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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims
to provide the engineering, mathematical, and scientific communities with
significant developments in harmonic analysis, ranging from abstract har-
monic analysis to basic applications. The title of the series reflects the
importance of applications and numerical implementation, but richness
and relevance of applications and implementation depend fundamentally
on the structure and depth of theoretical underpinnings. Thus, from our
point of view, the interleaving of theory and applications and their creative
symbiotic evolution is axiomatic.
Harmonic analysis is a wellspring of ideas and applicability that has flour-

ished, developed, and deepened over time within many disciplines and by
means of creative cross-fertilization with diverse areas. The intricate and
fundamental relationship between harmonic analysis and fields such as sig-
nal processing, partial differential equations (PDEs), and image processing
is reflected in our state-of-the-art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas
such as wavelet theory, Banach algebras, classical Fourier analysis, time-
frequency analysis, and fractal geometry, as well as the diverse topics that
impinge on them.
For example, wavelet theory can be considered an appropriate tool to

deal with some basic problems in digital signal processing, speech and
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viii ANHA Series Preface

image processing, geophysics, pattern recognition, biomedical engineering,
and turbulence. These areas implement the latest technology from sam-
pling methods on surfaces to fast algorithms and computer vision methods.
The underlying mathematics of wavelet theory depends not only on clas-
sical Fourier analysis but also on ideas from abstract harmonic analysis,
including von Neumann algebras and the affine group. This leads to a
study of the Heisenberg group and its relationship to Gabor systems and of
the metaplectic group for a meaningful interaction of signal decomposition
methods.
The unifying influence of wavelet theory in the aforementioned topics

illustrates the justification for providing a means for centralizing and dis-
seminating information from the broader, but still focused, area of harmonic
analysis. This will be a key role of ANHA. We intend to publish with the
scope and interaction that such a host of issues demands.
Along with our commitment to publish mathematically significant works

at the frontiers of harmonic analysis, we have a comparably strong commit-
ment to publish major advances in applicable topics such as the following,
where harmonic analysis plays a substantial role:

Biomathematics, bioengineering,
and biomedical signal processing;
Communications and RADAR;
Compressive sensing (sampling)

and sparse representations;
Data science, data mining,
and dimension reduction;

Fast algorithms;
Frame theory and noise reduction;

Image processing
and super-resolution;

Machine learning;
Phaseless reconstruction;
Quantum informatics;

Remote sensing;
Sampling theory;

Spectral estimation;
Time-frequency and Time-scale

analysis—Gabor theory
and Wavelet theory

The above point of view for the ANHA book series is inspired by the
history of Fourier analysis itself, whose tentacles reach into so many fields.
In the last two centuries Fourier analysis has had a major impact on the

development of mathematics, on the understanding of many engineering
and scientific phenomena, and on the solution of some of the most impor-
tant problems in mathematics and the sciences. Historically, Fourier series
were developed in the analysis of some of the classical PDEs of mathe-
matical physics; these series were used to solve such equations. In order to
understand Fourier series and the kinds of solutions they could represent,
some of the most basic notions of analysis were defined, e.g., the concept
of “function.” Since the coefficients of Fourier series are integrals, it is no
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surprise that Riemann integrals were conceived to deal with uniqueness
properties of trigonometric series. Cantor’s set theory was also developed
because of such uniqueness questions.
A basic problem in Fourier analysis is to show how complicated phe-

nomena, such as sound waves, can be described in terms of elementary
harmonics. There are two aspects of this problem: first, to find, or even
define properly, the harmonics or spectrum of a given phenomenon, e.g.,
the spectroscopy problem in optics; second, to determine which phenomena
can be constructed from given classes of harmonics, as done, for example,
by the mechanical synthesizers in tidal analysis.
Fourier analysis is also the natural setting for many other problems in

engineering, mathematics, and sciences. For example, Wiener’s Tauberian
theorem in Fourier analysis not only characterizes the behavior of the prime
numbers but also provides the proper notion of spectrum for phenomena
such as white light; this latter process leads to the Fourier analysis asso-
ciated with correlation functions in filtering and prediction problems, and
these problems, in turn, deal naturally with Hardy spaces in the theory of
complex variables.
Nowadays, some of the theory of PDEs has given way to the study

of Fourier integral operators. Problems in antenna theory are stud-
ied in terms of unimodular trigonometric polynomials. Applications of
Fourier analysis abound in signal processing, whether with the fast Fourier
transform (FFT), or filter design, or the adaptive modeling inherent in
time-frequency-scale methods such as wavelet theory.
The coherent states of mathematical physics are translated and mod-

ulated Fourier transforms, and these are used, in conjunction with the
uncertainty principle, for dealing with signal reconstruction in com-
munications theory. We are back to the raison d’être of the ANHA
series!

College Park, MD, USA John J. Benedetto





Preface to the First Edition

Frames have fascinated me since day one. Every student in mathematics
learns about bases in vector spaces, allowing one to represent each element
in a convenient and unique way. One day in 1990, Henrik Stetkær, who was
my master’s thesis advisor, showed me the definition of a frame and told me
that a frame is some kind of “overcomplete basis”: one can also represent
each element in the vector space via a frame, but the representation might
not be unique. I was really surprised: How come that the question in, e.g.,
linear algebra always was how to extract a basis from an overcomplete set?
Why did the idea that overcompleteness by itself could be useful never
came up?
A search on Mathematical Reviews or Zentralblatt shows only a few titles

of books or articles concerning frames published before 1991; among those
we mention the original paper by Duffin and Schaeffer [262], the excellent
book by Young [622], and the important papers by Daubechies, Grossmann,
and Meyer [244], Daubechies [241], and Heil and Walnut [395]. Now, just
ten years later, hundreds of papers have the word frame in the title, and
perhaps a thousand discuss one or more results. Today, no single book can
treat all the important and interesting results that have been published.
The aim of this book is to present parts of the modern theory for bases

and frames in Hilbert spaces in a way that the material can be used in a
graduate course, as well as by professional readers. For use in a graduate
course, a number of exercises is included; they appear at the end of each

xi



xii Preface

chapter. The number of exercises gives a hint of the level of the chapter:
there are many exercises in the introductory chapters, but only few in the
advanced chapters. In the same spirit, almost all results in the introductory
chapters appear with full proofs; in the advanced chapters several results
are presented without proofs. We believe it is more useful to state a large
number of results in a common framework than to see detailed proofs of
significantly fewer statements; this feature also makes the book useful as a
reference.
The content can be split naturally into three parts: Chapters 1–7 de-

scribe the theory on an abstract level, Chapters 9–18 describe explicit
constructions in L2-spaces, and Chapters 22–24 deal with selected research
topics.
In Chapters 1–7 almost all results concern frames in general Hilbert

spaces. The goal is an almost complete treatment of the known results for
frames. For the explicit constructions in L2(−π, π) and L2(R), which ap-
pear in Chapters 9–18, the situation is different. For this part, I was forced
to concentrate on selected parts of the theory. Since we are mainly inter-
ested in overcomplete systems, the theory presented in these chapters is
part of a larger picture, and the reader will certainly benefit from knowl-
edge of the background. Chapter 9 connects to the theory for nonharmonic
Fourier series, cf. the book [622] by Young. Gabor frames arise naturally
in the context of time-frequency analysis, and the book by Gröchenig [340]
will clarify the role of Chapters 11–13 in time-frequency analysis. Finally,
the role of wavelets is highlighted in the classic book [242] by Daubechies,
which also gives the motivation for the study of frames arising from mul-
tiscale methods in Chapters 17–18. Technically, we do not rely on any of
these books (only at a few places will we refer to results from them without
proof), but they put the results of frame studies in the right perspective.
Chapters 9–18 are also influenced by the fact that the material is used in
several areas of applied mathematics; the reader will observe that although
this is a book about mathematics, those chapters concentrate on applicable
ways to construct frames rather than on abstract characterizations.
Let us describe the chapters in more detail. Chapter 1 presents basic re-

sults in finite-dimensional vector spaces with an inner product. This enables
a reader with a basic knowledge of linear algebra to understand the idea
behind frames without the technical complications in infinite-dimensional
spaces. Many of the topics from the rest of the book are presented here, so
Chapter 1 can also serve as an introduction to the later chapters.
Chapter 2 collects some definitions and conventions concerning infinite-

dimensional vector spaces. Special attention is given to the Hilbert space
L2(R) and operators hereon. We expect the reader to be familiar with this
material; the chapter is too short to be considered as an introduction to
the subject.
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Chapter 3 describes the classical theory for bases in Hilbert spaces and
Banach theory. The examples in this chapter are chosen so they lead
naturally to the constructions in Chapters 9–18.
Chapter 4 highlights some of the limitations on the properties one

can obtain from bases, and thus provides motivation for considering
generalizations of bases.
Chapters 5–7 contain the core material about frames and Riesz bases.

Chapter 5 is classical, but Chapter 7 contains several results published in
the last five years. The interplay between frames and bases is discussed in
detail in Chapter 7, and we also discuss frames that become bases when a
certain number of elements are deleted.
Chapters 9–18 deal with frames having a special structure. A central

part deals with various sufficient conditions for existence of those frames.
The most fundamental frames, namely, frames of exponentials in L2(−π, π)
and frames of translates in L2(R), are discussed in Chapter 9. If one wants
to consider frames in L2(R), these frames easily lead to Gabor frames,
which is the subject of Chapters 11–14. Wavelet frames are introduced in
Chapter 15, and sufficient conditions to find them are given for arbitrary
dilation parameter a > 1 and translation parameter b > 0. Some results
concerning irregular wavelet frames are also presented there. Chapter 16
specializes to the important case a = 2, b = 1, which has attracted much
attention during the past ten years. Constructions via multiscale methods
are the focus in Chapters 17–18.
In Chapter 22, the question is stability of frames, i.e., whether a set of

elements close to a frame is itself a frame. Since real-life measurements are
never completely exact, this question is very important for applications.
Chapter 23 presents methods for the approximation of the inverse frame

operator using finite subsets of the frame. Since every application of frame
theory has to be performed in a finite-dimensional vector space, this topic
is also of fundamental importance for applications.
Chapter 24 deals with extensions and generalizations of the material

from the previous chapters. Expansions in Banach spaces and their re-
lationship to frames in Hilbert spaces are discussed, as well as frames
appearing via integrable group representations. The latter subject gives
a unified description of the frames from Chapters 11–15.
Finally, an Appendix collects several basic results for easy reference. It

also contains material on pseudo-inverse operators and splines which is not
expected to be known in advance and therefore is treated in more detail.
For the purpose of a graduate course, we mention that if students have a

good background in functional analysis, they can skip Chapter 1 and parts
of Chapters 2–3. Chapter 4 is important as motivation, and Chapter 5 is
also core material. But after covering these chapters, a course can continue
in several ways. One possibility is to follow a theoretical track and consider
the relationship between frames and bases in more detail; this could be
followed by a study of one of the three final chapters. Another possibility is
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to continue with constructions of exponential frames and Gabor frames, or
wavelet frames. If wavelets are chosen as the subject, it is worth noticing
that the four wavelet chapters are almost independent of each other.
This book presents frames and Riesz bases from the functional analytic

point of view, and we concentrate on their mathematical aspects. However,
as demonstrated by several papers by Daubechies and others, frames are
very useful in several areas of applied mathematics, including signal pro-
cessing and image processing. But this part of the story should be told by
the people who are directly involved in it, and we will only sketch a few
applications.
It is a pleasure to thank the many colleagues and students who helped

in the process of writing this book. The starting point was seventy pages
of notes, which were written jointly with Torben Klint Jensen, who was
at that time a master’s student. My original idea was to write a book
concentrating on frames in general Hilbert spaces; I am very happy that
Thomas Strohmer and an anonymous reviewer suggested that I further go
into detail with wavelet and Gabor systems. Their ideas added more than
a hundred pages to the book and extended the scope considerably. Very
useful suggestions for adding material were also given by Hans Feichtinger.
Alexander Lindner read a large part of the final manuscript and proposed

many improvements. Elena Cordero, Niklas Grip, Per Christian Hansen,
Reza Mahdavi, John Rassias, Henrik Stetkær, and Diana Stoeva read parts
of the book and helped to spot mistakes; I am very grateful to all of them.
I am thankful to the Department of Mathematics at the Technical Uni-

versity of Denmark for providing me with the excellent working conditions
that made it possible to concentrate on the book for two semesters. In
addition, a large part of the book was written during a stay at the re-
search group NuHAG at the University of Vienna. It is a pleasure to thank
the group leader, Hans Feichtinger, and the members of NuHAG for their
support.
I am thankful to John Benedetto for inviting me to write this book, and

I thank the staff at Birkhäuser, especially Tom Grasso and Ann Kostant,
for their assistance and support. Thanks are also given to Elizabeth Loew
from Texniques, who helped with Latex problems.
Finally, I acknowledge support from the WAVE-program, sponsored by

the Danish Science Foundation.

Ole Christensen
Kgs. Lyngby, Denmark
September 2002



Preface to the Second Edition

As I wrote the first edition of the book during 2001/2002, one of the
goals was that at least the list of references should contain most of the
frame literature. Now, 14 years later, even this very modest goal cannot
be reached anymore. During the last 20 years frames have experienced an
ever-increasing popularity, and they show up in many different contexts,
explicitly or implicitly. Considering just four of the key topics, namely,
(i) “Frames in finite-dimensional spaces,” (ii) “Frames in general Hilbert
spaces,” (iii) “Frames in Gabor analysis,” and (iv) “Frames and wavelet
analysis,” each of these topics could easily fill a book of the same size as
the current book. Therefore one of the major decisions during the work on
the second edition has been what to include – and at what level of details.
My choice has been to follow the line from the first edition and present the
core material (and frequently less known material that should belong to the
core) in great detail, while other topics are treated as research topics with
more focus on the connections between the results than the proofs. The
fact that many recent and advanced results are presented without proofs
made it possible still to give a quite broad picture of the frame theory; but
clearly it also leaves a gap open for other authors who would like to give a
detailed presentation focusing on one of the topics.
The new material mainly occurs in new chapters and sections, but of

course the entire book has been updated with additional results and com-
ments. On very compressed form the main additions can be described as
follows:

xv
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• Sections 1.2 on tight frames and dual pairs of frames in finite-
dimensional spaces. Section 1.8 on fusion frames. Section 1.9 on
applications of frames. Finally, Section 1.10 which relates the prop-
erties of the harmonic frames to the ongoing research within finite
frame theory.

• Extension and rearrangement of Chapter 2. Many results from the
former appendix now appear here.

• Section 3.7, a new section on Riesz sequences; and Section 3.10 on
sampling an analog-digital conversion.

• Several updates and additions in Chapter 4, which motivate the step
from bases to frames.

• Section 5.2, a new section on frame sequences.

• Chapter 6, a new chapter that collects results about tight frames and
dual pairs of frames in general Hilbert spaces.

• Section 7.2, a new section about relations between frames and their
subsequences, with focus on the “strange” behavior of the lower frame
bounds for finite subfamilies. And Section 7.7, a short section on the
Feichtinger conjecture.

• Chapter 8, a new chapter on selected topics in general frame theory.
It contains sections on G-frames, localization of frames, the R-dual
sequences, a frame-like theory via unbounded operators, as well as a
discussion of frames in the context of signal processing.

• Section 9.4, Section 9.5, and Section 9.7: new sections about the
canonical dual of a frame of translates and oblique duals, as well
as applications of frames of translates within sampling theory.

• Chapter 10, a new chapter on shift-invariant systems (parts of
the material previously appeared within the presentation of Gabor
frames).

• Extensions and updates in Section 11.6 on Gabor frames gener-
ated by special functions. Section 11.7, a new section collecting the
known connections between B-splines and Gabor frames, as well as
discussions about open problems.

• Chapter 12, a new chapter on dual pairs of Gabor frames and tight
Gabor frames.

• Section 13.1, a new section about the duality principle. Section 13.5,
a new section about localized Gabor frames. And Section 13.7, a new
section on time-frequency localization.

• Chapter 14: new sections concerning duality of Gabor frames in �2(Z)
and �2(Zd), and explicit construction of such frames based on dual
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pairs of Gabor frames for L2(R). Construction of periodic Gabor
frames in L2(0, L), and description of the transition from a Gabor
system in L2(R) to a finite-dimensional model in C

L.

• Section 15.3, a new section on dual pairs of wavelet frames.

• Chapter 19, a new chapter on selected topics on wavelet frames. Some
of the sections also appeared in the first edition of the book, but the
sections on the extension problem and signal processing are new.

• Chapter 20, a new chapter on generalized shift-invariant systems.

• Chapter 21, a new chapter on frames on locally compact abelian
groups.

• Section 23.3, a new section that yields convergence estimates in the
context of finite-dimensional approximations of the inverse frame
operator.

• Chapter 24 on Banach frames: the entire chapter has been updated
with more recent results.

• Section A.5 and Section A.6, new sections stating the key properties
of the modulation spaces and the Feichtinger algebra. Section A.9
and Section A.10, new sections on exponential B-splines and splines
on LCA groups.

I would like to thank all the friends, colleagues, and students who have
contributed to the current second edition. First and foremost I would like to
thank my coauthors, who have definitely inspired me and shaped my view
and understanding of frames over the years. Many of the papers with my
coauthors were used as the starting point for various sections and chapters.
For example, my papers with Hong Oh Kim and Rae Young Kim form the
basis for Sections 6.4, 11.7, 12.5, 12.6, and 12.7; similarly, the paper [176]
with Say Song Goh was the driving force behind most of the sections in
Chapter 21.
I would also like to thank Hong Oh Kim and Rae Young Kim for organiz-

ing and supporting about 20 visits to Korea Advanced Institute for Science
and Technology (KAIST) over the years, and for the many pleasant hours
we spend working on joint problems; and Say Song Goh, whose many invi-
tations to National University of Singapore (NUS) also gave me scientific
inspiration and excellent working conditions, with direct influence on the
current book.
It is a great pleasure to thank Henrik Stetkær, who used the first edition

as textbook in several master courses at the University of Aarhus; this led
to the discovery of several misprints and imprecisions, which I have tried
to correct.
I thank Jakob Lemvig and Mads Sielemann Jakobsen for giving me access

to a note providing a direct proof of the duality principle in Gabor analysis.
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During the preparation of the manuscript, I got help from many col-
leagues and students to spot typing mistakes, bad formulations, etc.;
I thank Say Song Goh, Marzieh Hasannasab, Christina Hildebrandt,
Mads Sielemann Jakobsen, Jakob Lemvig, Diana Stoeva, and Jordy van
Velthoven for their help, which clearly improved the manuscript.
Finally I want to thank John Benedetto for his never-ending support and

positive attitude. I also thank the staff at Birkhäuser, especially Danielle
Walker, for their support during the entire process.

Ole Christensen
Kgs. Lyngby, Denmark
August 2015
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1
Frames in Finite-Dimensional
Inner Product Spaces

In the study of vector spaces, one of the most important concepts is that
of a basis. A basis provides us with an expansion of all vectors in terms of
“elementary building blocks” and hereby helps us by reducing many ques-
tions concerning general vectors to similar questions concerning only the
basis elements. However, the conditions to a basis are very restrictive – no
linear dependence between the elements is possible, and sometimes we even
want the elements to be orthogonal with respect to an inner product. This
makes it hard or even impossible to find bases satisfying extra conditions,
and this is the reason that one might look for a more flexible tool.
Frames are such tools. A frame for a vector space equipped with an

inner product also allows each element in the space to be written as a
linear combination of the elements in the frame, but linear independence
between the frame elements is not required. Intuitively, one can think about
a frame as a basis to which one has added more elements. In this chap-
ter, we present frame theory in finite-dimensional vector spaces. While this
restriction makes part of the theory trivial, it also makes the basic idea
more transparent. Furthermore, our intention is to present the results in
such a way as to give the right feeling about the infinite-dimensional set-
ting as well. This also means that we sometimes use unusual words in the
finite-dimensional setting. For example, we will frequently use the word
“operator” for a linear map.
There are other reasons for starting with a chapter on finite-dimensional

frames. Every “real-life” application of frames has to be performed in a
finite-dimensional vector space, so even if we want to apply results from
the infinite-dimensional setting, the frames will have to be confined to a
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2 1 Frames in Finite-Dimensional Inner Product Spaces

finite-dimensional space at some point. Chapter 14 contains a detailed
discussion of the transition from L2(R) to C

n in the context of Gabor
frames.
Most of the chapter can be fully understood with an elementary knowl-

edge of linear algebra. In order not to make the proofs too cumbersome,
we will at a few places use some more advanced results; exact references to
the literature will always be given in this case.
This chapter is organized as follows. Section 1.1 contains the basic prop-

erties of frames. For example, it is proved that every set of vectors {fk}mk=1

in a vector space with an inner product is a frame for span{fk}mk=1 and
that every frame leads to expansions of the vectors in the underlying space.
We prove the existence of coefficients minimizing the �2-norm in a frame
expansion and show how a frame for a subspace leads to a formula for the or-
thogonal projection onto the subspace. Section 1.2 describes how frames in
various ways can be extended to computationally more convenient frames.
In Section 1.3 the role of the frame bounds is highlighted. Then, in Sec-
tions 1.4–1.5, we consider frames in C

n; in particular, we prove how we can
obtain an overcomplete frame by a projection of a basis for a larger space.
In fact, the vectors {fk}mk=1 in a frame for Cn can be considered as the first
n coordinates of some vectors in C

m constituting a basis for Cm. We also
prove that the frame property for {fk}mk=1 is equivalent to certain properties
for the m× n matrix having the vectors fk as rows. Furthermore, we show
that the discrete Fourier transform basis leads to frame constructions with
attractive properties. In Section 1.6 we prove that the canonical coefficients
from the frame expansion arise naturally by considering the pseudo-inverse
of the so-called synthesis operator, and we show how to compute it in terms
of the singular value decomposition. Section 1.7 connects frames in finite-
dimensional vector spaces with the infinite-dimensional constructions that
will appear in later chapters, and Section 1.8 gives a short introduction
to fusion frames. Finally, Section 1.9 discusses frames in the context of
data transmission, and Section 1.10 relates the properties of the harmonic
frames to the ongoing research within finite frame theory.
Much more can of course be said about frames in finite-dimensional

vector spaces. Our main purpose is to give an elementary entrance to
frame theory, streamlined toward the work on frames in infinite-dimensional
spaces which will dominate the book. A reader who is mainly interested in
the finite-dimensional case can consider the collection of papers [139] and
the references therein for much more information. Also notice that a nice
introduction to finite-dimensional frames directed toward students is given
in the book [376] by Han et al.
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1.1 Some Basic Facts About Frames

Let V be a finite-dimensional vector space, equipped with an inner product
〈·, ·〉, which we choose to be linear in the first entry. Recall that a sequence
{ek}mk=1 in V is a basis for V if the following two conditions are satisfied:

(i) V = span{ek}mk=1;

(ii) {ek}mk=1 is linearly independent, i.e., if
∑m

k=1 ckek = 0 for some scalar
coefficients {ck}mk=1, then ck = 0 for all k = 1, . . . ,m.

As a consequence of this definition, every f ∈ V has a unique represen-
tation in terms of the elements in the basis, i.e., there exist unique scalar
coefficients {ck}mk=1 such that

f =

m∑

k=1

ckek. (1.1)

If {ek}mk=1 is an orthonormal basis, i.e., a basis for which

〈ek, ej〉 = δk,j =

{
1 if k = j

0 if k �= j,

then the coefficients {ck}mk=1 are easy to find. In fact, taking the inner
product of f in (1.1) with an arbitrary ej gives

〈f, ej〉 = 〈
m∑

k=1

ckek, ej〉 =
m∑

k=1

ck〈ek, ej〉 = cj ,

so

f =

m∑

k=1

〈f, ek〉ek. (1.2)

We now introduce frames; in Theorem 1.1.5 below, we prove that a frame
{fk}mk=1 also allows a representation of the form (1.1).

Definition 1.1.1 A countable sequence of elements {fk}k∈I in V is a
frame for V if there exist constants A,B > 0 such that

A ||f ||2 ≤
∑

k∈I

|〈f, fk〉|2 ≤ B ||f ||2, ∀f ∈ V. (1.3)

The numbers A,B are called frame bounds. They are not unique. The
optimal lower frame bound is the supremum over all lower frame bounds,
and the optimal upper frame bound is the infimum over all upper frame
bounds. Note that the optimal frame bounds are actually frame bounds.
The frame is normalized if ||fk|| = 1, ∀k ∈ I.

In a finite-dimensional vector space, it is somehow artificial (though pos-
sible) to consider families {fk}k∈I having infinitely many elements. In this
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chapter, we will only consider finite families {fk}mk=1, m ∈ N. With this
restriction, Cauchy–Schwarz’ inequality shows that

m∑

k=1

|〈f, fk〉|2 ≤
m∑

k=1

||fk||2 ||f ||2, ∀f ∈ V,

i.e., the upper frame condition is automatically satisfied. However, one can
often find a better upper frame bound than

∑m
k=1 ||fk||2; it will become

clear in Section 1.3 that good estimates for the frame bounds are indeed
important.
In order for the lower condition in (1.3) to be satisfied, it is necessary

that span{fk}mk=1 = V . This condition turns out to be sufficient. In fact,
every finite sequence is a frame for the span of the elements:

Proposition 1.1.2 Let {fk}mk=1 be a sequence in V . Then {fk}mk=1 is a
frame for the vector space W := span{fk}mk=1.

Proof. We can assume that not all fk are zero. As we have seen, the
upper frame condition is satisfied with B =

∑m
k=1 ||fk||2. Now consider the

continuous mapping

φ : W → R, φ(f) :=

m∑

k=1

|〈f, fk〉|2.

The unit sphere in W is compact, so we can find g ∈W with ||g|| = 1 such
that

A :=
m∑

k=1

|〈g, fk〉|2 = inf

{
m∑

k=1

|〈f, fk〉|2
∣
∣ f ∈W, ||f || = 1

}

.

It is clear that A > 0. Now given f ∈ W, f �= 0, we have

m∑

k=1

|〈f, fk〉|2 =

m∑

k=1

|〈 f

||f || , fk〉|
2 ||f ||2 ≥ A ||f ||2. �

Proposition 1.1.2 immediately leads to an important characterization of
frames in a finite-dimensional space:

Corollary 1.1.3 A family of elements {fk}mk=1 in V is a frame for V if
and only if span{fk}mk=1 = V .

Corollary 1.1.3 shows that a frame might contain more elements than
needed to be a basis. In particular, if {fk}mk=1 is a frame for V and {gk}nk=1

is an arbitrary finite collection of vectors in V , then {fk}mk=1 ∪ {gk}nk=1 is
also a frame for V . A frame which is not a basis is said to be overcomplete
or redundant.
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Consider now a vector space V equipped with a frame {fk}mk=1 and define
a linear mapping

T : Cm → V, T {ck}mk=1 =

m∑

k=1

ckfk. (1.4)

The operator T is usually called the synthesis operator or the pre-frame
operator. The adjoint operator is given by (Exercise 1.1)

T ∗ : V → C
m, T ∗f = {〈f, fk〉}mk=1 , (1.5)

and is called the analysis operator. Composing T with its adjoint T ∗, we
obtain the frame operator

S : V → V, Sf = TT ∗f =

m∑

k=1

〈f, fk〉fk. (1.6)

Note that in terms of the frame operator,

〈Sf, f〉 =
m∑

k=1

|〈f, fk〉|2, f ∈ V ; (1.7)

the lower frame condition can thus be considered as some kind of “lower
bound” on the frame operator.
A frame {fk}mk=1 is tight if we can choose A = B in the definition, i.e., if

m∑

k=1

|〈f, fk〉|2 = A ||f ||2, ∀f ∈ V. (1.8)

For a tight frame, the exact value A in (1.8) is simply called the frame
bound; in case A = 1, we call {fk}mk=1 a Parseval frame. We note that for
a tight frame (1.7) combined with Lemma 2.4.4 leads to a representation
of f ∈ V in terms of the frame elements (Exercise 1.2):

Proposition 1.1.4 Assume that {fk}mk=1 is a tight frame for V with frame
bound A. Then S = AI (here I is the identity operator on V ), and

f =
1

A

m∑

k=1

〈f, fk〉fk, ∀f ∈ V. (1.9)

An interpretation of (1.9) is that if {fk}mk=1 is a tight frame and we want to
express f ∈ V as a linear combination f =

∑m
k=1 ckfk, we can simply define

gk = 1
Afk and take ck = 〈f, gk〉. Formula (1.9) is similar to the represen-

tation (1.2) via an orthonormal basis: the only difference is the factor 1/A
in (1.9). For general frames we now prove that we still have a representation
of each f ∈ V of the form f =

∑m
k=1〈f, gk〉fk for an appropriate choice of

{gk}mk=1. The obtained theorem is one of the most important results about
frames, and (1.10) below is called the frame decomposition:
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Theorem 1.1.5 Let {fk}mk=1 be a frame for V with frame operator S.
Then the following hold:

(i) S is invertible and self-adjoint.

(ii) Every f ∈ V can be represented as

f =

m∑

k=1

〈f, S−1fk〉fk =

m∑

k=1

〈f, fk〉S−1fk. (1.10)

(iii) If f ∈ V also has the representation f =
∑m

k=1 ckfk for some scalar
coefficients {ck}mk=1, then

m∑

k=1

|ck|2 =

m∑

k=1

|〈f, S−1fk〉|2 +
m∑

k=1

|ck − 〈f, S−1fk〉|2.

Proof. Since S = TT ∗, it is clear that S is self-adjoint. We now prove
that S is injective. Let f ∈ V and assume that Sf = 0. Then

0 = 〈Sf, f〉 =
m∑

k=1

|〈f, fk〉|2,

implying by the frame condition that f = 0. That S is injective actually im-
plies that S is surjective, but let us give a direct proof. The frame condition
implies by Corollary 1.1.3 that span{fk}mk=1 = V , so the synthesis opera-
tor T is surjective. Given f ∈ V we can therefore find g ∈ C

m such that
Tg = f ; we can choose g ∈ N⊥

T = RT∗ , so it follows that RS = RTT∗ = V .
Thus, S is surjective, as claimed. Each f ∈ V has the representation

f = SS−1f =

m∑

k=1

〈S−1f, fk〉fk;

using that S is self-adjoint, we arrive at f =
∑m

k=1〈f, S−1fk〉fk, as stated
in (1.10). The second representation in (1.10) is obtained in the same way,
using that f = S−1Sf . For the proof of (iii), suppose that f =

∑m
k=1 ckfk.

We can write

{ck}mk=1 =
(
{ck}mk=1 − {〈f, S−1fk〉}mk=1

)
+ {〈f, S−1fk〉}mk=1.

By the choice of {ck}mk=1, we have

m∑

k=1

(
ck − 〈f, S−1fk〉

)
fk = 0,

i.e., {ck}mk=1 − {〈f, S−1fk〉}mk=1 ∈ NT = R⊥
T∗ ; since

{〈f, S−1fk〉}mk=1 = {〈S−1f, fk〉}mk=1 ∈ RT∗ ,

we obtain (iii). �
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Every frame in a finite-dimensional space contains a subfamily which is
a basis (Exercise 1.3). If {fk}mk=1 is a frame but not a basis, there exist
nonzero sequences {dk}mk=1 such that

∑m
k=1 dkfk = 0. Therefore any given

element f ∈ V can be written

f =

m∑

k=1

〈f, S−1fk〉fk +
m∑

k=1

dkfk

=

m∑

k=1

(
〈f, S−1fk〉+ dk

)
fk. (1.11)

This demonstrates that in the redundant case f has many representations
as superpositions of the frame elements. Theorem 1.1.5 shows that the coef-
ficients {〈f, S−1fk〉}mk=1 have minimal �2-norm among all sequences {ck}mk=1

for which f =
∑m

k=1 ckfk. The numbers

〈f, S−1fk〉, k = 1, . . . ,m

are called frame coefficients. Note that because S : V → V is bijective,
the sequence {S−1fk}mk=1 is also a frame by Corollary 1.1.3; it is called the
canonical dual frame of {fk}mk=1.
For frames consisting of only a few elements, the canonical dual frame

and the corresponding frame decomposition can be found via elementary
calculations:

Example 1.1.6 Let {ek}2k=1 be an orthonormal basis for a two-dimensional
vector space V with inner product. Let

f1 = e1, f2 = e1 − e2, f3 = e1 + e2.

Then {fk}3k=1 is a frame for V . Using the definition of the frame operator,

Sf =

3∑

k=1

〈f, fk〉fk,

we obtain that

Se1 = e1 + e1 − e2 + e1 + e2 = 3e1

and

Se2 = −(e1 − e2) + e1 + e2 = 2e2.

Thus,

S−1e1 =
1

3
e1, S−1e2 =

1

2
e2.

By linearity, the canonical dual frame is

{S−1fk}3k=1 = {S−1e1, S
−1e1 − S−1e2, S

−1e1 + S−1e2}

= {1
3
e1,

1

3
e1 −

1

2
e2,

1

3
e1 +

1

2
e2}.
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Via Theorem 1.1.5, the representation of f ∈ V in terms of the frame is
given by

f =
3∑

k=1

〈f, S−1fk〉fk

=
1

3
〈f, e1〉e1 + 〈f,

1

3
e1 −

1

2
e2〉(e1 − e2) + 〈f,

1

3
e1 +

1

2
e2〉(e1 + e2). �

Theorem 1.1.5 gives some special information in case {fk}mk=1 is a basis:

Corollary 1.1.7 Assume that {fk}mk=1 is a basis for V . Then there exists
a unique family {gk}mk=1 in V such that

f =

m∑

k=1

〈f, gk〉fk, ∀f ∈ V. (1.12)

In terms of the frame operator, {gk}mk=1 = {S−1fk}mk=1. Furthermore,
〈fj , gk〉 = δj,k.

Proof. The existence of a family {gk}mk=1 satisfying (1.12) follows from
Theorem 1.1.5; we leave the proof of the uniqueness to the reader. Apply-
ing (1.12) on a fixed element fj and using that {fk}mk=1 is a basis, we obtain
that 〈fj , gk〉 = δj,k for all k = 1, 2, . . . ,m. �

We have already seen that, for given f ∈ V , the frame coefficients
{〈f, S−1fk〉}mk=1 have minimal �2-norm among all sequences {ck}mk=1 for
which f =

∑m
k=1 ckfk. We can also choose to minimize the norm in other

spaces than �2; we now show the existence of coefficients minimizing the
�1-norm.

Theorem 1.1.8 Let {fk}mk=1 be a frame for a finite-dimensional vector
space V . Given f ∈ V , there exist coefficients {dk}mk=1 ∈ C

m such that
f =

∑m
k=1 dkfk, and

m∑

k=1

|dk| = inf

{
m∑

k=1

|ck|
∣
∣ f =

m∑

k=1

ckfk

}

. (1.13)

Proof. Fix f ∈ V . It is clear that we can choose a set of coefficients
{ck}mk=1 such that f =

∑m
k=1 ckfk; let r :=

∑m
k=1 |ck|. Since we want to

minimize the �1-norm of the coefficients, it is also clear that we can now
restrict our search for a minimizer to sequences {dk}mk=1 belonging to the
compact set

M :=
{
{dk}mk=1 ∈ C

m
∣
∣ |dk| ≤ r, k = 1, . . . ,m

}
.
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Now the result follows from the fact that the set
{

{dk}mk=1 ∈M | f =

m∑

k=1

dkfk

}

is compact and that the function φ : Cm → R, φ{dk}mk=1 :=
∑m

k=1 |dk| is
continuous. �

There are some important differences between Theorem 1.1.5 and Theo-
rem 1.1.8. In Theorem 1.1.5 we find the sequence minimizing the �2-norm of
the coefficients in the expansion of f explicitly; it is unique, and it depends
linearly on f . On the other hand, Theorem 1.1.8 only gives the existence
of an �1-minimizer, and it might not be unique (Exercise 1.9). Even if the
minimizer is unique, it might not depend linearly on f (Exercise 1.10). An
algorithm to find an �1-minimizer {dk}mk=1 can be found in [151].
As we have seen in Proposition 1.1.2, every finite set of vectors {fk}mk=1

is a frame for its span. In general, the frame decomposition associated with
{fk}mk=1 gives a convenient expression for the orthogonal projection onto
span{fk}mk=1:

Theorem 1.1.9 Let {fk}mk=1 be a frame for a subspace W of the vector
space V, with frame operator S : W → W. Then the orthogonal projection
of V onto W is given by

Pf =
m∑

k=1

〈f, S−1fk〉fk, f ∈ V. (1.14)

Proof. It is enough to prove that if we define P by (1.14), then

Pf = f for f ∈ W and Pf = 0 for f ∈W⊥.

The first equation follows by Theorem 1.1.5, and the second by the fact
that the range of S−1 equals W because S is a bijection on W . �

Let us connect to the topic of Chapter 22 and for a moment consider
an orthonormal basis {ek}nk=1 for V . It is clear that by adding a finite
collection of vectors to {ek}nk=1, we obtain a frame for V . Also, if we perturb
the vectors {ek}nk=1 slightly, we still have a basis, but in general not an
orthonormal basis. More precisely, if {gk}nk=1 is a family of vectors in V
and

R :=

(
n∑

k=1

||ek − gk||2
)1/2

< 1,

then also {gk}nk=1 is a basis for V . In fact, given a scalar sequence {ck}nk=1,
the opposite triangle inequality followed by Cauchy–Schwarz’ inequality
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gives that
∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckgk

∣
∣
∣
∣

∣
∣
∣
∣ ≥

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckek

∣
∣
∣
∣

∣
∣
∣
∣−

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ck(gk − ek)

∣
∣
∣
∣

∣
∣
∣
∣

≥
(

n∑

k=1

|ck|2
)1/2

−
(

n∑

k=1

||ek − gk||2
)1/2( n∑

k=1

|ck|2
)1/2

= (1 −R)

(
n∑

k=1

|ck|2
)1/2

.

This shows that {gk}nk=1 is linearly independent, and since dimV = n, we
conclude that {gk}nk=1 is a basis. We return to more general perturbation
results for frames in Chapter 22. �

1.2 Extensions to Tight Frames and Dual Frames

The simplicity of the calculations in Example 1.1.6 is slightly misleading:
for a general frame, calculation of the canonical dual frame might be very
cumbersome and lengthy if the frame contains many elements. This explains
the prominent role of tight frames, for which the representation (1.10) takes
the much simpler form (1.9).
It is worth noticing that every frame can be extended to a tight frame

by adding some vectors. This was first proved by Casazza and Leonhard
[145]:

Proposition 1.2.1 Let {fk}mk=1 be a frame for a vector space V with di-
mension n. Then there exist n−1 vectors h2, . . . , hn such that the collection
{fk}mk=1

⋃
{hk}nk=2 forms a tight frame for V .

Proof. Denote the frame operator for {fk}mk=1 by S : V → V . Since
S is self-adjoint, Theorem A.1.1 shows that V has an orthonormal basis
consisting of eigenvectors {ek}nk=1 for S. Denote the corresponding eigen-
values by {λk}nk=1; they are real numbers because S is self-adjoint. We
will assume that the eigenvectors and eigenvalues are ordered such that
λ1 ≥ λ2 ≥ · · · ≥ λn. Now, for k = 2, . . . , n, let hk :=

√
λ1 − λkek. The

frame operator S̃ for the family {fk}mk=1

⋃
{hk}nk=2 is given by

S̃ : V → V, S̃f = Sf +

n∑

k=2

〈f, hk〉hk. (1.15)

Now consider an arbitrary f ∈ V . Using that

f =

n∑

k=1

〈f, ek〉ek,
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we see that the action of the frame operator S on f is given by

Sf =

n∑

k=1

〈f, ek〉Sek =

n∑

k=1

λk〈f, ek〉ek.

Inserting this expression and the definition of hk into (1.15) shows that

S̃f =

n∑

k=1

λk〈f, ek〉ek +
n∑

k=2

(λ1 − λk) 〈f, ek〉ek

= λ1〈f, e1〉e1 +
n∑

k=2

λk〈f, ek〉ek + λ1

n∑

k=2

〈f, ek〉ek −
n∑

k=2

λk〈f, ek〉ek

= λ1

n∑

k=1

〈f, ek〉ek

= λ1f.

This implies that for all f ∈ V ,

n∑

k=1

|〈f, fk〉|2 +
n∑

k=2

|〈f, hk〉|2 = 〈S̃f, f〉 = λ1 ||f ||2,

i.e., {fk}mk=1

⋃
{hk}nk=2 is a tight frame with frame bound λ1. �

Note that Proposition 1.2.1 implies a slightly stronger result: any finite
sequence in a finite-dimensional space can be extended to a tight frame.
We also note that while it is possible to extend any finite sequence to

a tight frame, the proof of Proposition 1.2.1 shows that it might not be
convenient or fast to do so in practice.
Often there is an alternative way to obtain “simple” frame expansions.

In fact, one can prove (see Lemma 6.3.1) that if {fk}mk=1 is a frame but not
a basis, there exist frames {gk}mk=1 �= {S−1fk}mk=1 such that

f =

m∑

k=1

〈f, gk〉fk. (1.16)

Thus, rather than restricting the attention to tight frames, one could con-
sider frames {fk}mk=1, for which there is an easy way to find a frame {gk}mk=1

satisfying (1.16). Any frame {gk}mk=1 satisfying (1.16) is called a dual frame
of {fk}mk=1; in Exercise 1.6 all these frames are calculated explicitly for a
given frame {fk}mk=1. The following example shows that it might be an
advantage to extend a given frame to a pair of dual frames rather than a
tight frame. The exact meaning of what it means to extend to a dual frame
pair will be discussed in Section 6.4; see in particular Theorem 6.4.1.
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Example 1.2.2 Let {ek}10k=1 be an orthonormal basis for C10, and consider
the frame

{fk}10k=1 := {2e1} ∪ {ek}10k=2.

Then {fk}10k=1 is a frame for C10. By Proposition 1.2.1 there exist vectors
{hk}9k=1 such that {fk}10k=1 ∪ {hk}9k=1 is a tight frame. Furthermore, one
can show (Exercise 1.7) that nine is the smallest number of vectors we can
add if we want to extend {fk}10k=1 to a tight frame.
On the other hand, it is clear that both of the systems

{fk}10k=1 ∪ {e1} and {fk}10k=1 ∪ {−3e1}

form frames and that they are actually dual frames. Thus, the extension
to a dual pair can be realized with the addition of just one vector. �

Characterizations and explicit constructions of dual pairs of frames will
be a key issue in our treatment of structured function systems (like Gabor
systems and wavelet systems) in the later chapters.

1.3 Frame Bounds and Frame Algorithms

The speed of convergence in numerical procedures involving a strictly posi-
tive definite matrix depends heavily on the condition number of the matrix,
which is defined as the ratio between the largest eigenvalue and the smallest
eigenvalue. In the case of the frame operator, these eigenvalues correspond
to the optimal frame bounds:

Theorem 1.3.1 Let {fk}mk=1 be a frame for V, with frame operator S.
Then the following hold:

(i) The optimal lower frame bound is the smallest eigenvalue for S, and
the optimal upper frame bound is the largest eigenvalue.

(ii) Let {λk}nk=1 denote the eigenvalues for S; each eigenvalue appears in
the list corresponding to its algebraic multiplicity. Then

n∑

k=1

λk =

m∑

k=1

||fk||2.

(iii) Assume that V has dimension n. If {fk}mk=1 is tight and ||fk|| = 1
for all k, then the frame bound is A = m/n.

Proof. Assume that {fk}mk=1 is a frame for V . Since the frame operator
S : V → V is self-adjoint, Theorem A.1.1 shows that V has an orthonormal
basis consisting of eigenvectors {ek}nk=1 for S. Denote the corresponding







1.3 Frame Bounds and Frame Algorithms 13

eigenvalues by {λk}nk=1; since S is self-adjoint, they are real. Given f ∈ V ,
we can write f =

∑n
k=1〈f, ek〉ek. Then

Sf =
n∑

k=1

〈f, ek〉Sek =
n∑

k=1

λk〈f, ek〉ek,

and

m∑

k=1

|〈f, fk〉|2 = 〈Sf, f〉 =
n∑

k=1

λk|〈f, ek〉|2.

Therefore,

λmin||f ||2 ≤
m∑

k=1

|〈f, fk〉|2 ≤ λmax||f ||2.

So λmin is a lower frame bound, and λmax is an upper frame bound. That
they are the optimal frame bounds follows by taking f to be an eigenvector
corresponding to λmin (respectively λmax).
For the proof of (ii), we have

n∑

k=1

λk =

n∑

k=1

λk||ek||2 =

n∑

k=1

〈Sek, ek〉

=

n∑

k=1

m∑

�=1

|〈ek, f�〉|2.

Interchanging the sums and using that {ek}nk=1 is an orthonormal basis for
V now gives (ii). For the proof of (iii), the assumptions imply that the set
of eigenvalues {λk}nk=1 consists of the frame bound A repeated n times;
thus, the result follows from (ii). �

Corollary 1.3.2 Let {fk}mk=1 be a frame for V . Then the condition number
for the frame operator is equal to the ratio between the optimal upper frame
bound and the optimal lower frame bound.

If we want to find an element f ∈ V based on knowledge of the coefficients
{〈f, fk〉}mk=1, we can use Theorem 1.1.5:

f =

m∑

k=1

〈f, fk〉S−1fk = S−1T {〈f, fk〉}mk=1.

However, in order for this formula to be useful, we need to invert the
frame operator, which can be complicated if the dimension of V is large.
Another option is to use an algorithm to obtain approximations of f .
A classical algorithm is known as the frame algorithm:
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Lemma 1.3.3 Let {fk}mk=1 be a frame for V with frame bounds A,B.
Given f ∈ V , define the sequence {gk}∞k=0 in V by

g0 = 0, gk = gk−1 +
2

A+B
S(f − gk−1), k ≥ 1. (1.17)

Then

||f − gk|| ≤
(
B − A

B + A

)k

||f ||.

Proof. Let I denote the identity operator on V . Using (1.7),

〈(I − 2

A+B
S)f, f〉 = ||f ||2 − 2

A+B

m∑

k=1

|〈f, fk〉|2, ∀f ∈ V,

so via the frame condition,

〈(I − 2

A+B
S)f, f〉 ≤ ||f ||2 − 2A

A+B
||f ||2 =

B −A

B +A
||f ||2.

Similarly,

−B −A

B +A
||f ||2 ≤ 〈(I − 2

A+B
S)f, f〉.

The two inequalities and (2.8) together give that

∣
∣
∣
∣

∣
∣
∣
∣I −

2

A+B
S

∣
∣
∣
∣

∣
∣
∣
∣ ≤

B −A

B +A
.

Using the definition of {gk}∞k=0,

f − gk = f − gk−1 −
2

A+B
S(f − gk−1)

=

(

I − 2

A+B
S

)

(f − gk−1),

and by repeating the argument,

f − gk =

(

I − 2

A+B
S

)k

(f − g0).

Thus, applying (2.4) and (2.5),

||f − gk|| =

∣
∣
∣
∣

∣
∣
∣
∣

(

I − 2

A+B
S

)k

(f − g0)

∣
∣
∣
∣

∣
∣
∣
∣

≤
∣
∣
∣
∣

∣
∣
∣
∣I −

2

A+B
S

∣
∣
∣
∣

∣
∣
∣
∣

k

||f − g0|| ≤
(
B −A

B +A

)k

||f ||,

as desired. �
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In particular, the vectors gk in (1.17) converge to f as k → ∞. The
algorithm depends on the knowledge of some frame bounds, and the guar-
anteed speed of convergence also depends on them. If B is much larger than
A (either because only bad estimates for the optimal bounds are known or
because the frame is far from being tight), the convergence might be slow.
It is natural to apply some of the known acceleration algorithms from lin-
ear algebra to obtain faster convergence. Gröchenig showed in [338] how
to apply the Chebyshev method and the conjugate gradient method. For the
sake of the numerically oriented reader, we will give a short presentation of
these results but refer to the original paper for the details. We begin with
the Chebyshev method:

Theorem 1.3.4 Let {fk}mk=1 be a frame for V with frame bounds A,B,
and let

ρ :=
B −A

B +A
, σ :=

√
B −

√
A√

B +
√
A
.

Given f ∈ V , define the sequence {gk}∞k=0 in V and corresponding numbers
{λk}∞k=1 by

g0 = 0, g1 =
2

A+B
Sf, λ1 = 2,

and for k ≥ 2,

λk =
1

1− ρ2

4 λk−1

, gk = λk

(

gk−1 − gk−2 +
2

A+B
S(f − gk−1)

)

+ gk−2.

Then

||f − gk|| ≤
2σk

1 + σ2k
||f ||.

The Chebyshev algorithm guarantees a faster convergence than the frame
algorithm when B is much larger than A. Knowledge of some frame bounds
is also needed in order to apply the Chebyshev algorithm. In contrast, the
conjugate gradient algorithm described below works without knowledge of
the frame bounds: only when we want to estimate the error ||f −gk|| do we
need them. Following Gröchenig, we formulate the result using the norm

|||f ||| = 〈f, Sf〉1/2, f ∈ V.

We leave it to the reader to check that ||| · ||| is in fact a norm on V .
Remember also that all norms on a finite-dimensional vector space are
equivalent; that is, there exist constants C1, C2 > 0 such that

C1||f || ≤ |||f ||| ≤ C2||f ||, ∀f ∈ V.

This means that an error estimate in the norm ||| · ||| can be transferred
into an error estimate in the usual norm.
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Theorem 1.3.5 Let {fk}mk=1 be a frame for V . Let f ∈ V \{0} and define
the vectors {gk}∞k=0, {rk}∞k=0, {pk}∞k=−1 and numbers {λk}∞k=0 by

g0 = 0, r0 = p0 = Sf, p−1 = 0

and, for k ≥ 0,

λk =
〈rk, pk〉
〈pk, Spk〉

,

gk+1 = gk + λkpk,

rk+1 = rk − λkSpk,

pk+1 = Spk −
〈Spk, Spk〉
〈pk, Spk〉

pk −
〈Spk, Spk−1〉
〈pk−1, Spk−1〉

pk−1.

Then gk → f as k → ∞. If we let A denote the smallest eigenvalue for S

and B the largest eigenvalue and let σ =
√
B−√

A√
B+

√
A
, the speed of convergence

can be estimated by

|||f − gk||| ≤
2σk

1 + σ2k
|||f |||.

In the expression for pk+1, the last term is interpreted as zero for k = 0.

1.4 Frames in C
n

The natural examples of finite-dimensional vector spaces are

R
n = {(c1, c2, . . . , cn) | ci ∈ R, i = 1, . . . , n}

and

C
n = {(c1, c2, . . . , cn) | ci ∈ C, i = 1, . . . , n};

the latter is equipped with the inner product

〈{ck}nk=1, {dk}nk=1〉 =
n∑

k=1

ckdk

and the associated norm

||{ck}nk=1|| =

√
√
√
√

n∑

k=1

|ck|2.

This corresponds to the definitions in R
n, except that complex conjugation

and modulus is not needed in the real case. We will describe the theory
for bases and frames in C

n, but the results have direct implications for
frames in R

n as well. If, for example, {fk}mk=1 is a frame for C
n, then the

2m vectors consisting of the real parts, respectively the imaginary parts,
of the frame vectors will be a frame for R

n (Exercise 1.11); in particular,
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if the vectors {fk}mk=1 have real coordinates, they constitute a frame for
R

n. On the other hand, a frame for R
n is automatically a frame for C

n

(Exercise 1.12).
The canonical basis for C

n consists of the vectors {δk}nk=1, where δk
is the vector in C

n having 1 at the kth entry and otherwise 0. We will
consequently identify vectors in C

n with their representation in this basis.
From elementary linear algebra, we know many equivalent conditions for

a set of vectors to constitute a basis for Cn. Let us list the most important
characterizations:

Theorem 1.4.1 Consider n vectors in C
n and write them as columns in

an n× n matrix

Λ =

⎛

⎜
⎜
⎜
⎜
⎝

λ11 λ12 · · λ1n

λ21 λ22 · · λ2n

· · · · ·
· · · · ·

λn1 λn2 · · λnn

⎞

⎟
⎟
⎟
⎟
⎠

.

Then the following are equivalent:

(i) The columns in Λ (i.e., the given vectors) constitute a basis for C
n.

(ii) The rows in Λ constitute a basis for C
n.

(iii) The determinant of Λ is nonzero.

(iv) Λ is invertible.

(v) Λ defines an injective mapping from C
n into C

n.

(vi) Λ defines a surjective mapping from C
n onto C

n.

(vii) The columns in Λ are linearly independent.

(viii) Λ has rank equal to n.

Recall that the rank of a matrix E is defined as the dimension of its
range RE . We also remind the reader that any basis can be turned into
an orthonormal basis by applying the Gram–Schmidt orthogonalization
procedure.
We now turn to a discussion of frames for Cn. Note that we consequently

identify operators U : C
n → C

m with their matrix representations with
respect to the canonical bases in C

n and C
m. Letting {ek}nk=1 denote the

canonical orthonormal basis in C
n and {ẽk}mk=1 the canonical orthonormal

basis in C
m, the matrix representation of U is the m × n matrix, where

the kth column consists of the coordinates of the image under U of the kth
basis vector in U , in terms of the given basis in W . The jkth entry in the
matrix representation is 〈Uek, ẽj〉.
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In case {fk}mk=1 is a frame for C
n, the synthesis operator T defined

in (1.4) maps Cm onto C
n. Its matrix with respect to the canonical bases

in C
n and C

m is

T =

⎛

⎝
| | · · |
f1 f2 · · fm
| | · · |

⎞

⎠ (1.18)

i.e., the n×m matrix having the vectors fk as columns.
Since m vectors can at most span an m-dimensional space, we necessarily

have m ≥ n when {fk}mk=1 is a frame for Cn, i.e., the matrix T has at least
as many columns as rows.

Theorem 1.4.2 Let {fk}mk=1 be a frame for C
n. Then the following holds:

(i) The vectors fk can be considered as the first n coordinates of some
vectors gk in C

m constituting a basis for C
m.

(ii) If {fk}mk=1 is tight, then the vectors fk are the first n coordinates of
some vectors gk in C

m constituting an orthogonal basis for C
m.

Proof. Let {fk}mk=1 be an arbitrary frame for Cn. Then m ≥ n. Consider
the mapping

F : Cn → C
m, Fx = {〈x, fk〉}mk=1.

F is the adjoint of the synthesis operator T. The matrix for F with respect
to the canonical bases is the m×n matrix where the kth row is the complex
conjugate of fk, i.e.,

F =

⎛

⎜
⎜
⎜
⎜
⎝

− f1 −
− f2 −
· · ·
· · ·
− fm −

⎞

⎟
⎟
⎟
⎟
⎠

.

If Fx = 0, then 0 = ||Fx||2 =
∑m

k=1 |〈x, fk〉|2. Since span{fk}mk=1 = C
n, it

follows that x = 0, so F is an injective mapping. We can therefore extend
F to a bijection F̃ of Cm onto C

m: for example, still letting {δk}mk=1 be
the canonical basis for C

m, let {φk}mk=n+1 be a basis for the orthogonal

complement of RF in C
m and extend F by the definition F̃ δk := φk, k =

n + 1, n + 2, . . . ,m. The matrix for F̃ is an m ×m matrix, whose first n
columns are the columns from F :

F̃ =

⎛

⎝
− f1 − | | · |
· · · | φn+1 · φm

− fm − | | · |

⎞

⎠ .
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Since F̃ is surjective, the columns span C
m. The rank of the rows equals

the rank of the columns, so also the rows in F̃ span C
m, and they are

linearly independent. Thus, they constitute a basis for Cm.
If {fk}mk=1 is a tight frame for Cn with frame bound A and {δk}nk=1 still

denotes the canonical basis for Cn, Proposition 1.1.4 shows that

〈TT ∗δ�, δj〉 = Aδj,�, j, � = 1, . . . , n.

〈TT ∗δ�, δj〉 is the j, �th entry in the matrix representation for TT ∗, so this
calculation shows that the n rows in the matrix representation (1.18) for
T are orthogonal, considered as vectors in C

m. By adding m − n rows we
can extend the matrix for T to an m × m matrix in which the rows are
orthogonal. Therefore the columns are orthogonal. �

Geometrically, Theorem 1.4.2 means that if {fk}mk=1 is a frame for C
n,

there exist vectors {hk}mk=1 in C
m−n such that the columns in the matrix

⎛

⎜
⎜
⎜
⎜
⎝

| | · · |
f1 f2 · · fm
| | · · |
h1 h2 · · hm

| | · · |

⎞

⎟
⎟
⎟
⎟
⎠

(1.19)

constitute a basis for Cm.
So far, we have considered frames {fk}mk=1 as columns in a matrix;

see (1.18). The next result gives a condition for the rows in a matrix Λ
to constitute a frame; this change of format is due to the nature of the
condition that will be stated in (1.20). If we want to consider the frame
property of the columns in the matrix, we can just apply the result on the
transposed matrix ΛT rather than on Λ itself.

Proposition 1.4.3 For an m× n matrix

Λ =

⎛

⎜
⎜
⎝

λ11 · · λ1n

· · · ·
· · · ·

λm1 · · λmn

⎞

⎟
⎟
⎠ ,

the following are equivalent:

(i) There exists a constant A > 0 such that

A

n∑

k=1

|ck|2 ≤ ||Λ{ck}nk=1||
2
, ∀{ck}nk=1 ∈ C

n. (1.20)

(ii) The columns in Λ constitute a basis for their span in C
m.

(iii) The rows in Λ constitute a frame for C
n.
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Proof. Denote the columns in Λ by g1, . . . , gn; they are vectors in C
m.

By definition, (i) means that for all {ck}nk=1 ∈ C
n,

A
n∑

k=1

|ck|2 ≤
∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckgk

∣
∣
∣
∣

∣
∣
∣
∣

2

, (1.21)

which is equivalent to {gk}nk=1 being a basis for its span in C
m (use an

argument such as in the proof of Proposition 1.1.2). On the other hand,
denoting the rows in Λ by f1, . . . , fm, (i) can also be written as

A
n∑

k=1

|ck|2 ≤
n∑

k=1

∣
∣
∣
∣〈fk,

⎛

⎝
c1
·
cn

⎞

⎠〉
∣
∣
∣
∣

2

, ∀{ck}nk=1 ∈ C
n,

which is equivalent to (iii). �

Example 1.4.4 As an illustration of Proposition 1.4.3, consider the
matrix

Λ =

⎛

⎝
1 0
0 1
1 0

⎞

⎠ ;

it is clear that the rows

(
1
0

)

,

(
0
1

)

,

(
1
0

)

constitute a frame for C2.

The columns

⎛

⎝
1
0
1

⎞

⎠ ,

⎛

⎝
0
1
0

⎞

⎠ constitute a basis for their span in C
3, but

the span is only a two-dimensional subspace of C3. �

As an immediate consequence of the proof of Proposition 1.4.3, we have
the following useful fact:

Corollary 1.4.5 Let Λ be an m × n matrix. Denote the columns by
g1, . . . , gn and the rows by f1, . . . , fm, i.e.,

Λ =

⎛

⎜
⎜
⎝

λ11 · · λ1n

· · · ·
· · · ·

λm1 · · λmn

⎞

⎟
⎟
⎠ =

⎛

⎝
| | · · |
g1 g2 · · gn
| | · · |

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

− f1 −
− f2 −
· · ·
· · ·
− fm −

⎞

⎟
⎟
⎟
⎟
⎠

.

Given A,B > 0, the vectors {fk}mk=1 constitute a frame for C
n with bounds

A,B if and only if

A

n∑

k=1

|ck|2 ≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

k=1

ckgk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

≤ B

n∑

k=1

|ck|2, ∀{ck}nk=1 ∈ C
n.
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Example 1.4.6 Consider the vectors
⎛

⎜
⎜
⎝

0√
1
3√
2
3

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0

−
√

1
3√

2
3

⎞

⎟
⎟
⎠ ,

⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎜
⎜
⎝

√
5
6

0√
1
6

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

−
√

5
6

0√
1
6

⎞

⎟
⎟
⎠ (1.22)

in C
3. Corresponding to these vectors, we consider the matrix

Λ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
√

1
3

√
2
3

0 −
√

1
3

√
2
3

0 1 0√
5
6 0

√
1
6

−
√

5
6 0

√
1
6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The reader can check that the columns {gk}3k=1 are orthogonal in C
5 and

all have length
√

5
3 . Therefore,

∣
∣
∣
∣

∣
∣
∣
∣

3∑

k=1

ckgk

∣
∣
∣
∣

∣
∣
∣
∣

2

=
5

3

3∑

k=1

|ck|2

for all c1, c2, c3 ∈ C. By Corollary 1.4.5 we conclude that the vectors defined
by (1.22) constitute a tight frame for C

3 with frame bound 5
3 . The frame

is normalized. �

For later use we state a special case of Corollary 1.4.5; we ask the reader
to provide the proof in Exercise 1.13.

Corollary 1.4.7 Let Λ be an m × n matrix. Then the following are
equivalent:

(i) Λ∗Λ = I, the n× n identity matrix.

(ii) The columns g1, . . . , gn in Λ constitute an orthonormal system in C
m.

(iii) The rows f1, . . . , fm in Λ constitute a Parseval frame for C
n.

1.5 Frames and the Discrete Fourier Transform

When working with frames and bases in C
n, one has to be particularly

careful with the meaning of the notation. For example, we have used fk
and gk to denote vectors in C

n, whereas ck in general is the kth coordinate
of a sequence {ck}nk=1 ∈ C

n, i.e., ck is a scalar. In order to avoid confusion,
we will change the notation slightly in this section. The key to the new
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notation is the observation that to have an element in C
n is equivalent to

having a function

f : {1, . . . , n} → C;

the jth entry in the sequence corresponds to the jth function value f(j).
Thus, we will often denote a sequence in C

n by {f(j)}nj=1.
We begin this section by the construction of a special orthonormal basis

for C
n and related frame constructions with attractive properties. At the

end of the section, we connect the constructions to a problem in engineering.
Let z := e2πi/n and consider the n×n discrete Fourier transform matrix

(DFT matrix) given by

1√
n

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 · · 1
1 z z2 · · zn−1

1 z2 z4 · · z2(n−1)

1 · · · · ·
1 · · · · ·
1 zn−1 z2(n−1) · · z(n−1)(n−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.23)

We will now consider the columns ek, k = 1, . . . , n, in the matrix (1.23).
That is, for k = 1, . . . , n, we define the vectors ek ∈ C

n by

ek(j) =
1√
n
e2πi(j−1) k−1

n , j = 1, . . . , n; (1.24)

or

ek =
1√
n

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

e2πi
k−1
n

e4πi
k−1
n

·
·

e2πi(n−1) k−1
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, k = 1, . . . n. (1.25)

Theorem 1.5.1 The vectors {ek}nk=1 defined by (1.24) constitute an
orthonormal basis for C

n.

Proof. Since {ek}nk=1 are n vectors in an n-dimensional vector space, it
is enough to prove that they constitute an orthonormal system. It is clear
that ||ek|| = 1 for all k. Now, given k �= �,

〈ek, e�〉 =
1

n

n∑

j=1

e2πi(j−1) k−1
n e−2πi(j−1) �−1

n =
1

n

n−1∑

j=0

e2πij
k−�
n .

Using the formula (1 − x)(1 + x+ · · ·+ xn−1) = 1− xn with x = e2πi
k−�
n ,

we get

〈ek, e�〉 =
1

n

1− (e2πi
k−�
n )n

1− e2πi
k−�
n

= 0. �
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The basis {ek}nk=1 is called the discrete Fourier transform basis. Using
this basis, every sequence f ∈ C

n has a representation

f =

n∑

k=1

〈f, ek〉ek =
1√
n

n∑

k=1

n∑

�=1

f(�)e−2πi(�−1) k−1
n ek.

Written out in coordinates, this means that

f(j) =
1

n

n∑

k=1

n∑

�=1

f(�)e−2πi(�−1)k−1
n e2πi(j−1) k−1

n

=
1

n

n∑

k=1

n∑

�=1

f(�)e2πi(j−�) k−1
n , j = 1, . . . , n.

Applications often ask for tight frames because the cumbersome inversion
of the frame operator is avoided in this case; see (1.9). It was observed by
Zimmermann [642] that overcomplete tight frames in C

n can be obtained
by projecting the discrete Fourier transform basis in any C

m, m > n, onto
C

n. In other words: if we consider the m × m discrete Fourier transform
matrix and remove the last m − n rows, the columns in the remaining
matrix form a tight frame for Cn:

Proposition 1.5.2 Let m > n and define the vectors {fk}mk=1 in C
n by

fk =
1√
m

⎛

⎜
⎜
⎜
⎜
⎝

1

e2πi
k−1
m

·
·

e2πi(n−1) k−1
m

⎞

⎟
⎟
⎟
⎟
⎠

, k = 1, 2, . . . ,m.

Then {fk}mk=1 is an overcomplete Parseval frame for C
n, and ||fk|| =

√
n
m

for all k = 1, . . . ,m.

Proof. Let {δj}nj=1 be the canonical basis for Cn, and let {ek}mk=1 be the
discrete Fourier transform basis for Cm, i.e.,

ek =
1√
m

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

e2πi
k−1
m

·
e2πi(n−1) k−1

m

·
e2πi(m−1)k−1

m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, k = 1, . . . ,m.

Identifying C
n with a subspace of Cm, the orthogonal projection of ek onto

C
n is Pek = fk; now the result follows from Exercise 1.14. �

The frames {fk}mk=1 constructed in Proposition 1.5.2 are called harmonic
frames. It is important to notice that all the vectors fk in {fk}mk=1 have
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the same norm. If needed, we can therefore normalize them while keeping
a tight frame; we only have to adjust the frame bound accordingly. We
formulate the result as an existence result, but it is important to keep in
mind that we actually have an explicit construction:

Corollary 1.5.3 For any m ≥ n, there exists a tight frame in C
n

consisting of m normalized vectors.

Note that Zimmermann also constructed real-valued tight frames for Rn,
based on the same idea; see [642] for details.

Example 1.5.4 The discrete Fourier transform basis in C
4 consists of the

vectors

1

2

⎛

⎜
⎜
⎝

1
1
1
1

⎞

⎟
⎟
⎠ ,

1

2

⎛

⎜
⎜
⎝

1
i
−1
−i

⎞

⎟
⎟
⎠ ,

1

2

⎛

⎜
⎜
⎝

1
−1
1
−1

⎞

⎟
⎟
⎠ ,

1

2

⎛

⎜
⎜
⎝

1
−i
−1
i

⎞

⎟
⎟
⎠ .

Via Proposition 1.5.2, the vectors

1

2

(
1
1

)

,
1

2

(
1
i

)

,
1

2

(
1
−1

)

,
1

2

(
1
−i

)

constitute a Parseval frame in C
2. The vectors have length 1/

√
2. Changing

the length of the vectors, i.e., considering the vectors

1√
2

(
1
1

)

,
1√
2

(
1
i

)

,
1√
2

(
1
−1

)

,
1√
2

(
1
−i

)

,

we obtain a tight frame with frame bound 2, consisting of normalized
vectors. �

Recall that the key property of frames is the possibility of redundancy: if
{fk}mk=1 is a frame for Cn andm > n, we know from (1.11) that each f ∈ C

n

has several expansions in terms of {fk}mk=1, so we have the possibility to
select the most convenient one in concrete cases. Also, in Section 1.9 we will
discuss a case where it is important that removal of one or more elements
from a frame does not destroy the frame property; this clearly requires that
the given frame is redundant.
The excess of a frame {fk}mk=1 of a finite-dimensional space V is the

number of elements that has to be removed in order for the remaining set
to form a basis; if V = C

n, the excess of a frame {fk}mk=1 is simply m− n.
Note, however, that the excess alone does not provide sufficient information
about stability of the frame property against removal of selected elements:















1.5 Frames and the Discrete Fourier Transform 25

Example 1.5.5 Let {ek}2k=1 be an orthonormal basis for C2.

(i) The sequence {e1, e1, e1, e2} is a frame for C2 with excess 2; however,
removal of the single element e2 leaves a set that is not a frame for C2.

(ii) The sequence {e1, e2, e1+e2, e1−e2} is also a frame for C2 with excess
2. In this case removal of two arbitrary vectors leaves a set which is
still a frame for C2. �

We note that Bodmann, Casazza, and Kutyniok have provided general
definitions of upper and lower redundancies in order to describe the direc-
tion dependence of the redundancy that we encountered in Example 1.5.5;
we refer to the paper [68] for details.
If we have information on the lower frame bound and the norm of the

frame elements, we can provide a criterion for how many elements we can
(at least) remove:

Proposition 1.5.6 Let {fk}mk=1 be a normalized frame for C
n with lower

frame bound A > 1. Then, for any index set I ⊂ {1, . . . ,m} with |I| < A,
the family {fk}k/∈I is a frame for C

n with lower bound A− |I|.

Proof. Given f ∈ C
n,

∑

k∈I

|〈f, fk〉|2 ≤
∑

k∈I

||fk||2 ||f ||2 = |I| ||f ||2.

Thus,
∑

k/∈I

|〈f, fk〉|2 ≥ (A− |I|)||f ||2. �

Theorem 1.3.1 shows that if {fk}mk=1 is a tight normalized frame, then
Proposition 1.5.6 applies if |I| < m

n . Considering an arbitrary frame
{fk}mk=1 for Cn, the maximal number of elements one can hope to remove
while keeping the frame property is m−n. If we want to be able to remove
m − n arbitrary elements, it is not enough to assume that {fk}mk=1 is a
normalized tight frame, as demonstrated by the frame in Example 1.4.6;
in this example m − n = 2, but the three first vectors in (1.22) do not
constitute a frame for C3. Concerning the stability against removal of vec-
tors, the harmonic frame {fk}mk=1 in Proposition 1.5.2 behaves well: m− n
arbitrary elements can be removed without destroying the frame property
of the remaining set!

Proposition 1.5.7 Consider the harmonic frame {fk}mk=1 for C
n defined

in Proposition 1.5.2. Any subset containing at least n elements of this frame
forms a frame for C

n.
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Proof. Consider an arbitrary subset {k1, k2, . . . , kn} ⊆ {1, 2, . . . ,m}. Plac-
ing the vectors {fki}ni=1 as rows in an n× n matrix and letting z := e

2πi
m ,

we obtain
⎛

⎜
⎜
⎜
⎜
⎝

−fk1−
−fk2−
·
·

−fkn−

⎞

⎟
⎟
⎟
⎟
⎠

=
1√
m

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 e2πi
k1−1

m · · e2πi
(k1−1)(n−1)

m

1 e2πi
k2−1

m · · e2πi
(k2−1)(n−1)

m

· · · · ·
· · · · ·
1 e2πi

kn−1
m · · e2πi

(kn−1)(n−1)
m

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
1√
m

⎛

⎜
⎜
⎜
⎜
⎝

1 zk1−1 · · z(k1−1)(n−1)

1 zk2−1 · · z(k2−1)(n−1)

· · · · ·
· · · · ·
1 zkn−1 · · z(kn−1)(n−1)

⎞

⎟
⎟
⎟
⎟
⎠

;

this is a Vandermonde matrix with determinant

1

mn/2

n∏

i,j=1,i�=j

(zki−1 − zkj−1) �= 0.

Thus, {fki}ni=1 is a basis for Cn by Theorem 1.4.1. �

A frame {fk}mk=1 for C
n is said to have full spark if every subset con-

taining n elements is linearly independent; that is, if removal of m − n
arbitrary elements leaves a basis for C

n. The harmonic frames are the
standard examples of such frames.
Note that in the definition of the harmonic frames {fk}mk=1 for C

n in
Proposition 1.5.2, we defined the vectors fk by taking the n first elements
from the columns forming the m × m DFT matrix. One can prove more
general ways of obtaining frames, even with full spark, by selecting other
rows than just the n first rows in the DFT matrix; see the paper [10] by
Alexeev, Cahill, and Mixon.
The redundancy of frames is the key to most of the frame applications

in engineering. For example, the redundancy leads to a reduction in the
inevitable quantization error, which appears in all applications of series
representations. We will now describe this in more detail. Let {fk}mk=1 be
a frame for C

n, with a dual frame {gk}mk=1. General frame theory to be
discussed later (see Lemma 6.3.2) yields that {fk}mk=1 is also a dual frame
of {gk}mk=1, so any f ∈ C

n has the exact representation

f =

m∑

k=1

〈f, fk〉gk. (1.26)

Unfortunately, in real life we often have to give up the beauty of exact
mathematics. In computer-based applications, we cannot work with arbi-
trary numbers, but only a finite collection of numbers, a so-called alphabet.
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This means that the coefficients ck := 〈f, fk〉 have to be replaced by
numbers c̃k from the alphabet, and the exact representation of f in (1.26)
will be replaced by an approximation

f̃ =
m∑

k=1

c̃kgk. (1.27)

The number ||f − f̃ || is called the quantization error. Note that if {fk}mk=1

is an orthonormal basis, we know that the unique choice of the dual frame
is {gk}mk=1 = {fk}mk=1; in this case the quantization error is

||f − f̃ || =

√
√
√
√

m∑

k=1

|ck − c̃k|2.

It is reasonable to expect that we can reduce the quantization error if
we replace the orthonormal basis {fk}mk=1 by an overcomplete frame: in
this case, any dual frame {gk}mk=1 is overcomplete as well, and the set of
coefficients {ck}mk=1 that yield an exact representation f =

∑m
k=1 ckgk form

an affine subspace of Cm. At least in an intuitive sense, the flexibility in
the choice of coefficients should make it possible to obtain good approxi-
mations using coefficients from the alphabet – with better approximations
whenever the redundancy increases. This intuition has been confirmed in
a series of papers by Powell, Yilmaz, and their collaborators [55, 64, 547].
For m > n, let {fk}mk=1 denote the harmonic frame in C

n, as constructed in
Proposition 1.5.2. Then there exists for any r ∈ N a procedure called rth-
order sigma–delta quantization that yields coefficients c̃k and corresponding
approximations f̃ as in (1.27) such that

||f − f̃ || ≤ Cm−r, (1.28)

for a constant C that is independent of m. In other words: increasing the
redundancy, i.e., the number m of elements in the frame, leads to a decay of
the quantization error. The approach is in fact not restricted to harmonic
frames, but works for certain other classes of frames as well.
The proof of the decay estimate (1.28) is based on a careful choice of

the dual frame {gk}mk=1. In fact, given any r ∈ N, the procedure selects a
particular dual frame {gk}mk=1 such that (1.28) holds. This particular dual
is called the rth-order Sobolev dual; explicit formulas are given in [65] and
[547]. It is interesting to note that the choice of this particular dual frame
instead of the canonical dual frame is essential. In fact, a concrete example
in [473] yields a situation where the use of the canonical dual frame cannot
lead to an approximation order better than 1/m2, regardless of the choice
of r. Thus, it is necessary to use the full flexibility of the frame theory if
we want to obtain a fast reduction in the quantization error by increasing
the redundancy.
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The analysis of sigma–delta quantization adds a new perspective to our
discussion of tight frames versus dual frame pairs. So far, the point of
view has been that the tight frames are theoretically perfect, because the
canonical dual equals the frame itself (up to a constant) and thus yields
a simple form of the frame decomposition. Now we know that even in the
case of a tight frame, practical issues might prompt us to apply the general
theory for dual frames.

1.6 Pseudo-inverses and the Singular Value
Decomposition

For matrices that are not invertible, various types of generalized inverses
exist in the literature. The right definition of a generalized inverse depends
on the properties we are interested in, and we shall only define the so-
called pseudo-inverse. Given an m× n matrix E, we consider it as a linear
mapping of Cn into C

m. E is not necessarily injective, but by restricting
E to the orthogonal complement of the kernel NE , we obtain an injective
linear mapping

Ẽ : N⊥
E → C

m.

E and Ẽ have the same range, R
˜E = RE ; thus, Ẽ considered as a mapping

from N⊥
E to RE has an inverse,

(Ẽ)−1 : RE → N⊥
E .

We can extend (Ẽ)−1 to an operator E† : Cm → C
n by defining

E†(y + z) = (Ẽ)−1y if y ∈ RE , z ∈ R⊥
E . (1.29)

With this definition,

EE†x = x, ∀x ∈ RE . (1.30)

The operator E† is called the pseudo-inverse of E. From the definition,
we immediately have that

NE† = R⊥
E = NE∗ , RE† = N⊥

E = RE∗ . (1.31)

We state two characterizations of the pseudo-inverse:

Proposition 1.6.1 Let E be an m× n matrix. Then

(i) E† is the unique n × m matrix for which EE† is the orthogonal
projection onto RE and E†E is the orthogonal projection onto RE† .

(ii) E† is the unique n×m matrix for which EE† and E†E are self-adjoint
and

EE†E = E, E†EE† = E†.
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Proof. We first prove the equivalence between the conditions stated in
(i) and (ii). If a matrix E† satisfies (i), it immediately follows that (ii) is
satisfied. On the other hand, if (ii) is satisfied, then

(EE†)2 = EE†EE† = EE†.

Since EE† is self-adjoint, it follows that EE† is the orthogonal projection
onto REE† . Finally, the identity EE†E = E shows that REE† = RE . The
proof that E†E is the orthogonal projection onto RE† is similar. Thus, (i)
is satisfied.
We now prove the equivalence between the properties in Proposition 1.6.1

and the definition (1.29) of the pseudo-inverse. First we note that with our
definition of the pseudo-inverse, the conditions in (i) are satisfied; the main
ingredients in the following argument are the relations (1.30) and (1.31).
In fact, if y ∈ RE , then EE†y = y; and if y ∈ R⊥

E = NE† , then EE†y = 0.
This proves that EE† is the orthogonal projection onto RE . Also, if y ∈
R⊥

E† = NE , then E†Ey = 0; and if y ∈ RE† , y = E†x for some x, then

E†Ey = E†EE†x = E†x− E†(I − EE†)x = E†x = y.

Here we used that I − EE† is the orthogonal projection onto R⊥
E = NE† .

We have now proved that E†E is the orthogonal projection onto RE† .
To conclude we only have to prove that if a matrix E† satisfies (i) and

(ii), then it fulfills the requirements in the definition of the pseudo-inverse,
i.e., (1.29) is satisfied. First, we note that (ii) implies that

E∗ = (EE†E)∗ = (E†E)∗E∗ = E†EE∗;

this shows that

N⊥
E = RE∗ ⊆ RE† .

Now, if y ∈ RE , then we can find x ∈ N⊥
E such that y = Ex; thus,

E†y = E†Ex = x = (Ẽ)−1Ex = (Ẽ)−1y.

Finally, if z ∈ R⊥
E = NE∗ , then by (i), EE†z = 0; using (ii),

E†z = E†EE†z = 0. �

The pseudo-inverse gives the solution to an important minimization
problem:

Theorem 1.6.2 Let E be an m × n matrix. Given y ∈ RE , the equation
Ex = y has a unique solution of minimal norm, namely, x = E†y.

Proof. By (1.30), we know that x := E†y is a solution to the equation
Ex = y. All solutions have the form x = E†y + z, where z ∈ NE . Since
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E†y ∈ N⊥
E , the norm of the general solution is given by

||x||2 = ||E†y + z||2 = ||E†y||2 + ||z||2.

This expression is minimal when z = 0. �

Historically, (i) and (ii) were given as definitions of a “general-
ized inverse” by Moore and Penrose, respectively. For this reason, the
pseudo-inverse is frequently called the Moore–Penrose inverse.
For computational purposes, it is important to notice that the pseudo-

inverse can be found using the singular value decomposition of E. We begin
with a lemma.

Lemma 1.6.3 Let E be an m × n matrix with rank r ≥ 1. Then there
exist constants σ1, . . . , σr > 0 and orthonormal bases {uk}rk=1 for RE and
{vk}rk=1 for RE∗ such that

Evk = σkuk, k = 1, . . . , r. (1.32)

Proof. Observe that E∗E is a self-adjoint n×nmatrix; by Theorem A.1.1,
this implies that there exists an orthonormal basis {vk}nk=1 for C

n con-
sisting of eigenvectors for E∗E. Let {λk}nk=1 denote the corresponding
eigenvalues. Note that for each k,

λk = λk||vk||2 = 〈E∗Evk, vk〉 = ||Evk||2 ≥ 0.

The rank of E is given by

r = dimRE = dimRE∗ ;

since R⊥
E = NE∗ , we have

RE∗ = RE∗E = span{E∗Evk}nk=1 = span{λkvk}nk=1. (1.33)

Thus, the rank is equal to the number of nonzero eigenvalues, counted with
multiplicity. We can assume that the eigenvectors {vk}nk=1 are ordered such
that {vk}rk=1 corresponds to the nonzero eigenvalues. Then (1.33) shows
that {vk}rk=1 is an orthonormal basis for RE∗ . Note that for k > r, we
have ||Evk||2 = 〈E∗Evk, vk〉 = 0, i.e.,

Evk = 0, k > r. (1.34)

Defining

uk :=
1√
λk

Evk, k = 1, . . . , r,
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we therefore obtain that {uk}rk=1 spans RE , and it is an orthonormal basis
for RE because for all k, � = 1, . . . , r, we have

〈uk, u�〉 =
1√
λk

1√
λ�

〈Evk, Ev�〉

=
1√
λkλ�

〈E∗Evk, v�〉

=

√
λk

λ�
〈vk, v�〉

= δk,�.

Thus, the conditions in Lemma 1.6.3 are fulfilled with

σk =
√
λk, k = 1, . . . , r. �

Lemma 1.6.3 leads to the singular value decomposition of E:

Theorem 1.6.4 Every m × n matrix E with rank r ≥ 1 has a
decomposition

E = U

(
D 0
0 0

)

V ∗, (1.35)

where U is a unitary m × m matrix, V is a unitary n × n matrix, and(
D 0
0 0

)

is an m × n block matrix in which D is an r × r diagonal

matrix with positive entries σ1, . . . , σr in the diagonal.

Proof. We use the proof of Lemma 1.6.3. Let {vk}nk=1 be the orthonormal
basis for Cn considered there, ordered such that {vk}rk=1 is an orthonormal
basis for RE∗ . Let V be the n × n matrix having the vectors {vk}nk=1 as
columns. Extend the orthonormal basis {uk}rk=1 for RE to an orthonormal
basis {uk}mk=1 for Cm, and let U be the m×m matrix having these vectors
as columns. Finally, let D be the r × r diagonal matrix having σ1, . . . , σr

in the diagonal. Via (1.32) and (1.34),

EV =
(
σ1u1 · · σrur 0 · · 0

)

= U

(
D 0
0 0

)

.

Multiplying with V ∗ from the right gives the result. �

The numbers σ1, . . . , σr are called singular values for E; the proof of
Lemma 1.6.3 shows that they are the square roots of the positive eigenvalues
for E∗E.
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Corollary 1.6.5 With the notation in Theorem 1.6.4, the pseudo-inverse
of E is given by

E† = V

(
D−1 0
0 0

)

U∗, (1.36)

where

(
D−1 0
0 0

)

is an n ×m block matrix in which D−1 is the r × r

matrix having 1/σ1, . . . , 1/σr in the diagonal.

Proof. We check that the matrix E† defined by (1.36) satisfies the
requirements in Proposition 1.6.1(ii). First, via (1.35),

EE† = U

(
D 0
0 0

)

V ∗V
(

D−1 0
0 0

)

U∗ = U

(
I 0
0 0

)

U∗,

which shows that EE† is self-adjoint. The proof that E†E is self-adjoint is
similar. Furthermore, using the derived expression for EE†,

EE†E = U

(
I 0
0 0

)

U∗U
(

D 0
0 0

)

V ∗ = E.

Similarly, one can verify that E†EE† = E†. �

Let us return to the setting where {fk}mk=1 is a frame for C
n with syn-

thesis operator T : Cm → C
n. The calculation of the frame coefficients

amounts to finding the pseudo-inverse T †:

Theorem 1.6.6 Let {fk}mk=1 be a frame for Cn, with synthesis operator T
and frame operator S. Then

T †f = {〈f, S−1fk〉}mk=1, ∀f ∈ C
n. (1.37)

Proof. Let f ∈ C
n. Expressed in terms of the synthesis operator T , the

equation f =
∑m

k=1 ckfk means that T {ck}mk=1 = f . The result now follows
by combining Theorem 1.1.5 and Theorem 1.6.2. �

One interpretation of Theorem 1.6.6 is that when {fk}mk=1 is a frame for
C

n, the matrix for T † is obtained by placing the complex conjugate of the
vectors in the canonical dual frame {S−1fk}mk=1 as rows in an m×n matrix:

T † =

⎛

⎜
⎜
⎜
⎜
⎝

−S−1f1−
−S−1f2−

·
·

−S−1fm−

⎞

⎟
⎟
⎟
⎟
⎠

.

In operator terms, (1.37) means that

T † = T ∗(TT ∗)−1,
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a formula that is known to hold generally for the pseudo-inverse of an
arbitrary surjective operator T .
Given any f ∈ C

n and a frame {fk}mk=1, the singular value decomposition
gives a natural way to obtain coefficients {ck}mk=1 such that f =

∑m
k=1 ckfk.

Let {fk}mk=1 be an overcomplete frame for C
n with synthesis operator

T : Cm → C
n. Considered as a matrix, T is an n × m matrix, and we

know that m > n. Since T is surjective, its rank equals n, so according to
Theorem 1.6.4, its singular value decomposition is

T = U
(
D 0

)
V ∗.

Note that D is now an n × n matrix;
(
D 0

)
is an n ×m matrix, U is

an n×n matrix, and V is an m×m matrix. Given any (m−n)×n matrix
F and any f ∈ C

n, we have that

TV

(
D−1

F

)

U∗f = U
(
D 0

)
V ∗V

(
D−1

F

)

U∗f

= UIU∗f = f.

This means that we can use the coefficients

{ck}mk=1 = V

(
D−1

F

)

U∗f

for the reconstruction of f , regardless how the entries in the matrix F
are chosen. By Corollary 1.6.5, the choice F = 0 leads to the pseudo-
inverse, which, as noted already in Theorem 1.1.5, is optimal in the sense
that the �2-norm of the coefficients is minimized. However, there are many
cases where other properties than minimal �2-norm are more relevant. The
matrix

V

(
D−1

F

)

U∗

is frequently called a generalized inverse of T .

1.7 Finite-Dimensional Function Spaces

The rest of the book will deal with frames in infinite-dimensional vector
spaces, with concrete constructions in function spaces like L2(−π, π) and
L2(R); the exact definition of these spaces will be given in Chapter 2, and
for the moment we simply consider L2(I), I ⊆ R as the set of functions for
which

∫

I

|f(x)|2dx <∞.

It is important to notice that in every real-life application where these
spaces appear, one will at some point have to confine to finite-dimensional
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subspaces. For this reason we conclude this chapter with a short description
of frames in finite-dimensional function spaces.
Given a, b ∈ R with a < b, let C[a, b] denote the set of continuous

functions f : [a, b]→ C. We equip C[a, b] with the supremums-norm,

||f ||∞ = sup
x∈[a,b]

|f(x)| .

The Weierstrass’ approximation theorem says that every f ∈ C[a, b] can be
approximated arbitrarily well by a polynomial:

Theorem 1.7.1 Let f ∈ C[a, b]. Given ε > 0, there exists a polynomial
P (x) =

∑n
k=0 ckx

k such that

||f − P ||∞ ≤ ε.

It is essential for the conclusion that [a, b] is a finite and closed interval
(Exercise 1.17). Also, we note that the degree of the approximating poly-
nomial P depends as well on the chosen ε as the given function f. On the
other hand, via an appropriate affine transformation ϕ(x) := αx + β, any
interval [c, d] can be mapped onto the interval [a, b]; this implies that the
degree of the approximating polynomials does not depend on the actual
interval.
The polynomials {1, x, x2, . . . } = {xk}∞k=0 are linearly independent and

do not span a finite-dimensional subspace of C[a, b]. But for a given n ∈ N,
the vector space

V := span{1, x, . . . , xn}
is a finite-dimensional subspace of C[a, b] with the polynomials {xk}nk=0 as
basis.
If we equip V with the || · ||∞-norm, we do not have the benefit of a norm

arising from an inner product. But all norms on a finite-dimensional vector
space are equivalent (see page 15), and V can also be equipped with the
norm

||f || =
(∫ b

a

|f(x)|2dx
)1/2

arising from the inner product

〈f, g〉 =
∫ b

a

f(x)g(x)dx. (1.38)

Via the Gram–Schmidt orthogonalization procedure, one can construct an
orthonormal basis for (V, || · ||); see, e.g., Exercise 1.19.
In classical Fourier analysis, one expands functions in L2(0, 1) in terms

of the complex exponential functions {e2πikx}k∈Z. In Chapter 9 we will
obtain more general results with {e2πikx}k∈Z replaced by {eiλkx}k∈Z for
some real sequence {λk}k∈Z satisfying certain density conditions. Let us for
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the moment consider a finite collection of exponential functions {eiλkx}nk=1,
where {λk}nk=1 is a sequence of real numbers. Unless {λk}nk=1 contains
repetitions, such a family of exponentials is always linearly independent:

Lemma 1.7.2 Let {λk}nk=1 be a sequence of real numbers, and assume
that λk �= λj for k �= j. Let I ⊆ R be an arbitrary nonempty interval, and
consider the complex exponentials {eiλkx}nk=1 as functions on I. Then the
functions {eiλkx}nk=1 are linearly independent.

Proof. It is enough to prove that the functions {eiλkx}k∈Z are linearly
independent as functions on any bounded interval ]a, b[, where a, b ∈ R,
a < b. Assume that for some coefficients {ck}nk=1,

n∑

k=1

cke
iλkx = 0, ∀x ∈]a, b[.

When x runs through the interval ]a−b
2 , b−a

2 [, the variable x + a+b
2 runs

through ]a, b[; it follows that

n∑

k=1

cke
iλk(x+

a+b
2 ) = 0, ∀x ∈]a− b

2
,
b− a

2
[.

Writing dk := cke
iλk

a+b
2 , this leads to

n∑

k=1

dke
iλkx = 0, ∀x ∈]a− b

2
,
b− a

2
[.

By differentiating this equation j times, j = 0, 1, · · · , we obtain that

n∑

k=1

dk(iλk)
jeiλkx = 0, ∀x ∈]a− b

2
,
b− a

2
[, j = 0, 1, · · · .

Putting x = 0 and writing the corresponding equations for j = 0, . . . , n− 1
as a matrix equation gives

⎛

⎜
⎜
⎜
⎜
⎝

1 1 · · 1
λ1 λ2 · · λn

· · · · ·
· · · · ·

λn−1
1 λn−1

2 · · λn−1
n

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

d1
d2
·
·
dn

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
0
·
·
0

⎞

⎟
⎟
⎟
⎟
⎠

.

The system matrix is a Vandermonde matrix with determinant

Δ =
n∏

k,j=1,k �=j

(λk − λj) �= 0;

therefore, the unique solution is d1 = d2 = · · · = dn = 0, which implies
that c1 = · · · = cn = 0. Thus, {eiλkx}nk=1 are linearly independent. �
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In words, Lemma 1.7.2 means that complex exponentials do not give
natural examples of frames in finite-dimensional spaces: if λk �= λj for
k �= j, then the complex exponentials {eiλkx}nk=1 form a basis for their
span in L2(I) for any interval I of finite length, but never an overcomplete
system. We cannot obtain overcompleteness by adding extra exponentials
(except by repeating some of the λ-values) – this will just enlarge the space
but keep the independence. In Exercise 1.20 the similar problem for sines
and cosines is considered.
The complex exponentials do not belong to L2(R), but by multiplying

them with a function g ∈ L2(R), we obtain a class of functions in L2(R).
In Chapters 11–14 we will work with systems of functions in L2(R) of the
form

{EmbTnag}m,n∈Z := {e2πimbxg(x− na)}m,n∈Z;

here, g is a given function in L2(R), and the parameters a, b are positive real
numbers. Such a family of functions is called a Gabor system. It was proved
by Linnell [499] in 1997 that if g �= 0, then an arbitrary finite subfamily
{e2πimbxg(x − na)}(m,n)∈F , F ⊂ Z

2, is linearly independent. This yields
a partial answer to a conjecture formulated by Heil, Ramanathan, and
Topiwala [393] in 1995, where the points {(na,mb)}m,n∈Z are replaced by
arbitrary distinct points in R

2.

The HRT Conjecture: Given any finite collection of distinct points
{(μk, λk)}k∈F in R

2 and a function g �= 0, the Gabor system

{e2πiλkxg(x− μk)}k∈F

is linearly independent.

Considerable effort has been invested in the conjecture, but despite the
fact that it “just” deals with finite collections of functions, it is still open.
We return to this conjecture in its right context on page 343. Also, in
Section 14.6, we will construct frames in C

n having the Gabor structure.
Wavelets is another important class of functions in L2(R); we consider

them in detail in Chapters 15–19. A wavelet system consists of functions
of the form

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z,

where ψ ∈ L2(R) is a given function. Linearly dependent wavelet systems
exist. For example, by letting ψ := χ[0,1[, one has

ψ0,0 =
1√
2
(ψ1,0 + ψ1,1).

If a finite wavelet system, {ψj,k}|j|,|k|≤N for some N ∈ N, happens to
be linearly independent, one could ask for the minimal number mN of
independent sets it can be split into. One could expect mN to grow with
N ; however, in case ψ has compact support and |ψ| > 0 on some interval of
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positive length, it is proved in [195] that one can find a number m ∈ N such
that {ψj,k}|j|,|k|≤N can be split into m linearly independent sets, regardless
of how large N is. It is not known whether a similar result holds if ψ is not
assumed to have compact support. For results about linear independence of
special wavelet systems, we refer to the paper [87] by Bownik and Speegle.

1.8 Fusion Frames

Fusion frames were introduced by Casazza and Kutyniok in [140] and fur-
ther developed in their joint paper [141] with Li. The theory for fusion
frames is available in arbitrary separable Hilbert spaces (finite-dimensional
or not), but since the concept is motivated by its applications, we will
restrict the description to the finite-dimensional case.
The motivation behind fusion frames comes from signal processing, more

precisely, the desire to process and analyze large data sets efficiently. A nat-
ural idea is to split such data sets into suitable smaller “blocks” which can
be treated independently. In more mathematical terms, this could corre-
spond to a splitting of a signal belonging to a high-dimensional vector space
into its components in lower-dimensional subspaces.
From a pure mathematical point of view, fusion frames are special cases

of the g-frames discussed in detail in Section 8.1. However, the connection
to concrete applications is less apparent from the more abstract definition
of g-frames.
The key ingredients in a fusion frame for C

n are formed by a collec-
tion of subspaces {Vk}mk=1 of Cn and a corresponding collection of strictly
positive numbers wk, k = 1, . . . ,m. For k = 1, . . . ,m, let Pk denote the
orthogonal projection of C

n onto Vk. Following [140], we say that the
pair ({Vk}mk=1, {wk}mk=1) is a fusion frame for C

n if there exist constants
A,B > 0 such that

A ||f ||2 ≤
m∑

k=1

wk||Pkf ||2 ≤ B ||f ||2, ∀f ∈ C
n. (1.39)

The numbers A,B are called bounds for the fusion frame. The connection
to frame theory is clear: if {fk}mk=1 is a frame for Cn and we let

Vk := {cfk
∣
∣ c ∈ C}, k = 1, . . . ,m,

then
(
{Vk}mk=1, {||fk||2}mk=1

)
is a fusion frame with the same bounds. In

this particular situation, the spaces Vk are one dimensional; the additional
freedom in fusion frames compared to frame theory arises because we can
choose to decompose Cn by considering projections onto higher-dimensional
subspaces.
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Given a fusion frame ({Vk}mk=1, {wk}mk=1) for C
n, the associated fusion

frame operator is defined by

S : Cn → C
n, Sf =

m∑

k=1

wkPkf.

