1] → [−1, 1],
defined to be f(x) := ρp|x| − 1 has Lipschitz constant ρp
and has period p.

Proof. The proof appears in Section C of the supplementary
material.

Remark In Section D of the supplementary material, we
show some simple examples that illustrate the behavior of
the aforementioned family of functions f(x) := ρp|x| − 1
for different parameters and the corresponding depth-width
trade-offs that can be derived. As a consequence, we will ob-
serve how similar-looking functions can actually have vastly
different behaviors with regards to oscillations, periods and
hence depth separations.

4. Experiments
Our goal here is to experimentally validate our theoretical
results by exploring the interplay between optimization and
the representation error bounds obtained in theory. For in-
stance, in order to understand how training with random
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initialization works on compositions of certain hard func-
tions, we combine the example from Lemma 3.6 together
with Theorem 3.2; in particular, theory suggests that for a
fixed width u and depth l, as long as the condition stated in
the theorem is satisfied, i.e., (2u)l ≤ ρt

8 (i.e., setting α = 8),
then we have an error bound that is independent of the width
and depth. We indeed validate this and the L1 error we get
from theory is close to the experimental error (see Figure 4).
Rewriting the condition of the theorem, for a fixed width
and depth, there is a large t ≥ (l+3) ln(2)+l ln(u)

ln(ρ) , that always
produces constant error. To test that, we create a “hard task”
that satisfies this above equation for depths l = 1, 2, 3, 4, 5,
for constant width u = 20. On the other end of the spectrum,
we create a relatively “easy task” (with fewer compositions)
and study how the regression error varies with depth.

We require the mean squared error to tend to 0 during the
training procedure to demonstrate a representation result
(rather than generalization). We train with 10000 points uni-
formly sampled from the domain and use Adam (Kingma &
Ba, 2014) with 3000 epochs to enable overfitting.
The Task:We create a regression task that is based on the
theory that ties periods with Lipschitz constants. The func-
tion we want to fit is the composition of f(x) := ρ|x| − 1
with itself. For ρ = 1.618 (golden ratio), the Lipschitz is
also ρ and exhibits period 3. The hardness of the task is
characterized by the number of compositions of the function
f , as the oscillations increase exponentially fast with the
number of compositions. Thus for the hard task we use
f40(x) and for the easy task we use f8(x).

5. Discussion
In conclusion, by combining some ideas from dynamical
systems related to periodic orbits and growth rate of os-
cillations, we presented several results for functions that
are expressible with NNs of certain depth, yet are hard-to-
represent with shallow, wide NNs. These results generalize
and unify previous results on depth separations. One poten-
tial direction for future work, that could further unify the
different notions of “complexity” considered in previous
works, is to explore connections between the notion of topo-
logical or metric entropy (see (Alsedà et al., 2000)) and os-
cillations, periods and VC dimension. The goal here would
be to derive general results stating that whenever a function
f has large topological entropy, it is harder to approximate
its repeated compositions using shallow NNs, as opposed to
a function with smaller topological entropy.
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