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ABSTRACT 

This paper presents a method for constructing a 
feedforward neural net implementing an arbitrar- 
ily good approximation to any Lz function over 
[-1,1]". The net uses n input nodes, a single hid- 
den layer whose width is determined by the func- 
tion to be implemented and the allowable mean 
square error, and a linear output neuron. Error 
bounds and an example are given for the method. 

This paper is concerned with the problem of analyzing and 
constructing neural nets with a single hidden layer of sig- 
moidal nodes. These nets are of particular interest because, 
aa shown recently by Cybenko [l], they are capable of re- 
alizing essentially arbitrary net input-output mappings (i.e. 
functions from the n-dimensional cube [-1,1]" to the inter- 
val (-1,l)). The limitations of networks with no hidden lay- 

rceptrons, have long been known, so Cybenko's result 
best that can be achieved. In fact, Cybenko's result 

is stated for modified networks with a linear output neuron 
rather than the usual sum-and-sigmoid node, and this allows 
implementation of real-valued functions. Such linear-output 
nets are more suitable for applications requiring continuous- 
valued mappings [2]. 

Cybenko's proof of this remarkable approximation result 
an existential, not constructive ane. This paper provides 
explicit constructive proof of a similar approximation the- 

orem by developing a method for specifying the weights of 
a net that estimates a given L2 function to within a given 
mean square error. The construction can also be applied to 
the situation in which it is desired to initialize some learn- 
ing algorithm in a way that reflects certain a priori partial 
information about the input-output function. 

The heart of the derivation comes from recognizing that 
the functional form of a linear output net with a single hid- 
den layer is a finitely parameterized, approximate form of the 
back-projection operator, a component of the inverse Radon 
transform. The Radon transform is commonly used in med- 
ical and geophysical imaging, and its inverse is the basis of 
CAT scan image reconstruction. For an investigation of the 
properties and applications of the Radon transform, see (31 
+nd [4]. The transform represents a function exactly by the 

sible integrals over hyperplanes in R", which 
y the unit normal vector to the hyperplane, U, 

and by the least distance of the hyperplane from the ori- 
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is usually expressed as the compositi 
R-' = Bo F. The first to be applied, 
tives (and for n even, a Hilbert Transform) with resp 
producing the filtered back-projection data, 

f ( x )  = Bh(a, U) = 

where &(U) is a unit of surface area on the unit s 
If B is discretized in the angle variable U we have 

If it is possible to rep 
linear combination of 

terms above by a 

hi = h(u; * x, 

then this is precisely the functional form ut 
neural net with one hidden layer: 

where w; is the vector of 
the ith hidden unit, and a; 
to the output. 

A neural net representing f = ~ z ' = ,  h; i 
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where each numbered block has structure 

So the N nodes of the hidden layer are arranged in K 
blocks, one for each of the angles, or normal vectors, ui of 
the discretized transform. Each of the blocks has an output 
that represents the corresponding back projection function 
hi by a sum of mi sigmoids. Setting K = N and mi = 
1 (i = 1, ..., N) gives the fully-connected single hidden 
layer structure. Thus, any one-hidden-layer neural net can be 
interpreted as approximating the discretized back-projection 
of some function, Bh. 

To claim that a net may be accurately synthesized using 
this approach requires investigation of the errors produced by 
the two approximations made in the general case: that the 
discretized transform approaches the value of the continu- 
ous version, and that the resulting transform is well-behaved 
for small deviations of h(ui . x, U;) so that approximation 
of h by a finite sum of sigmoids causes small deviations in 
the output function. Helgason has shown that the Radon 
Transform carried out at a finite set of angles has a nontriv- 
ial null space. This implies that some features of a function 
can be arbitrarily large, yet will be neither detected nor re- 
constructed by the discretized transform and inverse method 
given here. However, Helgason also shows that any infinite 
set of angles is sufficient to determine a compactly supported 
function with a Radon Transform, and that there exists a 
sequence of transforms with finitely many angles converging 
to  any such function. This underlies the proof of correctness 
for this method: convergence implies that a net of sufficiently 
large size can achieve any nonzero error bound. The error is 
bounded explicitly by Theorem 1 of the appendix. The bound 
is quite loose, and requires knowledge of the complete Radon 
transform, but its form is amenable to asymptotic analysis 
and reveals the effect of input dimension on performance. 

Theorem 1 also provides a basis for tracing the effect 
of small errors in the discretized back-projection function 
h(a,ui). This is the subject of Theorem 2, and the result 
is encouraging; the errors produced by discretization and ap- 
proximation of h(a, q) add in RMS, with a constant depen- 
dent only on the dimension of the input space. The method 
proposed is therefore capable of representing any function 
with an arbitrarily small error by some finite set of parame 
ters, provided that function is sufficiently smooth. It remains 
only to  show that sigmoids can be used for such a parame- 
terization, and to extend the result to less-smooth functions. 