Following the lines of the proof of Theorem 1.1.5, it is easy to see that S
is invertible on C

n, which leads to the fusion frame decomposition

f = S−1Sf = S−1
m∑

k=1

wkPkf =
m∑

k=1

wkS
−1Pkf. (1.40)

Mathematically, there is a clear link between frames and fusion frames
and clear ways to transfer results from one setting to the other. We leave
the proof of the following result to the reader (Exercise 1.21).

Proposition 1.8.1 Let {Vk}mk=1 be a collection of subspaces of C
n and

{wk}mk=1 a collection of positive scalars. For each k = 1, . . . ,m, let
{ej,k}j∈Jk

denote an orthonormal basis for Vk. Then the following are
equivalent:

(i) ({Vk}mk=1, {wk}mk=1) is a fusion frame for C
n, with bounds A,B;

(ii) {√wkuj,k}k=1,...,m,j∈Jk
is a frame for C

n, with bounds A,B.

For a much more detailed discussion of fusion frames, we refer to Chap-
ter 13 of the book [139]; see also the discussion of the more general g-frames
in Section 8.1.

1.9 Applications of Finite Frames

The option of having overcompleteness in a frame makes the concept
more flexible than that of a basis. In this section we will show that
overcompleteness is also useful in the context of signal transmission.
Modern communication networks act by transporting packets of data.

Each packet contains the “essential information,” i.e., the data we want to
transmit, as well as a collection of “control parameters.” The purpose of
these extra parameters is to check that the data is delivered correctly: in
case an error occurs, no packet will be delivered at all. It is clear that if
there are no relationships between the various packets, the data belonging
to a lost packet cannot be recovered. However, if there is some redundancy
built into the system, i.e., a relationship between the information in the
packets, there is some hope that at least parts of the missing data can be
recovered.
Mathematically, one can model the packets to transmit as frame coef-

ficients. Thus, a packet that is not delivered amounts to removal of an













1.9 Applications of Finite Frames 39

element from the frame. If the frame is a basis, it is no longer a basis after
removal of an element; however, if it is overcomplete, it is possible that it
remains a frame after deletion of an element.
In practice one might lose more than one packet, i.e., more than one

frame element. Thus, we are facing the question of how to construct frames
that are stable toward removal of more than one element. We have already
in Proposition 1.5.7 seen that the harmonic frame {fk}mk=1 for Cn performs
optimally with regard to erasure of elements: any subset containing at
least n elements of this frame forms a frame for Cn, i.e., the frame has full
spark.
Not all frames behave as well as the one in Proposition 1.5.2: regardless

how many elements a frame has, the idea from Example 1.5.5 shows that
removal of a single particular element might destroy the frame property. If
we have information on the lower frame bound and the norm of the frame
elements, Proposition 1.5.6 provides a criterion for how many elements we
can (at least) remove.
In the context of signal transmission, the overcompleteness of frames

has a very useful noise-suppressing effect. We will first give an intuitive
explanation and return to a more detailed statistical argument afterward.
Let us assume that we want to transmit the signal f belonging to a vector
space V from a transmitter A to a receiver R. If both A and R have
knowledge of a frame {fk}mk=1 for V , this can be done if A transmits the
coefficients {〈f, fk〉}mk=1; based on knowledge of these numbers, the receiver
R can reconstruct the signal f using the frame decomposition

f =

m∑

k=1

〈f, fk〉S−1fk.

Now assume that R receives a noisy signal, i.e., a perturbation

{〈f, fk〉+ ck}mk=1

of the correct coefficients; this might, for example, happen due to quanti-
zation, as explained in Section 1.5. Based on the received coefficients, R
will expect that the transmitted signal was

m∑

k=1

(〈f, fk〉+ ck)S
−1fk =

m∑

k=1

〈f, fk〉S−1fk + S−1
m∑

k=1

ckfk

= f + S−1
m∑

k=1

ckfk;

this differs from the correct signal f by the term S−1
∑m

k=1 ckfk. If {fk}mk=1

is overcomplete, the synthesis operator T {ck}mk=1 =
∑m

k=1 ckfk has a non-
trivial kernel, implying that parts of the noise contribution might add up
to zero and cancel. This will never happen if {fk}mk=1 is an orthonormal
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basis! In that case S = I and

||S−1
m∑

k=1

ckfk|| =

√
√
√
√

m∑

k=1

|ck|2,

so (at least intuitively) each noise contribution will make the reconstruction
worse.
The above arguments can be refined using statistical models for noise.

Following [328], we will use this to analyze how one should choose the frame
{fk}mk=1 in order to obtain the maximal noise-suppressing effect. Let us
again assume that A transmits the coefficients {〈f, fk〉}mk=1 to the receiver
R and that R receives a noisy signal {〈f, fk〉 + ηk}mk=1. In contrast with
the simplified setting above, we now consider each noise component ηk as a
random variable; we will assume that each ηk has mean zero and variance
σ2 and that ηk and η� are uncorrelated for k �= �. Letting E denote the
mean, these assumptions can be expressed as

E[ηk] = 0, E[ηkη�] = σ2δk,�, k, � = 1, . . . ,m. (1.41)

As above, based on the coefficients {〈f, fk〉 + ηk}mk=1, the receiver will
reconstruct the signal as

f̃ =

m∑

k=1

(〈f, fk〉+ ηk)S
−1fk = f +

m∑

k=1

ηkS
−1fk.

Thus, the difference between the reconstructed signal f̃ and the original
signal f is

f̃ − f =
m∑

k=1

ηkS
−1fk.

Remember that f̃ − f is a vector with n coordinates, which depend on the
random variables ηk. The associatedmean-square error (MSE) is defined by

MSE :=
1

n
E||f̃ − f ||2.

Now, inserting the expression for f̃ − f shows that

MSE =
1

n
E(〈f̃ − f, f̃ − f〉)

=
1

n
E

[
m∑

k=1

m∑

�=1

ηkη�〈S−1fk, S
−1f�〉

]

=
1

n

m∑

k=1

m∑

�=1

E[ηkη�]〈S−1fk, S
−1f�〉.
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Via the assumptions (1.41), this implies that

MSE =
1

n

m∑

k=1

m∑

�=1

σ2δk,�〈S−1fk, S
−1f�〉 =

1

n
σ2

m∑

k=1

||S−1fk||2. (1.42)

We now show that among all normalized frames containing a fixed number
of elements, this expression is minimized for tight frames. We will use the
following well-known lemma.

Lemma 1.9.1 Let {ak}nk=1 be a sequence of positive numbers. Then the
harmonic mean of the sequence is smaller than or equal to the arithmetic
mean, i.e.,

n
∑n

k=1
1
ak

≤ 1

n

n∑

k=1

ak.

The inequality is an equality if and only if all the ak are equal.

Theorem 1.9.2 Consider normalized frames {fk}mk=1 for R
n, where

n,m ∈ N are fixed. Among all such frames {fk}mk=1, the MSE is minimal
if and only if the frame is tight. The attained minimal value is

MSE =
n

m
σ2. (1.43)

Proof. Let λ1, . . . , λn denote the eigenvalues for the frame operator S
associated with {fk}mk=1. By Theorem 1.3.1,

n∑

k=1

λk =

m∑

k=1

||fk||2 = m. (1.44)

The frame {S−1fk}mk=1 has S−1 as frame operator, and this operator has
the eigenvalues λ−1

1 , . . . , λ−1
n . Now, (1.42) together with Theorem 1.3.1

imply that

MSE =
1

n
σ2

m∑

k=1

||S−1fk||2 =
1

n
σ2

n∑

k=1

1

λk
. (1.45)

Our goal is now to minimize the expression in (1.45) under the con-
straint (1.44); equivalently, we want to maximize the expression

1
∑n

k=1
1
λk

under the condition that
∑n

k=1 λk = m. According to Lemma 1.9.1, this
happens if and only if all eigenvalues λk are equal, i.e., for

λk =
m

n
, k = 1, . . . ,m.
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This implies that {fk}mk=1 is a tight frame with frame bound m/n. The
attained minimal value of the mean-square error is

MSE =
1

n
σ2

n∑

k=1

1

λk
=

1

n
σ2n

n

m
=

n

m
σ2. �

The expression (1.43) shows that for a fixed dimension, i.e., a fixed value
of n, the MSE decreases when the number of elements in the frame in-
creases, i.e., for higher redundancy. In this sense, the redundancy in a
frame helps to reduce the mean-square error.
Let us end this section with a few words about another topic with clear

relation to engineering, namely, phaseless reconstruction. Given a frame
{fk}mk=1 for a finite-dimensional vector space V, the question is when and
how one can reconstruct a vector f ∈ V based on knowledge of the mag-
nitudes of the inner products between f and the frame vectors, i.e., the
numbers |〈f, fk〉|. Clearly this is an impossible task if {fk}mk=1 is a basis
for V. On the other hand, there exist frames for which the reconstruction
is indeed possible. A class of tight frames with this property is constructed
in the paper [30] by Balan, Casazza, and Edidin; more results can be found
in [29, 38] and the references therein.

1.10 Remarks on Recent Frame Constructions

The development of frame theory in finite-dimensional spaces started rel-
atively late, around the millennium. The paper by Zimmermann [642] can
be seen as the starting point: it is based on an answer to a question by
Feichtinger, posed at a conference in Haus Bommerholz in 2000. Relatively
soon hereafter, in 2003, Benedetto (who was also at the conference) pub-
lished the paper [46] with Fickus. Since then the number of contributions
to the theory for finite frames has exploded. A large part of the literature
deals with frame constructions with attractive properties from the numer-
ical point of view or with respect to signal processing and thus goes in a
somewhat different direction than the more functional analytic approach
that will dominate the rest of this book. For this reason we will not go in
detail with the concrete constructions and algorithms, but we will highlight
some of the central issues. Along the way suggestions for further research
will be discussed.
Some of the work by Zimmermann [642] was already presented in Propo-

sition 1.5.2. The paper also consider corresponding real-valued frames for
R

n. The paper [46] by Benedetto and Fickus characterizes all finite nor-
malized tight frames {fk}mk=1 in R

n and C
n as minimizers of the frame

potential, i.e., the mapping that to any sequence {fk}mk=1 in C
n associates

the number
∑m

k=1

∑m
�=1 |〈fk, f�〉|2. Already in that paper, the short name
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FNTF was introduced for the finite normalized tight frames; later, the ab-
breviation FUNTF has also been used. A systematic method to construct
unit-norm tight frames {fk}mk=1 in R

n, provided that m ≥ n, was intro-
duced under the name spectral tetris in the paper [135] by Casazza et al.
and further analyzed in [133]; in particular, the authors use the method to
construct tight fusion frames.
Let us state some of the properties that are relevant for applications of

finite frames:

• That the elements in the frame have the same norm; such frames are
usually called equal-norm frames. This property is satisfied for the
harmonic frames.

• That the condition number for the frame operator can be controlled.
This is clearly satisfied if the given frame is tight and hence for the
harmonic frames. Recall also from Theorem 1.9.2 that for equal-norm
frames, the MSE is minimized whenever the frame is tight.

• Maximal stability against erasures, i.e., that {fk}mk=1 has full spark.
We have already noticed that the harmonic frames have full spark;
see Proposition 1.5.7.

A further relevant property is that the angle between the elements in the
frame is constant; such frames are said to be equiangular. If the elements in
{fk}mk=1 have the same length, the condition of being equiangular amounts
to the existence of a constant C such that

|〈fk, fj〉| = C, ∀k �= j.

In particular, any orthonormal basis {ek}nk=1 for C
n is equiangular. The

question of existence of redundant equiangular frames is much more subtle,
and many questions remain open. The following elegant result appeared in
the paper [591] by Strohmer and Heath:

Theorem 1.10.1 Consider a unit-norm frame {fk}mk=1 for either C
n or

R
n; then

max
k �=j

|〈fk, fj〉| ≥
√

m− n

n(m− 1)
. (1.46)

Equality holds in (1.46) if and only if {fk}mk=1 is an equiangular tight frame.

(i) In the case of Cn, equality in (1.46) can only occur if m ≤ n(n+1)/2;

(ii) In the case of Rn, equality in (1.46) can only occur if m ≤ n2.

Already Theorem 1.10.1 demonstrates that equiangular unit-norm frames
{fk}mk=1 in C

n or Rn only exist for certain choices of the parameters m,n,
but the existence is much more restricted than that; see the papers [606]
by Sustik et al. and [411] by Holmes and Paulsen. For a closer analysis of
the special case m = 2n, we refer to the paper [590] by Strohmer.
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A frame that for fixed parameters m,n ∈ N minimizes the expression
maxk �=j |〈fk, fj〉| over all unit-norm frames {fk}mk=1 for C

n is called a Grass-
mannian frame; see [591]. Thus, in case the parameters m,n are chosen
such that there exist equiangular tight frames {fk}mk=1 in C

n or R
n, the

Grassmannian frames correspond to exactly these. For more information
on Grassmannian frames, we refer to the original paper [591] and [617] by
Tropp et al.
The paper [591] contains several examples of equiangular tight frames,

e.g., certain versions of the harmonic frames where the columns are gen-
erated by different roots of unity. More results on equiangular frames and
explicit examples can be found in the mentioned papers as well as [618] by
Xia et al.
The large number of recent frame constructions is highly motivated

by applications. The reader can consult the papers [591, 66] and [437] for
applications of equiangular tight frames to coding theory, and [521] for an
application to digital fingerprinting.
Despite the huge information that is available about finite frames, it

is still possible to pose seemingly innocent questions, where no answer is
known. Here is an interesting question that was posed by Thomas Strohmer
at the SAMPTA conference in Washington, 2015:

Question: Let {fk}mk=1 be a frame for C
n, for which we only know the

direction of the vectors fk but not the norms ||fk||. Assume that we for an
unknown vector f ∈ C

n know the inner products

〈f, fk〉, k = 1, . . . ,m. (1.47)

How – and under which conditions – can we recover the direction of the
vector f based on the information (1.47)?

Note that the information in (1.47) will not allow us to determine the
length of f if we do not know the norm of the vectors fk : in fact, if (1.47)
holds for a vector f and a frame {fk}mk=1, it also holds for the vector cf
and the frame {c−1fk}mk=1 whenever c is an arbitrary nonzero real number.
We also observe that the question has an easy answer if we actually know

the norms ||fk||. In that case we know the frame {fk}mk=1 completely, and
knowledge of the numbers in (1.47) allow us to compute the frame operator
and apply the frame decomposition in Theorem 1.1.5 (ii) directly.

1.11 Exercises

1.1 Prove that the adjoint of the synthesis operator T in (1.4) is given
by the expression in (1.5).

1.2 Prove Proposition 1.1.4. (Hint: use that if U is a linear self-adjoint
map on V for which 〈Ux, x〉 = 0 for all x ∈ V , then U = 0; see
Lemma 2.4.4.)
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1.3 Show that every frame {fk}mk=1 for a finite-dimensional vector space
V contains a subset which is a basis for V .

1.4 Can a frame in a finite-dimensional space contain infinitely many
elements?

1.5 Let {fk}k∈I be a frame for a finite-dimensional vector space V and
assume that ||fk|| is bounded below. Prove that I is finite. (w.l.o.g.
you may assume that V = R

n and that ||fk|| = 1, ∀k; explain why
if you want to use this fact!)

1.6 Find a noncanonical dual frame associated with the frame consid-
ered in Example 1.1.6.

1.7 Show that it is necessary to add at least 9 vectors in order to extend
the frame {fk}10k=1 in Example 1.2.2 to a tight frame.

1.8 Show that the vectors
(

0√
2/3

)

,

(
−1/

√
2

−1/
√
6

)

,

(
1/
√
2

−1/
√
6

)

constitute a tight frame for C
2 with frame bound A = 1. Make

a draft of the vectors; for obvious reasons the frame is called the
Mercedes-Benz frame.

1.9 Construct a frame {fk}mk=1 for C
2 for which there exists f ∈ C

2

such that the coefficients {dk}mk=1 in Theorem 1.1.8 are not unique.

1.10 Let {e1, e2} be the canonical orthonormal basis for C2 and consider
the frame {fk}3k=1 = {e1, e2, e1 + e2}.

(i) Find the coefficients with minimal �2-norm among all

sequences {ck}3k=1 for which e1 =
∑3

k=1 ckfk.

(ii) Find the coefficients {c(1)k }3k=1 and {c(2)k }3k=1 which minimize
the �1-norm in the representation of e1 and e2, respectively.

(iii) Clearly, e1 + e2 =
∑3

k=1(c
(1)
k + c

(2)
k )fk, but is {c(1)k + c

(2)
k }3k=1

minimizing the �1-norm among all sequences representing
e1 + e2?

1.11 Assume that {fk}mk=1 is a frame for Cn. Prove that the 2m vectors
consisting of the real parts, respectively the imaginary parts, of
the frame vectors constitute a frame for Rn.
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1.12 Show that a frame for Rn is also a frame for Cn.

1.13 Prove Corollary 1.4.7.

1.14 Let {fk}mk=1 be a frame for V with bounds A,B, and let P denote
the orthogonal projection of V onto a subspace W . Prove that
{Pfk}mk=1 is a frame for W with frame bounds A,B.

1.15 Let {fk}mk=1 be a normalized tight frame. Prove that the frame
bound A is at least 1 and that A = 1 if and only if {fk}mk=1 is an
orthonormal basis.

1.16 Let {fk}mk=1 be a frame for an n-dimensional vector space V , and
let B denote the optimal upper bound. Prove that

B ≤
m∑

k=1

||fk||2 ≤ nB.

1.17 Prove that Theorem 1.7.1 fails if the closed and bounded interval
[a, b] is replaced by an open interval or an unbounded interval.

1.18 Prove that for any n ∈ N, the polynomials {1, x, . . . , xn} are
linearly independent in C(0, 1).

1.19 Consider the polynomials {1, x, x2} as functions on the inter-
val [0, 1], and let V = span{1, x, x2}. Equip V with the inner
product (1.38) and find an orthonormal basis for V .

1.20 Let {λk}nk=1 be a sequence of real numbers.

(i) Prove that {cosλkx}nk=1 are linearly independent in C(−1, 1)
if and only if |λk| �= |λj | for k �= j.

(ii) Prove that {sinλkx}nk=1 are linearly independent in C(−1, 1)
if and only if all λk are nonzero and |λk| �= |λj | for k �= j.

(iii) Under which conditions on sequences {λk}nk=1, {μk}mk=1 are the
functions

{cosλkx}nk=1 ∪ {sinμkx}mk=1

linearly independent in C(−1, 1)?
(iv) Replace the interval ]−1, 1[ by an arbitrary nonempty interval

and generalize (i),(ii), and (iii).

1.21 Prove Proposition 1.8.1.



2
Infinite-Dimensional Vector Spaces
and Sequences

After the introduction to frames in finite-dimensional vector spaces in
Chapter 1, the rest of the book will deal with expansions in infinite-
dimensional vector spaces. Here great care is needed: we need to replace
finite sequences {fk}nk=1 by infinite sequences {fk}∞k=1, and suddenly the
question of convergence properties becomes a central issue. The vector
space itself might also cause problems, e.g., in the sense that Cauchy se-
quences might not be convergent. We expect the reader to have a basic
knowledge about these problems and the way to circumvent them, but for
completeness we repeat the central definitions and results concerning Ba-
nach spaces and operators hereon in Sections 2.1–2.2. In Sections 2.3–2.4
we specialize to Hilbert spaces and their operators. Section 2.5 deals with
pseudo-inverse operators; this subject is not expected to be known and is
treated in more detail. Section 2.6 introduces the so-called moment prob-
lems in Hilbert spaces. In Sections 2.7–2.9, we discuss the Hilbert space
L2(R) consisting of the square integrable functions on R and three classes
of operators hereon, as well as the Fourier transform. The material in those
sections is not needed for the study of frames and bases on abstract Hilbert
spaces, but it forms the basis for all the constructions in Chapters 9–20.

2.1 Banach Spaces and Sequences

A central theme in this book is to find conditions on a sequence {fk}
in a vector space X such that every f ∈ X has a representation as a

©
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superposition of the vectors fk. In most spaces appearing in functional
analysis, this cannot be done with a finite sequence {fk}. We are therefore
forced to work with infinite sequences, say, {fk}∞k=1, and the representation
of f in terms of {fk}∞k=1 will be via an infinite series. For this reason, the
starting point must be a discussion of convergence of infinite series. We
collect the basic definitions here together with some conventions.
Throughout the section, we let X denote a complex vector space. A

norm on X is a function || · || : X → [0,∞[ satisfying the following three
conditions:

(i) ||x|| = 0⇔ x = 0;

(ii) ||αx|| = |α| ||x||, ∀x ∈ X, α ∈ C;

(iii) ||x+ y|| ≤ ||x||+ ||y||, ∀x, y ∈ X.

In situations where more than one vector space appear, we will frequently
denote the norm on X by || · ||X . If X is equipped with a norm, we say that
X is a normed vector space. The opposite triangle inequality is satisfied in
any normed vector space:

||x− y|| ≥ | ||x|| − ||y|| | , x, y ∈ X. (2.1)

We say that a sequence {xk}∞k=1 in X

(i) converges to x ∈ X if

||x− xk|| → 0 for k →∞;

(ii) is a Cauchy sequence if for each ε > 0 there exists N ∈ N such that

||xk − x�|| ≤ ε whenever k, � ≥ N.

A convergent sequence is automatically a Cauchy sequence, but the op-
posite is not true in general. There are, however, normed vector spaces in
which a sequence is convergent if and only if it is a Cauchy sequence; a
space X with this property is called a Banach space.
Imitating the finite-dimensional setting described in Chapter 1, we want

to study sequences {fk}∞k=1 in X with the property that each f ∈ X has a
representation f =

∑∞
k=1 ckfk for some coefficients ck ∈ C. In order to do

so, we have to explain exactly what we mean by convergence of an infinite
series. There are, in fact, at least three different options; we will now discuss
these options.
First, the notation {fk}∞k=1 indicates that we have chosen some ordering

of the vectors fk,

f1, f2, f3, . . . , fk, fk+1, . . . .

We say that an infinite series
∑∞

k=1 ckfk is convergent with sum f ∈ X if
∣
∣
∣
∣

∣
∣
∣
∣f −

n∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣→ 0 as n→∞.
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If this condition is satisfied, we write

f =

∞∑

k=1

ckfk. (2.2)

Thus, the definition of a convergent infinite series corresponds exactly to
our definition of a convergent sequence with xn =

∑n
k=1 ckfk.

Above we insisted on a fixed ordering of the sequence {fk}∞k=1. It is
very important to notice that convergence properties of

∑∞
k=1 ckfk not

only depend on the sequence {fk}∞k=1 and the coefficients {ck}∞k=1 but also
on the ordering. Even if we consider a sequence in the simplest possible
Banach space, i.e., a sequence {ak}∞k=1 in C, it can happen that

∑∞
k=1 ak

is convergent but that
∑∞

k=1 aσ(k) is divergent for a certain permutation σ
of the natural numbers (Exercise 2.1). This observation leads to the second
definition of convergence. If {fk}∞k=1 is a sequence in X and

∑∞
k=1 fσ(k) is

convergent for all permutations σ, we say that
∑∞

k=1 fk is unconditionally
convergent. In that case, the limit is the same regardless of the order of
summation.
As soon as we have defined frames and Riesz bases in Hilbert spaces,

it will become clear that they automatically lead to unconditionally con-
vergent expansions. For this reason, we never need to prove by hand that
a given series converges unconditionally. For the sake of completeness, we
refer to [495] and [577] for a more detailed analysis of the different types
of convergence and the proof of the following lemma.

Lemma 2.1.1 Let {fk}∞k=1 be a sequence in a Banach space X, and let
f ∈ X. Then the following are equivalent:

(i)
∑∞

k=1 fk converges unconditionally to f ∈ X.

(ii) For every ε > 0 there exists a finite set F such that
∣
∣
∣
∣

∣
∣
∣
∣f −

∑

k∈I

fk

∣
∣
∣
∣

∣
∣
∣
∣ ≤ ε

for all finite sets I ⊂ N containing F .

Finally, an infinite series
∑∞

k=1 fk is said to be absolutely convergent if

∞∑

k=1

||fk|| <∞.

In any Banach space, absolute convergence of
∑∞

k=1 fk implies that the
series converges unconditionally (Exercise 2.2), but the opposite does not
hold in infinite-dimensional spaces (see page 51 in [401] or page 68 in [464]
and the references therein). In finite-dimensional spaces, the two types of
convergence are identical.
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A subset Z ⊆ X (countable or not) is said to be dense in X if for each
f ∈ X and each ε > 0 there exists g ∈ Z such that

||f − g|| ≤ ε.

In words, this means that elements in X can be approximated arbitrarily
well by elements in Z.
For a given sequence {fk}∞k=1 in X , we let span{fk}∞k=1 denote the vector

space consisting of all finite linear combinations of vectors fk, i.e.,

span {fk}∞k=1 = {α1f1 + α2f2 + · · ·+ αNfN
∣
∣ N ∈ N, α1, α2, . . . , αN ∈ C}.

The definition of convergence shows that if each f ∈ X has a represen-
tation of the type (2.2), then each f ∈ X can be approximated arbitrarily
well in norm by elements in span{fk}∞k=1, i.e.,

span{fk}∞k=1 = X. (2.3)

A sequence {fk}∞k=1 having the property (2.3) is said to be complete or
total. We note that there exist normed spaces where no sequence {fk}∞k=1

is complete. A normed vector space, in which a countable and dense family
exists, is said to be separable.
When considering expansions of the form (2.2), the coefficients ck are real

or complex numbers. In case at most finitely many entries ck are nonzero,
we say that {ck}∞k=1 is a finite sequence.

2.2 Operators on Banach Spaces

Let X and Y denote Banach spaces. A linear map U : X → Y is called an
operator, and U is bounded or continuous if there exists a constant K > 0
such that

||Ux||Y ≤ K ||x||X , ∀x ∈ X. (2.4)

Usually, it will be clear from the context which norm we use, so we will
write || · || for both || · ||X and || · ||Y . The norm of the operator U , denoted
by ||U ||, is the smallest constant K that can be used in (2.4). Alternatively,

||U || = sup
{
||Ux||

∣
∣ x ∈ X, ||x|| = 1

}
.

If U1 and U2 are operators for which the range of U2 is contained in the
domain of U1, we can consider the composed operator U1U2; if U1 and U2

are bounded, then also U1U2 is bounded, and

||U1U2|| ≤ ||U1|| ||U2||. (2.5)

Now consider a sequence of operators Un : X → Y, n ∈ N, which
converges pointwise to a mapping U : X → Y , i.e.,

Unx→ Ux, as n→∞, ∀x ∈ X.
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We say that Un converges to U in the strong operator topology. The Banach–
Steinhaus theorem, also known as the uniform boundedness principle, states
the following (see page 69 in [621]) or page 14 in [401]):

Theorem 2.2.1 Let Un : X → Y, n ∈ N, be a sequence of bounded op-
erators, which converges pointwise to a mapping U : X → Y . Then U is
linear and bounded. Furthermore, the sequence of norms ||Un|| is bounded,
and ||U || ≤ lim inf ||Un||.

An operator U : X → Y is invertible if U is surjective and injective. For
a bounded, invertible operator, the inverse operator is bounded; see, e.g.,
page 286 in [464]:

Theorem 2.2.2 A bounded bijective operator between Banach spaces has
a bounded inverse.

In case X = Y , it makes sense to speak about the identity operator I on
X . The Neumann theorem states that an operator U : X → X is invertible
if it is close enough to the identity operator; a proof can be found on page 48
in [401].

Theorem 2.2.3 If U : X → X is bounded and ||I − U || < 1, then U is
invertible, and

U−1 =

∞∑

k=0

(I − U)k. (2.6)

Furthermore,

||U−1|| ≤ 1

1− ||I − U || .

Note that (2.6) should be interpreted in the sense of the operator norm,
i.e., as

∣
∣
∣
∣

∣
∣
∣
∣U

−1 −
N∑

k=0

(I − U)k
∣
∣
∣
∣

∣
∣
∣
∣→ 0 as N →∞.

A special role is played by the continuous linear operators Φ : X → C;
they are called functionals, and the collection of all functionals is the dual
space X∗ of X . The dual X∗ is itself a Banach space with respect to the
norm

||Φ|| = sup{|Φ(x)|
∣
∣ x ∈ X, ||x|| = 1}.

It is well known that X is isometrically isomorphic to a subspace of the
double dual X∗∗ := (X∗)∗ and thus can be identified with a subspace of
X∗∗; in case X = X∗∗, we say that X is reflexive.
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2.3 Hilbert Spaces

A special class of normed vector spaces is formed by inner product spaces.
Recall that an inner product on a complex vector space X is a mapping
〈·, ·〉 : X ×X → C for which

(i) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉, ∀x, y, z ∈ X, α, β ∈ C;

(ii) 〈x, y〉 = 〈y, x〉, ∀x, y ∈ X ;

(iii) 〈x, x〉 ≥ 0, ∀x ∈ X , and 〈x, x〉 = 0⇔ x = 0.

Note that we have chosen to let the inner product be linear in the first
entry. It implies that the inner product is conjugated linear in the second
entry. Frequently, the opposite convention is used in the literature.
A vector space X with an inner product 〈·, ·〉 can be equipped with the

norm

||x|| :=
√
〈x, x〉, x ∈ X.

If X is a Banach space with respect to this norm, then X is called a Hilbert
space. We reserve the letter H for these spaces. We will always assume that
H is nontrivial, i.e., that H �= {0}. The standard examples are the spaces
L2(R) and �2(N) discussed in Section 2.7.

Two elements x, y ∈ H are orthogonal if 〈x, y〉 = 0; and the orthogonal
complement of a subspace U of H is

U⊥ = {x ∈ H : 〈x, y〉 = 0, ∀y ∈ U}.

The above definitions apply whether H is finite-dimensional or infinite-
dimensional. Also note that norms and inner products are defined in a
similar way on real vector spaces (just replace the scalars C by the real
scalars R).
We will now collect a few elementary results concerning Hilbert spaces

that will be used repeatedly during the book.

Lemma 2.3.1 Let H denote a Hilbert space. Then the following hold:

(i) For any x, y ∈ H,

|〈x, y〉| ≤ ||x|| ||y||.

(ii) For any x ∈ H,

||x|| = sup
||y||=1

|〈x, y〉|.

(iii) If H is a complex Hilbert space, then for any x, y ∈ H,

〈x, y〉 =
1

4

(
||x+ y||2 − ||x− y||2 + i ||x+ iy||2 − i ||x− iy||2

)
;(2.7)
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in case H is a real Hilbert space,

〈x, y〉 =
1

4

(
||x+ y||2 − ||x− y||2

)
.

(iv) Assume that x, y ∈ H satisfy that

〈x, z〉 = 〈y, z〉, ∀z ∈ H.

Then x = y.

(v) For any sequence {xk}∞k=1 in H, the following are equivalent:

(a) {xk}∞k=1 is complete.
(b) If 〈x, xk〉 = 0 for all k ∈ N, then x = 0.

Note that Lemma 2.3.1 (i) is the Cauchy–Schwarz inequality; the classical
proofs in R

n carries over to the Hilbert space setting. The result in (ii)
shows that the norm in the Hilbert space can be recovered with knowledge
of the inner product; we ask the reader to prove this in Exercise 2.3. On
the other hand, the result in (iii) shows that we can also recover the inner
product in H from the norm (Exercise 2.4); (iii) is known in the literature
under the name the polarization identity. The proof of the results in (iv)
and (v) are also left to the reader (Exercise 2.5 and Exercise 2.6).
Among the linear operators on a Hilbert space, a special role is played

by the functionals, i.e., the continuous linear operators Φ : H → C. They
are characterized in the well-known Riesz’ representation theorem (see, e.g.,
page 81 in [565] for a proof):

Theorem 2.3.2 Let Φ : H → C be a continuous linear mapping. Then
there exists a unique y ∈ H such that Φx = 〈x, y〉 for all x ∈ H.

Note that the uniqueness of the element y ∈ H associated with a given
functional is a consequence of Lemma 2.3.1 (iv).

Corollary 2.3.3 The dual of a Hilbert space H can be identified with H.

2.4 Operators on Hilbert Spaces

Let U be a bounded operator from the Hilbert space (K, 〈·, ·〉K) into the
Hilbert space (H, 〈·, ·〉H). The adjoint operator is defined as the unique
operator U∗ : H → K satisfying that

〈x, Uy〉H = 〈U∗x, y〉K, ∀x ∈ H, y ∈ K.
Usually, we will write 〈·, ·〉 for both inner products; it will always be clear
from the context in which space the inner product is taken.
We collect some relationships between U and U∗; the proofs can be found

in, e.g., Theorem 4.14 and Theorem 4.15 in [566].
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Lemma 2.4.1 Let U : K → H be a bounded operator. Then the following
hold:

(i) ||U || = ||U∗||, and ||UU∗|| = ||U ||2.

(ii) RU is closed in H if and only if RU∗ is closed in K.

(iii) U is surjective if and only if there exists a constant C > 0 such that

||U∗y|| ≥ C ||y||, ∀y ∈ H.

An operator U : K → H is compact if V := {Ux : ||x|| ≤ 1} is compact,
i.e., if every sequence from V has a convergent subsequence. A compact
operator is bounded. Among the compact operators, we find all operators
having finite rank, i.e., a finite-dimensional range. We collect some of the
most important properties of compact operators; the proofs are in [566].

Lemma 2.4.2 Let U : K → H be a compact operator. Then

(i) The composition of U and a bounded operator (from left or right) is
a compact operator.

(ii) The adjoint operator U∗ is compact.

(iii) If K = H and λ �= 0, then U − λI has closed range; here I denotes
the identity operator on H.

In the rest of this section, we consider the case K = H. A bounded
operator U : H → H is unitary if UU∗ = U∗U = I. If U is unitary, then

〈Ux,Uy〉 = 〈x, y〉, ∀x, y ∈ H.

A bounded operator U : H → H is self-adjoint if U = U∗. When U is
self-adjoint,

||U || = sup
||x||=1

|〈Ux, x〉| . (2.8)

For a self-adjoint operator U , the inner product 〈Ux, x〉 is real for
all x ∈ H. One can introduce a partial order on the set of self-adjoint
operators by

U1 ≤ U2 ⇔ 〈U1x, x〉 ≤ 〈U2x, x〉, ∀x ∈ H. (2.9)

Using this order, one can work with self-adjoint operators almost as
with real numbers. For example, under certain conditions, it is possible to
“multiply” an operator inequality with a bounded operator. The precise
statement below can be found in [401].

Theorem 2.4.3 Let U1, U2, U3 be self-adjoint operators. If U1 ≤ U2,
U3 ≥ 0, and U3 commutes with U1 and U2, then U1U3 ≤ U2U3.
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An important class of self-adjoint operators consists of the orthogonal
projections. Given a closed subspace V of H, the orthogonal projection of
H onto V is the operator P : H → H for which

Px = x, x ∈ V, Px = 0, x ∈ V ⊥.

If {ek}∞k=1 is an orthonormal basis for V (see Definition 3.4.1), the operator
P is given explicitly by

Px =

∞∑

k=1

〈x, ek〉ek, x ∈ H.

Lemma 2.4.4 Let U : H → H be a bounded operator, and assume that
〈Ux, x〉 = 0 for all x ∈ H. Then the following hold:

(i) If H is a complex Hilbert space, then U = 0.

(ii) If H is a real Hilbert space and U is self-adjoint, then U = 0.

Proof. If H is a complex Hilbert space, a direct calculation shows that

4〈Ux, y〉 = 〈U(x+ y), x+ y〉 − 〈U(x− y), x− y〉
+ i〈U(x+ iy), x+ iy〉 − i〈U(x− iy), x− iy〉, ∀x, y ∈ H.

Thus, if 〈Ux, x〉 = 0 for all x ∈ H, then 〈Ux, y〉 = 0 for all x, y ∈ H, and
therefore U = 0.
In case H is a real Hilbert space, we must use a different approach. Let

{ek}∞k=1 be an orthonormal basis for H. Then, for arbitrary j, k ∈ N,

0 = 〈U(ek + ej), ek + ej〉
= 〈Uek, ek〉+ 〈Uej, ej〉+ 〈Uek, ej〉+ 〈Uej , ek〉
= 〈Uek, ej〉+ 〈ej , Uek〉 = 2 〈Uej, ek〉;

therefore, U = 0. �

Note that without the assumption U = U∗, Lemma 2.4.4 (ii) would fail;
consider, e.g., the case where U is a rotation of 90◦ in R

2.
A bounded operator U : H → H is positive if 〈Ux, x〉 ≥ 0, ∀x ∈ H. On

a complex Hilbert space, every bounded positive operator is self-adjoint.
For a positive operator U , we will often use the following result about the
existence of a square root, i.e., a bounded operator W such that W 2 = U ;
a proof can be found, e.g., at page 476 in [464].

Lemma 2.4.5 Every bounded and positive operator U : H → H has
a unique bounded and positive square root W . The operator W has the
following properties:

(i) If U is self-adjoint, then W is self-adjoint.

(ii) If U is invertible, then W is also invertible.
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(iii) W can be expressed as a limit (in the strong operator topology) of a
sequence of polynomials in U and commutes with U .

Frequently, the study of an operator is easier if it can be represented as a
sum or product of “simple” operators. We mention a few examples of such
representations:

Lemma 2.4.6 Let H be a complex Hilbert space. Then the following hold:

(i) Every bounded and invertible operator U : H → H has a unique
representation U = WP , where W is unitary and P is positive.

(ii) Every positive operator P on H with ||P || ≤ 1 can be written as an
average of unitary operators, namely,

P =
1

2
(W +W ∗) with W = P + i

√
I − P 2.

The representation U = WP in (i) is called the polar decomposition; a
proof of this result can be found on page 315 in [566]. The representation
in (ii) is probably less known, but it is proved by direct verification. That
W = P+i

√
I − P 2 is unitary follows by calculating WW ∗ and WW ∗ using

that the square root of I − P 2 can be considered as a limit of polynomials
in I − P 2 and therefore commutes with P . Note that (ii) applies if P is an
orthogonal projection.

2.5 The Pseudo-inverse Operator

For operators that are not invertible, various types of generalized inverses
exist in the literature; see, e.g., the book [43]. Among these generalized
inverses, we will focus on a particular one, which will be called the pseudo-
inverse. We first prove that if an operator U from one Hilbert space to
another has closed range, there exists a “ right-inverse operator” U † in the
following sense:

Lemma 2.5.1 Let H,K be Hilbert spaces, and suppose that U : K → H
is a bounded operator with closed range RU . Then there exists a bounded
operator U † : H → K for which

UU †x = x, ∀x ∈ RU . (2.10)

Proof. Consider the restriction of U to an operator on the orthogonal
complement of the kernel of U , i.e., let

Ũ := U|N⊥
U

: N⊥
U → H.

Clearly, Ũ is linear and bounded. Ũ is also injective: if Ũx = 0, it follows
that x ∈ N⊥

U ∩ NU = {0}. We now prove that the range of Ũ equals the
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range of U . Given y ∈ RU , there exists x ∈ K such that Ux = y. By writing
x = x1 + x2, where x1 ∈ N⊥

U , x2 ∈ NU , we obtain that

Ũx1 = Ux1 = U(x1 + x2) = Ux = y.

It follows from Theorem 2.2.2 that Ũ has a bounded inverse

Ũ−1 : RU → N⊥
U .

Extending Ũ−1 by zero on the orthogonal complement of RU , we obtain a
bounded operator U † : H → K for which UU †x = x for all x ∈ RU . �

The operator U † constructed in the proof of Lemma 2.5.1 is called the
pseudo-inverse of U . In the literature, one will often see the pseudo-inverse
of an operator U with closed range defined as the unique operator U †

satisfying that

NU† = R⊥
U , RU† = N⊥

U , and UU †x = x, x ∈ RU ; (2.11)

this definition is equivalent to the above construction (Exercise 2.7). We
collect some properties of U † and its relationship to U .

Lemma 2.5.2 Let U : K → H be a bounded operator with closed range.
Then the following hold:

(i) The orthogonal projection of H onto RU is given by UU †.

(ii) The orthogonal projection of K onto RU† is given by U †U .

(iii) U∗ has closed range, and (U∗)† = (U †)∗.

(iv) On RU , the operator U † is given explicitly by

U † = U∗(UU∗)−1. (2.12)

Proof. All statements follow from the characterization of U † in (2.11).
For example, it shows that

UU † = I on RU and that UU † = 0 on NU† = R⊥
U ;

this gives (i) by the definition of an orthogonal projection. The proof of
(ii) is similar. That RU∗ is closed was stated already in Lemma 2.4.1; thus,
(U∗)† is well defined. That (U∗)† equals (U †)∗ follows by verifying that
(U †)∗ satisfies (2.11) with U replaced by U∗. Finally, UU∗ is invertible as
an operator on RU , and the operator given by

U∗(UU∗)−1 on RU and 0 on R⊥
U

satisfies the conditions (2.11) characterizing U †. �

The pseudo-inverse gives the solution to an important optimization
problem:
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Theorem 2.5.3 Let U : K → H be a bounded surjective operator. Given
y ∈ H, the equation Ux = y has a unique solution of minimal norm,
namely, x = U †y.

Proof. The proof is identical with the proof of Theorem 1.6.2.
Alternatively, if x is a solution to the equation Ux = y, then

x = (x− U †y) + U †y ∈ NU +N⊥
U ;

thus, the norm of x is minimal precisely when x = U †y. �

2.6 A Moment Problem

Before we leave the discussion of abstract Hilbert spaces, we mention a
special class of equations, known as moment problems. The general version
of a moment problem is as follows: given a collection of elements {xk}∞k=1

in a Hilbert space H and a sequence {ak}∞k=1 of complex numbers, can we
find an element x ∈ H such that

〈x, xk〉 = ak, for all k ∈ N?

Many of the equations that will appear throughout the book will be
formulated in terms of moment problems. We will need a special moment
problem in Section 9.5:

Lemma 2.6.1 Let {xk}Nk=1 be a collection of vectors in H and consider
the moment problem

〈x, xk〉 =
{
1 if k = 1,

0 if k = 2, . . . , N.
(2.13)

Then the following are equivalent:

(i) The moment problem (2.13) has a solution x.

(ii) If
∑N

k=1 ckxk = 0 for some scalar coefficients ck, then c1 = 0.

(iii) x1 /∈ span{xk}Nk=2.

In case the moment problem (2.13) has a solution, it can be chosen of the

form x =
∑N

k=1 dkxk for some scalar coefficients dk.

Proof. (i)⇒ (ii). Assume first that (i) is satisfied, i.e., (2.13) has a solution

x. Then, if
∑N

k=1 ckxk = 0 for some coefficients {ck}Nk=1, we have that

0 = 〈x,
N∑

k=1

ckxk〉 =
N∑

k=1

ck〈x, xk〉 = c1,
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i.e., (ii) holds.
(ii) ⇒(iii). This implication is clear.
(iii) ⇒(i). Let P denote the orthogonal projection of H onto span{xk}Nk=2,
and put ϕ = x1 − Px1. Then

〈ϕ, x1〉 = 〈x1 − Px1, x1 − Px1〉+ 〈x1 − Px1, Px1〉 = ||x1 − Px1||2 �= 0,

and 〈ϕ, xk〉 = 0 for k = 2, . . . , N . Thus, the element

x :=
ϕ

||x1 − Px1||2
(2.14)

solves the moment problem (2.13), i.e., (i) is satisfied.
In case the equivalent conditions are satisfied, the construction of x

in (2.14) shows that x ∈ span{xk}Nk=1. �

2.7 The Spaces Lp(R), L2(R), �p(N), and �2(N)

The most important class of Banach spaces is formed by the Lp-spaces,
1 ≤ p ≤ ∞. We expect these spaces and their basic properties to be known,
so we only provide a quick overview; proofs and further results can be found
in any standard book on the subject, e.g., [565].
First, L∞(R) is the space of essentially bounded (Lebesgue) measurable

functions f : R → C, equipped with the essential supremums-norm. For
1 ≤ p < ∞, Lp(R) is the space of functions f for which |f |p is integrable
with respect to the Lebesgue measure:

Lp(R) :=

{

f : R→ C | f is measurable and

∫ ∞

−∞
|f(x)|p dx <∞

}

.

The norm on Lp(R) is

||f || =
(∫ ∞

−∞
|f(x)|p dx

)1/p

.

To be more precise, Lp(R) consists of equivalence classes of functions that
are equal almost everywhere and for which a representative (and hence all)
for the equivalence class satisfies the integrability condition. In order not
to be too tedious, we adopt the standard terminology and speak about
functions in Lp(R) rather than equivalence classes.
The case p = 2 plays a special role: in fact, the space

L2(R) =

{

f : R→ C | f is measurable and

∫ ∞

−∞
|f(x)|2 dx <∞

}

is the only one of the Lp(R)-spaces that can be equipped with an in-
ner product. Actually, L2(R) is a Hilbert space with respect to the inner
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product

〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx, f, g ∈ L2(R).

Thus, we can apply all the results in Section 2.3 to the space L2(R). In
particular, Cauchy–Schwarz inequality states that for all f, g ∈ L2(R),

∣
∣
∣
∣

∫ ∞

−∞
f(x)g(x) dx

∣
∣
∣
∣ ≤

(∫ ∞

−∞
|f(x)|2 dx

)1/2(∫ ∞

−∞
|g(x)|2 dx

)1/2

. (2.15)

The spaces L2(Ω), where Ω is an open subset of R, are defined similarly.
According to the general definition, a sequence of functions {gk}∞k=1 in
L2(Ω) converges to g ∈ L2(Ω) if

||g − gk|| =
(∫

Ω

|g(x)− gk(x)|2 dx
)1/2

→ 0 as k →∞.

It is essential to be aware that the concept of convergence in L2-sense
is different from pointwise convergence. However, there is a relationship
that will play an important role in several proofs: convergence in L2-sense
implies the existence of a subsequence that converges pointwise almost
everywhere. This result is known as Riesz’ subsequence theorem; we state
it formally here and refer to page 68 in [565] for a proof.

Theorem 2.7.1 Let Ω ⊆ R be an open set, and let {gk} be a sequence in
L2(Ω) that converges to g ∈ L2(Ω). Then {gk} has a subsequence {gnk

}∞k=1

such that

g(x) = lim
k→∞

gnk
(x)

for a.e. x ∈ Ω.

The result holds no matter how we choose the representatives for the
equivalence classes. This is typical for this book, where we rarely deal with a
specific representative for a given class. There are, however, a few important
exceptions. When we speak about a continuous function, it is clear that we
have chosen a specific representative, and the same is the case when we
discuss Lebesgue points. By definition, a point y ∈ R is a Lebesgue point
for a measurable function f : R→ C if

lim
ε→0

1

ε

∫ y+ 1
2 ε

y− 1
2 ε

|f(y)− f(x)| dx = 0.

If f is continuous in y, then y is a Lebesgue point (Exercise 2.8). More
generally, one can prove that if f ∈ L1(R), then almost every y ∈ R is a
Lebesgue point; see page 138 in [565] for a proof of this fact, as well as a
more detailed discussion.
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It is clear from the definition that different representatives for the same
equivalence class will have different Lebesgue points. For example, every
y ∈ R is a Lebesgue point for the function f = 0; changing the definition
of f in a single point y will not change the equivalence class, but y will no
longer be a Lebesgue point. See Exercise 2.8 for some related observations.
The discrete analogue of Lp(R) is �p(I), the space of p-summable scalar-

valued sequences with a countable index set I. For 1 ≤ p <∞, let

�p(I) :=

{

{xk}k∈I

∣
∣ xk ∈ C,

∑

k∈I

|xk|p <∞
}

.

For 1 ≤ p <∞ the space �p(R) is a Banach space with respect to the norm

||{xk}k∈I ||p =

(
∑

k∈I

|xk|p
)1/p

.

In particular, �2(I) is a Hilbert space with respect to the inner product

〈{xk}k∈I , {yk}k∈I〉 =
∑

k∈I

xkyk;

and Cauchy–Schwarz inequality states that
∣
∣
∣
∣

∑

k∈I

xkyk

∣
∣
∣
∣

2

≤
∑

k∈I

|xk|2
∑

k∈I

|yk|2, {xk}k∈I , {yk}k∈I ∈ �2(I). (2.16)

The Banach space �∞(I) is the set of bounded scalar-valued sequences
{xk}k∈I , equipped with the norm

||{xk}k∈I ||∞ = sup
k∈I
|xk|.

We will frequently use the following discrete version of Fatou’s lemma
(the general version is stated in Lemma A.2.3):

Lemma 2.7.2 Let I be a countable index set and fn : I → [0,∞], n ∈ N,
a sequence of functions. Then

∑

k∈I

lim inf
n→∞ fn(k) ≤ lim inf

n→∞

∑

k∈I

fn(k).

2.8 The Fourier Transform and Convolution

The Fourier transform will be one of the central ingredients in our analysis
of structured function systems in Chapters 9–21. In this section, we give
a short introduction to the Fourier transforms on L2(R) and �2(Z). As for
most of the other topics in this section, we expect the reader to have a basic
knowledge about the subject, so we only collect the main definitions and
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results here. For more information, we refer to any of the standard texts,
e.g., [465, 22], or [629].

For f ∈ L1(R), the Fourier transform f̂ : R→ C is defined by

f̂(γ) :=

∫ ∞

−∞
f(x)e−2πixγ dx, γ ∈ R. (2.17)

We will also denote the Fourier transform of f by Ff. This notation indi-
cates that we will also consider the Fourier transform as an operator; the
Riemann–Lebesgue lemma says that F maps L1(R) into C0(R), the vector
space consisting of continuous functions vanishing at infinity.
The Fourier transform has an extension to a unitary operator on L2(R).

One can show that if (L1 ∩ L2)(R) is equipped with the L2(R)-norm, the
Fourier transform is an isometry from (L1∩L2)(R) into L2(R). If f ∈ L2(R)
and {fk}∞k=1 is a sequence of functions in (L1 ∩L2)(R) that converges to f

in L2-sense, then the sequence {f̂k}∞k=1 is also convergent in L2(R), with a
limit that is independent of the choice of {fk}∞k=1. Defining

f̂ := lim
k→∞

f̂k

then extends the Fourier transform to a unitary mapping of L2(R) onto
L2(R). We will use the same notation to denote this extension.
The above construction and the polarization identity immediately yields

Plancherel’s equation,

〈f̂ , ĝ〉 = 〈f, g〉, ∀f, g ∈ L2(R), and ||f̂ || = ||f ||. (2.18)

If f ∈ L1(R), then f̂ is continuous. If the function f as well as f̂ belong
to L1(R), the inversion formula describes how to come back to f from the

function values f̂(γ), see [22].

Theorem 2.8.1 Assume that f, f̂ ∈ L1(R). Then

f(x) =

∫ ∞

−∞
f̂(γ)e2πixγdγ, a.e. x ∈ R. (2.19)

If f is continuous, the pointwise formula (2.19) holds for all x ∈ R. In
general, it holds at least for all Lebesgue points for f .

We note that (2.19) also holds if f ∈ L2(R) and f̂ ∈ L1(R).
Given two functions f, g ∈ L1(R), the convolution f ∗ g : R → C is

defined by

f ∗ g(y) =
∫ ∞

−∞
f(y − x)g(x) dx, y ∈ R.

The function f ∗ g is well defined for all y ∈ R and belongs to L1(R). If
f ∈ L1(R) and g ∈ Lp(R) for some p ∈ [1,∞[, the convolution f ∗ g(y) is
well-defined for a.e. y ∈ R and defines a function in Lp(R).
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The Fourier transform and convolution are related by the following
important result:

Theorem 2.8.2 If f, g ∈ L1(R), then f̂ ∗ g(γ) = f̂(γ)ĝ(γ) for all γ ∈ R;
if f ∈ L1(R) and g ∈ Lp(R), the formula holds for a.e. γ ∈ R.

We will also need the Fourier transform on �2(Z). Given a sequence
h = {hk}k∈Z ∈ �2(Z), we define its Fourier transform as the Fourier series

ĥ(ν) =
∑

j∈Z

hke
−2πikν , a.e. ν ∈ R.

Given two scalar-valued sequences g = {gk}k∈Z and h = {hk}k∈Z, their
convolution is formally defined as the sequence g∗h whose jth coordinate is

(g ∗ h)j =
∑

k∈Z

gkhj−k.

If g ∈ �1(Z) and h ∈ �p(Z) for some p ∈ [1,∞[, then the convolution g ∗ h
is well-defined and belongs to �p(Z); Young’s inequality states that

||g ∗ h||p ≤ ||g||1||h||p. (2.20)

2.9 Operators on L2(R)

In this section, we consider three classes of operators on L2(R) that will play
a key role in our analysis of Gabor frames and wavelets. Their definitions
are as follows:

Definition 2.9.1 Consider the following classes of linear operators:

(i) For a ∈ R, the operator Ta, called translation by a, is defined by

Ta : L2(R)→ L2(R), (Taf)(x) := f(x− a), x ∈ R. (2.21)

(ii) For b ∈ R, the operator Eb, called modulation by b, is defined by

Eb : L
2(R)→ L2(R), (Ebf)(x) := e2πibxf(x), x ∈ R. (2.22)

(iii) For a �= 0, the operator Da, called scaling by a, is defined by

Da : L2(R)→ L2(R), (Daf)(x) :=
1√
a
f(

x

a
), x ∈ R. (2.23)

The operator Da is also called a dilation operator.

(iv) The dyadic scaling operator is

D : L2(R)→ L2(R), (Df)(x) := D1/2f(x) = 21/2f(2x). (2.24)















64 2 Infinite-Dimensional Vector Spaces and Sequences

A comment about notation: we will usually skip the parentheses and simply
write Taf(x) and similarly for the other operators. Frequently, we will also
let Eb denote the function x �→ e2πibx.
All the operators in Definition 2.9.1 indeed map L2(R) onto L2(R) as

stated and are bounded (Exercise 2.9). They are even unitary:

Lemma 2.9.2 The translation operators satisfy the following:

(i) Ta is unitary for all a ∈ R.

(ii) For each f ∈ L2(R), the mapping y �→ Tyf is continuous from R to
L2(R).

Similar statements hold for Eb, b ∈ R, and Da, a �= 0.

Proof. Let us prove that the operators Ta are unitary. Since

〈Taf, g〉 =
∫ ∞

−∞
f(x− a)g(x) dx =

∫ ∞

−∞
f(x)g(x+ a) dx

= 〈f, T−ag〉, ∀f, g ∈ L2(R),

we see that T ∗
a = T−a. On the other hand, Ta is clearly an invertible

operator with T−1
a = T−a, so we conclude that T−1

a = T ∗
a .

To prove the continuity of the mapping y �→ Tyf , we first assume that
the function f is continuous and has compact support, say, contained in the
bounded interval [c, d]. For notational convenience, we prove the continuity
in y0 = 0. First, for y ∈]− 1

2 ,
1
2 [ the function

φ(x) = Tyf(x)− Ty0f(x) = f(x− y)− f(x)

has support in the interval [− 1
2 + c, d+ 1

2 ]. Since f is uniformly continuous,
we can for any given ε > 0 find δ > 0 such that

|f(x− y)− f(x)| ≤ ε for all x ∈ R whenever |y| ≤ δ.

With this choice of δ, we thus obtain that

||Tyf − Ty0f || =

(∫ 1
2+d

− 1
2+c

|f(x− y)− f(x)|2 dx
)1/2

≤ ε
√
d− c+ 1.

This proves the continuity in the considered special case. The case of an
arbitrary function f ∈ L2(R) follows by an approximation argument, using
that the continuous functions with compact support are dense in L2(R)
(Exercise 2.10). The proofs of the statements for Eb and Da are left to the
reader (Exercise 2.11). �

Chapters 11–20 will deal with Gabor systems, wavelet systems, and
generalized shift-invariant systems in L2(R); all classes consist of func-
tions that are defined by compositions of some of the operators Ta, Eb,
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and Da. For this reason, the following commutator relations are important
(Exercise 2.12) :

TaEbf(x) = e−2πibaEbTaf(x) = e2πib(x−a)f(x− a), (2.25)

TbDaf(x) = DaTb/af(x) =
1

√
|a|

f(
x

a
− b

a
), (2.26)

DaEbf(x) = E b
a
Daf(x) =

1
√
|a|

e2πixb/af(
x

a
). (2.27)

With this notation, the commutator relation (2.26) in particular
implies that

TkD
j = DjT2jk and DjTk = T2−jkD

j , j, k ∈ Z. (2.28)

We will often use the Fourier transformation in connection with Gabor
systems and wavelet systems. In this context, we need the commutator
relations (Exercise 2.13)

FTa = E−aF , FEa = TaF , FDa = D1/aF , FD = D−1F . (2.29)

2.10 Exercises

2.1 Find a sequence {ak}∞k=1 of real numbers for which
∑∞

k=1 ak is
convergent but not unconditionally convergent.

2.2 Let {fk}∞k=1 be a sequence in a Banach space. Prove that absolute
convergence of

∑∞
k=1 fk implies unconditional convergence.

2.3 Prove Lemma 2.3.1(ii).

2.4 Prove Lemma 2.3.1(iii).

2.5 Prove Lemma 2.3.1 (iv).

2.6 Prove Lemma 2.3.1 (v).

2.7 Prove that the conditions in (2.11) are equivalent to the construction
of the pseudo-inverse in Lemma 2.5.1.

2.8 Here we ask the reader to prove some results concerning Lebesgue
points.

(i) Assume that f : R → C is continuous. Prove that every y ∈ R

is a Lebesgue point.



















66 2 Infinite-Dimensional Vector Spaces and Sequences

(ii) Prove that x = 0 is not a Lebesgue point for the function χ[0,1].

(iii) Let f = χQ. Prove that every y /∈ Q is a Lebesgue point and
that the rational numbers are not Lebesgue points.

2.9 Show that the operators in Definition 2.9.1 map L2(R) into L2(R)
and are bounded.

2.10 Complete the proof of Lemma 2.9.2 by showing the continuity of
the mapping y �→ Tyf for f ∈ L2(R).

2.11 Prove the statements about Eb and Da in Lemma 2.9.2.

2.12 Prove the commutator relations (2.25)–(2.27).

2.13 Prove the commutator relations (2.29).



3
Bases

Bases play a prominent role in the analysis of vector spaces, as well in the
finite-dimensional as in the infinite-dimensional case. The idea is the same
in both cases, namely, to consider a family of elements such that all vectors
in the considered space can be expressed in a unique way as superpositions
of these elements. In the infinite-dimensional case, the situation is compli-
cated: we are forced to work with infinite series, and different concepts of
a basis are possible, depending on how we want the series to converge. For
example, are we asking for the series to converge with respect to a fixed or-
der of the elements (conditional convergence) or do we want it to converge
regardless of how the elements are ordered (unconditional convergence)?
We define the relevant types of bases in general Banach spaces in Sec-
tion 3.1; the case of a basis in a Hilbert space is considered in Section 3.3.
Sequences satisfying the Bessel inequality are considered in Section 3.2 and
characterized in terms of an associated operator, the synthesis operator. In
Section 3.4 we discuss the most important properties of orthonormal bases
in Hilbert spaces; we expect the reader to have some basic knowledge about
this subject. Section 3.5 deals with the Gram matrix and its relationship
with Bessel sequences. In Section 3.6, one of the key subjects of the current
book, namely, Riesz bases, is introduced and treated in detail; a subspace
version of these is discussed in Section 3.7. Several characterizations of Riesz
bases and Riesz sequences are provided. Orthonormal bases and Riesz bases
both satisfy the Bessel inequality, which is the key to the observation that
they deliver unconditionally convergent expansions and can be ordered in
an arbitrary way.

©
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Concrete examples of bases in function spaces are given in Section 3.8,
where the basic theory for Fourier series is revisited (again this subject is
expected to be known). Section 3.8 also introduce Gabor bases for L2(R).
In Section 3.9 we consider wavelet bases for L2(R) and explain how to
construct them using a multiresolution analysis. Sections 3.8–3.9 form the
background for Chapters 9–20. Finally, Section 3.10 introduces the concept
of sampling and relates Shannon’s sampling theorem to engineering.
In the entire chapter, X denotes a Banach space, and H is a Hilbert

space with the inner product 〈·, ·〉 linear in the first entry. We will assume
that the spaces are separable and infinite-dimensional, and we leave the
modifications in the finite-dimensional case to the reader.

3.1 Bases in Banach Spaces

The most fundamental concept of a basis was introduced by Schauder [569]
in 1927. It takes place in a Banach space X and captures the basic idea of
having a family of vectors with the property that each f ∈ X has a unique
expansion in terms of the given vectors. All bases considered in this book
are Schauder bases. Much more information about bases can be found in
the monographs [389, 495, 577].
Before giving the formal definition, we emphasize once more that a

sequence {ek}∞k=1 in X is an ordered set, i.e.,

{ek}∞k=1 = {e1, e2, . . . }.

Definition 3.1.1 Let X be a Banach space. A sequence of vectors {ek}∞k=1

belonging to X is a (Schauder) basis for X if, for each f ∈ X, there exist
unique scalar coefficients {ck(f)}∞k=1 such that

f =

∞∑

k=1

ck(f)ek. (3.1)

We refer to (3.1) as the expansion of f in the basis {ek}∞k=1. Equation (3.1)
merely means that the series f =

∑∞
k=1 ck(f)ek converges with respect to

the chosen order of the elements. If the series (3.1) converges uncondition-
ally for each f ∈ X , we say that {ek}∞k=1 is an unconditional basis. One can
prove that {ek}∞k=1 is an unconditional basis if and only if {eσ(k)}∞k=1 is a
basis for every permutation σ of N (cf. [577]). In other words, if {ek}∞k=1 is
a basis which is not unconditional, there exists a permutation σ for which
{eσ(k)}∞k=1 is not a basis. It is known that every Banach space which has a
basis also has a conditional basis (cf. [536]).
Besides the existence of an expansion of each f ∈ X , Definition 3.1.1

asks for uniqueness. This is usually obtained by requiring {ek}∞k=1 to be
independent in an appropriate sense. In infinite-dimensional Banach spaces,
different concepts of independence exist:
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Definition 3.1.2 Let {fk}∞k=1 be a sequence in X. We say that

(i) {fk}∞k=1 is linearly independent if every finite subsequence of {fk}∞k=1

is linearly independent;

(ii) {fk}∞k=1 is ω-independent if whenever the series
∑∞

k=1 ckfk is con-
vergent and equal to zero for some scalar coefficients {ck}∞k=1, then
necessarily ck = 0 for all k ∈ N.

(iii) {fk}∞k=1 is minimal if fj /∈ span{fk}k �=j , ∀j ∈ N.

The relationship between the definitions is as follows:

Lemma 3.1.3 Let {fk}∞k=1 be a sequence in X. Then the following holds:

(i) If {fk}∞k=1 is minimal, then {fk}∞k=1 is ω-independent.

(ii) If {fk}∞k=1 is ω-independent, then {fk}∞k=1 is linearly independent.

The opposite implications in (i) and (ii) are not valid.

Proof. For the proof of (i), assume that {fk}∞k=1 is not ω-independent.
Choose scalar coefficients {ck}∞k=1 with cj �= 0 for some j, such that∑∞

k=1 ckfk = 0; then fj =
∑

k �=j
−ck
cj

fk, implying that fj ∈ span{fk}k �=j .

That is, {fk}∞k=1 is not minimal. The statement (ii) is obvious, and the fact
that the opposite implications are not valid is demonstrated by examples
in Exercise 3.4. �

A Banach space having a basis is necessarily separable. Most of the known
separable Banach spaces have a basis; the first example of a separable
Banach space not having a basis was constructed by Enflo [269] in 1972.
It is clear that a basis for X is complete and consists of nonzero vectors.

Adding an extra condition leads to a characterization of bases:

Theorem 3.1.4 A complete family of nonzero vectors {ek}∞k=1 in X is
a basis for X if and only if there exists a constant K such that for all
m,n ∈ N with m ≤ n,

∣
∣
∣
∣

∣
∣
∣
∣

m∑

k=1

ckek

∣
∣
∣
∣

∣
∣
∣
∣ ≤ K

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckek

∣
∣
∣
∣

∣
∣
∣
∣ (3.2)

for all scalar-valued sequences {ck}∞k=1.

Proof. Suppose that {ek}∞k=1 is a basis. Then each f ∈ X has a unique
expansion f =

∑∞
k=1 ckek, and

|||f ||| := sup
m∈N

∣
∣
∣
∣

∣
∣
∣
∣

m∑

k=1

ckek

∣
∣
∣
∣

∣
∣
∣
∣ <∞. (3.3)
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Note that if |||f ||| = 0, then ||
∑m

k=1 ckek|| = 0 for all m ∈ N; it follows
that ck = 0 for all k ∈ N, and f = 0. One can check (Exercise 3.1) that
||| · ||| satisfies the other conditions for a norm on X and that X is a
Banach space with respect to this norm. By definition of ||| · |||, we have
||f || ≤ |||f |||, ∀f ∈ X , meaning that the identity operator is a continuous
and injective mapping of (X, ||| · |||) onto (X, || · ||). By Theorem 2.2.2, it
follows that this operator has a continuous inverse, i.e., that there exists
a constant K > 0 such that |||f ||| ≤ K ||f || for all f ∈ X . In particular,
fixing an arbitrary n ∈ N and considering f =

∑n
k=1 ckek, we obtain (3.2).

For the implication (ii)⇒(i), assume that a complete family {ek}∞k=1 of
nonzero vectors satisfies (3.2). We begin by showing an inequality that
will be used in the proof. Consider any f ∈ X with an expansion f =∑∞

k=1 ckek; then, for any choice of i ∈ N and m ≥ i, (3.2) shows that

|ci| ||ei|| =
∣
∣
∣
∣

∣
∣
∣
∣

i∑

k=1

ckek −
i−1∑
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ckek
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∣
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∣ ≤

∣
∣
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∣
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ckek
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= 2K
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ckek
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∣
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∣
∣
∣
∣. (3.4)

Now let A denote the vector space consisting of all f ∈ X , which can be
expanded as f =

∑∞
k=1 ckek for some coefficients {ck}∞k=1. We will prove

that A = X ; because {ek}∞k=1 is assumed to be complete, we know that
A is dense in X , so it is enough to prove that A is closed. Let f ∈ X ,
and choose a sequence {fj}∞j=1 ⊂ A such that fj → f as j → ∞. Write

fj =
∑∞

k=1 c
(j)
k ek for appropriate coefficients {c(j)k }∞k=1. By (3.4), for each

i ∈ N and all n ≥ m ≥ i, we have for all j, � ∈ N that

|c(j)i − c
(�)
i | ||ei|| ≤ 2K
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≤ 2K2
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)

+ 2K2

(

||f − f�||+
∣
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∣f� −

n∑
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c
(�)
k ek

∣
∣
∣
∣

∣
∣
∣
∣

)

.

Given ε > 0, choose N ∈ N such that

||f − fj || ≤
ε

4K2
for j ≥ N.
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Letting n→∞, it follows from the above estimate that

|c(j)i − c
(�)
i | ||ei|| ≤ ε for all i ∈ N, j, � ≥ N, (3.6)

and, via the intermediate step (3.5),

2K

∣
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∣
∣
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k=1

(
c
(j)
k − c

(�)
k

)
ek

∣
∣
∣
∣

∣
∣
∣
∣ ≤ ε for all m ∈ N, j, � ≥ N. (3.7)

For each i ∈ N, the sequence {c(�)i }∞�=1 is convergent by (3.6), say, c
(�)
i → ci

as �→∞. Letting �→∞ in (3.6) and (3.7), we obtain that

|c(j)i − ci| ||ei|| ≤ ε for all i ∈ N, j ≥ N, (3.8)

and
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)
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∣ ≤ ε for all m ∈ N, j ≥ N. (3.9)

Now, for given m ∈ N and all j ∈ N,
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We will now show that
∑∞

k=1 ckek converges to f . In fact, for a given
ε > 0, we can choose N ∈ N so that (3.9) holds. By fixing a sufficiently
large value for j > N , we obtain that ||f − fj || ≤ ε; after that, we can

obtain that
∣
∣
∣
∣
∣
∣fj −

∑m
k=1 c

(j)
k ek
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∣
∣
∣
∣
∣ ≤ ε by choosing m ∈ N sufficiently large.

Thus,
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= ε (2 +
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2K
)

for m sufficiently large. We conclude that f =
∑∞

k=1 ckek, i.e., f ∈ A as
desired. To prove that {ek}∞k=1 is a basis, we only need to show that if∑∞

k=1 ckek = 0, then ck = 0 for all k ∈ N. This again follows from (3.4). In
fact, if

∑∞
k=1 ckek = 0, then for each i ∈ N and all n ≥ i,

|ci| ||ei|| ≤ 2K
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from here we obtain that ci = 0 by letting n→∞. �
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Theorem 3.1.4 is often formulated using the basis constant, which for an
arbitrary sequence {ek}∞k=1 is defined by

K := sup

{∣
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∣
∣
∣
∣ = 1

}

. (3.10)

If {ek}∞k=1 is a basis, this is clearly the smallest constant that can be used
in (3.2). On the other hand, if the basis constant is infinite, then {ek}∞k=1

is not a basis. For a finite sequence {ek}Nk=1 the basis constant is defined
as above, with the addition that we consider n ≤ N .
The basis constant K tells whether the sequence {ek}∞k=1 can be a basis

with respect to the chosen order of the elements. We note that a similar
characterization of unconditional bases exists (cf. [577]): a complete se-
quence {ek}∞k=1 consisting of nonzero elements is an unconditional basis if
and only if its unconditional basis constant

sup

{∣
∣
∣
∣

∣
∣
∣
∣

∑
σkckek

∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣

∑
ckek

∣
∣
∣
∣

∣
∣
∣
∣ = 1 and σk = ±1, ∀k

}

is finite.
Given a basis {ek}∞k=1, it is clear that the coefficients {ck(f)}∞k=1 in (3.1)

depend linearly on f . The mappings f �→ ck(f) are called coefficient
functionals. As a consequence of Theorem 3.1.4, they are continuous:

Corollary 3.1.5 The coefficient functionals {ck}∞k=1 associated to a basis
{ek}∞k=1 for X are continuous and are thus elements in the dual X∗. If
there exists a constant C > 0 such that ||ek|| ≥ C for all k ∈ N, then the
norms of {ck}∞k=1 are uniformly bounded.

Proof. We use Theorem 3.1.4 and the notation introduced there. Given
f ∈ X , write f =

∑∞
k=1 ck(f)ek. Then, for any j ∈ N and all n ≥ j,

|cj(f)| ||ej|| ≤ 2K

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ck(f)ek

∣
∣
∣
∣

∣
∣
∣
∣.

Letting n→∞ we obtain that

|cj(f)| ≤
2K

||ej ||
||f ||. �

Exercise 3.2 exhibits a case where {ek}∞k=1 is not norm bounded below
and examines some of the properties of the coefficient functionals.
A sequence {fk}∞k=1 in X and a sequence {gk}∞k=1 in X∗ are said to be

biorthogonal if

gk(fj) = δk,j :=

{
1 if k = j,

0 if k �= j.
(3.11)
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Corollary 3.1.6 Suppose that {ek}∞k=1 is a basis for X. Then {ek}∞k=1 and
the coefficient functionals {ck}∞k=1 constitute a biorthogonal system.

We leave the proof to the reader (Exercise 3.3). For completeness, we
mention the following results about the coefficient functionals; they are
proved in, e.g., [495, 622].

Theorem 3.1.7 Let {ek}∞k=1 be a basis for X and let {ck}∞k=1 be the
associated coefficient functionals. Then

(i) {ck}∞k=1 is a basis for its closed span in X∗, and its associated
biorthogonal system is {ek}∞k=1 (considered as elements in X∗∗).

(ii) If X is reflexive, then {ck}∞k=1 is a basis for X∗.

3.2 Bessel Sequences in Hilbert Spaces

The rest of this chapter concerns sequences in Hilbert spaces. For conve-
nience, we index all sequences by the natural numbers in this section. We
shall soon see that all results actually hold with arbitrary countable index
sets.

Lemma 3.2.1 Let {fk}∞k=1 be a sequence in H, and suppose that
∑∞

k=1 ckfk
is convergent for all {ck}∞k=1 ∈ �2(N). Then

T : �2(N)→ H, T {ck}∞k=1 :=

∞∑

k=1

ckfk (3.12)

defines a bounded linear operator. The adjoint operator is given by

T ∗ : H → �2(N), T ∗f = {〈f, fk〉}∞k=1. (3.13)

Furthermore,

∞∑

k=1

|〈f, fk〉|2 ≤ ||T ||2 ||f ||2, ∀f ∈ H. (3.14)

Proof. Consider the sequence of bounded linear operators

Tn : �2(N)→ H, Tn{ck}∞k=1 :=

n∑

k=1

ckfk.

Clearly Tn → T pointwise as n → ∞, so T is bounded by Theorem 2.2.1.
In order to find the expression for T ∗, let f ∈ H, {ck}∞k=1 ∈ �2(N). Then

〈f, T{ck}∞k=1〉H = 〈f,
∞∑

k=1

ckfk〉H =

∞∑

k=1

〈f, fk〉ck. (3.15)
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We mention two ways to find T ∗f from here:

1) The convergence of the series
∑∞

k=1〈f, fk〉ck for all {ck}∞k=1 ∈ �2(N)
implies that {〈f, fk〉}∞k=1 ∈ �2(N); see for example [401], page 145.
Thus, we can write

〈f, T{ck}∞k=1〉H = 〈{〈f, fk〉}, {ck}〉�2(N)
and conclude that

T ∗f = {〈f, fk〉}∞k=1.

2) Alternatively, when T : �2(N) → H is bounded, we already know
that T ∗ is a bounded operator from H to �2(N). Therefore, the kth
coordinate function is bounded from H to C; by Riesz representation
theorem, T ∗ therefore has the form

T ∗f = {〈f, gk〉}∞k=1

for some {gk}∞k=1 in H. By definition of T ∗, (3.15) now shows that

∞∑

k=1

〈f, gk〉ck =
∞∑

k=1

〈f, fk〉ck, ∀{ck}∞k=1 ∈ �2(N), f ∈ H.

It follows from here that gk = fk.

The adjoint of a bounded operator T is itself bounded, and ||T || = ||T ∗||.
Under the assumption in Lemma 3.2.1, we therefore have

||T ∗f ||2 ≤ ||T ||2 ||f ||2, ∀f ∈ H,

which leads to (3.14). �

Sequences {fk}∞k=1 for which an inequality of the type (3.14) holds will
play a crucial role in the entire book.

Definition 3.2.2 A sequence {fk}∞k=1 in H is called a Bessel sequence if
there exists a constant B > 0 such that

∞∑

k=1

|〈f, fk〉|2 ≤ B ||f ||2, ∀f ∈ H. (3.16)

Any number B satisfying (3.16) is called a Bessel bound for {fk}∞k=1. The
optimal bound for a given Bessel sequence {fk}∞k=1 is the smallest possible
value of B > 0 satisfying (3.16). Except for the case fk = 0, ∀k ∈ N, the
optimal bound always exists.
We will now show that the Bessel condition can be expressed in terms

of the operator T in (3.12). The operator is called the synthesis operator
or pre-frame operator. We will use the wording that “T is well-defined on
�2(N)” if the infinite series in (3.12) converges for all {ck}∞k=1 ∈ �2(N).
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Theorem 3.2.3 Let {fk}∞k=1 be a sequence in H and B > 0 be given. Then
{fk}∞k=1 is a Bessel sequence with Bessel bound B if and only if

T : {ck}∞k=1 →
∞∑

k=1

ckfk

is a well-defined bounded operator from �2(N) into H and ||T || ≤
√
B.

Proof. First assume that {fk}∞k=1 is a Bessel sequence with Bessel bound
B. Let {ck}∞k=1 ∈ �2(N). First we want to show that T {ck}∞k=1 is well-
defined, i.e., that

∑∞
k=1 ckfk is convergent. Consider n,m ∈ N, n > m.

Then
∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckfk −
m∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=m+1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

= sup
||g||=1

∣
∣
∣
∣
∣
〈

n∑

k=m+1

ckfk, g〉
∣
∣
∣
∣
∣

≤ sup
||g||=1

n∑

k=m+1

|ck〈fk, g〉|

≤
(

n∑

k=m+1

|ck|2
)1/2

sup
||g||=1

(
n∑

k=m+1

|〈fk, g〉|2
)1/2

≤
√
B

(
n∑

k=m+1

|ck|2
)1/2

.

Since {ck}∞k=1 ∈ �2(N), we know that
{∑n

k=1 |ck|2
}∞
n=1

is a Cauchy se-

quence in C. The above calculation now shows that {
∑n

k=1 ckfk}
∞
n=1 is a

Cauchy sequence in H and therefore convergent. Thus, T {ck}∞k=1 is well-
defined. Clearly, T is linear; since ||T {ck}∞k=1|| = sup||g||=1 |〈T {ck}∞k=1, g〉|,
a calculation as above shows that T is bounded and that ||T || ≤

√
B.

For the opposite implication, suppose that T is well-defined and that
||T || ≤

√
B. Then (3.14) shows that {fk}∞k=1 is a Bessel sequence with

bound B. �

Lemma 3.2.1 shows that if we only need to know that {fk}∞k=1 is a Bessel
sequence and the value for the Bessel bound is irrelevant, we can just check
that the operator T is well defined:

Corollary 3.2.4 If {fk}∞k=1 is a sequence in H and
∑∞

k=1 ckfk is
convergent for all {ck}∞k=1 ∈ �2(N), then {fk}∞k=1 is a Bessel sequence.

The Bessel condition (3.16) remains the same, regardless of how the ele-
ments {fk}∞k=1 are numbered. This leads to a very important consequence
of Theorem 3.2.3:
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Corollary 3.2.5 If {fk}∞k=1 is a Bessel sequence in H, then
∑∞

k=1 ckfk
converges unconditionally for all {ck}∞k=1 ∈ �2(N).

Thus, a reordering of the elements in {fk}∞k=1 will not affect the series∑∞
k=1 ckfk when {ck}∞k=1 is reordered the same way: the series will converge

toward the same element as before. For this reason, we can choose an
arbitrary indexing of the elements in the Bessel sequence; in particular, it
is not a restriction that we present all results with the natural numbers as
index set. As we will see in the sequel, all orthonormal bases, Riesz bases,
and frames are Bessel sequences.
It is enough to check the Bessel condition (3.16) on a dense subset of H:

Lemma 3.2.6 Suppose that {fk}∞k=1 is a sequence of elements in H and
that there exists a constant B > 0 such that

∞∑

k=1

|〈f, fk〉|2 ≤ B ||f ||2

for all f in a dense subset V of H. Then {fk}∞k=1 is a Bessel sequence with
bound B.

Proof. We have to prove that the Bessel condition is satisfied for all
elements in H. Let g ∈ H, and suppose by contradiction that

∞∑

k=1

|〈g, fk〉|2 > B ||g||2.

Then there exists a finite set F ⊂ N such that
∑

k∈F |〈g, fk〉|2 > B ||g||2.
Since V is dense in H, this implies that there exists h ∈ V such that

∑

k∈F

|〈h, fk〉|2 > B ||h||2,

but this is a contradiction. We conclude that (3.16) indeed holds for all
f ∈ H, as claimed. �

See Exercise 3.11 for another sufficient condition for {fk}∞k=1 to be a
Bessel sequence.

3.3 Bases and Biorthogonal Systems in H
We now return to some of the concepts defined in Section 3.1. The first
lemma actually holds in Banach spaces, but for our purpose, it suffices to
consider a Hilbert space H. Recall from Corollary 2.3.3 that H∗ = H; thus,
according to the general definition in (3.11), two sequences {fk}∞k=1 and
{gk}∞k=1 in H are biorthogonal if

〈gk, fj〉 = δk,j , ∀j, k ∈ N.
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Lemma 3.3.1 Let {fk}∞k=1 be a sequence in H. Then the following holds:

(i) {fk}∞k=1 has a biorthogonal sequence {gk}∞k=1 if and only if {fk}∞k=1

is minimal.

(ii) If a biorthogonal sequence for {fk}∞k=1 exists, it is uniquely deter-
mined if and only if {fk}∞k=1 is complete in H.

Proof. For the proof of (i), suppose first that {fk}∞k=1 has a biorthogonal
system {gk}∞k=1. Then, for any given j ∈ N,

〈fj , gj〉 = 1 and 〈fk, gj〉 = 0 for k �= j.

Therefore fj /∈ span{fk}k �=j , i.e., {fk}∞k=1 is minimal. For the other impli-
cation in (i), assume that {fk}∞k=1 is minimal. Given j ∈ N, let Pj denote
the orthogonal projection of H onto span{fk}k �=j . Then it follows that
(I − Pj)fj �= 0, and

〈fj , (I − Pj)fj〉 = 〈Pjfj + (I − Pj)fj , (I − Pj)fj〉 = ||(I − Pj)fj ||2 �= 0.

For k �= j, clearly 〈fk, (I − Pj)fj〉 = 0. Defining

gj :=
(I − Pj)fj
||(I − Pj)fj ||2

, j ∈ N,

we obtain that {gk}∞k=1 is a biorthogonal system for {fk}∞k=1.
For the proof of (ii), assume that {fk}∞k=1 has a biorthogonal system

{gk}∞k=1. If {fk}∞k=1 is not complete, then it has several biorthogonal
systems. In fact, letting

H0 := span{fk}∞k=1,

we can replace {gk}∞k=1 by {gk+hk}∞k=1 for some hk ∈ H⊥
0 \{0} and hereby

obtain a new biorthogonal system for {fk}∞k=1. We leave it to the reader to
verify that if {fk}∞k=1 is complete, then the biorthogonality condition can
at most be satisfied for one family {gk}∞k=1. �

We will now prove that every basis {ek}∞k=1 for H leads to an expansion
of arbitrary elements f ∈ H, with coefficients given as inner products be-
tween f and the elements in an appropriately chosen sequence {gk}∞k=1 .
Expansions of exactly that type will be a key topic throughout the entire
book; in fact, we will later obtain similar expansions for frames.

Theorem 3.3.2 Assume that {ek}∞k=1 is a basis for the Hilbert space H.
Then there exists a unique family {gk}∞k=1 in H for which

f =
∞∑

k=1

〈f, gk〉ek, ∀f ∈ H. (3.17)

{gk}∞k=1 is a basis for H, and {ek}∞k=1 and {gk}∞k=1 are biorthogonal.
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Proof. By Corollary 3.1.5, the coefficient functionals {ck}∞k=1 asso-
ciated to {ek}∞k=1 are continuous; using Riesz’ representation theorem
(Theorem 2.3.2), there exists a unique family {gk}∞k=1 in H such that

ck(f) = 〈f, gk〉, ∀f ∈ H;

that is,

f =

∞∑

k=1

〈f, gk〉ek, ∀f ∈ H.

We leave it to the reader to verify that no other family {gk}∞k=1 can sat-
isfy (3.17) and that {ek}∞k=1 and {gk}∞k=1 are biorthogonal. The fact that
{gk}∞k=1 is a basis for H follows from Theorem 3.1.7. �

The basis {gk}∞k=1 satisfying (3.17) is called the dual basis, or the
biorthogonal basis, associated to {ek}∞k=1. It is interesting to observe that
the Bessel condition on {ek}∞k=1 implies some kind of “opposite inequali-
ties” for {gk}∞k=1; inequalities of this type will play an important role as
soon as we have defined frames in Chapter 5.

Lemma 3.3.3 Let {ek}∞k=1 be a basis for H and {gk}∞k=1 the associated
biorthogonal system. If {ek}∞k=1 is a Bessel sequence with bound B, then

(i) 1
B ||f ||2 ≤

∑∞
k=1 |〈f, gk〉|2, ∀f ∈ H.

(ii) 1
B

∑∞
k=1 |ck|2 ≤ ||

∑∞
k=1 ckgk||

2
for all finite sequences {ck}∞k=1.

Proof. Let f ∈ H. Using f =
∑∞

k=1〈f, gk〉ek and Cauchy–Schwarz
inequality, we obtain that

||f ||4 =

∣
∣
∣
∣

∞∑

k=1

〈f, gk〉〈ek, f〉
∣
∣
∣
∣

2

≤
∞∑

k=1

|〈f, gk〉|2
∞∑

k=1

|〈ek, f〉|2

≤ B ||f ||2
∞∑

k=1

|〈f, gk〉|2.

(i) follows from this. For the proof of (ii), let {ck}∞k=1 be a finite sequence.
Using the biorthogonal system {ek}∞k=1, {gk}

∞
k=1, we can write

{ck}∞k=1 =
{
〈

∞∑

j=1

cjgj, ek〉
}∞
k=1

and
∞∑

k=1

|ck|2 =
∞∑

k=1

∣
∣
∣
∣〈

∞∑

j=1

cjgj , ek〉
∣
∣
∣
∣

2

≤ B

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

j=1

cjgj

∣
∣
∣
∣

∣
∣
∣
∣

2

. �

Note that it is essential that {ck}∞k=1 is finite in (ii); for general sequences
{ck}∞k=1 ∈ �2(N), the series

∑∞
k=1 ckgk might not converge (Exercises 3.2).
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3.4 Orthonormal Bases

We are now ready to introduce one of the central themes, namely, orthonor-
mal bases in Hilbert spaces. They are the abstract (infinite-dimensional)
counterparts of the canonical bases in C

n and have many similar properties.
Orthonormal bases are widely used in mathematics as well as physics, signal
processing, and many other areas where expansions in terms of “convenient
building blocks” are needed.

Definition 3.4.1 A sequence {ek}∞k=1 in H is an orthonormal system if

〈ek, ej〉 = δk,j .

An orthonormal basis is an orthonormal system {ek}∞k=1 which is a basis
for H.

Note that an orthonormal system {ek}∞k=1 is a Bessel sequence. In fact,
if {ck}∞k=1 ∈ �2(N) and m,n ∈ N, n > m, then

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckek −
m∑

k=1

ckek

∣
∣
∣
∣

∣
∣
∣
∣

2

=

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=m+1

ckek

∣
∣
∣
∣

∣
∣
∣
∣

2

=

n∑

k=m+1

|ck|2;

as in the proof of Theorem 3.2.3, this implies that
∑∞

k=1 ckek is convergent
and that

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

ckek

∣
∣
∣
∣

∣
∣
∣
∣

2

=

∞∑

k=1

|ck|2.

The next theorem gives equivalent conditions for an orthonormal system
{ek}∞k=1 to be an orthonormal basis.

Theorem 3.4.2 For an orthonormal system {ek}∞k=1 in a Hilbert space H,
the following are equivalent:

(i) {ek}∞k=1 is an orthonormal basis.

(ii) f =
∑∞

k=1〈f, ek〉ek, ∀f ∈ H .

(iii) 〈f, g〉 =
∑∞

k=1〈f, ek〉〈ek, g〉, ∀f, g ∈ H.

(iv)
∑∞

k=1 |〈f, ek〉|2 = ||f ||2, ∀f ∈ H.

(v) span{ek}∞k=1 = H.

(vi) If 〈f, ek〉 = 0, ∀k ∈ N, then f = 0.

Proof. For the proof of (i) ⇒ (ii), let f ∈ H. If {ek}∞k=1 is an orthonor-
mal basis, there exist coefficients {ck}∞k=1 such that f =

∑∞
k=1 ckek. Given

any j ∈ N, we have 〈f, ej〉 =
∑∞

k=1 ckδk,j = cj , and (ii) follows. (iii) is an
obvious consequence of (ii), and (iv) is a special case of (iii). The impli-
cations (iv) ⇒ (v) ⇒ (vi) are clear. For the proof of (vi)⇒ (i), let f ∈ H.
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Since {ek}∞k=1 is a Bessel sequence, we know that g :=
∑∞

k=1〈f, ek〉ek
is well defined; furthermore, 〈f − g, ej〉 = 0 for all j ∈ N, so by (vi),
f = g =

∑∞
k=1〈f, ek〉ek. To prove that {ek}∞k=1 is a basis, we only need to

show that no other linear combination of {ek}∞k=1 can be equal to f , and
this follows by the argument we used to prove that (ii) follows from (i). �

The equality in (iv) is called Parseval’s equation. Via Corollary 3.2.5, we
obtain the following important consequence of Theorem 3.4.2:

Corollary 3.4.3 If {ek}∞k=1 is an orthonormal basis, then each f ∈ H has
an unconditionally convergent expansion

f =
∞∑

k=1

〈f, ek〉ek. (3.18)

In particular, the dual basis equals the basis itself.

Theorem 3.4.4 Every separable Hilbert space H has an orthonormal
basis.

Proof. Since H is assumed separable, we can choose a sequence {fk}∞k=1

in H such that span{fk}∞k=1 = H. By extracting a subsequence if necessary,
we can assume that for each n ∈ N, fn+1 /∈ span{fk}nk=1. By applying
the Gram–Schmidt process to {fk}∞k=1, we obtain an orthonormal system
{ek}∞k=1 in H for which span{ek}∞k=1 = span{fk}∞k=1 = H. �

Often we want to have a concrete orthonormal basis for a given Hilbert
space, rather than just its existence. The simplest case is �2(N):

Example 3.4.5 Let ek be the sequence in �2(N) whose k-th entry is 1,
and all other entries are zero. Then {ek}∞k=1 is an orthonormal basis for
�2(N); it is called the canonical orthonormal basis. We will often denote
this special basis by {δk}∞k=1. �

We will later construct orthonormal bases for other Hilbert spaces, e.g.,
L2(−π, π) and L2(R).
Orthonormal bases are certainly the most convenient bases to use because

the biorthogonal basis equals the basis itself. That is, the representa-
tion (3.18) is directly available, while the representation (3.17) via a general
basis requires that we find the biorthogonal sequence {gk}∞k=1. Unfortu-
nately, the conditions for {ek}∞k=1 being an orthonormal basis are strong,
and often it is impossible to construct orthonormal bases satisfying extra
conditions. We discuss this in more detail in Chapter 4. Note also that it is
not always a good idea to use the Gram–Schmidt orthonormalization proce-
dure to construct an orthonormal basis from a given basis: it might destroy
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special properties of the basis at hand. For example, the special structure
of Gabor bases and wavelet bases (to be discussed in Sections 3.8–3.9) will
get lost:
Based on Theorem 3.4.4, we can prove that every separable Hilbert space

can be identified with �2(N):

Theorem 3.4.6 Every separable infinite-dimensional Hilbert space H is
isometrically isomorphic to �2(N):

Proof. Let {ek}∞k=1 be an orthonormal basis for H. We have already
observed that

∑∞
k=1 ckek is convergent for all {ck}∞k=1 ∈ �2(N). Further-

more each f ∈ H has a unique expansion with �2-coefficients, namely,
f =

∑∞
k=1〈f, ek〉ek. By letting {δk}∞k=1 be the canonical orthonormal basis

for �2(N), we can thus define the operator

U : H → �2(N), U

( ∞∑

k=1

ckek

)

=
∞∑

k=1

ckδk, {ck}∞k=1 ∈ �2(N).

Then U maps H bijectively onto �2(N). For f ∈ H, f =
∑∞

k=1〈f, ek〉ek, we
have

||Uf ||2 =

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

〈f, ek〉δk
∣
∣
∣
∣

∣
∣
∣
∣

2

=
∞∑

k=1

|〈f, ek〉|2 = ||f ||2;

thus, U is an isometry. �

The following theorem characterizes all orthonormal bases for H starting
with one orthonormal basis.

Theorem 3.4.7 Let {ek}∞k=1 be an orthonormal basis for H. Then the
orthonormal bases for H are precisely the sets {Uek}∞k=1, where U : H → H
is a unitary operator.

Proof. Let {fk}∞k=1 be an orthonormal basis for H. Define the operator

U : H → H, U

( ∞∑

k=1

ckek

)

=

∞∑

k=1

ckfk, {ck}∞k=1 ∈ �2(N).

Then U maps H boundedly and bijectively onto H. For f, g ∈ H, write
f =

∑∞
k=1〈f, ek〉ek and g =

∑∞
k=1〈g, ek〉ek; then, via the definition of U

and Theorem 3.4.2,

〈U∗Uf, g〉 = 〈Uf, Ug〉

=

〈 ∞∑

k=1

〈f, ek〉fk,
∞∑

k=1

〈g, ek〉fk

〉

=

∞∑

k=1

〈f, ek〉〈g, ek〉 = 〈f, g〉;
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thus, U∗U = I. Since U is surjective, it follows that U is unitary. On the
other hand, if U is a given unitary operator, then

〈Uek, Uej〉 = 〈U∗Uek, ej〉 = 〈ek, ej〉 = δk,j ,

i.e., {Uek}∞k=1 is an orthonormal system. That it is a basis follows from the
fact that U is surjective. �

Condition (iv) in Theorem 3.4.2 has an interpretation in terms of frames;
see Definition 5.1.2. Without assuming that {ek}∞k=1 is an orthonormal
system, it implies that {ek}∞k=1 is an orthonormal basis if the vectors are
normalized:

Proposition 3.4.8 Assume that {ek}∞k=1 is a sequence of normalized
vectors in H and that

∞∑

k=1

|〈f, ek〉|2 = ||f ||2, ∀f ∈ H.

Then {ek}∞k=1 is an orthonormal basis for H.

Proof. By Theorem 3.4.2 we only have to prove that {ek}∞k=1 is an
orthonormal system. For each j ∈ N, we have

1 = ||ej ||2 =

∞∑

k=1

|〈ej , ek〉|2 = 1+
∑

k �=j

|〈ej , ek〉|2,

which shows that 〈ej , ek〉 = 0 for k �= j. �

3.5 The Gram Matrix

If {fk}∞k=1 is a Bessel sequence in a Hilbert space H, we can compose the
bounded operators T ∗ and T ; hereby we obtain the bounded operator

T ∗T : �2(N)→ �2(N), T ∗T {ck}∞k=1 =

{〈 ∞∑

�=1

c�f�, fk

〉}∞

k=1

.

Letting {ek}∞k=1 be the canonical orthonormal basis for �2(N), the jk-th
entry in the matrix representation for T ∗T is

〈T ∗Tek, ej〉 = 〈Tek, T ej〉 = 〈fk, fj〉.

Identifying T ∗T with its matrix representation, we write

T ∗T = {〈fk, fj〉}∞j,k=1.

The matrix {〈fk, fj〉}∞j,k=1 is called the Gram matrix associated with
{fk}∞k=1, and the above argument shows that it defines a bounded operator
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on �2(N) when {fk}∞k=1 is a Bessel sequence. One can in principle con-
sider the Gram matrix associated to any sequence {fk}∞k=1 in H, but if we
want it to define a bounded operator on �2(N), we cannot avoid the Bessel
condition:

Lemma 3.5.1 For a sequence {fk}∞k=1 in H, the following are equivalent:

(i) {fk}∞k=1 is a Bessel sequence with bound B.

(ii) The Gram matrix associated to {fk}∞k=1 defines a bounded operator
on �2(N), with norm at most B.

Proof. The implication (i) ⇒ (ii) follows from the arguments above to-
gether with the norm estimate ||T || ≤

√
B in Theorem 3.2.3. Now assume

that (ii) is satisfied, and let {ck}∞k=1 ∈ �2(N). Then

∞∑

j=1

∣
∣
∣
∣

∞∑

k=1

〈fk, fj〉ck
∣
∣
∣
∣

2

≤ B2
∞∑

k=1

|ck|2. (3.19)

Given arbitrary n,m ∈ N, n > m,
∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckfk −
m∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

4

=

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=m+1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

4

=

∣
∣
∣
∣〈

n∑

k=m+1

ckfk,

n∑

j=m+1

cjfj〉
∣
∣
∣
∣

2

=

∣
∣
∣
∣

n∑

j=m+1

cj

n∑

k=m+1

ck〈fk, fj〉
∣
∣
∣
∣

2

≤

⎛

⎝
n∑

j=m+1

|cj |2
⎞

⎠

⎛

⎝
n∑

j=m+1

∣
∣
∣
∣

n∑

k=m+1

ck〈fk, fj〉
∣
∣
∣
∣

2
⎞

⎠,

where Cauchy–Schwarz’ inequality was used on the sum over j in the last
step. Via (3.19) applied to the finite sequence

(· · · , 0, 0, cm+1, cm+2, · · · , cn, 0, 0, · · · ),

n∑

j=m+1

∣
∣
∣
∣

n∑

k=m+1

ck〈fk, fj〉
∣
∣
∣
∣

2

≤
∞∑

j=1

∣
∣
∣
∣

n∑

k=m+1

ck〈fk, fj〉
∣
∣
∣
∣

2

≤ B2
n∑

j=m+1

|cj |2.
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Altogether we arrive at

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckfk −
m∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

4

≤ B2

⎛

⎝
∞∑

j=m+1

|cj |2
⎞

⎠

2

.

It follows that
∑∞

k=1 ckfk is convergent and, by repeating the argument,

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣ ≤
√
B

⎛

⎝
∞∑

j=1

|cj |2
⎞

⎠

1/2

.

By Theorem 3.2.3 we conclude that {fk}∞k=1 is a Bessel sequence with
bound B. �

Lemma 3.5.2 Assume that {fk}∞k=1 is a Bessel sequence in H with syn-
thesis operator T . Then the Gram matrix defines an injective operator from
RT∗ into RT∗ . Its range is dense in RT∗ .

Proof. It is clear that T ∗T maps RT∗ into itself. This restriction of T ∗T
is injective: if {ck}∞k=1 ∈ RT∗ and T ∗T {ck}∞k=1 = 0, then

||T {ck}∞k=1||
2
= 〈T ∗T {ck}∞k=1, {ck}∞k=1〉 = 0,

i.e., {ck}∞k=1 ∈ RT∗ ∩NT = {0}. Using that H = RT +NT∗ , we see that

RT∗ = T ∗H = T ∗RT ,

so RT∗T is dense in RT∗ by continuity of T ∗. �

Proposition 3.5.4 will give a sufficient condition for {fk}∞k=1 being a
Bessel sequence. The proof uses Schur’s lemma:

Lemma 3.5.3 Let M = {Mj,k}∞j,k=1 be a matrix for which Mj,k = Mk,j

for all j, k ∈ N, and for which there exists a constant B > 0 such that

∞∑

k=1

|Mj,k| ≤ B, ∀j ∈ N.

Then M defines a bounded operator on �2(N) of norm at most B.

Proof. Let {ck}∞k=1 ∈ �2(N). The assumptions imply that M{ck}∞k=1

is well defined as a sequence indexed by N, whose j-th coordinate is∑∞
k=1 Mj,kck. It is, however, not immediately clear that this sequence

belongs to �2(N). Abusing the notation, it is enough to show that the map

{dk}∞k=1 �→ 〈{dk}∞k=1,M{ck}∞k=1〉�2(N) (3.20)

is a continuous linear functional on �2(N). In fact, this implies that
M{ck}∞k=1 belongs to the dual of �2(N), which is �2(N) itself. Now, for
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{dk}∞k=1 ∈ �2(N),

∞∑

j=1

∣
∣
∣
∣

∞∑

k=1

Mj,kckdj

∣
∣
∣
∣ ≤

∞∑

j=1

∞∑

k=1

|Mj,kckdj |

=

∞∑

j=1

∞∑

k=1

(
|Mj,k|1/2|ck|

)(
|Mj,k|1/2|dj |

)
= (∗).

Using Cauchy–Schwarz inequality,

(∗) ≤

⎛

⎝
∞∑

j=1

∞∑

k=1

|Mj,k| |ck|2
⎞

⎠

1/2⎛

⎝
∞∑

j=1

∞∑

k=1

|Mj,k| |dj |2
⎞

⎠

1/2

≤ B

( ∞∑

k=1

|ck|2
)1/2

⎛

⎝
∞∑

j=1

|dj |2
⎞

⎠

1/2

.

This shows that (3.20) indeed defines a continuous linear functional on
�2(N), so M maps �2(N) into �2(N). Also,

||M{ck}∞k=1|| = sup
||{dk}||=1

∣
∣〈{dk}∞k=1,M{ck}∞k=1〉�2(N)

∣
∣

≤ B

( ∞∑

k=1

|ck|2
)1/2

,

which completes the proof (see Exercise 3.15 for a question about the
proof). �

An application of Schur’s lemma gives a sufficient condition for the Gram
matrix defining a bounded operator on �2(N) and thus for {fk}∞k=1 being a
Bessel sequence. For the proof, we just have to refer to Lemma 3.5.1.

Proposition 3.5.4 Let {fk}∞k=1 be a sequence in H and assume that there
exists a constant B > 0 such that

∞∑

k=1

|〈fj , fk〉| ≤ B, ∀j ∈ N. (3.21)

Then {fk}∞k=1 is a Bessel sequence with bound B.

Compared with the Bessel condition (3.16), Proposition 3.5.4 has the
advantage that it only involves inner products between the elements in
{fk}∞k=1; that is, only a countable number of conditions must be verified,
while the Bessel condition (3.16) has to be checked for all f ∈ H. A nat-
ural way to obtain (3.21) is to impose decay conditions on |〈fj , fk〉|, i.e.,
conditions that force these numbers to decrease whenever |j− k| increases:
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Corollary 3.5.5 Assume that {fk}∞k=1 is a sequence in H and that either

(i) there exist s > 1 and a constant C > 0 such that

|〈fj , fk〉| ≤
C

(1 + |j − k|)s , ∀j, k ∈ N (3.22)

or

(ii) there exist α > 0 and a constant C > 0 such that

|〈fj , fk〉| ≤ C e−α|j−k|, ∀j, k ∈ N. (3.23)

Then {fk}∞k=1 is a Bessel sequence.

We leave the proof of Corollary 3.5.5 to the reader (Exercise 3.8). The
conditions (3.22) and (3.23) will later play the key role in the context of
localization of frames; see Section 8.2.

3.6 Riesz Bases

In Theorem 3.4.7 we characterized all orthonormal bases in terms of unitary
operators acting on a single orthonormal basis. Formally, the definition of
a Riesz basis appears by weakening the condition on the operator:

Definition 3.6.1 A Riesz basis for H is a family of the form {Uek}∞k=1,
where {ek}∞k=1 is an orthonormal basis for H and U : H → H is a bounded
bijective operator.

A Riesz basis is actually a basis (Exercise 3.6.3). The dual basis
associated to a Riesz basis is also a Riesz basis:

Theorem 3.6.2 If {fk}∞k=1 is a Riesz basis for H, there exists a unique
sequence {gk}∞k=1 in H such that

f =

∞∑

k=1

〈f, gk〉fk, ∀f ∈ H. (3.24)

{gk}∞k=1 is also a Riesz basis, and {fk}∞k=1 and {gk}∞k=1 are biorthogonal.
Moreover, the series (3.24) converges unconditionally for all f ∈ H.

Proof. According to the definition we can write {fk}∞k=1 = {Uek}∞k=1,
where U is a bounded bijective operator and {ek}∞k=1 is an orthonormal ba-
sis. Let now f ∈ H. By expanding U−1f in the orthonormal basis {ek}∞k=1,
we have

U−1f =

∞∑

k=1

〈U−1f, ek〉ek =

∞∑

k=1

〈f, (U−1)∗ek〉ek.



3.6 Riesz Bases 87

Therefore, with gk := (U−1)∗ek,

f = UU−1f =

∞∑

k=1

〈f, (U−1)∗ek〉Uek =

∞∑

k=1

〈f, gk〉fk.

Since (U−1)∗ is bounded and bijective, {gk}∞k=1 is a Riesz basis by
definition. For f ∈ H,

∞∑

k=1

|〈f, fk〉|2 =

∞∑

k=1

|〈f, Uek〉|2 = ||U∗f ||2

≤ ||U∗||2 ||f ||2

= ||U ||2 ||f ||2, (3.25)

this proves that a Riesz basis is a Bessel sequence. Thus, the se-
ries (3.24) converges unconditionally by Corollary 3.2.5. The rest follows
from Theorem 3.3.2 (or direct verification). �

The unique sequence {gk}∞k=1 satisfying (3.24) is called the dual Riesz
basis of {fk}∞k=1. Let us find the dual of {gk}∞k=1. In the notation used in
the proof of Theorem 3.6.2, we have that the dual of {fk}∞k=1 = {Uek}∞k=1

is given by {gk}∞k=1 = {(U−1)∗ek}∞k=1; thus, the dual of {gk}∞k=1 is

{((
(U−1)∗

)−1
)∗

ek

}∞

k=1
= {Uek}∞k=1 = {fk}∞k=1.

That is, {fk}∞k=1 and {gk}∞k=1 are duals of each other. For this reason, we
frequently speak about a pair of dual Riesz bases. In particular, this implies
a symmetric version of (3.24):

Corollary 3.6.3 Let {fk}∞k=1 and {gk}∞k=1 be a pair of dual Riesz bases.
Then

f =

∞∑

k=1

〈f, gk〉fk =

∞∑

k=1

〈f, fk〉gk, ∀f ∈ H. (3.26)

For later use, we note that a Riesz basis not only satisfies the Bessel
inequality: it also satisfies some kind of “opposite inequality.”

Proposition 3.6.4 If {fk}∞k=1 = {Uek}∞k=1 is a Riesz basis for H, there
exist constants A,B > 0 such that

A ||f ||2 ≤
∞∑

k=1

|〈f, fk〉|2 ≤ B ||f ||2, ∀f ∈ H. (3.27)

The largest possible value for the constant A is 1
||U−1||2 , and the smallest

possible value for B is ||U ||2.
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Proof. That a Riesz basis {Uek}∞k=1 is a Bessel sequence with optimal
upper bound ||U || follows already from the estimate in (3.25). The result
about the lower bound follows from

||f || = ||(U∗)−1U∗f || ≤ ||(U∗)−1|| ||U∗f || = ||U−1|| ||U∗f ||. �

Our next aim is to characterize Riesz bases. For this purpose we need a
technical result about operators. A standard way of constructing an oper-
ator is to define it on a basis and then extend by linearity; the following
lemma gives some conditions for this being possible.

Lemma 3.6.5 Let H,K be Hilbert spaces, and let {hk}∞k=1 be a sequence in
H, {gk}∞k=1 a sequence in K. Assume that {gk}∞k=1 is a Bessel sequence with
bound B, that {hk}∞k=1 is complete in H, and that there exists a constant
A > 0 such that

A

∞∑

k=1

|ck|2 ≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckhk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

(3.28)

for all finite scalar sequences {ck}∞k=1. Then

U

( ∞∑

k=1

ckhk

)

:=

∞∑

k=1

ckgk

defines a linear bounded operator from span{hk}∞k=1 into span {gk}∞k=1, and
U has a unique extension to a bounded operator from H into K; the norm

of U as well as its extension is at most
√

B
A .

Proof. By the assumption (3.28), every h ∈ span{hk}∞k=1 has a unique
representation h =

∑∞
k=1 ckhk with {ck}∞k=1 finite; it follows that U is well

defined and linear. Given a finite sequence {ck}∞k=1,

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
U

( ∞∑

k=1

ckhk

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckgk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

≤ B

∞∑

k=1

|ck|2 ≤
B

A

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckhk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

.

Thus, U is bounded. Since {hk}∞k=1 is assumed to be complete, U has an
extension to a bounded operator on H. The rest is standard. �

The next theorem gives equivalent conditions for {fk}∞k=1 being a Riesz
basis. Note in particular condition (ii), which will be used throughout the
book and, in fact, by several authors is used as the definition of a Riesz
basis.
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Theorem 3.6.6 For a sequence {fk}∞k=1 in H, the following conditions
are equivalent:

(i) {fk}∞k=1 is a Riesz basis for H.

(ii) {fk}∞k=1 is complete in H, and there exist constants A,B > 0 such
that for every finite scalar sequence {ck}

A

∞∑

k=1

|ck|2 ≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

≤ B

∞∑

k=1

|ck|2. (3.29)

(iii) {fk}∞k=1 is complete, and its Gram matrix {〈fk, fj〉}∞j,k=1 defines a

bounded, invertible operator on �2(N).

(iv) {fk}∞k=1 is a complete Bessel sequence, and it has a complete
biorthogonal sequence {gk}∞k=1 which is also a Bessel sequence.

Proof. (i)⇒(ii). Assume that {fk}∞k=1 is a Riesz basis, and write it in the
form {Uek}∞k=1 as in the definition. Note that {fk}∞k=1 is complete. Given
any finite scalar sequence {ck}∞k=1,
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
U

( ∞∑

k=1

ckek

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

≤ ||U ||2
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckek

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

= ||U ||2
∞∑

k=1

|ck|2

and
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckek

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
U−1U

( ∞∑

k=1

ckek

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

≤ ||U−1||2
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

.

From this we deduce that

1

||U−1||2
∞∑

k=1

|ck|2 ≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

≤ ||U ||2
∞∑

k=1

|ck|2.

(ii)⇒(i). The right-hand inequality in (3.29) implies that {fk}∞k=1 is a
Bessel sequence with bound B (Exercise 3.13). Choose an orthonormal
basis {ek}∞k=1 for H, and extend by Lemma 3.6.5 the mapping Uek := fk
to a bounded operator on H. In the same way, extend V fk := ek to a
bounded operator on H. Then V U = UV = I, so U is invertible; thus,
{fk}∞k=1 is a Riesz basis.
(i)⇒(iii). Write again {fk}∞k=1 = {Uek}∞k=1. For any k, j ∈ N,

〈fk, fj〉 = 〈Uek, Uej〉 = 〈U∗Uek, ej〉

i.e., the Gram matrix is the matrix representing the bounded invertible
operator U∗U in the basis {ek}∞k=1.
(iii)⇒(ii). Assume that (iii) is satisfied. Then Lemma 3.5.1 together with

Theorem 3.2.3 shows that the upper condition in (3.29) is satisfied. Let G
denote the operator on �2(N) given by the Gram matrix {〈fk, fj〉}∞j,k=1.
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Given a sequence {ck}∞k=1 ∈ �2(N), the jth element in the image sequence
G{ck}∞k=1 is

∑∞
k=1〈fk, fj〉ck. Thus,

〈G{ck}∞k=1, {ck}∞k=1〉 =
∞∑

j=1

∞∑

k=1

〈fk, fj〉ckcj =
∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

2

.

Thus, G is positive, and a similar calculation shows that G is self-adjoint.
Let V denote the square root of G (cf. Lemma 2.4.5). Then the above
calculation gives that

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

= ||V {ck}∞k=1||
2 ≥ 1

||V −1||2
∞∑

k=1

|ck|2.

(i) ⇒ (iv). Follows from Theorem 3.6.2 and Proposition 3.6.4.
(iv) ⇒ (i). Every f ∈ span{fk}∞k=1 has a representation f =

∑∞
k=1 ckfk

for a finite sequence {ck}∞k=1, and under the assumptions in (iv) it is unique:
if f =

∑∞
k=1 ckfk, then ck = 〈f, gk〉. Letting {ek}∞k=1 be an orthonormal

basis for H, we can therefore define an operator

V : span{fk}∞k=1 → H, V fk = ek.

Writing f ∈ span{fk}∞k=1 as f =
∑∞

k=1〈f, gk〉fk, and letting C denote a
Bessel bound for {gk}∞k=1, we have

||V f ||2 =

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

〈f, gk〉ek
∣
∣
∣
∣

∣
∣
∣
∣

2

=
∞∑

k=1

|〈f, gk〉|2 ≤ C||f ||2.

By completeness of {fk}∞k=1, V has an extension to a bounded operator
on H. Since the assumptions in (iv) are symmetric in fk and gk, we can
also extend Tgk := ek to a bounded operator on H.
Consider finite linear combinations of {fk}∞k=1 and {gk}∞k=1, say,

f =

∞∑

k=1

ckfk, g =

∞∑

k=1

dkgk.

Because {fk}∞k=1 and {gk}∞k=1 are biorthogonal, we have

〈V f, T g〉 =
〈 ∞∑

k=1

ckek,

∞∑

k=1

dkek

〉

=

∞∑

k=1

ckdk = 〈f, g〉;

by continuity and completeness, we therefore have 〈V f, T g〉 = 〈f, g〉 for all
f, g ∈ H. Thus, for any h ∈ H,

||h||2 = 〈h, h〉 = 〈V h, Th〉 ≤ ||V h|| ||T || ||h||.

It follows that V is injective. The operator V is also surjective: given g ∈ H,
write g =

∑∞
k=1〈g, ek〉ek = V (

∑∞
k=1〈g, ek〉fk) . Since fk = V −1ek, we

conclude that {fk}∞k=1 is a Riesz basis. �
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If (3.29) holds for all finite scalar sequences {ck}∞k=1, then it auto-
matically holds for all {ck}∞k=1 ∈ �2(N) (Exercise 3.13). If {fk}∞k=1 is
a Riesz basis, numbers A,B > 0 which satisfy (3.29) are called lower
Riesz bounds and upper Riesz bounds, respectively. They are clearly not
unique, and we define the optimal Riesz bounds as the largest possible
value for A and the smallest possible value for B. The optimal Riesz bounds
can be characterized in terms of the operators appearing in the proof of
Theorem 3.6.6:

Proposition 3.6.7 Let {fk}∞k=1 = {Uek}∞k=1 be a Riesz basis for H, and
let G : �2(N) → �2(N) be the Gram matrix. Then the optimal Riesz
bounds are

A =
1

||U−1||2 =
1

||G−1|| and B = ||U ||2 = ||G||.

Proof. The bounds involving U follow directly from the proof of
Theorem 3.6.6. Also, by Lemma 2.4.1,

||G|| = ||U∗U || = ||U ||2 and ||G−1|| = ||(U∗U)−1|| = ||U−1||2.
That the optimal upper Riesz bound equals ||G|| was also proved in
Lemma 3.5.1. �

Note that the same optimal bounds involving U were obtained in the
inequalities in Proposition 3.6.4.
If (3.29) holds with A = B = 1, the sequence {fk}∞k=1 is orthonormal:

Proposition 3.6.8 Assume that span{fk}∞k=1 = H and that
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

=

∞∑

k=1

|ck|2

for all finite scalar sequences {ck}∞k=1. Then {fk}∞k=1 is an orthonormal
basis for H.

Proof. The assumptions imply by Theorem 3.6.6 that {fk}∞k=1 is a
Riesz basis for H, so by letting {ek}∞k=1 be an orthonormal basis for H,
we can write {fk}∞k=1 = {Uek}∞k=1 for an appropriate bounded invertible
operator U . Then, for all {ck}∞k=1 ∈ �2(N),

∞∑

k=1

|ck|2 =

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

2

=

∣
∣
∣
∣

∣
∣
∣
∣U

( ∞∑

k=1

ckek

) ∣
∣
∣
∣

∣
∣
∣
∣

2

.

It follows from here that ||U || = ||U−1|| = 1; by Proposition 3.6.4 we
conclude that

∑∞
k=1 |〈f, fk〉|2 = ||f ||2, ∀f ∈ H. Since ||fk|| = 1, ∀k ∈ N, we

now obtain the result via Proposition 3.4.8. �

Let us finally observe that one can characterize Riesz bases in terms of
bases satisfying extra conditions:
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Lemma 3.6.9 A sequence {fk}∞k=1 is a Riesz basis for H if and only if it
is an unconditional basis for H and

0 < inf
k
||fk|| ≤ sup

k
||fk|| <∞.

Lemma 3.6.9 was proved by Köthe and Lorch and has been rediscov-
ered/reproved many times (see the discussion in [622]). We refer to, e.g.,
[325] or [495] for a proof.

3.7 Riesz Sequences

We will often encounter sequences {fk}∞k=1 in a Hilbert space H, which sat-
isfy (3.29) but not necessarily span the entire Hilbert space. This motivates
the following definition:

Definition 3.7.1 A sequence {fk}∞k=1 satisfying (3.29) for all finite
sequences {ck}∞k=1 is called a Riesz sequence.

By Theorem 3.6.6 a Riesz sequence {fk}∞k=1 is a Riesz basis for the
Hilbert space span{fk}∞k=1, which might just be a subspace of H. Note
that if the condition (3.29) is satisfied for a family {fk}∞k=1, then it is
clearly satisfied for any subsequence of {fk}∞k=1. This leads to the following
important consequence of Theorem 3.6.6.

Corollary 3.7.2 Every subfamily of a Riesz basis is a Riesz sequence.

Theorem 3.6.6 also characterizes Riesz sequences, simply by applying the
conditions on the Hilbert space span{fk}∞k=1 rather than on H. As a minor
modification, we also obtain the following result, which will be useful later:

Proposition 3.7.3 Let {fk}∞k=1 be a Bessel sequence in H. Then the
following are equivalent:

(i) {fk}∞k=1 is a Riesz sequence with lower bound A;

(ii) {fk}∞k=1 has a biorthogonal system {gk}∞k=1 , which is a Bessel
sequence with bound A−1.

Proof. Assume first that (i) holds. Taking any orthonormal basis {ek}∞k=1

for span{fk}∞k=1, there is a bounded bijective operator

U : span{fk}∞k=1 → span{fk}∞k=1

such that fk = Uek. By Proposition 3.6.7 we know that A ≤ ||U−1||−2.
Now, let {gk}∞k=1 denote the dual Riesz basis of {fk}∞k=1 within the
space span{fk}∞k=1; then {fk}∞k=1 and {gk}∞k=1 are biorthogonal by
Theorem 3.6.2. Furthermore, the proof of Theorem 3.6.2 shows that
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gk = (U−1)∗ek, which again by Proposition 3.6.7 implies that the optimal
Bessel bound for {gk}∞k=1 is

||(U−1)∗||2 = ||U−1||2 ≤ A−1,

as desired.
Now assume that (ii) holds. Applying the assumption that {gk}∞k=1 is a

Bessel sequence with bound A−1 on any finite sum f =
∑∞

j=1 cjfj yields
that

∞∑

k=1

∣
∣
∣
∣〈

∞∑

j=1

cjfj, gk〉
∣
∣
∣
∣

2

≤ A−1

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

j=1

cjfj

∣
∣
∣
∣

∣
∣
∣
∣

2

,

or
∣
∣
∣
∣

∣
∣
∣
∣

∞∑

j=1

cjfj

∣
∣
∣
∣

∣
∣
∣
∣

2

≥ A

∞∑

k=1

|ck|2;

thus, {fk}∞k=1 is a Riesz sequence with lower bound A. �

By definition, {fk}∞k=1 is a Riesz sequence if the inequalities (3.29) are
satisfied for all finite scalar sequences {ck}∞k=1. We will now simplify this
(Exercise 3.10):

Corollary 3.7.4 There exists a countable collection of finite normalized
sequences {c�k}∞k=1, � ∈ N with the following property: a given sequence
{fk}∞k=1 in a Hilbert space H is a Riesz sequence with bounds A,B > 0 if
and only if

A ≤
∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

c�kfk

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ B, ∀� ∈ N. (3.30)

Corollary 3.7.4 reduces the verification that {fk}∞k=1 is a Riesz sequence
to a calculation of a countable collection of numbers. This is a significant
reduction compared with verification using the definition and can in prin-
ciple be implemented via a computer program [which of course will not
finish in finite time]. We will return to this comment in connection with
our discussion of Riesz sequences versus frames in Section 8.3.
We have in Sections 3.4–3.7 concentrated on theoretical properties of or-

thonormal bases and Riesz bases in general Hilbert spaces. In the following
sections we will connect such bases with the structured function systems
that will dominate the book from Chapter 9 and onward. For now we just
mention one important class of Riesz sequences, based on integer-translates
of the B-splines Bn defined in Section A.8.

Lemma 3.7.5 Let n ∈ N and consider the B-spline Bn. Then {TkBn}k∈Z

is a Riesz sequence in L2(R).
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The result is clear for n = 1 because {B1(· − k)}k∈Z is an orthonor-
mal system. For n > 1 it is an easy consequence of Theorem 9.2.5, so we
postpone the proof till page 208.

3.8 Fourier Series and Gabor Bases

We will now take the first steps toward the analysis of bases in function
spaces like L2(I) and L2(R). Here we will use other index sets than the
natural numbers; as we have seen in Corollary 3.2.5, Bessel sequences can
be ordered any way we want without affecting the convergence of the rele-
vant series expansions, so we can apply all results presented so far without
problems.
The starting point is Fourier series. We expect the reader to be familiar

with the basic theory, so we only give a short repetition.
Fourier series can be associated to functions in any space L2(I), where I

is a bounded interval in R. For our purpose it will be convenient to consider
functions in L2(0, 1/b), where b > 0; recall that L2(0, 1/b) is a Hilbert space
with respect to the inner product

〈f, g〉 =
∫ 1/b

0

f(x)g(x) dx, f, g ∈ L2(0, 1/b).

We will consider functions f ∈ L2(0, 1/b) as periodic functions on R, with
period 1/b. Since the functions

ek(x) := b1/2Ekb(x) = b1/2e2πikbx, k ∈ Z (3.31)

constitute an orthonormal basis for L2(0, 1/b), every f ∈ L2(0, 1/b) has an
expansion

f =
∑

k∈Z

〈f, ek〉ek. (3.32)

We will usually expand the functions f directly in terms of the functions
{e2πikbx}k∈Z rather than {ek}k∈Z. Thus, we arrive at

f(·) =
∑

k∈Z

cke
2πikb(·), (3.33)

where

ck = b1/2〈f, ek〉 = b

∫ 1/b

0

f(x)e−2πikbxdx. (3.34)

The expansion (3.33) is called the Fourier series of f, and the numbers
{ck}k∈Z in (3.34) are the Fourier coefficients.
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The exact meaning of the Fourier expansion (3.33) is that

∣
∣
∣
∣

∣
∣
∣
∣f −

n∑

k=−n

cke
2πikb(·)

∣
∣
∣
∣

∣
∣
∣
∣
L2(0,1/b)

=

(∫ 1/b

0

∣
∣
∣
∣f(x)−

n∑

k=−n

cke
2πikbx

∣
∣
∣
∣

2

dx

)1/2

→ 0 as n→∞.

Convergence in L2(0, 1/b)-sense is different from pointwise convergence, so
we cannot claim that (3.33) holds for a given x ∈ [0, 1/b] without extra
assumptions. For an arbitrary function in L2(0, 1/b), the Fourier series
converges pointwise almost everywhere; conditions implying convergence
for all x are stated in the following well-known result.

Theorem 3.8.1 Assume that f ∈ L2(0, 1/b) is continuous, periodic with
period 1/b, and that the Fourier coefficients {ck}k∈Z ∈ �1(Z). Then

f(x) =
∑

k∈Z

cke
2πikbx,

pointwise for all x ∈ R.

Parseval’s equation (see Theorem 3.4.2) gives us an important relation-
ship between a given function f ∈ L2(0, 1/b) and its Fourier coefficients
{ck}k∈Z:

b

∫ 1/b

0

|f(x)|2dx =
∑

k∈Z

|ck|2. (3.35)

We now state a lemma, which is an immediate consequence of the
functions {ek}∞k=1 in (3.31) being an orthonormal basis for L2(0, 1/b).

Lemma 3.8.2 Let f, g ∈ L2(0, 1/b) for some b > 0, and consider two
series expansions

f =
∑

k∈Z

akek, g =
∑

k∈Z

bkek,

with ek given by (3.31) and {ak}k∈Z, {bk}k∈Z ∈ �2(Z). Then

〈f, g〉 =
∑

k∈Z

akbk.

A 1
b -periodic function f : R → C can equally well be considered as a

function in L2(0, 1/b) as in L2(− 1
2b ,

1
2b ); the latter choice will sometimes

be more convenient, e.g., in our discussion of sampling problems in Sec-
tion 3.10.Whenever we consider our functions as members in L2(− 1

2b ,
1
2b ), it

is often convenient to exchange the integrals over ]0, 1/b[ with integrals over
]− 1

2b ,
1
2b [; for example, the expression for the Fourier coefficients in (3.34)
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takes the form

ck = b

∫ 1
2b

− 1
2b

f(x)e−2πikbxdx. (3.36)

In the following example, we show how to construct an orthonormal
basis for L2(R) based on the orthonormal basis {e2πikx}k∈Z for L2(0, 1).
The example gives the first introduction to Gabor systems in L2(R).

Example 3.8.3 Let χ[0,1] denote the characteristic function for the inter-

val [0, 1]. Then {e2πikxχ[0,1](x)}k∈Z is an orthonormal basis for L2(0, 1);
by translation, we see that for each n ∈ Z the space L2(n, n + 1) has the
orthonormal basis

{e2πik(x−n)χ[0,1](x− n)}k∈Z = {e2πikxχ[0,1](x− n)}k∈Z.

Putting these bases together, we obtain that L2(R) has the orthonormal
basis

{
e2πikxχ[0,1](x− n)

}
k,n∈Z

.

Note that all elements in the basis consist of translated versions of χ[0,1]

which have been modulated, i.e., multiplied with a complex exponential
function. Using the operators introduced in Section 2.9, we can write the
basis as {EkTng}k,n∈Z, where g = χ[0,1]. Bases of the form {EkTng}k,n∈Z

are called Gabor bases. Calculations with Gabor bases are convenient be-
cause of their coherent structure: all the elements in the basis appear by the
action of a family of operators, namely, EkTn, k, n ∈ Z, on the single func-
tion g. We will consider some of the limitations of such bases in Chapter 4
and extensions to frames in Chapters 11–13. �

In concrete applications, a Fourier expansion will always need to be trun-
cated to a finite sum. A function f that is a finite linear combination of
the type

f(x) =

N2∑

k=N1

cke
2πikx for some ck ∈ C, N1, N2 ∈ Z, N2 ≥ N1 (3.37)

is called a trigonometric polynomial. A trigonometric polynomial f can
also be written as a linear combination of functions sin(2πkx), cos(2πkx),
in general with complex coefficients. It will be useful later to note that if
the function f in (3.37) is real-valued and the coefficients ck are real, then
f is a linear combination of functions cos(2πkx) alone:

Lemma 3.8.4 Assume that the trigonometric polynomial f in (3.37) is
real-valued and that the coefficients ck ∈ R. Then

f(x) =

N2∑

k=N1

ck cos(2πkx). (3.38)
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We leave the short proof to the reader. Note that we need the assumption
that ck ∈ R: for example, the function

f(x) =
1

2i
e2πix − 1

2i
e−2πix = sin(2πx),

is real-valued but does not have the form (3.38).
For later use, we also mention that a positive-valued trigonometric poly-

nomial with real coefficients has a square root (in the sense of (3.41) below),
which again is a trigonometric polynomial. For convenience, we formulate
the result for a slight rewriting of the series (3.38):

Lemma 3.8.5 Let f be a positive-valued trigonometric polynomial of the
form

f(x) =

N∑

k=0

ck cos(2πkx), ck ∈ R. (3.39)

Then there exists a trigonometric polynomial

g(x) =

N∑

k=0

dke
2πikx with dk ∈ R, (3.40)

such that

|g(x)|2 = f(x), ∀x ∈ R. (3.41)

The procedure of finding the trigonometric polynomial g in (3.40) is called
spectral factorization; a constructive proof can be found in [242]. Note that
by definition, the function g in (3.40) is complex-valued, unless f is con-
stant; actually, despite the fact that f is assumed to be positive, there
might not exist a positive trigonometric polynomial g satisfying (3.41). See
Exercise 3.16.

3.9 Wavelet Bases

Wavelet bases constitute another important class of bases. Given a function
ψ ∈ L2(R) and j, k ∈ Z, let

ψj,k(x) := 2j/2ψ(2jx− k), x ∈ R. (3.42)

In terms of the translation operators Tk and the dilation operator D
introduced in Section 2.9,

ψj,k = DjTkψ, j, k ∈ Z.

If {ψj,k}j,k∈Z is an orthonormal basis for L2(R), the function ψ is called
a wavelet. The first example of such a function appeared long time before
the systematic study of wavelet bases began:
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Example 3.9.1 The Haar function is defined by

ψ(x) =

⎧
⎨

⎩

1 if 0 ≤ x < 1
2 ,

−1 if 1
2 ≤ x < 1,

0 otherwise.
(3.43)

Already in 1910 it was proved by Haar [361] that the functions {ψj,k}j,k∈Z

constitute an orthonormal basis for L2(R) for this choice of ψ. For the
orthonormality, one can argue as follows. If we first consider ψj,k and ψj,k′ ,
i.e., elements with the same dilation parameter, then

〈ψj,k, ψj,k′ 〉 = 〈DjTkψ,D
jTk′ψ〉 = 〈Tkψ, Tk′ψ〉 = δk,k′ .

Now assume that j′ �= j, say, j′ > j. Using the commutator relations (2.28),

〈ψj,k, ψj′,k′〉 = 〈DjTkψ,D
j′Tk′ψ〉 = 〈Dj−j′T−k′2j−j′+kψ, ψ〉.

The function Dj−j′T−k′2j−j′+kψ has support in the interval

I : = [2j
′−j(−k′2j−j′ + k), 2j

′−j(−k′2j−j′ + k + 1)[

= [−k′ + 2j
′−jk,−k′ + 2j

′−j(k + 1)[.

The length of I is 2j
′−j , which can take the values 2, 4, 8, . . . ... Now,

the support of ψ has length 1 and is contained in an interval on which
Dj−j′T−k′2j−j′+kψ is constant (make a picture!); it follows that

〈ψj′,k′ , ψj,k〉 =
∫ ∞

−∞

(
Dj−j′T−k′2j−j′+kψ

)
(x)ψ(x)dx = 0.

For the proof of the basis property, we refer to [242, 400], or [637]. �

Strömberg [592] constructed in 1982 wavelet orthonormal bases
{ψj,k}j,k∈Z for which ψ has exponential decay and ψ ∈ C�(R); here
� ∈ N is arbitrary. Meyer [519, 482] found in 1985 wavelet bases for which

ψ ∈ C∞(R) and ψ̂ ∈ C�(R), � ∈ N. In 1986, Mallat and Meyer introduced
multiresolution analysis as a general tool to construct wavelet orthonormal
bases [510]:

Definition 3.9.2 A multiresolution analysis for L2(R) consists of a se-
quence of closed subspaces {Vj}j∈Z of L2(R) and a function φ ∈ V0, such
that

(i) · · ·V−1 ⊂ V0 ⊂ V1 · · · , i.e., the spaces Vj are nested.

(ii) ∪j∈ZVj = L2(R) and ∩j∈ZVj = {0}.
(iii) f ∈ Vj ⇔ [x→ f(2x)] ∈ Vj+1.

(iv) f ∈ V0 ⇒ Tkf ∈ V0, ∀k ∈ Z.

(v) {Tkφ}k∈Z is an orthonormal basis for V0.
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Definition 3.9.2 leads to a general method for construction of wavelets
and can be seen as the beginning of modern wavelet analysis. The topic
is already well covered with many books (see, e.g., [308, 633] and [165]
for elementary treatments, or [242, 520, 637] for more advanced presenta-
tions). We will only explain some of the key steps in the construction of
a wavelet based on a multiresolution analysis; the reader will observe that
these steps serve as motivation and guideline for the more advanced frame
constructions that will appear in Chapters 17–18.
Assume that the conditions in Definition 3.9.2 are satisfied. For j ∈ Z,

we let Wj denote the orthogonal complement of Vj in Vj+1. By letting Qj

denote the orthogonal projection onto Wj , it follows from Definition 3.9.2
(i) and (ii) that each f ∈ L2(R) has a representation f =

∑
j∈Z

Qjf , where
Qjf⊥Qj′f for j �= j′; that is,

L2(R) =
⊕

j∈Z

Wj . (3.44)

The spaces Wj satisfy the same dilation relationship as Vj , i.e.,

ψ ∈ W0 ⇔ [x→ ψ(2jx)] ∈Wj . (3.45)

In order to obtain an orthonormal basis {ψj,k}j,k∈Z for L2(R), it is now
enough to find ψ ∈W0 such that {ψ(·− k)}k∈Z is an orthonormal basis for
W0; via the dilation property (3.45) and (3.44), this implies that {ψj,k}j,k∈Z

is an orthonormal basis for L2(R). One way of choosing ψ is as follows.
First, the condition φ ∈ V0 ⊂ V1 implies by Definition 3.9.2 (iii) that
1√
2
D−1φ ∈ V0. Since {Tkφ}k∈Z is an orthonormal basis for V0, there exist

coefficients {ck}k∈Z ∈ �2(Z) such that

1√
2
D−1φ =

∑

k∈Z

ckTkφ.

Using the Fourier transform and the commutator relations in (2.29), it

follows that 1√
2
Dφ̂ =

∑
k∈Z

ckE−kφ̂; defining the 1-periodic function H0 :=
∑

k∈Z
ckE−k, this can be written as

φ̂(2γ) = H0(γ)φ̂(γ), a.e. γ ∈ R. (3.46)

The equation (3.46) is called a scaling equation or refinement equation.
Now, it turns out that with a certain choice of a 1-periodic function H1,
the function ψ defined via

ψ̂(2γ) = H1(γ)φ̂(γ) (3.47)

generates a wavelet orthonormal basis {DjTkψ}j,k∈Z. One choice of H1 is
to take

H1(γ) = H0(γ +
1

2
)e−2πiγ . (3.48)
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Note that (3.47) leads to an explicit expression of the function ψ in terms
of the given function φ:

Lemma 3.9.3 Assume that (3.47) holds for a 1-periodic and bounded
function H1 with Fourier expansion H1 =

∑
k∈Z

ckEk. Then

ψ(x) =
√
2
∑

k∈Z

ckDT−kφ(x) = 2
∑

k∈Z

ckφ(2x+ k), a.e. x ∈ R. (3.49)

In particular, if H1 is a trigonometric polynomial, H1(x) =
∑N2

k=N1
cke

2πikx,
then

ψ(x) =
√
2

N2∑

k=N1

ckDT−kφ(x) = 2

N2∑

k=N1

ckφ(2x+ k), ∀x ∈ R. (3.50)

Proof. We can rewrite (3.47) as ψ̂(γ) = H1(γ/2)φ̂(γ/2); formulated in
terms of the Fourier series for H1 and the dilation operator D, this means
that

Fψ =
√
2
∑

k∈Z

ckEk/2D
−1Fφ =

√
2
∑

k∈Z

ckEk/2FDφ.

Now, using the commutator relations in Section 2.9,

Fψ =
√
2F

∑

k∈Z

ckT−k/2Dφ =
√
2F

∑

k∈Z

ckDT−kφ.

Applying the inverse Fourier transform now yields the result. �

The Haar basis can be constructed via the multiresolution analysis
defined by φ = χ[0,1[, and

Vj =
{
f ∈ L2(R) | f is constant on [2−jk, 2−j(k + 1)[, ∀k ∈ Z

}
.

In terms of the function φ, the Haar function in (3.43) is

ψ =
1√
2
φ1,0 −

1√
2
φ1,1. (3.51)

The Haar function is a special case of a spline wavelet. In fact, one can
consider higher-order splines B̃n (see (A.18) for the definition) and define
associated multiresolution analyses, which leads to wavelets of the type

ψ(x) =
∑

k∈Z

ckB̃n(2x− k). (3.52)

We ask the reader to verify the instrumental scaling equation (3.46) di-
rectly; see Exercise 3.17. The resulting wavelets are called Battle–Lemarié
wavelets. The coefficients {ck}k∈Z are calculated in, e.g., [242]; except for
the case n = 1, all coefficients ck are nonzero, which implies that ψ has
support equal to R. However, the wavelets have exponential decay.
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Wavelets are characterized in, e.g., [400]; we will provide a proof of the
following result on page 412.

Lemma 3.9.4 A function ψ ∈ L2(R) is a wavelet if and only if ||ψ|| = 1
and the equations

∑

j∈Z

|ψ̂(2jγ)|2 = 1, (3.53)

∞∑

j=0

ψ̂(2jγ)ψ̂ (2j(γ + q)) = 0 for all odd integers q (3.54)

hold for almost all γ ∈ R .

Most of the important wavelet bases for L2(R) are constructed via the
approach sketched above, e.g., the bases by Daubechies [242]. However,
not all wavelets can be constructed via multiresolution analysis. Among
all wavelets, the wavelets generated from a multiresolution analysis are
characterized by the equation

∞∑

j=1

∑

k∈Z

|ψ̂(2j(γ + k)|2 = 1,

a result which is also proved in [400].
Let us now return to the multiresolution analysis setup. As we have seen,

the conditions in Definition 3.9.2 determine the spaces Vj uniquely; in fact,
V0 = span{Tkφ}k∈Z, and via the condition (iii),

Vj = span{DjTkφ}k∈Z. (3.55)

On the other hand, assuming that φ is a given function such that {Tkφ}k∈Z

forms an orthonormal basis for its closed linear span, we only have to verify
the conditions in Definition 3.9.2 (i) and (ii) in order to show that φ and
the spaces Vj in (3.55) form a multiresolution analysis. It turns out that
these conditions are satisfied under very weak assumptions. Let us state a
general result obtained by de Boor, DeVore, and Ron [71]:

Lemma 3.9.5 Let φ ∈ L2(R) and define the spaces Vj by (3.55). Then the
following holds:

(i) ∩j∈ZVj = {0}.

(ii) Assume that the spaces Vj in (3.55) are nested. If

|φ̂| > 0 (3.56)

on a neighborhood of 0, then ∪j∈ZVj is dense in L2(R).

Thus, if (3.56) is satisfied, all that we need is a condition ensuring that
the spaces Vj are nested. But under a weak condition, this also follows
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from the assumption that {Tkφ}k∈Z forms an orthonormal basis for its
closed linear span. In fact, it is enough to assume that {Tkφ}k∈Z forms a
Bessel sequence; this extension will play a role in Chapter 18.

Lemma 3.9.6 Assume that φ ∈ L2(R) and that {Tkφ}k∈Z is a Bessel
sequence. Define the spaces Vj by (3.55). Then the following holds:

(i) If ψ ∈ L2(R) and there exists a bounded 1-periodic function H1 such

that ψ̂(2γ) = H1(γ)φ̂(γ), then ψ ∈ V1.

(ii) If there exists a bounded 1-periodic function H0 such that

φ̂(2γ) = H0(γ)φ̂(γ), (3.57)

then Vj ⊆ Vj+1 for all j ∈ Z.

Proof. If the conditions in (i) are satisfied, the expression for the function
ψ in Lemma 3.9.3 shows that ψ ∈ V1. This proves (i). For the proof of (ii),
we note that, via (i), φ ∈ V1; since V1 is closed and invariant under integer
translations, it follows that V0 ⊆ V1. A scaling now implies that Vj ⊆ Vj+1

for all j ∈ Z. �

Via Lemma 3.9.5 and Lemma 3.9.6, we obtain the following:

Theorem 3.9.7 Let φ ∈ L2(R), and assume that |φ̂| > 0 on a neighbor-
hood of 0. Assume further that (3.57) is satisfied for a bounded 1-periodic
function H0. Define the spaces Vj by (3.55). Then the following holds:

(i) If {Tkφ}k∈Z is an orthonormal system, then φ and the spaces Vj form
a multiresolution analysis.

(i) If {Tkφ}k∈Z is a Bessel sequence, then the spaces Vj satisfy the
conditions (i)–(iv) in Definition 3.9.2.

As already mentioned the conditions to an orthonormal basis are very
strong, and there are indeed a number of limitations on the properties one
can obtain for a wavelet. Some of these limitations will be discussed in
Chapter 4. In Chapters 15–19, we will discuss frames having the wavelet
structure; in particular, Chapters 17–18 will provide constructions based
on a multiresolution setup, and we will see that frame theory allows to
eliminate some of the restrictions.

3.10 Sampling and Analog–Digital Conversion

A short and not yet precise formulation of the sampling problem is: How
can we recover a function f : R → C if we only know a countable set of
function values {f(λk)}k∈I? Formulated this way the problem is ill-posed:
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there are infinitely many functions that take the same prescribed values
on a given countable set, so we need to impose some condition on the
function f for the problem to make sense. Traditionally, this is done by
requiring f to belong to a certain function space. A classical example is
to consider a space of band-limited functions, i.e., functions for which the
Fourier transform has compact support. Let us consider the Paley–Wiener
space PW , defined by

PW :=

{

f ∈ L2(R)
∣
∣ supp f̂ ⊆ [−1

2
,
1

2
]

}

. (3.58)

As always when dealing with L2-functions, the Paley–Wiener space really
consists of equivalence classes of functions; however, due to the fact that the
Fourier transform of a function f ∈ PW has compact support, each of these
equivalence classes contains a continuous function. We will always select the
continuous representation for the equivalence classes in the Paley–Wiener
space.
We will now show that the Paley–Wiener space has an orthonormal basis

consisting of translates of a single function. Define the sinc function by

sinc(x) =

{
sin(πx)

πx if x �= 0,
1 if x = 0.

Shannon’s sampling theorem states that any continuous function in the
Paley–Wiener space can be fully recovered from its samples at the integers.

Theorem 3.10.1 The functions {sinc(· − k)}k∈Z form an orthonormal
basis for the Paley–Wiener space PW. If f ∈ PW is continuous, then

f(x) =
∑

k∈Z

f(k)sinc(x− k),

with convergence of the symmetric partial sums in L2(R) and pointwise for
all x ∈ R.

Proof. The proof is based on classical Fourier analysis as described in
Section 3.8. Because of our definition of the Paley–Wiener space, it will be
convenient to work with Fourier series in the space L2(−1/2, 1/2) rather
than L2(0, 1).
We first show that the functions {sinc(· − k)}k∈Z form an orthonormal

sequence in L2(R). We know that the functions {e2πik(·)χ]−1/2,1/2[(·)}k∈Z

form an orthonormal sequence in L2(R); taking the Fourier transform of
these functions, we arrive at

F
(
e2πik(·)χ]−1/2,1/2[(·)

)
(γ) =

∫ 1/2

−1/2

e2πikxe−2πixγdx = sinc(γ − k).

Because the Fourier transform is unitary, this implies that the functions
{sinc(· − k)}k∈Z are orthonormal as well.



104 3 Bases

Now let f ∈ PW be the continuous representative for a given equivalence
class. On the interval ]− 1/2, 1/2[ we can expand f̂ in a Fourier series,

f̂(·) =
∑

k∈Z

cke
2πik(·),

where

ck =

∫ 1/2

−1/2

f̂(γ)e−2πikγdγ. (3.59)

Recall that the partial sums of the Fourier series converge in the norm of
L2(−1/2, 1/2), i.e.,

∫ 1/2

−1/2

∣
∣
∣
∣f̂(γ)−

N∑

k=−N

cke
2πikγ

∣
∣
∣
∣

2

dγ → 0 as N →∞.

Note that because we are dealing with a finite interval, convergence in
L2(−1/2, 1/2) implies convergence in L1(−1/2, 1/2), so

∫ 1/2

−1/2

∣
∣
∣
∣f̂(γ)−

N∑

k=−N

cke
2πikγ

∣
∣
∣
∣dγ → 0 as N →∞. (3.60)

Because supp f̂ ⊆ [− 1
2 ,

1
2 ], the expression for ck in (3.59) implies by Theo-

rem 2.8.1 that ck = f(−k). Using Theorem 2.8.1 once more, we arrive at
the following formula, valid pointwise for all x ∈ R:

f(x) =

∫ ∞

−∞
f̂(γ)e2πixγdγ =

∫ 1/2

−1/2

(
∑

k∈Z

f(−k)e2πikγ
)

e2πixγdγ.

Because of (3.60), we can interchange the order of summation and
integration; thus, for all x ∈ R,

f(x) =
∑

k∈Z

f(−k)
∫ 1/2

−1/2

e2πi(x+k)γdγ =
∑

k∈Z

f(−k) sinc(x+ k)

=
∑

k∈Z

f(k) sinc(x− k).

The series converges in L2(R) as well: in fact, since {sinc(· − k)}k∈Z is an
orthonormal system,

∣
∣
∣
∣

∣
∣
∣
∣f −

N∑

k=−N

f(k) sinc(· − k)

∣
∣
∣
∣

∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣

∑

|k|>N

f(k) sinc(· − k)

∣
∣
∣
∣

∣
∣
∣
∣ =

√ ∑

|k|>N

|f(k)|2,

which converges to 0 as N → ∞ because {f(k)}k∈Z ∈ �2(Z) (we just saw
that they are Fourier coefficients). Finally, that {sinc(· − k)}k∈Z forms an
orthonormal basis for PW follows from the fact that all equivalence classes
in PW contain a continuous function. �
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Note that, via an appropriate scaling, the result in Theorem 2.8.1 can be
extended to functions whose Fourier transform has support in an arbitrary
fixed interval (Exercise 3.18).
Shannon’s sampling theorem dates back to 1950, but it was actually

discovered even earlier, independently by Whittaker and Kotelnikov. It
marks the beginning of sampling theory, which is still a very active field
of research. We refer to the books [268] by Eldar and [627] by Vetterli et
al. for excellent introductions to sampling theory, which also highlight the
connection to mathematics. We will return to sampling in Section 9.7 and
Chapter 14.
The principle in Shannon’s sampling theorem is the basis for all modern

communication. Most signals appearing in practice depend on a continu-
ous variable (very often, the time). Processing of such a signal is facilitated
greatly if it can be stored and handled in terms of a sequence of samples. As
a concrete case, consider a piece of music, modeled as the function f that
measures the current running through the cable to the speaker when the
music is played. In principle, all frequencies might appear in the signal, but
the human ear can only hear frequencies belonging to a certain range (at
most up to 20.000 Hz). Thus, we can remove the high frequencies and con-
sider the resulting signal as band-limited. Via an appropriate scaling (see
Exercise 3.18), Theorem 3.10.1 shows that this signal f can be recovered
from its samples {f(k/α)}k∈Z at sufficiently dense equidistant time inter-
vals. This principle forms the cornerstone in conversion of an analog signal
to a digital signal and thus for the modern communication technology.
In concrete applications of Shannon’s sampling theorem, we might think

about the samples {f(k)}k∈Z as measurements of an unknown function f,
realized at equidistant points k ∈ Z. In practice a physical device is never
able to measure an exact function value: for example, a measurement of
a current at time k will rather give an average of the current over a very
small time interval around k. Thus, a mathematical exact modeling will
have to replace the exact values {f(k)}k∈Z by a sequence of averages of f
on intervals around the points k ∈ Z. In the literature this problem has
been considered under the name local average sampling; and it has been
proved that in many cases it is still possible to obtain exact reconstruction
of the signal f. We refer to the paper [603] and the references therein for
details.

3.11 Exercises

3.1 Prove that ||| · ||| (introduced in the proof of Theorem 3.1.4) defines
a norm on X and that X is a Banach space with respect to this
norm.
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3.2 Let {ek}∞k=1 be an orthonormal basis for a Hilbert space H, and
define {fk}∞k=1 by fk = 1

k ek, k ∈ N.

(i) Prove that {fk}∞k=1 is a basis for H, and find the biorthogonal
system {gk}∞k=1.

(ii) Prove that the coefficient functionals associated to {fk}∞k=1 are
not uniformly bounded.

(iii) Show that there exists {dk}∞k=1 ∈ �2(N) for which
∑∞

k=1 dkgk
is divergent.

3.3 Prove Corollary 3.1.6.

3.4 Let {ek}∞k=1 be an orthonormal basis for a Hilbert space H.

(i) Prove that {
∑

j=1
1
j ej} ∪ {ek}∞k=1 is linearly independent, but

not ω-independent.

(ii) Prove that {e1}∪{ek+ ek+1}∞k=1 is ω-independent, but not min-
imal. (Hint: in Example 5.4.6, we prove that {ek + ek+1}∞k=1 is
complete.)

3.5 Let δk denote the sequence in �2(N) for which the kth entry is 1 and
all other entries are 0. Prove that {δk}∞k=1 forms an orthonormal
basis for �2(N).

3.6 Assume that {fk}∞k=1 is a Bessel sequence with bound B. Prove that

(i) ||fk||2 ≤ B for all k ∈ N;

(ii) If ||fk||2 = B for some k ∈ N, then fk⊥fj for all j ∈ N \ {k}.

3.7 Assume that {fk}∞k=1 is a Bessel sequence, and let {ck}∞k=1 ∈ �2(N).
The purpose of this exercise is to give a direct proof of the fact that∑∞

k=1 ckfk is independent of the indexing of the sequences.

(i) Show that for any f ∈ H, the series
∑∞

k=1 ck〈fk, f〉 is
absolutely convergent.

(ii) Show that for any permutation σ of the natural numbers,

〈
∞∑

k=1

ckfk, f〉 = 〈
∞∑

k=1

cσ(k)fσ(k), f〉.

(Hint: use that absolute convergence in C implies unconditional
convergence.)

(iii) Conclude that for any permutation σ of the natural numbers,

∞∑

k=1

ckfk =

∞∑

k=1

cσ(k)fσ(k).
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3.8 Prove Corollary 3.5.5.

3.9 Prove directly via the definition that a Riesz basis is a basis.

3.10 Let {fk}∞k=1 be a sequence in a Hilbert space H, and let A,B > 0.
Consider the set of finite sequences in the unit sphere of �2(N),
i.e., let

S :=

{
{ck}∞k=1 ∈ �2(N)

∣∣ {ck}∞k=1 is finite and
∞∑

k=1

|ck|2 = 1

}
.

(i) Show that {fk}∞k=1 is a Riesz sequence with bounds A,B if

A ≤
∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ B, ∀{ck}∞k=1 ∈ S. (3.61)

(ii) Show that there exists a countable collection of sequences
{c�j}∞j=1 ∈ S, � ∈ N, such that (3.61) holds if

A ≤
∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

c�kfk

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ B, ∀� ∈ N. (3.62)

Hint: for each n ∈ N, there is a countable and dense subset of
the unit sphere in C

n.

(iii) Complete the proof of Corollary 3.7.4.

3.11 Prove that if {fk}∞k=1 is a sequence in a Hilbert space H and

∞∑

k=1

|〈f, fk〉|2 <∞, ∀f ∈ H,

then {fk}∞k=1 is a Bessel sequence.

3.12 Prove that the upper and lower conditions in (3.29) are unrelated:
there exists a sequence {fk}∞k=1 satisfying the upper condition for
all finite sequences {ck}∞k=1, but not the lower condition, and vice
versa.

3.13 Let {fk}∞k=1 be a sequence in a Hilbert space H. Prove that

(i) If there exists B > 0 such that
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

≤ B

∞∑

k=1

|ck|2



108 3 Bases

for all finite sequences {ck}, then
∑∞

k=1 ckfk converges for
all {ck}∞k=1 ∈ �2(N) and {fk}∞k=1 is a Bessel sequence with
bound B.

(ii) If (3.29) holds for all finite scalar sequences {ck}, then it holds
for all {ck}∞k=1 ∈ �2(N).

(iii) If {fk}∞k=1 is a Riesz basis, then

∞∑

k=1

ckfk is convergent⇔ {ck}∞k=1 ∈ �2(N).

3.14 Prove that a basis in a Hilbert space is minimal.

3.15 Consider the proof of Lemma 3.5.3. Where is the assumption

Mj,k = Mk,j

used?

3.16 Consider the positive trigonometric polynomial

f(x) = 1 + cos(2πx).

Find by direct calculation all trigonometric polynomials

g(x) = d0 + d1e
2πix, d0, d1 ∈ R,

for which |g(x)|2 = f(x).

3.17 Consider the B-spline B̃n, n ∈ N.

(i) Show that the scaling equation

̂̃
Bn(2γ) = H0(γ)

̂̃
Bn(γ), ∀γ ∈ R

is satisfied with

H0(γ) =

(
1 + e−2πiγ

2

)n

.

(ii) Show that H0 is periodic with period 1.

3.18 Let f ∈ L2(R) be a continuous function for which

supp f̂ ⊆ [−α/2, α/2]
for some α > 0. Show that f can be recovered from its samples
{f(k/α)}k∈Z via

f(x) =
∑

k∈Z

f(
k

α
) sinc(αx − k), x ∈ R.



4
Bases and Their Limitations

The next chapters will deal with generalizations of the basis concept, so it
is natural to ask why they are needed. Bases exist in all separable Hilbert
spaces and in practically all Banach spaces of interest, so why do we have
to search for generalizations?
In this chapter, we will give some answers to this question. As we will

see, the main point is the missing flexibility: the conditions for being a basis
are so strong that

• It is often impossible to construct bases with special properties;

• Even a slight modification of a basis might destroy the basis property.

In Section 4.1, we will consider simple modifications of bases that destroy
the basis property but keep the essential expansion property. Section 4.2
and Section 4.3 will consider a number of limitations on the properties one
can expect from bases having Gabor structure or wavelet structure.

4.1 Bases and the Expansion Property

The starting point for a more detailed discussion must be to clarify why we
are at all interested in bases! One reason is that a basis {ek} for a normed
vector space X allows us to represent every f ∈ X as a (maybe infinite)
linear combination of the basis elements,

f =
∑

ckek, (4.1)

©
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DOI 10.1007/978-3-319-25613-9 4

109Springer International Publishing Switzerland 2016



110 4 Bases and Their Limitations

with coefficients {ck} which depend linearly on f . We will refer to this
by saying that {ek} has the expansion property. We have already seen
concrete cases where the expansion property is very useful. For example, the
discussion following Theorem 3.10.1 showed how to represent band-limited
signals f on the form (4.1), with coefficients ck obtained as equidistant
samples {f(k/α)}k∈Z; as explained in Section 3.10, this lays the foundation
for modern communication technology.
The expansion property also makes it possible to reduce many questions

about elements in X to the elements {ek} in the basis. For example, the
action of a bounded operator U on a vector f can be found if we know the
representation (4.1) and the action of U on the basis {ek}:

Uf = U
(∑

ckek

)
=
∑

ckUek.

Bases are characterized by the expansion property (4.1) with unique co-
efficients {ck} associated to each f ∈ X . One might ask whether uniqueness
is really needed. Our answer is no: it is usually enough to know the exis-
tence of some usable coefficients, together with a recipe for finding them.
This turns out to be the key in the transition from bases to frames: we will
revise the conditions in such a way that we keep the expansion property,
but we gain flexibility by giving up the requirement of uniqueness of the
expansion coefficients.
In this chapter we discuss some cases where (4.1) holds without {ek}

being a basis. We begin with the simple observation that if {ek} is a basis
for X and φ is an arbitrary element in X , then {ek} ∪ φ is not a basis,
despite the fact that each f ∈ X has representations of the form

f =
∑

ckek + dφ. (4.2)

In fact, the sequence {ek} ∪ φ is not linearly independent, i.e., several
choices for the coefficients {ck} and d are possible. One choice is to take
d = 0 and let {ck} be the coefficients representing f in the basis {ek};
another choice is to take {ck} such that f − φ =

∑
ckek and d = 1.

By this argument, the basis property is destroyed when an arbitrary
nonempty collection of vectors is added to {ek}, but the expansion property
is preserved.
At first glance, the above construction might appear artificial: why would

one like to add elements to a basis? One reason is that we gain some
freedom: the coefficients in (4.1) are unique, but in (4.2), we can choose
between several options. We will encounter several scenarios where this is
useful, e.g., in Section 16.1 where the freedom is used to find coefficients
of a particularly convenient form in the wavelet case. Also, Section 8.5 will
show that having more elements than needed for a basis has a certain noise-
suppressing effect.
The following example shows that non-bases with the expansion property

actually appear in a natural fashion in function spaces.
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Example 4.1.1 Let us return to the orthonormal basis {ek}k∈Z for
L2(0, 1) considered in Section 3.8, i.e., the functions ek(x) = e2πikx. We
will now consider these functions on an open subinterval I ⊂]0, 1[ with
|I| < 1. We can identify L2(I) with the subspace of L2(0, 1) consisting of
the functions which are zero on ]0, 1[\I. Hereby a function f ∈ L2(I) is
identified with a function (which we still denote f) in L2(0, 1), which has
the expansion

f =
∑

k∈Z

〈f, ek〉ek in L2(0, 1). (4.3)

Since
∣
∣
∣
∣

∣
∣
∣
∣f −

∑

|k|≤n

〈f, ek〉ek
∣
∣
∣
∣

∣
∣
∣
∣
L2(I)

=

(∫

I

∣
∣
∣
∣f(x)−

n∑

k=−n

〈f, ek〉e2πikx
∣
∣
∣
∣

2

dx

)1/2

≤
(∫ 1

0

∣
∣
∣
∣f(x)−

n∑

k=−n

〈f, ek〉e2πikx
∣
∣
∣
∣

2

dx

)1/2

→ 0 as n→∞,

we also have

f =
∑

k∈Z

〈f, ek〉ek in L2(I). (4.4)

That is, the functions {ek}k∈Z also have the expansion property in L2(I).
However, they are not a basis for L2(I)! To see this, define the function

f̃(x) =

{
f(x) if x ∈ I,
1 if x /∈ I.

Then f̃ ∈ L2(0, 1) and we have the representation

f̃ =
∑

k∈Z

〈f̃ , ek〉ek in L2(0, 1). (4.5)

By restricting to I, the expansion (4.5) is also valid in L2(I); since f = f̃
on I, this shows that

f =
∑

k∈Z

〈f̃ , ek〉ek in L2(I). (4.6)

Thus, (4.4) and (4.6) are both expansions of f in L2(I), and they are non-

identical; the argument is that since f �= f̃ in L2(0, 1), the expansions (4.3)
and (4.5) show that

{〈f, ek〉}k∈Z �= {〈f̃ , ek〉}k∈Z.

The conclusion is that the restriction of the functions {ek}k∈Z to I is not a
basis for L2(I), but the expansion property is preserved. In the terminology
used in Section 5, the sequence {ek}k∈Z is a tight frame for L2(I); see
Example 5.4.5. �
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Example 4.1.1 is actually just a concrete manifestation of the following
general result. It shows that the orthogonal projection of an orthonormal
basis onto a nontrivial subspace V always yields a sequence with the ex-
pansion property (on the subspace) but with expansion coefficients that
are not unique. We ask the reader to provide the proof in Exercise 4.1.

Proposition 4.1.2 Let {ek}∞k=1 denote an orthonormal basis for a Hilbert
space H, let P denote the orthogonal projection of H onto a closed nontrivial
subspace V, and put fk := Pek. Fix any g ∈ V ⊥. Then each f ∈ V has the
expansions

f =
∞∑

k=1

〈f, ek〉fk =
∞∑

k=1

〈f + g, ek〉fk.

Furthermore, for any f ∈ V and any choice of g ∈ V ⊥ \ {0},

{〈f, ek〉}∞k=1 �= {〈f + g, ek〉}∞k=1.

Again, Proposition 4.1.2 shows that expansions with nonunique coeffi-
cients appear naturally. In the terminology used in Section 5, the sequence
{Pek}∞k=1 is a tight frame for V.

In a finite-dimensional vector space X , we know that every family of
vectors which spans X contains a basis (Exercise 1.3). In an infinite-
dimensional Hilbert space, the situation is dramatically different: there
exists a family of vectors {fk}∞k=1 such that

• Each f ∈ H has an unconditionally convergent expansion

f =

∞∑

k=1

ckfk with {ck}∞k=1 ∈ �2(N);

• No subsequence of {fk}∞k=1 is a basis for H.

We present an explicit construction of such a sequence {fk}∞k=1 in Sec-
tion 7.5. Intuitively, this kind of example is difficult to understand: it shows
that we might have the expansion property for families which have no re-
lationship to a basis. The existence of such examples is a strong argument
for considering generalizations of bases.
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4.2 Gabor Systems and the Balian–Low Theorem

We already encountered Gabor systems in Section 3.8; in particular we saw
in Example 3.8.3 that the Gabor system

{e2πimxχ[0,1](x − n)}m,n∈Z = {EmTnχ[0,1](x)}m,n∈Z

forms an orthonormal basis for L2(R). Exactly this example touches one of
the limitations on the properties we can expect from a Gabor basis, as we
will see now. Observe that

χ̂[0,1](γ) =

∫ 1

0

e−2πixγdx = e−πiγ sinπγ

πγ
.

The fact that χ[0,1] is discontinuous, and the oscillations and slow decay of
χ̂[0,1], makes the characteristic function unattractive from the point of view
of, e.g., time–frequency analysis. A natural idea is to examine whether we
can replace the function χ[0,1] by a continuous (or even differentiable) func-
tion g and still obtain an orthonormal basis or Riesz basis {EmTng}m,n∈Z.
Unfortunately, the Balian–Low theorem shows that there are limitations on
the properties such a function g can have:

Theorem 4.2.1 If {EmTng}m,n∈Z is a Riesz basis for L2(R), then
(∫ ∞

−∞
|xg(x)|2dx

)(∫ ∞

−∞
|γĝ(γ)|2dγ

)

=∞. (4.7)

For proofs of the Balian–Low theorem we refer to [241, 48], or [400]. In
words, the Balian–Low theorem means that a function g generating a Ga-
bor Riesz basis cannot be well localized in both time and frequency. For
example, it is not possible that g and ĝ satisfy estimates like

|g(x)| ≤ C

1 + x2
, |ĝ(γ)| ≤ C

1 + γ2
(4.8)

simultaneously. We note in passing that the Balian–Low theorem is close
to describe the limit case of what can be obtained with Gabor bases. In
fact, it has been proved by Benedetto et al. [45] that for any ε > 0, we can
construct orthonormal bases {EmTng}m,n∈Z, where
(∫ ∞

−∞
|g(x)|2 1 + |x|2

log1+ε(2 + |x|)
dx

)(∫ ∞

−∞
|ĝ(γ)|2 1 + |γ|2

log2+ε(2 + |γ|)
dγ

)

<∞.

If faster decay of g and ĝ than allowed by the Balian–Low theorem is
needed, we have to ask whether we need all the properties characterizing a
Riesz basis or whether we can relax some of them. The property we want to
keep is that every f ∈ L2(R) has an unconditionally convergent expansion
in terms of modulated and translated versions of the function g; together
with Lemma 3.6.9, this shows that we do not gain anything by asking for
{EmTng}m,n∈Z being merely a basis instead of a Riesz basis. However, it
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turns out that the (unconditionally convergent) expansion property actu-
ally can be combined with g and ĝ having fast decay, even exponential
decay: the part of the definition of a basis which has to be given up is the
uniqueness of such an expansion. This will bring us from bases to frames.
The exact definition will be given in the next chapter, and the above de-
scription rather tries to state the difference between frames and bases than
to give the key to the right definition. Frames in L2(R) having the Gabor
structure will be the subject of Chapters 11–13.
In the analysis of Gabor systems in the forthcoming chapters, we will be

more general than here and consider systems of the form {EmbTnag}m,n∈Z

for some parameters a, b > 0. One of the essential issues is how to ob-
tain expansions of functions f ∈ L2(R) in terms of the countable family
{EmbTnag}m,n∈Z, with a continuous and compactly supported “generat-
ing function” g. As the next result shows, these requirements cannot be
combined with {EmbTnag}m,n∈Z being a Riesz basis for L2(R); on the
other hand, frames {EmbTnag}m,n∈Z with these properties exist. We state
the result here, although the formal frame definition is given later, in
Definition 5.1.1:

Proposition 4.2.2 Let g be a continuous function with compact support.
Then the following hold:

(i) {EmbTnag}m,n∈Z cannot be an orthonormal basis for L2(R).

(ii) {EmbTnag}m,n∈Z cannot be a Riesz basis for L2(R).

(iii) {EmbTnag}m,n∈Z can be a frame for L2(R) if 0 < ab < 1.

A more precise version of Proposition 4.2.2 (iii) says that for any a, b > 0
with ab < 1, there exists a continuous function g with compact support
such that {EmbTnag}m,n∈Z is a frame for L2(R); we will present such a
construction in Example 12.3.3. The proof of the results stated in (i) and
(ii) uses the Zak transform and will be given on page 334.
Having a frame of the type {EmbTnag}m,n∈Z, one could ask whether

there exists a subfamily which is a basis. We will not do so: on page 295, we
argue that even if the answer is yes, it will in general not be an advantage to
remove elements from {EmbTnag}m,n∈Z because the computational benefits
from the points {(na,mb)}m,n∈Z forming a lattice in R

2 will be lost.
Let us summarize some of the key properties we would like to obtain for

a Gabor frame {EmbTnag}m,n∈Z for L2(R) :

• For computational reasons we would like the window function g to
be explicitly given, with short support and high regularity;

• We would like {EmbTnag}m,n∈Z to have “low redundancy,” at the
moment in the intuitive sense as “the frame does not contain too
many extra elements compared to a basis.” A formal definition will
be given in Definition 11.3.3.
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The analysis of Gabor frames in Chapters 11–13 will show that these
properties actually can be realized; see in particular Section 12.6.

4.3 Bases and Wavelets

Wavelet orthonormal bases {ψj,k}j,k∈Z = {2j/2ψ(2jx − k)}j,k∈Z form an-
other important class of bases for L2(R). Also for these bases there are
limitations on the properties which can be satisfied simultaneously:

Theorem 4.3.1 Let ψ ∈ L2(R). Assume that ψ decays exponentially and
that {ψj,k}j,k∈Z is an orthonormal basis. Then ψ cannot be infinitely often
differentiable with bounded derivatives.

For a proof we refer to [242]. We will see in Example 15.2.7 that the
properties in Theorem 4.3.1 can be combined if we allow ψ to generate a
frame instead of a basis.
Some of the relevant properties for a wavelet basis {ψj,k}j,k∈Z are:

• That ψ has a computationally convenient form, for example, that ψ
is a piecewise polynomial (a spline);

• Regularity of ψ;

• Symmetry (or antisymmetry) of ψ, i.e., that

ψ(x) = ψ(−x) or ψ(x) = −ψ(−x);
• Compact support of ψ or at least fast decay;

• That ψ has vanishing moments, i.e., that for a certain m ∈ N,
∫ ∞

−∞
x�ψ(x)dx = 0 for � = 0, 1, . . . ,m.

We discuss the role played by these properties and how they motivated
the development of the wavelet theory below. First, the following proposi-
tion shows that a large number of vanishing moments is important if we
want to obtain smooth wavelets. For the proof we refer to [242].

Proposition 4.3.2 Assume that ψ ∈ L2(R) is m times continuously dif-
ferentiable with bounded derivatives, that {ψj,k}j,k∈Z is an orthonormal
system, and that there exist constants C, ε > 0 such that

|ψ(x)| ≤ C

(1 + |x|)1+m+ε
, ∀x ∈ R. (4.9)

Then
∫ ∞

−∞
x�ψ(x)dx = 0 for all � = 0, 1, . . . ,m. (4.10)
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In particular, a differentiable and compactly supported wavelet will auto-
matically have a certain number of vanishing moments. For the Daubechies
wavelets there is a connection between the regularity of the wavelet and
the size of the support: the N -th Daubechies wavelet has a support with
Lebesgue measure equal to 2N − 1, and asymptotically as N → ∞, it
belongs to CμN with μ ∼ 0.19. We refer to [242] for a proof.

Vanishing moments are essential in the context of compression. Assuming
that {ψj,k}j,k∈Z is an orthonormal basis for L2(R), every f ∈ L2(R) has
the representation

f =
∑

j,k∈Z

〈f, ψj,k〉ψj,k. (4.11)

If the function ψ is generated by a multiresolution analysis, classical wavelet
analysis shows that with φ ∈ L2(R) taken as in Definition 3.9.2,

f =
∑

k∈Z

〈f, Tkφ〉Tkφ+

∞∑

j=1

∑

k∈Z

〈f, ψj,k〉ψj,k, ∀f ∈ L2(R). (4.12)

Let us assume that φ is chosen to be compactly supported. All information
about f is stored in the coefficients

{〈f, Tkφ〉}k∈Z ∪ {〈f, ψj,k〉}j∈N,k∈Z,

and (4.12) tells us how to reconstruct f based on knowledge of the coeffi-
cients. However, in practice, we cannot store an infinite sequence of nonzero
numbers, so we have to select a finite number of the coefficients to keep. If
the function f is compactly supported, the sequence {〈f, Tkφ〉}k∈Z is finite;
thus, we will focus on the sequence {〈f, ψj,k〉}j∈N,k∈Z in the rest of the argu-
ment. Usually this sequence is treated by thresholding: one chooses a certain
ε > 0 and keeps only the coefficients 〈f, ψj,k〉 for which |〈f, ψj,k〉| ≥ ε. Here
the vanishing moments come in: one can prove that if ψ has a large number
of vanishing moments, then only relatively few coefficients 〈f, ψj,k〉 will be
large for “natural signals” f. By keeping these coefficients and throwing the
rest away, we have obtained an efficient compression of the signal f . We
refer to the paper by Beylkin, Coifman, and Rokhlin [60] for more details.
Compact support (or at least fast decay) of ψ is essential for the use

of computer-based methods, where a function with unbounded support al-
ways has to be truncated. For the same reason, we often want the support
to be small. The condition of ψ being symmetric is relevant in image pro-
cessing, where a nonsymmetric wavelet will generate nonsymmetric errors,
which are more disturbing to the human eye than symmetric errors. The
next result, which is also proved in [242], shows clear limitations on the
properties we can obtain via the classical multiresolution analysis:
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Proposition 4.3.3 Assume that φ ∈ L2(R) is real-valued and compactly
supported, and let

Vj = span{DjTkφ}k∈Z, j ∈ Z.

Assume that (φ, {Vj}) constitute a multiresolution analysis. Then, if the
associated wavelet ψ in (3.47) is real-valued and compactly supported and
has either a symmetry axis or an antisymmetry axis, ψ is necessarily the
Haar wavelet.

The Haar wavelet only has one vanishing moment, and it is fair to say
that the entire wavelet theory is developed in an attempt to avoid this
wavelet; thus, the result in Proposition 4.3.3 is a serious shortcoming.
Proposition 4.3.3 was one of the reasons for Cohen, Daubechies, and Feau-
veau to introduce biorthogonal multiresolution analysis [223], where one
constructs a Riesz basis {ψj,k}j,k∈Z for L2(R) instead of an orthonormal
basis. As we have seen in Theorem 3.6.2, the coefficients in the expansion
of a function in terms of a Riesz basis are given by inner products between
the function and the elements in the dual Riesz basis. This is the reason
for the name biorthogonal multiresolution analysis: one actually constructs
two coupled multiresolution analyses, which deliver the wavelet Riesz basis
{ψj,k}j,k∈Z and a dual wavelet Riesz basis {ψ̃j,k}j,k∈Z for some function

ψ̃ ∈ L2(R). Note that for general wavelet Riesz bases, the dual Riesz basis
might not have wavelet structure; see Section 16.1).
The Daubechies wavelets are not given by an explicit formula. This is not

a problem for the typical applications which barely need the wavelets them-
selves but only certain associated algorithms. On a more general level, it is
clearly relevant that a wavelet has a computationally convenient form. The
Battle–Lemarié wavelets in (3.52) are splines, but for n > 1, they do not
have compact support. The construction of biorthogonal wavelets in [223]

allows the functions ψ, ψ̃ to be symmetric and compactly supported, but
only one of them can be a spline. A related result by Chui and Wang [222]

allows ψ as well as ψ̃ to be symmetric splines, but only one can have com-
pact support. The difficulty of getting compactly supported spline wavelets
is real, and in Section 18.5, we will indeed show that two compactly sup-
ported functions ψ and ψ̃ of the form (3.52) cannot generate dual wavelet
Riesz bases.
This is only a glimpse of the intense activity in the area, which took place

around 1990–1993. For our purpose we only mention one more step, which is
important for the presentation in Chapters 15–19. This is the idea of using
multiwavelets. Here we give up the basic requirement that a wavelet system
is generated by translated and scaled versions of one function. In fact,
we begin instead with a finite collection of functions ψ1, . . . , ψn ∈ L2(R)
and consider the system of functions which we obtain by translation and
dilation of all these functions. In [256], Donovan, Geronimo, and Hardin
proved that one can construct orthonormal bases of multiwavelets, where
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the functions ψ1, . . . , ψn are symmetric splines with compact support. This
is close in spirit to the frame constructions that will be constructed in
Chapter 18. Indeed we will show that dual multiwavelet frames generated
by compactly supported splines on the form (3.52) exist and are relatively
easy to construct.
From this short description, it is clear that the purpose of the different

extensions of the first multiresolution scheme is to gain more flexibility.
This is also the key reason for extending the theory to frames, as we will
do in Chapters 17–19.

4.4 General Shortcomings

Another annoying fact about bases is their lack of stability against ap-
plications of operators. If, for example, {ek}∞k=1 is an orthonormal basis,
then only very special operators (the unitary ones) will make {Uek}∞k=1 an
orthonormal basis. Even though we have not given all the relevant defi-
nitions yet, let us give an overview that shows how the generalizations in
the subsequent chapters stepwise weaken the conditions on the operator U.
Assuming that {ek}∞k=1 is an orthonormal basis for H,

• The orthonormal bases are the sequences of the form {Uek}∞k=1 where
U is a unitary operator on H (Theorem 3.4.7);

• The Riesz bases are the sequences of the form {Uek}∞k=1 where U is
a bounded bijective operator on H (Definition 3.6.1);

• The frames are the sequences of the form {Uek}∞k=1 where U is a
bounded surjective operator on H (Theorem 5.5.4);

• {Uek}∞k=1 leads to a frame-like expansion if U is closed and surjective
(Theorem 8.4.1).

The condition that U is surjective appears in all the statements; it can
be replaced by the assumption that U has closed range if we only need a
frame expansion on a subspace. Note also that the Bessel sequences are the
sequences of the form {Uek}∞k=1 where U is just a bounded operator on H
(Theorem 3.2.3), but Bessel sequences do not lead to any series expansion
by themselves.
The limitations on the possible constructions of bases give theoretical

reasons to consider frames. We will in Sections 8.5 and 13.8 describe cases
where bases actually exist but where frames simply perform better.

4.5 Exercises

4.1 Prove Proposition 4.1.2.



5
Frames in Hilbert Spaces

The main feature of a basis {fk}∞k=1 in a Hilbert space H is that every
f ∈ H can be represented as a superposition of the elements fk in the
basis:

f =

∞∑

k=1

ck(f)fk. (5.1)

The coefficients ck(f) are unique. We now introduce the concept of frames.
A frame is also a sequence of elements {fk}∞k=1in H, which allows every
f ∈ H to be written as in (5.1). However, the corresponding coefficients
are not necessarily unique. Thus a frame might not be a basis; arguments
for generalizing the basis concept were given in Chapter 4.
The history of frames is a nice example of the development of mathe-

matics. Frames were introduced already in 1952 by Duffin and Schaeffer in
their fundamental paper [262]; they used frames as a tool in the study of
nonharmonic Fourier series, i.e., sequences of the type {eiλnx}n∈Z, where
{λn}n∈Z is a family of real or complex numbers. Apparently, the impor-
tance of the concept was not realized by the mathematical community; at
least it took almost 30 years before the next treatment appeared in print.
In 1980, Young wrote his book [622], which contains the basic facts about
frames. Frames were presented in the abstract setting and again used in
the context of nonharmonic Fourier series. Then, in 1985, as the wavelet
era began, Daubechies, Grossmann, and Meyer [244] observed that frames
can be used to find series expansions of functions in L2(R) which are very
similar to the expansions using orthonormal bases. This was probably the
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time when many mathematicians started to see the potential of the topic;
this point became more clear via Daubechies’ important paper [241], her
book [242], and the combined survey/research paper by Heil and Walnut
[395]. Since then, the number of papers concerning frames has increased
drastically, and a single book cannot present all the important results. Our
aim is, however, to give a comprehensive presentation of the fundamental
results which hold for frames in general Hilbert spaces. The limitations will
mainly appear in the later chapters, where we are only able to present some
of the many results about structured function systems like Gabor frames
and wavelet frames.
A subject like frames can be approached in different ways. One way is

to look at frame theory as a branch of functional analysis and ask what we
can prove for general frames in general Hilbert spaces. Another approach
is to consider a class of frames, which is used in, e.g., signal processing
(this could, e.g., be frames having the wavelet structure), and examine the
properties for this special class of frames. Most papers concentrate on one
of these two aspects (frame theory would actually benefit from a closer coo-
rdination) and we will treat them separately here, too. In this chapter and
Chapters 6–8 we present the general theory, while the subsequent chapters
will go into details with specific constructions.
Section 5.1 is instrumental for a good understanding of frames; here,

their basic properties are presented, and the important frame decompo-
sitions are discussed. A reader who is mainly interested in Gabor frames
or wavelet frames might go directly to the relevant later chapters in the
book after reading this section; in fact, the theory for these frames is to a
large extent independent of the results for general frames. Section 5.2 dis-
cusses sequences that might only form frames for certain subspaces of the
given Hilbert space, and Section 5.3 deals with preservation of the frame
property under the action of various operators. Section 5.4 takes the first
steps toward the analysis of the relationship between frames and bases;
much more will be said about this in Chapter 7. Section 5.5 characterizes
the frame property, e.g., in terms of operators. Section 5.6 gives a short
introduction to continuous frames.

5.1 Frames and Their Properties

We are now ready to give the central definition. In the entire chapter, H
will denote a separable Hilbert space with inner product 〈·, ·〉.

Definition 5.1.1 A sequence {fk}∞k=1 of elements in H is a frame for H
if there exist constants A,B > 0 such that

A ||f ||2 ≤
∞∑

k=1

|〈f, fk〉|2 ≤ B ||f ||2, ∀f ∈ H. (5.2)
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The numbers A,B are called frame bounds. They are not unique. The
optimal upper frame bound is the infimum over all upper frame bounds, and
the optimal lower frame bound is the supremum over all lower frame bounds.
Note that the optimal bounds are actually frame bounds. We collect a few
more definitions:

Definition 5.1.2

(i) A frame is tight if we can choose A = B as frame bounds; a tight
frame with bound A = B = 1 is called a Parseval frame.

(ii) If a frame ceases to be a frame when an arbitrary element is removed,
it is called an exact frame.

When we speak about the frame bound for a tight frame, we mean the
exact value A which is at the same time an upper and lower frame bound.
Note that this is slightly different from the terminology for general frames,
where, e.g., an upper frame bound is just some number for which the Bessel
condition is satisfied.
It follows from the definition that if {fk}∞k=1 is a frame for H, then

span{fk}∞k=1 = H.

We often need to consider sequences which are not complete in H; they
cannot form frames for H, but they can very well form frames for the
closed linear span of their elements:

Definition 5.1.3 Let {fk}∞k=1 be a sequence in H. We say that {fk}∞k=1

is a frame sequence if it is a frame for span{fk}∞k=1.

Before we develop the theory for frames, we mention a few examples of
frames. They might appear quite “constructed,” but they are useful for the
theoretical understanding of frames. In Chapters 9–20 we consider frames
which are more interesting by themselves, for example, frames in L2(R)
having Gabor structure or wavelet structure.

Example 5.1.4 Let {ek}∞k=1 be an orthonormal basis for H.

(i) By repeating each element in {ek}∞k=1 twice we obtain

{fk}∞k=1 = {e1, e1, e2, e2, ..},

which is a tight frame with frame bound A = 2. If only e1 is repeated
we obtain

{fk}∞k=1 = {e1, e1, e2, e3, ..},

which is a frame with bounds A = 1, B = 2.
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(ii) Let

{fk}∞k=1 :=

{

e1,
1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, · · ·

}

;

that is, {fk}∞k=1 is the sequence where each vector 1√
k
ek is repeated

k times. Then, for each f ∈ H,

∞∑

k=1

|〈f, fk〉|2 =

∞∑

k=1

k |〈f, 1√
k
ek〉|2

= ||f ||2.

So {fk}∞k=1 is a tight frame for H with frame bound A = 1.

(iii) If I ⊂ N is a proper subset, then {ek}k∈I is not complete in H and
cannot be a frame forH. However, {ek}k∈I is a frame for span{ek}k∈I ,
i.e., it is a frame sequence. �

Since a frame {fk}∞k=1 is a Bessel sequence, the operator

T : �2(N)→ H, T {ck}∞k=1 =

∞∑

k=1

ckfk (5.3)

is bounded by Theorem 3.2.3; T is called the synthesis operator or the
pre-frame operator. By Lemma 3.2.1, the adjoint operator is given by

T ∗ : H → �2(N), T ∗f = {〈f, fk〉}∞k=1. (5.4)

The operator T ∗ is called the analysis operator. By composing T and T ∗,
we obtain the frame operator

S : H → H, Sf = TT ∗f =

∞∑

k=1

〈f, fk〉fk. (5.5)

Note that since {fk}∞k=1 is a Bessel sequence, the series defining S converges
unconditionally for all f ∈ H by Corollary 3.2.5. We state some of the
important properties of S:

Lemma 5.1.5 Let {fk}∞k=1 be a frame with frame operator S and frame
bounds A,B. Then the following hold:

(i) S is bounded, invertible, self-adjoint, and positive.

(ii) {S−1fk}∞k=1 is a frame with bounds B−1, A−1; if A,B are the opti-
mal bounds for {fk}∞k=1, then the bounds B−1, A−1 are optimal for
{S−1fk}∞k=1. The frame operator for {S−1fk}∞k=1 is S−1.
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Proof. (i): S is bounded as a composition of two bounded operators. By
Theorem 3.2.3,

||S|| = ||TT ∗|| = ||T || ||T ∗|| = ||T ||2 ≤ B.

Since S∗ = (TT ∗)∗ = TT ∗ = S, the operator S is self-adjoint. The ine-
quality (5.2) means that A||f ||2 ≤ 〈Sf, f〉 ≤ B||f ||2 for all f ∈ H, or,
in the notation introduced in (2.9), AI ≤ S ≤ BI; thus S is positive.
Furthermore, 0 ≤ I −B−1S ≤ B−A

B I, and consequently

∣
∣
∣
∣I −B−1S

∣
∣
∣
∣ = sup

||f ||=1

∣
∣〈(I −B−1S)f, f〉

∣
∣ ≤ B −A

B
< 1,

which by Theorem 2.2.3 shows that S is invertible.

(ii): Note that for f ∈ H,

∞∑

k=1

|〈f, S−1fk〉|2 =

∞∑

k=1

|〈S−1f, fk〉|2 ≤ B ||S−1f ||2

≤ B ||S−1||2 ||f ||2.
That is, {S−1fk}∞k=1 is a Bessel sequence. It follows that the frame operator
for {S−1fk}∞k=1 is well defined. By definition, it acts on f ∈ H by

∞∑

k=1

〈f, S−1fk〉S−1fk = S−1
∞∑

k=1

〈S−1f, fk〉fk = S−1SS−1f

= S−1f ; (5.6)

this shows that the frame operator for {S−1fk}∞k=1 equals S−1. The ope-
rator S−1 commutes with both S and I, so using Theorem 2.4.3 we can
“multiply the inequality” AI ≤ S ≤ BI with S−1; this gives

B−1I ≤ S−1 ≤ A−1I,

i.e.,

B−1 ||f ||2 ≤ 〈S−1f, f〉 ≤ A−1 ||f ||2 , ∀f ∈ H.

Via (5.6),

B−1 ||f ||2 ≤
∞∑

k=1

|〈f, S−1fk〉|2 ≤ A−1 ||f ||2 , ∀f ∈ H;

thus {S−1fk}∞k=1 is a frame with frame bounds B−1, A−1. To prove the
optimality of the bounds (in case A,B are optimal for {fk}∞k=1), let A
be the optimal lower bound for {fk}∞k=1, and assume that the optimal
upper bound for {S−1fk}∞k=1 is C < 1

A . By applying what we already
proved to the frame {S−1fk}∞k=1 having frame operator S−1, we obtain
that {fk}∞k=1 = {(S−1)−1S−1fk}∞k=1 has the lower bound 1

C > A, but this
is a contradiction. Thus {S−1fk}∞k=1 has the optimal upper bound 1

A . The
argument for the optimal lower bound is similar. �
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The frame {S−1fk}∞k=1 is called the canonical dual frame of {fk}∞k=1

because it plays the same role in frame theory as the dual of a basis; see
Theorem 5.1.6 and Theorem 5.4.1.
The frame decomposition, stated below, is the most important frame

result. It shows that if {fk}∞k=1 is a frame for H, then every element in H
has a representation as a superposition of the frame elements. Thus it is
natural to view a frame as some kind of “generalized basis.”

Theorem 5.1.6 Let {fk}∞k=1 be a frame with frame operator S. Then

f =

∞∑

k=1

〈f, S−1fk〉fk, ∀f ∈ H, (5.7)

and

f =
∞∑

k=1

〈f, fk〉S−1fk, ∀f ∈ H. (5.8)

Both series converge unconditionally for all f ∈ H.

Proof. Let f ∈ H. Using the properties of the frame operator in
Lemma 5.1.5,

f = SS−1f =
∞∑

k=1

〈S−1f, fk〉fk =
∞∑

k=1

〈f, S−1fk〉fk.

Since {fk}∞k=1 is a Bessel sequence and {〈f, S−1fk〉}∞k=1 ∈ �2(N), the fact
that the series converges unconditionally follows from Corollary 3.2.5. The
expansion (5.8) is proved similarly, using that f = S−1Sf. �

Theorem 5.1.6 shows that all information about the given f ∈ H is
contained in the sequence {〈f, S−1fk〉}∞k=1. The numbers 〈f, S−1fk〉 are
called frame coefficients.
Theorem 5.1.6 also immediately reveals one of the main difficulties in

frame theory. In fact, in order for the expansions (5.7) and (5.8) to be
applicable in practice, we need to be able to find the operator S−1 or at
least to calculate its action on all fk, k ∈ N. In general, this is a major
problem. One way of circumventing the problem is to consider tight frames:

Corollary 5.1.7 If {fk}∞k=1 is a tight frame with frame bound A, then the
canonical dual frame is {A−1fk}∞k=1 and

f =
1

A

∞∑

k=1

〈f, fk〉fk, ∀f ∈ H. (5.9)
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Proof. If {fk}∞k=1 is a tight frame with frame bound A and frame operator
S, the definition shows that

〈Sf, f〉 =
∞∑

k=1

|〈f, fk〉|2 = A ||f ||2 = 〈Af, f〉, ∀f ∈ H.

By Lemma 2.4.4, this implies that S = AI; thus, S−1 acts by multiplication
by A−1, and the result follows from (5.7). �

Later we will discuss another way to avoid the problem of inverting the
frame operator S. In fact, for frames {fk}∞k=1 that are not bases, we prove
in Theorem 6.3.1 that one can find other frames {gk}∞k=1 than {S−1fk}∞k=1,
for which

f =

∞∑

k=1

〈f, gk〉fk, ∀f ∈ H. (5.10)

Such a frame {gk}∞k=1 is called a dual frame of {fk}∞k=1. Now, there is a
chance that even if the canonical dual frame is difficult to find, there exist
other duals that are (comparably) easy to find or have better properties. We
will see several such examples in the analysis of concrete frames consisting
of functions in L2(R), e.g., in the Gabor case in Section 12.5 or for wavelet
frames in Section 18.8. For general frames in Hilbert spaces, all duals are
characterized in Section 6.3.

Example 5.1.8 Let {ek}∞k=1 be an orthonormal basis for H and consider
the frame

{fk}∞k=1 = {e1, e1, e2, e3, ..};

see Example 5.1.4(i). The canonical dual frame is given by

{S−1fk}∞k=1 =

{
1

2
e1,

1

2
e1, e2, e3, ..

}

.

As examples of noncanonical dual frames, we mention

{gk}∞k=1 = {0, e1, e2, e3, ..}

and

{gk}∞k=1 =

{
1

3
e1,

2

3
e1, e2, e3, ..

}

.

We leave the verifications to the reader (Exercise 5.6). �

The following lemma shows that it is enough to check the frame condition
on a dense set.
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Lemma 5.1.9 Suppose that {fk}∞k=1 is a sequence of elements in H and
that there exist constants A,B > 0 such that

A ||f ||2 ≤
∞∑

k=1

|〈f, fk〉|2 ≤ B ||f ||2 (5.11)

for all f in a dense subset V of H. Then {fk}∞k=1 is a frame for H with
bounds A,B.

Proof. We proved already in Lemma 3.2.6 that {fk}∞k=1 is a Bessel seq-
uence with bound B if (5.11) is satisfied. We now prove that (5.11) implies
that the lower frame condition is satisfied on H. Expressed in terms of the
synthesis operator T , our assumption means that

A ||f ||2 ≤ ||T ∗f ||2, ∀f ∈ V. (5.12)

Since T ∗ is bounded and V is dense in H, it follows that (5.12) holds for
all f ∈ H. �

A note: the proof that the lower frame condition extends from a dense set
to H uses the assumption about the upper frame condition being satisfied.
Returning to the definition of a frame, it is clear that it is complicated

to deal with the condition (5.2) in general: how can we possibly check a
condition involving arbitrary vectors in an abstract Hilbert space? Let us
end this section with an observation by Stoeva, showing that in case we
know an orthonormal basis for the Hilbert space, we can turn the condition
into a condition involving finite sequences of scalars (Exercise 5.4).

Proposition 5.1.10 Let {fk}∞k=1 be a sequence in a Hilbert space H, hav-
ing an orthonormal basis {ek}∞k=1. Furthermore, let A,B > 0 be given.
Finally, let

S :=

{

{ck}∞k=1 ∈ �2(N)
∣
∣ {ck}∞k=1 is finite and

∞∑

k=1

|ck|2 = 1

}

.

Then the following hold:

(i) If A ≤
∑∞

k=1

∣
∣
∣
∑∞

j=1 cj〈ej , fk〉
∣
∣
∣
2

≤ B for all {ck}∞k=1 ∈ S, then

{fk}∞k=1 is a frame for H with bounds A,B.

(ii) There exists a countable collection of sequences {c(�)j }∞j=1 ∈ S, � ∈ N,
such that {fk}∞k=1 is a frame for H with bounds A,B if

A ≤
∞∑

k=1

∣
∣
∣
∣
∣
∣

∞∑

j=1

c
(�)
j 〈ej , fk〉

∣
∣
∣
∣
∣
∣

2

≤ B, ∀� ∈ N.
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Proposition 5.1.10 is motivated by the characterization of Riesz sequences
in Corollary 3.7.4. We note that for infinite-dimensional Hilbert spaces, the
case of Riesz sequences is easier: the condition in Corollary 3.7.4 does not
involve knowledge of an appropriate orthonormal basis, and no infinite sum
appears in the condition. We return to a further comparison of these results
in Section 8.3.