That continuous functions are constructed from step func- 
tions, which are approximated well by sigmoids, leads us to 
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expect that we should be able to construct the necessary ap- 
proximations to hi, and the idea that 'all functions are nearly 
continuous" suggests that smoothness is not a unreasonable 
constraint for our approximating set. Both of these are the 
case, as is proven in Theorem 3, which states essentially that 
"All L2 functions with compact support can be approximated 
arbitrarily well in the L2 norm by a single hidden layer neural 
net with finitely many nodes." 

So we have established an approximation result like Cy- 
benko's using an alternative method, one which constructs a 
function whose form can be directly implemented on a sin- 
gle hidden layer net. By smoothing the original function f, 
taking its Radon transform f at finitely many angles, and 
filtering each to find h at those angles, we perform the work 
of a learning algorithm analytically. We then approximate h 
with a linear combination of sigmoids. The angles ui chosen 
are the input weights for one block, and the weights of the 
linear combination approximating hi are the output weights 
for the same block. The usual structure of a net simply uses 
many angles and a very crude approximation to each filtered 
back-projection. This amounts to taking advantage of the 
smoothness of h to approximate the average behavior of the 
filtered projections rather than approximating a single sam- 
ple of the filtered back-projection data more accurately. 

For functions with multiple outputs, these results guar- 
antee existence of an implementation on nets with a single 
hidden layer: it is sufficient to produce one net dedicated 
to each output, and run all concurrently. The usual fully- 
connected structure allows sharing of intermediate results in 
the calculation, sometimes greatly reducing the size of the 
net required to approximate the outputs collectively. 

Application of the method of this proof is Straightforward. 
We will give an example problem, that of constructing a net 
to produce a continuous form of the three variable parity 
function. The necessary smoothness is provided by replac- 
ing the value f l  at each corner of the 3-cube by a Gaussian 
peak centered at that corner and scaled to have the correct 
maximum. The Radon transform of such a function can be 
taken analytically fairly easily by use of the scaling and trans- 
lation properties of the transform, and the transform of the 
Gaussian centered at the origin [see 31. The form o f f  is 

where 

v1= ( !l) v2 = ( 1 )  v3 = ( 1,) 

v7=( +=( ;). 

The Radon transform o f f  is 

j(a, u) = r &-1)ne-(o-vn.u)'. 
n=l 

and the back-projection data h(a, U )  = &&I is 

-1 h(a, U )  = - C(- l )n (2 (a  - U * v,)2 - l)e-(a-Vn.u)' 
4* n=l 
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Using the projection angles in (Appendix (5 ) )  with k = 3 
we need to evaluate h at 

Due to the symmetry of our example h(a,u) is zero for all 
a if U has any element 0, which makes evaluation at five 
of the nine angles trivial. Evaluating h at each of the re- 
maining four angles gives the same function of a except for 
sign. Let us label these four vectors as ul, . . . , u4 so that 

mate h by sigmoids, we choose the usual back-propagation 
sigmoid scaled by 2, and centered at the origin 

h(a,ul) = -h(a,u~) = h(a,us) = 

.(a) = - 2 1  - 
1 + e-u 

A sum of three such sigmoids gives a good approximation to 
h, so our net will be based on four three-node blocks. The 
block for the projection from direction u2 = [1/4 &/4 &/2]* 
has function 

~ ( a )  = .22a(3a - 3.2) + .22a(3a + 3.2) - .320(3a) 

so the function of the 12-node network is 

4* 
i ( x )  = C(-~)"V(X* U,) 

n=l 
and has a mean square error of about 0.013, relative to a 
function with a mean square value of 0.13. Using h in place 
of v gives an error of 0.011, implying that the number of pro- 
jections is the critical parameter rather than the sigmoidal 
approximation of h. The qualitative character of the origi- 
nal function is reproduced: each octant retains a distinctive 
sign, and points on the boundary between octants carry an 
output value of 0, to  within machine precision limits. The 
only adaptive step used in this process was fine-tuning q, 
and this illustrates the power of the construction by reducing 
the approximation of a continuous function in Sspace to the 
approximation of a scalar function by three sigmoids. In fact, 
for this example, it is possible to produce a reasonable esti- 
mate q by inspection, and as already noted the small change 
in error due to approximation of h suggests that in this exam- 
ple the critical parameter is the number of projections rather 
than the quality of V. 

The method proposed here serves not only as a proof of 
e constructiblity of single-hidden-layer nets that perform to 
y given specification of error and function, but provides an 

algorithm for reducing the design of such nets to the design of 
segments of real-valued functions of a single variable. There 
are efficient solutions to this simpler problem for some classes 

sigmoids, so we regard this problem as well-solved. 
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Appendix 

differentiable to  all orders taking nonzero values only on a 
compact subset S of a,, we define the 

where p(.) is the measure of area on a 
differential manifold, here a hyperplan 
formula uses p on the unit sphere (me 
norm throughout this paper) 

and we define the back-projection data h 
sent the Hilbert transform with respect t 
tion with 1/a holding U constant): 

We are interested in a discre 

to  be the hyperspheroidal coordinat 
partition the half-sphere 

into k"-' sets U ( i ) ,  i = 1,2,. . . , k 

ui = u:w(u)= { 
W(Ui) = {[ ;] : B  

It is not necessary to partition 

We use (5) to  rewrite (2) as 
f(a, U) = f ( -a ,  -U). 