5.2 Frame Sequences

Frame sequences and Riesz sequences are useful concepts in cases where
we only obtain (or are interested in) expansions in subspaces. As a mathe-
matical example, consider L2(−π, π) versus L2(R): restricting the functions
in a frame for L2(R) to the interval ] − π, π[ gives a frame for L2(−π, π).
On the other hand, if we extend the functions in a frame for L2(−π, π) to
functions in L2(R), by defining them to be zero on R\] − π, π[, we obtain
a frame sequence in L2(R). Concrete examples of frame sequences appear
in Chapter 9, where we study frames of translates.
The terminology is also useful in signal processing, where it might be

known that the class of relevant signals for a concrete application belongs
to a certain subspace of L2(R) (e.g., the Paley–Wiener space of functions
whose Fourier transform has support in [−π, π]).
We state a criteria for a frame sequence being a frame:

Lemma 5.2.1 Let {fk}∞k=1 be a frame sequence in H, with synthesis ope-
rator T : �2(N) → H. Then {fk}∞k=1 is a frame for H if and only if T ∗ is
injective.

Proof. Since {fk}∞k=1 is a frame sequence, RT = span{fk}∞k=1. Because
NT∗ = R⊥

T , the operator T ∗ is injective if and only if the range of T is
dense in H. �

If {fk}∞k=1 is a frame sequence, we can extend Lemma 3.5.2 concerning
the Gram matrix:

Proposition 5.2.2 If {fk}∞k=1 is a frame sequence in H, then the associ-
ated Gram matrix defines a bounded invertible operator from the Banach
space RT∗ onto RT∗ , with a bounded inverse.

Proof. If {fk}∞k=1 is a frame sequence, then RT = span{fk}∞k=1. Since
H = RT ⊕R⊥

T = RT ⊕NT∗ , we can write any f ∈ H as f = T {ck}∞k=1 + z
for some {ck}∞k=1 ∈ �2(N), z ∈ NT∗ . Thus,

T ∗f = T ∗T {ck}∞k=1.

Therefore RT∗T = RT∗ . The rest follows from Lemma 3.5.2 and
Theorem 2.2.2. �
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If {fk}∞k=1 is a frame sequence, we can consider the frame operator as a
bijective bounded operator S : span{fk}∞k=1 → span{fk}∞k=1 and write the
frame decomposition on the usual form,

f =

∞∑

k=1

〈f, S−1fk〉fk, f ∈ span{fk}∞k=1. (5.13)

Let us follow up on the short discussion of dual frames on page 125.
Also for a frame sequence {fk}∞k=1, we can look for sequences {gk}∞k=1 �=
{S−1fk}∞k=1 such that

f =

∞∑

k=1

〈f, gk〉fk, ∀f ∈ span{fk}∞k=1. (5.14)

For frame sequences, the gained flexibility is even larger than for frames,
because the sequence {gk}∞k=1 is not a priori required to belong to
span{fk}∞k=1. Depending on the exact constraints put on {gk}∞k=1, it is
called a pseudodual of {fk}∞k=1 (by Li and Ogawa in [492]) or an oblique dual
(see [169]). We also note that Li and Ogawa [493] have defined the general
concept of a pseudoframe for a subspace; in this case, neither the sequence
itself nor its “dual” is required to belong to the subspace where the “frame-
like” expansion takes place. We will not go into the theory of these types
of duals but just refer to the above papers and the references therein.
A concrete case will be considered in Section 9.5.
Let us end this section with a result that connects frames, frame

sequences, and orthogonal projections.

Proposition 5.2.3 Let V denote a closed subspace of a Hilbert space H.
Then the following holds:

(i) If {fk}∞k=1 is a frame for H with frame bounds A,B and P denotes
the orthogonal projection of H onto V, then {Pfk}∞k=1 is a frame for
V with frame bounds A,B.

(ii) If {fk}∞k=1 is a frame for V with frame operator S : V → V , then the
orthogonal projection of H onto V is given by

Pf =

∞∑

k=1

〈f, S−1fk〉fk, f ∈ H. (5.15)

The proof of (i) is left to the reader (Exercise 5.10), and the proof of (ii) is
identical to the proof of Theorem 1.1.9.

5.3 Frames and Operators

Lemma 5.1.5 shows that if {fk}∞k=1 is a frame, then the canonical dual
{S−1fk}∞k=1 is also a frame. This is a special case of a much more general
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result: {Ufk}∞k=1 is actually a frame for a large class of operators U . For
later reference, we state some general versions of this result, where we
assume that U is a bounded operator with closed range RU . We denote the
pseudo-inverse (see Lemma 2.5.1) of such an operator U by U †.

Proposition 5.3.1 Let {fk}∞k=1 be a frame for H with bounds A,B, and
let U �= 0 be a bounded operator on H with closed range. Then {Ufk}∞k=1

is a frame sequence with frame bounds A ||U †||−2, B ||U ||2.

Proof. If f ∈ H, then

∞∑

k=1

|〈f, Ufk〉|2 ≤ B ||U∗f ||2 ≤ B ||U ||2 ||f ||2,

which proves that {Ufk}∞k=1 is a Bessel sequence. For the lower frame con-
dition, let g ∈ RU ; we can write g = Uf for some f ∈ H. By Lemma 2.5.2,
the operator UU † is the orthogonal projection onto RU and therefore
self-adjoint. Therefore

g = Uf = (UU †)∗Uf = (U †)∗U∗Uf.

It follows that

||g||2 ≤ ||(U †)∗||2 ||U∗Uf ||2

≤ ||(U †)∗||2
A

∞∑

k=1

|〈U∗Uf, fk〉|2

=
||U †||2

A

∞∑

k=1

|〈g, Ufk〉|2.

Thus the lower frame condition is satisfied for all g ∈ RU . �

Exercise 5.11 shows that the conclusion in Proposition 5.3.1 might fail
if U does not have closed range. And even if U has closed range, it is not
enough to assume that {fk}∞k=1 is a frame sequence (Exercise 5.12).

Corollary 5.3.2 Assume that {fk}∞k=1 is a frame for H with bounds A,B
and that U : H → H is a bounded surjective operator. Then {Ufk}∞k=1 is a
frame for H with frame bounds A ||U †||−2, B ||U ||2.

In the next result it is enough to assume that {fk}∞k=1 is a frame sequence.
We leave the proof to the reader (Exercise 5.13).

Lemma 5.3.3 If {fk}∞k=1 is a frame sequence with frame bounds A,B and
U : H → H is a unitary operator, then {Ufk}∞k=1 is a frame sequence with
frame bounds A,B.
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Corollary 5.3.4 If {fk}∞k=1 is a frame for H with frame bounds A,B and
U : H → H is a unitary operator, then {Ufk}∞k=1 is also a frame for H
with frame bounds A,B.

More connections between frames and operators will appear later, e.g.,
in Theorem 5.5.4.

5.4 Frames and Bases

Let us now mention some important relationships between frames and Riesz
bases. Much more information is contained in Chapter 7.

Theorem 5.4.1 A Riesz basis {fk}∞k=1 for H is a frame for H, and the
Riesz basis bounds coincide with the frame bounds. The dual Riesz basis is
{S−1fk}∞k=1.

Proof. By Proposition 3.6.4, a Riesz basis {fk}∞k=1 for H is also a frame
for H; if we also involve Proposition 3.6.7, we obtain the statement about
the bounds. The rest follows from the frame decomposition combined with
the uniqueness part of Theorem 3.6.2. �

A frame which is not a Riesz basis is said to be overcomplete; in the
literature, the terms nonexact frame and redundant frame are also used.
Theorem 7.1.1 (vii) will explain why the word “overcomplete” is used: in
fact, if {fk}∞k=1 is a frame which is not a Riesz basis, there exist coefficients
{ck}∞k=1 ∈ �2(N) \ {0} for which

∞∑

k=1

ckfk = 0.

We have already seen in Theorem 5.1.6 that the frame coefficients
{〈f, S−1fk〉}∞k=1 lead to a representation of the given f ∈ H. As in
the finite-dimensional case, the frame coefficients {〈f, S−1fk〉}∞k=1 have
minimal �2-norm among all sequences representing f :

Lemma 5.4.2 Let {fk}∞k=1 be a frame for H and let f ∈ H. If f has a
representation f =

∑∞
k=1 ckfk for some coefficients {ck}∞k=1, then

∞∑

k=1

|ck|2 =

∞∑

k=1

|〈f, S−1fk〉|2 +
∞∑

k=1

|ck − 〈f, S−1fk〉|2.

The proof is identical to the proof of Theorem 1.1.5(iii). As a consequence
of Lemma 5.4.2 and Theorem 2.5.3, we obtain an explicit expression for the
pseudo-inverse of the synthesis operator:
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Theorem 5.4.3 Let {fk}∞k=1 be a frame for H with synthesis operator T
and frame operator S. Then

T †f = {〈f, S−1fk〉}∞k=1, ∀f ∈ H.

The optimal frame bounds can be expressed in terms of the operators
T, S and their inverses/pseudo-inverses:

Proposition 5.4.4 The optimal frame bounds A,B for a frame {fk}∞k=1

are given by

A = ||S−1||−1 = ||T †||−2, B = ||S|| = ||T ||2.

Proof. By definition and using (2.8),

B = sup
||f ||=1

∞∑

k=1

|〈f, fk〉|2 = sup
||f ||=1

〈Sf, f〉 = ||S||.

Applying this on the dual frame {S−1fk}∞k=1 (which has frame operator S−1

and the optimal upper bound 1
A by Lemma 5.1.5), we obtain 1

A = ||S−1||.
For the rest, S = TT ∗ implies that ||S|| = ||TT ∗|| = ||T ||2. Finally, via
Theorem 5.4.3 and Lemma 5.1.5,

||T †f ||2 =

∞∑

k=1

|〈f, S−1fk〉|2 ≤
1

A
||f ||2,

where 1
A is the smallest possible constant; thus ||T †||2 = 1

A . �

Chapter 9–20 will give us several examples of overcomplete frames for
L2(0, 1) and L2(R). For the moment we do not go into those constructions,
but we just note that already Example 4.1.1 illustrates what is meant by
a frame being overcomplete:

Example 5.4.5 Let us return to Example 4.1.1, where we considered the
orthonormal basis {ek}k∈Z = {e2πikx}k∈Z for L2(0, 1). Let I ⊂ [0, 1] be a
proper subinterval, |I| < 1. Since

∑

k∈Z

|〈f, ek〉|2 = ||f ||2, ∀f ∈ L2(0, 1),

the equality in particular holds for all f ∈ L2(I). So {ek}k∈Z is a tight
frame for L2(I). We have already proved that it is overcomplete. However,
recall from Lemma 1.7.2 that {ek}k∈Z is linearly independent. �

Example 5.4.5 points at a central property of frames: they can be over-
complete and linearly independent at the same time. The reason for this is
the difference between linear independence (i.e., independence of all finite
subsets) and ω-independence, as discussed in Section 3.1. For frames, the
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correct notion of independence is ω-independence; we return to this point
in Section 7.1.
Misled by the situation in the finite-dimensional setting, one could exp-

ect that if span{fk}∞k=1 = H, then every f ∈ H would have an expansion
f =

∑∞
k=1 ckfk for certain scalar coefficients {ck}∞k=1. However, in an

infinite-dimensional Hilbert space, this does not necessarily hold. We give
an example below; the example will be used several times in the sequel.

Example 5.4.6 Let {ek}∞k=1 be an orthonormal basis for H and define

fk := ek + ek+1, k ∈ N.

We will show that:

(i) span{fk}∞k=1 = H;

(ii) {fk}∞k=1 is a Bessel sequence but not a frame;

(iii) There exists f ∈ H that cannot be written on the form
∑∞

k=1 ckfk
for any choice of the coefficients ck.

(iv) {fk}∞k=1 is minimal and that its unique biorthogonal sequence
{gk}∞k=1 is given by

gk = (−1)k
k∑

j=1

(−1)jej , k ∈ N.

To prove (i), i.e., that {fk}∞k=1 is complete, assume that f ∈ H and that

〈f, fk〉 = 0 for all k ∈ N.

Then 〈f, ek〉 = −〈f, ek+1〉 for all k ∈ N, implying that |〈f, ek〉| is a constant.
Since

∞∑

k=1

|〈f, ek〉|2 = ||f ||2 <∞,

we conclude that 〈f, ek〉 = 0, ∀k, so f = 0. Thus {fk}∞k=1 is complete.
We now prove (ii); we first show that {fk}∞k=1 is a Bessel sequence. For

that purpose, we will use that for any a, b ∈ R, the inequality (a + b)2 ≤
2(a2 + b2) holds. Now, for any f ∈ H,

∞∑

k=1

|〈f, ek + ek+1〉|2 =
∞∑

k=1

|〈f, ek〉+ 〈f, ek+1〉|2

≤
∞∑

k=1

(|〈f, ek〉|+ |〈f, ek+1〉|)2

≤ 2

∞∑

k=1

|〈f, ek〉|2 + 2

∞∑

k=1

|〈f, ek+1〉|2

≤ 4 ||f ||2.
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This proves that {fk}∞k=1 is a Bessel sequence. However, {fk}∞k=1 does not
satisfy the lower frame condition. To see this, consider the vectors

gj :=

j∑

n=1

(−1)n+1en, j ∈ N.

We note that ||gj ||2 = j for all j ∈ N. Let us now calculate the inner
products 〈gj , fk〉. Considering a fixed j ∈ N, we see that

〈gj , fk〉 = 〈e1 − e2 + · · ·+ (−1)j+1ej , ek + ek+1〉 =

⎧
⎪⎨

⎪⎩

0 if k > j;

(−1)j+1 if k = j;

0 if k < j.

Therefore
∞∑

k=1

|〈gj , fk〉|2 = 1 =
1

j
||gj ||2.

Since this holds for all j ∈ N, we see that {fk}∞k=1 does not satisfy the
lower frame condition; this completes the proof of (ii).
Concerning (iii), despite the fact that {fk}∞k=1 is complete, there exists

f ∈ H that cannot be written as f =
∑∞

k=1 ckfk for any choice of the
coefficients {ck}∞k=1. As a concrete example, take f = e1.
We now prove the first part of (iv), namely, that {fk}∞k=1 is minimal.

Assume the opposite, i.e., that for some j ∈ N,

fj ∈ span{fk}k �=j

= span{e1 + e2, e2 + e3, . . . , ej−1 + ej , ej+1 + ej+2, . . . }.
(5.16)

Note that the space in (5.16) is an orthogonal sum of the sub-
spaces span{e1 + e2, e2 + e3, . . . , ej−1 + ej} and span{ej+1 + ej+2, . . . }.
Letting P denote the orthogonal projection of H onto
span{e1 + e2, e2 + e3, . . . , ej−1 + ej} it follows that

ej = Pfj ∈ span{e1 + e2, e2 + e3, . . . , ej−1 + ej},
a conclusion that certainly does not hold. Thus fj /∈ span{fk}k �=j , i.e.,
{fk}∞k=1 is minimal. By Lemma 3.3.1, {fk}∞k=1 has a unique biorthogonal
sequence {gk}∞k=1, which is determined by the conditions

〈gk, ek + ek+1〉 = 1, 〈gk, ej + ej+1〉 = 0 for j �= k. (5.17)

In order to find {gk}∞k=1, fix k ∈ N, and let C := 〈gk, ek〉. Then the first
condition in (5.17) implies that 〈gk, ek+1〉 = 1−C; now the second condition
implies that, in general for j > k, |〈gk, ej〉| = |1−C|. Because {ej}∞j=1 is a
Bessel sequence, we know that

∞∑

j=k+1

|〈gk, ej〉|2 ≤
∞∑

j=1

|〈gk, ej〉|2 <∞,
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so it follows that C = 1, i.e.,

〈gk, ek〉 = 1 and 〈gk, ej〉 = 0 for j > k.

Now apply the second condition in (5.17) for j = k − 1, k − 2, . . . , 1; this
shows that 〈gk, ej〉 = (−1)k−j , j = 1, . . . , k.We now put all the information
together and conclude that the biorthogonal sequence is given by

gk =

∞∑

j=1

〈gk, ej〉ej =
k∑

j=1

(−1)k−jej = (−1)k
k∑

j=1

(−1)jej.

This concludes the proof of (iv).
Note that the example demonstrates that the union of bases for sub-

spaces might not be a basis or a frame. In fact, { 1√
2
(e2k−1 + e2k)}∞k=1 is an

orthonormal basis for span{e2k−1 + e2k}∞k=1, and { 1√
2
(e2k + e2k+1)}∞k=1 is

an orthonormal basis for span{e2k+e2k+1}∞k=1. But the union is the family
{

1√
2
(ek + ek+1)

}∞

k=1

,

which is not a basis or a frame for

span

{
1√
2
(ek + ek+1)

}∞

k=1

= H.

There does not exist a basis for H containing {fk}∞k=1 as a subset (Exer-
cise 5.15). Furthermore, in Example 22.2.3, we prove that {fk}∞k=1 cannot
be extended to a frame for H by adding a finite number of elements.
But it follows from (ii) that if a sequence {hk}∞k=1 is a frame, then also
{hk}∞k=1 ∪ {fk}∞k=1 is a frame.

Note that an extension is stated in Exercise 5.14: even if {fk}∞k=1 is
assumed to be a Riesz basis, {fk + fk+1}∞k=1 cannot be a frame. We will
see in Proposition 9.2.8 that the situation is different if {fk}∞k=1 is allowed
to be a frame. �

Because a frame {fk}∞k=1 might be overcomplete, it is possible that rem-
oval of an element fj leaves us with a sequence {fk}k �=j that is still a frame.
It turns out that whether this happens or not can be determined based on
the value of the frame coefficient 〈fj , S−1fj〉:

Theorem 5.4.7 The removal of a vector fj from a frame {fk}∞k=1 for H
leaves either a frame or an incomplete set. More precisely:

(i) If 〈fj , S−1fj〉 �= 1, then {fk}k �=j is a frame for H;

(ii) If 〈fj , S−1fj〉 = 1, then {fk}k �=j is incomplete.
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Proof. Choose j ∈ N arbitrarily. By the frame decomposition,

fj =

∞∑

k=1

〈fj , S−1fk〉fk.

Define, for notational convenience, ak = 〈fj , S−1fk〉, so fj =
∑∞

k=1 akfk.
Clearly, we also have fj =

∑∞
k=1 δj,kfk, so Lemma 5.4.2 yields the following

relation between δj,k and ak:

1 =

∞∑

k=1

|δj,k|2 =

∞∑

k=1

|ak|2 +
∞∑

k=1

|ak − δj,k|2

= |aj |2 +
∑

k �=j

|ak|2 + |aj − 1|2 +
∑

k �=j

|ak|2.

We consider the cases aj = 1 and aj �= 1 separately. First, suppose that
aj = 1. From the above formula,

∑
k �=j |ak|2 = 0, so that

ak = 〈S−1fj , fk〉 = 0 for all k �= j.

Since aj = 〈S−1fj , fj〉 = 1, we know that S−1fj �= 0. Thus we have found
a nonzero element S−1fj which is orthogonal to {fk}k �=j , so {fk}k �=j is
incomplete. This proves (ii).
Suppose now that aj �= 1; then fj = 1

1−aj

∑
k �=j akfk. For any f ∈ H,

Cauchy–Schwarz inequality gives

|〈fj , f〉|2 =

∣
∣
∣
∣

1

1− aj

∑

k �=j

ak〈fk, f〉
∣
∣
∣
∣

2

≤ 1

|1− aj |2
∑

k �=j

|ak|2
∑

k �=j

|〈fk, f〉|2

= C
∑

k �=j

|〈f, fk〉|2,

where C = 1
|1−aj |2

∑
k �=j |ak|2. Let A denote a lower frame bound for

{fk}∞k=1. Then

A ||f ||2 ≤
∞∑

k=1

|〈f, fk〉|2 =
∑

k �=j

|〈f, fk〉|2 + |〈f, fj〉|2

≤ (1 + C)
∑

k �=j

|〈f, fk〉|2,

showing that {fk}k �=j satisfies the lower frame condition with lower bound
A

1+C . Clearly {fk}k �=j also satisfies the upper frame condition. Thus {fk}k �=j

is a frame; this proves (i). �
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We return to a related result in Corollary 22.2.2. The proof of Theo-
rem 5.4.7 shows an interesting property of {fk}∞k=1 and the dual frame
{S−1fk}∞k=1, which will be used later.

Proposition 5.4.8 If {fk}∞k=1 is an exact frame, then {fk}∞k=1 and
{S−1fk}∞k=1 are biorthogonal and {fk}∞k=1 is a basis for H.

Proof. Assume that {fk}∞k=1 is an exact frame and fix j ∈ N. Then
{fk}k �=j is not a frame, implying by Theorem 5.4.7 that 〈fj , S−1fj〉 = 1.
The proof of Theorem 5.4.7 now shows that 〈fj , S−1fk〉 = δj,k, i.e., that
{fk}∞k=1 and {S−1fk}∞k=1 are biorthogonal. By the frame decomposition,
we have that every f ∈ H can be expressed as f =

∑∞
k=1〈f, S−1fk〉fk.

In order to show that {fk}∞k=1 is a basis, it is enough to show that this
representation is unique. But if f =

∑∞
k=1 bkfk for some coefficients bk,

then

〈f, S−1fk〉 =
〈 ∞∑

j=1

bjfj , S
−1fk

〉

=

∞∑

j=1

bj〈fj , S−1fk〉 = bk. �

In Theorem 7.1.1 we will prove more: an exact frame is actually a Riesz
basis.

5.5 Characterization of Frames

Let us for a moment go back to the definition of a frame. In order to
check that a sequence {fk}∞k=1 is a frame, we have to verify the existence
of a positive lower frame bound A and a finite upper frame bound B.
Intuitively, the lower frame condition is the most critical to verify: bad
upper estimates on

∑∞
k=1 |〈f, fk〉|2 will sometimes force us to take a larger

value for B than necessary, but bad lower estimates can easily make it
impossible to find a value for A which can be used for all f ∈ H. Later
we will see more exact statements, which support this observation. For
example, Proposition 11.5.2 will show that relatively weak decay conditions
on a function g ∈ L2(R) imply that a Gabor system {EmbTnag}m,n∈Z

satisfies the upper frame condition, but no similar statement about the
lower frame condition exists (unless we are allowed to vary the parameter
b; see Proposition 11.5.3).
We now give a characterization of frames in terms of the synthesis op-

erator, which was proved by Christensen [153]. It does not involve any
knowledge of the frame bounds.
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Theorem 5.5.1 A sequence {fk}∞k=1 in H is a frame for H if and only if

T : {ck}∞k=1 →
∞∑

k=1

ckfk

is a well-defined mapping of �2(N) onto H.

Proof. First, suppose that {fk}∞k=1 is a frame. By Theorem 3.2.3, T is a
well-defined bounded operator from �2(N) into H, and by Lemma 5.1.5(i),
the frame operator S = TT ∗ is surjective. Thus T is surjective. For the
opposite implication, suppose that T is a well-defined operator from �2(N)
onto H. Then Lemma 3.2.1 shows that T is bounded and that {fk}∞k=1 is
a Bessel sequence. Let T † : H → �2(N) denote the pseudo-inverse of T , as
defined in Section 2.5. For f ∈ H, we have

f = TT †f =

∞∑

k=1

(T †f)kfk,

where (T †f)k denotes the k-th coordinate of T †f . Thus

||f ||4 = |〈f, f〉|2 = |〈
∞∑

k=1

(T †f)kfk, f〉|2

≤
∞∑

k=1

|(T †f)k|2
∞∑

k=1

|〈f, fk〉|2 ≤ ||T †||2 ||f ||2
∞∑

k=1

|〈f, fk〉|2;

we conclude that
∞∑

k=1

|〈f, fk〉|2 ≥
1

||T †||2 ||f ||
2. �

For an arbitrary sequence {fk}∞k=1 in a Hilbert space, span{fk}∞k=1 is
itself a Hilbert space, and Theorem 5.5.1 leads to a statement about frame
sequences:

Corollary 5.5.2 A sequence {fk}∞k=1 in H is a frame sequence if and only
if the synthesis operator is well-defined on �2(N) and has closed range.

In terms of the adjoint of the synthesis operator, we have:

Corollary 5.5.3 For a sequence {fk}∞k=1 in H, the following hold:

(i) {fk}∞k=1 is a frame sequence if and only if

f �→ {〈f, fk〉}∞k=1 (5.18)

is a well-defined map from H onto a closed subspace of �2(N).

(ii) If {fk}∞k=1 is a frame sequence, it is a frame for H if and only if the
map (5.18) is injective.
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Proof. The proof of (i) uses that a bounded operator has closed range
if and only if its adjoint operator has closed range. First, assume that
{fk}∞k=1 is a frame sequence. Then the synthesis operator T is well-defined
and bounded, and the range is closed. Therefore T ∗ is well-defined and has
closed range. For the opposite implication, if (5.18) mapsH into �2(N), then
{fk}∞k=1 is a Bessel sequence (Exercise 3.11). Thus the synthesis operator T
is well defined and bounded; furthermore, if the range of the map in (5.18) is
closed, the same is true for T . This implies by Corollary 5.5.2 that {fk}∞k=1

is a frame sequence.
For the proof of (ii), we note that RT = (NT∗)⊥. Thus, if {fk}∞k=1 is

a frame for H, then T ∗ is injective. On the other hand, if (5.18) defines
an injective mapping, then {fk}∞k=1 is complete in H; thus, if {fk}∞k=1 is a
frame sequence, it is a frame for H. �

Recall that Riesz bases for H are characterized as the families {Uek}∞k=1,
where {ek}∞k=1 is an orthonormal basis for H and U : H → H is bounded
and invertible. We can now give a similar characterization of frames:

Theorem 5.5.4 Let {ek}∞k=1 be an arbitrary orthonormal basis for H. The
frames for H are precisely the families {Uek}∞k=1, where U : H → H is a
bounded and surjective operator.

Proof. Let {δk}∞k=1 be the canonical basis for �2(N) and {ek}∞k=1 an
orthonormal basis for H. Let Φ : H → �2(N) be the isometric isomorphism
defined by Φek = δk. If {fk}∞k=1 is a frame, then the synthesis operator T is
bounded and surjective, and Tδk = fk. With U := TΦ, we have {fk}∞k=1 =
{Uek}∞k=1, and U is bounded and surjective. That every family {Uek}∞k=1 of
the described type is a frame follows from Theorem 5.5.1 (see Exercise 5.17).
Alternatively, we can observe that

∑∞
k=1 |〈f, Uek〉|2 = ||U∗f ||2, and refer

to Lemma 2.4.1. �

Via Theorem 5.5.1, the question of existence of an upper and a lower
frame bound is replaced by an investigation of infinite series: we have to
check that

∑∞
k=1 ckfk converges for all {ck}∞k=1 ∈ �2(N) and that each

f ∈ H can be represented via such an infinite series. The other results
mentioned here do not involve the frame bounds either. We now state a
characterization of frames which keeps the information about the frame
bounds.

Lemma 5.5.5 A sequence {fk}∞k=1 in H is a frame for H with bounds
A,B if and only if the following conditions are satisfied:

(i) {fk}∞k=1 is complete in H.

(ii) The synthesis operator T is well-defined on �2(N) and

A

∞∑

k=1

|ck|2 ≤ ||T {ck}∞k=1||2 ≤ B

∞∑

k=1

|ck|2, ∀{ck}∞k=1 ∈ N⊥
T . (5.19)
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Proof. Theorem 3.2.3 gives the first part: the upper frame condition with
bound B is equivalent to the right-hand inequality in (5.19) (it is clear
that it is enough to check the condition for {ck}∞k=1 ∈ N⊥

T ). We therefore
assume that {fk}∞k=1 is a Bessel sequence and prove the equivalence of the
lower frame condition and the left-hand inequality in (5.19) together with
completeness.
First, assume that {fk}∞k=1 satisfies the lower frame condition with

bound A. Then (i) is satisfied. Note that RT∗ is closed because RT is
closed (the latter is equal to H because {fk}∞k=1 is a frame). Therefore

N⊥
T = RT∗ = RT∗ ,

i.e., N⊥
T consists of all sequences of the form {〈f, fk〉}∞k=1, f ∈ H. Now,

given f ∈ H,

( ∞∑

k=1

|〈f, fk〉|2
)2

= |〈Sf, f〉|2 ≤ ||Sf ||2 ||f ||2

≤ ||Sf ||2 1

A

∞∑

k=1

|〈f, fk〉|2.

This implies that

A

∞∑

k=1

|〈f, fk〉|2 ≤ ||Sf ||2 = ||T {〈f, fk〉}∞k=1||2,

as desired. For the other implication, assume that {fk}∞k=1 is complete
and that the left-hand inequality in (5.19) is satisfied. We first prove that
RT = H. Since span{fk}∞k=1 ⊂ RT , it is enough to prove that RT is closed.
Now, if {yn} is a sequence in RT , we can find a sequence {xn} in N⊥

T such
that yn = Txn; if yn converges to some y ∈ H, then (5.19) implies that
{xn} is a Cauchy sequence. Therefore {xn} converges to some x, which by
continuity of T satisfies Tx = y. Thus RT is closed and hence RT = H. Let
T † denote the pseudo-inverse of T . By Lemma 2.5.2 and (2.11), we know
that the operator T †T is the orthogonal projection onto N⊥

T and that TT †

is the orthogonal projection onto RT = H. Thus, for any {ck}∞k=1 ∈ �2(N),
the inequality (5.19) implies that

A ||T †T {ck}∞k=1||2 ≤ ||TT †T {ck}∞k=1||2 = ||T {ck}∞k=1||2. (5.20)

Again by (2.11), we haveNT † = R⊥
T , so (5.20) gives that ||T †||2 ≤ 1

A . Using
Lemma 2.5.2, we also have ||(T ∗)†||2 ≤ 1

A . But (T ∗)†T ∗ is the orthogonal
projection onto

R(T∗)† = R(T †)∗ = N⊥
T † = RT = H,
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so for all f ∈ H,

||f ||2 = ||(T ∗)†T ∗f ||2 ≤ 1

A
||T ∗f ||2 =

1

A

∞∑

k=1

|〈f, fk〉|2.

This shows that {fk}∞k=1 satisfies the lower frame condition as desired. �

Lemma 5.5.5 is probably most useful for theoretical considerations; see
the proof of Theorem 9.2.5 for an application.
A different approach to determine all frames for H was given by

Aldroubi [1]. Assuming that {fk}∞k=1 is a frame, he considered the
questions:

(i) Which conditions on the numbers {ulk}l,k∈N will imply that the
vectors

φl =

∞∑

k=1

ulkfk, l ∈ N (5.21)

are well-defined and constitute a frame for H?

(ii) Can all frames for H be constructed this way?

It is immediately clear that the answer to the second question is yes: the
frame decomposition associated with {fk}∞k=1 says that for any sequence
{φl}∞l=1 in H, we can write the elements as φl =

∑∞
k=1 ulkfk with

ulk = 〈φl, S
−1fk〉.

In case {φl}∞l=1 is a frame, the operator defined by {ulk}l,k∈N is bounded:

Proposition 5.5.6 Let {fk}∞k=1 and {φl}∞l=1 be frames for H. Then the
bi-infinite matrix U , where the lk-th entry is ulk = 〈φl, S

−1fk〉, defines a
bounded operator on �2(N).

Proof. Let b denote an upper frame bound for {φl}∞l=1 and A a lower frame
bound for {fk}∞k=1. The proof will use several frame results. First, we know
from Lemma 5.1.5 that {S−1fk}∞k=1 is a frame with upper bound 1/A. It
follows that {〈φl, S

−1fk〉}∞k=1 ∈ �2(N) for all l ∈ N and that
∑∞

k=1 ckS
−1fk

is convergent for all {ck}∞k=1 ∈ �2(N). If we also invoke Theorem 3.2.3, we
see that for all {ck}∞k=1 ∈ �2(N),

||U{ck}∞k=1||2 =

∞∑

l=1

∣
∣
∣
∣

∞∑

k=1

〈φl, S
−1fk〉ck

∣
∣
∣
∣

2

=

∞∑

l=1

∣
∣
∣
∣〈φl,

∞∑

k=1

ckS
−1fk〉

∣
∣
∣
∣

2

≤ b

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

ckS
−1fk

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ b

A

∞∑

k=1

|ck|2.

�

Concerning the first question, Aldroubi proves
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Proposition 5.5.7 Let {fk}∞k=1 be a frame and assume that a bi-infinite
matrix U = {ulk}l,k∈N defines a bounded operator on �2(N). Then the vec-
tors {φl}∞l=1 in (5.21) are well defined; they constitute a frame for H if and
only if there exists a constant C > 0 such that

∞∑

l=1

|〈φl, f〉|2 ≥ C

∞∑

k=1

|〈fk, f〉|2, ∀f ∈ H. (5.22)

Proof. Let B denote an upper frame bound for {fk}∞k=1. If U is bounded
on �2(N), then

∞∑

l=1

∣
∣
∣
∣

∞∑

k=1

ulkck

∣
∣
∣
∣

2

≤ ||U ||2
∞∑

k=1

|ck|2, ∀{ck}∞k=1 ∈ �2(N).

This implies that for any fixed l ∈ N, the map {ck}∞k=1 →
∑∞

k=1 ulkck
is a continuous linear functional on �2(N); since the dual of �2(N) equals
�2(N), we conclude that the rows in the matrix U are square summable,
{ulk}∞k=1 ∈ �2(N). Thus the vectors φl are well defined. By construction,

{〈φl, f〉}∞l=1 = U{〈fk, f〉}∞k=1, ∀f ∈ H;

from here, it follows that

∞∑

l=1

|〈φl, f〉|2 = ||U{〈fk, f〉}∞k=1||2 ≤ ||U ||2 ||{〈fk, f〉}∞k=1||2

≤ ||U ||2
∞∑

k=1

|〈fk, f〉|2 ≤ B ||U ||2 ||f ||2.

So {φl}∞l=1 is even a Bessel sequence. Now, if (5.22) is satisfied, it is clear
that {φl}∞l=1 is a frame; on the other hand, if {φl}∞l=1 is a frame with lower
bound a, then

∞∑

l=1

|〈φl, f〉|2 ≥ a ||f ||2 ≥ a

B

∞∑

k=1

|〈fk, f〉|2, ∀f ∈ H. �

The condition (5.22) can also be written as

∞∑

l=1

∣
∣
∣
∣

∞∑

k=1

〈fk, f〉ulk

∣
∣
∣
∣

2

≥ C
∞∑

k=1

|〈fk, f〉|2, ∀f ∈ H.

However, it is not clear from here which coefficients {ulk}k,l∈N will lead to
a frame {φl}∞l=1. A sufficient condition on {ulk}k,l∈N is given by
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Proposition 5.5.8 Let {fk}∞k=1 be a frame with bounds A,B. If the
numbers {ulk}k,l∈N satisfy the two conditions

b := sup
k∈N

∞∑

j=1

∣
∣
∣
∣

∞∑

l=1

ulkulj

∣
∣
∣
∣ <∞,

a := inf
k∈N

⎛

⎝
∞∑

l=1

|ulk|2 −
∑

j �=k

∣
∣
∣
∣

∞∑

l=1

ulkulj

∣
∣
∣
∣

⎞

⎠ > 0,

then {φl}∞l=1 defined by (5.21) is a frame with bounds aA, bB.

Proof. Let f ∈ H. Then

∞∑

l=1

|〈φl, f〉|2 =

∞∑

l=1

∣
∣
∣
∣〈

∞∑

k=1

ulkfk, f〉
∣
∣
∣
∣

2

=

∞∑

l=1

∣
∣
∣
∣

∞∑

k=1

ulk〈fk, f〉
∣
∣
∣
∣

2

=

∞∑

l=1

∞∑

k=1

|ulk|2 |〈fk, f〉|2

+

∞∑

l=1

∞∑

k=1

∑

j �=k

ulkulj〈fk, f〉〈f, fj〉

= (∗) + (∗∗).

By Cauchy–Schwarz’ inequality, we get

|(∗∗)| ≤
∞∑

k=1

∑

j �=k

|〈fk, f〉〈f, fj〉|
∣
∣
∣
∣

∞∑

l=1

ulkulj

∣
∣
∣
∣

≤

⎛

⎝
∞∑

k=1

∑

j �=k

|〈fk, f〉|2
∣
∣
∣
∣

∞∑

l=1

ulkulj

∣
∣
∣
∣

⎞

⎠

1/2

×

⎛

⎝
∞∑

k=1

∑

j �=k

|〈f, fj〉|2
∣
∣
∣
∣

∞∑

l=1

ulkulj

∣
∣
∣
∣

⎞

⎠

1/2

.

The two terms in the last product are actually identical. In fact, by
switching the order of summation and renaming the indices,

∞∑

k=1

∑

j �=k

|〈f, fj〉|2
∣
∣
∣
∣

∞∑

l=1

ulkulj

∣
∣
∣
∣ =

∞∑

j=1

∑

k �=j

|〈f, fj〉|2
∣
∣
∣
∣

∞∑

l=1

ulkulj

∣
∣
∣
∣

=
∞∑

k=1

∑

j �=k

|〈fk, f〉|2
∣
∣
∣
∣

∞∑

l=1

ulkulj

∣
∣
∣
∣.
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Thus

(∗∗) ≤
∞∑

k=1

∑

j �=k

|〈fk, f〉|2
∣
∣
∣
∣

∞∑

l=1

ulkulj

∣
∣
∣
∣,

and by the calculation at the beginning of the proof,

∞∑

l=1

|〈φl, f〉|2 ≥
∞∑

l=1

∞∑

k=1

|ulk|2 |〈fk, f〉|2

−
∞∑

k=1

∑

j �=k

|〈fk, f〉|2
∣
∣
∣
∣

∞∑

l=1

ulkulj

∣
∣
∣
∣

=

∞∑

k=1

|〈fk, f〉|2
⎛

⎝
∞∑

l=1

|ulk|2 −
∑

j �=k

∣
∣
∣
∣

∞∑

l=1

ulkulj

∣
∣
∣
∣

⎞

⎠

≥ a

∞∑

k=1

|〈fk, f〉|2.

The upper frame condition is proved similarly. �

Note that
∑∞

k=1 ulkujk is the inner product between the l-th and the
j-th row in U . This gives a geometric interpretation of the conditions in
Proposition 5.5.8: the lower condition, e.g., means that the inner product
of any row with itself is larger (uniformly over all rows) than the sum of
the absolute values of inner products between this row and all other rows.
Casazza proved in [113] that every frame in a complex Hilbert space is

a multiple of a sum of three orthonormal bases:

Theorem 5.5.9 Assume that H is a complex Hilbert space and that
{fk}∞k=1 is a frame for H with synthesis operator T . Then, for every
ε ∈]0, 1[, there exist three orthonormal bases {e1k}∞k=1, {e2k}∞k=1 and {e3k}∞k=1

for H such that

fk =
||T ||
1− ε

(e1k + e2k + e3k), ∀k ∈ N.

Proof. Let {ek}∞k=1 denote an orthonormal basis for H, and let {δk}∞k=1

be the canonical orthonormal basis for �2(N). Composing the synthesis
operator for {fk}∞k=1 with the isometric isomorphism fromH to �2(N) which
maps ek to δk, we obtain a bounded linear operator of H onto H, which
maps ek to fk; by a slight abuse of our standard notation, we denote it
by T . Given ε ∈]0, 1[, consider the operator

U : H → H, U :=
1

2
I +

1− ε

2

T

||T || . (5.23)



144 5 Frames in Hilbert Spaces

Since

||I − U || =
∣
∣
∣
∣

∣
∣
∣
∣
1

2
I − 1− ε

2

T

||T ||

∣
∣
∣
∣

∣
∣
∣
∣ ≤

1

2
+

1− ε

2
< 1,

we see that U is invertible. Using the polar decomposition in Lemma 2.4.6,
we can write U = V P , where V is unitary and P is a positive operator.
Observe that

||P || = ||V −1U || ≤ ||U || ≤ 1

2
+

1− ε

2
< 1.

Now we apply the second part of Lemma 2.4.6 to write P = 1
2 (W +W ∗),

where W,W ∗ are unitary. We can use these decompositions and (5.23) to
obtain an expression for the operator T as

T =
2 ||T ||
1− ε

(U − 1

2
I) =

2 ||T ||
1− ε

(V P − 1

2
I) =

||T ||
1− ε

(VW + VW ∗ − I) .

It follows from here that

{fk}∞k=1 = {Tek}∞k=1

=
||T ||
1− ε

(VW{ek}∞k=1 + VW ∗{ek}∞k=1 − {ek}∞k=1) .

Since VW and VW ∗ are unitary, the result now follows from Theorem 3.4.7.
�

Note that on the other hand we cannot conclude that every sum of three
orthonormal bases is a frame. Consider, for example, the one-dimensional
Hilbert space C; each of the complex numbers 1, e

2πi
3 , e

4πi
3 constitutes an

orthonormal basis for C, but 1 + e
2πi
3 + e

4πi
3 = 0.

In case H is a real Hilbert space, the representation of a positive operator
P with ||P || ≤ 1 as an average of two unitary operators is no longer valid.
However, a representation as a sum of 16 unitary operators holds. Inserting
this in the above proof, we obtain a representation of a frame as a sum of
17 orthonormal bases!
Theorem 5.5.9 is optimal in the sense that two orthonormal bases are

not enough to represent all frames:

Example 5.5.10 Let {ek}∞k=1 be an orthonormal basis for H (a real or
complex Hilbert space) and define the frame {fk}∞k=1 by

f1 = 0, fk = ek−1, k ≥ 2.

Assume that we could find orthonormal systems {e1k}∞k=1, {e2k}∞k=1 and
nonzero constants a, b such that fk = ae1k + be2k for all k. Then in par-
ticular f1 = 0 = ae11 + be21, which implies that span e11 = span e21. By

orthonormality we conclude that span e11 ⊆ span
(
{e1k}∞k=2 ∪ {e2k}∞k=2

)⊥
.

On the other hand H = span{fk}∞k=2 = span{ae1k + be2k}∞k=2, which is a
contradiction. �
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Using more advanced tools from operator theory one can prove that
the class of frames which can be written as a linear combination of two
orthonormal bases is exactly the class of Riesz bases. We refer to [113].

5.6 Continuous Frames

The frames discussed so far all lead to expansions of elements in Hilbert
spaces in terms of infinite sums. One can consider these frames as manifesta-
tions of a broader theory, which in general leads to integral representations
in Hilbert spaces. The following generalization of frames was proposed by
Kaiser [444] and independently by Ali, Antoine, and Gazeau [11] in 1993:

Definition 5.6.1 Let H be a complex Hilbert space and M a measure space
with a positive measure μ. A continuous frame for H is a family of vectors
{fk}k∈M for which:

(i) For all f ∈ H, k �→ 〈f, fk〉 is a measurable function on M ;

(ii) There exist constants A,B > 0 such that

A ||f ||2 ≤
∫

M

|〈f, fk〉|2dμ(k) ≤ B ||f ||2, ∀f ∈ H. (5.24)

{fk}k∈M is called a Bessel family if at least the upper condition in (5.24)
is satisfied.

Note that Kaiser used the name generalized frames for the continuous
frames. In our treatment we will borrow words from our treatment of (dis-
crete) frames without further comments (e.g., frame bounds, tight frames,
Parseval frames).
The discrete frames considered in Sections 5.1–5.5 correspond to the case

where M = N, equipped with the counting measure. Whether a continuous
frame {fk}k∈M is in fact a discrete frame or not, depends on the measure
space; thus, in certain cases it is necessary to be more careful and speak
about a continuous frame for H with respect to the measure space (M,μ).
Since {fk}k∈M in general is not a sequence, we have chosen the wording
“Bessel family” in Definition 5.6.1.
An important feature of continuous frames is that they unify several

aspects of the theory for continuous/discrete Gabor systems and wavelet
systems. We come back to this point in Chapters 11 and 15.
Let us derive the basic results for a continuous frame {fk}k∈M . First,

Cauchy–Schwarz’ inequality shows that the integral
∫
M
〈f, fk〉〈fk, g〉dμ(k)

is well defined for all f, g ∈ H. For a fixed f ∈ H, the mapping

g �→
∫

M

〈f, fk〉〈fk, g〉dμ(k)
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is clearly conjugated linear and bounded because
∣
∣
∣
∣

∫

M

〈f, fk〉〈fk, g〉dμ(k)
∣
∣
∣
∣

2

≤
∫

M

|〈f, fk〉|2dμ(k)
∫

M

|〈fk, g〉|2dμ(k)

≤ B2 ||f ||2 ||g||2. (5.25)

By Riesz’ representation theorem (Theorem 2.3.2), there exists a unique
element in H – we call it

∫
M
〈f, fk〉fkdμ(k) – such that

〈∫

M

〈f, fk〉fkdμ(k), g
〉

=

∫

M

〈f, fk〉〈fk, g〉dμ(k)

for all g ∈ H. By this procedure, we have defined a mapping

S : H → H, Sf =

∫

M

〈f, fk〉fkdμ(k).

It is easy to check that S is linear; using that

||Sf || = sup
||g||=1

|〈Sf, g〉|,

it follows by (5.25) that S is bounded and that ||S|| ≤ B. Note that by
definition S is positive,

A ||f ||2 ≤ 〈Sf, f〉 ≤ B ||f ||2, ∀f ∈ H.

Exactly as in the proof of Lemma 5.1.5, one can now prove that S is
invertible. Thus, every f ∈ H has the representations

f = S−1Sf =

∫

M

〈f, fk〉S−1fkdμ(k),

f = SS−1f =

∫

M

〈f, S−1fk〉fkdμ(k).

Remember that these representations have to be interpreted in the weak
sense. Sometimes stronger results (like pointwise convergence ifH = L2(R))
can be obtained in concrete cases.
Similar to the terminology for discrete frames, two Bessel families

{fk}k∈M and {gk}k∈M are called dual continuous frames if

f =

∫

M

〈f, fk〉gkdμ(k), ∀f ∈ H. (5.26)

Note that we above have introduced the frame operator directly, without
using the synthesis operator as we did for discrete frames. This is just a
matter of choice – in fact we could have followed exactly the same procedure
as in Section 5.1, see (5.3) and (5.4). To be more precise, if {fk}k∈M is a
Bessel family, we can define the synthesis operator T : L2(M,μ) → H in
the weak sense by

T {ck}k∈M =

∫

k∈M

ckfk dμ(k). (5.27)
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This is a bounded linear operator, with adjoint operator T ∗ : H →
L2(M,μ) given by (Exercise 5.22)

T ∗f = {〈f, fk〉}k∈M . (5.28)

The frame operator S : H → H is then S = TT ∗, as in the case of discrete
frames.
Continuous frames appear naturally in the setting of reproducing kernel

Hilbert spaces:

Definition 5.6.2 Let M denote a measure space with a positive measure
μ. A Hilbert space H consisting of functions f : M → C, for which all the
linear functionals Λx, x ∈M, given by

Λx : H → C, Λxf := f(x),

are continuous, is called a reproducing kernel Hilbert space (RKHS).

Let us now consider an RKHS H, which is a subset of L2(M,μ) for
some measure space M with a positive measure μ. We will assume that H
is equipped with the norm inherited from L2(M,μ). Riesz representation
theorem shows that there for any x ∈ M exists a unique element Kx ∈ H
such that

f(x) = 〈f,Kx〉, ∀f ∈ H.

Thus,
∫

M

|〈f,Kx〉|2 dμ(x) =
∫

M

|f(x)|2 dμ(x) = ||f ||2, ∀f ∈ H,

i.e., the functions {Kx}x∈M form a continuous Parseval frame for L2(M,μ).
The function

K : M ×M → C, K(x, y) := 〈Ky,Kx〉 = Ky(x) (5.29)

is called the reproducing kernel.
A concrete example of a RKHS is provided by the Paley–Wiener space;

see (3.58). As always, we consider the continuous representatives for the
equivalence classes in PW.

Lemma 5.6.3 The Paley–Wiener space PW is a RKHS with reproducing
kernel

K(x, y) = sinc(y − x).

The functions {Txsinc}x∈R form a continuous Parseval frame for PW.
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Proof. Fix x ∈ R, and consider f ∈ PW. Using the inverse Fourier
transform and that suppf̂ ⊆ [−1/2, 1/2],

|f(x)| =

∣
∣
∣
∣

∫ ∞

−∞
f̂(γ)e2πixγdγ

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ 1/2

−1/2

f̂(γ)e2πixγdγ

∣
∣
∣
∣

≤
(∫ 1/2

−1/2

|f̂(γ)|2 dγ
)1/2

= ||f̂ || = ||f ||.

Thus, for each x ∈ R the mapping f �→ f(x) is indeed continuous on the
Paley–Wiener space. Also, for x ∈ R,

f(x) =

∫ 1/2

−1/2

f̂(γ)e2πixγ dγ =

∫ ∞

−∞
f̂(γ)χ−1/2,1/2](γ)e

2πixγ dγ

= 〈f,F−1[χ−1/2,1/2](·)e−2πix·]〉
= 〈f, Txsinc〉.

This completes the proof. �

Continuous frames will appear at several occasions throughout the book;
see Section 11.1, Section 15.1, Section 21.7, and Section 24.1.

5.7 Exercises

5.1 Find an example of a sequence in a Hilbert space that is a basis but
not a frame.

5.2 Prove that the upper and lower frame conditions are unrelated: in an
arbitrary Hilbert spaceH, there exists a sequence {fk}∞k=1 satisfying
the upper condition for all f ∈ H but not the lower condition and
vice versa.

5.3 Let {ek}∞k=1 be an orthonormal basis and consider the family
{fk}∞k=1 := {e1 + 1

kek, ek}∞k=2.

(i) Prove that {fk}∞k=1 is not a Bessel sequence.

(ii) Find all possible representations of e1 as (infinite) linear
combinations of {fk}∞k=1.

(iii) Prove that there exists no set of coefficients having minimal
�1-norm among all sequences representing e1.
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5.4 The purpose of this exercise is to prove Proposition 5.1.10. Let
A,B > 0 be given, and consider a sequence {fk}∞k=1 in H.

(i) Show that {fk}∞k=1 is a frame with bounds A,B if (5.11) holds
for a dense set in

Ω := {f ∈ H
∣
∣ ||f || = 1}.

(ii) Let {ek}∞k=1 denote an orthonormal basis for H and show that
the set

{
N∑

k=1

ckek
∣
∣N ∈ N, |Re(ck)|2, |Im(ck)|2 ∈ Q,

N∑

k=1

|ck|2 = 1

}

is a countable and dense set in Ω.

5.5 Give an example of a frame {fk}∞k=1, for which
∑∞

k=1 ckfk converges
for some {ck}∞k=1 /∈ �2(N) (compare with Exercise 3.13!).

5.6 Verify the statements in Example 5.1.8.

5.7 Let {fk}∞k=1 be a frame sequence in H, with synthesis operator T :
�2(N) → H. Prove that {fk}∞k=1 is a frame for H if and only if T ∗

is injective.

5.8 Let H̃ be the complexification of a real Hilbert space H. Prove that
a frame for H also is a frame for H̃.

5.9 Let {fk}∞k=1 be a Riesz basis with bounds A,B. Prove that

A ≤ ||fk||2 ≤ B for all k ∈ N,

and that the elements in the dual Riesz basis {gk}∞k=1 satisfy

1

B
≤ ||gk||2 ≤

1

A
for all k ∈ N.

5.10 Prove Proposition 5.2.3.

5.11 Prove that the conclusion in Proposition 5.3.1 might fail if U
is not assumed to have closed range. (Hint: let {ek}∞k=1 be an
orthonormal basis and define U by Uek = ek + ek+1.)
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5.12 Let {ek}∞k=1 be an orthonormal basis for H, and define an operator
U on H by

Ue2k = e2k, Ue2k−1 =
1

k
e2k, k ∈ N.

Prove that:

(i) U is a well-defined bounded operator on H and RU is closed.

(ii) {e2k−1}∞k=1 is a frame sequence but {Ue2k−1}∞k=1 is not.
Thus Proposition 5.3.1 does not extend to frame sequences.

5.13 Prove Lemma 5.3.3.

5.14 Assume that {fk}∞k=1 is a Riesz basis. Prove that {fk + fk+1}∞k=1

cannot be a frame.

5.15 Show that the family {ek + ek+1}∞k=1 in Example 5.4.6 cannot be
extended to a basis for H.

5.16 Let {fk}k∈Z be a Riesz basis. Our purpose is to show that

{fk + fk+1}k∈Z

cannot be a frame; compare with Exercise 5.14. Let {gk}k∈Z be
the biorthogonal basis associated with {fk}k∈Z. Let

hj =

j∑

k=1

(−1)kgk.

(i) Prove that
∑

k∈Z
|〈hj , fk + fk+1〉|2 = 2.

(ii) Prove that ||hj ||2 ≥ j/B, where B is an upper frame bound
for {fk}k∈Z.

(iii) Conclude that {fk + fk+1}k∈Z is not a frame.

5.17 Prove via Theorem 5.5.1 that {Uek}∞k=1 is a frame whenever
{ek}∞k=1 is an orthonormal basis and U is a bounded surjective
operator.

5.18 Let {fk}∞k=1 be a frame sequence in H. Show that the orthogonal
projection Q of a sequence {ck}∞k=1 ∈ �2(N) onto the range of T ∗

is given by

Q{ck}∞k=1 =

⎧
⎨

⎩

〈 ∞∑

j=1

cjS
−1fj, fk

〉⎫
⎬

⎭

∞

k=1

. (5.30)
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5.19 Let U be a bounded operator between Hilbert spaces. Prove that
if at least one of the spaces RU and RUU∗ is closed, then

RU = RUU∗ .

5.20 Let {fk}∞k=1 = {Uek}∞k=1 be a Riesz basis for H as in Def-
inition 3.6.1. Prove that the frame operator for {fk}∞k=1 is
given by

S = UU∗.

5.21 Let {fk}∞k=1 be a frame with frame bounds A,B. Show that the
frame operator S satisfies the inequalities

A ||f || ≤ ||Sf || ≤ B ||f ||, ∀f ∈ H.

5.22 Let {fk}k∈M be a Bessel family in the sense of Definition 5.6.1.
Show that the synthesis operator T in (5.27) is well defined in
the weak sense as a bounded linear operator and that its adjoint
operator T ∗ is given by (5.28).



6
Tight Frames and Dual Frame Pairs

We have already highlighted the frame decomposition, which shows that a
frame {fk}∞k=1 for a Hilbert space H leads to the decomposition

f =

∞∑

k=1

〈f, S−1fk〉fk, ∀f ∈ H; (6.1)

here S : H → H denotes the frame operator. In practice, it is difficult to
apply the general frame decomposition, due to the fact that we need to
invert the frame operator. We have mentioned two ways to circumvent the
problem. The first one is to restrict our attention to tight frames: as we
have seen in Corollary 5.1.7, for a tight frame {fk}∞k=1 with frame bound
A, the frame decomposition takes the much simpler form

f =
1

A

∞∑

k=1

〈f, fk〉fk, ∀f ∈ H. (6.2)

The second way to avoid the problem is to use the flexibility in the
frame setup: if {fk}∞k=1 is a frame which is not a Riesz basis, we prove
in Theorem 6.3.1 that one can find frames {gk}∞k=1 �= {S−1fk}∞k=1, for
which

f =
∞∑

k=1

〈f, gk〉fk, ∀f ∈ H. (6.3)

As mentioned on page 125, such a frame {gk}∞k=1 is called a dual frame of
{fk}∞k=1. In the literature the terminology alternate dual frame is also used.
The hope is that one can find dual frames that are either easier to calculate

©
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than the canonical dual frame {S−1fk}∞k=1 or have better properties. We
will see several cases where this happens, e.g., in the context of Gabor
frames in Section 12.5 and for wavelet frames in Section 18.8.
Tight frames and the concept of dual frames were both introduced in

order to obtain what could be called convenient frame expansions. The
purpose of this chapter is to go more into details with these concepts. We
begin with a discussion of tight frames in Section 6.1. This is followed by
a treatment of an important extension problem in Section 6.2; the main
result states that any Bessel sequence in a separable Hilbert space H can
be extended to a tight frame. In Section 6.3, we give a detailed analysis
of frames and their various duals; the main results characterize all dual
frames associated with a given frame in various ways. In Section 6.4, the
extension problem in Section 6.2 is generalized to dual pairs of frames;
finally, a concept of approximately dual frames is discussed in Section 6.5.

6.1 Tight Frames

Assume that the vectors {fk}∞k=1 in a Hilbert space H form a tight frame.
By a scaling of the vectors, we can always obtain that the frame bound is
A = 1; in that case, the frame decomposition (6.2) takes exactly the same
form as the representation via an orthonormal basis; see (3.18). Thus, such
frames can be used without any additional computational effort compared
with the use of orthonormal bases. Recall that tight frames with frame
bound A = 1 are referred to as Parseval frames.
Tight frames have other advantages. For the design of frames with pre-

scribed properties, it is essential to be able to control the behavior of the
canonical dual frame, but the complicated structure of the frame operator
and its inverse makes this difficult. Assume, e.g., that we want to construct
a frame consisting of functions in L2(R), in such a way that the frame
{fk}∞k=1 and its canonical dual {S−1fk}∞k=1 consist of functions with exp-
onential decay. This is clearly a complicated task: even if we manage to
construct the frame {fk}∞k=1 such that the functions fk decay exponen-
tially, how can we guarantee that the same is the case for S−1fk? For tight
frames, questions of this type trivially have satisfying answers. Also, for a
tight frame, the canonical dual frame automatically has the same structure
as the frame itself: if the frame has wavelet structure or Gabor structure
as described in Section 3.8 and Section 3.9, the same is the case for the
canonical dual frame. In contrast, the canonical dual frame of a non-tight
wavelet frame might not have the wavelet structure; a concrete example is
given later; see Example 16.1.1.
It is important to notice that to every frame we can associate a canonical

tight frame with frame bound A = 1:
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Theorem 6.1.1 Let {fk}∞k=1 be a frame for H with frame operator S.
Then {S−1/2fk}∞k=1 is a Parseval frame, and

f =

∞∑

k=1

〈f, S−1/2fk〉S−1/2fk, ∀f ∈ H.

Proof. The existence of a unique positive square root of S−1 follows from
Lemma 2.4.5. Since S−1/2 is a limit of a sequence of polynomials in S−1,
it commutes with S−1 and therefore with S. Therefore, for f ∈ H,

f = S−1/2SS−1/2f =

∞∑

k=1

〈S−1/2f, fk〉S−1/2fk =

∞∑

k=1

〈f, S−1/2fk〉S−1/2fk.

By taking the inner product with f , we obtain that {S−1/2fk}∞k=1 is a tight
frame with frame bound A = 1. �

Note that Theorem 6.1.1 does not solve the computational problems
related to general frames: while {S−1/2fk}∞k=1 forms a tight frame and in
that sense leads to a convenient frame expansion, the calculation of the
elements in the frame is in general prohibitively cumbersome.

6.2 Extension of Bessel Sequences to Tight Frames

The Bessel condition on a sequence {fk}∞k=1 in a Hilbert spaceH is a purely
technical condition ensuring that the synthesis operator is well-defined from
�2(N) to H. The condition does not lead to any expansion property, as
documented by the fact that a zero vector itself forms a Bessel sequence.
Li and Sun proved in [488] that every Bessel sequence in a separable Hilbert
space H can be extended to a tight frame for H. The original proof uses
g-frames (see Section 8.1) but we will give a direct proof.

Theorem 6.2.1 Let {fk}∞k=1 be a Bessel sequence in a separable Hilbert
space H, with bound B. Then there exists a sequence {pj}j∈J in H such
that {fk}∞k=1 ∪ {pj}j∈J is a tight frame for H with bound B.

Proof. Let S denote the frame operator for {fk}∞k=1. Then BI − S is a
self-adjoint and positive operator. Considering its square root (BI −S)1/2,
we can write Bf = Sf + (BI − S)1/2(BI − S)1/2f, ∀f ∈ H. Let {ej}j∈J

denote an orthonormal basis for H; then, expanding (BI − S)1/2 in terms
of {ej}j∈J , we arrive at

Bf =

∞∑

k=1

〈f, fk〉fk + (BI − S)1/2
∑

j∈J

〈(BI − S)1/2f, ej〉ej

=

∞∑

k=1

〈f, fk〉fk +
∑

j∈J

〈f, (BI − S)1/2ej〉(BI − S)1/2ej, ∀f ∈ H.
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Taking inner product with f now yields that the sequence

{fk}∞k=1 ∪ {(BI − S)1/2ej}j∈J

is a tight frame for H with bound B. �

6.3 The Dual Frames

In order to motivate the concept of dual frames, let us consider again an
arbitrary frame {fk}∞k=1 for a Hilbert space H and the associated frame
decomposition (6.1). In Lemma 5.4.2, we have seen that the frame coeffi-
cients {〈f, S−1fk〉}∞k=1 have minimal �2-norm among all sequences which
represent the vector f in terms of the frame {fk}∞k=1. However, minimality
of the �2-norm of the coefficients {ck(f)}∞k=1 in the expansion

f =

∞∑

k=1

ck(f)fk

is not always an important issue; there are cases where other criteria are
more relevant. A serious issue is the computability: we know that in general
it is difficult to calculate the frame coefficients, so it is natural to exploit
the freedom in the choice of the coefficients {ck(f)}∞k=1 and search for
coefficients that are easier to calculate than the frame coefficients.
Usually we want to work with coefficients which depend continuously

and linearly on f ; by Riesz’ representation theorem (Theorem 2.3.2), this
implies that the k-th coefficient in the expansion of f should have the form
ck(f) = 〈f, gk〉 for some gk ∈ H. If {fk}∞k=1 is an overcomplete frame, there
always exist several choices for {gk}∞k=1:

Lemma 6.3.1 Assume that {fk}∞k=1 is an overcomplete frame. Then there
exist frames {gk}∞k=1 �= {S−1fk}∞k=1 for which

f =

∞∑

k=1

〈f, gk〉fk, ∀f ∈ H. (6.4)

Proof. We split the proof in two cases and assume first that f� = 0 for
some � ∈ N; in this case, S−1f� = 0. By letting gk := S−1fk for k �= � and
choosing g� to be an arbitrary nonzero vector, the frame decomposition
(6.1) shows that (6.4) holds and {gk}∞k=1 �= {S−1fk}∞k=1.
Now we consider the case where fk �= 0 for all k ∈ N. We will use a

result proved later, namely, in Theorem 7.1.1: it says that since {fk}∞k=1 is
overcomplete, there exists a sequence {ck}∞k=1 ∈ �2(N) \ {0} such that

0 =

∞∑

k=1

ckfk.
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For a certain � ∈ N, we have c� �= 0, and we can write

f� =
∑

k �=�

−ck
c�

fk.

Thus {fk}k �=� is complete in H and therefore a frame by Theorem 5.4.7.
Denoting its canonical dual frame by {gk}k �=� and defining g� = 0, we
have found a frame {gk}∞k=1 for which (6.4) holds; it is different from the
canonical dual of {fk}∞k=1 because S−1f� �= 0. �

Recall that a frame {gk}∞k=1 satisfying (6.4) is called a dual frame of
{fk}∞k=1. Since {fk}∞k=1 and {gk}∞k=1 are assumed to be Bessel sequences,
we can consider the synthesis operators; we denote the synthesis operator
for {fk}∞k=1 by T and the synthesis operator for {gk}∞k=1 by U , i.e.,

T, U : �2(N)→ H, T {ck}∞k=1 =

∞∑

k=1

ckfk, U{ck}∞k=1 =

∞∑

k=1

ckgk. (6.5)

Composing T with the adjoint of U , we obtain the operator

TU∗ : H → H, TU∗f =

∞∑

k=1

〈f, gk〉fk. (6.6)

The operator TU∗ is called the mixed frame operator associated with
{fk}∞k=1 and {gk}∞k=1 . We note that in terms of this operator, (6.4) holds
if and only if

TU∗ = I.

We first prove a lemma, which shows that the roles of {fk}∞k=1 and
{gk}∞k=1 can be interchanged and that the lower frame condition aut-
omatically is satisfied for Bessel sequences {fk}∞k=1, {gk}

∞
k=1 if (6.4)

holds.

Lemma 6.3.2 Assume that {fk}∞k=1 and {gk}∞k=1 are Bessel sequences in
H. Then the following are equivalent:

(i) f =
∑∞

k=1〈f, gk〉fk, ∀f ∈ H.

(ii) f =
∑∞

k=1〈f, fk〉gk, ∀f ∈ H.

(iii) 〈f, g〉 =
∑∞

k=1〈f, fk〉〈gk, g〉, ∀f, g ∈ H.

In case the equivalent conditions are satisfied, {fk}∞k=1 and {gk}∞k=1 are
dual frames for H.

Proof. In terms of the synthesis operators, (i) means that TU∗ = I; this
is equivalent to

UT ∗ = I, (6.7)
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which is identical to the statement in (ii). It is also clear that (ii) implies
(iii). To prove that (iii) implies (ii), we fix f ∈ H and note that∑∞

k=1〈f, fk〉gk is well defined as an element in H because {fk}∞k=1 and
{gk}∞k=1 are Bessel sequences. Now the assumption in (iii) shows that

〈

f −
∞∑

k=1

〈f, fk〉gk, g
〉

= 0, ∀g ∈ H,

and (ii) follows.
In case the equivalent conditions are satisfied, we now have to show that

{fk}∞k=1 and {gk}
∞
k=1 indeed are frames, i.e., that the lower frame condition

holds. We can write

||f ||2 = 〈f, f〉 =
∞∑

k=1

〈f, gk〉〈fk, f〉, ∀f ∈ H.

Using Cauchy–Schwarz inequality and that one of the families {fk}∞k=1,
{gk}∞k=1 is a Bessel sequence, we obtain that the other family satisfies the
lower frame condition. This concludes the proof. �

We now state the “dual frame version” of Corollary 5.3.4. It shows that
if we apply a unitary operator to a pair of dual frames, we again obtain a
pair of dual frames. We leave the proof to the reader as Exercise 6.2.

Lemma 6.3.3 Let {fk}∞k=1 and {gk}∞k=1 be dual frames for a Hilbert space
H and U : H → H a unitary operator. Then {Ufk}∞k=1 and {Ugk}∞k=1 also
form a pair of dual frames for H.

The following result provides a convenient criterion to check that two
Bessel sequences are dual frames; it originally appeared as a technical tool
in the paper [398] by Hernandez, Labate, and Weiss. We ask the reader to
provide the proof in Exercise 6.4.

Lemma 6.3.4 Two Bessel sequences {fk}∞k=1 and {gk}∞k=1 are dual frames
if the identity

||f ||2 =

∞∑

k=1

〈f, fk〉〈gk, f〉 (6.8)

holds for all f belonging to a dense subspace of H.

A note on terminology is in order. By Lemma 6.3.2, we know that if
{gk}∞k=1 is a dual frame of {fk}∞k=1, then {fk}∞k=1 is also a dual of {gk}∞k=1.
For this reason, we will usually call {fk}∞k=1 and {gk}∞k=1 a pair of dual
frames or a dual frame pair when (6.4) holds.
When (6.7) is satisfied, we say that U is a left-inverse of T ∗. Following

Li [489], our next goal is to characterize all dual frames {fk}∞k=1 associated
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with a given frame {fk}∞k=1. The first step is to characterize all the left-
inverses of the analysis operator associated with {fk}∞k=1 :

Lemma 6.3.5 Let {fk}∞k=1 be a frame for H and {δk}∞k=1 be the canonical
orthonormal basis for �2(N). The dual frames for {fk}∞k=1 are precisely
the families {gk}∞k=1 = {V δk}∞k=1, where V : �2(N) → H is a bounded
left-inverse of T ∗.

Proof. If V is a bounded left-inverse of T ∗, then V is surjective; by
Theorem 5.5.1, it follows that {gk}∞k=1 := {V δk}∞k=1 is a frame. Note that
in terms of {δk}∞k=1,

T ∗f = {〈f, fk〉}∞k=1 =

∞∑

k=1

〈f, fk〉δk;

thus, for all f ∈ H,

f = V T ∗f =
∞∑

k=1

〈f, fk〉gk,

i.e., {gk}∞k=1 is a dual of {fk}∞k=1. For the other implication, assume that
{gk}∞k=1 is a dual frame of {fk}∞k=1. Then the synthesis operator U for
{gk}∞k=1 satisfies the conditions: in fact, {gk}∞k=1 = {Uδk}∞k=1, and by
Lemma 6.3.2, UT ∗ = I. �

Lemma 6.3.6 Let {fk}∞k=1 be a frame with synthesis operator T . The
bounded left-inverses of T ∗ are precisely the operators having the form
S−1T + W (I − T ∗S−1T ), where W : �2(N) → H is a bounded operator
and I denotes the identity operator on �2(N).

Proof. Straightforward calculation gives that an operator of the given
form is a left-inverse of T ∗. On the other hand, if U is a given left inverse
of T ∗, then by taking W = U ,

S−1T +W (I − T ∗S−1T ) = S−1T + U − UT ∗S−1T = U. �

We are now ready for the announced characterization of all dual frames
associated to a given frame.

Theorem 6.3.7 Let {fk}∞k=1 be a frame for H. The dual frames of {fk}∞k=1

are precisely the families

{gk}∞k=1 =

⎧
⎨

⎩
S−1fk + hk −

∞∑

j=1

〈S−1fk, fj〉hj

⎫
⎬

⎭

∞

k=1

, (6.9)

where {hk}∞k=1 is a Bessel sequence in H.
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Proof. By Lemma 6.3.5 and Lemma 6.3.6, we can characterize the dual
frames as all families of the form

{gk}∞k=1 =
{
S−1Tδk +W (I − T ∗S−1T )δk

}∞
k=1

, (6.10)

where W : �2(N)→ H is a bounded operator or, equivalently, an operator
of the form W{cj}∞j=1 =

∑∞
j=1 cjhj where {hk}∞k=1 is a Bessel sequence.

Inserting this expression for W in (6.10), we get

{gk}∞k=1 =
{
S−1fk +Wδk −WT ∗S−1Tδk

}∞
k=1

=

⎧
⎨

⎩
S−1fk + hk −

∞∑

j=1

〈S−1fk, fj〉hj

⎫
⎬

⎭

∞

k=1

,

as desired. �

Note that if {fk}∞k=1 is a Riesz basis, then {fk}∞k=1 and {S−1fk}∞k=1

are biorthogonal by Theorem 5.4.1. Thus, independently of the choice of
{hk}∞k=1, we have

∑∞
j=1〈S−1fk, fj〉hj = hk; that is, Theorem 6.3.7 gives

that the unique dual is {S−1fk}∞k=1, in accordance with Theorem 3.6.2.
Given a frame {fk}∞k=1, one could also ask for a characterization of all

families {gk}∞k=1 (frames or not) such that (6.4) holds. We shall not go into
this subject, but ask the reader to think about the different possibilities
(Exercise 6.1). We also mention the paper [492], where a non-frame {gk}∞k=1

satisfying (6.4) is found for a frame {fk}∞k=1 in the context of wavelets.
In Chapters 15–18 we will see an important reason for considering other

duals than the canonical. In fact, we will study frames which have a con-
venient special structure (namely, wavelet structure), and unfortunately,
it turns out that the canonical duals might not have the same structure.
However, often one can find other duals having the same structure as the
frame itself. See in particular Section 16.1 and Section 18.8.
Let us relate tight frames and the question of finding dual frames.

Lemma 6.3.8 Let {fk}∞k=1 be a frame. Then the following are equivalent:

(i) {fk}∞k=1 is tight.

(ii) {fk}∞k=1 has a dual of the form gk = Cfk for some constant C > 0.

In case (ii) holds, the frame bound is 1/C.

Proof. (i)⇒(ii) follows by letting {gk}∞k=1 be the canonical dual of
{fk}∞k=1; (ii)⇒(i) follows from Lemma 6.3.2 by taking f = g. Furthermore,
if (ii) holds, then f = C

∑∞
k=1〈f, fk〉fk for all f ∈ H; thus

||f ||2 = 〈f, f〉 = C

∞∑

k=1

|〈f, fk〉|2, ∀f ∈ H,

implying that the frame is tight with frame bound 1/C. �
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6.4 Extension Problems for Bessel Sequences

We have already seen that any Bessel sequence in a separable Hilbert space
H can be extended to a tight frame for H. As a natural generalization, we
will now show that any pair of Bessel sequences has an extension to a dual
pair of frames. The following result first appeared in [183].

Theorem 6.4.1 Let {fk}∞k=1 and {gk}∞k=1 be Bessel sequences in a separa-
ble Hilbert space H. Then there exist Bessel sequences {pj}j∈J and {qj}j∈J

in H such that

{fk}∞k=1 ∪ {pj}j∈J and {gk}∞k=1 ∪ {qj}j∈J

form a pair of dual frames for H.

Proof. Let T and U denote the synthesis operators for {fk}∞k=1 and
{gk}∞k=1 ; see (6.5). Let {aj}j∈J , {bj}j∈J denote any pair of dual frames
for H. Then

f = UT ∗f + (I − UT ∗)f =

∞∑

k=1

〈f, fk〉gk +
∑

j∈J

〈(I − UT ∗)f, aj〉bj

=

∞∑

k=1

〈f, fk〉gk +
∑

j∈J

〈f, (I − TU∗)aj〉bj .

The sequences {fk}∞k=1, {gk}
∞
k=1 , {aj}j∈J , and {bj}j∈J are Bessel sequences

by definition, and {(I − TU∗)aj}j∈J is a Bessel sequence because the
operator I − TU∗ is bounded. Thus, by Lemma 6.3.2, we can conclude
that

{fk}∞k=1 ∪ {(I − TU∗)aj}j∈J and {gk}∞k=1 ∪ {bj}j∈J

form a dual pair of frames for H, ad desired. �

With Theorem 6.2.1 and Theorem 6.4.1 at hand, there are two natural
ways to obtain frame decompositions using a Bessel sequence {fk}∞k=1: we
can extend {fk}∞k=1 to a tight frame or find sequences {pj}j∈J and {qj}j∈J

in H such that

{fk}∞k=1 ∪ {pj}j∈J and {fk}∞k=1 ∪ {qj}j∈J

form a pair of dual frames for H. In Section 12.7, we will demonstrate that
the seemingly more complicated extension to a pair of dual frames might
allow properties that cannot be obtained via the extension to a tight frame.
While the extension problems in Theorem 6.2.1 and Theorem 6.4.1

always have solutions, additional issues turn up whenever concrete cases
are considered. For example, if a certain application asks for the Gabor
structure, it is not enough to know that a given Gabor system can be
extended to a frame: we will also need that the extension can be done with
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functions forming a Gabor system themselves. In Section 12.7 we will see
that this is indeed possible. Section 19.3 will discuss the wavelet case, where
the answer to the analogue question is unknown.

6.5 Approximately Dual Frames

Consider two Bessel sequences {fk}∞k=1 and {gk}∞k=1 in a Hilbert space
H, with synthesis operators T and U, respectively. A reasonable measure
for how far {fk}∞k=1 and {gk}∞k=1 are from being dual frames would be to
consider the number

||I − TU∗|| = sup
||f ||=1

∣
∣
∣
∣

∣
∣
∣
∣f −

∞∑

k=1

〈f, gk〉fk
∣
∣
∣
∣

∣
∣
∣
∣. (6.11)

The Bessel sequences {fk}∞k=1 and {gk}∞k=1 are said to be approximately
dual frames if ||I − TU∗|| < 1; see [192]. Considering a given f ∈ H, this
definition does not imply that the vector

TU∗f =

∞∑

k=1

〈f, gk〉fk

is close to f, but it yields an exact reconstruction formula in terms of the
sequences {fk}∞k=1, {gk}

∞
k=1 , and the operator TU∗ (Exercise 6.5):

Proposition 6.5.1 Assume that the Bessel sequences {fk}∞k=1 and {gk}
∞
k=1

are approximately dual frames, with synthesis operators T and U, respec-
tively. Then the operator TU∗ is invertible; furthermore, the sequences
{gk}∞k=1 and {(TU∗)−1fk}∞k=1 are dual frames.

Due to the necessary inversion of the operator TU∗, the result
in Proposition 6.5.1 is more theoretical interesting than of practical
importance.
For concrete applications, the condition ||I − TU∗|| < 1 is usually too

weak: it does not guarantee that TU∗f is close to f for a given f ∈ H.
It is more reasonable to assume that ||I − TU∗|| ≤ ε, for an ε > 0 that
reflects the error margin that is acceptable in a given situation. In [192], it
is shown that this can actually be obtained via any pair of approximately
dual frames {fk}∞k=1, {gk}

∞
k=1 . In fact, consider the Neumann series (see

(2.6)),

(TU∗)−1 =

∞∑

n=0

(I − TU∗)n.
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It is shown in [192] that for any N ∈ N the sequences {gk}∞k=1 and

{γ(N)
k }∞k=1 given by

γ
(N)
k =

N∑

n=0

(I − TU∗)nfk = fk +
N∑

n=1

(I − TU∗)nfk

also form approximately dual frames. Furthermore, letting ZN denote the

synthesis operator associated with {γ(N)
k }∞k=1, it is proved that

||I − ZNU∗|| ≤ ||I − TU∗||N+1.

Thus, for any ε > 0, we can obtain that ||I − ZNU∗|| ≤ ε by choosing
N ∈ N sufficiently large.
We will later return to approximately dual frames in the context of Gabor

systems; see Section 12.8. Other applications in the literature include [289]
by Feichtinger, Onchis, and Wiesmeyr (dealing with wavelet systems), [279]
by Feichtinger, Grybos, and Onchis (Gabor systems), and [258] by Dörfler
and Matusiak (nonstationary Gabor systems).

6.6 Exercises

6.1 This exercise concerns the question of finding generalized duals
which are not frames.

(i) Find an overcomplete frame {fk}∞k=1, for which a family {gk}∞k=1

satisfying (6.4) automatically is a frame.

(ii) Find an overcomplete frame {fk}∞k=1 and a non-Bessel sequence
{gk}∞k=1 such that (6.4) is satisfied.

6.2 Prove Lemma 6.3.3

6.3 Find a tight frame {fk}∞k=1 for which dual frames {gk}∞k=1 with
arbitrary large optimal Bessel bound exist. (This shows that for
noncanonical dual frames, no expression for the upper frame bound
in terms of the frame bounds for {fk}∞k=1 exists.)

6.4 The purpose of this exercise is to prove Lemma 6.3.4. Let H denote
a complex Hilbert space with inner product 〈·, ·〉.

(i) Show that

〈f, g〉 = 1

4

3∑

n=0

in〈f + ing, f + ing〉, ∀f, g ∈ H.
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(ii) Let K(·, ·) : H × H → C denote a sesquilinear form, i.e., K
is linear in the first entry and conjugated linear in the second.
Show that then

K(f, g) =
1

4

3∑

n=0

inK(f + ing, f + ing), ∀f, g ∈ H. (6.12)

Now let {fk}∞k=1 and {gk}∞k=1 denote Bessel sequences in H.

(iii) Show that {fk}∞k=1 and {gk}∞k=1 are dual frames if the identity

〈f, g〉 =
∞∑

k=1

〈f, fk〉〈gk, g〉 (6.13)

holds for all f and g belonging to a dense subspace of H.

(iv) Show that {fk}∞k=1 and {gk}∞k=1 are dual frames if the identity

||f ||2 =

∞∑

k=1

〈f, fk〉〈gk, f〉 (6.14)

holds for all f belonging to a dense subspace of H.
Hint: consider the sesquilinear functional

K(f, g) :=

∞∑

k=1

〈f, fk〉〈gk, g〉, f, g ∈ H. (6.15)

6.5 Prove Proposition 6.5.1.



7
Frames Versus Riesz Bases

We have already seen that Riesz bases are frames. In this chapter we exploit
the relationship between these two concepts further. In particular, we give
a number of equivalent conditions for a frame to be a Riesz basis.
We have often spoken about a frame in an intuitive sense as some kind

of “overcomplete basis.” It turns out that, in the technical sense, one has
to be careful with such statements. In fact, we will prove the existence of
a frame which has no relation to a basis: no subfamily of the frame forms
a basis. On the other hand, sufficient conditions for a frame to contain a
Riesz basis as a subfamily are also given.
We begin with a detailed discussion of the relationship between frames

and Riesz bases in Section 7.1. In particular, it is shown that a frame is a
Riesz basis if and only if it is ω-independent. This is followed by a discussion
of lower frame bounds for subsequences, in Section 7.2. Section 7.3 intro-
duces a special class of frames, the so-called Riesz frames. These frames
also appear in Section 7.4, where the main question is whether a frame can
be reduced to a Riesz basis by deletion of selected elements; the general
answer is no, but for Riesz frames it is yes. Section 7.5 gives the details
of a surprising construction of a tight frame, where no subset is a basis.
Section 7.6 yields another characterization of Riesz bases and relates it to a
certain minimization problem; finally, Section 7.7 gives a short description
of Feichtinger’s conjecture, asserting that each frame that is norm-bounded
below can be split into a union of a finite number of Riesz sequences (the
conjecture was confirmed in 2013).
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7.1 Conditions for a Frame Being a Riesz Basis

In the entire chapter, we let H denote a separable Hilbert space with inner
product 〈·, ·〉. Our first purpose is to give a detailed analysis of the relation
between frames and Riesz bases.
Recall from Lemma 3.1.3 that ω-independence and minimality are two

different concepts. We now give some equivalent conditions for a frame to
be a Riesz basis; in particular, we prove that for a frame, ω-independence
is equivalent to minimality.

Theorem 7.1.1 Let {fk}∞k=1 be a frame for H. Then the following are
equivalent:

(i) {fk}∞k=1 is a Riesz basis for H.

(ii) {fk}∞k=1 is an exact frame.

(iii) {fk}∞k=1 is minimal.

(iv) {fk}∞k=1 has a biorthogonal sequence.

(v) {fk}∞k=1 and {S−1fk}∞k=1 are biorthogonal.

(vi) {fk}∞k=1 is ω-independent.

(vii) If
∑∞

k=1 ckfk = 0 for some {ck}∞k=1 ∈ �2(N), then ck = 0, ∀k ∈ N.

(viii) {fk}∞k=1 is a basis.

Proof. We proceed with the following steps:

(a) (i) ⇒ (ii) ⇒ (v) ⇒ (iv)⇒ (iii)⇒ (ii)⇒ (i)

(b) (i) ⇒ (vi) ⇒ (vii)⇒ (i)

(c) (i)⇒(viii)⇒(iv)

Step (a):
(i)⇒(ii) A Riesz basis {fk}∞k=1 is an exact frame: if an arbitrary element

is removed, the remaining family is not complete and therefore not a frame.
(ii)⇒(v). This is Proposition 5.4.8.
(v) ⇒ (iv) is clear, and (iv)⇒(iii) is proved in Lemma 3.3.1 (i).
(iii)⇒(ii). Assume that {fk}∞k=1 is minimal. Then, for an arbitrary j ∈ N,

the family {fk}k �=j is incomplete in H and therefore not a frame for H.
(ii)⇒(i). If {fk}∞k=1 is an exact frame, it is a basis by Proposition 5.4.8.

Let as usual {δk}∞k=1 be the canonical basis for �2(N). The synthesis oper-
ator T : �2(N)→ H associated with {fk}∞k=1 is bounded and surjective by
Theorem 5.5.1, and Tδk = fk; in order to show that {fk}∞k=1 is a Riesz basis,
it is enough to prove that T is invertible, and this follows from {fk}∞k=1

being a basis.
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Step (b):
(i)⇒(vi). Assume that {fk}∞k=1 is a Riesz basis and that

∑∞
k=1 ckfk = 0

for a given sequence {ck}∞k=1 of scalars. Then, by the result in Exercise 3.13,
{ck}∞k=1 ∈ �2(N). Denoting a lower Riesz bound by A, Exercise 3.13 also
shows that

A
∞∑

k=1

|ck|2 ≤
∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

2

= 0;

thus ck = 0 for all k.
(vi)⇒(vii). Clear.
(vii)⇒(i). Let again {δk}∞k=1 be the canonical orthonormal basis

for �2(N). The assumption (vii) assures that the synthesis operator T
is injective, and T is also surjective because {fk}∞k=1 is a frame. Since
Tδk = fk, ∀k, the result follows from the definition of a Riesz basis.
Step (c):
(i)⇒(viii). Clear.
(viii)⇒(iv). This is Theorem 3.3.2. �

Note the slight difference between the conditions (vi) and (vii) in Theo-
rem 7.1.1. As seen in Exercise 5.5, one difference between frames and Riesz
bases is that for a Riesz basis {fk}∞k=1, the series

∑∞
k=1 ckfk is only conver-

gent for {ck}∞k=1 ∈ �2(N); for general frames, the series might converge for
coefficients {ck}∞k=1 /∈ �2(N). However, Theorem 7.1.1 shows that to check
whether a frame is ω-independent, it is enough to consider �2-sequences.
The condition of ω-independence is a stronger condition than just linear

independence. To illustrate that point, we prove two more characterization
of Riesz bases. The result should be compared to the equivalence of (i) and
(vi) in Theorem 7.1.1. The equivalence (i) ⇔ (ii) below first appeared in
[450], and the equivalence (ii) ⇔ (iii) is from [193]. The proof is based on
the knowledge that for a Riesz basis, the “Riesz basis bounds” and “frame
bounds” coincide by Theorem 5.4.1

Proposition 7.1.2 Let {fk}∞k=1 be a frame for H. For n ∈ N, let An

denote the optimal lower frame bound for the frame sequence {fk}nk=1. Then
the following are equivalent:

(i) {fk}∞k=1 is a Riesz basis for H.

(ii) {fk}∞k=1 is linearly independent and infn∈N An > 0.

(iii) {fk}∞k=1 is linearly independent and limn→∞ An exists and is
positive.

Proof. For the proof of (i)⇒(ii), we note that any basis is linearly inde-
pendent. Assume that {fk}∞k=1 is a Riesz basis, with lower Riesz bound A.
Then each subfamily {fk}nk=1 is a Riesz sequence, and An is also the opti-
mal lower Riesz bound by Theorem 5.4.1; thus A ≤ An for all n ∈ N and
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(ii) follows. For the proof of (ii) ⇒ (i), assume that (ii) is satisfied. Then
A := infn∈N An is a lower frame bound for each of the Riesz sequences
{fk}nk=1, n ∈ N. Letting B denote an upper frame bound for {fk}∞k=1,
Theorem 3.2.3 shows that

A

n∑

k=1

|ck|2 ≤
∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ B

n∑

k=1

|ck|2 (7.1)

for all scalar sequences {ck}nk=1. By Theorem 3.6.6, we conclude that
{fk}∞k=1 is a Riesz basis for H. That (ii) ⇔ (iii) follows from the fact
that when {fk}∞k=1 is linearly independent, the sequence of optimal frame
bounds An, n ∈ N, is equal to the sequence of optimal lower (Riesz) basis
bounds, which is decreasing by definition. �

Note that Example 5.4.5 exhibits an example of an overcomplete frame
which is linearly independent. Theorem 11.3.1 combined with the discussion
of the HRT conjecture in Section 13.4 will show us that the same happens
for any Gabor frame {EmbTnag}m,n∈Z with ab < 1.

7.2 Frames and Their Subsequences

The interplay between a frame and its finite subsequences is of great prac-
tical importance. In fact, even if a theoretical description is done via a
frame {fk}∞k=1, a concrete realization always has to limit the attention to
a finite subsequence, say {fk}nk=1, for some n ∈ N; of course the finite sub-
sequence does not need to consist of the first n elements in the frame, but
for the discussion in the current section, it suffices to assume this.
For the frames that are popular in applications, e.g., the Gabor frames,

the finite subsequences have certain properties that are radically differ-
ent from the properties of the frame itself. Thus the restriction to finite
subsequences and the analysis hereof have to be performed with great care.
In order to explain this, consider an overcomplete frame {fk}∞k=1 for an

infinite-dimensional Hilbert space H. From Proposition 1.1.2, we know that
for each n ∈ N, the sequence {fk}nk=1 is a frame for the finite-dimensional
space

Hn := span{fk}nk=1.

By Theorem 7.1.1 the overcompleteness implies that there exist coefficients
{ck}∞k=1 ∈ �2(N), where not all ck are zero but such that

∑∞
k=1 ckfk = 0.

Thus, {fk}∞k=1 is ω-dependent. Despite of this property, most frames that
appear in applications have the property that finite subsequences are lin-
early independent! That is, if {fk}k∈F is any finite subsequences of {fk}∞k=1

and
∑

k∈F ckfk = 0 for some coefficients ck, then necessarily ck = 0 for
all k ∈ F .
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For overcomplete frames {fk}∞k=1 with the property that finite subse-
quences are linearly independent, the lower frame bounds of the finite
subsequences also behave radically different than the frame bounds for
the frame. In fact, Proposition 7.1.2 implies that the optimal lower frame
bound An for {fk}nk=1 tends to zero for n→∞. Let us state a more quan-
titative statement; it is a general version of a result by Gröchenig, stated
in the setting of Gabor frames in [344].

Lemma 7.2.1 Assume that

(i) {fk}∞k=1 is an overcomplete frame with upper bound B;

(ii) Each finite subsequence {fk}nk=1, n ∈ N, is linearly independent.

Let An denote a lower frame bound for {fk}nk=1 [as frame for Hn] and take
any sequence {ck}∞k=1 ∈ �2(N) \ {0} such that

∑∞
k=1 ckfk = 0, normalized

such that
∑∞

k=1 |ck|2 = 1. Then, for n sufficiently large,

An ≤ 2B

∞∑

k=n+1

|ck|2. (7.2)

Proof. Take {ck}∞k=1 ∈ �2(N) \ {0} such that
∑∞

k=1 ckfk = 0, normalized
such that

∑
|ck|2 = 1. Then, for any n ∈ N, we have

n∑

k=1

ckfk = −
∞∑

k=n+1

ckfk,

and therefore
∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

2

=

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=n+1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ B

∞∑

k=n+1

|ck|2. (7.3)

Since {fk}nk=1 is assumed to be linearly independent, it is actually a Riesz
basis for Hn. Thus, the lower frame bound An for {fk}nk=1 satisfies that

An

n∑

k=1

|ck|2 ≤
∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

2

. (7.4)

Now, for n ∈ N sufficiently large,

1 =
∞∑

k=1

|ck|2 ≤ 2
n∑

k=1

|ck|2.

Then (7.3) implies that

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ B

∞∑

k=n+1

|ck|2 ≤
(

2B

∞∑

k=n+1

|ck|2
)

n∑

k=1

|ck|2.

Using (7.4) this leads to (7.2). �
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Letting Sn : Hn → Hn denote the frame operator associated with
{fk}nk=1, the assumptions in Lemma 7.2.1 imply by Theorem 1.3.1 that
the condition number of Sn tends to infinity as n→∞.

The problematic behavior of the lower frame bounds for finite subse-
quences encountered in Lemma 7.2.1 motivates the definition of Riesz
frames in Section 7.3.

7.3 Riesz Frames and Near-Riesz Bases

Several variations on the definition of frames and Riesz bases are possible:

Definition 7.3.1 Let {fk}∞k=1 be a sequence in H. We say that a frame
{fk}∞k=1 is

(i) A near-Riesz basis if it consists of a Riesz basis and a finite number
of extra elements;

(ii) A Riesz frame if every subsequence of {fk}∞k=1 is a frame sequence,
with uniform frame bounds A,B.

Near-Riesz bases are relevant because they share many properties with
Riesz bases. For an arbitrary sequence {fk}∞k=1 inH, the excess is defined as

e({fk}∞k=1) := sup{|J | : J ⊆ N and span{fk}k∈N\J = span{fk}∞k=1}.(7.5)

For a near-Riesz basis, the excess is equal to the number of elements
which have to be removed in order to obtain a Riesz basis. Holub proved
in [413] that for a near-Riesz basis {fk}∞k=1 with synthesis operator T ,

e({fk}∞k=1) = dim(NT ).

Furthermore, it was proved in [32] that if we consider a frame {fk}∞k=1 and
denote the frame operator for by S, then

e({fk}∞k=1) =

∞∑

k=1

(
1− 〈fk, S−1fk〉

)
.

Note that it was proved by Bakić and Berić [25] that all dual frames
associated with a given frame {fk}∞k=1 have the same excess.

To motivate the definition of Riesz frames, we recall Corollary 3.7.2: a
subfamily of a Riesz sequence is a Riesz sequence. For frames, the situation
is different. Consider, for example, the frame in Example 5.1.4 (ii); it con-
tains the subfamily { 1√

k
ek}∞k=1, which is not a frame sequence. Riesz frames

were introduced in [157] in order to avoid this situation. In the sequel, we
will see that Riesz frames behave like Riesz bases in many contexts, despite
the fact that a Riesz frame can be overcomplete. Unfortunately, at least so



7.4 Frames Containing a Riesz Basis 171

far, Riesz frames are only relevant in abstract Hilbert spaces; for example,
Gabor frames are in general not Riesz frames, and no connection between
Riesz frames and wavelet frames is available in the literature.
Note that the concepts of Riesz frames and near-Riesz bases are unrelated

(Exercise 7.1 and Exercise 23.1). For more information about excess, we
refer to the paper [32].

7.4 Frames Containing a Riesz Basis

Intuitively, we think about a frame as some kind of “overcomplete basis,”
so a natural question is the following: given a frame {fk}∞k=1, is it possible
to extract a basis {fk}k∈J , J ⊆ N, from {fk}∞k=1, i.e., does {fk}∞k=1 contain
a basis as a subset?
Clearly, the answer depends on which kind of basis we are interested in.

In this section, we shall find sufficient conditions for a frame to contain a
Riesz basis. In the next section, we construct a frame consisting of vectors
having norm one, which does not even contain a Schauder basis. We begin
with a technical lemma.

Lemma 7.4.1 Let {ck}∞k=1 be a sequence of nonnegative numbers for which∑∞
k=1 ck <∞. Suppose that {Jn}n∈N is a family of subsets of N such that:

(i) J1 ⊇ J2 ⊇ J3 ⊇ · · ·

(ii) There exists c > 0 such that c ≤
∑

k∈Jn
ck, ∀n ∈ N.

Then c ≤
∑

k∈∩Jn
ck.

Proof. Define a positive measure μ on the σ-algebra of subsets of N by

μ(S) =
∑

k∈S

ck.

By Lemma A.2.3,

μ(Jn) =
∑

k∈Jn

ck → μ(∩Jn) =
∑

k∈∩Jn

ck as n→∞,

and the result follows. �

Our purpose is to show that every Riesz frame contains a Riesz basis, a
result which appeared in [157]. Our proof is based on the axiom of choice,
also known as Zorn’s lemma:

Lemma 7.4.2 Let M be a nonempty ordered set. If every totally ordered
subset of M has an upper bound in M, then M has at least one maximal
element.
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Theorem 7.4.3 Every Riesz frame contains a Riesz basis.

Proof. For convenience, we use the index set N. Let {fk}∞k=1 be a Riesz
frame, and let A be a common lower bound for all its subframes. Consider
the set

M :=

{

{fk}k∈J | J ⊆ N, and A||f ||2 ≤
∑

k∈J

|〈f, fk〉|2, ∀f ∈ H
}

. (7.6)

ClearlyM is nonempty. Define an order on M:

{fk}k∈J ≺ {fk}k∈K ⇔ K ⊆ J.

Now consider a totally ordered family of elements {fk}k∈Jn ∈ M, n in some
index set I. Such a family has an upper bound {fk}k∈∩Jn , which is still an
element fromM; to see this, we have to prove that

A ||f ||2 ≤
∑

k∈∩Jn

|〈f, fk〉|2, ∀f ∈ H. (7.7)

In case the index set I is countable, (7.7) follows from Lemma 7.4.1;
for an uncountable index set, the result is still true, but a more gen-
eral measure-theoretic argument is needed (we skip the argument; see,
e.g., [523] for arguments of this type). So, by Zorn’s lemma 7.4.2, M
has a maximal element {fk}k∈J . Now we show that {fk}k∈J is a Riesz
basis. Clearly {fk}k∈J is a frame, so by Theorem 7.1.1 it is enough to
show that {fk}k∈J is ω-independent. But if not, we could find an element
fn, n ∈ J such that {fk}k∈J−{n} was still complete and therefore a frame
for H by Theorem 5.4.7. That is, {fk}k∈J−{n} ∈M, which contradicts the
maximality of {fk}k∈J . �

Via iterated application of Theorem 7.4.3, one can show that every Riesz
frame is the union of a finite number of Riesz sequences. We refer to [195]
for details.
The result in Theorem 7.4.3 can be slightly generalized: using a more

complicated argument, it is shown in [118] that the conclusion holds for
any frame {fk}∞k=1 with the property that each subfamily {fk}k∈J , J ⊆ N

is a frame sequence. Such a frame is said to have the subframe property.

Lemma 7.4.4 Assume that a frame {fk}∞k=1 for H has the subframe prop-
erty. Then a subfamily {fk}k∈J is a Schauder basis for H if and only
{fk}k∈J is a Riesz basis for H.

Proof. Assume that {fk}k∈J is a Schauder basis for some J ⊆ N.
By the subframe property, {fk}k∈J is also a frame, so we conclude by
Theorem 7.1.1 that {fk}k∈J is a Riesz basis. �

Lemma 7.4.4 does not hold if the assumption of {fk}∞k=1 having the
subframe property is removed (Exercise 7.2).
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7.5 A Frame Which Does Not Contain a Basis

Even if {fk}∞k=1 is not a Riesz frame, the proof of Theorem 7.4.3 shows
that the set M in (7.6) will contain a maximal element for every lower
frame bound A. However, this element need not constitute a Riesz basis.
For example, let {ek}∞k=1 be an orthonormal basis and consider the frame
from Example 5.1.4 (ii),

{fk}∞k=1 :=

{

e1,
1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, . . . ..

}

. (7.8)

No matter how small A is chosen, the setM does not contain a Riesz basis
for this frame. In fact, for any ε > 0 and any {fk}k∈J ∈M, the condition

ε ||f ||2 ≤
∑

k∈J

|〈f, fk〉|2, ∀f ∈ H

implies that 1√
n
en appears more than once in {fk}k∈J for large values of n.

ThusM does not contain an ω-independent subset. Actually {fk}∞k=1 does
not contain a Riesz basis at all. The only candidate would be { 1√

k
ek}∞k=1,

which is a Schauder basis but not a Riesz basis.
Now we want to show that it even is possible to construct a frame which

consists of vectors that are norm bounded below but which does not contain
a Schauder basis; in particular, it does not contain a Riesz basis. The exam-
ple was constructed by Casazza and Christensen and appeared in [120]. It
is considerably more complicated than (7.8), and we need some preparation
before the proof.

Lemma 7.5.1 Let {ek}nk=1 be an orthonormal basis for a finite-
dimensional Hilbert space Hn. Define the vectors

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fk = ek −
1

n

n∑

j=1

ej , k = 1, . . . , n;

fn+1 =
1√
n

n∑

j=1

ej .

Then the following hold:

(i) {fk}n+1
k=1 is a tight frame for Hn with frame bound A = 1.

(ii) Assume that n > 2, and let {fki}i∈I be any subset of {fk}n+1
k=1

for which span{fki}i∈I = Hn. Then, for an arbitrary ordering of
the elements, {fki}i∈I has basis constant greater than or equal to
1
4

√
n− 2.
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Proof. To prove (i), let f ∈ Hn and write

f =
n∑

k=1

akek, where ak = 〈f, ek〉.

Letting P denote the orthogonal projection onto the unit vector
1√
n

∑n
k=1 ek,

Pf =

〈

f,
1√
n

n∑

k=1

ek

〉
1√
n

n∑

k=1

ek =

∑n
k=1 ak√
n

1√
n

n∑

k=1

ek.

Therefore

||Pf ||2 =
1

n

∣
∣
∣
∣

n∑

k=1

ak

∣
∣
∣
∣

2

= |〈f, fn+1〉|2.

Also,

||(I − P )f ||2 =

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

akek −
1

n

n∑

j=1

aj

n∑

k=1

ek

∣
∣
∣
∣

∣
∣
∣
∣

2

=

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

⎛

⎝ak −
1

n

n∑

j=1

aj

⎞

⎠ ek

∣
∣
∣
∣

∣
∣
∣
∣

2

=

n∑

k=1

∣
∣
∣
∣ak −

1

n

n∑

j=1

aj

∣
∣
∣
∣

2

=

n∑

k=1

|〈f, fk〉|2.

Putting the two last results together, we obtain that

||f ||2 = ||Pf ||2 + ||(I − P )f ||2 =

n+1∑

k=1

|〈f, fk〉|2.

This proves (i). To prove (ii), we note that
∑n

k=1 fk = 0, i.e., the vectors
{fk}nk=1 are linearly dependent. Therefore any subset of the frame {fk}n+1

k=1

which spans Hn must contain fn+1 and at least n−1 of the terms {fk}nk=1.
The basis constant for an arbitrary sequence is by its definition in (3.10)
larger than or equal to the basis constant for any subsequence; thus, it is
enough to prove the following:

Claim: For any family of the type

{fk}k∈Δ∪{n+1}, where Δ ⊂ {1, 2, . . . , n}, |Δ| = n− 1, (7.9)
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there exist an index set Λ ⊆ Δ ∪ {n + 1} and scalars {ck}k∈Δ∪{n+1}
such that

0 �=
∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Λ

ckfk

∣
∣
∣
∣

∣
∣
∣
∣ ≥

1

4

√
n− 2

∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Δ∪{n+1}
ckfk

∣
∣
∣
∣

∣
∣
∣
∣. (7.10)

Note that this takes care of the fact that {fk}k∈Δ∪{n+1} can be ordered in
an arbitrary way.
Given a set Δ as in (7.9), let Δc = {�} denote its complement in

{1, . . . , n}. Then, since
∑n

k=1 fk = 0, we have

∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Δ

fk

∣
∣
∣
∣

∣
∣
∣
∣ = ||f�|| =

√
n− 1

n
.

Note that fn+1⊥fk for all k = 1, . . . , n. Therefore

∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Δ∪{n+1}
fk

∣
∣
∣
∣

∣
∣
∣
∣ =

(

||fn+1||2 +
∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Δ

fk

∣
∣
∣
∣

∣
∣
∣
∣

2
)1/2

=

(

1 +
n− 1

n

)1/2

= ≤
√
2. (7.11)

Let �n−1
2 � denote the integer part of n−1

2 (see page 645). For any subset
Γ ⊂ {1, 2, . . . , n} with |Γ| = �n−1

2 �, we have

|Γ| ≤ n

2
and |Γ| ≥ n− 1

2
− 1

2
=

n

2
− 1;

therefore

∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Γ

fk

∣
∣
∣
∣

∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Γ

⎛

⎝ek −
1

n

n∑

j=1

ej

⎞

⎠
∣
∣
∣
∣

∣
∣
∣
∣

=

∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Γ

(

1− |Γ|
n

)

ek +
∑

k/∈Γ

−|Γ|
n

ek

∣
∣
∣
∣

∣
∣
∣
∣

≥
(
∑

k∈Γ

(

1− |Γ|
n

)2
)1/2

= |Γ|1/2
(

1− |Γ|
n

)

≥ |Γ|1/2
2

≥ 1

2

√
n

2
− 1. (7.12)
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We now consider a subset {fk}k∈Λ of {fn+1}∪{fk}k∈Δ. We choose Λ such
that {fk}k∈Λ contains exactly �n−1

2 � of the elements of the set {fk}nk=1.
Now, there are two possibilities.

Case 1 fn+1 /∈ {fk}k∈Λ:

Then, as we saw in the estimate (7.12),
∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Λ

fk

∣
∣
∣
∣

∣
∣
∣
∣ ≥

1

2

√
n

2
− 1,

while by (7.11)
∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Δ∪{n+1}
fk

∣
∣
∣
∣

∣
∣
∣
∣ ≤
√
2.

Therefore
∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Λ

fk

∣
∣
∣
∣

∣
∣
∣
∣ ≥ 1

2

√
n

2
− 1

1√
2

∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Δ∪{n+1}
fk

∣
∣
∣
∣

∣
∣
∣
∣

=
1

4

√
n− 2

∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Δ∪{n+1}
fk

∣
∣
∣
∣

∣
∣
∣
∣.

Hence, (7.10) is satisfied.
Case 2 fn+1 ∈ {fk}k∈Λ:

Now, since fn+1⊥fk, k = 1 . . . , n, we have

∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Λ

fk

∣
∣
∣
∣

∣
∣
∣
∣ =

⎛

⎝||fn+1||2 +
∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Λ\{n+1}
fk
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∣
∣

∣
∣
∣
∣

2
⎞

⎠

1/2

≥

⎛

⎝
∣
∣
∣
∣

∣
∣
∣
∣
1√
n

n∑

j=1

ej

∣
∣
∣
∣

∣
∣
∣
∣

2

+

[
1

2

√
n

2
− 1

]2
⎞

⎠

1/2

≥ 1

2

√
n

2
− 1,

while we still have ‖
∑

k∈Δ∪{n+1} fk‖ ≤
√
2. Thus (7.10) is again satisfied.

This completes the proof. �

We are now ready to prove the existence of a tight frame which is norm
bounded below and for which no subfamily is a Schauder basis. The exact
meaning of this is that no matter how a subset of the frame is ordered, it
is not a basis.
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Theorem 7.5.2 In every separable infinite-dimensional Hilbert space H,
there exists a tight frame which is norm bounded below and which does not
contain a Schauder basis for H.

Proof. Since all infinite-dimensional separable Hilbert spaces are isomet-
rically isomorphic, it is enough to construct an example in one particular
Hilbert space. Let {ek}∞k=1 be an orthonormal basis for a Hilbert space
K and define an infinite collection of finite-dimensional vector spaces by
H1 = span{e1}, H2 = span{e2, e3}, and in general

Hn := span
{
e (n−1)n

2 +1
, e (n−1)n

2 +2
, . . . , e (n−1)n

2 +n

}
.

Consider the direct sum

H =

( ∞∑

n=1

⊕Hn

)

�2

as defined in (A.4). In each space Hn we construct the sequence {fn
k }n+1

k=1

as in Lemma 7.5.1, starting with the orthonormal basis
{
e (n−1)n

2 +1
, e (n−1)n

2 +2
, . . . , e (n−1)n

2 +n

}
=
{
e (n−1)n

2 +k

}n

k=1
.

Specifically, given n ∈ N,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fn
k = e (n−1)n

2 +k
− 1

n

n∑

j=1

e (n−1)n
2 +j

, 1 ≤ k ≤ n;

fn
n+1 =

1√
n

n∑

j=1

e (n−1)n
2 +j

.

We now show that {fn
k }

n+1,∞
k=1,n=1 is a tight frame for H with frame bound

A = 1. Write g ∈ H as

g = (g1, g2, . . . ), gn ∈ Hn.

We identify elements in a space Hn with their counterpart in H, i.e., we
do not distinguish between f ∈ Hn and the sequence in H having f in the
n-th entry and otherwise zero. Given n ∈ N, it is clear that

〈g, fn
k 〉H = 〈gn, fn

k 〉Hn for k = 1, . . . , n+ 1.

It now follows from Lemma 7.5.1 that

∞∑

n=1

n+1∑

k=1

|〈g, fn
k 〉H|2 =

∞∑

n=1

n+1∑

k=1

|〈gn, fn
k 〉Hn |2 =

∞∑

n=1

||gn||2Hn

= ||g||2H.
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That is, {fn
k }

n+1,∞
k=1,n=1 is a tight frame for H as claimed. Note that for n ≥ 2

and 1 ≤ k ≤ n,

||fn
k || =

∣
∣
∣
∣

∣
∣
∣
∣

(

1− 1

n

)

e (n−1)n
2 +k

− 1

n

∑

j �=k

e (n−1)n
2 +j

∣
∣
∣
∣

∣
∣
∣
∣

=

√(

1− 1

n

)2

+
n− 1

n2
≥ 1

4
,

while

f1
1 = 0 and ||fn+1

n || = 1, ∀n ∈ N.

Removing f1
1 , we thus obtain a tight frame which is norm-bounded below.

Now let {hk}∞k=1 be any spanning subset of the frame {fn
k }

n+1,∞
k=1,n=1, ord-

ered in an arbitrary way. The basis constant for {hk}∞k=1 is by definition
greater than or equal to the basis constant for any subsequence of {hk}∞k=1.
Now, for any n > 2, there exists N ∈ N such that {hk}Nk=1 contains a
subsequence which spans Hn; this follows from the special construction
of H as an orthogonal sum of the spaces Hn and the choice of the frame
{fn

k }
n+1,∞
k=1,n=1. By Lemma 7.5.1(ii), this implies that the basis constant for

{hk}Nk=1 is at least 1
4

√
n− 2; since n > 2 was arbitrary, this implies that

the basis constant for {hk}∞k=1 is infinite. Thus, by Theorem 3.1.4, {hk}∞k=1

is not a Schauder basis for H. �

We note that a frame which is norm-bounded below satisfies inequalities
like

0 < inf
k
||fk|| ≤ sup

k
||fk|| <∞;

thus we have a slight variation of Theorem 7.5.2 (Exercise 7.3):

Corollary 7.5.3 In every separable infinite-dimensional Hilbert space,
there exists a normalized frame which does not contain a Schauder basis.

Vershynin has obtained a generalization of Theorem 7.5.2 [625]: there
exists a frame {fk}∞k=1 which does not contain a basis with brackets, i.e., a
subfamily {xn}∞n=1 for which there exist numbers 1 < n1 < n2 < · · · such
that every f ∈ H has a unique representation f = limj

∑nj

n=1 anxn. Bases
with brackets only require the convergence of some special partial sums,
and it is thus a more general concept than a basis.
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7.6 A Moment Problem

Let {fk}∞k=1 be a sequence in a Hilbert space H, and let {ak}∞k=1 ∈ �2(N).
It is natural to ask whether we can find f ∈ H such that

〈f, fk〉 = ak, ∀k ∈ N; (7.13)

a problem of this type is called a moment problem. It is clear that there are
cases where no solution exists: if, for example, fk = fj for some k �= j, a
solution can only exist if ak = aj . More generally, if {fk}∞k=1 is ω-dependent,
we can find coefficients {ak}∞k=1 (not all zero) such that

∑∞
k=1 akfk = 0. If,

for example, aj �= 0, then fj = −
∑

k �=j
ak

aj
fk; thus, (7.13) can only have a

solution if aj is equal to the corresponding linear combination of {ak}k �=j .
If the moment problem (7.13) has a solution, it is unique if and only if

{fk}∞k=1 is complete (Exercise 7.4). We now present one more equivalent
condition for a frame to be a Riesz basis; it is formulated in terms of the
adjoint of the synthesis operator T :

Theorem 7.6.1 Let {fk}∞k=1 be a frame for H. Then {fk}∞k=1 is a Riesz
basis if and only if the analysis operator T ∗ : H → �2(N) is surjective.

Proof. First assume that {fk}∞k=1 is a Riesz basis. Let {gk}∞k=1 be the
biorthogonal sequence. For {ak}∞k=1 ∈ �2(N), Theorem 3.2.3 shows that
f :=

∑∞
k=1 akgk is well defined; furthermore,

T ∗f = {〈f, fk〉}∞k=1 = {ak}∞k=1.

Thus T ∗ is surjective. On the other hand, if we assume that T ∗ is surjective,
RT∗ = �2(N), then NT = R⊥

T∗ = {0}. Now the conclusion follows from
Theorem 7.1.1. �

An alternative formulation of Theorem 7.6.1 is that a frame {fk}∞k=1

is a Riesz basis if and only if the moment problem (7.13) has a solution
for all {ak}∞k=1 ∈ �2(N). Young proves a stronger result in [622]: for an
arbitrary sequence {fk}∞k=1 in a Hilbert space, the range of the operator
f �→ {〈f, fk〉}∞k=1 contains �2(N) if and only if there exists a constant A > 0
such that

A

n∑

k=1

|ck|2 ≤
∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣

2

for all finite sequences {ck}∞k=1. A sequence {fk}∞k=1 satisfying these
conditions is called a Riesz–Fischer sequence.
For a frame which is not a Riesz basis, it follows from Theorem 7.6.1 that

there exist sequences {ak}∞k=1 ∈ �2(N) such that (7.13) has no solution.
But we can still ask for a best approximative solution; here we have to
give a precise definition of how we want to approximate the given sequence
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{ak}∞k=1. Since we are working with �2(N), it is a natural question whether
we can find an element in H which minimizes the functional

f �→
∞∑

k=1

|ak − 〈f, fk〉|2 =
∣
∣
∣
∣ {ak − 〈f, fk〉}∞k=1

∣
∣
∣
∣2
�2(N)

.

The answer turns out to be yes:

Theorem 7.6.2 Let {fk}∞k=1 be a frame for H with frame operator S,
and let {ak}∞k=1 ∈ �2(N). Then there exists a unique vector in H which
minimizes the functional

f �→
∞∑

k=1

|ak − 〈f, fk〉|2;

this vector is f =
∑∞

k=1 akS
−1fk.

Proof. By the result in Exercise 5.18, the orthogonal projection of a
sequence {ck}∞k=1 ∈ �2(N) onto the range of T ∗ is given by

P{ck}∞k=1 =

{

〈
∞∑

k=1

ckS
−1fk, fj〉

}∞

j=1

. (7.14)

The functional f �→
∑∞

k=1 |ak − 〈f, fk〉|2 is minimized when

{〈f, fk〉}∞k=1 = P{ak}∞k=1,

which is the case for f =
∑∞

k=1 akS
−1fk; by completeness of {fk}∞k=1, the

minimizer is unique. �

Corollary 7.6.3 Assume that {fk}∞k=1 is a Riesz basis for H, and let
{ak}∞k=1 ∈ �2(N). Then the moment problem (7.13) has a unique solution,
which is given by

f =

∞∑

k=1

akS
−1fk =

∞∑

j=1

( ∞∑

k=1

(T ∗T )−1
j,kak

)

fj ;

here (T ∗T )−1
j,k is the jk-th entry in the matrix representation for T ∗T with

respect to the canonical basis.

Proof. The moment problem has a solution f when {fk}∞k=1 is a Riesz
basis, and the representation of f via S−1 follows from Theorem 7.6.2. By
Theorem 2.5.3, the solution can also be expressed as

f = (T ∗)†{ak}∞k=1 = T (T ∗T )−1{ak}∞k=1 =

∞∑

j=1

( ∞∑

k=1

(T ∗T )−1
j,kak

)

fj.

�
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7.7 The Feichtinger Conjecture

Even though Section 7.5 shows that there exist frames with no relationship
to a basis, it is still fair to think about a frame as an “overcomplete basis.”
A natural question is to analyze how this redundancy can be interpreted.
For example, can any frame be split into a finite number of Riesz sequences?
In 2002, Feichtinger formulated the following conjecture (see Exercise 7.5
for a comment on the assumptions):

The Feichtinger conjecture: Let {fk}∞k=1 be a frame with the property
that infk∈N ||fk|| > 0. Then {fk}∞k=1 can be partitioned into a finite union
of Riesz sequences.

Relatively soon, the first positive partial results were published in [342]
and [130]. However, the general question turned out to be very difficult.
Around 2005 it was shown by Casazza and Tremain that the Feichtinger
conjecture is equivalent to the Kadison–Singer conjecture from 1959, in the
sense that either both conjectures are true or both are false. Later, Casazza
related the conjecture to several other open problems in the literature. We
refer to [132] and [117] for detailed descriptions of these conjectures. The
Feichtinger conjecture was finally confirmed in 2013, by Marcus, Spielman,
and Srivastava [517]. The paper verifies one of the equivalent formulations
of the conjecture rather than the frame formulation.

7.8 Exercises

7.1 Give an example of a Riesz frame which is not a near-Riesz basis.

7.2 Find a frame which contains a Schauder basis which is not a Riesz
basis (hint: use Example 5.1.4).

7.3 Prove Corollary 7.5.3.

7.4 Let {fk}∞k=1 be a sequence in H, and let {ak}∞k=1 ∈ �2(N). Prove
that {fk}∞k=1 is complete in H if and only if (7.13) has at most one
solution.

7.5 Show that Feichtinger’s conjecture would be false if the assumption
of {fk}∞k=1 being norm-bounded below is removed.



8
Selected Topics in Frame Theory

The content in Chapters 5–7 forms the fundament for frame theory, but
much more is known. We will not be able to describe all the interesting
directions of frame theory, but the purpose of this chapter is to give short
presentations of certain topics that appear repeatedly in the literature. Sec-
tion 8.1 deals with the theory for g-frames as developed by Sun; it “lifts”
frame theory from a condition dealing with vectors in a Hilbert space to a
condition dealing with operators on the Hilbert space and hereby provides
more general ways of obtaining “frame-like” decompositions. Section 8.2
discusses localized frames; they were introduced by Gröchenig with the
purpose to identify frames that not only lead to series expansions in the
underlying Hilbert space but also in a class of associated Banach spaces.
By now, localized frames appear in many papers where frames with “par-
ticularly good properties” are needed. Section 8.3 deals with the so-called
R-dual {ωj}∞j=1 of a sequence {fk}∞k=1 in a Hilbert space, originally intro-
duced by Casazza, Kutyniok, and Lammers. The R-dual provides a way of
checking that {fk}∞k=1 is a frame, by checking the (conceptually more ac-
cessible) condition that {ωj}∞j=1 forms a Riesz sequence. The construction
mimics the result in Proposition 1.4.3 and is strongly related to the duality
principle in Gabor analysis, to which we return in Section 13.1. In Sec-
tion 8.4 we consider a generalization of frame theory to the case where the
upper frame condition is violated. In this case, the synthesis operator is un-
bounded, but under certain conditions it is still possible to develop a frame-
like theory. Finally, Section 8.5 relates frame theory to signal processing
and signal transmission. Much more can be said about this, but this should
be done by the people who are deeply involved in these applications.

©
O. Christensen, An Introduction to Frames and Riesz Bases,
Applied and Numerical Harmonic Analysis,
DOI 10.1007/978-3-319-25613-9 8

183Springer International Publishing Switzerland 2016
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8.1 G-Frames

Over the years, various extensions of the frame theory have been investi-
gated. Several of these are contained as special cases of the elegant theory
for g-frames that was introduced by W. Sun in [593]. Note that originally
the name g-frames was used as a short form of generalized frames, a ter-
minology that was also used by Kaiser as he defined what is now called
continuous frames. For this reason, we will solely stick to the short name
“g-frames.”
In order to reduce repetitions, we will now list the standing assumptions

for the entire section.

General setup: Consider two Hilbert spaces H and H̃. Let I denote a
countable index set, and let {Vk}k∈I be a sequence of closed subspaces

of H̃. For each k ∈ I, let Λk : H → Vk be a bounded linear operator.

Definition 8.1.1 Under the assumptions in the general setup, the seq-
uence of operators {Λk}k∈I is called a g-frame for H with respect to the
spaces {Vk}k∈I if there exist constants A,B > 0 such that

A ||f ||2 ≤
∑

k∈I

||Λkf ||2 ≤ B ||f ||2, ∀f ∈ H. (8.1)

The numbers A,B are called g-frame bounds or simply “bounds.”

The relation to frames is evident: if {fk}k∈I is a frame for H with bounds
A,B, then the linear functionals

Λk : H → C, Λkf := 〈f, fk〉 (8.2)

satisfy (8.1), i.e., {Λk}k∈I is a g-frame for H with respect to C. On the
other hand, any bounded linear functional Λk on H has the form (8.2) for
some fk ∈ H : this shows that the “classical” frames in Definition 5.1.1 can
be identified with the g-frames with respect to the particular space C.
The interest in g-frames arises from the fact that there is a large freedom

in the choices of the spaces {Vk}k∈I and corresponding operators {Λk}k∈I .
For example, any invertible operator Λ : H → H is a g-frame for H with
respect to H (Exercise 8.1). The following example shows that any fusion
frame is a g-frame.

Example 8.1.2 Let ({Vk}mk=1, {wk}mk=1) be a fusion frame for C
n; see

(1.39). Denote the orthogonal projection of C
n onto Vk by Pk, and let

Λk :=
√
wk Pk. Then the operators {Λk}mk=1 form a g-frame for C

n with
respect to the spaces {Vk}mk=1. Note that fusion frames for C

n have an
immediate generalization to infinite-dimensional spaces, which is covered
by the theory for g-frames in the same way. Prior to the general introduc-
tion of fusion frames, the special case corresponding to wk = 1, ∀k, was
known under the name frame of subspaces; see [140, 19]. �
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We will now show that g-frames lead to series expansions that are very
similar to the frame decomposition (5.1.6); the reader who checks the proofs
will observe that the techniques and ideas are also similar.

Theorem 8.1.3 Let {Λk}k∈I be a g-frame for H with respect to the spaces
{Vk}k∈I . Then the following hold:

(i) The sequence
∑

k∈I Λ
∗
kΛkf converges unconditionally for all f ∈ H,

and the linear map

S : H → H, Sf :=
∑

k∈I

Λ∗
kΛkf (8.3)

defines a bounded, invertible, self-adjoint, and positive operator.

(ii) The operators {Λ̃k}k∈I := {ΛkS
−1}k∈I form a g-frame for H with

respect to {Vk}k∈I ; denoting the bounds for {Λk}k∈I by A,B, the

g-frame {Λ̃k}k∈I has the bounds 1/B, 1/A.

(iii) Each f ∈ H has the decompositions

f =
∑

k∈I

Λ∗
kΛ̃kf =

∑

k∈I

(Λ̃k)
∗Λkf. (8.4)

Proof. (i) For notational convenience, assume that I = N. Consider n,
m ∈ N, n > m. Then, for any f ∈ H, a similar approach as in the proof of
Theorem 3.2.3 yields that

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

Λ∗
kΛkf −

m∑

k=1

Λ∗
kΛkf

∣
∣
∣
∣

∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=m+1

Λ∗
kΛkf

∣
∣
∣
∣

∣
∣
∣
∣

= sup
||g||=1

∣
∣
∣
∣〈

n∑

k=m+1

Λ∗
kΛkf, g〉

∣
∣
∣
∣ = sup

||g||=1

∣
∣
∣
∣〈

n∑

k=m+1

Λkf,Λkg〉
∣
∣
∣
∣

≤ sup
||g||=1

n∑

k=m+1

||Λkf || ||Λkg||

≤
(

n∑

k=m+1

||Λkf ||2
)1/2

sup
||g||=1

(
n∑

k=m+1

||Λkg||2
)1/2

≤
√
B

(
n∑

k=m+1

||Λkf ||2
)1/2

.

This implies that the sequence {
∑n

k=1 Λ
∗
kΛkf}n∈N

is a Cauchy sequence
in H and hence convergent; once the convergence is established, a similar
argument proves that the operator S in (8.3) is bounded and that ||S|| ≤ B.
We leave it to the reader to check that S is self-adjoint and positive. Now,
note that
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〈Sf, f〉 =
∞∑

k=1

||Λkf ||2, ∀f ∈ H;

using the g-frame condition this implies that

A ||f || ≤ ||Sf ||, ∀f ∈ H. (8.5)

Hence, S is injective and the range RS is closed. Denoting the kernel of S
by NS , we have RS = RS = N⊥

S∗ = N⊥
S = H, i.e., S is in fact surjective.

We conclude that S is invertible, which concludes the proof of (i).

Let us now show (iii). Using the notation Λ̃k := ΛkS
−1, the result in (i)

implies that for f ∈ H,

f = SS−1f =

∞∑

k=1

Λ∗
kΛkS

−1f =

∞∑

k=1

Λ∗
kΛ̃kf ;

similarly,

f = S−1Sf = S−1
∞∑

k=1

Λ∗
kΛkf =

∞∑

k=1

S−1Λ∗
kΛkf =

∞∑

k=1

(Λ̃k)
∗Λkf,

as desired.
In order to show (ii), let f ∈ H. Then

∞∑

k=1

||Λ̃kf ||2 =
∞∑

k=1

〈ΛkS
−1f,ΛkS

−1f〉 =
∞∑

k=1

〈Λ∗
kΛkS

−1f, S−1f〉

= 〈
∞∑

k=1

Λ∗
kΛkS

−1f, S−1f〉 = 〈f, S−1f〉.

Using (8.5) we see that ||S−1|| ≤ 1/A, so we can now conclude that

∞∑

k=1

||Λ̃kf ||2 ≤
1

A
||f ||2, ∀f ∈ H,

i.e., that {Λ̃k}k∈I satisfies the upper frame condition with bound 1/A. In
order to prove the lower bound, we use the second decomposition in (iii)
and get

||f ||2 = 〈f, f〉 = 〈
∞∑

k=1

(Λ̃k)
∗Λkf, f〉 =

∞∑

k=1

〈Λkf, Λ̃kf〉;

using Cauchy–Schwarz’ inequality twice, this implies that

||f ||4 ≤
∞∑

k=1

||Λkf ||2
∞∑

k=1

||Λ̃kf ||2 ≤ B||f ||2
∞∑

k=1

||Λ̃kf ||2.

Thus, the lower g-frame condition is satisfied with the claimed bound. �



8.1 G-Frames 187

Following the terminology in frame theory, the operator S in (8.3) is
called the g-frame operator , and (8.4) are the g-frame decompositions. The

sequence {Λ̃k}k∈I introduced in Theorem 8.1.3 (ii) is called the canoni-
cal dual g-frame of {Λk}k∈I ; and any sequence {Γ}k∈I of bounded linear
operators Γk : H → Vk such that

f =
∑

k∈I

Λ∗
kΓkf, ∀f ∈ H

is called a dual g-frame of {Λk}k∈I .
We have already seen that the “classical frames” considered so far are

special cases of the g-frames. We will now show that all g-frames actually
are related to the classical frames.

Proposition 8.1.4 For each k ∈ I, let {ej,k}j∈Jk
denote an orthonormal

basis for Vk, and let Λk : H → Vk be a bounded linear operator. Then the
following hold:

(i) For each k ∈ I, j ∈ Jk there exists a unique element uj,k ∈ H such
that

〈f, uj,k〉 = 〈Λkf, ej,k〉, ∀f ∈ H; (8.6)

(ii) With uj,k defined as in (i), {Λk}k∈I is a g-frame for H with respect
to {Vk}k∈I if and only if {uj,k}k∈I,j∈Jk

is a frame for H.

Proof. For the proof of (i), we just note that for each k ∈ I, j ∈ Jk,
the mapping f �→ 〈Λkf, ej,k〉 is a bounded linear functional on H; thus, the
result is a consequence of Riesz’ representation theorem. In order to prove
(ii), let f ∈ H; then, using the representation of Λkf ∈ Vk in terms of the
orthonormal basis {ej,k}j∈Jk

for Vk,

Λkf =
∑

j∈Jk

〈Λkf, ej,k〉ej,k =
∑

j∈Jk

〈f, uj,k〉ej,k.

Thus,

||Λkf ||2 =
∑

j∈Jk

|〈f, uj,k〉|2,

which immediately yields the desired conclusion. �

It is evident from the above statements and proofs that large parts of
frame theory carry over to g-frames with only minor modifications. In order
not to be too repetitive, we will therefore not go more into the theory and
just refer to the literature for more information about g-frames.
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8.2 Localization of Frames

A new direction in frame theory was launched by Gröchenig in [341]. One
of the motivations was to find a way to describe what could be called “good
frames.” Whether a frame is good or not clearly depends on the context,
but one of the typical requirements is that the canonical dual frame inherits
attractive properties from the frame itself. We will be more precise about
this once we have described the theory.
We begin with the original definition of a localized frame that appears

in [341].

Definition 8.2.1 Let {fk}∞k=1 be a frame for a Hilbert space H, and let

{ψk}∞k=1 be a Riesz basis with dual Riesz basis {ψ̃k}∞k=1. Then {fk}∞k=1 is
polynomially localized with respect to {ψk}∞k=1, with decay rate s > 1, if
there exists a constant C > 0 such that

{
|〈fk, ψj〉| ≤ C(1 + |k − j|)−s, ∀k, j ∈ N;

|〈fk, ψ̃j〉| ≤ C(1 + |k − j|)−s, ∀k, j ∈ N.

Likewise, a frame {fk}∞k=1 is exponentially localized with respect to a
Riesz basis {ψk}∞k=1, with decay rate α > 0, if there exists a constant
C > 0 such that

{
|〈fk, ψj〉| ≤ Ce−α|k−j|, ∀k, j ∈ N;

|〈fk, ψ̃j〉| ≤ Ce−α|k−j|, ∀k, j ∈ N.

One of the main results in [341] says that the canonical dual of a frame
{fk}∞k=1 inherits the localization property:

Theorem 8.2.2 Assume that {fk}∞k=1 is a frame with frame operator S.
Then the following hold:

(i) If {fk}∞k=1 is polynomially localized with respect to a Riesz basis
{ψk}∞k=1, then the canonical dual frame {S−1fk}∞k=1 is also poly-
nomially localized with respect to {ψk}∞k=1, with the same decay
rate.

(ii) If {ψk}∞k=1 is exponentially localized, then {S−1fk}∞k=1 is also
exponentially localized, possibly with a different decay rate.

The concept of localization as in Definition 8.2.1 clearly depends on
the choice of the Riesz basis {ψk}∞k=1. An alternative concept was defined
by Gröchenig in [342] and studied in detail in his paper [304] with For-
nasier. Two names for the concept appear in the literature: it was called
intrinsically localized frames in [342] and self-localized frames in [304].
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Definition 8.2.3 A frame {fk}∞k=1 is self-localized with decay rate s > 1
if there exists a constant C > 0 such that

|〈fk, fj〉| ≤ C(1 + |k − j|)−s, ∀k, j ∈ N. (8.7)

Note that the definition of self-localization is a decay condition on the
entries of the Gram matrix associated with {fk}∞k=1, outside the main di-
agonal. As we have seen in Corollary 3.5.5, the condition (8.7) by itself
actually implies that {fk}∞k=1 is a Bessel sequence.

Let us collect some of the key relationships between the two types of
localization; (i) was first proved in [342], and (ii)+(iii) in [304].

Lemma 8.2.4 Let {fk}∞k=1 be a frame for H, with frame operator S. Then
the following hold:

(i) If {fk}∞k=1 is polynomially localized with respect to a Riesz basis, then
{fk}∞k=1 is self-localized, with the same decay rate.

(ii) If {fk}∞k=1 is self-localized, then the canonical dual {S−1fk}∞k=1 is also
self-localized, with the same decay rate.

(iii) If {fk}∞k=1 is self-localized with decay rate s > 1, there exists a
constant C > 0 such that

|〈fk, S−1fj〉| ≤ C(1 + |k − j|)−s, ∀k, j ∈ N.

Proof. We will not give a full proof, but just explain the main steps of the
proof of (i). Assume that {fk}∞k=1 is polynomially localized with respect to
the Riesz basis {ψk}∞k=1, with decay rate s > 1. By Theorem 3.6.2, we can
expand any of the frame elements fk in terms of the Riesz basis {ψk}∞k=1

and its dual Riesz basis {ψ̃k}∞k=1,

fk =

∞∑

�=1

〈fk, ψ̃�〉ψ�;

thus, for k, j ∈ N,

|〈fk, fj〉| =

∣
∣
∣
∣

∞∑

�=1

〈fk, ψ̃�〉〈ψ�, fj〉
∣
∣
∣
∣ ≤

∞∑

�=1

|〈fk, ψ̃�〉| |〈ψ�, fj〉|

≤ C2
∞∑

�=1

(1 + |k − �|)−s(1 + |�− j|)−s. (8.8)

Now, elementary (but slightly tedious) estimates on the sum in (8.8) show
that it is bounded by a (new) constant times (1 + |k− j|)−s, as desired. �

We will meet two applications of localized frames in the following
chapters. In Section 23.3 we will use self-localized frames to obtain
estimates for the speed of convergence of a method for approximation of
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the inverse frame operator, and in Section 24.3 we will see that localized
frames for a Hilbert space automatically lead to series expansions in a class
of Banach spaces associated with the given Hilbert space.
Note that Balan, Casazza, Heil, and Landau have introduced a different

notation for localization of frames in the paper [33]. The applications of
this concept go in a different direction compared with [341]; in fact, the
main content of [33] is concerned with localization in relation to density
and overcompleteness issues for the given frame. We also note that the
concept of localization of frames has been generalized to continuous frames
by Fornasier and Rauhut [303].

8.3 The R-Duals of a Frame

To check that a given sequence {fk}∞k=1 in a Hilbert space H is a frame
is usually a nontrivial matter: we have to check the validity of the frame
condition

A ||f ||2 ≤
∞∑

k=1

|〈f, fk〉|2 ≤ B ||f ||2

for all f ∈ H (or at least on a dense subspace), with uniform bounds
A,B > 0. In particular, the lower frame condition is notoriously compli-
cated. Therefore it is natural to look for simpler ways to check that {fk}∞k=1

is a frame. A reduction appears in Proposition 5.1.10, which shows that the
frame property can be checked via a calculation of a countable collection
of numbers.
We note that at least conceptually, it is easier to check that a sequence in

H is a Riesz sequence than to check the frame property. In order to explain
this, consider the finite scalar sequences in the unit sphere of �2(N), i.e., let

S :=

⎧
⎨

⎩
{cj}∞j=1 ∈ �2(N)

∣
∣ {cj}∞j=1 is finite and

∞∑

j=1

|cj |2 = 1

⎫
⎬

⎭
. (8.9)

Then, as shown in Corollary 3.7.4 (see also Exercise 3.10), there exists a
countable collection of sequences {c�j}∞j=1 ∈ S, � ∈ N, with the following
property: a given sequence {ωj}∞j=1 in H is a Riesz sequence with bounds
A,B if

0 < A ≤
∣
∣
∣
∣

∣
∣
∣
∣

∞∑

j=1

c�jωj

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ B <∞, ∀� ∈ N. (8.10)

For each � ∈ N the series in (8.10) is a finite sum, so the condition (8.10)
is quite explicit. Of course, the verification is still complicated because we
need to obtain uniform bounds A,B that are valid for all � ∈ N, but never-
theless the condition is significantly less involved than the frame condition.
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In fact, even the seemingly parallel result in Proposition 5.1.10 (ii) requires
that we have an appropriate orthonormal basis for the relevant Hilbert
space H at hand – and it also involves an infinite series.
The frame literature contains several results relating frames and Riesz

sequences; we saw the first such result in the finite-dimensional setting
in Proposition 1.4.3. One of the most prominent connections, the duality
principle in Gabor analysis, will be considered in Theorem 13.1.1. Partly
motivated by the duality principle, Casazza, Kutyniok, and Lammers
introduced the so-called R-duals in general Hilbert spaces in the paper
[142]. Before we state the general definition and the key properties we
will motivate the definition by considering sequences in finite-dimensional
spaces.
Let {fk}mk=1 denote a sequence of m vectors in C

n; it will be implicit from
the following discussion that we are interested in the case where m ≥ n.
Writing the vectors on the form

fk =

⎛

⎜
⎜
⎜
⎜
⎝

f1k
f2k
·
·

fnk

⎞

⎟
⎟
⎟
⎟
⎠

, k = 1, . . . ,m,

we have seen in (1.18) that the synthesis operator for {fk}mk=1 can be
identified with the matrix

T =

⎛

⎝
| | · · |
f1 f2 · · fm
| | · · |

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎝

f11 f12 · · f1m
f21 f22 · · f2m
· · · · ·
· · · · ·

fn1 fn2 · · fnm

⎞

⎟
⎟
⎟
⎟
⎠

. (8.11)

Now let {ek}nk=1 denote the canonical orthonormal basis for C
n and

{hk}mk=1 the canonical orthonormal basis for C
m. Define the vectors

{ωj}nj=1 in C
m by

ωj =
m∑

k=1

〈fk, ej〉hk, j = 1, . . . , n. (8.12)

Then direct calculation shows that

ωj =

m∑

k=1

fjkhk =

⎛

⎜
⎜
⎜
⎜
⎝

fj1
fj2
·
·

fjm

⎞

⎟
⎟
⎟
⎟
⎠

, j = 1, . . . , n.

The geometric interpretation is that the vectors fk constitute the columns
in the matrix T and that the vectors ωj form the rows in T.
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Using Proposition 1.4.3 on the transposed of the matrix in (8.11), we
conclude that {fk}mk=1 is a frame for Cn if and only if the vectors {ωj}nj=1

form a basis for their span in C
m (i.e., if and only if the vectors {ωj}nj=1

are linearly independent).
Motivated by this relation between the sequences {fk}mk=1 and {ωj}nj=1,

we will now turn our attention to the infinite-dimensional setting and state
the definition of the R-duals of a given sequence of vectors {fk}∞k=1 in a
general Hilbert space H, as proposed in [142].

Definition 8.3.1 Let {fk}∞k=1 be any sequence in a separable Hilbert
space H. Let {ek}∞k=1 and {hk}∞k=1 denote orthonormal bases for H, and
assume that

∞∑

k=1

|〈fk, ej〉|2 <∞, ∀j ∈ N. (8.13)

The R-dual of {fk}∞k=1 with respect to the orthonormal bases {ek}∞k=1 and
{hk}∞k=1 is the sequence {ωj}∞j=1 in H given by

ωj =
∞∑

k=1

〈fk, ej〉hk, j ∈ N. (8.14)

Note that (8.13) is a technical condition that is needed to ensure conver-
gence of the series in (8.14). We will now state and prove the main results
from [142].

Theorem 8.3.2 Given a sequence {fk}∞k=1 in H, choose {ek}∞k=1 and
{hk}∞k=1 as in Definition 8.3.1 and consider the R-dual {ωj}∞j=1 in (8.14).
Then the following hold:

(i) {fk}∞k=1 is a Bessel sequence with bound B if and only if {ωj}∞j=1 is
a Bessel sequence with bound B.

(ii) Assume that {fk}∞k=1 is a Bessel sequence. Then {fk}∞k=1 satisfies the
lower frame condition with bound A if and only if {ωj}∞j=1 satisfies
the lower Riesz sequence condition with bound A.

(iii) {fk}∞k=1 is a frame for H with bounds A,B if and only if {ωj}∞j=1 is
a Riesz sequence with bounds A,B.

Proof. In order to prove (i), consider any finite scalar sequence {cj}∞j=1.
Then

∞∑

j=1

cjωj =

∞∑

j=1

cj

∞∑

k=1

〈fk, ej〉hk =

∞∑

k=1

〈fk,
∞∑

j=1

cjej〉hk;

it follows that
∣
∣
∣
∣

∣
∣
∣
∣

∞∑

j=1

cjωj

∣
∣
∣
∣

∣
∣
∣
∣

2

=

∞∑

k=1

∣
∣
∣
∣〈fk,

∞∑

j=1

cjej〉
∣
∣
∣
∣

2

. (8.15)
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Now assume that {fk}∞k=1 is a Bessel sequence with bound B. Then it
follows from (8.15) that for any finite sequence {cj}∞j=1

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

j=1

cjωj

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ B

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

j=1

cjej

∣
∣
∣
∣

∣
∣
∣
∣

2

= B
∞∑

j=1

|cj |2;

now Exercise 3.13 implies that {ωj}∞j=1 is a Bessel sequence with bound B.
Similarly, if {ωj}∞j=1 is a Bessel sequence with bound B, then (8.15) shows
that for any finite scalar sequence {cj}∞j=1,

∞∑

k=1

∣
∣
∣
∣〈fk,

∞∑

j=1

cjej〉
∣
∣
∣
∣

2

≤ B

∞∑

j=1

|cj |2 = B

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

j=1

cjej

∣
∣
∣
∣

∣
∣
∣
∣

2

;

since the set of finite linear combinations of the vectors ej is dense in H,
the conclusion now follows from Lemma 3.2.6.
In order to show (ii), we now assume that {fk}∞k=1 is a Bessel sequence.

Then the continuity of the synthesis operators associated with {fk}∞k=1

and {ωj}∞j=1 implies that (8.15) holds for all {cj}∞j=1 ∈ �2(N). Now (ii)
follows immediately from the fact that each f ∈ H has a representation
f =

∑∞
j=1〈f, ej〉ej and that

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

j=1

cjej

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∞∑

j=1

|cj|2, ∀{cj}∞j=1 ∈ �2(N).

The result in (iii) follows by combining (i) and (ii). �

Note that, at least theoretically, Theorem 8.3.2 (iii) does what we want:
we can check the frame property for the sequence {fk}∞k=1 by verifying the
Riesz sequence property for the associated sequence {ωj}∞j=1. In practice, it
might of course be problematic to calculate the vectors {ωj}∞j=1 explicitly
and check this condition.
Let us state one more result from [142]; it gives a characterization of two

frames being dual frames, expressed in terms of the associated R-duals.

Theorem 8.3.3 Let {fk}∞k=1 and {gk}∞k=1 denote frames for H, and let
{ωj}∞j=1 and {γj}∞j=1 denote the associated R-duals with respect to the
orthonormal bases {ek}∞k=1, {hk}∞k=1. Then the following are equivalent:

(i) {fk}∞k=1 and {gk}∞k=1 are dual frames.

(ii) 〈ωj , γk〉 = δj,k, ∀j, k ∈ N.

It is an interesting open problem whether the theory for R-duals general-
izes the duality principle in Gabor analysis. See the papers [142, 166, 580]
and the discussion in Section 13.1.
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8.4 Frame Theory via Unbounded Operators

Frame theory as presented in Chapter 5 can be generalized in various
ways. In this section, we will describe an extension involving unbounded
operators. We will not state the necessary definitions and results about
unbounded operators in a formal way, but just give appropriate references
to the literature.
In order to motivate the extension, consider a frame {fk}∞k=1 in a Hilbert

space H. The role of the Bessel condition is to guarantee that the synthesis
operator is a bounded operator. Intuitively, the Bessel condition ensures
that the vectors {fk}∞k=1 “do not contain too much information in any par-
ticular direction.” For example, we know that the condition excludes the
possibility that a certain nonzero vector is repeated infinitely often in the
frame. However, from this point of view it is clear that “too much infor-
mation in a particular direction” should not make it impossible to derive
a reconstruction formula: it will just make the process more complicated
because we might have to deal with an unbounded synthesis operator.
In this section we will give a short introduction to results from [153],

showing that this intuition is correct. Consider a sequence {fk}∞k=1 in H,
and define the possibly unbounded operator T : D(T ) ⊆ �2(N)→ H by

T{ck}∞k=1 :=

∞∑
k=1

ckfk, D(T ) =

{
{ck}∞k=1 ∈ �2(N)

∣∣ ∞∑
k=1

ckfk is convergent

}
.

Note that the finite sequences are dense in �2(N) and contained in D(T );
thus, the operator T is automatically densely defined. As in our study of
Bessel sequences, we will call T the synthesis operator.
The key to the results in [153] is that to any densely defined, closed, and

surjective operator from �2(N) into H, we can associate a unique pseudo-
inverse operator T † : H → �2(N) such that

NT † = R⊥
T ; RT † = N⊥

T ; and TT †f = f, ∀f ∈ RT .

We refer to Lemma 1.1 in [59] for a proof. Corollary 1.2 in the same paper
shows that the pseudo-inverse is a bounded operator.

Theorem 8.4.1 Let {fk}∞k=1 be a sequence in H, and assume that the
synthesis operator T is closed and surjective. Then the following hold:

(i) There exists a Bessel sequence {gk}∞k=1 such that

f =

∞∑

k=1

〈f, gk〉fk, ∀f ∈ H;

(ii) The sequence {fk}∞k=1 satisfies the lower frame condition; in fact,

1

||T †||2 ||f ||
2 ≤

∞∑

k=1

|〈f, fk〉|, ∀f ∈ H.
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Proof. Let T † denote the pseudo-inverse of the synthesis operator T.
Given f ∈ H, write the sequence T †f as T †f = {(T †f)k}∞k=1. According to
the properties of the pseudo-inverse T †, we can decompose f as

f = TT †f =
∞∑

k=1

(T †f)kfk; (8.16)

furthermore,

||T †f ||2 =

∞∑

k=1

|(T †f)k|2 ≤ ||T †||2||f ||2. (8.17)

It follows that for each k ∈ N, the mapping f �→ (T †f)k is a bounded
linear functional on H; thus, by Riesz’ representation theorem, there exists
an element gk ∈ H such that (T †f)k = 〈f, gk〉. This proves (i). The result
in (ii) also follows from (8.16) and (8.17); in fact,

||f ||2 = 〈f, f〉 =
∞∑

k=1

(T †f)k〈fk, f〉,

which leads to the desired result by an application of Cauchy-Schwarz’
inequality. �

The technical complication in relation to Theorem 8.4.1 is to show that
the operator T is closed. Let us elaborate a little on this difficulty. In
analogue with the definition of the synthesis operator, one can define the
analysis operator associated with any sequence {fk}∞k=1 by

U : D(U) ⊆ H → �2(N), Uf := {〈f, fk〉}∞k=1,

where

D(U) =
{
f ∈ H

∣
∣ {〈f, fk〉}∞k=1 ∈ �2(N)

}
.

For Bessel sequences {fk}∞k=1, we know that the operators T and U are
related by T = U∗. In the general case discussed here, the situation is more
complicated:

Lemma 8.4.2 Consider any sequence {fk}∞k=1 in H. Then the following
hold:

(i) The analysis operator U is densely defined if

∞∑

k=1

|〈fj , fk〉| <∞, ∀j ∈ N.

(ii) If the analysis operator U is densely defined, the (unbounded) adjoint
operator U∗ is an extension of the synthesis operator, i.e., T ⊆ U∗.

(iii) If the analysis operator U is densely defined, the (unbounded) adjoint
operator U∗ is closed.
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The results in (i) and (ii) are taken from the paper [153], and (iii) is a
general result from functional analysis; see Theorem 13.9 in [566]. In words,
the conclusion of the lemma is that even if we assume that the operator U
is densely defined, we can only conclude that the synthesis operator T is
contained in a closed operator, not that T itself is closed.

8.5 Frames and Signal Processing

The frame theory described so far takes place in an ideal world, which can
hardly be realized in, e.g., signal processing. In this section, we describe
some of the steps that have to be taken in order to apply the abstract
results in practice. Much more can of course be said about this important
subject, and we refer to the books [509] by Mallat and [626] by Vetterli and
Kovačević for more detailed information.
Some of the problems appear before one even thinks about frames. In

fact, even the most basic ingredient in mathematics, the real numbers, is
disturbed when we move away from the abstract level: every number has
to be replaced by a number with finitely many digits before any processing
can take place. In practice, this means that we represent all numbers in an
interval (e.g., [1, 1+10−18]) by the same number (in this case probably the
number 1). The consequence is an inaccuracy, which is called the quantiza-
tion error; using a slightly different wording, we discussed this already on
page 27.
The basic limitation in applications of the frame results is that any type

of signal processing has to be performed on finite sequences of numbers.
For example, this implies that the frame representation (5.1.6) has to be
truncated: we can only aim at calculating a finite number of frame coeffi-
cients, say, {〈f, S−1fk〉}Nk=1, and the exact representation in (5.1.6) has to
be replaced by

f ∼
N∑

k=1

〈f, S−1fk〉fk.

Even calculation of the frame coefficients 〈f, S−1fk〉 can in general only
be done with finite precision. That is, the outcome of a calculation will be

〈f, S−1fk〉+ wk (8.18)

for some (hopefully small) error term wk. All types of transmission or fur-
ther processing will introduce extra inaccuracies. One says that the frame
coefficients 〈f, S−1fk〉 have been contaminated by the noise wk.
Already on page 40, we gave a rather intuitive argument that overcom-

pleteness of frames might reduce the influence of noise, compared with the
use of an orthonormal basis. To support this further, we now discuss a
result that is borrowed from [509].
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Let us again use the example of signal transmission, as on page 40. That
is, we assume that one wants to transmit the signal f from A to R by
sending the frame coefficients {〈f, S−1fk〉}∞k=1. Because of quantization, the
coefficients will be contaminated by some noise {wk}∞k=1, andR will receive
the coefficients {〈f, S−1fk〉 + wk}∞k=1; we assume that {wk}∞k=1 ∈ �2(N).
The receiver R will believe that the transmitted function was

∞∑

k=1

(
〈f, S−1fk〉+ wk

)
fk = f +

∞∑

k=1

wkfk

rather than f .
Note that R actually knows that the transmitted sequence was supposed

to be a sequence of frame coefficients, i.e., a sequence of the form
{〈g, fk〉}∞k=1 for some g ∈ H (viz., g = S−1f); that is, the sequence
belongs to the range of the operator T ∗. This might not be the case
for the perturbed coefficients {〈f, S−1fk〉 + wk}∞k=1, so it is natural to
compensate for this by projecting that sequence onto the range of the
operator T ∗. Denoting the projection operator by Q, Exercise 5.18 shows
that the outcome is

Q{〈f, S−1fk〉+ wk}∞k=1 = {〈f, S−1fk〉}∞k=1 +Q{wk}∞k=1. (8.19)

Let w = {wk}∞k=1. Based on (8.19), R will reconstruct the transmitted
signal as

∞∑

k=1

(
〈f, S−1fk〉+ (Qw)k

)
fk = f +

∞∑

k=1

(Qw)kfk.

We will assume that the quantization error is white noise. This means
that the components wk are random variables with zero mean, variance σ2

independent of k, and that

E [wjw�] = σ2δj,�. (8.20)

We now prove that increased redundancy of the frame, measured by a
larger lower frame bound, will decrease the energy of the coefficients in the
“projected noise” Qw, i.e., the mean of the random variables |(Qw)k|2. We
return to this result in a concrete setting in Section 9.7.

Proposition 8.5.1 Suppose that the frame {fk}∞k=1 has lower frame bound
A and consists of normalized vectors. If w is white noise, then for each
k ∈ N,

E|(Qw)k|2 ≤
σ2

A
,

with equality if {fk}∞k=1 is a tight frame.
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Proof. According to Exercise 5.18, the kth component of Qw is given by

(Qw)k =

∞∑

j=1

wj〈S−1fj , fk〉.

Via (8.20), this implies that

E|(Qw)k|2 = E

⎡

⎣
∞∑

j=1

wj〈S−1fj , fk〉
∞∑

�=1

w�〈S−1f�, fk〉

⎤

⎦

=
∞∑

j=1

∞∑

�=1

E [wjw�] 〈S−1fj , fk〉〈S−1f�, fk〉

=
∞∑

�=1

E|w�|2|〈S−1f�, fk〉|2 = σ2
∞∑

�=1

|〈S−1f�, fk〉|2.

Using that {S−1f�}∞�=1 is a frame with upper frame bound A−1, we finally
arrive at

E|(Qw)k|2 ≤
σ2

A
||fk||2 =

σ2

A
;

the inequality is an equality if {S−1fk}∞k=1 is a tight frame. By Lemma 5.1.5,
the frame operator for {S−1fk}∞k=1 is S−1; thus, {S−1fk}∞k=1 being a tight
frame is equivalent with S−1 being a multiple of the identity. But this is
equivalent with S being a multiple of the identity, i.e., with {fk}∞k=1 being
a tight frame. �

Quantization errors and noise during transmission are just some of the
obstacles for frames in real life. Depending on the underlying Hilbert space
H, there might be additional complications. In many cases,H will be a func-
tion space like L2(R), and even finite-dimensional subspaces hereof cannot
be processed directly: a discretization step is needed in order to transfer
the setting to a vector space where the elements are numbers of sequences
of numbers, e.g., Cn. This is exactly the point where the importance of the
Gram matrix becomes clear: whereas the frame operator S = TT ∗ maps
H onto itself, the Gram matrix T ∗T is an operator on the sequence space
�2(N), i.e., the only step that is needed is a truncation. For this reason, it
is an advantage to formulate algorithms involving frames in terms of the
Gram matrix rather than the frame operator, if possible.

8.6 Exercises

8.1 Let H denote a Hilbert space. Show that any invertible operator
Λ : H → H is a g-frame for H with respect to H.



9
Frames of Translates

The previous chapters have concentrated on general frame theory. We have
only seen a few concrete frames, and most of them were constructed
via manipulations on an orthonormal basis for an arbitrary separable
Hilbert space. An advantage of this approach is that we obtain universal
constructions, valid in all Hilbert spaces.
In order to apply frames in signal processing or any other branch of

engineering, it is necessary to be more specific and construct frames in
concrete Hilbert spaces consisting of functions or sequences. This will be
the central theme in the following chapters. The central Hilbert space will
be L2(R), but we will also consider periodic functions in L2(0, L) as well
as the sequence spaces �2(Z) and C

n. All frames will be coherent, i.e., all
elements in a given frame will have a common structure. The exact meaning
of this will become clear as soon as we define the frames, but the idea is that
each element in the frame {fk}∞k=1 appears by the action of an operator
(belonging to a special class) on a single element f in the Hilbert space.
This feature is essential for applications: it simplifies manipulations on the
frame, and makes it easier to store information about the frame.
In this chapter we consider the case where the operators act by trans-

lation. That is, we consider families of the form {φ(· − λk)}k∈Z, where
{λk}k∈Z is a sequence in R and φ ∈ L2(R). Using the translation oper-
ators defined in Section 2.9, we can write {φ(· − λk)}k∈Z = {Tλk

φ}k∈Z.
Recall also the modulation operator Eλk

from Section 2.9: since trans-
lation of a function corresponds to modulation of its Fourier transform,
i.e., FTλk

φ = E−λk
Fφ, frames of translates are closely related to frames

©
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Applied and Numerical Harmonic Analysis,
DOI 10.1007/978-3-319-25613-9 9

199Springer International Publishing Switzerland 2016
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consisting of complex exponentials {eiλkx}k∈Z; a section is devoted to this
type of frames, too.
Frames of translates are natural examples of frame sequences. In fact,

we will prove that {Tλk
φ}k∈Z at most can be a frame for a proper subspace

of L2(R). In the next chapters, we will see that sequences of translates
(respectively, complex exponentials) are of fundamental importance also
for construction of frames for L2(R).
This short introduction already indicates that the translation operators

and modulation operators will play a central role, together with the Fourier
transform.
This chapter brings us close to the origin of frames: historically, Duffin

and Schaeffer introduced frames in the context of sequences of complex
exponential functions. Their paper [262] from 1952 contains the general
definition of frames, but the core subject is nonharmonic Fourier series.
Young has given an outstanding presentation of complex exponentials and
nonharmonic Fourier series in his book [622]. We will concentrate on results
that are directly related to frames and mainly discuss those that appeared
after the first edition of [622] from 1980. Several results will be presented
without proofs, and the reader who knows [622] will understand why: a
deeper analysis requires advanced complex analysis and would bring us too
far away from the main theme.

9.1 Sequences in R
d

The current chapter deals with sequences in L2(R) of the form {Tλk
φ}k∈Z,

where {λk}k∈Z is a sequence in R. It turns out that certain conditions on
the distribution of the points λk are necessary in order for {Tλk

φ}k∈Z to
be a frame sequence. We will consider some of these conditions here; since
we later need higher-dimensional versions of the concepts, we already now
consider sequences in R

d.

Definition 9.1.1 Let I be a countable index set and {λk}k∈I a sequence
in R

d. We say that

(i) A point λ ∈ R
d is an accumulation point for {λk}k∈I if every open

ball in R
d centered at λ contains infinitely many λk.

(ii) {λk}k∈I is separated if infj �=k |λj − λk| > 0; a constant δ > 0 such
that |λj − λk| ≥ δ for all j �= k is called a separation constant.

(iii) {λk}k∈I is relatively separated if it is a finite union of separated
sequences.

A relatively separated sequence can repeat the same point N times for
some N ∈ N, but it cannot have an accumulation point.
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Example 9.1.2 We will consider two sequences in the space R :

(i) The sequence { 1
k}k∈Z\{0} has zero as accumulation point.

(ii) The sequence {k, k + 1
|k|+1}k∈Z has no accumulation point and is not

separated. However, it is relatively separated. �

Several characterizations of relatively separated sequences are known.
Probably the most important one is in terms of the upper Beurling density,
which we now introduce. For the sake of short notation, denote the given
sequence by Λ = {λk}k∈Z. For x ∈ R

d and h > 0, we let Qh(x) denote the
half-open cube in R

d centered at x and with side lengths h, i.e.,

Qh(x) =

d∏

j=1

[xj − h/2, xj + h/2[, where x = (x1, . . . , xd).

Note that {Qh(hn)}n∈Zd is a disjoint cover of Rd for any h > 0. Let ν+(h)
and ν−(h) denote the largest and smallest numbers of points from Λ that
lie in any cube Qh(x), i.e.,

ν+(h) = sup
x∈Rd

� (Λ ∩Qh(x)) , ν−(h) = inf
x∈Rd

� (Λ ∩Qh(x)) .

The upper and lower Beurling densities of Λ are now defined as

D+(Λ) = lim sup
h→∞

ν+(h)

hd
, respectively, D−(Λ) = lim inf

h→∞
ν−(h)
hd

. (9.1)

In case D+(Λ) = D−(Λ), we say that Λ has uniform Beurling density

D(Λ) = D+(Λ) = D−(Λ).

Lemma 9.1.3 Let Λ = {λk}k∈Z be a sequence in R
d. Then the following

are equivalent:

(i) D+(Λ) <∞.

(ii) Λ is relatively separated.

(iii) For some (and therefore every) h > 0, there is a natural number Nh

such that each cube Qh(hn), n ∈ Z
d, contains at most Nh points from

Λ, i.e.,

sup
n∈Zd

� (Λ ∩Qh(hn)) <∞.

Proof. (i)⇒ (iii). If (i) is satisfied, there exists a constant N such that
for all sufficiently large h > 0,

ν+(h)

hd
≤ N ;
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this gives (iii) for large values of h (as a consequence, it holds for all h > 0).
(iii) ⇒ (ii). Let h > 0 be chosen such that (iii) is satisfied. We will show

explicitly how Λ can be split into a number of h-separated sequences. Let
e1, . . . , e2d denote the vertices of the unit cube [0, 1]d, and consider the sets

Zj = (2Z)d + ej , j = 1, . . . , 2d.

Note that Z
d is the disjoint union of the sets Z1, . . . , Z2d . Since

{Qh(hn)}n∈Zd is a disjoint cover of Rd, this implies that Rd is the disjoint
union of the sets

Bj =
⋃

n∈Zj

Qh(hn), j = 1, . . . , 2d.

Let us analyze the cubes Qh(hn) which form a given set Bj . If we consider
some m,n ∈ Zj with m �= n, the distance between the cubes Qh(hn)
and Qh(hm) is at least h, i.e., the distance between arbitrary elements in
Qh(hn) and Qh(hm) is at least h. By the assumption in (iii), each cube
Qh(hn) contains at most Nh elements from Λ, i.e., � (Λ ∩Qh(hn)) ≤ Nh;
since

Λ ∩Bj =
⋃

n∈Zj

(Λ ∩Qh(hn)) ,

it follows that Λ ∩ Bj can be split into Nh sets which are h-separated.
Therefore Λ can be split into 2dNh sequences which are h-separated.
(ii)⇒(i). Assume that (ii) is satisfied; by definition, this means that

we can choose a partition of Λ into a finite number of sequences, say,
Λ1, . . . ,Λr, such that each sequence Λk is separated with separation
constant, say, δk < 1. Let

δ := min

{
δ1

2
√
d
, . . . ,

δr

2
√
d

}

.

The maximal distance between points in any cube Qδ(x) is min{δ1, . . . , δr},
so the cube contains at most one point from each sequence Λk and therefore
at most r points from Λ. Thus, if h is any positive number, then Qhδ(x)
contains at most r(h + 1)d elements from Λ. Via the definition of D+(Λ),
this implies that

D+(Λ) = lim sup
h→∞

ν+(h)

hd
= lim sup

h→∞

ν+(hδ)

(hδ)d

≤ lim sup
h→∞

r(h+ 1)d

(hδ)d
=

r

δd

< ∞.

�



9.2 Frames of Translates 203

9.2 Frames of Translates

We are now ready to discuss the frame properties of sequences consisting of
translates of a function φ ∈ L2(R). The main question is: which conditions
on a real sequence {λk}k∈Z and a function φ ∈ L2(R) will imply that
{Tλk

φ}k∈Z is a frame?
If we by “frame” mean “frame for L2(R),” the answer is simple – and

disappointing:

Theorem 9.2.1 A system of the form {Tλk
φ}k∈Z is never a frame for

L2(R), regardless of the choice of the function φ ∈ L2(R) and the sequence
{λk}k∈Z.

Theorem 9.2.1 will be a direct consequence of a result proved later, in
Theorem 9.6.1. However, frame sequences of the form {Tλk

φ}k∈Z exist.
With a slight abuse of the language, we will usually skip the word
“sequence” and refer to {Tλk

φ}k∈Z as a frame of translates.
Note that the “no-go” result in Theorem 9.2.1 is particular for the Hilbert

space L2(R) : in �2(Z) it is easy to construct frames consisting of translates
of a single vector – we can even construct orthonormal bases consisting of
integer-translates of a single vector (Exercise 14.2).
The theory for frames of translates is far from being fully developed,

and for a given sequence {λk}k∈Z and a function φ, it is often difficult
to find out whether {Tλk

φ}k∈Z is a frame or not. The interplay between
{λk}k∈Z and φ is complicated: certain conditions on the density of {λk}k∈Z

are necessary for {Tλk
φ}k∈Z to be a frame (Exercise 9.1 or Theorem 9.6.1),

but if they are satisfied the final answer still depends heavily on the choice
of φ.
We begin with the special case where λk = kb for some b > 0. Because the

points {kb}k∈Z are equidistantly distributed, a frame {Tkbφ}k∈Z is some-
times called a regular frame of translates in contrast to the irregular frames
{Tλk

φ}k∈Z.
Let φ ∈ L2(R). Our first goal is to prove a result by Benedetto and Li

[51], which shows that the frame properties in the regular case {Tkbφ}k∈Z

can be completely described in terms of the function

Φ : R→ R, Φ(γ) =
∑

k∈Z

∣
∣
∣
∣φ̂

(
γ + k

b

) ∣
∣
∣
∣

2

. (9.2)

Note that the definition (9.2) is slightly imprecise, in the sense that the
defined series might be divergent for some γ ∈ R. However,

∫ 1

0

∑

k∈Z

∣
∣
∣
∣φ̂

(
γ + k

b

) ∣
∣
∣
∣

2

dγ =
∑

k∈Z

∫ 1

0

∣
∣
∣
∣φ̂

(
γ + k

b

) ∣
∣
∣
∣

2

dγ

=

∫ ∞

−∞

∣
∣
∣
∣φ̂
(γ

b

) ∣∣
∣
∣

2

dγ <∞;
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this implies that
∑

k∈Z

∣
∣
∣
∣φ̂
(

γ+k
b

) ∣∣
∣
∣

2

is convergent for almost all γ ∈ R and

that Φ ∈ L1(0, 1).
We begin with some lemmas, which will be used repeatedly. The first one

will be needed as a tool to analyze series expansions consisting of translates
of a function φ. It is enough for our purpose to consider the case b = 1.

Lemma 9.2.2 Let φ ∈ L2(R) and assume that {Tkφ}k∈Z is a Bessel seq-
uence. Let {ck}k∈Z ∈ �2(Z). Then

∑
k∈Z

ckTkφ converges in L2(R) and∑
k∈Z

ckE−k converges in L2(0, 1), and

F
∑

k∈Z

ckTkφ =

(
∑

k∈Z

ckE−k

)

φ̂. (9.3)

Proof. That
∑

k∈Z
ckTkφ and

∑
k∈Z

ckE−k converge as described follows
from Theorem 3.2.3, so we only have to prove (9.3). We first observe that
by the result in Exercise 9.2

(
∑

k∈Z

ckE−k

)

φ̂ ∈ L2(R). (9.4)

Also, note that

F
∑

k∈Z

ckTkφ =
∑

k∈Z

ckFTkφ =
∑

k∈Z

(ckE−kφ̂),

where the series on the right-hand side converges in L2(R). We have to
prove that

∑

k∈Z

(ckE−kφ̂) =

(
∑

k∈Z

ckE−k

)

φ̂,

i.e., that

∣
∣
∣
∣

∣
∣
∣
∣

∑

|k|≤N

ckE−kφ̂−
(
∑

k∈Z

ckE−k

)

φ̂

∣
∣
∣
∣

∣
∣
∣
∣
L2(R)

→ 0 as N →∞.

Now,

∣
∣
∣
∣

∣
∣
∣
∣

∑

|k|≤N

ckE−kφ̂−
(
∑

k∈Z

ckE−k

)

φ̂

∣
∣
∣
∣

∣
∣
∣
∣
L2(R)

=

⎛

⎝
∫ ∞

−∞

∣
∣
∣
∣

∑

|k|≤N

ckE−k(γ)φ̂(γ)−
(
∑

k∈Z

ckE−k(γ)

)

φ̂(γ)

∣
∣
∣
∣

2

dγ

⎞

⎠

1/2

= (∗).
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Because
∑

k∈Z
ckE−k is 1-periodic,

(∗) =

⎛

⎝
∫ 1

0

∣
∣
∣
∣

∑

|k|≤N

ckE−k(γ)−
∑

k∈Z

ckE−k(γ)

∣
∣
∣
∣

2∑

k∈Z

|φ̂(γ + k)|2dγ

⎞

⎠

1/2

≤
√
B

∣
∣
∣
∣

∣
∣
∣
∣

∑

|k|≤N

ckE−k −
∑

k∈Z

ckE−k

∣
∣
∣
∣

∣
∣
∣
∣
L2(0,1)

;

here, B denotes a Bessel bound for {Tkφ}k∈Z. The last term converges to
0 as N →∞, and the proof is completed. �

The following lemma will be used throughout the book. For this reason,
we state it slightly more general than needed in the current section.

Lemma 9.2.3 Let a > 0 be given and f : R→ C be a bounded, a-periodic,
and measurable function. Then, for g ∈ L1(R),

∫ ∞

−∞
f(x)g(x)dx =

∫ a

0

f(x)
∑

k∈Z

g(x− ka)dx.

Proof. We first show that
∫ a

0

|f(x)|
∑

k∈Z

|g(x− ka)|dx <∞. (9.5)

For positive functions, sums and integrals can be interchanged, so
∫ a

0

|f(x)|
∑

k∈Z

|g(x− ka)|dx =
∑

k∈Z

∫ a

0

|f(x)| |g(x− ka)|dx = (∗).

Using that f is assumed to be a-periodic,

(∗) =
∑

k∈Z

∫ a

0

|f(x− ka)| |g(x− ka)|dx =

∫ ∞

−∞
|f(x)| |g(x)|dx,

which is finite because f is bounded and g ∈ L1(R). This proves (9.5); the
result now follows from Lebesgue’ dominated convergence theorem. �

We will also need the following variant of the result (Exercise 9.3).

Lemma 9.2.4 Let a > 0 be given and f, g ∈ L2(R). Then the series∑
k∈Z

f(x− ka)g(x− ka) is absolutely convergent for a.e. x ∈ R, and
∫ ∞

−∞
f(x)g(x) dx =

∫ a

0

∑

k∈Z

f(x− ka)g(x− ka) dx.

We are now ready for the announced characterization of frame properties
for {Tkbφ}k∈Z. The result is stated in terms of properties of the function Φ
in (9.2).
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Theorem 9.2.5 Let φ ∈ L2(R) and b > 0 be given. For any A,B > 0,
the following characterizations hold:

(i) {Tkbφ}k∈Z is a Bessel sequence with bound B if and only if

Φ(γ) ≤ bB, a.e. γ ∈ [0, 1].

(ii) {Tkbφ}k∈Z is an orthonormal sequence if and only if

Φ(γ) = b, a.e. γ ∈ [0, 1].

(iii) {Tkbφ}k∈Z is a Riesz sequence with bounds A,B if and only if

bA ≤ Φ(γ) ≤ bB, a.e. γ ∈ [0, 1].

(iv) {Tkbφ}k∈Z is a frame sequence with bounds A,B if and only if

bA ≤ Φ(γ) ≤ bB, a.e. γ ∈ [0, 1] \N,

where N = {γ ∈ [0, 1] | Φ(γ) = 0} .

Proof. To prove (i) we note that without any Bessel assumption, the
synthesis operator

T : {ck}k∈Z →
∑

k∈Z

ckTkbφ

is well defined as a map from all finite sequences in �2(Z) to L2(R). Given
a finite sequence {ck}k∈Z, we consider the trigonometric polynomial in
L2(0, 1) given by f(γ) =

∑
k∈Z

cke
−2πikγ . Then, using that the Fourier

transform is unitary and the commutator relation FTkb = E−kbF ,

||T{ck}k∈Z||2 =

∣∣∣∣
∣∣∣∣∑
k∈Z

ckTkbφ

∣∣∣∣
∣∣∣∣
2

=

∣∣∣∣
∣∣∣∣F ∑

k∈Z

ckTkbφ

∣∣∣∣
∣∣∣∣
2

=

∫ ∞

−∞

∣∣∣∣∑
k∈Z

cke
−2πikbγ φ̂(γ)

∣∣∣∣
2

dγ =

∫ ∞

−∞
|f(bγ)|2 ∣∣φ̂(γ)∣∣2dγ

=
1

b

∫ ∞

−∞
|f(γ)|2

∣∣∣φ̂(γ

b

)∣∣∣2 dγ.
Via Lemma 9.2.3 we can continue with

||T {ck}k∈Z||2 =
1

b

∫ 1

0

|f(γ)|2
∑

k∈Z

∣
∣
∣
∣φ̂

(
k + γ

b

)∣
∣
∣
∣

2

dγ

=
1

b

∫ 1

0

|f(γ)|2 Φ(γ)dγ. (9.6)

If Φ(γ) ≤ bB for a.e. γ ∈ R, it follows that

||T {ck}k∈Z||2 ≤ B

∫ 1

0

|f(γ)|2 dγ = B
∑

k∈Z

|ck|2;
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via Exercise 3.13, this implies that {Tkbφ}k∈Z is a Bessel sequence with
bound B. To prove the opposite implication in (i), we note that if {Tkbφ}k∈Z

is a Bessel sequence, then by Lemma 9.2.2 the calculations leading to (9.6)
hold for all {ck}k∈Z ∈ �2(Z). Denoting the Bessel bound by B, we conclude
from (9.6) and Theorem 3.2.3 that

1

b

∫ 1

0

|f(γ)|2 Φ(γ)dγ ≤ B
∑

k∈Z

|ck|2

= B

∫ 1

0

|f(γ)|2 dγ, ∀{ck}k∈Z ∈ �2(Z).

This implies that Φ(γ) ≤ bB for a.e. γ ∈ R and concludes the proof of (i).
We now prove (iv) via Lemma 5.5.5. Since we have proved (i), we will

assume that {Tkbφ}k∈Z is a Bessel sequence and concentrate our analysis
on the lower bounds. Consequently, the equality

||T {ck}k∈Z||2 =
1

b

∫ 1

0

|f(γ)|2 Φ(γ)dγ (9.7)

now holds for all sequences {ck}k∈Z ∈ �2(Z); it follows that the kernel NT

of the operator T is

NT =

{

{ck}k∈Z ∈ �2(Z)

∣
∣
∣
∣

∑

k∈Z

cke
−2πikγ = 0 on [0, 1] \N

}

. (9.8)

For arbitrary sequences {ck}k∈Z, {dk}k∈Z ∈ �2(Z), the fact that {e2πikx}k∈Z

is an orthonormal basis for L2(0, 1) implies that

〈{ck}k∈Z, {dk}k∈Z〉�2(Z) = 0 ⇔
〈
∑

k∈Z

cke
−2πikx,

∑

k∈Z

dke
−2πikx

〉

L2(0,1)

= 0;

it follows that (Exercise 9.4)

N⊥
T =

{

{ck}k∈Z ∈ �2(Z)

∣
∣
∣
∣

∑

k∈Z

cke
−2πikγ = 0 on N

}

. (9.9)

So for {ck}k∈Z ∈ N⊥
T ,

∑

k∈Z

|ck|2 =

∫

[0,1]

∣
∣
∣
∣

∑

k∈Z

cke
−2πikγ

∣
∣
∣
∣

2

dγ =

∫

[0,1]\N

∣
∣
∣
∣

∑

k∈Z

cke
−2πikγ

∣
∣
∣
∣

2

dγ;

using (9.7), the left-hand condition in (5.19) in Lemma 5.5.5 is therefore
equivalent with
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A

∫

[0,1]\N

∣
∣
∣
∣

∑

k∈Z

cke
−2πikγ

∣
∣
∣
∣

2

dγ

≤ 1

b

∫

[0,1]\N

∣
∣
∣
∣

∑

k∈Z

cke
−2πikγ

∣
∣
∣
∣

2

Φ(γ)dγ, ∀{ck}k∈Z ∈ N⊥
T .

This, in turn, is equivalent with (Exercise 9.4)

bA ≤ Φ(γ) a.e. γ ∈ [0, 1] \N. (9.10)

This proves (iv). For the rest of the proof, recall that the Riesz bounds
and the frame bounds coincide for Riesz sequences. By Theorem 3.6.6,
{Tkbφ}k∈Z is a Riesz sequence if and only if the inequalities (5.19) hold for
all {ck}k∈Z ∈ �2(Z); this is the case if and only if NT = {0}, i.e., by (9.8),
if and only if N is a null set; this gives (iii). The result in (ii) now follows
from Proposition 3.4.8. �

As a very important application of Theorem 9.2.5, we now prove that
the integer-translates of any B-spline form a Riesz sequence. We formulate
the result for the symmetric B-splines Bn defined in (A.15), but the same

result holds for the B-splines B̃n in (A.18); this remark in fact applies to
all results concerning B-splines in the current chapter.

Theorem 9.2.6 For each n ∈ N, the sequence {TkBn}k∈Z is a Riesz
sequence.

Proof. For n = 1, {TkB1}k∈Z is an orthonormal system and there-
fore a Riesz sequence. In order to prove the result for n > 1, we apply
Theorem 9.2.5 (ii) to B1; this shows that

∑

k∈Z

∣
∣B̂1(γ + k)

∣
∣2 = 1, a.e. γ ∈ R.

Since |B̂1(γ)| ≤ 1 for all γ ∈ R and B̂n(γ) = (B̂1(γ))
n by Corollary A.8.2,

it immediately follows that
∑

k∈Z

∣
∣B̂n(γ + k)

∣
∣2 ≤

∑

k∈Z

∣
∣B̂1(γ + k)

∣
∣2 = 1, a.e. γ ∈ R.

Thus, {TkBn}k∈Z is a Bessel sequence. In order to prove that {TkBn}k∈Z

satisfies the lower Riesz basis condition, we again use Corollary A.8.2: it
shows that, for a.e. γ ∈ R,

∑

k∈Z

∣
∣B̂n(γ + k)

∣
∣2 ≥ inf

γ∈[− 1
2 ,

1
2 ]

∣
∣B̂n(γ)

∣
∣2 =

(
sin(π/2)

π/2

)2n

=

(
2

π

)2n

. (9.11)

The result now follows from Theorem 9.2.5. �
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Example 9.2.7 Let α ∈]0, 1
2 [ and define φ ∈ L2(R) via its Fourier

transform as φ̂(γ) = χ[−α,α[(γ). Take b = 1. Then, for γ ∈ [− 1
2 ,

1
2 [,

Φ(γ) = χ[−α,α[(γ).

Theorem 9.2.5 shows that {Tkφ}k∈Z is a frame sequence with frame bounds
A = B = 1. Note that {Tkφ}k∈Z does not form a Riesz sequence, i.e., it is
an example of an overcomplete frame of translates. �

The structure provided by a system of translates {Tkφ}k∈Z (or any other
of the systems in the subsequent chapters) allows us to return to the chap-
ters on general frame theory and look at the results from a new angle.
Remember, e.g., the important analysis in Example 5.4.6, which shows
that if {ek}∞k=1 is an orthonormal basis for a Hilbert space H, then the
sequence {ek + ek+1}∞k=1 cannot be a frame; with a different index set, Ex-
ercise 5.16 shows that if {ek}k∈Z is an orthonormal basis or a Riesz basis,
then {ek + ek+1}k∈Z cannot be a frame. Via Theorem 9.2.5, we can now
prove that the situation changes if we allow {ek}k∈Z to be a frame.

Proposition 9.2.8 Let φ ∈ L2(R) and assume that {Tkφ}k∈Z is a frame
for V := span{Tkφ}k∈Z. Then the following are equivalent:

(i) {Tkφ+ Tk+1φ}k∈Z is a frame for V .

(ii) Φ = 0 on a neighborhood of γ = 1
2 .

Proof. A slight modification of the argument in Example 5.4.6 gives
that V = span{Tkφ + Tk+1φ}k∈Z. Letting φ̃ := φ + T1φ, we can write

Tkφ+ Tk+1φ = Tkφ̃. Via the Fourier transform, F φ̃ = (1 + E−1)φ̂, so

Φ̃(γ) :=
∑

k∈Z

|F φ̃(γ + k)|2

=
∑

k∈Z

∣
∣
∣1 + e−2πi(γ+k)

∣
∣
∣
2

|φ̂(γ + k)|2

=
∣
∣1 + e−2πiγ

∣
∣2
∑

k∈Z

|φ̂(γ + k)|2.

Now the result follows from Theorem 9.2.5. �

Concrete examples of frame sequences {Tkφ}k∈Z satisfying condition (ii)
can be found via a slight modification of Example 9.2.7, e.g., by defining
φ ∈ L2(R) via φ̂ = χ[−α,−ε]∪[ε,α[ for some 0 < ε < α < 1/2.



210 9 Frames of Translates

9.3 Frames of Integer-Translates

In this section, we will derive some consequences of Theorem 9.2.5. Let
us first state a technical result, which allows us to transfer results between
two systems of translates with different translation parameters via a scaling
(recall the definition of the dilation operator Da in Section 2.9).

Lemma 9.3.1 Let φ ∈ L2(R) and b > 0 be given. Assume that {Tkbφ}k∈Z

is a frame sequence. Given a > 0, let φa := Daφ. Then {Tkbaφa}k∈Z is a
frame sequence with the same frame bounds as {Tkbφ}k∈Z.

Proof. We just notice that by the commutator relations in (2.26),

DaTkb = TkbaDa;

the rest follows from Lemma 5.3.3. �

Mainly for notational convenience we will now consider frames of trans-
lations with b = 1; such frames also play an important role in the theory
for frame multiresolution analysis, as we will see in Chapter 17. Given
φ ∈ L2(R) the function in (9.2) now becomes

Φ(γ) =
∑

k∈Z

|φ̂(γ + k)|2. (9.12)

We will now prove that when {Tkφ}k∈Z is a frame sequence, membership
of span{Tkφ}k∈Z can be characterized in terms of the Fourier transform
of the function φ. A more general version of this result will appear in
Lemma 17.2.1.

Lemma 9.3.2 Assume that φ ∈ L2(R) and that {Tkφ}k∈Z is a frame seq-
uence. Then a function f ∈ L2(R) belongs to span{Tkφ}k∈Z if and only
if there exists a 1-periodic function F whose restriction to [0, 1[ belongs to
L2(0, 1), such that

f̂ = Fφ̂.

Let us now return to the characterization of the frame properties of
{Tkφ}k∈Z in Theorem 9.2.5. In order to apply this result, it is essential to
be able to control the function Φ in (9.12). For this purpose it is useful to
express Φ in terms of its Fourier series:

Lemma 9.3.3 Let φ ∈ L2(R). Then the Fourier coefficients for the 1-
periodic function Φ ∈ L1(0, 1) in (9.12) are

ck =

∫ ∞

−∞
φ(x)φ(x + k)dx, k ∈ Z. (9.13)
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Proof. Using the 1-periodicity of the modulation operator Ek, the Fourier
coefficients for Φ can be expressed by

ck =

∫ 1

0

Φ(γ)e−2πikγdγ =

∫ 1

0

∑

n∈Z

(
|φ̂(γ + n)|2e−2πik(γ+n)

)
dγ.

Via Lebesgue’s dominated convergence theorem, we can interchange the
sum and the integral; thus,

ck =

∫ ∞

−∞
|φ̂(γ)|2e−2πikγdγ = 〈φ̂, Ekφ̂〉 = 〈φ, T−kφ〉.

This completes the proof. �

In applications of systems of the form {Tkφ}k∈Z, it is often important
that the generator φ has compact support. This excludes {Tkφ}k∈Z from
being an overcomplete frame sequence.

Proposition 9.3.4 Assume that φ ∈ L2(R) has compact support. Then
the following hold:

(i) {Tkφ}k∈Z is a Bessel sequence.

(ii) {Tkφ}k∈Z cannot be an overcomplete frame sequence.

Proof. Let {ck}k∈Z be the Fourier coefficients for the function Φ in (9.12).
Because of the compact support of φ, (9.13) in Lemma 9.3.3 shows that
there is an N ∈ N such that ck = 0 if |k| > N . Thus, the associated
function Φ in (9.2) is a trigonometric polynomial and therefore continuous.
Now Theorem 9.2.5 shows that {Tkφ}k∈Z is a Bessel sequence and that
overcompleteness of {Tkφ}k∈Z is impossible. �

Thus, if φ ∈ L2(R) has compact support, then {Tkφ}k∈Z can at most be
a Riesz sequence. In cases where the concrete frame bounds are irrelevant,
we can check whether this is the case or not via the following consequence
of Theorem 9.2.5. We ask the reader to give the proof in Exercise 9.5.

Corollary 9.3.5 Assume that φ ∈ L2(R) is compactly supported. Then the
following are equivalent:

(i) {Tkφ}k∈Z is a Riesz sequence.

(ii) For every γ ∈ R, there exists an k ∈ Z such that φ̂(γ + k) �= 0.

The assumption of φ ∈ L2(R) having compact support has the additional
benefit that we can find an explicit expression for the associated function
Φ in (9.12):
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Lemma 9.3.6 Assume that φ ∈ L2(R) has compact support in an interval
of length N for some N ∈ N and is real-valued. Let {ck}k∈Z denote the
Fourier coefficients for the function Φ in (9.12). Then Φ is a trigonometric
polynomial of the form

Φ(γ) = c0 + 2

N∑

k=1

ck cos(2πkγ).

Proof. Via Lemma 9.3.3, the assumption that φ is real-valued implies
that ck = c−k for all k ∈ Z, and the compact support implies that ck = 0
if |k| > N . Expressing Φ via its Fourier series, we see that

Φ(γ) =
∑

|k|≤N

cke
2πikγ = c0 +

N∑

k=1

ck(e
2πikγ + e−2πikγ)

= c0 + 2

N∑

k=1

ck cos(2πkγ),

as desired. �

Example 9.3.7 Let φ = χ[−1,2[. By Lemma 9.3.3, the Fourier coefficients
for the 1-periodic function Φ are

ck =

⎧
⎪⎪⎨

⎪⎪⎩

3 if k = 0,
2 if k = ±1,
1 if k = ±2,
0 otherwise.

Thus, by Lemma 9.3.6,

Φ(γ) = 3 + 4 cos(2πγ) + 2 cos(4πγ).

Note that Φ is continuous and that Φ has two isolated zeros on [0, 1[:
Φ(γ) = 0 for γ = 1

3 and for γ = 2
3 . By Theorem 9.2.5, it follows that

{Tkφ}k∈Z is not a frame sequence. �

Without referring to the Fourier transform, it is difficult to find a function
φ such that {Tkφ}k∈Z is an overcomplete frame sequence. More restrictions
are given in the following proposition:

Proposition 9.3.8 Let φ ∈ L2(R) and assume that {Tkφ}k∈Z is an
overcomplete frame sequence. Then the following hold:

(i) The function Φ is discontinuous.

(ii) Either φ /∈ L1(R) or there is no constant C > 0 for which

|φ̂(γ)| ≤ C

(
1

1 + |γ|2

)1/2

. (9.14)
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Proof. (i) follows directly from Theorem 9.2.5. For the proof of (ii), assume
that an estimate of the type (9.14) is available, and let γ ∈ [0, 1[. Then, for
all N ∈ N,

∣
∣
∣
∣Φ(γ)−

∑

|k|≤N

|φ̂(γ + k)|2
∣
∣
∣
∣ =

∑

|k|>N

|φ̂(γ + k)|2

≤ C2
∑

|k|>N

1

1 + |γ + k|2

≤ 2C2
∞∑

k=N

1

1 + k2
.

Since
∑∞

k=N
1

1+k2 → 0 as N →∞, this shows that the series

∑

k∈Z

|φ̂(γ + k)|2

is uniformly convergent. Thus, if φ̂ was continuous, then Φ would be con-
tinuous as a uniform limit of continuous functions. This would contradict
(i), so φ̂ cannot be continuous, and therefore φ /∈ L1(R). �

The interpretation of Proposition 9.3.8 (ii) is that a function φ gener-
ating an overcomplete frame sequence {Tkφ}k∈Z has bad time–frequency
localization: either φ does not decay fast, or its Fourier transform has slow
decay.

9.4 The Canonical Dual Frame

We now turn the focus to the canonical dual frame associated with a frame
of translates. Assuming that {Tkφ}k∈Z is a frame sequence, we will in the
entire section consider the space

V := span{Tkφ}k∈Z. (9.15)

The assumption that {Tkφ}k∈Z is a frame implies by general frame theory
(Lemma 5.1.5) that the frame operator

S : V → V, Sf =
∑

k∈Z

〈f, Tkφ〉Tkφ

is invertible. Again, the fact that we now consider a frame with a cer-
tain structure adds new aspects to the general frame theory considered in
Chapter 5. In the setting discussed here, we can now prove that the frame
operator S and its inverse S−1 commute with integer translation, whenever
the operators are restricted to the subspace V .
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Lemma 9.4.1 Let φ ∈ L2(R) and assume that {Tkφ}k∈Z is a frame
sequence, i.e., a frame for the space V . Then

STk = TkS and S−1Tk = TkS
−1 on V, ∀k ∈ Z.

Proof. Given f ∈ V and k ∈ Z, we have

STkf =
∑

k′∈Z

〈Tkf, Tk′φ〉Tk′φ =
∑

k′∈Z

〈f, Tk′−kφ〉Tk′φ.

Replacing the summation index k′ by k′ + k gives

STkf =
∑

k′∈Z

〈f, Tk′φ〉Tk′+kφ

= TkSf.

Thus, STk = TkS on the subspace V. Since the operator S is invertible on
V, the second part of the result follows from this. �

By the general definition, the canonical dual frame associated with
{Tkφ}k∈Z is given by {S−1Tkφ}k∈Z. Using Lemma 9.4.1, we see that

{S−1Tkφ}k∈Z = {TkS
−1φ}k∈Z.

This result is very useful for calculation of the canonical dual frame. In
order to find {S−1Tkφ}k∈Z, we would have to compute the action of S−1 on
the infinite family of functions {Tkφ}k∈Z. On the other hand, calculation
of {TkS

−1φ}k∈Z only requires that we find S−1φ; the rest of the functions
in the family are obtained by translation. This is certainly a simplification,
but we are still left with the question of finding S−1φ. The problem is
that S is an operator on V , which is an infinite-dimensional Hilbert space;
theoretically, we know that S is invertible, but this is different from being
able to find the inverse explicitly! For general frames, we return to this
problem in Chapter 23. In the present context, we are able to express
S−1φ in terms of its Fourier transform:

Proposition 9.4.2 Let φ ∈ L2(R) and assume that {Tkφ}k∈Z is a frame
for its closed linear span V , with frame operator S. Let

D := {γ ∈ R
∣
∣Φ(γ) �= 0},

and define the function θ via its Fourier transform by

θ̂(γ) :=

{
̂φ(γ)
Φ(γ) if γ ∈ D,

0 if γ /∈ D.
(9.16)

Then θ = S−1φ, and the canonical dual frame of {Tkφ}k∈Z is given by
{Tkθ}k∈Z.
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Proof. The function

γ �→
{ 1

Φ(γ) if γ ∈ D,

0 if γ /∈ D

is 1-periodic, and its restriction to ]0, 1[ belongs to L2(0, 1). Thus,
Lemma 9.3.2 shows that the function θ defined by (9.16) belongs to V .
Using the definition of the frame operator, properties of the Fourier
transform, and Lemma 9.2.2, we have

FSθ =
∑

k∈Z

〈θ, Tkφ〉FTkφ

=
∑

k∈Z

〈θ̂,FTkφ〉FTkφ

=

(
∑

k∈Z

〈θ̂, E−kφ̂〉E−k

)

φ̂. (9.17)

Now, using that the exponential functions γ �→ e2πikγ are 1-periodic and
the definition of θ,

〈θ̂, E−kφ̂〉 =

∫ ∞

−∞
θ̂(γ)φ̂(γ)e2πikγdγ

=

∫ 1

0

∑

n∈Z

(
θ̂(γ + n)φ̂(γ + n)e2πi(k+n)γ

)
dγ

=

∫ 1

0

∑

n∈Z

|φ̂(γ + n)|2
Φ(γ + n)

χD(γ + n)e2πikγdγ

=

∫ 1

0

χD∩[0,1[(γ)E−k(γ)dγ,

which is the (−k)-th Fourier coefficient for the function χD∩[0,1[ in L2(0, 1).
Therefore,

∑

k∈Z

〈θ̂, E−kφ̂〉E−k = χD∩[0,1[ on [0, 1].

Since χD is 1-periodic, it follows that
∑

k∈Z

〈θ̂, E−kφ̂〉E−k = χD on R.

Noting that χD(γ) �= 0 if φ̂(γ) �= 0, (9.17) now implies that

FSθ = χDφ̂ = φ̂.

Therefore Sθ = φ, and since S is an invertible operator on V , the proof
is over. �
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Example 9.4.3 Consider the B-spline Bn for n ≥ 2. As we saw in The-
orem 9.2.6, {TkBn}k∈Z is a Riesz sequence. By Proposition 9.4.2, the
canonical dual frame is given by {Tkθ}k∈Z, where

θ̂(γ) =
B̂n(γ)

∑
k∈Z
|B̂n(γ + k)|2

.

Denoting the Fourier coefficients for the function
(∑

k∈Z
|B̂n(γ + k)|2

)−1

by {ck}k∈Z, this implies that

θ̂(γ) =
∑

k∈Z

cke
2πikγB̂n(γ) = F

∑

k∈Z

ckT−kBn(γ),

i.e., that

θ =
∑

k∈Z

ckT−kBn.

It follows from Lemma 9.3.3 that Φ(γ) =
∑

k∈Z
|B̂n(γ + k)|2 is a trigono-

metric polynomial. Because Φ is positive and not constant, the inverse
Φ(γ)−1 cannot be a trigonometric polynomial (Exercise 9.7). Therefore,
the sequence {ck}k∈Z of Fourier coefficients is infinite. In particular, the
generator θ does not have compact support. �

For the case where an orthonormal basis is preferred, Daubechies proved
in [242] that any Riesz sequence {Tkφ}k∈Z can be transferred to an ort-
honormal sequence which spans the same space. The orthonormalization
trick applied to a frame sequence will lead to a tight frame for the same
space:

Proposition 9.4.4 Let φ ∈ L2(R), and assume that {Tkφ}k∈Z is a frame
sequence. Define the function φ via its Fourier transform by

Fφ(γ) :=

{
φ̂(γ)Φ−1/2(γ) if φ̂(γ) �= 0,

0 if φ̂(γ) = 0.
(9.18)

Then {Tkφ
}k∈Z is a tight frame sequence, and

span{Tkφ
}k∈Z = span{Tkφ}k∈Z.