We now approximate the ith term ( i  = 1,. . . , k''-l) in 

error due to discretization: 
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THEOREM 1 
Let f : IR" --.) IR be in V. Assume the closed ball L3 

of radius TB centered at the origin contains the set S = {x : 
f (x )  # O}. Let f be the Radon transform off  and let h(a, U) 
be the corresponding back-projection data. Define 

k7%-1 

f(x) = 2 p(Ui)h(ui . X, ui) 
i=l 

where ui is defined as in (5). Then 

If(x) - fWl I El 

PROOF 

I 

The surface area of the unit sphere and hence the value 
of 2fi(U), is 

and the greatest distance between U E Ui and ui is 

(7) 

so the pointwise error bound is as given in the Theorem. 
We have shown that we can represent approximately an 

n-dimensional function on a compact set with finitely many 
scalar functions on intervals, which can of course be repre- 
sented approximately by a finite number of parameters. Can 
we then represent the n-dimensional function with finitely 
many parameters? Let us assume that h(a ,u)  is approxi- 
mated by some easily represented function q(a, U). Let 

k"-l 

f(x) = 2 p ( ~ i ) ~ ( x .  ui, ui) (9) 
i=l 

The following theor!m investigates the mean square error of 
the approximation f(x). 

THEOREM 2 
Assume the hypotheses of Theorem 1. Let f be defined 

by (9). Assume that for i = 1, .  . .,ICn-' 

(10) 
T E  

I r E [ h ( a ,  U) - sfa, u)12da 5 cz 
Then the mean square error 

(where we have used Vn(ts) = R,-l/n = 2r?/nr(5) for the 
volume of an n-sphere of radius TB) is bounded above by 

PROOF 

kn-1 

_< = J P(Ui)[h(X. ui, Ui) - q(x . ui, Ui)l2dX 
vn(TB) B izl 

where the last step uses the maximal cross-section of the n- 
sphere to  dominate the area of any cross-section t3 n {x : 
x . U; = a}. The third term of (13) is bounded using (15), 
Theorem 1, and the Schwarz inequality: 

5-  2E1 ~ 2 P 2 ( ~ ) ~ ' v n - 1 ( T B ) ~  (16) 
vn(TB) 

Adding (14), (15) and (16), and a bit of algebra give the 
result. 

rn 

The class of functions 2, used here can be extended read- 
ily to  the set of all continuous functions in &(B). To do 
so, we note that the Stone-Weierstrass Theorem implies that 
there exists f E V which agrees with any continuous func- 
tion to within any E > 0 at every point, so any continuous 
function can be approximated simply by approximating the 
corresponding Cm function. 

Still further, for any given g E LZ, there exists a con- 
tinuous function f such that I f  - g1 < E .  This implies that 
it is possible to approximate any function in Lz with a C" 
function with arbitrarily small error. 
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Since the function h(a, U )  is of bounded variation in a, we 
can approximate each such function with a sample-and-hold 
version of itself, that is, with a piecewise constant function 
taking on the value of h(a, -) at the midpoint of each “piece”. 
If these midpoints are uniformly separated by A a i ,  the result- 
ing function differs from h with mean square error no greater 
than 

( 1 / 1 2 ) ( A a i ) 2  ( m p  l L h ( a ,  U i ) l ) ’ .  ( 1 7 )  

Together with the fact that any sigmoid can be scaled in 
domain so that it approximates a step function to within any 
desired mean square error, this implies that any continuous 
function can be represented by a finite linear combination of 
scaled sigmoids with arbitrarily small error. We can therefore 
construct q(a, U )  of Theorem 2 using a finite sum of scaled 
sigmoids and set C aa we like. We can now state our main 
result, 

THEOREM 3 
Any function f : Rn -* R , f E 122 with compact support 

S can be approximated arbitrarily well in the norm of t 2  by 
a function of form 

i=l j=1 

where aij E R is chosen by sampling h, ui is the sigmoid 
implemented at node i ,  bi E R is chosen sufficiently large to 
fit U sufficiently close to a step, and ui is defined in (5) .  

PROOF 
A simple ~ / 2  type argument will suffice, given Theorem 2 

and the approximation arguments above. Specifically, choose 
any E > 0.  There is always a g E Cm such that If - 912 < ~ / 3  
aa stated above. Then we require that M S E  of Theorem 2 
satisfy &(rB)  x M S E  < !f. This can be done by choosing 
k large enough so that E1 of Theorem 1 is less than 

and choosing bi large enough and Aa of ( 1 7 )  small enough 
Then by 60 that 

the triangleinequality applied to theynorm, we know that 4, 
the approximate discrete-in-angle inverse radon transform of 
the Radon trausform of 9,  agrees closely with f in the sense 

* 
e 

vm-i(v)x%. of Theorem 2 is less than 

If - SI < E .  

8 
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