If {Tkφ}k∈Z is a Riesz sequence, then {Tkφ
}k∈Z is an orthonormal

sequence.

Proof. The reader can check that φ is well defined, i.e., that Φ(γ) �= 0 if

φ̂(γ) �= 0. Define

Φ(γ) :=
∑

k∈Z

∣
∣Fφ(γ + k)

∣
∣2 .
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By Theorem 9.2.5, we want to prove that Φ is bounded above and below
away from its zero set. Let γ ∈ [0, 1[. If φ̂(γ + k) = 0 for all k ∈ Z, then

Φ(γ) = 0, so we now assume that φ̂(γ + k) �= 0 for some k ∈ Z. Then for
all k ∈ Z, we have that

0 �= Φ(γ + k) = Φ(γ).

Therefore the definition of Φ gives that

Φ(γ) =
∑

k∈Z

|φ̂(γ + k)|2
Φ(γ + k)

=
1

Φ(γ)

∑

k∈Z

|φ̂(γ + k)|2

= 1.

Since Φ only assumes the values zero and 1, Theorem 9.2.5 implies that
{Tkφ

}k∈Z is a tight frame. In the special case where {Tkφ}k∈Z is a Riesz

sequence, we can for a.e. γ ∈ [0, 1] find k ∈ Z such that φ̂(γ + k) �= 0; thus,
Φ = 1 a.e., i.e., {Tkφ

}k∈Z is an orthonormal sequence.
In order to prove that {Tkφ

}k∈Z spans the same space as {Tkφ}k∈Z, we
note that

span{Tkφ
}k∈Z =

{
∑

k∈Z

ckTkφ


∣
∣
∣
∣ {ck}k∈Z ∈ �2(Z)

}

.

Taking the Fourier transform of the functions in this space and letting

F (γ) :=

{
Φ−1/2(γ) if φ̂(γ) �= 0,

1 if φ̂(γ) = 0

yield{∑
k∈Z

ckE−kFφ

∣∣∣∣ {ck}k∈Z ∈ �2(Z)

}
=

{
F
∑
k∈Z

ckE−kφ̂

∣∣∣∣ {ck}k∈Z ∈ �2(Z)

}
.

The function F is bounded above and below, so
{

F
∑

k∈Z

ckE−kφ̂

∣
∣
∣
∣ {ck}k∈Z ∈ �2(Z)

}

=

{
∑

k∈Z

ckE−kφ̂

∣
∣
∣
∣ {ck}k∈Z ∈ �2(Z)

}

;

this final space equals the space of Fourier transforms of the functions
in span{Tkφ}k∈Z. Thus F(span{Tkφ

}k∈Z) = F(span{Tkφ}k∈Z), and the
result follows. �
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9.5 Frames of Translates and Oblique Duals

In the discussion of general frame theory in Section 5.1, we have given
arguments that it often is an advantage to search for other dual frames
than the canonical dual frame. Assume that {Tkφ}k∈Z is an overcomplete
frame sequence, i.e., a frame for

V = span{Tkφ}k∈Z; (9.19)

then Theorem 6.3.1 tells us that there exist various choices of sequences of
functions {gk}k∈Z ⊂ V such that

f =
∑

k∈Z

〈f, gk〉Tkφ, ∀f ∈ V. (9.20)

It is natural to insist on the dual frame {gk}k∈Z having the same struc-
ture as {Tkφ}k∈Z, i.e., being translates of a single function. Unfortunately,
Corollary 9.5.2 will show us that this removes all the freedom: the canonical
dual frame {TkS

−1φ}k∈Z is the only dual frame, which consists of translates
of a single function and belongs to span{Tkφ}k∈Z.
In order to gain flexibility, we will remove the constraint that the elements

of the dual frame should belong to span{Tkφ}k∈Z. In fact, we will just search

for some function φ̃ ∈ L2(R) such that

f =
∑

k∈Z

〈f, Tkφ̃〉Tkφ, ∀f ∈ V. (9.21)

A family {Tkφ̃}k∈Z for which (9.21) holds will be called an oblique dual of

{Tkφ}k∈Z. Note that we do not require {Tkφ̃}k∈Z to be a frame sequence;
this is the reason that we use the name “oblique dual” rather than “oblique
dual frame.” See the general discussion of oblique duals on page 128.
Given two Bessel sequences {Tkφ}k∈Z and {Tkφ̃}k∈Z, the following the-

orem provides a necessary and sufficient condition on the generators φ and
φ̃ such that {Tkφ̃}k∈Z is an oblique dual of {Tkφ}k∈Z. Again, the function
Φ defined in (9.12) will play a role; the result appeared in [132].

Theorem 9.5.1 Let φ, φ̃ ∈ L2(R), and assume that {Tkφ}k∈Z and

{Tkφ̃}k∈Z are Bessel sequences. Then the following are equivalent:

(i) f =
∑

k∈Z
〈f, Tkφ̃〉Tkφ, ∀f ∈ V .

(ii)
∑

k∈Z
φ̂(γ + k)

̂̃
φ(γ + k) = 1 a.e. on {γ ∈ [0, 1] | Φ(γ) �= 0}.

In case the equivalent conditions are satisfied, {Tkφ}k∈Z is a frame
sequence.

Proof. First, consider an arbitrary function f ∈ L2(R) for which the map

γ �→
∑

k∈Z

|f̂(γ + k)|2
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is bounded. Since we have assumed that {Tkφ̃}k∈Z is a Bessel sequence,
Theorem 9.2.5 and Cauchy–Schwarz’ inequality imply that

[γ �→
∑

k∈Z

f̂(γ + k)
̂̃
φ(γ + k)] ∈ L2(0, 1).

Now observe that, via Lemma 9.2.4 and Lemma 9.2.2,

F
∑

k∈Z

〈f, Tkφ̃〉Tkφ(γ)

=
∑

k∈Z

(∫ ∞

−∞
f̂(μ)

̂̃
φ(μ)e2πikμ dμ

)

e−2πikγ φ̂(γ)

= φ̂(γ)
∑

k∈Z

(∫ 1

0

∑

n∈Z

f̂(μ+ n)
̂̃
φ(μ+ n)e2πikμdμ

)

e−2πikγ

= φ̂(γ)
∑

n∈Z

f̂(γ + n)
̂̃
φ(γ + n). (9.22)

Assuming that (i) holds and letting f = φ, it follows that

∑

k∈Z

φ̂(γ + k)
̂̃
φ(γ + k) = 1 a.e. on {γ ∈ [0, 1] | φ̂(γ) �= 0}.

Using the above calculation with γ replaced by γ+m for some m ∈ Z (and

using the periodicity of γ �→
∑

k∈Z
φ̂(γ + k)

̂̃
φ(γ + k)), we even arrive at

∑

k∈Z

φ̂(γ + k)
̂̃
φ(γ + k) = 1 a.e. on {γ ∈ [0, 1] | φ̂(γ +m) �= 0}, ∀m ∈ Z.

This proves (ii). On the other hand, assuming (ii), our calculation (9.22)
shows that for m ∈ Z,

F
∑

k∈Z

〈Tmφ, Tkφ̃〉Tkφ(γ) = φ̂(γ)
∑

n∈Z

FTmφ(γ + n)
̂̃
φ(γ + n)

= φ̂(γ)
∑

n∈Z

φ̂(γ + n)e−2πim(γ+n)̂̃φ(γ + n)

= φ̂(γ)e−2πimγ = FTmφ(γ).

This shows that (i) holds for all functions Tmφ,m ∈ Z and hence for all

functions f ∈ span{Tkφ}k∈Z. Now, because {Tkφ}k∈Z and {Tkφ̃}k∈Z are
Bessel sequences, the operator

f �→
∑

k∈Z

〈f, Tkφ̃〉Tkφ
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is continuous; in fact, it is a composition of the synthesis operator associated
with {Tkφ}k∈Z and the analysis operator associated with {Tkφ̃}k∈Z; see
page 122. Therefore, (i) holds for all f ∈ span{Tkφ}k∈Z.
Now, assume that the equivalent conditions hold. In order to show that

{Tkφ}k∈Z is a frame sequence, we need to show that the lower frame bound
is satisfied. Via (i), for all f ∈ V , we have

||f ||2 =
∑

k∈Z

〈f, Tkφ̃〉〈Tkφ, f〉;

that {Tkφ}k∈Z is a frame sequence now follows from Cauchy–Schwarz

inequality and the assumption that {Tkφ̃}k∈Z is a Bessel sequence. �

One important consequence of Theorem 9.5.1 is that for a frame sequence
{Tkφ}k∈Z, the canonical dual frame is the only dual frame that consists of
integer-translates of a single function; that is, there only exists one dual
frame that has same structure as {Tkφ}k∈Z itself. This was first proved
in [132]:

Corollary 9.5.2 Let φ ∈ L2(R) and assume that {Tkφ}k∈Z is a frame

sequence. Then there is a unique function φ̃ ∈ span{Tkφ}k∈Z such that

f =
∑

k∈Z

〈f, Tkφ̃〉Tkφ, ∀f ∈ span{Tkφ}k∈Z, (9.23)

namely, φ̃ = S−1φ.

Proof. The condition φ̃ ∈ span{Tkφ}k∈Z implies by Lemma 9.3.2 that
̂̃
φ = Fφ̂ for some 1-periodic function F ∈ L2(0, 1). Now, if (9.23) holds,
condition (ii) in Theorem 9.5.1 implies that

F (γ)
∑

k∈Z

φ̂(γ + k)φ̂(γ + k) = 1, a.e. on {γ ∈ [0, 1] | Φ(γ) �= 0},

i.e., that

F (γ)
∑

k∈Z

∣
∣
∣φ̂(γ + k)

∣
∣
∣
2

= 1, a.e. on {γ ∈ [0, 1] | Φ(γ) �= 0}.

This defines the function F uniquely, except on the zero set for Φ. For γ
such that Φ(γ) = 0, we can define F (γ) arbitrarily, but regardless of the

choice, we arrive at
̂̃
φ(γ) = F (γ)φ̂(γ) = 0. Thus

̂̃
φ is uniquely defined, and

so is φ̃. �

The role of Theorem 9.5.1 is that it might be used to construct oblique
duals with better or more convenient properties than the canonical dual
frame. Later in this section, we will show that one might be able to find
oblique duals generated by a compactly supported function, even in cases
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where the canonical dual frame is generated by a function supported on R.
For now, we will show how to construct oblique duals {Tkφ̃}k∈Z with

generators φ̃ belonging to prescribed subspaces. In fact, the following con-
sequence of Theorem 9.5.1 shows that if {Tkφ}k∈Z is a frame sequence, then

certain conditions imply that we can find an oblique dual {Tkφ̃}k∈Z with

a generator φ̃ belonging to a space of the form span{Tkφ1}k∈Z for some
φ1 ∈ L2(R). We ask the reader to provide the proof in Exercise 9.6.

Corollary 9.5.3 Let φ, φ1 ∈ L2(R), and assume that {Tkφ}k∈Z and
{Tkφ1}k∈Z are frame sequences. If there exists a constant A > 0 such that

∣
∣
∣
∣
∣

∑

k∈Z

φ̂(γ + k)φ̂1(γ + k)

∣
∣
∣
∣
∣
≥ A a.e. on {γ ∈ [0, 1] | Φ(γ) �= 0}, (9.24)

then there exists a function φ̃ ∈ span{Tkφ1}k∈Z such that

f =
∑

k∈Z

〈f, Tkφ̃〉Tkφ, ∀f ∈ span{Tkφ}k∈Z; (9.25)

one choice of φ̃ ∈ span{Tkφ1}k∈Z satisfying (9.25) is given in the Fourier
domain by

̂̃
φ(γ) =

{ (∑
k∈Z

φ̂(γ + k)φ̂1(γ + k)
)−1

φ̂1(γ) on {γ ∈ R | Φ(γ) �= 0},
0 on {γ ∈ R | Φ(γ) = 0}.

Corollary 9.5.3 can be used to “tailor” an oblique dual: that is, if the
canonical dual frame does not satisfy the requirements for a specific app-
lication, we might search for an oblique dual that does. As an example,
we show that one might be able to construct oblique duals of arbitrary
smoothness, even if the canonical dual frame consists of noncontinuous
functions:

Example 9.5.4 Consider the B-spline Bn for some n ∈ N. By The-
orem 9.2.6, we know that {TkBn}k∈Z is a Riesz sequence; in partic-
ular, {TkBn}k∈Z has a unique dual frame consisting of elements in
span{TkBn}k∈Z. Now, fix any m ∈ N; we will show that there exists an

oblique dual {Tkφ̃}k∈Z of {TkBn}k∈Z belonging to span{TkBn+2m}k∈Z, i.e.,
such that

φ̃ ∈ span{TkBn+2m}k∈Z.

For any γ ∈ R, the argument in (9.11) shows that

∑

k∈Z

B̂n(γ + k)B̂n+2m(γ + k) =
∑

k∈Z

(
sinπ(γ + k)

π(γ + k)

)2(m+n)

≥
(
2

π

)2(m+n)

.

By Corollary 9.5.3, there exists a function φ̃ ∈ span{TkBn+2m}k∈Z that
generates an oblique dual of {TkBn}k∈Z. That is, for an arbitrary spline Bn,
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we can find an oblique dual {Tkφ̃}k∈Z for which the generator φ̃ has pre-
scribed smoothness. In contrast, the canonical dual of {TkBn}k∈Z has the
same smoothness as Bn itself; for example, the canonical dual frame of
{TkB1}k∈Z is generated by B1, which is not even continuous. �

In the rest of this section we will restrict our attention to frame sequences
{Tkφ}k∈Z generated by compactly supported functions. We have already
seen in Example 9.4.3 that this does not imply that the canonical dual
frame necessarily is generated by a compactly supported function. Also,
Corollary 9.5.2 shows that no other dual frame is generated by translates
of a single function. Nevertheless, we will now show that it often is possi-
ble to find oblique duals {Tkφ̃}k∈Z for which the function φ̃ has compact
(and small) support. For convenience, we will search for an oblique dual
supported on the interval [0, 1], but the same considerations work on any
other interval.
In Theorem 9.5.1, we characterized the oblique duals {Tkφ̃}k∈Z associ-

ated with a given frame of translates {Tkφ}k∈Z. We first show that this

result has a much simpler version if we assume that the functions φ and φ̃
are compactly supported, a result that first appeared in [189]:

Lemma 9.5.5 Assume that the functions φ, φ̃ ∈ L2(R) have compact
support, and define the space V as in (9.19). Then the following are
equivalent:

(i) f =
∑

k∈Z
〈f, Tkφ̃〉Tkφ, ∀f ∈ V .

(ii) 〈φ, Tkφ̃〉 = δk,0.

Proof. If (i) holds, then Theorem 9.5.1 shows that {Tkφ}k∈Z is a frame
for V . Because of the compact support of φ, this implies by Proposi-
tion 9.3.4 that {Tkφ}k∈Z is a Riesz sequence. Using (i) on f = φ, the
statement in (ii) follows because the expansion coefficients in terms of a
Riesz basis are unique. On the other hand, if (ii) holds, then (i) holds for
f = φ. A change of the summation index proves that then (i) holds for any
translate Tkφ and therefore on span{Tkφ}k∈Z; finally, by continuity of the

operator f �→
∑

k∈Z
〈f, Tkφ̃〉Tkφ, we obtain that (i) holds for all f ∈ V . �

Lemma 9.5.5 shows that, with the given assumptions, the question of
finding an oblique dual of a frame {Tkφ}k∈Z can be formulated as a moment
problem; see the general discussion of such problems in Section 7.6.
The following result essentially provides conditions such that a Riesz

sequence {Tkφ}k∈Z has an oblique dual {Tkφ̃}k∈Z, where φ̃ has the form

φ̃(x) =

(
N−1∑

�=0

d�φ(x + �)

)

χ[0,1](x). (9.26)
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For practical reasons, we will formulate a more general version of the result.
The reason is that even if φ is smooth, the multiplication with the char-
acteristic function χ[0,1] in the expression for φ̃ in (9.26) might lead to a
function that is discontinuous at x = 0 or x = 1. On the other hand, mul-
tiplying the function in (9.26) with a function of the type xp(1 − x)q for
some p, q ∈ N will lead to a continuous function if φ is continuous; and if
φ is smooth, any desired (finite) smoothness can be obtained by choosing
the parameters p, q sufficiently large. We will show that functions of that
type can be used as generators as well; the result is taken from [189].

Theorem 9.5.6 Assume that φ ∈ L2(R) is a real-valued function with
support on an interval [0, N ] for some N ∈ N and that {Tkφ}k∈Z is a Riesz
sequence. Assume that

N−1∑

k=0

ckφ(x+ k) = 0, ∀x ∈ [0, 1]⇒ c0 = 0. (9.27)

Then, for any p, q ∈ {0} ∪ N, {Tkφ}k∈Z has an oblique dual {Tkφ̃}k∈Z,

where φ̃ has the form

φ̃(x) = xp(1 − x)q

(
N−1∑

�=0

d�φ(x + �)

)

χ[0,1](x) (9.28)

for some coefficients d0, . . . , dN−1 ∈ R.

Proof. We use Lemma 9.5.5 and search for a function φ̃ such that
〈φ, Tkφ̃〉 = δk,0. First, for any function φ̃ ∈ L2(R) with support on [0, 1],
we have that

〈φ, Tkφ̃〉 =
∫ ∞

−∞
φ(x)φ̃(x− k) dx =

∫ ∞

−∞
φ(x+ k)φ̃(x) dx

=

∫ 1

0

φ(x + k)φ̃(x) dx.

Assuming that φ has support on [0, N ], this shows that

〈φ, Tkφ̃〉 = 0 if k /∈ {0, 1, . . . , N − 1}.

Thus, the equations 〈φ, Tkφ̃〉 = δk,0 can be reduced to the moment problem

〈φ̃, T−kφ〉 = δk,0, k = 0, 1, . . . , N − 1. (9.29)

Because of the assumption (9.27), we know that if

N−1∑

k=0

ckφ(x+ k)xp/2(1 − x)q/2 = 0 for all x ∈ [0, 1],

then c0 = 0. Thus, according to Lemma 2.6.1 with H = L2(0, 1) and fk
corresponding to the functions x �→ φ(x+k)xp/2(1−x)q/2, k = 0, . . . , N−1,
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the moment problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 =

∫ 1

0

φ(x)xp/2(1 − x)q/2h(x) dx

0 =

∫ 1

0

φ(x + 1)xp/2(1 − x)q/2h(x) dx

·
·

0 =

∫ 1

0

φ(x +N − 1)xp/2(1 − x)q/2h(x) dx

has a solution h of the form

h(x) =

(
N−1∑

�=0

d�φ(x+ �)xp/2(1− x)q/2

)

χ[0,1](x).

This means that the function

φ̃(x) := xp/2(1− x)q/2h(x) =

(
N−1∑

�=0

d�φ(x+ �)

)

xp(1− x)qχ[0,1](x)

solves the moment problem (9.29). �

Note that the coefficients d0, . . . , dN−1 in (9.28) are determined by the
conditions in (9.29), i.e., by the equations

N−1∑

�=0

∫ 1

0

d�φ(x + k)φ(x+ �)xp(1− x)q dx = δk,0, k = 0, . . . , N − 1. (9.30)

On matrix form, this takes the form

Md = e,

where M is the N ×N symmetric matrix with entries

Mk,� =

∫ 1

0

xp(1− x)qφ(x + k)φ(x + �) dx, k, � = 0, . . . , N − 1

and

d =

⎛

⎜
⎜
⎜
⎜
⎝

d0
d1
·
·

dN−1

⎞

⎟
⎟
⎟
⎟
⎠

, e =

⎛

⎜
⎜
⎜
⎜
⎝

1
0
·
·
0

⎞

⎟
⎟
⎟
⎟
⎠

.

Recall that the parameters p and q in (9.28) were introduced in order to

ensure higher-order derivatives of φ̃ to exist. We see that this only affects
the integrals in the entries of matrix M but not the size of the matrix; thus,
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the computational complexity does not increase in a drastic way whenever
generators with higher regularity are constructed.
Let us apply Theorem 9.5.6 to the (shifted) B-splines B̃n, n ∈ N intro-

duced in (A.18). We remember that suppB̃n = [0, n]. Using Theorem 9.5.6,

we will be able to find an oblique dual of any {TkB̃n}k∈Z, which is generated
by a compactly supported function. In contrast, we saw in Example 9.4.3
that for n ≥ 2, the generator for the canonical dual frame of {TkB̃n}k∈Z

never has compact support.

5

3

2

1

-1
0,8

4

0

-2

x
0,60 0,2 0,4 1

Figure 9.1. The generator φ̃ in (9.28) corresponding to φ = B̃2, p = q = 2.
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-30
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-20
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Figure 9.2. The generator φ̃ in (9.28) corresponding to φ = B̃3, p = q = 3.
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Example 9.5.7 For any n ∈ N, Lemma A.8.6 shows that the functions
B̃n(· + k), k = 0, . . . , n − 1, are linearly independent on the interval [0, 1].
Thus, the condition (9.27) is satisfied. Therefore, for any p, q ∈ N∪{0}, the
frame sequence {TkB̃n}k∈Z has an oblique dual {Tkφ̃}k∈Z with a function

φ̃ of the form

φ̃(x) =

(
n−1∑

�=0

d�B̃n(x + �)

)

xp(1− x)qχ[0,1](x).

Note that on the interval [0, 1], this function is a polynomial of degree
p+ q + n− 1.

Figures 9.1 and 9.2 show some oblique dual generators for Riesz sequences
generated by the B-splines B̃2 and B̃3, for various values of p and q. We
ask the reader to do the calculations (Exercise 9.16). �

9.6 Irregular Frames of Translates

We now return to the general case of a system of translates {Tλk
φ}k∈Z,

where {λk}k∈Z is an arbitrary sequence in R. We have already noted that
it is difficult to prove whether {Tλk

φ}k∈Z is a frame or not, except under
very special conditions on φ (Exercise 9.9).
The first part of the following theorem shows that if we want {Tλk

φ}k∈Z

to be a frame sequence, then we have to assume that {λk}k∈Z is relatively
separated; otherwise, {Tλk

φ}k∈Z cannot be a Bessel sequence in L2(R) for
any function φ ∈ L2(R) \ {0}. The second part shows that {λk}k∈Z being
relatively separated excludes {Tλk

φ}k∈Z from having a lower frame bound
in L2(R). Put together, the conclusion is that {Tλk

φ}k∈Z never can be a
frame for all of L2(R) (but it can very well be a frame sequence). The result
is due to Christensen, Deng, and Heil [168].

Theorem 9.6.1 Let Λ = {λk}k∈Z be a sequence in R and φ ∈ L2(R)\{0}.
Then the following hold:

(i) If {Tλk
φ}k∈Z is a Bessel sequence, then D+(Λ) <∞.

(ii) If {Tλk
φ}k∈Z satisfies the lower frame condition in L2(R), then

D+(Λ) =∞.

In particular, {Tλk
φ}k∈Z can at most be a frame for a proper subspace

of L2(R).

Proof. Recall from Lemma 9.1.3 that D+(Λ) < ∞ is equivalent to Λ
being relatively separated. For the proof of (i), we assume that Λ is not
relatively separated; we have to prove that then {Tλk

φ}k∈Z is not a Bessel
sequence. Consider the function x �→ 〈φ, Txφ〉, x ∈ R. Since the function is
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continuous by Lemma 2.9.2 and nonzero for x = 0, there exists an interval
]− h, h[, h > 0, such that

μ := inf
x∈]−h,h[

|〈φ, Txφ〉| > 0.

Consider an arbitrary N ∈ N. By Lemma 9.1.3, there exists an interval
]a−h, a+h[, a ∈ R, which contains at leastN elements from the sequence Λ.
Now, letting

ΛN := {k ∈ Z : λk ∈]a− h, a+ h[} = {k ∈ Z : λk − a ∈]− h, h[},
we have

∑

k∈Z

|〈Taφ, Tλk
φ〉|2 ≥

∑

k∈ΛN

|〈Taφ, Tλk
φ〉|2

=
∑

k∈ΛN

|〈φ, Tλk−aφ〉|2

≥ Nμ2

=
Nμ2

||φ||2 ||Taφ||2.

Since N ∈ N was arbitrary, it follows that {Tλk
φ}k∈Z is not a Bessel

sequence in L2(R). This proves (i).
For the proof of (ii), we assume that D+(Λ) <∞; thus, we have to prove

that {Tλk
φ}k∈Z does not satisfy the lower frame condition for any A > 0.

By Lemma 9.1.3, {λk}k∈Z is a finite union of separated sets, i.e., we can
write

{λk}k∈Z =

s⋃

j=1

{λk}k∈Ij ,

where each set {λk}k∈Ij is separated. Choose a constant δ > 0, which is a
separation constant for each sequence {λk}k∈Ij , j = 1, . . . , s, and consider
h ∈]0, δ/2[. With I := [−h, h],

∑

k∈Z

|〈χI , Tλk
φ〉|2 =

s∑

j=1

∑

k∈Ij

|〈χI , χITλk
φ〉|2

≤
s∑

j=1

∑

k∈Ij

||χI ||2 ||χITλk
φ||2. (9.31)

By the choice of I, the intervals {I − λk}k∈Ij are disjoint; by defining

Δj :=
⋃

k∈Ij

(I − λk),

we have
∑

k∈Ij

||χITλk
φ||2 =

∑

k∈Ij

∫

I

|φ(x − λk)|2dx =

∫

Δj

|φ(x)|2dx.
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Thus, via (9.31),

∑

k∈Z

|〈χI , Tλk
φ〉|2 ≤ ||χI ||2

s∑

j=1

∫

Δj

|φ(x)|2dx.

An application of Lebesgue’s dominated convergence theorem shows that
for each fixed j = 1, . . . , s,

∫

Δj

|φ(x)|2dx→ 0 as h→ 0;

thus, {Tλk
φ}k∈Z does not have a lower frame bound in L2(R). �

A more general result can be found in [168]: no union of arbitrary trans-
lates of a finite collection of functions g1, . . . , gM can be a frame for L2(R).
The proof is almost identical to the above proof, just with a more involved
notation. As a consequence of this result, a collection of functions of the
form {TnaEmbg}n∈Z,m=1,...,M cannot be a frame for L2(R) for any choice
of g ∈ L2(R) and any constants a, b > 0. However, frames of the type
{TnaEmbg}m,n∈Z exist; they will be the topic of Chapters 11–13.
Note that provided that the sequence {λk}k∈Z consists of distinct num-

bers, the set of translates {Tλk
φ}k∈Z are linearly independent for any

function φ ∈ L2(R) \ {0}:

Proposition 9.6.2 Assume that {λk}k∈Z is a sequence for which λk �= λj

for k �= j. If φ ∈ L2(R) \ {0}, then the functions {Tλk
φ}k∈Z are linearly

independent.

Proof. Let F ⊂ Z be a finite set, and assume that for some coefficients
{ck}k∈F ,

∑

k∈F
ckTλk

φ = 0.

Via the Fourier transform,

∑

k∈F
ckE−λk

φ̂ = 0. (9.32)

Choose a bounded nonempty interval I on which φ̂ is not identically
zero. Assume that not all coefficients {ck}k∈F are zero; then, the func-
tion γ �→

∑
k∈F ckE−λk

(γ) is only zero for finitely many γ ∈ I, and then
∑

k∈F ckE−λk
φ̂ is not the zero function. This contradicts (9.32); we con-

clude that ck = 0 for all k ∈ F and that the functions {Tλk
φ}k∈Z are

linearly independent. �
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9.7 Sampling Theory and Applications

In Section 3.10, we gave a short introduction to sampling theory in the
Paley–Wiener space PW. In particular, Theorem 3.10.1 shows that each
continuous function f ∈ PW can be recovered from its samples {f(k)}k∈Z.
More information can be extracted from the proof of Theorem 3.10.1: the
samples {f(−k)}k∈Z are in fact the Fourier coefficients for the Fourier

transform f̂ , so
∑

k∈Z

|f(k)|2 = ||f̂ ||2 = ||f ||2, ∀f ∈ PW. (9.33)

Based on our knowledge of Riesz bases of translates, we will now look
at sampling from a more general perspective, using the general setup of a
reproducing kernel Hilbert space (RKHS). The key condition can be con-
sidered as a generalization of (9.33): we will replace the equality in (9.33)
by a lower and upper bound, and we will place the equidistant sampling
points k, k ∈ Z, by a general sequence {λk}k∈Z.

Definition 9.7.1 Consider a reproducing kernel Hilbert space H ⊂ L2(R)
consisting of continuous functions. A sequence {λk}k∈Z ⊂ R is a set of
sampling for H if there exist constants A,B > 0 such that

A ||f ||2 ≤
∑

k∈Z

|f(λk)|2 ≤ B ||f ||2, ∀f ∈ H. (9.34)

Note that in terms of the reproducing kernel K (see (5.29)), the condition
(9.34) implies that {Kλk

}k∈Z is a frame for H. Let us now introduce the
relevant RKHS.

Lemma 9.7.2 Let φ ∈ L2(R) be a continuous function such that

(i)
∑

k∈Z
||φχ[k,k+1[||∞ <∞.

(ii) {Tkφ}k∈Z is a Riesz sequence, with canonical dual {Tkφ̃}k∈Z.

Then the vector space

H :=

{
∑

k∈Z

ckTkφ
∣
∣ {ck}k∈Z ∈ �2(Z)

}

(9.35)

is an RKHS consisting of continuous functions, with reproducing kernel

K(x, y) =
∑

k∈Z

φ(y − k)φ̃(x− k).

Proof. Let aj := supx∈[0,1] |φ(x + j)|, j ∈ Z. By assumption {aj}j∈Z ∈
�1(Z); thus, also {aj}j∈Z ∈ �2(Z).
The assumption that {Tkφ}k∈Z is a Riesz sequence implies that the func-

tions in H are well-defined in L2(R)-sense and that {Tkφ}k∈Z is a Riesz
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basis for H. In order to show that the functions in H are continuous, let
{ck}k∈Z ∈ �2(Z) be given. Then, for any given � ∈ Z,

∑

k∈Z

sup
x∈[�,�+1]

|ckTkφ(x)| ≤
(
∑

k∈Z

|ck|2
)1/2(

∑

k∈Z

sup
x∈[�,�+1]

|φ(x − k)|2
)1/2

≤
(
∑

k∈Z

|ck|2
)1/2(

∑

k∈Z

a2k

)1/2

<∞.

This implies that the function

f(x) :=
∑

k∈Z

ckTkφ(x) (9.36)

is continuous on each interval [�, �+ 1], � ∈ Z, and hence continuous on R.
In order to show that H is an RKHS, consider a function f ∈ H, written

on the form (9.36) for some {ck}k∈Z ∈ �2(Z). Then for any � ∈ Z,

sup
x∈[0,1]

|f(x+ �)| ≤
∑

k∈Z

|ck| sup
x∈[0,1]

|φ(x + �− k)| = (|c| ∗ a)�,

where (|c| ∗ a)� denotes the �th coordinate of the convolution between the
sequences |c| := {|ck|}k∈Z and a := {ak}k∈Z. Given any x ∈ R,

|f(x)|2 ≤
∑

�∈Z

sup
x∈[0,1]

|f(x+ �)|2;

using Young’s inequality and letting A denote a lower bound for {Tkφ}k∈Z,

|f(x)|2 ≤
∣
∣
∣
∣c ∗ a

∣
∣
∣
∣2
�2(Z)

≤ ||c||2�2(Z)||a||2�1(Z) ≤
1

A
||a||2�1(Z)||f ||2.

This proves that the point evaluation f �→ f(x) is continuous from H to
C, i.e., H is indeed an RKHS. Using the frame decomposition (5.8) on the

Riesz sequence {Tkφ}k∈Z and the canonical dual {Tkφ̃}k∈Z, the reproducing
kernel is

K(x, y) = Ky(x) =
∑

k∈Z

〈Ky, Tkφ〉Tkφ̃(x)

=
∑

k∈Z

Tkφ(y)Tkφ̃(x)

=
∑

k∈Z

φ(y − k)φ̃(x− k).

This completes the proof. �

Note that the condition (i) in Lemma 9.7.2 will play a role in the
treatment of Gabor systems; see Section 11.5.
We will now prove that under the conditions in Lemma 9.7.2, the func-

tions f ∈ H can indeed be reconstructed based on a set of sampling
{f(λk)}k∈Z.
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Theorem 9.7.3 Under the setup in Lemma 9.7.2, assume further that
{λk}k∈Z is a set of sampling for the Hilbert space H in (9.35). Then:

(i) The frame {Kλk
}k∈Z is given explicitly by

Kλk
(x) =

∑

n∈Z

φ(λk − n)φ̃(x− n). (9.37)

(ii) Let S denote the frame operator for {Kλk
}k∈Z. Then any f ∈ H can

be reconstructed from the samples {f(λk)}k∈Z via

f =
∑

k∈Z

f(λk)S
−1Kλk

.

Proof. The result in (i) is a direct consequence of Lemma 9.7.2.
Furthermore, the frame decomposition (5.8) shows that for any f ∈ H,

f =
∑

k∈Z

〈f,Kλk
〉S−1Kλk

=
∑

k∈Z

f(λk)S
−1Kλk

;

this proves (ii). �

We refer to the papers [634, 494] by Walter et. al. for results about
sampling in wavelet subspaces and to the survey paper [7] by Aldroubi and
Gröchenig for more information about sampling in shift-invariant spaces.
In the rest of this section we will describe an application of frame

theory which takes place in the Paley–Wiener space PW . Already in Theo-
rem 3.10.1 we saw that any continuous function f ∈ PW can be recovered
from its samples {f(k)}k∈Z via

f(x) =
∑

k∈Z

f(k) sinc(x− k). (9.38)

As discussed in Section 8.5, one will always encounter quantization errors
when this result is applied in practice. We will now show that the effect of
the quantization error can be reduced via oversampling, i.e., by invoking
samples {f(k/M)}k∈Z for some M ∈ N,M > 1. Note that for the sequence
{f(k/M)}k∈Z, the distance between two consecutive samples is 1/M .
First, as noticed in Theorem 3.10.1, the expansion (9.38) is really an

expansion in terms of the orthonormal basis {sinc(· − k)}k∈Z for the
Paley–Wiener space PW. Given any M ∈ N, it follows that for each
m = 0, . . . ,M − 1, the family {sinc(· − k − m/M)}k∈Z also forms an
orthonormal basis for PW. The union of these bases, i.e.,

M−1⋃

m=0

{sinc(· − k −m/M)}k∈Z =

M−1⋃

m=0

{sinc(· − k/M)}k∈Z =

M−1⋃

m=0

{T k
M
sinc}k∈Z,
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therefore forms a tight frame for PW with frame bound A = M . Thus, for
each f ∈ PW ,

f =
1

M

∑

k∈Z

〈f, sinc(· − k/M)〉 sinc(· − k/M). (9.39)

Note that because {sinc(·−k)}k∈Z forms an orthonormal basis for PW, we
know from (9.38) that f(k) = 〈f, Tksinc〉; this implies that

〈f, sinc(· − k/M) =

∫ ∞

−∞
f(x) sinc(x− k/M) dx

=

∫ ∞

−∞
T−k/Mf(x) sinc(x) dx = T−k/Mf(0) = f(k/M).

Thus, the expansion (9.39) takes the form

f =
1

M

∑

k∈Z

f(k/M) sinc(· − k/M). (9.40)

We now adopt the model for quantization errors discussed in Section 8.5.
In particular, Proposition 8.5.1 shows that oversampling with the factor
M , i.e., the use of (9.40) instead of (9.38), reduces the energy of the
quantization noise by a factor M :

E|(Qw)k|2 =
σ2

A
=

σ2

M
.

The practical relevance of this result is that it usually is easier to increase
the redundancy of the frame than to increase the quantization precision.

9.8 Frames of Exponentials

Recall that the complex exponential functions
{

1√
2π

eikx
}

k∈Z

constitute an

orthonormal basis for L2(−π, π). Thus, {eikx}k∈Z is a frame for L2(−π, π)
with bounds A = B = 2π. More generally, given an interval I ⊂ R and a
real sequence {λk}k∈Z, a frame for L2(I) of the form {eiλkx}k∈Z is called
a frame of exponentials or a Fourier frame. Note that the exponentials
are not square integrable on an unbounded interval, so we necessarily have
|I| <∞. An expansion

f(x) =
∑

cke
iλkx

in L2(I) is called a nonharmonic Fourier series. As noticed at the beginning
of the chapter, this is the context in which frames were originally defined.
For a given sequence Λ = {λk}k∈Z, the frame radius is defined by

R(Λ) = sup
{
R > 0 | {eiλkx}k∈Z is a frame for L2(−R,R)

}
.
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If {eiλkx}k∈Z is a frame for L2(−R,R) for some R > 0, it is automatically
a frame for L2(−R′, R′) for all R′ ∈]0, R] (Exercise 9.15). Writing

R
+ =]0, R(Λ)[ ∪ {R(Λ)} ∪ ]R(Λ),∞[,

we therefore have that:

• {eiλkx}k∈Z is a frame for L2(−R,R) whenever R ∈]0, R(Λ)[.

• {eiλkx}k∈Z is not a frame for L2(−R,R) if R ∈]R(Λ),∞[.

The case R = R(Λ) itself is critical: there are cases where {eiλkx}k∈Z is a
frame for L2(−R(Λ), R(Λ)) and cases where it is not.
A separated sequence {λk}k∈Z is said to have uniform density d > 0 if

there exists a number L > 0 such that
∣
∣
∣
∣λk −

k

d

∣
∣
∣
∣ ≤ L, ∀k ∈ Z. (9.41)

Duffin and Schaeffer proved the following impressive theorem. We
encourage the reader to consult the original paper [262] for the proof:

Theorem 9.8.1 Assume that {λk}k∈Z is a separated sequence with uni-
form density d > 0. Then {λk}k∈Z has frame radius at least πd.

Theorem 9.8.1 can naturally be considered as a perturbation result. In
fact, if we consider a fixed d > 0, then {eikx/d}k∈Z is a frame for L2(−R,R)
for any R ∈]0, πd] (Exercise 9.10); Theorem 9.8.1 now tells us that if
{λk}k∈Z is separated and (9.41) is satisfied, then {eiλkx}k∈Z is a frame
for L2(−R,R) for any R ∈]0, πd[. It is immediately clear that we cannot
expect {eiλkx}k∈Z to be a frame for L2(−R,R) for R > πd and that it also
might fail for R = πd is more subtle.
Our purpose is to find conditions on a sequence {λk}k∈Z and an interval

I such that {eiλkx}k∈Z is a frame for L2(I). We begin with the Bessel
condition.

Lemma 9.8.2 Let {λk}k∈Z be a real sequence. Then the following are
equivalent:

(i) {λk}k∈Z is relatively separated.

(ii) {eiλkx}k∈Z is a Bessel sequence in L2(−π, π).

(iii) {eiλkx}k∈Z is a Bessel sequence in L2(I) for any bounded interval
I ⊂ R.

Proof. A proof of (ii) ⇔(iii) is outlined in Exercise 9.11. That (ii)⇒(i)
can be proved by an argument similar to the one used in Theorem 9.6.1;
alternatively, it follows from Proposition 9.6.1 (Exercise 9.12). A proof of
(i)⇒ (iii) can be found in [622]. We also note that this implication actually
follows from Theorem 9.8.1. In fact, it is enough to prove that {eiλkx}k∈Z
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is a Bessel sequence if {λk}k∈Z is separated. Assuming that {λk}k∈Z is
separated, we order {λk}k∈Z increasingly; we denote the reordered sequence
by {λk}k∈K . Depending on the given sequence {λk}k∈Z, the index set K
can be either Z,N, or N− = {−1,−2, . . .}. Now,

|λk+1 − λk| ≥ δ > 0,

for some δ; therefore,
∣
∣
∣
∣
λk+1

δ
− λk

δ

∣
∣
∣
∣ ≥ 1.

By enlarging {λk}k∈K if necessary, we can obtain a separated sequence
{μk}k∈Z, which, by choosing the ordering and indexing appropriately,
satisfies that

∣
∣
∣k −

μk

δ

∣
∣
∣ ≤ 1, ∀k ∈ Z.

By Theorem 9.8.1, the sequence {eiμkx/δ}k∈Z is a frame for L2(I) when
I is sufficiently small. Therefore, {eiμkx}k∈Z is a frame for L2(I) when
I is sufficiently small (Exercise 9.13); since {λk}k∈Z is a subsequence of
{μk}k∈Z, this implies that {eiλkx}k∈Z is a Bessel sequence in L2(I). �

We are now ready to prove a characterization of exponential frames due
to Jaffard [414].

Theorem 9.8.3 Let {λk}k∈Z be a real sequence. Then the following are
equivalent:

(i) There exists an interval I such that {eiλkx}k∈Z is a frame for L2(I).

(ii) {λk}k∈Z is the disjoint union of a sequence {λk}k∈I1 with a uniform
density d1 > 0 and a relatively separated sequence {λk}k∈Z\I1 .

If (ii) holds, then {eiλkx}k∈Z is a frame for L2(I) for any interval I with
|I| < 2πd1.

Proof. Assume that {eiλkx}k∈Z is a frame for L2(I) for some interval I.
Then {λk}k∈Z is relatively separated by Lemma 9.8.2; by Lemma 9.1.3,
this implies that for each integer N ∈ N we can find a finite number CN

such that each interval of the type [kN, (k+ 1)N [, k ∈ Z contains at most
CN elements from {λk}k∈Z. By choosing N sufficiently large, we can assure
that each interval [kN, (k+1)N [, k ∈ Z contains at least one element from
{λk}k∈Z; this is not trivial, but here is an argument. Assume the opposite,
i.e., that for each N ∈ N we could find an interval [�N, (� + 1)N [, � ∈ Z,
which does not contain any element from {λk}k∈Z. Letting

fN(x) := ei(�+1/2)Nx,



9.8 Frames of Exponentials 235

it follows from Exercise 9.14 that

|〈fN , eiλkx〉|2 =

∣
∣
∣
∣

∫

I

ei((�+1/2)N−λk)xdx

∣
∣
∣
∣

2

=

∣
∣
∣
∣

2

λk − (�+ 1/2)N
sin

(
λk − (� + 1/2)N)

2
|I|
)∣
∣
∣
∣

2

≤ 4

|λk − (� + 1/2)N |2 .

Now consider an interval [n, n+1[, n ∈ Z. If λk ∈ [n, n+1[ for some k ∈ Z,
then the opposite triangle inequality shows that

|λk − (�+ 1/2)N | = |(n− (�+ 1/2)N)− (n− λk)|
≥ |n− (�+ 1/2)N | − 1.

Using the above notation, at most C1 elements from {λk}k∈Z belong to an
interval [n, n + 1[. Also, if N > 4 and |n − (� + 1/2)N | < N

4 , the interval
[n, n+1[ is contained in [�N, (�+1)N [, and therefore [n, n+1[ contains by
assumption no element from {λk}k∈Z in this case. Putting all information
together, we obtain that for N > 4,
∑

k∈Z

|〈fN , eiλkx〉|2 =
∑

n∈Z

∑

{k: λk∈[n,n+1[}
|〈fN , eiλkx〉|2

≤
∑

{n: |n−(�+1/2)N |≥N
4 }

∑

{k: λk∈[n,n+1[}

4

|λk − (�+ 1/2)N |2

≤
∑

{n: |n−(�+1/2)N |≥N
4 }

4C1

(|n− (�+ 1/2)N | − 1)2
.

So for N > 8,

∑

k∈Z

|〈fN , eiλkx〉|2 ≤ 4C1

∑

{n: |n|≥N/4}

1

(|n| − 2)2

→ 0 as N →∞.

Since ||fN || =
√
|I| for all N ∈ N, it follows that the lower frame con-

dition is violated. However, this contradicts our starting hypothesis that
{eiλkx}k∈Z is a frame for L2(I). This proves the claim that for N chosen
sufficiently large, each interval [kN, (k + 1)N [, k ∈ Z contains at least one
element from {λk}k∈Z.

Based on this, we can now pick a subsequence of {λk}k∈Z having a uni-
form density. In fact, by choosingN large enough we can for each interval of
the form [2kN, (2k+1)N [, k ∈ Z pick one element from {λk}k∈Z belonging
to the interval; this way we obtain a sequence {μk}k∈Z = {λk}k∈I1 where
the elements are separated by N and for which

|μk − 2kN | ≤ N, ∀k ∈ Z.
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Finally, we have to prove that the remaining sequence {λk}k∈Z \ {μk}k∈Z

is relatively separated. One way to obtain a separated subsequence from
{λk}k∈Z\{μk}k∈Z is, for each k ∈ Z, to pick one element from the sequence
belonging to each interval [2kN, (2k + 1)N [ (if there is any); another sep-
arated subsequence is obtained by picking one element from each interval
[(2k+1)N, (2k+2)N [, k ∈ Z. After repeating these two procedures at most
CN times, no more elements from {λk}k∈Z \ {μk}k∈Z are left. This proves
that {λk}k∈Z \ {μk}k∈Z is relatively separated.
For the proof of (ii) ⇒ (i), we assume that there is a partition

Z = I1 ∪ I2,

such that {λk}k∈I1 has a uniform density d1 > 0 and {λk}k∈I2 is rela-
tively separated. By Theorem 9.8.1, the sequence {eiλkx}k∈I1 is a frame
for L2(−R,R) if R ∈]0, πd1[, and by Lemma 9.8.2 {eiλkx}k∈I2 is a Bessel
sequence. Therefore, {eiλkx}k∈Z is a frame for L2(−R,R) when R ∈]0, πd1[.
By Exercise 9.15, this implies that {eiλkx}k∈Z is a frame for L2(I) for any
interval I with |I| < 2πd1. �

The formulation in Theorem 9.8.3 is very convenient in order to prove
that {eiλkx}k∈Z is a frame for a given sequence {λk}k∈Z. In the original
paper by Jaffard, Theorem 9.8.3 is just one step toward the main result,
where the frame radius is determined for any sequence {λk}k∈Z. Seip [570]
gave a very elegant version of this final result in terms of the lower density.

Theorem 9.8.4 For {eiλkx}k∈Z to be a frame for L2(−π, π), it is neces-
sary that {λk}k∈Z is relatively separated and D−({λk}k∈Z) ≥ 1, and it is
sufficient that {λk}k∈Z is relatively separated and D−({λk}k∈Z) > 1.

Seip also proves that if {λk}k∈Z is separated and D−({λk}k∈Z) > 1, then
{eiλkx}k∈Z contains a Riesz basis.

Theorem 9.8.4 is optimal in the sense that no conclusion is possible if
D−({λk}k∈Z) = 1. For example, Seip proves that the sequence

{λk} =
{
k(1− |k|−1/2)

}

|k|>1

has density 1 and that {eiλkx} is a frame for L2(−π, π). On the other hand,
a famous example by Kadec, namely, the sequence {λk}k∈Z given by

λk :=

⎧
⎪⎨

⎪⎩

k − 1/4 if k > 0

k + 1/4 if k < 0

0 if k = 0

, (9.42)

also has density 1, however, without generating a frame for L2(−π, π). For
a discussion of this example, we refer to [622].
For a sequence {fk}∞k=1 in a general Hilbert spaceH, the upper and lower

Riesz conditions in (3.29) are unrelated (Exercise 3.12). In the present
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context, the situation is different: for a sequence {λk}k∈Z consisting of
distinct points, the existence of a lower Riesz bound for {eiλkx}k∈Z in
L2(−π, π) implies that {eiλkx}k∈Z is a Bessel sequence. That is, the lower
condition is enough to guarantee that {eiλkx}k∈Z is a Riesz basis for its
closed span. This result was originally discovered by Young [623]. An
elegant direct argument was later given by Lindner [497], and we repeat it
here.

Theorem 9.8.5 Suppose that the sequence {λk}k∈Z consists of distinct
points and that there exists a constant A > 0 such that

A
∑

k∈Z

|ck|2 ≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

k∈Z

cke
iλkx

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

L2(−π,π)

(9.43)

for all finite scalar sequences {ck}k∈Z. Then {eiλkx}k∈Z is a Riesz basis for
its closed span in L2(−π, π).

Proof. Consider λk, λj , where k �= j. By assumption,

2A = A(|1|2 + |−1|2) ≤
∣
∣
∣
∣eiλkx − eiλjx

∣
∣
∣
∣2

=

∫ π

−π

|1− ei(λk−λj)x|2dx. (9.44)

Using the expansion

eiy =

∞∑

k=0

(iy)k

k!
= 1 +

∞∑

k=1

(iy)k

k!
, y ∈ R,

it follows that for x ∈]− π, π[,

|1− ei(λk−λj)x| =

∣
∣
∣
∣−

∞∑

k=1

[i(λk − λj)x]
k

k!

∣
∣
∣
∣

≤
∞∑

k=1

|(λk − λj)π|k
k!

= e|λk−λj)| π − 1.

Therefore, (9.44) shows that 2A ≤ 2π(e|λk−λj | π − 1)2; this implies that

|λk − λj | ≥
1

π
ln(

√
A

π
+ 1).

Thus, {λk}k∈Z is separated, and therefore {eiλkx}k∈Z is a Bessel sequence
in L2(−π, π) by Lemma 9.8.2. �

The classical Kadec’s 1/4-theorem states that if {λk}k∈Z is a real seq-
uence for which supk∈Z

|λk − k| < 1
4 , then {eiλkx}k∈Z is a Riesz basis for

L2(−π, π). The example (9.42) of Kadec shows that the conclusion fails if
sup |λk − k| = 1

4 . Combining the proof of Kadec’s theorem in [622] with
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perturbation results for frames in Section 22.1, it is an easy matter to
extend Kadec’s theorem to frames; we refer to the original papers by Balan
[26] and Christensen [159] for details.

Theorem 9.8.6 Let {λk}k∈Z, {μk}k∈Z be real sequences. Suppose that
{eiμkx}k∈Z is a frame for L2(−π, π) with bounds A,B. If there exists a
constant L < 1/4 such that

|μk − λk| ≤ L ∀k ∈ Z, and 1− cos(πL) + sin(πL) <

√
A

B
,

then {eiλkx}k∈Z is a frame for L2(−π, π) with bounds

A(1 −
√

B

A
(1− cos(πL) + sin(πL)))2, B(2− cos(πL) + sin(πL))2.

Compared with the Kadec 1/4-theorem, the advantages of Theorem 9.8.6
are twofold: it applies to frames, and we obtain estimates for the frame
bounds. Good values for the frame bounds are essential for estimates of
the speed of convergence in algorithms involving frames, as we have seen
already in Section 1.3. In the paper [384], He, Key, and Volkmer used
Theorem 9.8.6 to construct Riesz bases for weighted L2-spaces consisting
of solutions to certain Sturm–Liouville problems.
Let us end this section with a few words about the lower frame bounds

for finite sets of exponentials. The following result was proved in [193]; it
is based on an impressive analysis by Lindner in [496], where lower bounds
were obtained for certain infinite sets of exponentials.

Proposition 9.8.7 Let λ1, . . . , λM be a finite sequence of distinct real
numbers. Choose a separation constant δ ≤ 1. Then {eiλk(·)}Mk=1 is a Riesz
basis for its linear span in L2(−π, π), with lower frame bound

AM = 1.6 · 10−14

(
δ

2

)2M+1
1

((M + 1)!)8
. (9.45)

Note that the bounds in (9.45) are extremely small and tend very fast to
zero when the number M increases. We will return to this issue in the
context of finite Gabor systems, where lower bounds are derived based on
Proposition 9.8.7; see page 345.

9.9 Exercises

9.1 Let φ ∈ L2(R) \ {0} and let {λk}k∈Z be a sequence in R. Show by
a direct argument that {Tλk

φ}k∈Z cannot be a frame sequence if
{λk}k∈Z has an accumulation point.
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9.2 Prove (9.4) in the proof of Lemma 9.2.2.

9.3 Prove Lemma 9.2.4.

9.4 In this exercise, we ask the reader to provide some details in the
proof of Theorem 9.2.5.

(i) Prove (9.9).

(ii) Prove the equivalence between (9.10) and the statement
preceding it.

9.5 Prove Corollary 9.3.5.

9.6 Prove Corollary 9.5.3. (Hint: use the argument from the proof of
Corollary 9.5.2.)

9.7 Let Φ be a positive trigonometric polynomial. Show that if Φ(·)−1

is a trigonometric polynomial, then Φ is a constant.

9.8 This exercise connects to Exercises 3.12, 5.2. Let H be a separable
Hilbert space.

(i) Find a sequence {fk}∞k=1 in H which satisfies the lower frame
condition but not the upper frame condition.

(ii) Find a sequence {fk}∞k=1 of vectors with norm 1, which satisfies
the lower frame condition, but not the upper frame condition.

(iii) Suppose that {eiλkx} satisfies the lower frame condition in
L2(−π, π). Does it follow that {eiλkx} is a frame? Compare
with Theorem 9.8.5.

9.9 Assume that φ has compact support and that there exist constants
a, b > 0 such that a ≤ |φ(x)| ≤ b for a.e. x ∈ supp φ. Prove
that {Tλk

φ}k∈Z is an orthogonal sequence for all sequences {λk}k∈Z

for which the sets {λk + supp φ}k∈Z are disjoint. How can the
assumptions be modified to obtain a Riesz sequence which is not
orthogonal?

9.10 Let d > 0, and prove that {eikx/d}k∈Z is a frame for L2(−R,R) if
and only if R ∈]0, πd].

9.11 Let I and J be arbitrary bounded intervals in R and {λk}k∈Z a
real sequence. Our purpose is to prove that {eiλkx}k∈Z is a Bessel
sequence in L2(I) if and only if it is a Bessel sequence in L2(J);
that is, the Bessel condition is independent of the considered finite
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interval. One way to proceed is to assume that {eiλkx}k∈Z is a
Bessel sequence in L2(I) and prove the following:

(i) {eiλkx}k∈Z is a Bessel sequence in L2(a+ I) for any a ∈ R.

(ii) {eiλkx}k∈Z is a Bessel sequence in L2(I1) for any interval
I1 ⊂ I.

(iii) {eiλkx}k∈Z is a Bessel sequence in L2(I∪(a+I)) for any a ∈ R.
Covering J with a finite number of translates of I, we can now
conclude that {eiλkx}k∈Z is a Bessel sequence in L2(J).

9.12 Let {λk}k∈Z be a sequence in R and assume that {eiλkx}k∈Z is
a Bessel sequence in L2(−π, π). Define the function φ through

φ̂ = χ[−π,π], and prove that:

(i) {Eλk
2π

φ̂}k∈Z is a Bessel sequence in L2(R).

(ii) {T−λk
2π

φ}k∈Z is a Bessel sequence in L2(R).

(iii) {λk}k∈Z is relatively separated.

9.13 Consider an interval [b, c] ⊂ R, and identify L2(b, c) with a sub-
space of L2(R). For a given a > 0, let Da be the dilation operator.
Prove the following:

(i) DaL
2(b, c) = L2(ab, ac).

(ii) If {eiλkx}k∈Z is a frame for L2(b, c), then {eiλkx/a}k∈Z is a
frame for L2(ab, ac).

9.14 Consider a bounded interval [b, c] ⊂ R. Let a �= 0 and prove that
∣
∣
∣
∣

∫ c

b

eiaxdx

∣
∣
∣
∣ =

2

|a|

∣
∣
∣
∣sin

(
a(c− b)

2

)∣
∣
∣
∣ .

9.15 Assume that {eiλkx}k∈Z is a frame for L2(I) for some interval I.
Prove that {eiλkx}k∈Z is also a frame for L2(J) for any interval J
with |J | ≤ |I|.

9.16 Calculate the oblique duals of {TkB̃n}k∈Z in Example 9.5.7 for
n = p = q = 2 and n = p = q = 3 (use Maple or a similar
program).



10
Shift-Invariant Systems in L2(R)

Chapter 9 dealt with systems of functions generated by integer-translates of
a single function in L2(R). We will now generalize this setup and consider
translates of a given countable family of functions rather than just one
function. Such systems of functions are called shift-invariant systems. Our
goal is to characterize various frame properties for shift-invariant systems,
a subject that was treated first in the paper [559] by Ron and Shen. The
presentation is inspired by the approach by Janssen in [430]. The derived
results will play an important role in the analysis of Gabor systems in
Chapter 11.
The theory for shift-invariant systems is based on two classes of operators

on L2(R), namely,

Translation by a ∈ R, Ta : L2(R)→ L2(R), (Taf)(x) = f(x− a);

Modulation by b ∈ R, Eb : L
2(R)→ L2(R), (Ebf)(x) = e2πibxf(x).

Both classes of operators were introduced in Section 2.9; in particular,
we will use their interaction with the Fourier transform, a subject that is
also treated in Section 2.9. We will return to shift-invariant systems in the
setting of L2(Rd) in Chapter 20; see also Sections 21.6–21.7.

10.1 Frame Properties of Shift-Invariant Systems

Let {gm}m∈I be a countable collection of functions in L2(R) and a > 0 be a
given (shift) parameter. The shift-invariant system generated by {gm}m∈I

©
O. Christensen, An Introduction to Frames and Riesz Bases,
Applied and Numerical Harmonic Analysis,
DOI 10.1007/978-3-319-25613-9 10

241Springer International Publishing Switzerland 2016
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and a is the collection of functions {gm(· − na)}m∈I,n∈Z. Formulated in
terms of the translation operator, the system has the form {Tnagm}m∈I,n∈Z.
Usually, we will let I = Z, in which case we simply write

{gnm} := {Tnagm}m,n∈Z. (10.1)

As already mentioned our goal is to characterize various frame properties
for systems of the form {gnm}. The Fourier transform will be an important
tool; in fact, the characterizations will be formulated in terms of certain
conditions on the functions ĝm.
In particular, we will present equivalent conditions for two systems {gnm}

and {hnm} to form dual frames. Given shift-invariant Bessel systems {gnm},
{hnm} and two functions e, f ∈ L2(R), the analysis of the function ρ(e, f)
defined by

ρ(e, f) : R→ C, ρ(e, f)(x) =
∑

m,n∈Z

〈Txe, gnm〉〈hnm, Txf〉 (10.2)

will play a central role. The reason for considering this function is apparent
from our discussion of general dual frame pairs in Section 6.3: in fact,
Lemma 6.3.2 shows that two Bessel sequences {gnm} and {hnm} form dual
frames for L2(R) if and only if

ρ(e, f)(0) = 〈e, f〉, ∀e, f ∈ L2(R).

In order to get information about the point evaluation ρ(e, f)(0) based
on the function values ρ(e, f)(x) for x close to 0, we need to show that the
function ρ(e, f) is continuous; a substantial part of the technicalities in the
current chapter will deal with exactly this point.
We first derive a useful consequence of the Bessel condition.

Lemma 10.1.1 Assume that {gnm} is a Bessel sequence with bound B.
Then

∑

m∈Z

|ĝm(ν)|2 ≤ aB, a.e. ν ∈ R. (10.3)

Proof. Let f ∈ L2(R), and consider the function

ρ(f, f)(x) =
∑

m,n∈Z

|〈Txf, gnm〉|2; (10.4)

it corresponds to the general expression in (10.2) in the case hm = gm. The
assumption that {gnm} is a Bessel sequence with bound B implies that
ρ(f, f) is bounded: in fact,

ρ(f, f)(x) ≤ B ||Txf ||2 = B ||f ||2, ∀x ∈ R. (10.5)

The shift-invariance of the system {gnm} implies that ρ(f, f) is periodic
with period a (Exercise 10.1), so we can consider its Fourier expansion in
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L2(0, a). By definition, the Fourier coefficient c0 is given by

c0 =
1

a

∫ a

0

∑

m,n∈Z

|〈Txf, gnm〉|2 dx (10.6)

=
1

a

∑

m,n∈Z

∫ a

0

∣
∣
∣
∣

∫ ∞

−∞
f(z − x)gm(z − na) dz

∣
∣
∣
∣

2

dx

=
1

a

∑

m,n∈Z

∫ a

0

∣
∣
∣
∣

∫ ∞

−∞
f(z − (x− na))gm(z) dz

∣
∣
∣
∣

2

dx.

Introducing the functions Φm(x), m ∈ Z, by

Φm(x) :=

∣
∣
∣
∣

∫ ∞

−∞
f(z − x)gm(z)dz

∣
∣
∣
∣

2

= |〈Txf, gm〉|2, x ∈ R,

this can be written as

c0 =
1

a

∑

m∈Z

∑

n∈Z

∫ a

0

Φm(x− na) dx

=
1

a

∑

m∈Z

∫ ∞

−∞
Φm(x) dx =

1

a

∑

m∈Z

∫ ∞

−∞
|〈Txf, gm〉|2dx.

By direct calculation, we see that for arbitrary functions e, φ ∈ L2(R),

〈Txe, φ〉 = 〈FTxe,Fφ〉 = 〈E−xê, φ̂〉

=

∫ ∞

−∞
ê(ν)φ̂(ν)e−2πixνdν

= F
(
ê φ̂

)
(x). (10.7)

Thus, via Parseval’s equation,

c0 =
1

a

∑

m∈Z

∫ ∞

−∞

∣
∣F(f̂ ĝm)(ν)

∣
∣2dν =

1

a

∑

m∈Z

∫ ∞

−∞

∣
∣f̂(ν)ĝm(ν)

∣
∣2dν

=
1

a

∫ ∞

−∞
|f̂(ν)|2

∑

m∈Z

|ĝm(ν)|2dν. (10.8)

On the other hand, via the definition of c0 used in (10.6), an estimate of
c0 can be obtained:

c0 =
1

a

∫ a

0

∑

m,n∈Z

|〈Txf, gnm〉|2 dx ≤ B ||f ||2 = B

∫ ∞

−∞
|f̂(ν)|2dν.

Thus, via (10.8) we see that

1

a

∫ ∞

−∞
|f̂(ν)|2

∑

m∈Z

|ĝm(ν)|2dν ≤ B

∫ ∞

−∞
|f̂(ν)|2dν.
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Since this holds for all f ∈ L2(R), we conclude that

1

a

∑

m∈Z

|ĝm(ν)|2 ≤ B, a.e. ν ∈ R;

the desired result now follows. �

We will now analyze the function ρ(e, f) in (10.2), in particular with
regard to continuity.

Lemma 10.1.2 Assume that two shift-invariant systems {gnm} and
{hnm} are Bessel sequences and let e, f ∈ L2(R). Then the function

ρ(e, f) : R→ C, ρ(e, f)(x) =
∑

m,n∈Z

〈Txe, gnm〉〈hnm, Txf〉

is continuous and has period a. Its Fourier series in L2(0, a) is

ρ(e, f)(x) =
∑

k∈Z

cke
2πikx/a, (10.9)

where

ck =
1

a

∫ ∞

−∞
ê(ν)f̂ (ν + k/a)

∑

m∈Z

ĝm(ν)ĥm(ν + k/a) dν, k ∈ Z. (10.10)

Proof. Assume that {gnm} and {hnm} are Bessel sequences; then, an
application of Cauchy–Schwarz’ inequality shows that the series defining
ρ(e, f)(x) converges absolutely for all x ∈ R. In particular, this demon-
strates that the function ρ(e, f)(x) is well defined. We will now prove that
ρ(e, f) is a continuous function. First, given x, x0 ∈ R,

|ρ(e, f)(x)− ρ(e, f)(x0)|

=

∣
∣
∣
∣

∑

m,n∈Z

(〈Txe, gnm〉〈hnm, Txf〉 − 〈Tx0e, gnm〉〈hnm, Tx0f〉)
∣
∣
∣
∣

≤
∑

m,n∈Z

|〈Txe, gnm〉〈hnm, Txf〉 − 〈Tx0e, gnm〉〈hnm, Tx0f〉| .

Writing Txe = Txe − Tx0e+ Tx0e, we see that

〈Txe, gnm〉〈hnm, Txf〉 − 〈Tx0e, gnm〉〈hnm, Tx0f〉
= 〈Txe − Tx0e, gnm〉〈hnm, Txf〉+ 〈Tx0e, gnm〉〈hnm, Txf〉

−〈Tx0e, gnm〉〈hnm, Tx0f〉
= 〈Txe − Tx0e, gnm〉〈hnm, Txf〉+ 〈Tx0e, gnm〉〈hnm, Txf − Tx0f〉;
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thus, letting B denote a common Bessel bound for {gnm} and {hnm},
|ρ(e, f)(x)− ρ(e, f)(x0)|

≤
∑

m,n∈Z

|〈Txe− Tx0e, gnm〉| |〈hnm, Txf〉|

+
∑

m,n∈Z

|〈Tx0e, gnm〉| |〈hnm, Txf − Tx0f〉|

≤

⎛

⎝
∑

m,n∈Z

|〈Txe− Tx0e, gnm〉|
2

⎞

⎠

1/2⎛

⎝
∑

m,n∈Z

|〈hnm, Txf〉|2
⎞

⎠

1/2

+

⎛

⎝
∑

m,n∈Z

|〈Tx0e, gnm〉|
2

⎞

⎠

1/2⎛

⎝
∑

m,n∈Z

|〈hnm, Txf − Tx0f〉|2
⎞

⎠

1/2

≤ B ||Txe − Tx0e|| ||Txf ||+B ||Tx0e|| ||Txf − Tx0f ||
= B ||Tx−x0e − e|| ||f ||+B ||e|| ||Tx−x0f − f ||.

The last expression converges to zero for x → x0 by Lemma 2.9.2; this
proves the desired continuity.
The periodicity of ρ(e, f) follows from the structure of the shift-invariant

systems {gnm} and {hnm} (Exercise 10.2). For the computation of the
Fourier coefficients, we first assume that e, f ∈ Cc(R); this will justify the
following interchanges of sums and integrals. The coefficients in the Fourier
expansion with respect to {e2πikx/a}k∈Z are given by (Exercise 10.2)

ck =
1

a

∫ a

0

ρ(e, f)(x)e−2πikx/a dx

=
1

a

∑

m∈Z

∑

n∈Z

∫ a

0

〈Txe, gm(· − na)〉〈hm(· − na), Txf〉e−2πikx/a dx

=
1

a

∑

m∈Z

∫ ∞

−∞
〈Txe, gm〉〈hm, Txf〉e−2πikx/a dx

=
1

a

∑

m∈Z

∫ ∞

−∞
〈Txe, gm〉〈Txf, hm〉e2πikx/a dx. (10.11)

Using (10.7), it follows that

〈Txf, hm〉e2πikx/a = Ek/aF
(
f̂ ĥm

)
(x) = F

(
T−k/a(f̂ ĥm)

)
(x).

Inserting this and (10.7) in (10.11) leads to

ck =
1

a

∑

m∈Z

∫ ∞

−∞
〈Txe, gm〉〈Txf, hm〉e2πikx/a dx

=
1

a

∑

m∈Z

∫ ∞

−∞
F
(
ê ĝm

)
(x)F

(
T−k/a(f̂ ĥm)

)
(x) dx;
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thus, via Plancherel’s equation,

ck =
1

a

∑

m∈Z

∫ ∞

−∞
ê(ν)ĝm(ν)f̂(ν + k/a)ĥm(ν + k/a) dν.

The reader can check (Exercise 10.2) that the series
∫ ∞

−∞
|ê(ν)| |f̂ (ν + k/a)|

∑

m∈Z

|ĝm(ν)| |ĥm(ν + k/a)| dν (10.12)

is convergent. Thus, we can interchange the sum and the integral in the
above expression for c0. This proves the result for all functions e, f ∈ Cc(R).
The general case now follows by a density argument (Exercise 10.2). �

It is very complicated to check the frame conditions for a shift-invariant
system directly via the definition. We will now derive equivalent conditions
in terms of matrix-valued functions. However, some preparation is needed
before we state the main results in Theorem 10.1.6 and Theorem 10.1.7.
We begin with a definition.

Definition 10.1.3 For f ∈ L2(R), the fiber of f at a point ν ∈ R is defined
as the sequence

f̂(ν) := {f̂(ν − k/a)}k∈Z.

The following lemma shows that the sequence f̂(ν) belongs to �2(Z) for

a.e. ν ∈ Z; for this reason, ||̂f (ν)|| will always denote the �2-norm. We ask
the reader to provide the proof (Exercise 10.3).

Lemma 10.1.4 Let f ∈ L2(R). Then f̂(ν) ∈ �2(Z) for a.e. ν ∈ R.
Furthermore, for any interval I of length 1/a,

||f ||2 =

∫

I

∑

k∈Z

|f̂(ν − k/a)|2 dν =

∫

I

||̂f(ν)||2dν.

Given a shift-invariant system {gnm} as in (10.1), define the matrix-
valued function

H(ν) := (ĝm(ν − k/a))k,m∈Z
, a.e. ν ∈ R. (10.13)

Note that the columns in the matrix H(ν) consist of the fibers for the
functions gm. In case H(ν) defines a bounded operator on �2(Z) for some
ν ∈ R, the adjoint operator will be denoted by H(ν)∗; it is given by

H(ν)∗ =
(
ĝm(ν − k/a)

)

m,k∈Z

.

For technical reasons, several of the following results will first be proven
for functions f belonging to a subspace of the Schwartz space S of rapidly
decaying functions. Recall that S consists of all infinitely often differentiable
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functions f on R, which decay faster than any inverse polynomial; that is,
for any α, k ∈ N ∪ {0},

sup
x∈R

∣
∣
∣
∣x

α d
kf

dxk
(x)

∣
∣
∣
∣ <∞.

We will need the following dense subspace D of L2(R):

D :=
{
f ∈ S | f̂ is compactly supported

}
. (10.14)

Lemma 10.1.5 Let {gnm} be a shift-invariant system in L2(R), and
assume that for a.e. ν ∈ R, the matrix H(ν) defines a bounded operator on
�2(Z). Then, for any interval I of length 1/a and any function f ∈ D,

∫

I

||H(ν)∗ f̂(ν)||2dν = a
∑

m,n∈Z

|〈f, gnm〉|2.

Proof. For the ν ∈ R for which the matrix H(ν) is bounded, its adjoint
is bounded, and ||H(ν)|| = ||H(ν)∗||. Given any interval I of length 1/a,

∫

I

||H(ν)∗ f̂(ν)||2dν =

∫

I

∑

m∈Z

∣
∣
∣
∣

∑

k∈Z

ĝm(ν − k/a)f̂(ν − k/a)

∣
∣
∣
∣

2

dν

=
∑

m∈Z

∫

I

∣
∣
∣
∣

∑

k∈Z

ĝm(ν − k/a)f̂(ν − k/a)

∣
∣
∣
∣

2

dν.

Now, for each m ∈ Z, one can prove (Exercise 10.4) that the mapping

ν �→
∑

k∈Z

ĝm(ν − k/a)f̂(ν − k/a) (10.15)

is well defined for a.e. ν ∈ R and defines a function in L2(I) with Fourier
series

∑

k∈Z

ĝm(· − k/a)f̂(· − k/a) =
∑

n∈Z

a〈f, gnm〉e2πina(·). (10.16)

Parseval’s equation (see (3.35)) shows that

a

∫

I

∣
∣
∣
∣

∑

k∈Z

ĝm(ν − k/a)f̂(ν − k/a)

∣
∣
∣
∣

2

dν = a2
∑

n∈Z

|〈f, gnm〉|2.

Thus,

a
∑

m,n∈Z

|〈f, gnm〉|2 =

∫

I

||H(ν)∗f̂ (ν)||2dν,

as desired. �
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We are now ready to state characterizations of several frame properties
for shift-invariant systems. They are formulated in terms of the matrix-
valued function H(ν) in (10.13), i.e., in terms of the fibers associated with
the generators gm. We begin with the upper frame condition.

Theorem 10.1.6 A shift-invariant system {gnm} is a Bessel sequence with
bound B if and only if the matrix H(ν) for a.e. ν ∈ R defines a bounded
operator on �2(Z) with norm at most

√
aB.

Proof. Let us first assume that the matrix H(ν) for a.e. ν ∈ R defines a
bounded operator on �2(Z) with norm at most

√
aB. Fix any interval I of

length 1/a. Then, for any function f belonging to the space D defined in
(10.14), Lemma 10.1.5 shows that

∑

m,n∈Z

|〈f, gnm〉|2 =
1

a

∫

I

||H(ν)∗ f̂(ν)||2dν ≤ aB

a

∫

I

||̂f(ν)||2dν = B ||f ||2.

Since D is dense in L2(R), it follows from Lemma 3.2.6 that {gnm} is a
Bessel sequence with bound B.
Assume now that {gnm} is a Bessel sequence with bound B. We have to

prove that for almost all ν ∈ R, the inequality

∑

k∈Z

∣
∣
∣
∣

∑

m∈Z

ĝm(ν − k/a)cm

∣
∣
∣
∣

2

≤ aB
∑

m∈Z

|cm|2 (10.17)

holds for all {cm}m∈Z ∈ �2(Z). We first assume that {cm}m∈Z is a
finite sequence. Given another finite sequence {dn}n∈Z, we consider the
trigonometric polynomial

ϕ(ν) =
∑

n∈Z

dne
−2πinaν .

Note that ϕ has period 1/a. For any interval I of length 1/a, Parseval’s
theorem (see (3.35)) shows that

∑

n∈Z

|dn|2 = a

∫

I

|ϕ(ν)|2dν.

The periodicity of ϕ implies that for any such interval I, we have that

(∗) :=

∫

I

|ϕ(ν)|2
∑

k∈Z

∣
∣
∣
∣

∑

m∈Z

ĝm(ν − k/a)cm

∣
∣
∣
∣

2

dν

=

∫

I

∑

k∈Z

∣
∣
∣
∣

∑

m∈Z

ϕ(ν − k/a)ĝm(ν − k/a)cm

∣
∣
∣
∣

2

dν;

thus,
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(∗) =

∫ ∞

−∞

∣
∣
∣
∣

∑

m∈Z

ϕ(ν)ĝm(ν)cm

∣
∣
∣
∣

2

dν

=

∫ ∞

−∞

∣
∣
∣
∣

∑

m∈Z

∑

n∈Z

dncme−2πinaν ĝm(ν)

∣
∣
∣
∣

2

dν

=

∫ ∞

−∞

∣
∣
∣
∣F

∑

m∈Z

∑

n∈Z

dncmgm(ν − na)

∣
∣
∣
∣

2

dν

=

∣
∣
∣
∣

∣
∣
∣
∣

∑

m,n∈Z

dncmgnm

∣
∣
∣
∣

∣
∣
∣
∣

2

.

Using that {gnm} is a Bessel sequence with bound B, we can estimate this
term as follows:

∣
∣
∣
∣

∣
∣
∣
∣

∑

m,n∈Z

dncmgnm

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ B
∑

m,n∈Z

|dncm|2 = B
∑

m∈Z

|cm|2
∑

n∈Z

|dn|2

= aB
∑

m∈Z

|cm|2
∫

I

|ϕ(ν)|2dν.

Altogether, we arrive at the inequality

∫

I

|ϕ(ν)|2
∑

k∈Z

∣
∣
∣
∣

∑

m∈Z

ĝm(ν − k/a)cm

∣
∣
∣
∣

2

dν ≤ aB
∑

m∈Z

|cm|2
∫

I

|ϕ(ν)|2dν.

Since this holds for all trigonometric polynomials ϕ with period 1/a, we
conclude that (10.17) holds for a.e. ν ∈ I, for any given finite sequence
{cm}m∈Z; for reasons of periodicity, it therefore holds for a.e. ν ∈ R for
such sequences.
However, we have to prove that there is a null set N ⊂ R such that

(10.17) holds for all {cm}m∈Z ∈ �2(Z) if ν ∈ R \ N . In order to do so, let
V ⊂ �2(Z) be a subset formed by a countable and dense collection of finite
sequences {cm}m∈Z. Note that a countable union of null sets again is a null
set; this implies that there exists a null set N ⊂ I such that (10.17) holds
for all ν ∈ R \N and all {cm}m∈Z ∈ V . Via Lemma 10.1.1, we might also
assume that the inequality (10.3) holds for all ν ∈ R\N. We now prove that
for ν ∈ R \N, the result in (10.17) actually holds for all {cm}m∈Z ∈ �2(Z).
In order to do so, let {cm}m∈Z ∈ �2(Z) be given, and take a sequence of
finite sequences {cnm}m∈Z ∈ V, n ∈ N, such that

{cnm}m∈Z → {cm}m∈Z in �2(Z) as n→∞.

Now let ν ∈ R\N. For all k ∈ Z, we know that {ĝm(ν−k/a)}m∈Z ∈ �2(Z);
thus,
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∑

m∈Z

ĝm(ν − k/a)cm = 〈{ĝm(ν − k/a)}m∈Z, {cm}m∈Z〉�2(Z)

= lim
n→∞〈{ĝm(ν − k/a)}m∈Z, {cnm}m∈Z〉�2(Z)

= lim inf
n→∞ 〈{ĝm(ν − k/a)}m∈Z, {cnm}m∈Z〉�2(Z)

= lim inf
n→∞

∑

m∈Z

ĝm(ν − k/a)cnm.

By Fatou’s lemma (see Lemma 2.7.2), this implies that
∑

k∈Z

∣
∣
∑

m∈Z

ĝm(ν − k/a)cm
∣
∣2 =

∑

k∈Z

lim inf
n→∞

∣
∣
∑

m∈Z

ĝm(ν − k/a)cnm
∣
∣2

≤ lim inf
n→∞

∑

k∈Z

∣
∣
∑

m∈Z

ĝm(ν − k/a)cnm
∣
∣2

≤ aB lim inf
n→∞

∑

m∈Z

|cnm|2 = aB
∑

m∈Z

|cm|2.

This shows that for ν ∈ R \N , the inequality (10.17) indeed holds for all
{cm}m∈Z ∈ �2(Z). This completes the proof. �

We now state characterizations of various frame properties for the system
{gnm} in terms of the matrices H(ν) and their adjoints. The first of these
is formulated as a matrix inequality, involving certain positive bi-infinite
matrices indexed by Z × Z. Recall that for two such matrices M and N ,
the inequality M ≤ N means that for all sequences {ck}k∈Z ∈ �2(Z),

〈M{ck}k∈Z, {ck}k∈Z〉 ≤ 〈N{ck}k∈Z, {ck}k∈Z〉. (10.18)

Theorem 10.1.7 The following characterizations hold:

(i) A Bessel sequence {gnm} is a frame for L2(R) with lower frame bound
A if and only if

aAI ≤ H(ν)H(ν)∗, a.e. ν ∈ R. (10.19)

(ii) {gnm} is a tight frame for L2(R) if and only if there is a constant
c > 0 such that

∑

m∈Z

ĝm(ν)ĝm(ν + k/a) = cδk,0, k ∈ Z, a.e. ν ∈ R. (10.20)

In case (10.20) is satisfied, the frame bound is A = c/a.

(iii) Two shift-invariant systems {gnm} and {hnm}, which form Bessel
sequences, are dual frames if and only if

∑

m∈Z

ĝm(ν)ĥm(ν + k/a) = aδk,0, k ∈ Z, a.e. ν ∈ R. (10.21)



10.1 Frame Properties of Shift-Invariant Systems 251

Proof. To prove (i), first assume that (10.19) holds. According to (10.18),
this means that

aA ||{ck}k∈Z||2 ≤ 〈H(ν)H(ν)∗{ck}k∈Z, {ck}k∈Z〉

for all {ck}k∈Z ∈ �2(Z) or, equivalently, that

||H(ν)∗{ck}k∈Z||2 ≥ aA ||{ck}k∈Z||2 (10.22)

holds for all {ck}k∈Z ∈ �2(Z). Let I ⊂ R be an arbitrary interval of length
1/a. Then, for any function f ∈ D, Lemma 10.1.5 shows that

∑

m,n∈Z

|〈f, gnm〉|2 =
1

a

∫

I

||H(ν)∗ f̂(ν)||2dν ≥ A

∫

I

||̂f(ν)||2dν = A ||f ||2;

by Lemma 5.1.9, this implies that the number A is a lower frame bound
for {gnm}.
The second part of the proof of (i) is more technical. Assume that A is

a lower frame bound for {gnm}; we want to prove that the inequality in
(10.22) holds for all {ck}k∈Z ∈ �2(Z). Like in the proof of Theorem 10.1.6,
we first consider a finite sequence {ck}k∈Z. For technical reasons that will
become clear soon, we furthermore consider a function ϕ for which ϕ̂ is
supported on an interval I of length 1/a. We can associate the function ϕ
to a fiber of a certain function f . In fact, define the function f in terms
of its Fourier transform by the following: given ν ∈ R, choose the unique
number k ∈ Z such that ν + k/a ∈ I, and let

f̂(ν) = ckϕ̂(ν + k/a).

By definition, the �th coordinate in the fiber for a function f is f̂(ν− �/a).
Thus, directly by the definition of the function f , we see that for ν ∈ I,

f̂(ν − �/a) = c�ϕ̂(ν).

Thus,

f̂(ν) = ϕ̂(ν){ck}k∈Z, ν ∈ I.

By construction and Lemma 10.1.4,

||f ||2 =

∫

I

||̂f(ν)||2dν =

∫

I

|ϕ̂(ν)|2dν
∑

k∈Z

|ck|2;
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thus, Lemma 10.1.5 shows that
∫

I

|ϕ̂(η)|2||H∗(ν){ck}k∈Z||2dν =

∫

I

||H∗(ν)f̂ (ν)||2dν

≥ a
∑

m,n∈Z

|〈f, gnm〉|2

≥ aA ||f ||2

= aA

∫

I

|ϕ̂(ν)|2dν
∑

k∈Z

|ck|2.

Since this holds for all functions ϕ for which ϕ̂ is supported on an interval
I of length 1/a, we conclude that

||H∗(ν){ck}k∈Z||2 ≥ aA
∑

k∈Z

|ck|2, a.e. ν ∈ I. (10.23)

The null set depends on the sequence {ck}k∈Z. It remains to show that
there is a null set N such that (10.23) holds for all ν ∈ R \ N and all
{ck}k∈Z ∈ �2(Z); this part is left to the reader (Exercise 10.5).
We now prove (iii). The proof is based on the functions ρ(e, f) from

Lemma 10.1.2 and the derived expression for their Fourier coefficients.
Recall from Lemma 6.3.2 that two Bessel sequences {gnm} and {hnm} are
dual frames if and only if

〈e, f〉 =
∑

m,n∈Z

〈e, gnm〉〈hnm, f〉, ∀e, f ∈ L2(R). (10.24)

If we assume that {gnm}, {hnm} are dual frames, it follows from this
identity that for all e, f ∈ L2(R),

ρ(e, f)(x) =
∑

m,n∈Z

〈Txe, gnm〉〈hnm, Txf〉 = 〈Txe, Txf〉 = 〈e, f〉, x ∈ R.

Hence, the function ρ(e, f)(x) and the constant 〈e, f〉 have the same Fourier
coefficients in L2(0, a). Via Lemma 10.1.2, this implies that for all k ∈ Z,

1

a

∫ ∞

−∞
ê(ν)f̂(ν+k/a)

∑

m∈Z

ĝm(ν)ĥm(ν+k/a) dν = δk,0〈e, f〉

= δk,0

∫ ∞

−∞
ê(ν)f̂ (ν) dν.

Since this holds for all e ∈ L2(R),

f̂(ν + k/a)
∑

m∈Z

ĝm(ν)ĥm(ν + k/a) = aδk,0f̂(ν), a.e. ν ∈ R, ∀f ∈ L2(R).

For k = 0, this implies that
∑

m∈Z

ĝm(ν)ĥm(ν) = a, a.e. ν ∈ R;



10.2 Representations of the Frame Operator 253

furthermore, the choices f̂ = χ[�/a,(�+1)/a[, � ∈ Z, lead to
∑

m∈Z

ĝm(ν)ĥm(ν + k/a) = 0, a.e. ν ∈ R when k �= 0.

The opposite implication can be obtained by reversing the above steps:
assuming that (10.21) is satisfied, it follows that the function ρ(e, f)(x)
and the constant 〈e, f〉 have the same Fourier coefficients, so by continuity

ρ(e, f)(x) = 〈e, f〉, ∀x ∈ R.

Now take x = 0, and we obtain (10.24).
We now prove (ii). Via Lemma 6.3.8, the equivalence in (ii) follows di-

rectly from (iii); thus, we only need to prove the statement about the frame
bound. Now, if (10.20) is satisfied, the entry in the kth row and �th column
of the matrix H(ν)H(ν)∗ is

∑

m∈Z

ĝm(ν − k/a)ĝm(ν − �/a) = cδk,�;

by the result in (i), this implies that the frame bound is A = c/a. �

Theorem 10.1.7 characterizes frames of the type {gnm} in terms of the
Fourier transforms ĝm. One speaks about characterizations in the frequency
domain, as opposed to time domain characterizations directly in terms of
the functions gm.

Via the Fourier transform, frame properties for the shift-invariant sys-
tem {gnm} = {Tnagm}m,n∈Z can be transferred to the set of functions
{Enagm}m,n∈Z. This leads to the following consequence of Theorem 10.1.7,
stated in the paper [203]; we leave the proof to the reader (Exercise 10.6).

Corollary 10.1.8 Two Bessel sequences {Enagm}m,n∈Z and
{Enahm}m,n∈Z are dual frames for L2(R) if and only if for all k ∈ Z,

∑

m∈Z

gm

(
x+

k

a

)
hm(x) = aδk,0, a.e. x ∈ R. (10.25)

Systems of functions of the form {Enagm}m,n∈Z have been considered
under various names in the literature: in [257] they are called nonstationary
Gabor systems, and in [197] the name Fourier-like system is used. Explicit
constructions of dual pairs of frames of this form, based on B-splines with
irregularly distributed knots, are given in the paper [203].

10.2 Representations of the Frame Operator

The frame operator plays a key role in frame theory, and it is important
to have various ways of representing it. In the context of shift-invariant
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systems, we will now provide a representation in the Fourier domain
in terms of fibers. In the literature, the result is known as the Walnut
representation of the frame operator.

Theorem 10.2.1 Assume that the shift-invariant system {gnm} is a
Bessel sequence. Define the functions dk, k ∈ Z, by

dk(ν) :=
∑

m∈Z

ĝm(ν)ĝm(ν − k/a), ν ∈ R.

Then the frame operator S associated with {gnm} has a representation in
the Fourier domain, given by

Ŝf(ν) =
1

a

∑

k∈Z

dk(ν)f̂ (ν − k/a), f ∈ L2(R), (10.26)

with absolute convergence for a.e. ν ∈ R.

Proof. We ask the reader (Exercise 10.7) to verify that the series defining
dk(ν) is convergent for a.e. ν ∈ R and that

∑

k∈Z

|dk(ν)|2 ≤ (aB)2, a.e. ν ∈ R. (10.27)

For any f ∈ L2(R), Lemma 10.1.4 shows that
∑

k∈Z

|f̂(ν − k/a)|2 <∞, a.e. ν ∈ R;

via Cauchy–Schwarz’ inequality, this implies that the series on the right-
hand side of (10.26) is absolutely convergent for a.e. ν ∈ R. In order to
show that it represents the frame operator S in the Fourier domain, we
first note that for f, h ∈ L2(R),

〈Sf, h〉 = 〈
∑

m,n∈Z

〈f, gnm〉gnm, h〉 =
∑

m,n∈Z

〈f, gnm〉〈gnm, h〉.

By Lemma 10.1.2, the function

ρ(f, h)(x) :=
∑

m,n∈Z

〈Txf, gnm〉〈gnm, Txh〉

is continuous and has period a; its Fourier series is

ρ(f, h)(x) =
∑

k∈Z

cke
2πikx/a,

where

ck =
1

a

∫ ∞

−∞
f̂(ν)ĥ(ν + k/a)

∑

m∈Z

ĝm(ν)ĝm(ν + k/a) dν

=
1

a

∫ ∞

−∞
f̂(ν)ĥ(ν + k/a)dk(ν + k/a) dν, k ∈ Z.
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Note that ρ(f, h)(0) = 〈Sf, h〉. We will use the Fourier expansion of ρ(f, h)
to calculate 〈Sf, h〉 for functions h ∈ D, see (10.14). In order to do so, we
first need to show that the Fourier expansion for ρ(f, h) holds pointwise;
according to Theorem 3.8.1, this is the case if we can show that the sequence
of Fourier coefficients belongs to �1(Z). Now,

∑

k∈Z

|ck| =
1

a

∑

k∈Z

∣
∣
∣
∣

∫ ∞

−∞
f̂(ν)ĥ(ν + k/a)dk(ν + k/a) dν

∣
∣
∣
∣

≤ 1

a

∑

k∈Z

∫ ∞

−∞
|f̂(ν)| |ĥ(ν + k/a)| |dk(ν + k/a)| dν

=
1

a

∫ ∞

−∞

∑

k∈Z

|f̂(ν − k/a)| |ĥ(ν)| |dk(ν)| dν.

Using Cauchy–Schwarz inequality on the sum leads to

∑

k∈Z

|ck| ≤ 1

a

∫ ∞

−∞

(
∑

k∈Z

|dk(ν)|2
)1/2(

∑

k∈Z

|f̂(ν − k/a)|2
)1/2

|ĥ(ν)| dν

≤ B

∫ ∞

−∞

(
∑

k∈Z

|f̂(ν − k/a)|2
)1/2

|ĥ(ν)| dν.

Applying Cauchy–Schwarz’ inequality on the integral now shows that

∑

k∈Z

|ck| ≤ B

(∫

supp̂h

∑

k∈Z

|f̂(ν − k/a)|2dν
)1/2(∫

supp̂h

|ĥ(ν)|2dν
)1/2

≤ B ||h||2
(∫

supp̂h

∑

k∈Z

|f̂(ν − k/a)|2dν
)1/2

.

The compact set supp ĥ can be covered by a finite number of intervals
of length 1/a, so Lemma 10.1.4 implies that {ck}k∈Z ∈ �1(Z). Thus, we
conclude that the Fourier series for ρ(f, h) is absolutely convergent for all
x ∈ R. In particular,

〈Sf, h〉=ρ(f, h)(0) =
∑

k∈Z

ck =
1

a

∑

k∈Z

∫ ∞

−∞
f̂(ν)ĥ(ν+k/a)dk(ν+k/a) dν.

Thus,

〈Sf, h〉 =
1

a

∑

k∈Z

∫ ∞

−∞
f̂(ν − k/a)dk(ν)ĥ(ν) dν

= 〈1
a

∑

k∈Z

dk(·)f̂(· − k/a), ĥ(·)〉.
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Since 〈Sf, h〉 = 〈Ŝf , ĥ〉, we conclude that

〈1
a

∑

k∈Z

dk(·)f̂ (· − k/a), ĥ(·)〉 = 〈Ŝf , ĥ〉.

This holds for all h ∈ D; thus, Ŝf = 1
a

∑
k∈Z

dk(·)f̂(· − k/a), as desired. �

10.3 Exercises

10.1 Show that the function ρ(f, f) in (10.4) has period a.

10.2 In this exercise, we ask the reader to provide some details in the
proof of Lemma 10.1.2.

(i) Verify that the function ρ(e, f) has period a.

(ii) Justify the calculations leading to (10.11).

(iii) Prove that the series in (10.12) is convergent.

(iv) Provide the density argument at the end of the proof.

10.3 Prove Lemma 10.1.4.

10.4 Complete the proof of Lemma 10.1.5 by showing that the infi-
nite series in (10.15) converges absolutely for a.e. ν ∈ R and that
the resulting function has the Fourier expansion stated in (10.16).
(Hint: use the periodicity of the function in (10.15) followed by an
application of Fourier’s inversion theorem.)

10.5 Complete the proof of Theorem 10.1.7(i) by showing that there
is a null set N such that (10.23) holds for all ν ∈ R \ N and all
{ck}k∈Z ∈ �2(Z).

10.6 Prove Corollary 10.1.8.

10.7 Prove that the series defining dk(ν) in Theorem 10.2.1 converges
for a.e. ν ∈ R, and that (10.27) holds. (Hint: use Lemma 10.1.1.)



11
Gabor Frames in L2(R)

The mathematical theory for Gabor analysis in L2(R) is based on two
classes of operators on L2(R), namely,

Translation by a ∈ R, Ta : L2(R)→ L2(R), (Taf)(x) = f(x− a),

Modulation by b ∈ R, Eb : L2(R)→ L2(R), (Ebf)(x) = e2πibxf(x).

Gabor analysis aims at representing functions f ∈ L2(R) as superpositions
of translated and modulated versions of a fixed function g ∈ L2(R). There
are two ways one can think about this. The first is to ask for integral
representations involving all possible translations and modulations, i.e.,
representations like

f(x) =

∫ ∞

−∞

∫ ∞

−∞
cf (a, b)e

2πibxg(x− a)dbda; (11.1)

here we have to search for a function cf of two variables making this true.
Note that we also have to specify in which sense we want (11.1) to be
valid, i.e., how the integral shall be interpreted. The second approach is
to restrict the translation and modulation parameters to a discrete subset
Λ ⊂ R

2 and ask for series representations of f in terms of the functions

{e2πibxg(x− a)}(a,b)∈Λ. (11.2)

The key to the first approach is the short-time Fourier transform, which
we define in Section 11.1. Concerning the second approach, the natural
question is how we can choose g ∈ L2(R) and the set Λ such that the func-
tions in (11.2) constitute a frame for L2(R). Formulated in this generality,
the question is very difficult, and we will mainly discuss the case where Λ is
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a lattice in R
2, i.e., Λ = {(na,mb)}m,n∈Z for some fixed parameters a, b > 0;

we actually saw an example of such a frame in Example 3.8.3, where we
proved that {EmTnχ[0,1]}m,n∈Z is an orthonormal basis for L2(R).

The basic idea goes back to Gabor [314], who considered a sequence of
functions of the form {EmbTnag}m,n∈Z, where a = b = 1 and g is the Gaus-

sian, g(x) = e−x2/2 (the same set of functions actually appeared already in
the book [525] by von Neumann in 1932 in the context of quantum mechan-
ics). It was only observed much later (see the papers [422, 423] by Janssen
and [250] by Davis and Heller) that this particular Gabor system does not
form a frame: it leads to unstable expansions and is inappropriate for most
applications. We come back to the exact meaning later, and just note that
Davis and Heller proposed to overcome the difficulty by choosing a, b such
that ab < 1.
The papers [422, 423] by Janssen can be seen as the starting point for

the mathematical analysis of Gabor systems. Around the same time, more
engineering-oriented papers were published by Bastiaans; see, e.g., [42].
Gabor analysis took an entirely new direction with the fundamental

paper [244] by Daubechies, Grossmann, and Meyer from 1986. Here one
finds for the first time the idea of combining Gabor analysis with frame
theory. The authors constructed tight frames for L2(R) having the form
{EmbTnag}m,n∈Z, and this contribution was the beginning of an intense
activity which is still ongoing.
Parallel to this development, Feichtinger and Gröchenig were studying

expansions in Banach spaces in terms of coherent states (among which
Gabor systems is a special case). In particular they obtained Gabor expan-
sions in a large class of Banach spaces, which eventually lead Gröchenig
to introduce the concept of Banach frames. We will postpone a discussion
of this subject to Chapter 24 and confine ourselves to Gabor analysis in
L2(R) at the moment.
This chapter and the following three chapters will all deal with Gabor sys-

tems and their properties. The current chapter contains the fundamentals,
like equivalent conditions (and necessary, respectively sufficient conditions)
for {EmbTnag}m,n∈Z being a frame. Some of the results will be derived as
consequences of more general results that are valid for the larger class of
shift-invariant systems considered in Chapter 10. The material forms the
platform for the further study of Gabor systems in the subsequent chap-
ters, where we will consider duality issues as well as Gabor systems in other
Hilbert spaces than L2(R).
We begin in Section 11.1 by considering continuous representations.

Then, after introducing (discrete) Gabor systems in L2(R), we find nec-
essary conditions for {EmbTnag}m,n∈Z to be a frame in Section 11.3.
Sufficient conditions are given in Section 11.4. Section 11.5 will deal with
an important vector space in Gabor analysis, namely, the Wiener space.
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Even when we restrict our attention to time–frequency shifts of the type
{EmbTnag}m,n∈Z, it turns out to be very difficult to find the exact range of
parameters a, b for which {EmbTnag}m,n∈Z is a frame for a given function
g ∈ L2(R). There are a few functions as well as a certain class of functions
for which an exact answer is known; they are discussed in Section 11.6.
Section 11.7 deals with Gabor frames generated by B-splines; for this class
of functions, a complete characterization of the parameters a, b leading to
a frame is not known yet.
It is clear from the setup that the operators Eb and Ta will play a crucial

role in this chapter. Note that even though Eb is defined as an operator
acting on L2(R), we will frequently use the same notation when the operator
acts on another function space. For example, the symbol Eb alone will
simply mean the function x �→ e2πibx.
The commutator relations (2.29) show that modulation in the time

domain corresponds to translation in the Fourier domain. For this rea-
son, functions EbTag are called time–frequency shifts of g; Gabor analysis
is in fact a branch of what is called time–frequency analysis.

11.1 Continuous Representations

Let us begin by motivating the definition of the short-time Fourier trans-
form. For a signal f(x), the variable x is often interpreted as time, and the

Fourier transform f̂ evaluated at a point γ > 0 gives information about
the content of oscillations with frequency γ. In practice, it is a problem
that the time information is lost in the Fourier transform, i.e., there is no
information about which frequencies appear at which time. A way to try to
overcome this problem is to “look at the signal at a small time interval and
take the Fourier transform here.” Mathematically this loose formulation
means that we multiply the signal f with a window function g, which is
constant on a small interval I and decays fast and smooth to zero outside
I. By taking the Fourier transform of this product, we gain insight about
the frequency content of f on the interval I. In order to obtain informa-
tion about f on the entire time axis, we repeat the process with translated
versions of the window function.
This discussion leads to the definition of the short-time Fourier

transform, also called the continuous Gabor transform:

Definition 11.1.1 Fix a function g ∈ L2(R) \ {0}. Furthermore, let
f ∈ L2(R). The short-time Fourier transform of f with respect to g is
defined as the function Ψg(f) of two variables, given by

Ψg(f)(y, γ) =

∫ ∞

−∞
f(x)g(x − y)e−2πixγdx, y, γ ∈ R.
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Note that in terms of the modulation operators and translation
operators,

Ψg(f)(y, γ) = 〈f, EγTyg〉, y, γ ∈ R. (11.3)

The short-time Fourier transform is the key to obtain a representation
of the type (11.1):

Proposition 11.1.2 Let f1, f2, g1, g2 ∈ L2(R). Then
∫ ∞

−∞

∫ ∞

−∞
Ψg1(f1)(a, b)Ψg2(f2)(a, b)dbda = 〈f1, f2〉〈g2, g1〉,

i.e.,
∫ ∞

−∞

∫ ∞

−∞
〈f1, EbTag1〉〈EbTag2, f2〉dbda = 〈f1, f2〉〈g2, g1〉. (11.4)

Proof. Assume first that g1, g2 ∈ Cc(R). By definition,

Ψg1(f1)(a, b) = 〈f1, EbTag1〉 =
∫ ∞

−∞
f1(x)e

−2πibxg1(x− a)dx.

Consider for a moment a fixed value for a. Then (11.3) shows that
Ψg1(f1)(a, b) is the Fourier transform of the function F1(x)=f1(x)g1(x− a),
evaluated at the point b. By introducing F2 similarly and using Plancherel’s
and Fubini’s theorems, we have

∫ ∞

−∞

∫ ∞

−∞
Ψg1(f1)(a, b)Ψg2(f2)(a, b)dbda

=

∫ ∞

−∞

∫ ∞

−∞
F̂1(b)F̂2(b)dbda =

∫ ∞

−∞

∫ ∞

−∞
F1(b)F2(b)dbda

=

∫ ∞

−∞

∫ ∞

−∞
f1(b)g1(b− a)f2(b)g2(b− a)dbda

=

∫ ∞

−∞
f1(b)f2(b)

(∫ ∞

−∞
g1(b− a)g2(b− a)da

)

db = 〈f1, f2〉〈g2, g1〉.

The extension to general functions in L2(R) is standard. �

We now show how one can obtain integral representations like (11.1).
Fix f ∈ L2(R); then Proposition 11.1.2 shows that the map

f2 �→
∫ ∞

−∞

∫ ∞

−∞
〈f, EbTag1〉〈EbTag2, f2〉dbda

is a conjugated linear functional on L2(R). By Riesz’ representation
theorem, there exists a unique element in L2(R) – we call it

∫ ∞

−∞

∫ ∞

−∞
〈f, EbTag1〉EbTag2dbda
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– such that for all f2 ∈ L2(R),
〈∫ ∞

−∞

∫ ∞

−∞
〈f, EbTag1〉EbTag2dbda, f2

〉

=

∫ ∞

−∞

∫ ∞

−∞
〈f, EbTag1〉〈EbTag2, f2〉dbda = 〈f, f2〉〈g2, g1〉.

These considerations lead to

Corollary 11.1.3 Choose g1, g2 ∈ L2(R) such that 〈g2, g1〉 �= 0. Then
every f ∈ L2(R) has the representation

f =
1

〈g2, g1〉

∫ ∞

−∞

∫ ∞

−∞
〈f, EbTag1〉EbTag2dbda, (11.5)

where the integral is interpreted in the weak sense.

Thus, we have obtained representations like (11.1) and explained how they
have to be interpreted. Note that the function f ∈ L2(R) is represented
as a superposition of time–frequency shifts of one function g2 ∈ L2(R),
with coefficients given by the short-time Fourier transformation of possibly
another function g1.

Proposition 11.1.2 immediately reveals a connection between the short-
time Fourier transform and continuous frames:

Corollary 11.1.4 Let g ∈ L2(R)\{0}. Then {EbTag}a,b∈R is a continuous
tight frame for L2(R) with respect to M = R

2 equipped with the Lebesgue
measure; the frame bound is A = ||g||2.

More generally, (11.4) shows that whenever 〈g2, g1〉 �= 0, the systems
{EbTag1}a,b∈R and {〈g2, g1〉−1EbTag2}a,b∈R form a pair of dual continuous
frames for L2(R).
Note that the weakly defined integral over R2 in (11.5) can be approxi-

mated by integrals over growing compact subsets of R2 that are well-defined
pointwise, see, e.g., [340]:

Lemma 11.1.5 Choose g1, g2 ∈ L2(R) such that 〈g2, g1〉 �= 0. Let {Kn}∞n=1

be a family of compact subsets of R2 for which

K1 ⊂ K2 ⊂ · · ·Kn ⊂ · · · and
∞⋃

n=1

Kn = R
2;

let f ∈ H and define

fn :=
1

〈g2, g1〉

∫

Kn

〈f, EbTag1〉EbTag2dbda.

Then ||f − fn|| → 0 as n→∞.
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11.2 Gabor Frames {EmbTnag}m,n∈Z for L2(R)

We are now ready to define the main subject for this chapter.

Definition 11.2.1 A Gabor frame is a frame for L2(R) of the form
{EmbTnag}m,n∈Z, where a, b > 0 and g ∈ L2(R) is a fixed function.

Frames of this type are also called Weyl–Heisenberg frames. The function
g is called the window function or the generator. Explicitly,

EmbTnag(x) = e2πimbxg(x− na), x ∈ R.

Note the convention, which is implicit in our definition: when speaking
about a Gabor frame, it is understood that it is a frame for all of L2(R),
i.e., we will not deal with frames for subspaces at the moment.
The Gabor system {EmbTnag}m,n∈Z only involves translates with par-

ameters na, n ∈ Z and modulations with parameters mb, m ∈ Z. The
points {(na,mb)}m,n∈Z form a so-called lattice in R

2, and for this reason
one frequently calls {EmbTnag}m,n∈Z a regular Gabor frame. Later we will
consider more general sets of time–frequency shifts; in fact, we will let
{(μn, λn)}n∈I be an arbitrary countable subset of R2 and investigate the
frame properties for sets of functions of the type

{e2πiλnxg(x− μn)}n∈I . (11.6)

To distinguish between the cases, we will call a frame of the form (11.6)
an irregular Gabor frame. We postpone the discussion of such frames until
Section 13.4.
The following technical lemma will be needed repeatedly.

Lemma 11.2.2 Let f, g ∈ L2(R) and a, b > 0 be given. Then, for any
n ∈ N the following hold:

(i) The series
∑

k∈Z

f(x− k/b)g(x− na− k/b), x ∈ R, (11.7)

converges absolutely for a.e. x ∈ R.

(ii) The mapping x �→
∑

k∈Z
|f(x − k/b)g(x− na− k/b)| belongs to

L1(0, 1/b).

(iii) The 1/b-periodic function Fn ∈ L1(0, 1/b) defined by

Fn(x) =
∑

k∈Z

f(x− k/b)g(x− na− k/b) (11.8)

has the Fourier coefficients

cm = b 〈f, EmbTnag〉, m ∈ Z.
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Proof. Since f, Tnag ∈ L2(R), we have fTnag ∈ L1(R) for all n ∈ Z. Thus,
∫ 1/b

0

∑

n∈Z

|f(x− k/b)g(x− na− k/b)| dx =

∫ ∞

−∞

∣
∣f(x)g(x− na)

∣
∣ dx

<∞.

This proves (ii) and also implies that
∑

n∈Z
|f(x − k/b)g(x− na− k/b)|

converges for a.e. x ∈ [0, 1/b]; for reasons of periodicity, it therefore con-
verges for a.e. x ∈ R. As a consequence, the series in (11.7) converges for
a.e. x ∈ R and defines a function with period 1/b. For part (iii) concerning
the Fourier coefficients for Fn, note that

〈f, EmbTnag〉 =

∫ ∞

−∞
f(x)g(x− na)e−2πimbx dx

=
∑

k∈Z

∫ 1/b

0

f(x− k/b)g(x− na− k/b)e−2πimbx dx

=

∫ 1/b

0

(
∑

k∈Z

f(x− k/b)g(x− na− k/b)

)

e−2πimbx dx

=

∫ 1/b

0

Fn(x)e
−2πimbx dx.

We leave it to the reader to justify the manipulations; the result now follows
from the definition of the Fourier coefficients in (3.34). �

There is a close connection between Gabor systems and the shift-
invariant systems considered in Chapter 10. In fact,

TnaEmbg(x) = e−2πimnabe2πimbxg(x− na) = e−2πimnabEmbTnag(x); (11.9)

thus, the functions in the shift-invariant system {TnaEmbg}m,n∈Z only differ
from the functions in the Gabor system {EmbTnag}m,n∈Z by some complex
factors of absolute value one. This implies that the shift-invariant system
{TnaEmbg}m,n∈Z is a frame if and only if {EmbTnag}m,n∈Z is a frame.
Our first goal is to prove a characterization of Gabor frames by Ron

and Shen, which in fact is a consequence of the stated relation between
Gabor frames and shift-invariant systems. As for the shift-invariant case
in Chapter 10, the characterization is formulated in terms of a matrix
inequality, which should be interpreted as explained on page 250. Given a
function g ∈ L2(R) and two numbers a, b > 0, consider the matrix-valued
function

M(x) := (g(x− na−m/b))m,n∈Z
, x ∈ R. (11.10)

That is, M(x) is the bi-infinite matrix, whose entry in the m-th row and
n-th column is

Mm,n(x) = g(x− na−m/b).
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Letting M(x)∗ denote the conjugated transpose of M(x), we formally
consider the matrix product

M(x)M(x)∗, (11.11)

whose entry in the m-th row and k-th column is

Gm,k(x) =
∑

n∈Z

g(x− na−m/b)g(x− na− k/b). (11.12)

Note that by Lemma 11.2.2 the series defining Gm,k(x) is convergent for
a.e. x ∈ R. The functions Gm,k will also play a role in later sections.

When {ck}k∈Z is a finite sequence, we can formally define the matrix
product M(x)M(x)∗{ck}k∈Z; it is the sequence {dk}k∈Z, whose m-th
entry is

∑

n∈Z

∑

k∈Z

g(x− na−m/b)g(x− na− k/b)ck.

It turns out to be a necessary condition for {EmbTnag}m,n∈Z being a Gabor
frame that M(x)M(x)∗ defines a bounded operator that maps �2(Z) into
�2(Z). Assuming that this is the case, we consider again a finite sequence
{ck}k∈Z and obtain that

〈M(x)M(x)∗{ck}, {ck}〉
=

∑

n∈Z

∑

k∈Z

∑

m∈Z

g(x− na−m/b)g(x− na− k/b)ckcm

=
∑

n∈Z

∣
∣
∑

k∈Z

g(x− na− k/b)ck
∣
∣2 ≥ 0.

Thus, M(x)M(x)∗ is a positive operator on �2(Z); in operator terms,

M(x)M(x)∗ ≥ 0 on �2(Z).

The characterization of Gabor frames by Ron and Shen [560] reads as
follows:

Theorem 11.2.3 Let A,B > 0 and the Gabor system {EmbTnag}m,n∈Z be
given. Then the following hold:

(i) {EmbTnag}m,n∈Z is a Bessel sequence with bound B if and only if the
matrix M(x) in (11.10) for a.e. x ∈ R defines a bounded operator on
�2(Z) with norm at most

√
bB.

(ii) Assuming that {EmbTnag}m,n∈Z is a Bessel sequence, it is a frame
for L2(R) with lower frame bound A if and only if

bAI ≤M(x)M(x)∗, a.e. x ∈ R, (11.13)

where I is the identity operator on �2(Z).

Proof. We derive the result from Theorem 10.1.7. First we note
that the Fourier transform F is unitary; thus, Lemma 5.3.3 shows that
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{EmbTnag}m,n∈Z is a frame if and only if {F−1EmbTnag}m,n∈Z is a frame.
The commutator relations (2.29) imply that

F−1EmbTnag = T−mbEnaF−1g,

which is a shift-invariant system based on the translation parameter b and
the functions EnaF−1g, n ∈ Z. Consider the matrix H in (10.13) cor-
responding to this system; denoting the variable by x rather than ν, the
k, n-th entry is

FEnaF−1g(x− k/b) = Tnag(x− k/b) = g(x− na− k/b).

That is, H(x) equals the matrix M(x) in (11.10), and the result follows
from Theorem 10.1.6 and Theorem 10.1.7. �

Note that Theorem 11.2.3 can be formulated directly in terms of the
function g and the parameters a, b : in fact, {EmbTnag}m,n∈Z is a frame
with bounds A,B > 0 if and only if for almost all x ∈ R the inequalities

bA
∑

k∈Z

|ck|2 ≤
∑

n∈Z

∣
∣
∑

k∈Z

g(x− na− k/b)ck
∣
∣2 ≤ bB

∑

k∈Z

|ck|2 (11.14)

hold for all {ck}k∈Z ∈ �2(Z). Once the upper inequality in (11.14) has been
established, a continuity argument shows that it is enough to consider finite
sequences in order to prove the lower inequality.
In many cases, it is convenient to assume that either the translation

parameter or the modulation parameter in a Gabor frame is equal to 1.
Given an arbitrary Gabor frame {EmbTnag}m,n∈Z, this can be obtained by
a scaling of g, i.e., by replacing g with a function of the type

Dcg(x) =
1

c1/2
g(x/c).

Proposition 11.2.4 Let g ∈ L2(R) and a, b, c > 0 be given, and assume
that {EmbTnag}m,n∈Z is a frame. Then, with gc := Dcg, the Gabor
family {Emb/cTnacgc}m,n∈Z is a frame with the same frame bounds as
{EmbTnag}m,n∈Z.

Proof. Operators of the type Dc, c > 0, are studied in Section 2.9, and
they are unitary. By Corollary 5.3.4 it follows that {DcEmbTnag}m,n∈Z is a
frame with the same frame bounds as {EmbTnag}m,n∈Z. Using the commu-
tator relations in Section 2.9, DcEmbTna = Emb/cDcTna = Emb/cTnacDc,
and the proposition follows. �

Depending on the given candidate g for a window of a Gabor frame, it
might be more convenient to work with the Fourier transform of g than g
itself. The next result shows that this can be done if we interchange the
parameters a, b :
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Proposition 11.2.5 Let g ∈ L2(R) and a, b > 0 be given. Then
{EmbTnag}m,n∈Z is a frame with bounds A,B if and only if
{EnaTmbĝ}m,n∈Z is a frame with bounds A,B.

Proof. By the commutations in (2.29) and (2.25), we have

FEmbTnag = TmbE−naFg = e2πimbnaE−naTmbĝ. (11.15)

Since the Fourier transform is a unitary operator (and the factor e2πimbna

in (11.2.5) is just a complex number of absolute value 1), the result now
follows from Corollary 5.3.4. �

11.3 Necessary Conditions

We nowmove to the question of how to obtain Gabor frames {EmbTnag}m,n∈Z

for L2(R). One of the fundamental results says that the product ab decides
whether it is possible for {EmbTnag}m,n∈Z to be a frame for L2(R) for some
choice of g ∈ L2(R):

Theorem 11.3.1 Let g ∈ L2(R) and a, b > 0 be given. Then the following
hold:

(i) If ab > 1, then {EmbTnag}m,n∈Z is not a frame for L2(R).

(ii) If {EmbTnag}m,n∈Z is a frame for L2(R), then

ab = 1 ⇔ {EmbTnag}m,n∈Z is a Riesz basis.

The proof of Theorem 11.3.1 will use some of the results developed in this
chapter and the next, so we delay the proof till page 301. We note that
Lemma 11.3.2 will state a stronger result than (i): for ab > 1 the family
{EmbTnag}m,n∈Z is not even complete in L2(R).
Theorem 11.3.1 can be formulated in an alternative way. The result shows

that it is only possible for {EmbTnag}m,n∈Z to be a frame if ab ≤ 1; and,
assuming that {EmbTnag}m,n∈Z is a frame, it is overcomplete if and only if
ab < 1. A result by Balan, Casazza, Heil, and Landau [32] states that an
overcomplete frame {EmbTnag}m,n∈Z always has infinite excess:

Lemma 11.3.2 Let g ∈ L2(R) and a, b > 0 be given. Then the following
hold.

(i) If ab < 1 and {EmbTnag}m,n∈Z is a frame, then {EmbTnag}m,n∈Z

has infinite excess: infinitely many elements can be deleted while the
remaining sequence is still a frame for L2(R).

(ii) If ab > 1, then {EmbTnag}m,n∈Z has infinite deficit, i.e.,

dim(span{EmbTnag}⊥m,n∈Z
) =∞.
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Lemma 11.3.2 shows that the excess defined in (7.5) does not give much
information about the overcompleteness of a Gabor frame {EmbTnag}m,n∈Z.
As a quantitative measure of the overcompleteness, the following definition
of the redundancy is used in the literature:

Definition 11.3.3 Given a Gabor frame {EmbTnag}m,n∈Z, the number
(ab)−1 is called the redundancy.

With this definition, a Gabor Riesz basis {EmbTnag}m,n∈Z has redundancy
one, and the Gabor frame {EmTn/2χ[0,1]}m,n∈Z, which can be consid-
ered as a union of the two orthonormal bases {EmTnχ[0,1]}m,n∈Z and
{EmTnT1/2χ[0,1]}m,n∈Z, has redundancy two.
Note that the assumption ab ≤ 1 is not enough for {EmbTnag}m,n∈Z

to be a frame, even if g �= 0. For example, if a ∈]1/2, 1[, the functions
{EmTnaχ[0, 12 ]

}m,n∈Z are not complete in L2(R) and cannot form a frame.

The following proposition gives a necessary condition for {EmbTnag}m,n∈Z

to be a frame for L2(R). It depends on the interplay between the function
g and the translation parameter a and is expressed in terms of the function
G0,0 defined in (11.12); since this function will be used often, we simply
write

G(x) =
∑

n∈Z

|g(x− na)|2. (11.16)

Proposition 11.3.4 Let g ∈ L2(R) and a, b > 0 be given, and assume that
{EmbTnag}m,n∈Z is a frame with bounds A,B. Then

bA ≤
∑

n∈Z

|g(x− na)|2 ≤ bB, a.e. x ∈ R, (11.17)

and

aA ≤
∑

n∈Z

|ĝ(ν − nb)|2 ≤ aB, a.e. ν ∈ R. (11.18)

More precisely, if the upper bound in (11.17) or (11.18) is violated, then
{EmbTnag}m,n∈Z is not a Bessel sequence with bound B; if the lower bound
in (11.17) or (11.18) is violated, then {EmbTnag}m,n∈Z does not satisfy the
lower frame condition with bound A.

Proof. The proof of (i) is by contradiction. Assume that the upper condi-
tion in (11.17) is violated. Then there exists a measurable set Δ ⊆ R with
positive measure such that G(x) =

∑
n∈Z

|g(x− na)|2 > bB on Δ. We can
assume that Δ is contained in an interval of length 1

b . By letting

Δ0 = {x ∈ Δ | G(x) ≥ 1 + bB},
Δk = {x ∈ Δ | (k + 1)−1 + bB ≤ G(x) < k−1 + bB}, k ∈ N,

we obtain a partition of Δ into disjoint measurable sets. At least one of
them, say, Δk′ , has positive measure. Now consider the function f = χΔk′ ,
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and note that ||f ||2 = |Δk′ |. For n ∈ Z, the function f Tnag has support in
Δk′ ; since Δk′ is contained in an interval of length 1/b and the functions
{
√
bEmb}m∈Z constitute an orthonormal basis for L2(I) for every interval

I of length 1/b, we have

∑

m∈Z

|〈f, EmbTnag〉|2 =
∑

m∈Z

|〈fTnag, Emb〉|2 =
1

b

∫ ∞

−∞
|f(x)|2 |g(x−na)|2dx.

Thus,

∑

m,n∈Z

|〈f, EmbTnag〉|2 =
1

b

∑

n∈Z

∫ ∞

−∞
|f(x)|2 |g(x− na)|2dx

=
1

b

∫

Δk′
G(x)dx ≥ 1

b

(
1

k′ + 1
+ bB

)

||f ||2

=

(

B +
1

b(k′ + 1)

)

||f ||2.

But then B cannot be an upper frame bound for {EmbTnag}m,n∈Z. A sim-
ilar proof shows that if the lower condition in (11.17) is violated, then A
cannot be a lower frame bound for {EmbTnag}m,n∈Z. The result in (11.18)
follows from what we just proved and Proposition 11.2.5. �

Proposition 11.3.4 implies that a function g generating a Gabor frame
{EmbTnag}m,n∈Z necessarily is bounded. Note also that Proposition 11.3.4
gives a relationship between the frame bounds and the lower and upper
bounds for the function G in (11.16).

11.4 Sufficient Conditions

Sufficient conditions for {EmbTnag}m,n∈Z to be a frame for L2(R) have been
known since 1988. The basic insight was provided by Daubechies [241]; an
improvement was obtained by Heil and Walnut in [395]. We present a more
general result in Theorem 11.4.2, which is based on the following identity.

Lemma 11.4.1 Let a, b > 0 be given. Suppose that f is a bounded mea-
surable function with compact support and that g is a measurable function
for which the associated function G defined by (11.16) is bounded. Then

∑

m,n∈Z

|〈f, EmbTnag〉|2

=
1

b

∫ ∞

−∞
|f(x)|2

∑

n∈Z

|g(x− na)|2 dx

+
1

b

∑

k �=0

∫ ∞

−∞
f(x)f(x− k/b)

∑

n∈Z

g(x− na)g(x− na− k/b)dx.
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Proof. We first notice that the assumptions imply that g ∈ L2(R) (Exer-
cise 11.1). Now, let n ∈ Z, and consider the 1

b -periodic function Fn defined
in (11.8). We have already given a general argument for Fn being well-
defined pointwise almost everywhere, but our present assumptions give
more; in fact, for a given x ∈ R, the compact support of f implies that
f(x − k/b) only can be nonzero for finitely many k-values. The number
of k-values for which f(x − k/b) �= 0 is uniformly bounded, i.e., there is
a constant C such that at most C k-values appear, independently of the
chosen x. It follows that Fn is bounded, so Fn ∈ L1(0, 1/b)∩L2(0, 1/b); in
fact, even

[

x �→
∑

k∈Z

∣
∣f(x− k/b)g(x− na− k/b)

∣
∣

]

∈ L1(0, 1/b) ∩ L2(0, 1/b).

By Lemma 11.2.2, for all m,n ∈ Z,

〈f, EmbTnag〉 =
∫ 1/b

0

Fn(x)e
−2πimbx dx. (11.19)

Parseval’s theorem (see (3.35)) gives that

∑

m∈Z

∣
∣
∣
∣

∫ 1/b

0

Fn(x)e
−2πimbx dx

∣
∣
∣
∣

2

=
1

b

∫ 1/b

0

|Fn(x)|2 dx. (11.20)

The assumption on f being a bounded measurable function with compact
support will justify all interchanges of integration and summation in the
final calculation. This follows from the observation that

∑

k∈Z

∫ ∞

−∞
|f(x)f(x− k/b)|

∑

n∈Z

|g(x− na)g(x− na− k/b)| dx <∞.(11.21)

The verification of (11.21) and the proof that this is exactly what we need
is left to the reader (Exercise 11.9). Now, via (11.19) and (11.20),

∑

n∈Z

∑

m∈Z

|〈f, EmbTnag〉|2 =
∑

n∈Z

∑

m∈Z

∣
∣
∣
∣

∫ 1/b

0

Fn(x)e
−2πimbx dx

∣
∣
∣
∣

2

=
1

b

∑

n∈Z

∫ 1/b

0

|Fn(x)|2 dx.

Writing

|Fn(x)|2 = Fn(x)Fn(x) =
∑

�∈Z

f(x− �/b)g(x− na− �/b)Fn(x),



270 11 Gabor Frames in L2(R)

and using that Fn is 1/b-periodic, Lemma 9.2.4 finally implies that

∑

n∈Z

∑

m∈Z

|〈f, EmbTnag〉|2

=
1

b

∑

n∈Z

∫ 1/b

0

∑

�∈Z

f(x− �/b)g(x− na− �/b)Fn(x) dx

=
1

b

∑

n∈Z

∫ ∞

−∞
f(x)g(x− na)Fn(x) dx

=
1

b

∑

n∈Z

∫ ∞

−∞
f(x)g(x− na)

∑

k∈Z

f(x− k/b)g(x− na− k/b)dx (11.22)

=
1

b

∫ ∞

−∞
|f(x)|2

∑

n∈Z

|g(x− na)|2 dx

+
1

b

∑

k �=0

∫ ∞

−∞
f(x)f(x− k/b)

∑

n∈Z

g(x− na)g(x− na− k/b) dx. �

The proof of Lemma 11.4.1 relies strongly on summing over all m ∈ Z: we
need that {

√
bEmb}m∈Z forms an orthonormal basis for L2(0, 1/b). On the

other hand, the proof did not use that we were summing over all n ∈ Z, so
the assumptions actually imply (see (11.22)) that for all index sets I ⊆ Z,

∑

n∈I

∑

m∈Z

|〈f, EmbTnag〉|2

=
1

b

∑

n∈I

∫ ∞

−∞
f(x)g(x− na)

∑

k∈Z

f(x− k/b)g(x− na− k/b)dx. (11.23)

We will now state the announced sufficient condition for {EmbTnag}m,n∈Z

to be a Gabor frame for L2(R). Note that various generalizations to Gabor
systems in L2(Rd) are given in Section 20.5.

Theorem 11.4.2 Let g ∈ L2(R), a, b > 0 and suppose that

B :=
1

b
sup

x∈[0,a]

∑

k∈Z

∣
∣
∣
∣

∑

n∈Z

g(x− na)g(x− na− k/b)

∣
∣
∣
∣ <∞. (11.24)

Then {EmbTnag}m,n∈Z is a Bessel sequence with bound B. If also

A := (11.25)

1

b
inf

x∈[0,a]

⎡

⎣
∑

n∈Z

|g(x−na)|2−
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

g(x−na)g(x−na−k/b)
∣
∣
∣
∣

⎤

⎦ > 0,

then {EmbTnag}m,n∈Z is a frame for L2(R) with bounds A,B.
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Proof. Consider a function f ∈ L2(R) which is continuous and has
compact support. By Lemma 11.4.1,

∑

m,n∈Z

|〈f, EmbTnag〉|2

=
1

b

∫ ∞

−∞
|f(x)|2

∑

n∈Z

|g(x− na)|2dx

+
1

b

∑

k �=0

∫ ∞

−∞
f(x)f(x− k/b)

∑

n∈Z

g(x− na)g(x− na− k/b)dx. (11.26)

We want to estimate (11.26). For k ∈ Z, let

Hk(x) :=
∑

n∈Z

Tnag(x)Tna+k/bg(x); (11.27)

we observe that Hk is well defined a.e. by Lemma 11.2.2. Now,

∑

k �=0

|T−k/bHk(x)| =
∑

k �=0

∣
∣
∣
∣T−k/b

∑

n∈Z

Tnag(x)Tna+k/bg(x)

∣
∣
∣
∣

=
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

Tna−k/bg(x)Tnag(x)

∣
∣
∣
∣.

Replacing k with −k (which is allowed since we sum over all k �= 0) and
complex conjugating all terms, we arrive at

∑

k �=0

|T−k/bHk(x)| =
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

Tna+k/bg(x)Tnag(x)

∣
∣
∣
∣

=
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

Tna+k/bg(x)Tnag(x)

∣
∣
∣
∣

=
∑

k �=0

|Hk(x)| .

So
∣
∣
∣
∣

∑

k �=0

∫ ∞

−∞
f(x)f(x− k/b)

∑

n∈Z

g(x− na)g(x− na− k/b)dx

∣
∣
∣
∣

≤
∑

k �=0

∫ ∞

−∞
|f(x)| |Tk/bf(x)| |Hk(x)|dx

=
∑

k �=0

∫ ∞

−∞
|f(x)|

√
|Hk(x)| |Tk/bf(x)|

√
|Hk(x)|dx

= (∗).
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Using Cauchy–Schwarz’ inequality twice, first on the integral and then on
the sum over k �= 0,

(∗) ≤
∑

k �=0

(∫ ∞

−∞
|f(x)|2|Hk(x)|dx

)1/2(∫ ∞

−∞
|Tk/bf(x)|2|Hk(x)|dx

)1/2

≤

⎛

⎝
∑

k �=0

∫ ∞

−∞
|f(x)|2|Hk(x)|dx

⎞

⎠

1/2

×

⎛

⎝
∑

k �=0

∫ ∞

−∞
|Tk/bf(x)|2|Hk(x)|dx

⎞

⎠

1/2

=

⎛

⎝
∫ ∞

−∞
|f(x)|2

∑

k �=0

|Hk(x)|dx

⎞

⎠

1/2

×

⎛

⎝
∫ ∞

−∞
|f(x)|2

∑

k �=0

|T−k/bHk(x)|dx

⎞

⎠

1/2

=

∫ ∞

−∞
|f(x)|2

∑

k �=0

|Hk(x)|dx.

Note that the expression

∑

k �=0

|Hk(x)| =
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

Tnag(x)Tna+k/bg(x)

∣
∣
∣
∣

defines a periodic function with period a. By (11.26) and the condition
(11.24), we now have

∑

m,n∈Z

|〈f, EmbTnag〉|2

≤ 1

b

∫ ∞

−∞

(
|f(x)|2

×

⎡

⎣
∑

n∈Z

|g(x− na)|2 +
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

g(x− na)g(x− na− k/b)

∣
∣
∣
∣

⎤

⎦

⎞

⎠ dx

=
1

b

∫ ∞

−∞
|f(x)|2

∑

k∈Z

∣
∣
∣
∣

∑

n∈Z

g(x− na)g(x− na− k/b)

∣
∣
∣
∣dx

≤ B ||f ||2.

Since this estimate holds on a dense subset of L2(R), it holds on L2(R) by
Lemma 3.2.6. This proves the first part. If also (11.25) is satisfied, we again
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consider a continuous function f with compact support and obtain that
∑

m,n∈Z

|〈f, EmbTnag〉|2

≥ 1

b

∫ ∞

−∞
|f(x)|2

×

⎡

⎣
∑

n∈Z

|g(x− na)|2 −
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

g(x− na)g(x− na− k/b)

∣
∣
∣
∣

⎤

⎦ dx

≥ A ||f ||2.

By Lemma 5.1.9 the lower frame condition actually holds for all f ∈ L2(R).
This completes the proof. �

The condition (11.24) is called condition (CC) in the literature. It leads
to an easy sufficient condition for {EmbTnag}m,n∈Z to be a Bessel sequence
(Exercise 11.2):

Corollary 11.4.3 Let g ∈ L2(R) be bounded and compactly supported.
Then {EmbTnag}m,n∈Z is a Bessel sequence for any choice of a, b > 0.

Proposition 11.5.2 and Exercise 11.7 will show that windows in the
Wiener space (in particular, functions in the Feichtinger algebra S0) satisfy
condition (CC) and thus generate Bessel sequences for all choices of a, b > 0.
One can show that the condition (CC) is not necessary for {EmbTnag}m,n∈Z

to be a Bessel sequence (cf. [123]). In Section 12.1, we relate condition (CC)
to other conditions used in Gabor analysis.
We note that Theorem 11.4.2 can be extended to a result concerning

frame sequences. We have seen that if the function

G(x) =
∑

n∈Z

|g(x− na)|2 (11.28)

is not bounded below, then {EmbTnag}m,n∈Z cannot be a frame for
L2(R). However, it can still be a frame for its closed linear span: in
[125] it is proved that if the conditions in Theorem 11.4.2 hold with
the infimum over x ∈ [0, a] in (11.25) replaced with the infimum over
Ng := {x ∈ R |G(x) �= 0}, then {EmbTnag}m,n∈Z is a frame for L2(Ng).
This gives a way to construct multi-window Gabor frames: if g1, g2, . . . , gk
is a collection of functions which satisfy the conditions in this extended
version of Theorem 11.4.2, then {EmbTnagk}m,n∈Z,k=1,...,K is a frame for
L2(∪K

k=1Ngk). In particular, if ∪K
k=1Ngk = R, then we obtain a frame for

L2(R).
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Example 11.4.4 Let a = b = 1 and define

g(x) =

⎧
⎨

⎩

1 + x if x ∈]0, 1],
1
2x if x ∈]1, 2],
0 otherwise.

Consider for n, k ∈ Z the function x �→ g(x− n)g(x − n− k) for x ∈]0, 1].
Due to the compact support of g, it can only be nonzero if n ∈ {−1, 0}; for
n = −1, it can only be nonzero for k ∈ {0, 1}, and for n = 0, it can only
be nonzero for k ∈ {−1, 0}. Therefore,

∑

n∈Z

g(x− n)g(x− n− k) =

⎧
⎪⎪⎨

⎪⎪⎩

g(x)g(x+ 1) if k = −1,
g(x)2 + g(x+ 1)2 if k = 0,
g(x+ 1)g(x) if k = 1,
0 otherwise,

=

⎧
⎪⎪⎨

⎪⎪⎩

1
2 (1 + x)2 if k = −1,
5
4 (1 + x)2 if k = 0,
1
2 (1 + x)2 if k = 1,
0 otherwise.

So G(x) =
∑

n∈Z
|g(x− n)|2 = 5

4 (x+ 1)2 for x ∈]0, 1], and
∑

k �=0

|Hk(x)| =
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

g(x− n)g(x− n− k)

∣
∣
∣
∣ = (1 + x)2, x ∈]0, 1].

By Theorem 11.4.2 {EmTng}m,n∈Z is a frame for L2(R) with frame bounds
A = 1

4 , B = 9. �

In Corollary 11.4.3 we have seen that {EmbTnag}m,n∈Z is a Bessel seq-
uence for all a, b > 0 if the function g is bounded and compactly supported.
Stronger conditions are necessary for {EmbTnag}m,n∈Z to be a frame: as
shown in Proposition 11.3.4, the associated function G in (11.16) needs to
be bounded below and above (see Exercise 11.3). On the other hand, for
a function g with compact support, the condition that the function G is
bounded below and above for some a > 0 is enough for {EmbTnag}m,n∈Z

to be a frame for sufficiently small values of b. We also obtain explicit
expressions for the frame operator and its inverse in this case. In fact, they
are multiplication operators:

Corollary 11.4.5 Let a, b > 0. Suppose that g ∈ L2(R) has support in an
open interval of length 1

b and that the function G satisfies (11.17) for some
A,B > 0. Then {EmbTnag}m,n∈Z is a frame for L2(R) with bounds A,B.
The frame operator and its inverse are given by

Sf =
G

b
f, S−1f =

b

G
f, f ∈ L2(R).
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Proof. That {EmbTnag}m,n∈Z is a frame follows directly from Theorem
11.4.2 because

∑

n∈Z

g(x− na)g(x− na− k/b) = 0 for all k �= 0.

Given a continuous function f with compact support, Lemma 11.4.1 implies
that

〈Sf, f〉 =
∑

m,n∈Z

|〈f, EmbTnag〉|2 =
1

b

∫ ∞

−∞
|f(x)|2G(x)dx;

by continuity of S, this expression even holds for all f ∈ L2(R).
Via Lemma 2.4.4, it follows that S acts by multiplication with the
function G

b . �

In the following special case we can be even more explicit:

Corollary 11.4.6 Suppose that g ∈ L2(R) is a continuous function with
support on an interval I and that |g(x)| > 0 on the interior of I. Then
{EmbTnag}m,n∈Z is a frame for all (a, b) ∈]0, |I|[×]0, 1

|I| [.

Proof. By Corollary 11.4.5 it is enough to prove that the function G is
bounded above and below for the given values of a, b. For the upper bound,
we observe that since g has support in an interval of length 1

b , the function
g(x−na) can at most be nonzero for � 1

ab�+1 values of n ∈ Z, independently
of the choice of x ∈ R. Thus,

G(x) ≤
(

� 1
ab
�+ 1

)

||g||2∞.

For the lower bound, let J be the subinterval of I which has the same center
as I and length a. Then, for any given x ∈ R, we can find n ∈ Z such that
x− na ∈ J ; thus, G(x) ≥ infy∈J |g(y)|2 > 0, as desired. �

11.5 The Wiener Space W

Gabor analysis makes use of a number of window classes. Among these
classes we find Feichtinger’s algebra S0 discussed in Section A.6 and the
Wiener space. Given a > 0, the Wiener space is defined by

W :=

{

g : R→ C

∣
∣
∣
∣ g measurable and

∑

k∈Z

||gχ[ka,(k+1)a[||∞ <∞
}

.(11.29)

In the literature the space W is also called a Wiener amalgam space and
is often denoted by W (L∞, �1). One can prove that W is a Banach space
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with respect to the norm

||g||W,a =
∑

k∈Z

||gχ[ka,(k+1)a[||∞. (11.30)

The space W is independent of the choice of a, and different choices give
equivalent norms; both statements follow from the fact that if 0 < a ≤ b,
then (Exercise 11.4)

∑

k∈Z

||gχ[kb,(k+1)b[||∞ ≤ 2
∑

k∈Z

||gχ[ka,(k+1)a[||∞ (11.31)

≤ 2

(

� b
a
�+ 2

) ∑

k∈Z

||gχ[kb,(k+1)b[||∞.

That g ∈ W means that g is bounded and decays so fast that the
“local maximum function” k �→ ||gχ[ka,(k+1)a]||∞ belongs to �1(Z). In Exer-
cise 11.4 we ask the reader to prove that W ⊂ L1(R)∩L2(R) . Furthermore,
as stated in Section A.6, the Wiener space is related to the Schwartz space
S and Feichtinger’s algebra S0 by the inclusions

S ⊂ S0 ⊂W.

The condition for being in W is strong enough to exclude many of the
pathological functions, which play a role for the understanding of functions
in L2(R) but are of little practical interest (like functions in L2(R) which
do not decay to zero whenever |x| → ∞). As a consequence of the following
lemma, we will show that functions in g ∈ W generate Bessel sequences
{EmbTnag}m,n∈Z for all choices of the parameters a, b.

Lemma 11.5.1 Let g ∈W and a > 0 be given. Then
∑

n∈Z

|g(x− na)| ≤ ||g||W,a, a.e. x ∈ R.

If also h ∈W and b ∈]0, 1
a ], then

∑

k∈Z

∣
∣
∣
∣

∑

n∈Z

g(x− na)h(x− na− k/b)

∣
∣
∣
∣ ≤ 2 ‖g‖W,a||h||W,a, a.e. x ∈ R.

Proof. For the first part, fix x ∈ R, and observe that for any given n ∈ Z,
there exists exactly one value of k ∈ Z such that

x− na ∈ [ka, (k + 1)a[;

furthermore, different values of n lead to different values for k. Therefore,
∑

n∈Z

|g(x− na)| ≤
∑

k∈Z

||gχ[ka,(k+1)a[||∞ = ‖g‖W,a, a.e. x ∈ R.
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For the second part, we have

∑

k∈Z

∣
∣
∣
∣

∑

n∈Z

g(x−na)h(x− na− k/b)

∣
∣
∣
∣ ≤

∑

n∈Z

|g(x−na)|
∑

k∈Z

|h(x−na− k/b)|.

The first part of the lemma (applied to the function h and the translation
parameter 1

b ) combined with (11.31) gives that
∑

k∈Z

|h(x− na− k/b)| ≤ ‖h‖W, 1b
≤ 2 ||h||W,a

and the lemma follows. �

We now prove that the Gabor system {EmbTnag}m,n∈Z automatically is
a Bessel sequence for windows g ∈ W .

Proposition 11.5.2 If g ∈ W and a, b > 0, then {EmbTnag}m,n∈Z is a
Bessel sequence. If ab ≤ 1, then B := 2

b ||g||2W,a is an upper frame bound.

Proof. The case ab ≤ 1 follows immediately from Lemma 11.5.1 combined
with Theorem 11.4.2. In case ab > 1, we can choose N ∈ N such that
ab/N ≤ 1; this implies that {EmbTna/Ng}m,n∈Z is a Bessel sequence, and
therefore the subsequence {EmbTnag}m,n∈Z is also a Bessel sequence. �

An intuitive explanation of Proposition 11.5.2 is that functions in W
decay relatively fast: given x ∈ [0, a], the values of the functions

n, k �→ g(x− na)g(x− na− k/b)

are small enough to make
∑

k∈Z

∣
∣
∣
∑

n∈Z
g(x− na)g(x− na− k/b)

∣
∣
∣ conver-

gent, with a bound independent of x. Inspired by the necessary condition in
Proposition 11.3.4, we can use this intuition to obtain a sufficient condition
for {EmbTnag}m,n∈Z to be a frame whenever g ∈W :

Proposition 11.5.3 Let g ∈ W and a > 0 be given. Assume that there
exists a constant C > 0 such that

C ≤
∑

n∈Z

|g(x− na)|2, a.e. x ∈ R.

Then {EmbTnag}m,n∈Z is a frame for L2(R) for all sufficiently small
b > 0. As b → 0, the ratio between the frame bounds in Theorem 11.4.2
converges to

supx∈[0,a]

∑
n∈Z

|g(x− na)|2

infx∈[0,a]

∑
n∈Z

|g(x− na)|2 .

Proof. Proposition 11.5.2 shows that {EmbTnag}m,n∈Z is a Bessel seq-
uence for all b > 0. Fix ε > 0 (the value will be decided later) and choose
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N ∈ N such that
∑

|n|≥N

∣
∣
∣
∣gχ[na,(n+1)a[

∣
∣
∣
∣
∞ < ε. Letting g0 := gχ[−aN,aN ]

and g1 := g − g0, we have

||g1||W,a =
∑

n∈Z

||(g − gχ[−aN,aN ])χ[na,(n+1)a[||∞

≤
∑

|n|≥N

∣
∣
∣
∣gχ[na,(n+1)a[

∣
∣
∣
∣
∞

< ε.

Now,

∑

k �=0

∣
∣
∣
∣

∑

n∈Z

g(x− na)g(x− na− k/b)

∣
∣
∣
∣

=
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

(g0 + g1)(x− na)(g0 + g1)(x− na− k/b)

∣
∣
∣
∣

≤
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

g0(x− na)g0(x− na− k/b)

∣
∣
∣
∣

+
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

g0(x − na)g1(x− na− k/b)

∣
∣
∣
∣

+
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

g1(x − na)g0(x− na− k/b)

∣
∣
∣
∣

+
∑

k �=0

∣
∣
∣
∣

∑

n∈Z

g1(x − na)g1(x− na− k/b)

∣
∣
∣
∣.

The function g0 has support in an interval of length 2aN , so if we choose b
so small that 1

b > 2aN , then the first of the above four terms is zero. Using
Lemma 11.5.1 on the remaining terms, we get

∑

k �=0

∣
∣
∣
∣

∑

n∈Z

g(x− na)g(x− na− k/b)

∣
∣
∣
∣ ≤ 4 ||g0||W,a||g1||W,a + 2 ||g1||2W,a

≤ 4ε ||g0||W,a + 2ε2

≤ 4ε ||g||W,a + 2ε2.

If ε is chosen such that 4ε ||g||W,a + 2ε2 < C, then the condition in
Theorem 11.4.2 is satisfied, and {EmbTnag}m,n∈Z is a frame.

The statement about the ratio of the frame bounds follows directly from
the expression for the frame bounds in Theorem 11.4.2. �

Proposition 11.5.3 is formulated as an existence result, and the usable
values of b are somewhat hidden in the proof: after choosing ε such that
4ε||g||W,a + 2ε2 < C, we have to choose N “large enough,” and then all
b < 1

2aN will lead to a frame. However, for a concrete function g, we will
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often be able to follow the proof directly and find an interval ]0, b0] explicitly
such that {EmbTnag}m,n∈Z is a frame for all b ∈]0, b0] (Exercise 11.5). But
the same exercise shows that in practice it might be preferable to work
directly with Theorem 11.4.2 because the estimates used in the proof of
Proposition 11.5.3 make b0 unnecessarily small.
The second part of Proposition 11.5.3 is very relevant for applications:

it shows that if g ∈ W and
∑

n∈Z
|g(x − na)|2 is “almost constant,” then

g generates “almost tight” frames for small values of b. If we consider the
function g(x) = 1

1+x2 from Exercise 11.5, then

1.52 ≤
∑

n∈Z

|g(x− n)|2 ≤ 1.62, ∀x ∈ R;

therefore, as b → 0, the ratio between the frame bounds in Proposi-
tion 11.5.3 will be of the size 1.621

1.52 ∼ 1.08.
We will mainly use the Wiener space as a technical tool. However, we

note that for continuous windows in W an elegant characterization of the
frame property of {EmbTnag}m,n∈Z (for the case where ab is irrational)
was given in [346]. It is formulated in terms of the bi-infinite matrix-valued
function (Gm,k(·))m,k∈Z

, whose entries are given in (11.12)

Proposition 11.5.4 Assume that g is a continuous function belonging
to the Wiener space W and that ab /∈ Q. Let (Gm,k(·))m,k∈Z

denote the

bi-infinite matrix-valued function, whose entries are given in (11.12). Then
{EmbTnag}m,n∈Z is a frame if and only if there exists a single ξ ∈ [0, a]
such that (Gm,k(ξ))m,k∈Z

is invertible on �2(Z).

11.6 The Frame Set and Special Functions

In Gabor analysis, the frame set for a function g ∈ L2(R) is defined as the
set

Fg :=
{
(a, b) ∈ R

2
+

∣
∣ {EmbTnag}m,n∈Z is a frame forL2(R)

}
. (11.32)

It is usually difficult to determine the exact set Fg for a given function
g ∈ L2(R). From Theorem 11.3.1 we know that a necessary condition for
{EmbTnag}m,n∈Z to be a frame for L2(R) is that ab ≤ 1; and for a given
value of a > 0, we can often use the proof of Proposition 11.5.3 to find
an interval ]0, b0[ such that {EmbTnag}m,n∈Z is a frame for all b ∈]0, b0[.
However, Proposition 11.5.3 is based on Theorem 11.4.2, and the estimates
used in the proofs make the results suboptimal. Also, the general character-
ization of Gabor frames in Theorem 11.2.3 is usually too difficult to apply
directly.
In this section we discuss some functions and classes of functions for

which the frame set is known.
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1) The Gaussian g(x) = e−x2

.

The Gaussian was the first function for which the frame set was
characterized:

Theorem 11.6.1 Let a, b > 0 and consider g(x) = e−x2

. Then the Gabor
system {EmbTnag}m,n∈Z is a frame if and only if ab < 1.

The case ab = 1 is the easiest part. In fact, if {EmbTnag}m,n∈Z was a frame
for ab = 1, it would be a Riesz basis by Theorem 11.3.1; by the Balian–
Low theorem, this is clearly not the case. That the Gaussian generates
a frame if ab < 1 was proved in 1991 by Lyubarskii [505] and indepen-
dently by Seip and Wallsten [571, 575] (that a fixed value of a > 0 will
lead to a frame {EmbTnag}m,n∈Z for sufficiently small values of b is clear
from Proposition 11.5.3, but this is a much weaker statement). A his-
torical note: Daubechies and Grossmann [243] proved around 1987 that
{EmbTnag}m,n∈Z is a frame whenever ab < 0.994 and conjectured the gen-
eral result. The original proofs of the full result are complicated and use
advanced complex analysis. Janssen gave later a shorter proof in [425].
A further analysis of the limiting case ab = 1 is given by Lyubarskii and
Seip in the paper [507].
An interesting analysis of the behavior of the frame bounds near the

critical density ab = 1 was performed in [72] by Borichev, Gröchenig, and
Lyubarskii. Note that the result deals with the case a = b :

Proposition 11.6.2 Let g(x) = e−x2

. There exist constants c, C > 0 such
that for each a ∈]1/2, 1[ the frame bounds A(a) and B(a) for the frame
{EmaTnag}m,n∈Z satisfy that

c(1− a2) ≤ A(a) ≤ C(1 − a2), c < B(a) < C.

Note that Proposition 11.6.2 implies that the condition number for the
frame operator for {EmaTnag}m,n∈Z belongs to the interval

[
c

C
(1 − a2)−1,

C

c
(1 − a2)−1

]

for each a ∈]1/2, 1[.
The results in [505, 571], and [575] are actually much more general than

described here: they also cover irregular Gabor systems; see Section 13.4.

2) The hyperbolic secant g(x) = 1
cosh(πx)

The hyperbolic secant was studied by Janssen and Strohmer [435], who
proved that {EmbTnag}m,n∈Z is a frame whenever ab < 1. The proof is
based on Theorem 11.2.3 and the Zak transform, which we introduce in
Section 13.2. The estimates for the frame bounds that were obtained for
the Gaussian in Theorem 11.6.2 also hold for the hyperbolic secant.
The hyperbolic secant does not generate a frame when ab = 1.
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3) The characteristic function g(x) = χ[0,c[, c > 0

For obvious reason, the question of characterizing the parameters a, b, c >
0 for which {EmbTnaχ[0,c]}m,n∈Z is a frame is called the abc problem in the
literature. A scaling of a characteristic function is again (a multiple of) a
characteristic function, so by Proposition 11.2.4 we can assume that b = 1.
A detailed analysis performed by Janssen [432] shows that

(i) {EmTnaχ[0,c]}m,n∈Z is not a frame if c < a or a > 1.

(ii) {EmTnaχ[0,c]}m,n∈Z is a frame if 1 ≥ c ≥ a.

(iii) {EmTnaχ[0,c]}m,n∈Z is not a frame if a = 1 and c > 1.

Assuming now that a < 1, c > 1, we further have

(iv) {EmTnaχ[0,c]}m,n∈Z is a frame if a /∈ Q and c ∈]1, 2[.

(v) {EmTnaχ[0,c]}m,n∈Z is not a frame if a = p/q ∈ Q, gcd(p, q) = 1, and

2− 1
q < c < 2.

(vi) {EmTnaχ[0,c]}m,n∈Z is not a frame if a > 3
4 and c = L− 1+L(1− a)

with L ∈ N, L ≥ 3.

(vii) {EmTnaχ[0,c]}m,n∈Z is a frame if |c− �c� − 1
2 | <

1
2 − a.

The graphical illustration of this result is known as Janssen’s tie. The
surprisingly complicated structure of the frame set for the characteris-
tic functions indicates how complicated it is to find the exact range of
parameters a, b which generate a frame for a given function g.
The full abc problem was finally solved in 2012 by X. R. Dai and Q.

Sun; see [239] for this very impressive work. Note that the proof is done
via a decision tree with many branches, which in each case either lead to
a positive conclusion or a negative conclusion. Thus, the conditions on the
parameters a, b, c are not explicit, as in the cases treated by Janssen.

4) The exponential functions g(x) = e−|x| and g(x) = e−xχ[0,∞[(x)

Janssen treated the function g(x) = e−|x| in [433] and showed that
{EmbTnag}m,n∈Z is a frame for all a, b > 0 such that ab < 1. The one-
sided exponential g(x) = e−xχ[0,∞[(x) was considered by Janssen in [428];
in this case {EmbTnag}m,n∈Z is a frame if and only if ab ≤ 1.

5) The totally positive functions

In 2012 Gröchenig and Stöckler [357] were able to identify a class of func-
tions for which the frame set can be characterized. The paper is based on
the following concepts:
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Definition 11.6.3 Consider a function g : R→ R.

(i) Assume that for any N ∈ N and any sequences {xk}Nk=1, {yk}Nk=1 of
real numbers for which

x1 < x2 < · · · < xN , y1 < y2 < · · · < yN ,

the determinant of the N × N matrix with entries g(xj − yk), j, k =
1, . . . , N, is nonnegative. Then the function g is said to be totally
positive.

(ii) A totally positive function g ∈ L2(R) for which the Fourier transform
has the form

ĝ(γ) = C

M∏

ν=1

(1 + 2πiγaν)
−1 (11.33)

for some M ∈ N, aν ∈ R \ {0}, C > 0, is said to be of finite type M.

Among the totally positive functions, we find several of the functions
discussed above, namely,

g(x) = e−x2

, g(x) = e−|x|, g(x) = e−xχ[0,∞[(x).

We also note that the function g(x) = e−xχ[0,∞[(x) is of finite type: in fact,
for this function

ĝ(γ) =

∫ ∞

0

e−xe−2πiγx dx =
1

1 + 2πiγ
,

corresponding to (11.33) with C = 1,M = 1, and a1 = 1. A similar cal-
culation shows that g(x) = e−|x| is of finite type M = 2. In contrast, the

Gaussian g(x) = e−x2

is obviously not of finite type. In general, a partial
fraction decomposition of the expression in (11.33) shows that the totally
positive functions of finite type are finite linear combinations of one-sided
exponential functions multiplied with monomials. It can be shown that
the totally positive functions of finite type M ≥ 2 belong to Feichtinger’s
algebra S0.

The main result in [357] reads as follows:

Theorem 11.6.4 Assume that g ∈ L2(R) is a totally positive function of
finite type M ≥ 2. Then

Fg =
{
(a, b) ∈ R

2
+

∣
∣ ab < 1

}
.

The proof of Theorem 11.6.4 in [357] shows that if ab < 1 and g is a totally
positive function of finite type M ≥ 2, the Gabor frame {EmbTnag}m,n∈Z

has a dual frame {EmbTnah}m,n∈Z for a suitable function h ∈ L2(R);
such a function h is called a dual window; see page 298. In the setting
of Theorem 11.6.4, it can be chosen to have compact support.
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In general we can only expect a given function g ∈ L2(R) to generate a
frame {EmbTnag}m,n∈Z for some of the parameters a, b > 0 satisfying the
inequality ab ≤ 1. In such a case, it is interesting to identify the obstructions
to the frame property. An interesting result concerning odd functions g in
the Feichtinger algebra S0 was proved by Lyubarskii and Nes in [506]: such a
function does not generate a Gabor frame {EmbTnag}m,n∈Z whenever ab =
n−1
n for some n = 2, 3, . . . . Note that these obstructions lie on hyperbolic

curves in the (a, b)-plane; a similar shape of obstruction curves was later
reported for a class of sign-changing windows; see [188].

Note that the terminology frame set has been used in a different sense in
the literature: in analogue with the name wavelet set (see Section 16.3), a
measurable set K ⊂ R is called a Gabor frame set if {EmTnχK}m,n∈Z is a
frame for L2(R). It is highly nontrivial to classify such sets: Casazza and
Kalton [137] have proved that this problem is equivalent to the longstanding
problem of classifying the integer sets {n1 < n2 < · · · < nk} for which the

function f(z) =
∑k

j=1 z
nj does not have any zero on the unit circle in the

complex plane.

11.7 Gabor Frames Generated by B-Splines

The purpose of this section is to discuss the frame set for the B-splines
BN , N ∈ N (see Section A.8). Recall that with our definition of the
B-splines, BN is supported on [−N/2, N/2]. Exactly the same results hold

for the translated B-spline B̃N in (A.18), and in some of the proofs, we will
shift freely between these two versions.
The case N = 1 is covered by the discussion of the characteristic func-

tions on page 281, so we focus on the case N ≥ 2. For the B-splines
BN , N ≥ 2, the exact frame set is not known. We hope the presentation
will stimulate the research on this interesting problem.
By Corollary 11.4.3, any B-spline BN generates a Bessel sequence

{EmbTnaBN}m,n∈Z for all a, b > 0; thus, in order to obtain a frame, we
only need to verify the lower frame condition. We know that the Gabor
system {EmbTnaBN}m,n∈Z only can be a frame if ab ≤ 1; furthermore,
BN ∈ Cc(R) for N ≥ 2, so in this case we even need that ab < 1 by
Proposition 4.2.2.
We first state a sufficient condition for the Gabor system {EmbTnaBN}

m,n∈Z to be a frame.

Corollary 11.7.1 For N ∈ N, the B-splines BN generate a Gabor frame
{EmbTnaBN}m,n∈Z for all (a, b) ∈]0, N [×]0, 1/N ].
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Proof. For a ∈]0, N [ and b ∈]0, 1/N [, the result is an immediate conse-
quence of Corollary 11.4.6. For N = 1, the case b = 1/N = 1 is contained
in the analysis by Janssen; see page 281. For N > 1, we will analyze
the case b = 1/N via Theorem 11.4.2; since suppBN = [−N/2, N/2] and
BN (−N/2) = BN (N/2), we see that for b = 1/N, a < N and k ∈ Z \ {0},

∑

n∈Z

BN (x− na)BN (x− na− k/b) = 0.

Since the function
∑

k∈Z
|BN (x − ka)|2 is bounded below, it follows that

{EmbTnaBN}m,n∈Z is indeed a frame for b = 1/N, 0 < a < N. �

Let us collect some of the known obstructions to the frame property of
{EmbTnaBN}m,n∈Z within the region determined by the inequalities 0 <
ab < 1. One of the results is quite surprising: it shows that the values
b ∈ {2, 3, . . .} are excluded from the frame set, regardless of the considered
value for the translation parameter a!

Proposition 11.7.2 For the B-splines BN , N ≥ 2, the following hold:

(i) {EmbTnaBN}m,n∈Z is not a frame if N ≤ a;

(ii) {EmbTnaBN}m,n∈Z is not a frame if b ∈ N \ {1}.

Proof. The result in (i) easily follows from Proposition 11.3.4: in fact,
since BN is a continuous function supported on [−N/2, N/2], the lower
bound in (11.17) is violated if N ≤ a. In order to prove (ii), it follows from
Corollary A.8.2 that for b ∈ N \ {1}, n ∈ Z, and ν = 1,

B̂N (1− nb) =

(
sin(π(1− nb)

π(1− nb)

)N

= 0;

thus, the continuous map

ν �→
∑

n∈Z

|B̂N (ν − nb)|2

vanishes at ν = 1, and the lower condition in (11.18) is violated. �

The constraint in Proposition 11.7.2 was originally discovered by Del
Prete [251]. A more general result was later given by Gröchenig, Janssen,
Kaiblinger, and Pfander [347]: it says that if g ∈ Cc(R) satisfies the partition
of unity condition

∑

n∈Z

g(x− n) = 1, x ∈ R,

then {EmbTnag}m,n∈Z is not a Gabor frame for b ∈ N \ {1}.
Some further partial results were recently shown by Kloos and Stöckler

[459] and Christensen, Kim, and Kim [188].
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Proposition 11.7.3 Let N ∈ N \ {1}, and consider a, b > 0 such that
ab < 1. Then the following hold:

(i) {EmbTnaBN}m,n∈Z is a frame if there exists k ∈ N such that

1/N < b < 2/N, N/2 ≤ ak < 1/b. (11.34)

(ii) {EmbTnaBN}m,n∈Z is a frame if b ∈ {1, 12 , . . . ,
1

N−1}.

(iii) {EmbTnaBN}m,n∈Z is a frame if a = k
p for some k = 1, . . . , N−1, p ∈

N, and b < 1/k.

The result in (i) appeared in [188], and (ii) in [459]. For p = 1, the result
(iii) also appeared in [459]; the case of p ≥ 2 in (iii) yields an oversampling
of the case p = 1 and therefore also a frame.
For some time it was conjectured that {EmbTnaBN}m,n∈Z for N > 1

is a frame whenever ab < 1, a < N, and b �= 2, 3, . . . . This was recently
disproved by Lemvig and Nielsen [486]; for example, the parameter choice
a = 1/3, b = 5/2 does not lead to a frame whenever N = 2 or N = 3.
The proof is based on Zak transform methods; see the discussion after
Corollary 13.2.7. The results in [486] close the hope that a “simple” char-
acterization of the frame set is possible for the B-splines BN for N > 2 :
such a characterization will have the same complexity as the one we know
for the characteristic functions. In short: it remains a very interesting and
challenging problem to characterize the frame set for the B-splines BN

for N ≥ 2.

11.8 Exercises

11.1 Let a > 0 and let g denote a measurable function for which the
associated function G defined by (11.16) is bounded. Show that
then g ∈ L2(R).

11.2 Prove Corollary 11.4.3.

11.3 Show that for the B-spline B2, the system {EmbT2nB2}m,n∈Z

cannot be a frame for any b > 0.

11.4 Let W denote the Wiener space.

(i) Prove (11.31).

(ii) Prove that W ⊂ L1(R) ∩ L2(R).

(iii) Prove that every bounded measurable function with compact
support belongs toW and that ||g||W,1 ≤ ( |supp(g)|+1)||g||∞.
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11.5 Consider the function g(x) = 1
1+x2 .

(i) Show that g ∈ W and find an estimate for ||g||W,1.

(ii) Find a constant C such that
∑

n∈Z

|g(x− n)|2 ≥ C, ∀x ∈ R.

(iii) Show that for all N ∈ N,

∑

|n|≥N

||gχ[n,n+1]||∞ ≤ π − 2 arctan(N − 1) +
1

1 + (N − 1)2
.

(iv) Find via the proof of Proposition 11.5.3 a value b0 > 0 such
that {EmbTng}m,n∈Z is a Gabor frame for all b ∈]0, b0].

(v) Estimate numerically via Theorem 11.4.2 the range of b for
which {EmbTng}m,n∈Z is a Gabor frame.

11.6 Consider a measurable function g : R → C satisfying the decay
condition

|g(x)| ≤ C

1 + x2
, ∀x ∈ R,

for some C ≥ 0. Show that g ∈W.

11.7 Show that condition (CC) is satisfied for all a, b > 0 if g ∈ W .

11.8 Show by an example (maybe with a = b = 1) that the
necessary condition in Proposition 11.3.4 does not suffice for
{EmbTnag}m,n∈Z being a Gabor frame. Similar statements with g
replaced with ĝ (and separate discussions of the lower respectively
upper conditions) can be found in [48].

11.9 Prove (11.21) under the assumptions in Lemma 11.4.1 and justify
all the following interchanges of summation and integration in the
proof.

11.10 Prove that {EmTnaχ[0,1]}m,n∈Z is a frame for L2(R) for all
a ∈]0, 1].
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The main issue in Chapter 11 was to state necessary and/or sufficient con-
ditions for a Gabor system {EmbTnag}m,n∈Z in L2(R) to form a frame.
We will now take the next step and consider Gabor frames that are con-
venient to apply in practice. From the general frame theory in Chapter 5
and Chapter 6 we know that frames are particularly useful when the frame
decomposition takes a simple form, which is the case if either the frame is
tight or we have access to a convenient dual frame.
Section 12.1 gives a presentation of some conditions on a Gabor system

{EmbTnag}m,n∈Z which appear repeatedly, and a discussion of the con-
nections among them. Some of the conditions will be needed already in
Section 12.2, which deals with various representations of the frame opera-
tor. In Section 12.3 we prove that the canonical dual frame of a Gabor
frame is itself a Gabor frame, and provide various characterizations of
all the dual frames that have Gabor structure. More results about the
canonical dual frame are given in Section 12.4. In Section 12.5 explicit
constructions of dual pairs of Gabor frames generated by functions with
compact support are provided; they can, e.g., be applied to any B-spline.
Starting with a B-spline of sufficiently high order, any (finite) regularity
of the elements in the frame and the dual frame can be obtained, but at
the price of increased support size. An alternative construction is presented
in Section 12.6, where arbitrary regularity can be combined with a small
support size. In Section 12.7 we return to the topic treated in Section 6.4,
where we showed that any pair of Bessel sequences in a separable Hilbert
space can be extended to a pair of dual frames. We will now show that if the
given sequences have Gabor structure and ab ≤ 1, the extension can also be

©
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performed with Gabor systems. Section 12.8 shows that the deviation from
equality in the duality condition (Theorem 12.3.4) in a direct way yields
an expression for the reconstruction error. Finally, Section 12.9 provides
characterizations and explicit constructions of tight Gabor frames.

12.1 Popular Gabor Conditions

In this section we will state a few conditions on Gabor systems
{EmbTnag}m,n∈Z in L2(R) that appear repeatedly in the literature, and
discuss their interrelations. Some of the results will be needed already in
Section 12.2.
For a Gabor system {EmbTnag}m,n∈Z, the set {(na,mb)}m,n∈Z ⊂ R

2 is
called the time-frequency lattice. It will be clear from Section 13.1 that
there are close relationships between frame properties for g with respect to
the lattice {(na,mb)}m,n∈Z, and frame properties with respect to the dual
lattice, which is defined as the set {(n/b,m/a)}m,n∈Z. The first condition on
a Gabor system we want to mention is related to this, and was introduced
by Tolimieri and Orr [615] in 1995. A Gabor system {EmbTnag}m,n∈Z is
said to satisfy condition (A) if

∑

m,n∈Z

|〈g, Em/aTn/bg〉| <∞. (12.1)

Condition (A) is often needed in order to guarantee certain convergence
properties of infinite series appearing in Gabor analysis. However, as obs-
erved by Gröchenig [340] it is preferable to avoid the condition if possible.
For example, condition (A) is very sensitive to the choice of the lattice
parameters: even for a simple function like g = χ[0,1] and an arbitrary
translation parameter a > 0, it is only satisfied for b = 1/q, q ∈ N! Note
that χ[0,1] belongs to the Wiener space W treated in Section 11.5, i.e.,
stronger conditions are needed in order to avoid this kind of obstacle. One
such condition is membership in Feichtinger’s algebra: in [340] it is proved
that condition (A) is satisfied for all a, b > 0 if g ∈ S0.
Janssen introduced another condition in [429], which is frequently used

in Gabor analysis. In contrast to condition (A), it only involves the function
g and not the actual parameters a, b. We say that a function g ∈ L2(R)
satisfies condition (R) if

lim
ε↓0

∑

k∈Z

1

ε

1
2 ε∫

− 1
2 ε

|g(k + x)− g(k)|2 dx = 0. (12.2)

Condition (R) might look restrictive, but it is actually satisfied for a
dense class of functions in L2(R) (see Exercise 12.2 and page 371).
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As we already proved in Theorem 11.4.2, a Gabor system {EmbTnag}m,n∈Z

is a Bessel sequence if condition (CC) is satisfied, i.e., if

sup
x∈[0,a]

∑

k∈Z

∣
∣
∣
∣
∣

∑

n∈Z

g(x− na)g(x− na− k/b)

∣
∣
∣
∣
∣
<∞. (CC)

A variant of condition (CC) was used in [127]. We say that
{EmbTnag}m,n∈Z satisfies condition (UCC) or the uniform condition (CC),
if {EmbTnag}m,n∈Z is a Bessel sequence and for any given ε > 0 there exists
K ∈ N such that

sup
x∈[0,a]

∑

|k|≥K

∣
∣
∣
∣

∑

n∈Z

g(x− na)g(x− na− k/b)

∣
∣
∣
∣ < ε. (UCC)

We emphasize that the Bessel condition is part of the definition of condi-
tion (UCC). As stated, condition (UCC) is strictly stronger than condition
(CC), see [127]; this is no longer true if the Bessel assumption is removed
(Exercise 12.4).
A slight modification of the proof of Proposition 11.5.2 shows that con-

dition (CC) is satisfied for all a, b > 0 if g ∈ W (Exercise 11.7). A detailed
analysis of the relationship between the mentioned conditions is given in
[127], where the following results are proved (the references are to the page
numbers, etc. in [127]):

• If g ∈W , then condition (UCC) is satisfied for all a, b > 0 (p.110).

• Membership in the Wiener space is a stronger condition than condi-
tion (CC), i.e., there are functions satisfying condition (CC) which
are not in the Wiener space (Ex. 14.2).

• If g ∈ L2(R) is positive and real-valued, then {EmTng}m,n∈Z is a
Bessel sequence if and only if g satisfies condition (CC) (Cor. 3.7).
The equivalence does not hold if the condition of g being positive is
removed (Ex. 3.8).

• If {EmbTnag}m,n∈Z is a Bessel sequence and g satisfies condition (A),
then g satisfies condition (UCC) (Prop. 4.12).

• There is a Gabor system {EmbTnag}m,n∈Z satisfying condition (UCC)
but not condition (A) (Ex. 4.13).

• If ab ∈ Q and {EmbTnag}m,n∈Z is a frame satisfying condition (UCC),
then also S−1g satisfies condition (UCC) (Th. 4.14).

12.2 Representations of the Gabor Frame
Operator and Duality

The structure of a Gabor frame turns out to have important implications
for its frame operator, which can be rewritten in several ways. Many central
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frame results are based on the obtained representations of the frame
operator.
Walnut was the first to rewrite the frame operator S associated with a

Gabor frame {EmbTnag}m,n∈Z. In his thesis [630] from 1989 (see also [631])
he obtained what is now known as the Walnut representation: it expresses
Sf in terms of the functions

Gk(x) =
∑

n∈Z

g(x− na)g(x− na− k/b), k ∈ Z. (12.3)

Note that these functions appear at several occasions in Chapter 11. By
Lemma 11.2.2 the series defining Gk(x) converges unconditionally for a.e.
x ∈ R.
Several variants of the Walnut representation are available in the lit-

erature. We will need the following version for the mixed frame operator
associated with two functions g, h ∈ L2(R) in the Wiener space W ; we ask
the reader to compare with the version for shift-invariant systems in Theo-
rem 10.2.1. Given any parameters a, b > 0, we know by Proposition 11.5.2
that {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z are Bessel sequences; denote
the corresponding synthesis operators by T, respectively, U, i.e.,

T : �2(Z2)→ L2(R), T {cm,n}m,n∈Z =
∑

m,n∈Z

cm,nEmbTnag, (12.4)

and

U : �2(Z2)→ L2(R), U{cm,n}m,n∈Z =
∑

m,n∈Z

cm,nEmbTnah. (12.5)

Recall that the mixed frame operator associated with two Bessel sequences
{EmbTnah}m,n∈Z and {EmbTnag}m,n∈Z is given by

UT ∗f =
∑

m,n∈Z

〈f, EmbTnag〉EmbTnah, f ∈ L2(R). (12.6)

Theorem 12.2.1 Assume that g, h ∈ W and let a, b > 0 be given. Define
the functions Hk : R→ C, k ∈ Z, by

Hk(x) =
∑

n∈Z

h(x− na)g(x− na− k/b). (12.7)

Then the mixed frame operator associated with {EmbTnah}m,n∈Z and
{EmbTnag}m,n∈Z has the representation

UT ∗f =
1

b

∑

k∈Z

(Tk/bf)Hk.

The series converges unconditionally in L2(R) for all f ∈ L2(R).



12.2 Representations of the Gabor Frame Operator and Duality 291

Proof. Let us write the mixed frame operator as

UT ∗f =
∑

n∈Z

(
∑

m∈Z

〈f, EmbTnag〉Emb

)

Tnah. (12.8)

We will first consider the inner summand for fixed n ∈ Z, i.e., the Fourier
series

∑

m∈Z

〈f, EmbTnag〉e2πimbx =
∑

m∈Z

F(fTnag)(mb)e2πimbx. (12.9)

Let us now assume that f is bounded and has compact support. Then the
Poisson summation formula applied to (12.9) yields that

∑

m∈Z

〈f, EmbTnag〉e2πimbx =
∑

m∈Z

(fTnag)(x+m/b)

=
∑

m∈Z

Tm/b(fTnag)(x) (12.10)

for a.e. x ∈ R (see [340] for some technical details concerning the ass-
umptions for the application of the Poisson summation formula). Using
now (12.8) and an interchange of the summation (which is allowed because
the summation in (12.10) is finite for each x), we arrive at

UT ∗f(x) =
∑

n∈Z

(
∑

m∈Z

Tm/b(fTnag)(x)

)

Tnah(x)

=
∑

m∈Z

(Tm/bf(x))

(
∑

n∈Z

Tna+m/bg(x)Tnah(x)

)

=
∑

m∈Z

(Tm/bf(x))Hm(x).

A density argument now extends the result to L2(R). �

We refer to [127] for a detailed analysis of the Walnut representation and
its convergence properties.
We have already mentioned that there are close relationships between

properties of a Gabor system {EmbTnag}m,n∈Z and the Gabor system
{Em/aTn/bg}m,n∈Z with respect to the dual lattice. Results of that type
were obtained in a more general context by Rieffel [554]; for Gabor sys-
tems, they were investigated almost at the same time by three groups of
researchers, namely Daubechies, Landau & Landau [249]; Janssen [427];
and Ron & Shen [559]. There is a large overlap between their results, but
their methods are quite different. A basic result is the following lemma,
which actually constitutes “half of” the important duality principle, to
which we return in Section 13.1. The proof is a slight modification of an
argument by Jakobsen & Lemvig.
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Lemma 12.2.2 Let g ∈ L2(R) and a, b > 0 be given. Then {EmbTnag}m,n∈Z

is a Bessel sequence with bound B if and only if {Em/aTn/bg}m,n∈Z is a
Bessel sequence with bound abB.

Proof. Let us first assume that {EmbTnag}m,n∈Z is a Bessel sequence
with bound B. Given any finite scalar sequence {cm,n}m,n∈Z, consider the
functions

ϕn : R→ C, ϕn(x) =
∑

m∈Z

cm,ne
2πimx/a, n ∈ Z.

In terms of the functions ϕn we obtain that
∣
∣
∣
∣

∣
∣
∣
∣

∑

m,n∈Z

cm,nEm/aTn/bg

∣
∣
∣
∣

∣
∣
∣
∣

2

=

∫ ∞

−∞

∣
∣
∑

m,n∈Z

cm,ne
2πimx/ag(x− n/b)

∣
∣2 dx

=

∫ ∞

−∞

∣
∣
∑

n∈Z

ϕn(x)g(x − n/b)
∣
∣2 dx.

Using that the functions ϕn are periodic with period a now yields that
∣
∣
∣
∣

∣
∣
∣
∣

∑

m,n∈Z

cm,nEm/aTn/bg

∣
∣
∣
∣

∣
∣
∣
∣

2

=

∫ a

0

∑

m∈Z

∣
∣
∑

n∈Z

ϕn(x)g(x− n/b−ma)
∣
∣2 dx.

Note that for each x ∈ R, the function values {ϕn(x)}n∈Z form a finite
sequence. Using Theorem 11.2.3 (i) (or the explicit version in (11.14)), it
follows that for a.e. x ∈ R,

∑

m∈Z

∣
∣
∑

n∈Z

ϕn(x)g(x− n/b−ma)
∣
∣2 ≤ bB

∑

n∈Z

|ϕn(x)|2;

thus,
∣
∣
∣
∣

∣
∣
∣
∣

∑

m,n∈Z

cm,nEm/aTn/bg

∣
∣
∣
∣

∣
∣
∣
∣

2

≤
∫ a

0

bB
∑

n∈Z

|ϕn(x)|2.

By Parseval’s equation, see (3.35),
∫ a

0
|ϕn(x)|2 = a

∑
m∈Z

|cm,n|2. Thus,

we conclude that

∣
∣
∣
∣

∣
∣
∣
∣
∑

m,n∈Z
cm,nEm/aTn/bg

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ abB
∑

m∈Z
|cm,n|2, which

implies that {Em/aTn/bg}m,n∈Z is a Bessel sequence with bound abB
(Exercise 3.13). The other implication follows by applying what we just
showed to the Gabor system {Em/aTn/bg}m,n∈Z. �

In the following results we will need the synthesis operators associated
with Gabor systems with respect to different generators and different par-
ameters. For this reason we need a more detailed notation than before. We
will denote the synthesis operator for {EmbTnag}m,n∈Z by Tg;a,b instead of
just T . We first state a result from [249].
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Proposition 12.2.3 Let f, g, h ∈ L2(R) and a, b > 0 be given. If
{EmbTnag}m,n∈Z,{EmbTnaf}m,n∈Z and {EmbTnah}m,n∈Z are Bessel
sequences, then

Tf ;a,bT
∗
g;a,bh =

1

ab
Th;1/b,1/aT

∗
g;1/b,1/af. (12.11)

Proof. The complete proof in [249] is technical, and we will not provide
all details. The main purpose of the following argument is to clarify how
the dual lattice comes into play. We will prove Proposition 12.2.3 under
the additional assumptions that f and h are compactly supported and
bounded; this makes all needed interchanges of summations and integrals
legal. First, let φ ∈ L2(R). Then

T ∗
f ;a,bφ = {〈φ,EmbTnaf〉}m,n∈Z.

By Lemma 11.2.2,

〈φ,EmbTnaf〉 =
∫ 1/b

0

(
∑

k∈Z

φ(x − k/b)f(x− na− k/b)

)

e−2πimbxdx.

The interpretation of this equation in Lemma 11.2.2 in terms of Fourier
coefficients together with Lemma 3.8.2 now gives that

〈Tf ;a,bT
∗
g;a,bh, φ〉 = 〈T ∗

g;a,bh, T
∗
f ;a,bφ〉

=
∑

n∈Z

∑

m∈Z

〈h,EmbTnag〉〈φ,EmbTnaf〉

=
1

b

∑

n∈Z

〈
∑

l∈Z

h(· − l/b)g(· − na− l/b),
∑

k∈Z

φ(· − k/b)f(· − na− k/b)

〉

,

where the inner product in the last line is in L2(0, 1/b). When we write it
out, we arrive at

〈Tf ;a,bT
∗
g;a,bh, φ〉 =

1

b

∑

n∈Z

∫ 1/b

0

(
∑

l∈Z

h(x− l/b)g(x− na− l/b)

×
∑

k∈Z

φ(x− k/b)f(x− na− k/b)

)

dx

=
1

b

∑

n∈Z

∑

l∈Z

∫ ∞

−∞
h(x− l/b)g(x− na− l/b)φ(x)f(x− na)dx.

If we apply this calculation with other choices of the generators and the
parameters 1/b, 1/a instead of a, b, we obtain that

〈Th;1/b,1/aT
∗
g;1/b,1/af, φ〉

= a
∑

k∈Z

∑

m∈Z

∫ ∞

−∞
h(x−m/b)g(x− ka−m/b)φ(x)f(x− ka)dx.
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This shows that 〈Tf ;a,bT
∗
g;a,bh, φ〉 = 1

ab 〈Th;1/b,1/aT
∗
g;1/b,1/af, φ〉; since this

holds for all φ ∈ L2(R), the conclusion follows. �

Written in terms of the involved sequences, (12.11) says that

∑

m,n∈Z

〈h,EmbTnag〉EmbTnaf =
1

ab

∑

m,n∈Z

〈f, Em/aTn/bg〉Em/aTn/bh.(12.12)

The right-hand side of (12.12) converges unconditionally in L2(R) because
{Em/aTn/bh}m,n∈Z and {Em/aTn/bg}m,n∈Z ∈ �2(Z2) are Bessel sequences,
see Lemma 12.2.2. We state some consequences of Proposition 12.2.3.

Corollary 12.2.4 Let g ∈ L2(R) and a, b > 0 be given, and assume that
{EmbTnag}m,n∈Z is a frame with frame operator S. Then the following hold:

(i) If h ∈ L2(R) and {EmbTnah}m,n∈Z is a Bessel sequence, then

Sh =
1

ab

∑

m,n∈Z

〈g, Em/aTn/bg〉Em/aTn/bh.

(ii) S−1g = 1
ab

∑
m,n∈Z

〈S−1g, Em/aTn/bS
−1g〉Em/aTn/bg.

Both follow from (12.12): for the proof of the first part, let f = g; for the
second part, replace h by g and replace g and f by S−1g.
Janssen obtained similar results with slightly different assumptions in

[427] (Theorem 12.2.5 below). One result only assumes that
{EmbTnag}m,n∈Z is a Bessel sequence, and delivers weak convergence of
the frame operator for certain f ∈ L2(R); the second result requires that
{EmbTnag}m,n∈Z satisfies condition (A), and we obtain an unconditionally
convergent representation.

Theorem 12.2.5 Assume that {EmbTnag}m,n∈Z is a Bessel sequence with
frame operator S. Then, for any f, h ∈ L2(R) for which

∑

m,n∈Z

|〈Em/aTn/bf, h〉|2 <∞

we have

〈Sf, h〉 = 1

ab

∑

m,n∈Z

〈g, Em/aTn/bg〉〈Em/aTn/bf, h〉;

the series converges unconditionally. If {EmbTnag}m,n∈Z also satisfies
condition (A), then for all f ∈ L2(R),

Sf =
1

ab

∑

m,n∈Z

〈g, Em/aTn/bg〉Em/aTn/bf, (12.13)

with unconditional convergence in L2(R).
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Condition (A) even implies that we have the representation

S =
1

ab

∑

m,n∈Z

〈g, Em/aTn/bg〉Em/aTn/b,

with absolute convergence of the series in operator norm. The expres-
sion (12.13) is called the Janssen representation of the frame operator;
by the properties of Feichtinger’s algebra it is available if g ∈ S0.

12.3 The Duals of a Gabor Frame

For any frame which is not a Riesz basis, we know from Lemma 6.3.1 that
there exist other dual frames than the canonical dual frame. When we
consider a structured frame like a Gabor frame, other questions arises nat-
urally. For example - does the canonical dual frame have Gabor structure
as well? And do there exist other dual frames with Gabor structure?
In this section we prove that the canonical dual frame of a Gabor frame

indeed has Gabor structure, and we provide various characterizations of
all dual frames of this form. In Section 12.4 we return to a discussion of
specific properties of the canonical dual frame.
For a Gabor frame {EmbTnag}m,n∈Z with associated frame operator S,

the frame decomposition, see Theorem 5.1.6, shows that

f =
∑

m,n∈Z

〈f, S−1EmbTnag〉EmbTnag, ∀f ∈ L2(R). (12.14)

In order to use the frame decomposition, we need to be able to calculate
the canonical dual frame {S−1EmbTnag}m,n∈Z. This is usually difficult. Via
the following lemma, we will be able to obtain a simplification.

Lemma 12.3.1 Let g ∈ L2(R) and a, b > 0 be given, and assume that
{EmbTnag}m,n∈Z is a Bessel sequence with frame operator S. Then the
following hold:

(i) SEmbTna = EmbTnaS for all m,n ∈ Z.

(ii) If {EmbTnag}m,n∈Z is a frame for L2(R), then

S−1EmbTna = EmbTnaS
−1, ∀m,n ∈ Z.
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Proof. Let f ∈ L2(R), and assume that {EmbTnag}m,n∈Z is a Bessel
sequence. Using the commutator relations (2.25),

SEmbTnaf =
∑

m′,n′∈Z

〈EmbTnaf, Em′bTn′ag〉Em′bTn′ag

=
∑

m′,n′∈Z

〈f, T−naE(m′−m)bTn′ag〉Em′bTn′ag

=
∑

m′,n′∈Z

〈f, e2πina(m
′−m)bE(m′−m)bT(n′−n)ag〉Em′bTn′ag.

Performing the change of variables m′ → m′ + m,n′ → n′ + n and using
the commutator relations again,

SEmbTnaf

=
∑

m′,n′∈Z

e−2πinam′b〈f, Em′bTn′ag〉E(m′+m)bT(n′+n)ag

=
∑

m′,n′∈Z

e−2πinam′b〈f, Em′bTn′ag〉e2πinam
′bEmbTnaEm′bTn′ag

= EmbTnaSf.

This proves (i). In order to prove (ii) we recall that the frame operator is
invertible whenever {EmbTnag}m,n∈Z is a frame; now the result follows by
applying the operator S−1 to both sides of the equality in (i). �

Lemma 12.3.1 has a natural extension where the frame operator is
replaced by the mixed frame operator associated with two Gabor sys-
tems (Exercise 12.3). The result also has important consequences for the
structure of the canonical dual frame of a Gabor frame:

Theorem 12.3.2 Let g ∈ L2(R) and a, b > 0 be given, and assume
that {EmbTnag}m,n∈Z is a Gabor frame with frame operator S. Then the
following hold:

(i) The canonical dual frame also has the Gabor structure and is given
by {EmbTnaS

−1g}m,n∈Z.

(ii) The canonical tight frame associated with {EmbTnag}m,n∈Z is given
by {EmbTnaS

−1/2g}m,n∈Z.

Proof. The result in (i) is an immediate consequence of Lemma 12.3.1.
Furthermore, Lemma 2.4.5 shows that the operator S−1/2 is a limit of poly-
nomials in S−1 in the strong operator topology; therefore, S−1/2 commutes
with EmbTna. Thus, according to the definition, the canonical tight frame
associated with {EmbTnag}m,n∈Z is given by

{S−1/2EmbTnag}m,n∈Z = {EmbTnaS
−1/2g}m,n∈Z;

this proves (ii). �
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The function S−1g is called the canonical dual window or the canoni-
cal dual generator. Via Theorem 12.3.2, the frame decomposition (12.14)
associated with a Gabor frame {EmbTnag}m,n∈Z takes the form

f =
∑

m,n∈Z

〈f, EmbTnaS
−1g〉EmbTnag, ∀f ∈ L2(R). (12.15)

The version (12.15) of the frame decomposition is much more con-
venient than (12.14): instead of calculating the double infinite family
{S−1EmbTnag}m,n∈Z, it is enough to determine the function S−1g and
then apply the modulation and translation operators. The result also gives
a reason that even if {EmbTnag}m,n∈Z contains a Riesz basis as a subfamily,
it might not be an advantage to remove elements from {EmbTnag}m,n∈Z:
the computational benefits from the lattice structure of {(na,mb)}m,n∈Z

will be lost, the operators EmbTna will in general no longer commute with
the frame operator, and it will be much more complicated to compute the
elements in the canonical dual frame.
For overcomplete frames we know from Lemma 6.3.1 that there always

exist other dual frames than the canonical dual frame. If the given frame has
Gabor structure, the dual frames with Gabor structure are of course of par-
ticular interest. Given a frame {EmbTnag}m,n∈Z, any function h ∈ L2(R)
such that {EmbTnah}m,n∈Z is a dual frame is called a dual window or a dual
generator. We also refer to {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z as a pair
of dual Gabor frames. According to general frame theory (Lemma 6.3.2)
the associated frame decompositions take the form

f =
∑

m,n∈Z

〈f, EmbTnah〉EmbTnag (12.16)

=
∑

m,n∈Z

〈f, EmbTnag〉EmbTnah, ∀f ∈ L2(R).

In this section we will provide various characterizations of the dual windows
associated with a given Gabor frame. Having settled the question of exis-
tence of dual pairs of Gabor frames, the next issue is whether it is possible to
construct such pairs with desirable properties. Of course, “desirable prop-
erties” depend on the concrete context, but natural candidates are compact
support of the windows, high regularity, or membership of certain attractive
window classes. All these issues will be addressed in the current chapter.
We know from Theorem 11.3.1 that if {EmbTnag}m,n∈Z is a frame and

ab = 1, then {EmbTnag}m,n∈Z is actually a Riesz basis; by Proposition 4.2.2
this excludes that g ∈ Cc(R). For the case ab < 1 we now show that there
always exist Gabor frames with compactly supported windows of arbitrary
smoothness, with dual windows enjoying the same properties:



298 12 Gabor Frames and Duality

Example 12.3.3 Assume that ab < 1. Take ε ∈ [0, 2−1a] such that
a+ 2ε < 1/b, and choose a function g ∈ L2(R) such that

• supp g ⊆ [0, a+ 2ε];

• g = 1 on [ε, a+ ε];

• g ∈ C∞(R);

• ||g||∞ = 1.

Then the function G(x) :=
∑

n∈Z
|g(x − na)|2 is bounded below by 1 and

bounded above by 3. Using Corollary 11.4.5 it follows that {EmbTnag}m,n∈Z

is a frame with bounds 1/b, 3/b. Letting S denote the frame operator, the
canonical dual frame is given by {EmbTnaS

−1g}m,n∈Z, where S−1g = b
G g.

By construction, S−1g is compactly supported and belongs to C∞(R). �

The pairs of dual frames are characterized in the following consequence
of Theorem 10.1.7. The result is due to Ron and Shen, and it will play the
key role in the construction of explicitly given dual pairs of Gabor frames
in Sections 12.5–12.6.

Theorem 12.3.4 Let g, h ∈ L2(R) and a, b > 0 be given. Two Bessel
sequences {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z form dual frames if and
only if for all n ∈ Z,

∑

k∈Z

g(x− ka− n/b)h(x− ka) = bδn,0, a.e. x ∈ [0, a]. (12.17)

We leave the proof to the reader (Exercise 12.5). Often it is convenient to
split the conditions (12.17) in the case n = 0, yielding

∑

k∈Z

g(x− ka)h(x− ka) = b, a.e. x ∈ [0, a], (12.18)

and the case n ∈ Z \ {0}, yielding
∑

k∈Z

g(x− ka− n/b)h(x− ka) = 0 a.e. x ∈ [0, a]. (12.19)

Theorem 12.3.4 plays an important role in frame theory, not only in the
study of dual pairs of frames. For example, it is often verified that a Gabor
system {EmbTnag}m,n∈Z is a frame by constructing a suitable function
h ∈ L2(R) satisfying the conditions in Theorem 12.3.4; this is, e.g., the
case for the proof of Theorem 11.6.4.
For the rest of this section we will consider various characterizations of

the dual Gabor frames associated with a given Gabor frame. The general
characterization of all dual frames in Theorem 6.3.7 of course also applies to
Gabor frames, but if {EmbTnag}m,n∈Z is an overcomplete frame, not all of
these duals have the Gabor structure (Exercise 12.6). The duals with Gabor



12.3 The Duals of a Gabor Frame 299

structure are characterized in the famous Wexler–Raz Theorem [636]; we
will derive the result as a consequence of Theorem 10.1.7.

Theorem 12.3.5 Let g, h ∈ L2(R) and a, b > 0 be given. Then, if
the two Gabor systems {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z are Bessel
sequences, they are dual frames if and only if

〈h,Em/aTn/bg〉 = 0 for all (m,n) �= (0, 0) and 〈h, g〉 = ab. (12.20)

Proof. The Bessel sequences {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z are
dual frames if and only if the shift-invariant systems {TnaEmbg}m,n∈Z and
{TnaEmbh}m,n∈Z are dual frames. The generators for the two latter systems
are gm = Embg and hm = Embh; by Theorem 10.1.7, they generate dual
frames if and only if

∑

m∈Z

ĝm(ν)ĥm(ν + k/a) = aδk,0, k ∈ Z, a.e. ν ∈ R.

In terms of the functions g and h this is equivalent to
∑

m∈Z

ĝ(ν −mb)ĥ(ν + k/a−mb) = aδk,0, k ∈ Z, a.e. ν ∈ R. (12.21)

We can express this condition in terms of the Fourier coefficients in the
Fourier expansion with respect to {e2πinν/b}n∈Z for the b-periodic functions

φk(ν) :=
∑

m∈Z

ĝ(ν −mb)ĥ(ν + k/a−mb), k ∈ Z :

in fact, (12.21) is equivalent to all Fourier coefficients for φk, k �= 0, being
zero and the Fourier coefficients cn, n ∈ Z, for φ0 being zero for n �= 0 and
equal to a for n = 0. The Wexler–Raz theorem is now a consequence of
the following computation, which yields the n-th Fourier coefficient for the
function φk in the Fourier expansion with respect to {e2πinν/b}n∈Z:

1

b

∫ b

0

φk(ν)e
−2πinν/bdν

=
1

b

∫ b

0

∑

m∈Z

ĝ(ν −mb)ĥ(ν + k/a−mb)e−2πinν/bdν

=
1

b

∫ ∞

−∞
ĝ(ν)ĥ(ν + k/a)e−2πinν/bdν

=
1

b
〈T−k/aĥ, En/bĝ〉 =

1

b
〈ĥ, Tk/aEn/bĝ〉

=
1

b
〈Fh,FEk/aT−n/bg〉 =

1

b
〈h,Ek/aT−n/bg〉.

�
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Note that the assumption of {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z

being Bessel sequences is necessary in Theorem 12.3.5: as shown by
Daubechies [241] there exist functions g, h ∈ L2(R) satisfying (12.20) which
do not generate Bessel sequences, and hence do not form dual frames.
In the terminology used in Section 7.6, the Wexler–Raz theorem char-

acterizes the functions h generating a dual Gabor system of a frame
{EmbTnag}m,n∈Z as the solutions to a moment problem with respect to
the sequence {Em/aTn/bg}m,n∈Z. A more constructive procedure to find
dual windows was given by Li [489], and in [163, 381] it was shown that
the construction actually yields all the dual windows:

Proposition 12.3.6 Let g ∈ L2(R) and a, b > 0 be given, and as-
sume that {EmbTnag}m,n∈Z is a frame for L2(R). Then a Gabor system
{EmbTnah}m,n∈Z is a dual Gabor frame if and only if the function h has
the form

h = S−1g + ϕ−
∑

m,n∈Z

〈S−1g, EmbTnag〉EmbTnaϕ (12.22)

for some function ϕ ∈ L2(R) for which {EmbTnaϕ}m,n∈Z is a Bessel
sequence.

Proof. Applying Lemma 6.3.7 we see that if {EmbTnaϕ}m,n∈Z is a Bessel
sequence, then {EmbTnag}m,n∈Z has the dual frame {km,n}m,n∈Z given by

km,n = S−1EmbTnag + EmbTnaϕ

−
∑

m′,n′∈Z

〈S−1EmbTnag, Em′bTn′ag〉Em′bTn′aϕ

= EmbTna(S
−1g + ϕ)

−
∑

m′,n′∈Z

〈EmbTnaS
−1g, Em′bTn′ag〉Em′bTn′aϕ.

Exactly as in the proof of Lemma 12.3.1 (Exercise 12.3) one shows that
∑

m′,n′∈Z

〈EmbTnaS
−1g, Em′bTn′ag〉Em′bTn′aϕ

= EmbTna

∑

m′,n′∈Z

〈S−1g, Em′bTn′ag〉Em′bTn′aϕ;

thus

km,n = EmbTna

⎛

⎝S−1g + ϕ−
∑

m′,n′∈Z

〈S−1g, Em′bTn′ag〉Em′bTn′aϕ

⎞

⎠ .

This shows that the dual frame {km,n}m,n∈Z indeed has Gabor struc-
ture, with a window of the form (12.22). On the other hand, letting
φ′ ∈ L2(R) denote any function such that {EmbTnaϕ

′}m,n∈Z is a dual
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frame of {EmbTnag}m,n∈Z, taking ϕ := ϕ′ in the formula (12.22) clearly
yields h = ϕ′. �

One can say that the functions ϕ ∈ L2(R) generating Bessel sequences
{EmbTnaϕ}m,n∈Z give a parametrization of the class of dual frames of
{EmbTnag}m,n∈Z maintaining the Gabor structure.
Depending on the specific purpose, various properties of dual frames

might be relevant. Given a Gabor frame {EmbTnag}m,n∈Z it is often im-
portant to search for a dual Gabor frame generated by a function with short
support. For Gabor frames {EmbTng}m,n∈Z with a window supported on
[−1, 1] and translation parameter a = 1 the following result from [180]
guarantees the existence of a dual window with a certain support size,
depending on the parameter b.

Theorem 12.3.7 Let b ∈ [1/2, 1[, and choose N ∈ N such that
N−1
N ≤ b < N

N+1 . Assume that g ∈ L2(R) is supported on [−1, 1] and
that {EmbTng}m,n∈Z is a frame for L2(R). Then {EmbTng}m,n∈Z has
a dual frame {EmbTnh}m,n∈Z, generated by a function h ∈ L2(R) with
supp h ⊆ [−N,N ].

Theorem 12.3.7 has an interesting interpretation in terms of the redun-
dancy of a frame {EmbTng}m,n∈Z with a window supported on [−1, 1] : if
the redundancy is larger than 1 + 1/N, then the frame has a dual window
supported on [−N,N ]. In other words, the guaranteed size of the sup-
port for the dual window is increasing whenever the redundancy decreases.
It would be interesting to generalize the result to arbitrary translation
parameters a > 0 and windows g with an arbitrary support size.
The flexibility in the choice of dual windows has been explored at several

places in the literature, and will also be discussed throughout the current
chapter. For now, remember that the canonical dual frame associated with
any frame minimizes the �2-norm of the coefficients in the frame expan-
sion, see Lemma 5.4.2. However, one might be interested in minimizing
other norms than the �2-norm. A concrete case appears in the paper [249]:
instead of searching for the dual minimizing the �2-norm of the expan-
sion coefficients, the authors find, for a specific operator L on L2(R), a
dual frame {EmbTnah}m,n∈Z, for which ||Lh|| ≤ ||Lϕ|| for all dual frames
{EmbTnaϕ}m,n∈Z.

We end this section by the announced proof of Theorem 11.3.1. The proof
uses Theorem 12.3.2:

Proof of Theorem 11.3.1: Recall from the general frame theory that
we with any frame {fk}∞k=1 can associate a canonical tight frame, see
Theorem 6.1.1. Now, assume that {EmbTnag}m,n∈Z is a frame, and denote
the frame operator by S. By Theorem 12.3.2 the canonical tight frame
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associated with {EmbTnag}m,n∈Z can be rewritten as

{S−1/2EmbTnag}m,n∈Z = {EmbTnaS
−1/2g}m,n∈Z. (12.23)

We first derive an equation, which will play a crucial role in the proof.
Proposition 11.3.4 applied to the function S−1/2g implies that

∑

n∈Z

|S−1/2g(x− na)|2 = b for a.e. x ∈ R. (12.24)

Since

||S−1/2g||2 =

∫ ∞

−∞
|S−1/2g(x)|2dx =

∫ a

0

∑

n∈Z

|S−1/2g(x− na)|2dx,

we conclude that

||S−1/2g||2 = ab. (12.25)

Note that (12.25) is a general result: we only used that {EmbTnag}m,n∈Z

is a frame for L2(R) in the proof.
In order to prove (i), we will show that ab ≤ 1 for the arbitrary given

frame {EmbTnag}m,n∈Z. Now, since {EmbTnaS
−1/2g}m,n∈Z is a tight frame

with frame bounds equal to 1, Exercise 3.6 implies that ||S−1/2g|| ≤ 1.
Combining with the equation (12.25), we obtain that ab ≤ 1 as desired.

For the proof of (ii), assume first that {EmbTnag}m,n∈Z is a Riesz ba-
sis. Then by definition {S−1/2EmbTnag}m,n∈Z is also a Riesz basis, i.e.,
{EmbTnaS

−1/2g}m,n∈Z is a Riesz basis. By construction, this family is also a
tight frame with frame bound 1, so the Riesz bounds areA = B = 1 by The-
orem 5.4.1; in particular, this implies by Theorem 3.6.6 that ||S−1/2g|| = 1.
Again via the equation (12.25), we conclude that ab = 1 as desired.
For the other implication in (ii) we now assume that ab = 1. Then,

via (12.25),

||S−1/2g||2 = ab = 1,

and therefore ||EmbTnaS
−1/2g|| = 1 for all m,n ∈ Z. Using Exercise 3.6, we

conclude that {EmbTnaS
−1/2g}m,n∈Z is an orthonormal basis for H, and

therefore the family

{EmbTnag}m,n∈Z = {S1/2EmbTnaS
−1/2g}m,n∈Z

is a Riesz basis by definition. �

12.4 The Canonical Dual Window

In this section we will consider a Gabor frame {EmbTnag}m,n∈Z with frame
operator S, and analyze the properties of the canonical dual frame,

{S−1EmbTnag}m,n∈Z = {EmbTnaS
−1g}m,n∈Z;
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We will first use the general results for moment problems to find an
alternative description of the generator S−1g for the canonical dual frame.
In the literature the result is known as “the Wexler–Raz dual equals the
canonical frame dual.”

Proposition 12.4.1 Let {EmbTnag}m,n∈Z be a frame with frame opera-
tor S. Then S−1g is the unique minimal-norm solution to the moment
problem

〈h,Em/aTn/bg〉 = δm,0δn,0ab. (12.26)

Letting S̃ denote the frame operator for {Em/aTn/bg}m,n∈Z, we further have

S−1g = abS̃−1g.

Proof. We will need a key result in Gabor analysis, namely, the duality
principle which we will prove in Theorem 13.1.1. Since {EmbTnag}m,n∈Z

is a frame, it implies that {Em/aTn/bg}m,n∈Z is a Riesz sequence, i.e., a
Riesz basis for H := span{Em/aTn/bg}m,n∈Z. By Theorem 7.6.1 and Exer-
cise 7.4, the moment problem (12.26) has a unique solution belonging to
H. This solution is S−1g: in fact, S−1g is a solution by Theorem 12.3.5,
and S−1g ∈ H by Corollary 12.2.4. On the other hand, letting S̃ denote
the frame operator for {Em/aTn/bg}m,n∈Z, Theorem 7.6.2 shows that

S−1g = ab
∑

m,n∈Z

δm,0δn,0S̃
−1Em/aTn/bg = abS̃−1g. (12.27)

All other solutions to (12.26) are obtained by adding an element f ∈ H⊥

to the solution in H. Thus, the special choice (12.27) minimizes the norm
among all solutions to (12.26). �

We can also express the equations in (12.20) via an operator equation.
Let

H : L2(R)→ �2(Z2), Hf = {〈f, Em/aTn/bg〉}m,n∈Z. (12.28)

Note that H is the analysis operator associated with the Gabor system
{Em/aTn/bg}m,n∈Z. In terms of H , (12.20) is equivalent to

Hh = ab{δm,0δn,0}m,n∈Z. (12.29)

Corollary 12.4.2 Let g ∈ L2(R) and a, b > 0 be given, and assume that
{EmbTnag}m,n∈Z is a frame. Then

S−1g = abH∗(HH∗)−1{δm,0δn,0}m,n∈Z. (12.30)

Proof. We again use that {Em/aTn/bg}m,n∈Z is a Riesz sequence; it implies
by Theorem 7.6.1 that the operator H in (12.28) is surjective. Thus, we
know from Theorem 2.5.3 that the minimal-norm solution to (12.29) can
be expressed via the pseudo-inverse of H . Using (2.12), we obtain (12.30),
as desired. �
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Equation (12.30) is known as the Janssen representation of the function
generating the canonical dual frame of {EmbTnag}m,n∈Z.

We can obtain a more concrete expression for S−1g. First we note that
for any sequence {cm,n}m,n∈Z ∈ �2(Z2),

HH∗{cm,n}m,n∈Z =

⎧
⎨

⎩

〈
∑

m′,n′∈Z

cm′,n′Em′/aTn′/bg, Em/aTn/bg

〉⎫
⎬

⎭
m,n∈Z

.

Let {em,n}m,n∈Z be the canonical basis for �2(Z2); that is, em,n is the
sequence in �2(Z2) given by

em,n = {δm,m′δn,n′}m′,n′∈Z.

We now re-index {em,n}m,n∈Z as {ek}∞k=1 in an arbitrary way such that e1
corresponds to e0,0 (Exercise 12.1); denote the corresponding re-indexing of
{Em/aTn/bg}m,n∈Z by {gk}∞k=1. We can then represent HH∗ via its matrix
with respect to {ek}∞k=1, i.e., the bi-infinite matrix whose jk-th entry is
〈HH∗ek, ej〉, and (12.30) takes the form (see Corollary 7.6.3)

S−1g = ab

∞∑

j=1

(HH∗)−1
j,1gj . (12.31)

If ej = em,n and ek = em′,n′ , then

〈HH∗ek, ej〉 = 〈Em′/aTn′/bg, Em/aTn/bg〉,

the Gram matrix for {Em/aTn/bg〉}m,n∈Z. We write for short

(HH∗)m,n,m′,n′ = 〈Em′/aTn′/bg, Em/aTn/bg〉, m, n,m′, n′ ∈ Z; (12.32)

with this notation,

S−1g = ab
∑

m,n∈Z

[(HH∗)−1]m,n,0,0 Em/aTn/bg. (12.33)

Bölcskei and Janssen proved in [98] that the canonical dual window S−1g
inherits attractive decay properties from the window g. This is based on a
fundamental result by Jaffard [414], to which we will refer several times in
the sequel:

Lemma 12.4.3 Suppose that {Ak,�}k,�∈N is an invertible matrix and that
there exist constants C, λ > 0 such that

|Ak,�| ≤ Ce−λ|k−�|, ∀k, � ∈ N.

Then there exist constants C ′, λ′ > 0 such that

|(A−1)k,�| ≤ C′e−λ′|k−�|, ∀k, � ∈ N.

The constants C′, λ′ only depend on inf ||x||=1 ||Ax|| and sup||x||=1 ||Ax||.
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We say that a function g ∈ L2(R) decays exponentially if there exist
constants C, λ > 0 such that

|g(x)| ≤ Ce−λ|x|, a.e. x ∈ R.

In [98], Lemma 12.4.3 is used to prove that if g decays exponentially and
generates an overcomplete Gabor frame {EmbTnag}m,n∈Z, then S−1g also
decay exponentially (possibly with a different exponent λ′). Using Propo-
sition 11.2.5 it follows that if g generates an overcomplete frame, then
exponential decay of ĝ implies exponential decay of F(S−1g).
The same results hold with S−1g replaced by S−1/2g. In particular this

leads to the following important statement about the canonical tight frame
associated with {EmbTnag}m,n∈Z:

Proposition 12.4.4 Let g ∈ L2(R), and assume that g and ĝ decay expo-
nentially. Let a, b > 0 be given and assume that {EmbTnag}m,n∈Z is an
overcomplete frame with frame operator S. Then {EmbTnaS

−1/2}m,n∈Z is

a Parseval frame, for which S−1/2g as well as ̂S−1/2g decay exponentially.

Example 12.4.5 Let g(x) = e−x2

. By Theorem 11.6.1 {EmbTnag}m,n∈Z

is an overcomplete frame for arbitrary parameters a, b > 0 with ab < 1.
Denoting the frame operator by S, the above discussion shows that all the
functions

g, ĝ, S−1g, Ŝ−1g

decay exponentially. That is, the window and its canonical dual window
are well-localized in time and frequency. Also, by Proposition 12.4.4 the
canonical tight frame {EmbTnaS

−1/2g}m,n∈Z has the property that the

window S−1/2g as well as ̂S−1/2g decay exponentially.
Thus, from the point of view of time-frequency localization the Gaussian

and its associated “tight window” S−1/2g are attractive Gabor windows;
from a practical point of view it is less attractive that they do not have com-
pact support, and that S−1/2g and S−1g are not given by easy expressions
in terms of elementary functions. �

Prior to [98], Bölcskei considered in [94] the case where {EmbTnag}m,n∈Z

is rationally oversampled, i.e., ab = p/q for some p, q ∈ N, q ≥ p. He proved
that if g is compactly supported, then S−1g is compactly supported if and
only if the frame operator is a multiplication operator.
In [427] Janssen proved that if {EmbTnag}m,n∈Z is a frame and the win-

dow g belongs to the Schwartz space S, then also S−1g ∈ S. A similar
result holds for the Feichtinger algebra S0: in [349] Gröchenig and Leinert
proved that if {EmbTnag}m,n∈Z is a frame and g ∈ S0, then also S−1g ∈ S0.



306 12 Gabor Frames and Duality

12.5 Explicit Construction of Dual Frame Pairs

In this section and the next we will use Theorem 12.3.4 to construct pairs of
dual Gabor frames with explicitly given windows. The key to the construc-
tions is the observation that if g and h are compactly supported functions,
the condition (12.17) is automatically satisfied for n ∈ Z\{0} whenever the
modulation parameter b is sufficiently small; the reason is that the term
n/b in (12.17) for n �= 0 makes the supports of the involved functions move
apart from each other. Thus we can focus on the equation

∑

k∈Z

g(x− ka)h(x− ka) = b, a.e. x ∈ [0, a]. (12.34)

The key condition in our analysis is that the integer-translates of the win-
dow g forms a partition of unity , see (12.36) below. This condition is
satisfied not only for any B-spline BN , N ∈ N, but also for many other
functions.
We will formulate all the conditions exclusively in terms of conditions on

the window g. We will restrict our attention to dual windows h that are
finite linear combinations of shifts of the window g, i.e.,

h(x) =

N−1∑

n=−N+1

ang(x+ n), (12.35)

for appropriate real coefficients a−N+1, a−N+2, . . . , aN−1. This structure
allows us to control several properties of the dual window h: for example,
compact support of g implies compact support of h, and regularity prop-
erties of g immediately transfers to h. Also, if the window g belongs to
the Schwartz space, the Wiener space, or Feichtinger’s algebra S0, a dual
window of the form (12.35) will belong to the same space. We now state
the first explicit construction. It appeared in [191] as a generalization of
the main result in [164]. Note that for convenience we restrict our attention
to the case a = 1; for generalizations to arbitrary translation parameters,
we refer to the original sources [164, 191].

Theorem 12.5.1 Let N ∈ N. Let g ∈ L2(R) be a real-valued bounded
function with supp g ⊂ [0, N ], for which

∑

n∈Z

g(x− n) = 1. (12.36)

Let b ∈]0, 1
2N−1 ]. Consider any real scalar sequence {an}N−1

n=−N+1 for which

a0 = b and an + a−n = 2b, n = 1, 2, . . .N − 1, (12.37)

and define h ∈ L2(R) by (12.35). Then g and h generate dual frames
{EmbTng}m,n∈Z and {EmbTnh}m,n∈Z for L2(R).

Proof. Note that with the definition (12.35), we have

supp h ⊂ [−N + 1, 2N − 1].
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Thus the condition (12.17) is satisfied for n ∈ Z \ {0} if b ∈]0, 1
2N−1 ] and

we only need to check that

b =
∑

k∈Z

g(x+ k)h(x+ k), x ∈ [0, 1];

due to the compact support of g, this is equivalent to

b =

N−1∑

k=0

g(x+ k)h(x+ k), x ∈ [0, 1]. (12.38)

To check that (12.38) holds, let

gn(x) :=

N−1∑

k=0

g(x+ k)g(x+ k + n).

Note that for x ∈ [0, 1] and n = 1, 2, . . . , N − 1,

g−n(x) =

N−1∑

k=0

g(x+ k)g(x+ k − n) =

N−1∑

k=n

g(x+ k)g(x+ k − n)

=

N−1−n∑

�=0

g(x+ �+ n)g(x+ �) =

N−1∑

�=0

g(x+ �)g(x+ �+ n)

= gn(x).

Putting this and (12.35) into the right-hand side of (12.38), we have that
for x ∈ [0, 1],

N−1∑

k=0

g(x+ k)h(x+ k) =

N−1∑

k=0

g(x+ k)

N−1∑

n=−N+1

ang(x+ k + n)

=
N−1∑

n=−N+1

an

N−1∑

k=0

g(x+ k)g(x+ k + n)

=

N−1∑

n=−N+1

angn(x)

= a0g0(x) +
N−1∑

n=1

(an + a−n)gn(x)

= b

[

g0(x) + 2

N−1∑

n=1

gn(x)

]

. (12.39)
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On the other hand, for x ∈ [0, 1] the partition of unity property implies
that

N−1∑

n=−N+1

gn(x) =

N−1∑

n=−N+1

N−1∑

k=0

g(x+ k)g(x+ k + n)

=

N−1∑

k=0

g(x+ k)

N−1∑

n=−N+1

g(x+ k + n)

=

N−1∑

k=0

g(x+ k) = 1.

Since g−n(x) = gn(x) for x ∈ [0, 1] and n = 1, 2, . . . , N − 1, it follows that

g0(x) + 2
∑N−1

n=1 gn(x) = 1 for x ∈ [0, 1]. This together with (12.39) implies
that

N−1∑

k=0

g(x+ k)h(x+ k) = b for x ∈ [0, 1].

Thus (12.38) holds and the proof is completed. �

A special choice of the coefficients an leads to the dual window considered
already in [164]. For a given window g, this dual window has the shortest
support among the ones in Theorem 12.5.1:

Corollary 12.5.2 Under the assumptions in Theorem 12.5.1, the function

h(x) = 2bg(x) + b

N−1∑

n=1

g(x+ n)

generates a dual frame of {EmbTng}m,n∈Z.

Another choice of the coefficients an in (12.37) implies that the dual
window h inherits symmetry properties from the window g:

Corollary 12.5.3 Under the assumptions in Theorem 12.5.1, the function

h(x) = b

N−1∑

n=−N+1

g(x+ n) (12.40)

generates a dual frame of {EmbTng}m,n∈Z. The function h satisfies that
h = b on the support of g. Furthermore, if g is symmetric, then h is
symmetric.

Proof. The function in (12.40) appears by the choice an = b in (12.37).
For x ∈ [0, N ], the partition of unity property together with the compact
support of g implies that h(x) = b. It is clear that h is symmetric in case
g is symmetric. �
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The conditions in Theorem 12.5.1 are tailored to the properties of the
(shifted) B-splines B̃N , N ∈ N, see Appendix A.8. The B-splines B̂2 and

B̂3 are shown on Figure 12.1. In other words, Theorem 12.5.1 applies
to g := B̃N for any N ∈ N, and we obtain dual pairs of Gabor frames
{EmbTng}m,n∈Z and {EmbTnh}m,n∈Z with the following properties:

• The window g and the dual window h are explicitly given splines with
compact support;

• For N ≥ 2, the window g and the dual window h belong to
Feichtingers algebra S0.

• Arbitrary high regularity of the window g and the dual window h can
be obtained by choosing N sufficiently large; however, this increases
the support of the windows as well;

• The redundancy of the frame {EmbTng}m,n∈Z for the choice g = B̃N

is b−1 ≥ 2N − 1; thus, for this particular construction high regularity
of the window implies high redundancy of the frame {EmbTng}m,n∈Z.

Let us look at a concrete example.

Example 12.5.4 For the B-spline

B̃2(x) =

⎧
⎨

⎩

x, x ∈ [0, 1[,
2− x, x ∈ [1, 2[,
0, x /∈ [0, 2[,

we can use Theorem 12.5.3 for b ∈]0, 1/3]. For b = 1/3 we obtain the
symmetric dual

h2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1/3x+ 1/3, x ∈ [−1, 0[,
1/3, x ∈ [0, 2[,
1− 1/3x, x ∈ [2, 3[,
0, x /∈ [−1, 3[.

(12.41)

See Figure 12.2(a). For the B-spline

B̃3(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1/2 x2, x ∈ [0, 1[,
−3/2 + 3x− x2, x ∈ [1, 2[,
9/2− 3x+ 1/2 x2, x ∈ [2, 3[,
0, x /∈ [0, 3[,

and b = 1/5, we obtain the symmetric dual

h3(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1/10 x2 + 2/5 x+ 2/5, x ∈ [−2,−1[,
−1/10 x2 + 1/5, x ∈ [−1, 0[,
1/5, x ∈ [0, 3[,
−1/10 x2 + 3/5 x− 7/10, x ∈ [3, 4[,
1/10 x2 − x+ 5/2, x ∈ [4, 5[,
0, x /∈ [0, 5[.

(12.42)

See Figure 12.2(b). �
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Figure 12.1. The B-spline B̃2 and the dual window h in Corollary 12.5.2 for
b = 1/3 (figure to the left); and the B-spline B̃3 and the dual window h in
Corollary 12.5.2 for b = 1/5.
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Figure 12.2. (a) The B-spline B̃2 and the dual window h2 in (12.41). (b) The

B-spline B̃3 and the dual window h3 in (12.42).

12.6 Windows with Short Support and High
Regularity

In Section 12.5 we saw a method for constructing dual pairs of frames
based on a window that satisfies the partition of unity condition. We also
saw that arbitrary regularity of the window and the dual window can be
obtained by using B-splines of sufficiently high order; however, the price to
pay for high regularity is that we obtain windows with large support, and
also that the resulting frames are highly redundant.
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In this section we will discuss two constructions that appeared in [185].
One of them yields classes of dual Gabor frames {EmbTng}m,n∈Z,
{EmbTnh}m,n∈Z for which

• The window g and its dual window h are given explicitly;

• g and the dual window h are both supported on [0, 2];

• g and h can be constructed with arbitrary regularity;

• The redundancy of {EmbTng}m,n∈Z can be as low as 2.

The second construction has similar properties, except that the dual win-
dow h has slightly larger support and that the redundancy of the frames is
at least 3. These constructions show that it actually is possible to obtain
high regularity of the windows without having large support, and without
introducing a high redundancy.
We will consider functions g, h of the form

g = Gχ[0,N ], h = H χ[0,N ] (12.43)

for some N ∈ N and some trigonometric polynomials G,H. By Corol-
lary 11.4.3 the Gabor systems associated with such functions are Bessel
sequences, regardless of the chosen translation and modulation parameters.
The compact support of the functions g and h also implies that the dual-
ity condition (12.17) automatically is satisfied for n �= 0 if we choose the
modulation parameter b such that b ≤ 1/N.

Thus, parallel to the case in Section 12.5 the main issue is that the
function P := GH must satisfy the condition

∑
n∈Z

P (x+n)χ[0,N ](x+n) =
b. Discarding the factor b then leads to the partition of unity constraint

∑

n∈Z

P (x+ n)χ[0,N ](x+ n) = 1, x ∈ R. (12.44)

Motivated by this we will now analyze entire functions P : C → C

satisfying the condition (12.44). We will first show that for such functions
P the restriction to R is N -periodic. This implies that we have an extra
tool at our disposal, namely Fourier expansions.

Lemma 12.6.1 Let N ∈ N. Then an entire function P satisfies (12.44) if
and only if its restriction to R is N -periodic and the Fourier coefficients ck
in the expansion

P (x) =
∑

k∈Z

cke
2πikx/N , x ∈ R, (12.45)

satisfy that ck = 1
N δk,0 for k ∈ NZ.

Proof. Assume first that (12.44) holds. Then, for x ∈ [0, 1],

P (x) + P (x+ 1) + · · ·+ P (x+N − 1) = 1. (12.46)
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Since P is an entire function, (12.46) then holds for all x ∈ R. Doing
the similar calculation with x replaced by x + 1 and subtracting the two
expressions shows that P (x+N) = P (x), ∀x ∈ [0, 1]. The same calculation
works with [0, 1] replaced by any interval [n, n+1], so we conclude that the
restriction of P to R is N -periodic. Writing P as the Fourier series (12.45),
the equation (12.46) takes the form

∑

k∈Z

ck

[

1 + e2πik/N + · · ·+
(
e2πik/N

)N−1
]

e2πikx/N = 1. (12.47)

We note that

1 + e2πik/N + · · ·+
(
e2πik/N

)N−1

=

{
N, k ∈ NZ

0, k /∈ NZ.
(12.48)

From (12.47) and (12.48), we see that ck = 1
N δk,0 for k ∈ NZ. Conversely,

if P is N -periodic and satisfies that ck = 1
N δk,0 for k ∈ NZ, then for

x ∈ [0, 1],

∑

n∈Z

P (x+ n)χ[0,N ](x+ n) =

N−1∑

n=0

P (x+ n)

=
∑

k∈Z

ck

[

1 + e2πik/N + · · ·+
(
e2πik/N

)N−1
]

e2πikx/N = 1

by (12.48). By periodicity (12.44) holds for all x ∈ R. �

Remember that our ultimate goal is to construct windows g, h of the
form (12.43), with desired regularity. This means that we also need that the
function Pχ[0,N ] = GHχ[0,N ] satisfies certain regularity conditions. So far,
Lemma 12.6.1 shows that Pχ[0,N ] satisfies the partition of unity condition
if we put restrictions on the Fourier coefficients ck for the periodic function
P for k ∈ NZ. No restriction appears on the other Fourier coefficients –
and this is exactly the freedom we will use in order to construct functions
P such that Pχ[0,N ] has desired regularity. The following result from [185]
characterizes the regularity that can be obtained.

Theorem 12.6.2 Let N ∈ N. Assume that P is an N -periodic entire func-
tion satisfying that ck = 1

N δ0,k, k ∈ NZ, and that the restriction of P to R

is real-valued. Then the following hold.

(a) There does not exist P of this form such that Pχ[0,N ] ∈ C∞(R);

(b) Fix L ∈ N. Then Pχ[0,N ] ∈ CL−1(R) if and only if

P (x) =
(
eπix/N sin(πx/N)

)L

AL(x) (12.49)

for an N -periodic entire function AL(x) :=
∑

k∈Z
ake

2πikx/N .
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Proof. In order to prove (a), we note that if Pχ[0,N ] belongs to C∞(R), all
the derivatives at x = 0 vanish. But P is an entire function and therefore
equal to its Taylor series, so this would imply that P is identically zero,
which is a contradiction. For the proof of (b), fix L ∈ N. The “if” impli-
cation is clear, so suppose that Pχ[0,N ] ∈ CL−1(R). We use induction to
show (12.49). First, let D denote the differentiation operator and observe
that P (0) = DP (0) = · · · = DL−1P (0) = 0. Since P (0) =

∑
k∈Z

ck = 0, we
have

P (x) =
∑

k �=0

ck(e
2πkx/N − 1).

Define P+ and P− by

P+(x) :=
∑

k∈N

ck(e
2πikx/N − 1), P−(x) :=

∑

k∈N

c−k(e
−2πkix/N − 1).

Then we see that

P+(x) =
∑

k∈N

ck(e
2πix/N − 1)

k−1∑

�=0

e2πi�x/N

= eπix/N sin(πx/N)

(

2i
∑

k∈N

ck

k−1∑

�=0

e2πi�x/N

)

=: eπix/N sin(πx/N)Λ+(x).

Similarly,

P−(x) = eπix/N sin(πx/N)

(

−2i
∑

k∈N

c−k

k∑

�=1

e−2πi�x/N

)

=: eπix/N sin(πx/N)Λ−(x).

Then we have

P (x) = P+(x) + P−(x) = eπix/N sin(πx/N)A1(x),

where A1(x) := Λ+(x)+Λ−(x) is an N -periodic function. In order to arrive
at (12.49) we will now inductively assume that, for some 1 ≤ � ≤ L− 1,

P (x) =
(
eπix/N sin(πx/N)

)�

A�(x) (12.50)

for an N -periodic entire function A�. By the Leibniz formula for the �-th
derivative of a product, we have

D�P (x) =
1

(2i)�

�∑

k=0

(
�

k

)

Dk
(
e2πix/N − 1

)�

D�−kA�(x). (12.51)

Since Dk
(
e2πix/N − 1

)�
= �(� − 1) · · · (� − k + 1)

(
e2πix/N − 1

)�−k ( 2πi
N

)k
,

we have Dk
(
e2πix/N − 1

)� |x=0 = �!
(
2πi
N

)�
δ�,k. It follows from (12.51) that
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D�P (0) = �!
(2i)�

(
2πi
N

)�
A�(0). By assumption D�P (0) = 0, so we conclude

that A�(0) = 0. By an argument similar to the case P (0) = 0, we see that

A�(x) = eπix/N sin(πx/N)Λ�+1(x)

for an N -periodic entire function Λ�+1(x). This together with (12.50)
leads to

P (x) =
(
eπix/N sin(πx/N)

)�+1

Λ�+1(x),

which completes the induction. �
Motivated by the desire to obtain windows with short support we will

now restrict our attention to the case N = 2; the reader is referred to
[185] for results covering the case N ≥ 3. The following proposition shows
that if we choose a trigonometric polynomial Q such that Qχ[0,2] yields a
partition of unity and belongs to C1(R), then we can generate polynomials
that yield higher regularity: more precisely, for any L ∈ N we can find
an explicitly given trigonometric polynomial P such that Pχ[0,2] has the
partition of unity property and belongs to C2L−1(R).

Proposition 12.6.3 Let N = 2. Consider a real-valued trigonometric
polynomial Q(x) =

∑
k cke

πikx with ck = 1
2δk,0, k ∈ 2Z. Given L ∈ N,

define a trigonometric polynomial P by

P (x) := QL(x)

L−1∑

k=0

(
2L− 1

k

)

QL−1−k(x)Qk(x+ 1). (12.52)

Then Pχ[0,2] satisfies the partition of unity property. If Qχ[0,2] ∈ C1(R),
then Pχ[0,2] ∈ C2L−1(R).

Proof. Note that Qχ[0,2] satisfies the partition of unity property by
Lemma 12.6.1. Using the binomial formula, we have

1 = (Q(x)+Q(x+ 1))
2L−1

=

2L−1∑

k=0

(
2L− 1

k

)

Q2L−1−k(x)Qk(x+1). (12.53)

Take P as in (12.52). Then

P (x) =

L−1∑

k=0

(
2L− 1

k

)

Q2L−1−k(x)Qk(x+ 1).

Using the 2-periodicity of Q implies that

P (x+ 1) =

L−1∑

k=0

(
2L− 1

k

)

Q2L−1−k(x+ 1)Qk(x)

=

2L−1∑

�=L

(
2L− 1

�

)

Q�(x+ 1)Q2L−1−�(x).
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By (12.53), we have P (x) + P (x + 1) = 1, so Pχ[0,2] satisfies the par-
tition of unity property, as desired. Furthermore, if Qχ[0,2] ∈ C1(R),

then by Theorem 12.6.2 (b) we know that Q(x) = sin2(πx/2)eπixA(x)
for some 2-periodic entire function (actually a trigonometric polynomial)
A. Using (12.52), it follows that

P (x) = sin2L(πx/2)eπixLÃ(x)

for a 2-periodic entire function (trigonometric polynomial) Ã. By Theo-
rem 12.6.2 (b) we conclude that Pχ[0,2] ∈ C2L−1(R). �

In order to construct partition of unities based on functions with short
support and high regularity, we just need to provide an example of a
trigonometric polynomialsQ satisfying the conditions in Proposition 12.6.3:

Example 12.6.4 Let

Q(x) := sin2(πx/2) =

(
eiπx/2 − e−iπx/2

2i

)2

= −1

4
eπix +

1

2
− 1

4
e−πix.

Then Q has the form described in Proposition 12.6.3, and Qχ[0,2] ∈ C1(R).
Thus, for any L ∈ N we can use the procedure in Proposition 12.6.3 to con-
struct real-valued trigonometric polynomials P such that Pχ[0,2] satisfies
the partition of unity condition and belongs to C2L−1(R). �

Let us now turn to the frame constructions. We first note that the con-
struction of the trigonometric polynomial P in Proposition 12.6.3 implies
that Pχ[0,2] has exactly the properties required in Theorem 12.5.1, com-
bined with desired regularity. Thus, we immediately obtain a construction
of a pair of dual Gabor frames:

Corollary 12.6.5 Let L ∈ N take the trigonometric polynomial Q as in
Proposition 12.6.3, and let

P (x) := QL(x)

L−1∑

k=0

(
2L− 1

k

)

QL−1−k(x)Qk(x+ 1).

Let b ∈]0, 1/3] and assume that a0 = b, a1+ a−1 = 2b. Then the functions

g(x) := (Pχ[0,2])(x) and h(x) :=
1∑

n=−1

an(Pχ[0,2])(x + n) (12.54)

belong to C2L−1(R) and generate dual Gabor frames {EmbTng}m,n∈Z and
{EmbTnh}m,n∈Z for L2(R).

The frames in Corollary 12.24 are generated by windows that are sup-
ported on [0, 2], the dual windows have support within [−1, 3] regardless of
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the desired regularity, and by taking b = 1/3 the redundancy is just 3. Let
us consider a concrete example based on the function Q in Example 12.6.4:

Example 12.6.6 Let L = 2, b ∈]0, 1/3], and Q(x) := sin2(πx/2). Define

P (x) = sin4(πx/2)

1∑

k=0

(
3

k

)

sin2(1−k)(πx/2) sin2k(π(x + 1)/2).

Then g := Pχ[0,2] and h defined as in (12.54) belong to C3(R) and gener-
ate dual Gabor frames {EmbTng}m,n∈Z and {EmbTnh}m,n∈Z for L2(R). In
Figure 12.3, we plot g and h for the choice b = a−1 = a0 = a1 = 1/3. �

Our final construction shows that we can even obtain a pair of dual
Gabor frames, generated by windows that are both supported on [0, 2],
and with redundancy as low as 2. We will formulate a concrete version of
the result, where we take the function Q as in Example 12.6.4:

Corollary 12.6.7 Let L1, L2 ∈ N, and fix b ∈]0, 1
2 ]. Take Q(x) :=

sin2(πx/2). Define

g(x) = sin2L1(πx/2)χ[0,2](x)

and

h(x) = b sin2L2(πx/2)×
(

L1+L2−1∑

k=0

(
2L1+2L2−1

k

)

QL1+L2−1−k(x)Qk(x+1)

)

χ[0,2](x).

Then g ∈ C2L1−1(R), h ∈ C2L2−1(R), and the functions {EmbTng}m,n∈Z

and {EmbTnh}m,n∈Z form a pair of dual frames.

Proof. Given L1, L2 ∈ N, let L := L1 + L2. Let Q(x) := sin2(πx/2),
and consider the trigonometric polynomial P in (12.52). Then Pχ[0,2] ∈
C2(L1+L2)−1(R) and satisfies the partition of unity condition. Since P = gh,
it follows that the duality condition (12.17) is satisfied for n = 0. The choice
of b and the support sizes for g and h shows that (12.17) holds for n �= 0
as well. �

Figure 12.4 shows the windows g and h in Corollary 12.6.7 for L1 = L2 =
2, b = 1/2.
Note that construction of Gabor frames based on trigonometric poly-

nomials appears at other places in the literature. In [244], Daubechies,
Grossmann, and Meyer construct a tight Gabor frame based on the
function g(x) = cos(x)χ[−π/2,π/2](x), which is just a shifted and scaled
version of the function sin(πx/2)χ[0,2]. Also, in [107], the authors consider
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Figure 12.3. (a) The window g in Example 12.6.6. (b) The dual window h with
b = a−1 = a0 = a1 = 1/3.
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Figure 12.4. The windows g and h in Corollary 12.6.7 for L1 = L2 = 2, b = 1/2

frames generated by functions of the form gk(x) = sink(πx/3)χ[0,3](x) for
parameters k ∈ N. Interestingly, the results in [107] show that gk gen-
erates a frame for all b ∈]0, 1/3] and all k ∈ N; but only for k < 6
there is a dual Gabor frame {EmbTnh}m,n∈Z for a function of the form
h(x) = a0gk(x) + a1gk(x+ 1) + a2gk(x+ 2).
Also the work by I. Kim [453, 454] deals with construction of trigono-

metric pairs of dual frames. Let m ∈ N and consider the function g(x) :=
cosm+1(πx/2)χ[−1,1]. Then Kim shows that there exists a trigonometric
polynomial h of degree 3m+1 such that h ∈ Cm(R) and g, h generate dual
frames (with translation parameter a = 1 and sufficiently small modulation
parameters b). Symmetry of g and h is built into the construction, and the
redundancy can go down to two.
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Thus, the construction in [453, 454] has similar features as the con-
struction presented here, except that it is less explicit with regard to the
dual window. Note that [453, 454] also contains results about the higher
dimensional case.
The construction by I. Kim is similar to the work by Laugesen [479] with

respect to the obtained properties. The main difference is that the construc-
tions by Laugesen deal with polynomial splines rather than trigonometric
splines.

12.7 Extension of Bessel Sequences to Dual Pairs

In Theorem 6.2.1 we saw that any Bessel sequence {fk}∞k=1 in a separa-
ble Hilbert space can be extended to a tight frame {fk}∞k=1 ∪ {pj}j∈J . If
{fk}∞k=1 has a certain structure, it is natural to ask for the sequence {pj}j∈J

to have the same structure. In the paper [507], Li and W. Sun showed that
if a Gabor system {EmbTnag1}m,n∈Z is a Bessel sequence in L2(R) and
ab ≤ 1, then indeed there exists a Gabor system {EmbTnag2}m,n∈Z such
that {EmbTnag1}m,n∈Z∪{EmbTnag2}m,n∈Z is a tight frame for L2(R). This
naturally raises the next question: if the window g1 has certain desirable
properties, can we choose g2 to have similar properties? For example, if g1
has compact support, can we always choose g2 to have compact support
as well? In [507] a positive answer to this question is obtained, provided
that the support size of the given window g1 satisfies that |supp g1| ≤ b−1.
Based on Theorem 6.4.1 and following [183] we will now consider the sim-
ilar question of extension of a pair of Gabor Bessel sequences to a pair of
dual Gabor frames. In particular, we will show that if the given windows
have compact support and ab ≤ 1, we can always extend the Bessel systems
to dual pairs of Gabor systems using windows with compact support; that
is, the extension to a dual pair of frames removes the support condition
that appears in the extension to a tight frame.

Theorem 12.7.1 Let {EmbTnag1}m,n∈Z and {EmbTnah1}m,n∈Z be Bessel
sequences in L2(R), and assume that ab ≤ 1. Then the following hold:

(i) There exists g2, h2 ∈ L2(R) such that {EmbTnag1}m,n∈Z∪
{EmbTnag2}m,n∈Z and {EmbTnah1}m,n∈Z ∪ {EmbTnah2}m,n∈Z form
a pair of dual frames for L2(R).

(ii) If g1 and h1 have compact support, the functions g2 and h2 can be
chosen to have compact support.

Proof. In order to prove (i), let T and U denote the synthesis
operators for {EmbTnag1}m,n∈Z and {EmbTnah1}m,n∈Z, respectively. Let
{EmbTnar1}m,n∈Z, {EmbTnar2}m,n∈Z denote any pair of dual frames for
L2(R); for the case ab < 1, the existence of such a pair is guaranteed
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by Example 12.3.3, and for the case ab = 1 we leave the construc-
tion to the reader (Exercise 12.7). By the proof of Theorem 6.4.1,
{EmbTnag1}m,n∈Z ∪ {(I − TU∗)EmbTnar1}m,n∈Z and {EmbTnah1}m,n∈Z ∪
{EmbTnar2}m,n∈Z are dual frames for L2(R). Thus we only need to show
that {(I − TU∗)EmbTnar1}m,n∈Z has Gabor structure. Note that

(I − TU∗)f = f −
∑

m,n∈Z

〈f, EmbTnah1〉EmbTnag1, f ∈ L2(R). (12.55)

By a similar calculation as in the proof of Lemma 12.3.1(i) one can
show (Exercise 12.3) that the operator I − TU∗ commutes with the
time-frequency shift operators EmbTna. This proves that {(I − TU∗)
EmbTnar1}m,n∈Z indeed has Gabor structure and concludes the proof of (i).

We now prove (ii). Take the functions r1 and r2 in the proof of (i) to
be compactly supported; the possibility of this is again guaranteed by
Example 12.3.3 and Exercise 12.7. Then we just need to show that the
function g2 = (I − TU∗)r1 is compactly supported. Due to the compact
support of the functions r1 and h1 there exists a number N such that

〈r1, EmbTnah1〉 = 0, ∀m ∈ Z if n /∈ [−N,N ].

Thus, by (12.55),

(I − TU∗)r1 = r1 −
∑

m,n∈Z

〈r1, EmbTnah1〉EmbTnag1

= r1 −
N∑

n=−N

∑

m∈Z

〈r1, EmbTnah1〉EmbTnag1, (12.56)

which is clearly compactly supported. �

In continuation of Theorem 12.7.1 one can show that if g1, h1 ∈ C∞(R),
then it is also possible to choose g2, h2 ∈ C∞(R); we refer to [183] for a
proof.

12.8 Approximately Dual Gabor Frames

Let us return to the general conditions for two Gabor systems being dual
frames, see Theorem 12.3.4. It was observed by Christensen and Lauge-
sen [192] that the deviation from equality in (12.18) and (12.19) gives
a measure for “how far away” two Bessel sequences {EmbTnag}m,n∈Z

and {EmbTnah}m,n∈Z are from being dual frames. Given two functions
g, h ∈ L2(R) and two parameters a, b > 0 such that {EmbTnag}m,n∈Z and
{EmbTnah}m,n∈Z are Bessel sequences, denote the corresponding synthesis
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operators by T, respectively, U, see (12.4) and (12.5). Then

||I − UT ∗|| = sup
f∈H,||f ||=1

∣
∣
∣
∣

∣
∣
∣
∣f −

∑

m,n∈Z

〈f, EmbTnag〉EmbTnah

∣
∣
∣
∣

∣
∣
∣
∣.

Proposition 12.8.1 Let g, h be functions in the Wiener space W and
consider two parameters a, b > 0. Then

‖I − UT ∗‖ ≤ 1

b

⎡

⎣
∥
∥
∥b−

∑

k∈Z

TakgTakh
∥
∥
∥
∞

+
∑

n�=0

∥
∥
∥
∑

k∈Z

Tn/b+akgTakh
∥
∥
∥
∞

⎤

⎦ .

Proof. The assumption of g, h belonging to the Wiener space implies by
Proposition 11.5.2 that {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z are Bessel
sequences. We will now consider the Walnut representation of the mixed
frame operator associated with {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z,
see (12.6). According to Theorem 12.2.1, for any f ∈ L2(R),

UT ∗f(·) = 1

b

∑

n∈Z

(
∑

k∈Z

Tn/b+akg(·)Takh(·)
)

Tn/bf(·).

Thus, by pulling out the term corresponding to n = 0 and using the triangle
inequality,

‖f − UT ∗f‖

≤
∥
∥
∥
(
1− 1

b

∑

k∈Z

Takg(·)Takh(·)
)
f
∥
∥
∥

+
1

b

∥
∥
∥
∑

n�=0

(∑

k∈Z

Tn/b+akg(·)Takh(·)
)
Tn/bf

∥
∥
∥

≤ 1

b

∥
∥
∥b−

∑

k∈Z

TakgTakh
∥
∥
∥
∞
‖f‖+ 1

b

∑

n�=0

∥
∥
∥
∑

k∈Z

Tn/b+akgTakh
∥
∥
∥
∞
‖f‖,

which concludes the proof. �

Note that Proposition 12.8.1 connects to the discussion of approxi-
mately dual frames in Section 6.5. For further results about Gabor systems
and approximately dual frames, we refer to [192] and the paper [279] by
Feichtinger, Grybos & Onchis; the more general case of a nonstationary
Gabor system is treated in the paper [258] by Dörfler & Matusiak.

12.9 Tight Gabor frames

Already in Corollary 5.1.7 we saw that tight frames provide a way of obt-
aining convenient frame decompositions. Fortunately, tight Gabor frames
exist and will be characterized in Theorem 12.9.2.
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Lemma 12.9.1 Let g, h ∈ L2(R) and a, b > 0 be given. Fix n ∈ Z. Then

(i) h is orthogonal to EmbTnag for all m �= 0 if and only if there is a
constant C so that

∑

k∈Z

h(x− k/b)g(x− k/b− na) = C, a.e. x ∈ R.

(ii) h is orthogonal to EmbTnag for all m ∈ Z if and only if
∑

k∈Z

h(x− k/b)g(x− k/b− na) = 0, a.e. x ∈ R.

Proof. Lemma 11.2.2 shows that for any m,n ∈ Z,

〈h,EmbTnag〉 =
∫ 1/b

0

∑

k∈Z

h(x− k/b)g(x− k/b− na)e−2πimbx dx.

Since {b1/2e2πimb}m∈Z is an orthonormal basis for L2(0, 1/b), it follows that
for a given n ∈ Z, the equation 〈h,EmbTnag〉 = 0 holds for all m ∈ Z if
and only if

∑
k∈Z

h(x − k/b)g(x− k/b− na) = 0, a.e. x ∈ [0, 1/b]. Since

x �→
∑

k∈Z
h(x−k/b)g(x− k/b− na) is periodic with period 1/b this proves

(ii). The statement (i) also follows from the expression for 〈h,EmbTnag〉. �

We now state equivalent conditions for {EmbTnag}m,n∈Z being a tight
frame. The equivalence (i)⇔(ii) below actually follows from the characteri-
zation in Theorem 10.1.7 of shift-invariant systems generating tight frames
(Exercise 12.8), but we include a direct proof.

Theorem 12.9.2 Let g ∈ L2(R) and a, b > 0 be given. The following are
equivalent:

(i) {EmbTnag}m,n∈Z is a tight frame for L2(R) with frame bound A = 1.

(ii) We have

(a) G(x) :=
∑

n∈Z
|g(x− na)|2 = b, a.e. x ∈ R,

(b) Gk(x) :=
∑

n∈Z
g(x − na)g(x− na− k/b) = 0, a.e. x ∈ R for

all k �= 0.

(iii) g ⊥ Em/aTn/bg for all (m,n) �= (0, 0), and ‖g‖2 = ab.

(iv) {Em/aTn/bg}m,n∈Z is an orthogonal sequence and ‖g‖2 = ab.

Moreover, when at least one of (i)–(iv) holds, {EmbTnag}m,n∈Z is an
orthonormal basis for L2(R) if and only if ‖g‖ = 1.

Proof. (i)⇒ (ii): Assume {EmbTnag}m,n∈Z is a tight frame for L2(R) with
frame bound A = 1. For any function f ∈ L2(R) which is supported on an
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interval of length at most 1/b we see that f(x)f(x− k/b) = 0 for all x ∈ R

and all k ∈ Z \ {0}. Via Lemma 11.4.1,
∫ ∞

−∞
|f(x)|2 dx =

∑

m,n∈Z

|〈f, EmbTnag〉|2

=
1

b

∫ ∞

−∞
|f(x)|2G(x) dx.

Since this equality holds for all f ∈ L2(I), for any interval I of length at
most 1/b, it follows that G(x) = b for a.e. x ∈ R. Therefore

∑

m,n∈Z

|〈f, EmbTnag〉|2 =
1

b

∫ ∞

−∞
|f(x)|2G(x) dx

for all functions f ∈ L2(R). Using Lemma 11.4.1 again, we have for all
bounded, compactly supported f ∈ L2(R),

1

b

∑

k �=0

∫ ∞

−∞
f(x)f(x− k/b)

∑

n∈Z

g(x− na)g(x− na− k/b)dx = 0.

A change of variable shows that the contribution in the above sum arising
from any value of k is the complex conjugate of the contribution from the
value −k. Therefore

∞∑

k=1

Re

(∫ ∞

−∞
f(x)f(x−k/b)

∑

n∈Z

g(x−na)g(x−na−k/b)dx
)

= 0. (12.57)

Now fix k0 ≥ 1 and let I be any interval in R of length at most 1/b. Let
arg(Gk0 (x)) denote an argument for the complex number Gk0(x) and define
a function f ∈ L2(R) by f(x) = e−iarg(Gk0

(x)), x ∈ I, f(x− k0/b) = 1 for
x ∈ I, and f(x) = 0 otherwise. Then, by (12.57),

0 =

∞∑

k=1

Re

(∫ ∞

−∞
f(x)f(x− k/b)

∑

n∈Z

g(x− na)g(x− na− k/b) dx

)

= Re

(∫ ∞

−∞
f(x)f(x− k0/b)Gk0(x) dx

)

=

∫

I

|Gk0(x)| dx.

It follows that Gk0(x) = 0, a.e. on I. Since I was an arbitrary interval of
length at most 1/b, we conclude that Gk0 = 0. A direct computation shows
that G−k0(x) = Gk0(x+ k0/b) = 0, and we have proved statement (b) in
(ii) for all k �= 0.
(ii)⇒ (i): The assumptions in (ii) imply, again by Lemma 11.4.1, that

for all bounded, compactly supported f ∈ L2(R),

∑

m,n∈Z

|〈f, EmbTnag〉|2 =
1

b

∫ ∞

−∞
|f(x)|2

∑

n∈Z

|g(x− na)|2 dx = ‖f‖2.
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Since the bounded compactly supported functions are dense in L2(R), the
conclusion follows by Lemma 5.1.9.
(ii) ⇔ (iii): By Lemma 12.9.1(ii), the statement (b) in (ii) is equivalent

to g ⊥ Em/aTn/bg for all m ∈ Z, n �= 0. Using Lemma 12.9.1(i) with n = 0,
the function G is constant if and only if g ⊥ Em/ag for all m �= 0; and if
this is the case, the relationship between ||g||2 and G(x) follows from

‖g‖2 =
∫ ∞

−∞
|g(x)|2 dx =

∫ a

0

∑

n∈Z

|g(x− na)|2 dx

=

∫ a

0

G(x) dx = aG(x).

(iii)⇔ (iv): This follows from the observation that for all m,n, �, k ∈ Z,

〈Em/aTn/bg, Ek/aT�/bg〉 = e2πi
m−k

a
n
b 〈g, E k−m

a
T �−n

b
g〉.

For the final part of the theorem, we just observe that if {EmbTnag}m,n∈Z

is a tight frame with frame bound 1, then for any (m′, n′) ∈ Z
2,

||Em′bTn′ag||2 =
∑

m,n∈Z

|〈Em′bTn′ag, EmbTnag〉|2

= ||Em′bTn′ag||4 +
∑

(m,n) �=(m′,n′)

|〈Em′bTn′ag, EmbTnag〉|2.

If ||g|| = 1 it follows from here that {EmbTnag}m,n∈Z is an orthonormal
system. �

In general, it is not easy to construct functions g such that the conditions
in Theorem 12.9.2 (ii) are satisfied for some given a, b > 0. A simplification
occurs if we assume that g has compact support: in that case, the condition
(b) in Theorem 12.9.2 (ii) is automatically satisfied for sufficiently small
values of the parameter b. In particular, we obtain the following very useful
sufficient condition for {EmbTnag}m,n∈Z being a tight Gabor frame. We ask
the reader to provide the proof in Exercise 12.9.

Corollary 12.9.3 Let a, b > 0 be given. Assume that ϕ ∈ L2(R) is a real-
valued non-negative function with support in an interval of length 1/b, and
that

∑

n∈Z

ϕ(x+ na) = 1, a.e. x ∈ R. (12.58)

Then the function

g(x) :=
√

bϕ(x)

generates a tight Gabor frame {EmbTnag}m,n∈Z with frame bound A = 1.
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Note that (12.58) is a partition of unity condition on the functions
{Tnaϕ}n∈Z. Readers with knowledge of multiresolution analysis will notice
that the associated scaling function satisfies this condition for a = 1; see,
e.g., [633]. In particular, we can apply the result to the B-splines:

Example 12.9.4 For any N ∈ N, the B-spline ϕ = BN defined in (A.15)
satisfies the requirements in Corollary 12.9.3 with a = 1 and any b ∈
]0, 1/N ]. Thus, for any b ∈]0, 1/N ], the function

g(x) =
√

bBN (x)

generates a tight Gabor frame {EmbTng}m,n∈Z with frame bound A=1. �

We note that the windows in Example 12.9.4 have a number of attractive
properties in the context of time-frequency analysis: they are given by an
explicit formula, have compact support, and can be chosen with polynomial
decay of any desired order in the frequency domain, simply by taking the
parameter N sufficiently large. However, in contrast with the case for the
construction in Section 12.6 the desire of high regularity forces the window
to have a large support.

12.10 Exercises

12.1 Describe how a sequence {em,n}m,n∈Z can be re-indexed as
{ek}∞k=1.

12.2 This exercise concerns condition (R) and its relationship to
Lebesgue points.

(i) Assume that g ∈ L2(R) satisfies condition (R). Show that all
integers are Lebesgue points for g.

(ii) Assume that g is a bounded compactly supported function for
which every integer is a Lebesgue point. Show that g satisfies
condition (R).

(iii) Prove via (ii) that condition (R) is satisfied on a dense subset
of L2(R).

(iv) Prove that the Gaussian g(x) = e−
1
2x

2

satisfies condition (R).

12.3 Consider two Bessel sequences {EmbTnag}m,n∈Z, {EmbTnah}m,n∈Z,
and denote the corresponding synthesis operators by T and U,
respectively. Show that

TU∗EmbTna = EmbTnaTU
∗, ∀m,n ∈ Z. (12.59)
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12.4 Find a Gabor system {EmbTnag}m,n∈Z which satisfies condition
(UCC) without the Bessel condition, and which does not satisfy
condition (CC).

12.5 Prove Theorem 12.3.4 via Theorem 10.1.7.

12.6 Assume that {EmbTnag}m,n∈Z is an overcomplete frame. Show
that there exist dual frames not having the Gabor structure. (Hint:
check the proof of Lemma 6.3.1.)

12.7 Assume that ab = 1, and construct a pair of dual Gabor frame
{EmbTnar1}m,n∈Z, {EmbTnar2}m,n∈Z for which the functions
r1, r2 have compact support (note that by Proposition 4.2.2 the
functions r1, r2 can not be continuous).

12.8 Derive a characterization for tight Gabor system {EmbTnag}m,n∈Z

corresponding to Theorem 10.1.7 (for inspiration, see
Theorem 12.9.2).

12.9 Prove Corollary 12.9.3.

12.10 Show that the B-splines B2 and B3 defined in (A.15) are given by

B2(x) =

⎧
⎨

⎩

1 + x if x ∈ [−1, 0],
1− x if x ∈ [0, 1],
0 otherwise,

B3(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2x

2 + 3
2x+ 9

8 if x ∈ [− 3
2 ,−

1
2 ],

−x2 + 3
4 if x ∈ [− 1

2 ,
1
2 ],

1
2x

2 − 3
2x+ 9

8 if x ∈ [ 12 ,
3
2 ],

0 otherwise.



13
Selected Topics on Gabor Frames

Gabor analysis has now been a very active research field for about 30 years,
and even a description of its connection to frame theory would cover an
entire book. Based on the core material in Chapters 11–12, we will now
present selected topics and tools. All of them are of general importance, in
the sense that they find applications within several areas of time–frequency
analysis. The sections are to a large extent independent of each other.
Section 13.1 deals with the duality principle, which is considered as

one of the cornerstones in Gabor analysis; it characterizes Gabor frames
{EmbTnag}m,n∈Z in terms of Riesz sequences generated by the same
window, but with the parameters a, b replaced by b−1, a−1.
Section 13.2 presents the Zak transform, which is one of the key tools

in Gabor analysis. The Zak transform is particularly interesting for Gabor
systems {EmbTnag}m,n∈Z for which ab ∈ Q; in this case, the central frame
properties of {EmbTnag}m,n∈Z can be expressed in terms of a matrix-valued
function, the so-called Zibulski–Zeevi matrix.
Section 13.3 presents work by Feichtinger and Janssen and deals with

the role of the parameters a, b in a Gabor system {EmbTnag}m,n∈Z. It
is shown that for general functions g ∈ L2(R), the frame property of
{EmbTnag}m,n∈Z is very sensitive to the choice of these parameters, i.e.,
an arbitrarily small displacement can destroy the frame property. This is
again an argument for using windows g belonging to Feichtinger’s algebra
S0 where such phenomena do not occur.
Section 13.4 is devoted to Gabor systems where the lattice

{(na,mb)}m,n∈Z is replaced by an irregular set {(μn, λn)}n∈I in R
2. The

analysis of such systems is considerably more involved than its lattice
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counterpart. Some of the techniques used in Chapters 11–12 may be ap-
plied for special choices of the set {(μn, λn)}n∈I , but the general case is
usually treated in terms of density conditions, similar to what we saw for
irregular frames of translates in Section 9.6.
Section 13.5 returns to the concept of localization of frames, treated in

Section 8.2. The main result shows that the key to obtain a localized Gabor
frame is to select the window from a particular vector space.
In Section 13.6 we give a short presentation of Wilson bases. The func-

tions in a Wilson bases are formed as linear combinations of the functions
in a well-chosen Gabor system. The role of these systems is that they
provide a way of obtaining orthonormal bases for L2(R) with good time–
frequency localization; in that sense, Wilson bases yield an alternative way
of overcoming the Balian–Low theorem.
Section 13.7 presents work by Daubechies, showing how the time–

frequency localization of a function f ∈ L2(R) affects its representation
in terms of a Gabor frame and its dual frame. The main result gives an es-
timate for the norm difference between the function f and the finite partial
sums of the frame decomposition, expressed in terms of the norm of certain
operators that directly reflects the behavior of f in the time domain and
the frequency domain.
Finally, we mention a few applications of Gabor frames in Section 13.8.

For more information about the role of Gabor frames in time–frequency
analysis, we refer to the book [340] by Gröchenig. For a broader perspec-
tive on Gabor frames and their applications, the reader can consult the
two books [291] and [292] edited by Feichtinger and Strohmer, which con-
tain surveys and research articles covering several theoretical and applied
aspects.

13.1 The Duality Principle

We now state one of the most fundamental and important results in Gabor
analysis. It is known as the duality principle and was discovered almost
simultaneously by three groups of researchers: Janssen [427], Daubechies,
Landau, and Landau [249], and Ron and Shen [560]. The duality principle
concerns the relationship between frame properties for a function g with
respect to the lattice {(na,mb)}m,n∈Z and with respect to the dual lattice
{(n/b,m/a)}m,n∈Z. The proof below is a slight modification of a proof due
to Jakobsen and Lemvig.

Theorem 13.1.1 Let g ∈ L2(R) and a, b > 0 be given. Then the following
are equivalent:

(i) {EmbTnag}m,n∈Z is a frame for L2(R) with bounds A,B;

(ii) {Em/aTn/bg}m,n∈Z is a Riesz sequence with bounds abA, abB.
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Proof. (i)⇒ (ii). Let us first assume that {EmbTnag}m,n∈Z is a frame with
bounds A,B. We know from Lemma 12.2.2 that then {Em/aTn/bg}m,n∈Z

is a Bessel sequence with bound abB, so we only need to show that
{Em/aTn/bg}m,n∈Z satisfies the lower Riesz sequence condition with the
stated bound. Let S denote the frame operator for {EmbTnag}m,n∈Z. By
Lemma 12.3.1, we know that the canonical dual frame of {EmbTnag}m,n∈Z

has the form

{S−1EmbTnag}m,n∈Z = {EmbTnaS
−1g}m,n∈Z; (13.1)

using the Wexler–Raz theorem, it follows that the systems
{Em/aTn/bg}m,n∈Z and {Em/aTn/b(ab)

−1 S−1g}m,n∈Z are biorthogonal
(Exercise 13.1). We will now show that {Em/aTn/b(ab)

−1S−1g}m,n∈Z is a
Bessel sequence with bound (abA)−1; when this is done, Proposition 3.7.3
implies that {Em/aTn/bg}m,n∈Z is a Riesz sequence with lower bound abA,
as desired.
In order to proceed, we first note that by Lemma 5.1.5, the canonical

dual frame {S−1EmbTnag}m,n∈Z of {EmbTnag}m,n∈Z has the upper frame
bound A−1; thus, by (13.1), the upper frame bound for the Gabor system
{EmbTna(ab)

−1S−1g}m,n∈Z is (ab)−2A−1. Using again Lemma 12.2.2, it
follows that {Em/aTn/b(ab)

−1S−1g}m,n∈Z is a Bessel sequence with bound
(abA)−1, as desired.

(ii) ⇒ (i). We now assume that the Gabor system {Em/aTn/bg}m,n∈Z

is a Riesz sequence with lower bound abA. As above, we only need
to show that {EmbTnag}m,n∈Z satisfies the lower frame condition with
bound A. Now, it follows from Lemma 12.3.1 (i) that the dual Riesz
sequence of {Em/aTn/bg}m,n∈Z has the form {(ab)−1Em/aTn/bh}m,n∈Z for
some h ∈ L2(R); note that for convenience, we have included the number
(ab)−1 explicitly in this expression. By general frame theory (Lemma 5.1.5),
the sequence {(ab)−1Em/aTn/bh}m,n∈Z has the upper bound (abA)−1;
by scaling, this implies that {Em/aTn/bh}m,n∈Z has the upper bound
(ab)2(abA)−1 = abA−1. By Lemma 12.2.2, it follows that {EmbTnah}m,n∈Z

has the upper bound (ab)−1abA−1 = A−1. Finally, by the Wexler–Raz
theorem, {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z are dual frames for L2(R);
it follows that for f ∈ L2(R),

||f ||4 =

∣
∣
∣
∣

∑

m,n∈Z

〈f, EmbTnag〉〈EmbTnah, f〉
∣
∣
∣
∣

2

≤
∑

m,n∈Z

|〈f, EmbTnag〉|2
∑

m,n∈Z

|〈f, EmbTnah〉|2

≤ A−1||f ||2
∑

m,n∈Z

|〈f, EmbTnag〉|2.

Thus {EmbTnag}m,n∈Z has the lower frame bound A, as claimed. �
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The importance of Theorem 13.1.1 lies in the fact that it often is eas-
ier to prove that {Em/aTn/bg}m,n∈Z is a Riesz sequence than to prove
directly that {EmbTnag}m,n∈Z is a frame. We come back to an applica-
tion of this idea in connection with various methods for approximation
of the inverse frame operator; see Section 23.5 and Section 23.7. We also
note that the duality principle was used in the proof of Proposition 12.4.1,
which characterizes the canonical dual window associated with a frame
{EmbTnag}m,n∈Z.
The duality principle has inspired a lot of activity in the literature.

Feichtinger and Zimmermann [295] considered the duality principle for gen-
eral lattices in R

2. Dutkay, Han, and Larson considered a general duality
principle for groups in [263], and Jakobsen and Lemvig extended the du-
ality principle to co-compact Gabor systems on LCA groups in [418]; we
state this generalization in Theorem 21.8.3.
Also, the theory for R-duals considered in Section 8.3 is directly inspired

by the duality principle. Theorem 8.3.2 gives a relationship between a se-
quence {fk}∞k=1 and its R-duals {ωj}∞j=1 which precisely match the relation

between the Gabor systems {EmbTnag}m,n∈Z and { 1√
ab
Em/aTn/bg}m,n∈Z

in Theorem 13.1.1. This makes it natural to expect that the theory for
R-duals actually generalizes the duality principle, in the sense that the
Gabor system { 1√

ab
Em/aTn/bg}m,n∈Z can be realized as an R-dual of

{EmbTnag}m,n∈Z. Considerable effort has been spent on this problem, but
it remains open. Let us formulate it as such:

Question: Given any Gabor frame {EmbTnag}m,n∈Z for L2(R), do there
exist orthonormal bases {em,n}m,n∈Z and {hm,n}m,n∈Z for L2(R) such that

1√
ab

Em/aTn/bg =
∑

m′,n′∈Z

〈Em′bTn′a, em,n〉hm′,n′ , ∀m,n ∈ Z?

It is known that the answer is affirmative in case {EmbTnag}m,n∈Z is
tight or ab = 1; see [142]. We refer to the paper [166] for a more detailed
discussion.

13.2 The Zak Transform

The Zak transform is a very useful tool to analyze Gabor systems
{EmbTnag}m,n∈Z in the case where ab ∈ Q. For a classical survey on the
Zak transform, we refer to the article [424] by Janssen; applications to
Gabor analysis appear in, e.g., [340], [98], [48], [459].
For a fixed parameter λ > 0, the Zak transform Zλf of a function f ∈

L2(R) is formally defined as a function of two real variables:

(Zλf)(t, ν) := λ1/2
∑

k∈Z

f(λ(t− k))e2πikν , t, ν ∈ R. (13.2)
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In the case λ = 1, we simply write

(Zf)(t, ν) =
∑

k∈Z

f(t− k)e2πikν , t, ν ∈ R. (13.3)

For functions f ∈ Cc(R), the Zak transform is defined pointwise and is
continuous (the same holds whenever f belongs to the Feichtinger algebra
S0), but for general functions in L2(R), we have to be more precise about
how to interpret the definition. Letting Q := [0, 1[×[0, 1[, we now prove
that the series defining Zλf in fact converges in L2(Q) for all f ∈ L2(R):

Lemma 13.2.1 Given λ > 0, the Zak transform Zλ is a unitary map of
L2(R) onto L2(Q).

Proof. We first consider the case λ = 1. Let f ∈ L2(R) be given. In order
to show that Zf is well-defined as a function in L2(Q), we consider the
functions

Fk(t, ν) := f(t− k)e2πikν , k ∈ Z.

These functions belong to L2(Q). Denoting their norm by ||Fk||L2(Q), we
observe that

∑

k∈Z

||Fk||2L2(Q) =
∑

k∈Z

∫ 1

0

∫ 1

0

|Fk(t, ν)|2dνdt=
∑

k∈Z

∫ 1

0

|f(t− k)|2dt=||f ||2.

Furthermore, for j �= k,

〈Fk, Fj〉L2(Q) =

∫ 1

0

f(t− k)f(t− j)

(∫ 1

0

e2πi(k−j)νdν

)

dt = 0. (13.4)

Combining the obtained results shows that
∑

k∈Z
Fk in fact converges in

L2(Q) and that
∣
∣
∣
∣

∣
∣
∣
∣

∑

k∈Z

Fk

∣
∣
∣
∣

∣
∣
∣
∣

2

L2(Q)

=
∑

k∈Z

||Fk||2L2(Q) = ||f ||2;

thus Z is an isometry from L2(R) into L2(Q).
For the rest of the proof, we use the Gabor basis {EmTnχ[0,1]}m,n∈Z for

L2(R) (cf. Example 3.8.3). By direct computation for (t, ν) ∈ Q,

(ZEmTnχ[0,1])(t, ν) =
∑

k∈Z

e2πim(t−k)χ[0,1](t− n− k)e2πikν

= e2πimte−2πinν
∑

k∈Z

χ[0,1](t− k)e2πikν

= e2πimte−2πinν . (13.5)
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That is, the Zak transform maps the orthonormal basis {EmTnχ[0,1]}m,n∈Z

for L2(R) onto the orthonormal basis {e−2πinνe2πimt}m,n∈Z for L2(Q). This
implies that Z is unitary.
For the general case, we note that in terms of the unitary dilation

operator Dλ−1 defined in Section 2.9,

Zλf = Z(Dλ−1f).

As a composition of unitary operators, Zλ is itself unitary. �

By Lemma 13.2.1, the Zak transform of a function f ∈ L2(R) converges
almost everywhere on Q. An inspection of the expression (13.2) now reveals
that Zλf(t, ν) converges almost everywhere on R

2 and that the quasiperi-
odicity in Lemma 13.2.2(i) below holds. We collect some more properties
of the Zak transform:

Lemma 13.2.2 Consider the Zak transform Zλ, λ > 0, and f ∈ L2(R).
Then the following hold:

(i) Zλf(t+ 1, ν) = e2πiνZλf(t, ν), Zλf(1, ν + 1) = Zλf(t, ν).

(ii) If f is continuous and belongs to the Wiener space W, then Zλf is
continuous on R

2.

(iii) If Zλf is continuous on R
2, then there exists (t, ν) ∈ R

2 such that
Zλf(t, ν) = 0.

The proof of (ii) is elementary and follows from the uniform continuity
on compact sets of the partial sums of Zλf whenever f is continuous
(Exercise 13.2); in particular, the result implies that Zλf is continuous
if f belongs to Feichtinger’s algebra S0. (iii) is proved by Janssen in [423]
and in [395]. Note that the quasiperiodicity in (i) often leads to jump dis-
continuities on the lines t = k, k ∈ Z : even if Zλf is continuous on Q, it
might not be continuous on R

2. For a concrete example, take the function
f whose Zak transform is equal to 1 on Q: in this case Zλf is continuous
on Q but not on R

2.
If g ∈ L2(R) and ab = 1, a computation as in (13.5) shows that

ZaEmbTnag = e2πimte−2πinνZag. (13.6)

The family {e2πimte−2πinν}m,n∈Z is an orthonormal basis for L2(Q),
which we denote by {E(m,n)}m,n∈Z. The equation (13.6) shows that
{EmbTnag}m,n∈Z is complete in L2(R) (respectively, an orthonormal basis
for L2(R) or a Riesz basis) if and only if {E(m,n)Zag}m,n∈Z has the same
property in L2(Q). This observation will be used in the following theo-
rem, which expresses properties for a Gabor system {EmbTnag}m,n∈Z with
ab = 1 in terms of the Zak transform Zag. Remember from Theorem 11.3.1
that a Gabor system with ab = 1 is a frame if and only if it is a Riesz basis.
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Proposition 13.2.3 Let g ∈ L2(R) and a, b > 0 with ab = 1 be given.
Then the following hold:

(i) {EmbTnag}m,n∈Z is complete in L2(R) if and only if Zag �= 0, a.e.

(ii) {EmbTnag}m,n∈Z is a Bessel sequence with bound B if and only if
|Zag|2 ≤ B, a.e.

(iii) {EmbTnag}m,n∈Z is a Riesz basis for L2(R) with bounds A,B if and
only if A ≤ |Zag|2 ≤ B, a.e.

(iv) {EmbTnag}m,n∈Z is an orthonormal basis for L2(R) if and only if
|Zag|2 = 1, a.e.

Proof. To prove (i), consider the subspace V ⊂ L2(R) given by

V =
{
f ∈ L2(R) : Zaf is bounded

}
.

The bounded functions are dense in L2(Q), so V is dense in L2(R) by
Lemma 13.2.1. Now let f ∈ V . Then

〈f, EmbTnag〉L2(R) = 〈Zaf, E(m,n)Zag〉L2(Q)

= 〈ZafZag, E(m,n)〉L2(Q). (13.7)

First assume that Zag �= 0 a.e. If f �= 0, then ZafZag is not the zero
function, and there exists (m,n) ∈ Z

2 such that

〈ZafZag, E(m,n)〉L2(Q) �= 0.

Therefore, (13.7) shows that {EmbTnag}m,n∈Z is complete. For the other
implication, assume that Zag = 0 on a measurable set Δ ⊆ Q with positive
measure. We leave the slight modifications in the case Δ = Q to the reader
and assume that Q\Δ �= ∅. By choosing f ∈ L2(R) such that Zaf = χQ\Δ,
it follows that 〈f, EmbTnag〉 = 0 for all m,n ∈ Z, so {EmbTnag}m,n∈Z is
incomplete in L2(R).
For the rest of the proof, we note that for any F ∈ L2(Q), we have

FZag ∈ L1(Q). Since {E(m,n)}m,n∈Z is an orthonormal basis for L2(Q),

∑

m,n∈Z

∣
∣〈F,E(m,n)Zag〉L2(Q)

∣
∣2 =

∑

m,n∈Z

∣
∣
∣
∣

∫

Q

(
FZag

)
E(m,n)

∣
∣
∣
∣

2

=

∫

Q

∣
∣FZag

∣
∣2 . (13.8)

(ii)–(iv) now follow by a standard argument (Exercise 13.3), yielding, e.g.,
that

∫

Q

∣
∣FZag

∣
∣2 ≤ B ||F ||2L2(Q), ∀F ∈ L2(Q)⇔ |Zag|2 ≤ B, a.e. (13.9)

�
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Lemma 13.2.2 and Proposition 13.2.3 put restrictions on the functions g
for which {EmbTnag}m,n∈Z can be a Riesz basis for ab = 1. For example, the

Gaussian g(x) = e−x2/2 has a continuous Zak transform with a zero, which
by Proposition 13.2.3 implies that {EmbTnag}m,n∈Z cannot be a Riesz basis.
We will now use these results to prove that {EmbTnag}m,n∈Z cannot be a
Riesz basis for L2(R) whenever g ∈ Cc(R); this result was stated already
in Proposition 4.2.2 as a motivation for the need of overcomplete Gabor
systems.

Proposition 13.2.4 Let g be a continuous function with compact support.
Then the following hold:

(i) {EmbTnag}m,n∈Z cannot be an orthonormal basis for L2(R).

(ii) {EmbTnag}m,n∈Z cannot be a Riesz basis for L2(R).

Proof. It is obviously enough to prove (ii). Let g ∈ Cc(R). If
{EmbTnag}m,n∈Z is a Riesz basis for L2(R), then Theorem 11.3.1 shows
that ab = 1. Now, Lemma 13.2.2(ii) implies that the Zak transform Zag is
continuous and therefore has a zero by (iii) in the same lemma. But this con-
tradicts Proposition 13.2.3 (iii). We conclude that {EmbTnag}m,n∈Z cannot
be a Riesz basis for L2(R). �

For the rest of this section, we consider a rationally oversampled Gabor
system {EmbTnag}m,n∈Z, i.e., we assume that

ab ∈ Q, ab =
p

q
with 1 ≤ p ≤ q. (13.10)

We always choose p, q as small as possible, i.e., such that gcd(p, q) = 1.
We state results by Zibulski and Zeevi, resp. Janssen. The references for
further information and proofs are [643], [430], [431], and [426].
In the special case considered here, the Zibulski–Zeevi matrix associated

with a Gabor system {EmbTnag}m,n∈Z is a useful tool. It is a p× q matrix,
with entries depending on the variables t, ν ∈ R, and defined by

Φg(t, ν) = p−
1
2

(
(Z 1

b
g)(t− �

p

q
, ν +

k

p
)
)

k=0,...,p−1;�=0,...,q−1
, a.e. t, ν ∈ R.

In terms of this matrix, one can prove that {EmbTnag}m,n∈Z is a Bessel
sequence with bound B if and only if the matrices Φg(t, ν), considered as
bounded linear mappings of Cq into C

p, for a.e. t, ν ∈ [0, 1[ have norms at

most B
1
2 . If we do not need the information about a specific Bessel bound,

this result has a nice formulation:

Theorem 13.2.5 A rationally oversampled Gabor system
{EmbTnag}m,n∈Z is a Bessel sequence if and only if there exists a constant
C > 0 such that

∣
∣
∣Z 1

b
g(t, ν)

∣
∣
∣ ≤ C, a.e. t, ν ∈ [0, 1[.



13.2 The Zak Transform 335

Note that Theorem 13.2.5 generalizes Proposition 13.2.3(ii) to the case
of rational oversampling.
We will now collect some of the key results proved in [426] and [643].

Theorem 13.2.6 Assume that {EmbTnag}m,n∈Z is a rationally oversam-
pled Gabor system, see (13.10). Then the following hold:

(i) If {EmbTnag}m,n∈Z is a Bessel sequence, then the frame operator is
represented by

ΦSf (t, ν) = Φg(t, ν)
(
Φg(t, ν)

)∗
Φf (t, ν), a.e. t, ν ∈ R.

(ii) The Gabor system {EmbTnag}m,n∈Z is a frame with frame bounds
A,B > 0 if and only if

AI ≤ Φg(t, ν)
(
Φg(t, ν)

)∗
≤ BI, a.e. t, ν ∈ R.

Here I denotes the identity operator on C
p.

(iii) Two Bessel systems {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z are dual
frames for L2(R) if and only if for a.e. t, ν ∈ [0, 1[ and all k =
0, . . . , p− 1,

1

p

q−1∑

�=0

(Z 1
b
g) (t− �p/q, ν + k/p) (Z 1

b
h) (t− �p/q, ν) = δk,0.

Even though the Zibulski–Zeevi matrix is finite-dimensional, it is clearly
a nontrivial matter to verify the conditions in Theorem 13.2.6. In case we
are only interested in the frame property of {EmbTnag}m,n∈Z and not the
frame bounds, interesting simplifications were obtained by Lyubarskii and
Nes in [506]. They involve windows belonging to Feichtinger’s algebra S0:

Corollary 13.2.7 Let g ∈ S0 and assume that {EmbTnag}m,n∈Z is a rat-
ionally oversampled Gabor system, see (13.10). Then the following are
equivalent:

(i) {EmbTnag}m,n∈Z is a frame for L2(R);

(ii) For each (t, ν) ∈ [0, a/p[×[0, 1/a[, the p× q matrix
{
∑

n∈Z

g(t+ a�− aqn+ k/b)e2πinaqν

}

k=0,...,p−1,�=0,...,q−1

(13.11)

has rank p.

Observe that the continuity requirement in Corollary 13.2.7 implies that
the condition in (ii) must hold for all (t, ν) ∈ [0, a/p[×[0, 1/a[ in order
for {EmbTnag}m,n∈Z to be a frame. Thus, in order to falsify the frame
property it is enough to identify a single point (t, ν) where the condition
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breaks down. This is exactly the idea that was used by Lemvig and Nielsen
to falsify the B-spline conjecture in [486] – see the discussion on page 285.
One might wonder if the assumption of {EmbTnag}m,n∈Z being rationally

oversampled is just for technical reasons or in the nature of Gabor analysis.
It turns out to be the second option. Already in Section 12.1 in the discus-
sion of condition (A), we saw a case where a rational parameter is essential,
and there are several results for rationally oversampled systems which do
not hold in the general case. Without going into details, the rationality
opens for the use of Banach algebra techniques which are not available in
the general case; see [349].

13.3 The Lattice Parameters

Whether a Gabor system {EmbTnag}m,n∈Z forms a frame or not depends
on a complicated interplay between the parameters a, b and the function
g. Even by fixing the function g ∈ L2(R), the frame condition is in general
very sensitive toward the choice of a, b. Recall, e.g., Janssen’s results for
the characteristic function in Section 11.6: taking g = χ[0,7/4], they show,
for example, that

• {EmTnag}m,n∈Z is a frame if a < 1 and a �= Q;

• {EmTnag}m,n∈Z is not a frame if a ∈
{
1
2 ,

1
3 ,

2
3

}
.

The possibility of such a strange behavior for functions in L2(R) is one
of the reasons for considering functions g belonging to selected window
classes. For the sake of motivation, remember that Proposition 11.5.2 shows
that {EmbTnag}m,n∈Z is a Bessel sequence for any choice of a, b > 0 if g
belongs to the Wiener space. Furthermore, a very reasonable condition in
Proposition 11.5.3 shows that by fixing a > 0, we obtain a frame for all
sufficiently small values of b > 0.
For a function g ∈ L2(R) generating a Bessel sequence {EmbTnag}m,n∈Z

for some a, b > 0, the following result by Feichtinger and Janssen [285]
shows that the Bessel property is at least preserved if a, b are replaced by
rationally related parameters. In the formulation of the result and the proof,
we will need the Bessel bounds for various Gabor systems; as convention,
we will denote the optimal bound for a Gabor system {EmbTnag}m,n∈Z

with parameters a, b > 0 by B(a, b).

Proposition 13.3.1 Let g ∈ L2(R) and a, b > 0 be given. If
{EmbTnag}m,n∈Z is a Bessel sequence, then {Embr/sTnap/qg}m,n∈Z is a
Bessel sequence for any r, s, p, q ∈ N. Furthermore, the optimal bounds
are related by

B(ap/q, br/s) ≤ qsB(a, b) ≤ pqrsB(ap/q, br/s). (13.12)
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Proof. Let s ∈ N. Note that if j runs through 0, . . . , s − 1 and m runs
through Z, then ms+ j runs through Z. Therefore, for f ∈ L2(R),

∑

m,n∈Z

|〈f, Embr/sTnap/qg〉|2

=

s−1∑

j=0

q−1∑

l=0

∑

m,n∈Z

|〈f, Eb(ms+j)r/sTa(nq+l)p/qg〉|2

=
s−1∑

j=0

q−1∑

l=0

∑

m,n∈Z

|〈E−bjr/sT−alp/qf, EmbrTnapg〉|2

≤
s−1∑

j=0

q−1∑

l=0

∑

m,n∈Z

|〈E−bjr/sT−alp/qf, EmbTnag〉|2

≤
s−1∑

j=0

q−1∑

l=0

B(a, b)
∣
∣
∣
∣E−bjr/sT−alp/qf

∣
∣
∣
∣2 = qsB(a, b)||f ||2.

Thus, {Embr/sTnap/qg}m,n∈Z is a Bessel sequence with bound

B(ap/q, br/s) ≤ qsB(a, b).

Using this result with a, b replaced by ap/q, br/s and p/q, r/s replaced by
q/p, s/r leads to

B(a, b) = B

(

a
p

q

q

p
, b
r

s

s

r

)

≤ prB(ap/q, br/s). �

Given a Gabor system {EmbTnag}m,n∈Z and positive integers M,N ∈ N,
the Gabor system {Emb/MTna/Ng}m,n∈Z is called an oversampling of
{EmbTnag}m,n∈Z. The terminology (coming from engineering) is natural
from the point of view of group representations; consider, e.g., the way the
two Gabor systems are related in terms of the Schrödinger representation
in Example 24.1.2; see (24.2).
Proposition 13.3.1 implies that an oversampling of a Gabor frame again

yields a frame (Exercise 13.5):

Corollary 13.3.2 Assume that {EmbTnag}m,n∈Z is a frame. Then, for
any M,N ∈ N, the Gabor oversampled system {Emb/MTna/Ng}m,n∈Z is
also a frame.

In order for the estimates for the Bessel bounds (13.12) in Proposi-
tion 13.3.1 to hold, it is crucial that we are speaking about the optimal
bounds. We also note that the same Gabor system {Embr/sTnap/qg}m,n∈Z

can appear by different choices of r, s, p, q; in fact, having one choice, we
obtain another choice if we multiply all four numbers with the same k ∈ N.
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For the estimate (13.12) to be interesting, it is important to choose the
smallest possible parameters, i.e., we take r, s, p, q such that

gcd(r, s) = gcd(p, q) = 1.

As a special case of Proposition 13.3.1 we note that if {EmTng}m,n∈Z

is a Bessel sequence, then {Emr/sTnp/qg}m,n∈Z is a Bessel sequence for all
r, s, p, q ∈ N. The points {(p/q, r/s)}r,s,p,q∈N are dense in ]0,∞[×]0,∞[, so
it is natural to ask if {EmbTnag}m,n∈Z automatically is a Bessel sequence
for all a, b > 0 in this case. Feichtinger and Janssen proved that the answer
is no:

Proposition 13.3.3 Let α > 0 be any irrational number. Then there exists
a function g ∈ C∞(R) ∩ L2(R) with |supp(g)| ≤ 1, for which

(i) {EmbTnag}m,n∈Z is a Bessel sequence for all rational a, b > 0.

(ii) {EmbTnαcg}m,n∈Z is not a Bessel sequence if c > 0 is rational,
regardless of the choice of b > 0.

Proof. By Proposition 13.3.1, we obtain (i) if we construct g such that
{EmTng}m,n∈Z is a Bessel sequence; by Proposition 13.2.3, this is the case
if the Zak transform Zg is bounded, and a sufficient condition for this is
that

sup
x∈[0,1]

∑

n∈Z

|g(x+ n)| <∞. (13.13)

Also, the negative conclusion in (ii) is by Proposition 11.3.4 and
Proposition 13.3.1 obtained if

sup
x∈[0,1]

∑

n∈Z

|g(x+ nα)|2 =∞. (13.14)

In fact, in this case {EmbTnαg}m,n∈Z is not a Bessel sequence, and therefore
{EmbTnαcg}m,n∈Z is not a Bessel sequence either when c ∈ Q. We will now
construct a smooth function, which satisfies (13.13) and (13.14).
We start with the given irrational number α, and observe that the set

{nα − �nα�}∞n=1 is dense in ]0, 1[ (Exercise 13.4). We now construct a
sequence of mutually disjoint intervals {Ik}∞k=1 contained in ]0, 1[ as follows.
The interval I1 is defined by

I1 =]α− �α� − ε1, α− �α�+ ε1[,

where ε1 < α/2 is chosen so small that I1 is in fact contained in ]0, 1[.
Since the set {nα−�nα�}∞n=1 is dense in ]0, 1[, we can now find an interval
I2 ⊂]0, 1[ \ I1 of the form

I2 =]n2α− �n2α� − ε2, n2α− �n2α�+ ε2[.
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In fact, we can take n2 > 1 such that n2α − �n2α� ∈]0, 1[ \ I1 and then
choose ε2 < α/2 so small that

]n2α− �n2α� − ε2, n2α− �n2α�+ ε2[⊂]0, 1[ \ I1.

Continuing this process inductively, we obtain the desired intervals {Ik}∞k=1,
where each interval Ik has the form

Ik =]nkα− �nkα� − εk, nkα− �nkα�+ εk[;

we choose the sequence {nk}∞k=1 to be increasing, and we take εk < α/2.
For each k ∈ N, we now let Jk denote the middle third of Ik and choose

a smooth “plateau” function gk supported on Ik and satisfying

0 ≤ gk ≤ 1 on Ik, gk = 1 on Jk.

Finally, let

g(x) :=
∞∑

k=1

gk(x− �nkα�).

The disjoint support of the functions gk implies that g is well defined and
smooth and has a support with measure at most 1. This also yields (13.13),
so we only have to verify (13.14). By definition,

∑

n∈Z

|g(x+ nα)|2 =
∑

n∈Z

∣
∣
∣
∣

∞∑

k=1

gk(x+ nα− �nkα�)
∣
∣
∣
∣

2

.

By throwing positive terms away in the sum on the right-hand side, we see
that for any K ∈ N,

∑

n∈Z

|g(x+ nα)|2 ≥
K∑

j=1

∣
∣
∣
∣

∞∑

k=1

gk(x+ njα− �nkα�)
∣
∣
∣
∣

2

.

For all x ∈
⋂K

k=1]− εk/3, εk/3[ and j = 1, . . . ,K,
∣
∣
∣
∣

∞∑

k=1

gk(x+ njα− �nkα�)
∣
∣
∣
∣ ≥ gj(x+ njα− �njα�) = 1;

therefore,
∑

n∈Z
|g(x + nα)|2 ≥ K. Since K ∈ N is arbitrary, this leads

to (13.14). �

Another amazing example in [285] is a function g for which

(i) {EmbTnag}m,n∈Z is a frame for all a = 1
2k , k ∈ N and b ∈]0, 1[.

(ii) {EmbTnag}m,n∈Z is never a frame when a = �
3k , k, � ∈ N and b ∈]0, 1[.

The results by Feichtinger and Janssen show that one has to be very
careful when dealing with Gabor systems for general functions. For exam-
ple, numerical calculations will always lead to round-off errors, which can
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change the properties of a Gabor system drastically. The way to avoid the
problem is to use a class of “well-behaving” generators g ∈ L2(R) for which
the undesired phenomena do not appear. It has been known for some years
that when g ∈ L2(R)\ {0} is in the Feichtinger algebra S0, then there exist
constants a0, b0 > 0 such that {EmbTnag}m,n∈Z is a frame for L2(R) for
all a ∈]0, a0], b ∈]0, b0]; see Corollary 24.2.6. More recently, Feichtinger and
Kaiblinger proved in [286] that the triples (g, a, b) in S0 × R

+ × R
+ which

generate Gabor frames are open with respect to the product topology. In
particular, for a fixed g ∈ S0, the set of points (a, b) ∈]0,∞[×]0,∞[ for
which {EmbTnag}m,n∈Z is a frame is open. Thus, the use of generators in
S0 will lead to Gabor systems that are less sensitive toward round-off errors.

13.4 Irregular Gabor Systems

Until now we have only considered Gabor systems of the special form
{EmbTnag}m,n∈Z, i.e., time–frequency shifts of the function g along a lat-
tice {(na,mb)}m,n∈Z. By replacing the lattice with a countable sequence of
points {(μn, λn)}n∈I ⊂ R

2, we obtain a more general Gabor system of the
form

{EλnTμng(x)}n∈I = {e2πiλnxg(x− μn)}n∈I . (13.15)

We call (13.15) an irregular Gabor system.
The analysis of irregular Gabor systems is complicated, and the the-

ory is not fully developed. Especially the general case described here,
where no structure on the sequence {(μn, λn)}n∈I is assumed, causes
difficulties. There are, however, some types of irregular Gabor systems
which somehow are between the systems {EλnTμng}n∈I and the regular
systems {EmbTnag}m,n∈Z. In fact, if we consider two countable sequences
{μn}n∈Z, {λm}m∈Z ⊂ R, then the Gabor system

{EλmTμng}m,n∈Z (13.16)

still has some kind of lattice structure: if {μn}n∈Z, {λm}m∈Z are increas-
ing and μn, λm → ±∞ for m,n → ±∞, this Gabor system also splits the
time–frequency plane R

2 into boxes, but with varying size. We encourage
the reader to make a sketch, based on, for example, μn = λn = n2|n|. If we
further assume that λm = mb for some b > 0 (or μn = an), we are “close”
to the regular case. This even holds in a more precise sense: several results
for Gabor systems {EmbTnag}m,n∈Z can be extended to the case where
only one of the sequences {mb}m∈Z, {na}n∈Z is replaced by an irregular
sequence. In fact, if the translation is still along the set {na}n∈Z, the com-
mutator relations between the modulation/translation operators show that
the Gabor system can be considered as a shift-invariant system, and the
results from Chapter 10 can be applied, and if modulation is along the set
{mb}m∈Z, the Gabor system can be turned into a shift-invariant system via
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the Fourier transform. We return to this point in the analysis of generalized
shift-invariant systems in Chapter 20; see in particular Corollary 20.5.5.
An important result was proved in the paper [604] by Sun and Zhou. It is

based on the assumption that g as well as the function x �→ xg(x) belongs to
the Sobolev spaceH1(R); see (A.5). In order to avoid cumbersome notation,
we allow us to write the latter assumption as xg(x) ∈ H1(R):

Theorem 13.4.1 Assume that g, xg(x) ∈ H1(R) \ {0} and that a, b > 0
are chosen such that

Δ :=
2a

π
||g′||+ 4b ||xg(x)||+ 8ab

π
||xg′(x) + g(x)|| < ||g||. (13.17)

Let {(μm,n, λm,n)}m,n∈Z ⊂ R
2 be chosen such that

(μm,n, λm,n) ∈ [na, (n+ 1)a[×[mb, (m+ 1)b[, ∀m,n ∈ Z. (13.18)

Then {Eλm,nTμm,ng}m,n∈Z is a frame for L2(R) with frame bounds

1

ab
(||g|| −Δ)2,

1

ab
(||g||+Δ)2.

To avoid confusion, we note that all norms in (13.17) are L2(R)-norms. We
will not prove Theorem 13.4.1 (it can be considered as an explicit version of
Corollary 24.2.6), but it is worth discussing the assumption (13.18). When
a, b > 0 are given, the boxes

[na, (n+ 1)a[×[mb, (m+ 1)b[, m, n ∈ Z,

form a partition of R2 into disjoint sets. Theorem 13.4.1 shows that by
taking a, b small enough and picking exactly one point from each box,
the associated time–frequency shifts of g will form a frame. Thus, Theo-
rem 13.4.1 can be considered as a density result, saying that if the points
{(μm,n, λm,n)}m,n∈Z are “dense enough in R

2 but not too close,” then they
generate a frame under the stated assumptions on the window g.
On the other hand, one can also consider Theorem 13.4.1 as a pertur-

bation result. In fact, the conditions imply that {EmbTnag}m,n∈Z itself
is a frame; now the natural interpretation of condition (13.18) is that
{Eλm,nTμm,ng}m,n∈Z is a frame if the points {(μm,n, λm,n)}m,n∈Z are suf-
ficiently close to {(na,mb)}m,n∈Z. We return to perturbation of Gabor
frames in Section 22.4.
Irregular Gabor systems were already considered around 1990 in a series

of papers by Feichtinger and Gröchenig [280], [336]; this was in a more
general context, to which we return in Section 24.2. The first direct ap-
proach to irregular Gabor systems in L2(R) was by Gröchenig [337] in 1993.
Around the same time, Ramanathan and Steger [550] studied completeness
properties of irregular Gabor systems in terms of the Beurling densities of
{(μn, λn)}n∈I , defined in (9.1). In particular, they proved that the density
must be exactly 1 in order for {EλnTμng}n∈I to be a Riesz basis; also, for



342 13 Selected Topics on Gabor Frames

{EλnTμng}n∈I to be a frame, it is necessary that D−({(μn, λn)}) ≥ 1. For a
regular Gabor system {EmbTnag}m,n∈Z, the latter assumption corresponds
exactly to the condition ab ≤ 1. We also note that Christensen, Deng, and
Heil [168] proved that {EλnTμng}n∈I only can be a frame if {(μn, λn)}n∈I

is relatively separated.
As noted before,{EmbTnag}m,n∈Z is not complete in L2(R) if ab > 1. One

could therefore expect that {EλnTμng}n∈I must be incomplete whenever
D−({(μn, λn)}) < 1, and this appears as a conjecture in [550]. However,
Benedetto, Heil and Walnut [48] have shown that this is false. We will
discuss this in some detail, but leave most of the calculations to the reader
(Exercise 13.6). The construction is based on a result by Landau [475]:

Lemma 13.4.2 Let δ ∈]0, 1
2 [ and K ∈ N be given and consider the interval

J :=
K−1⋃

n=0

]n− (
1

2
− δ), n+

1

2
− δ[. (13.19)

Then, for any ε > 0, there exists a symmetric real sequence {λm}m∈Z for
which |λm −m| ≤ ε for all m ∈ Z and such that {e2πiλmx}m∈Z is complete
in C(J) with respect to the || · ||∞-norm.

Recall from Section 9.1 that a sequence {λk}k∈Z for which the upper and
lower Beurling densities coincide is said to have a Beurling density, which
equals the upper and lower densities and is denoted by D({λk}k∈Z).
The exact statement of the result by Benedetto et al. is as follows:

Proposition 13.4.3 Given an arbitrary ε > 0, there exist a sequence
{(μn, λn)}n∈I ⊂ R

2 and a function g ∈ L2(R) such that

(i) D({(μn, λn)}) ≤ ε;

(ii) {EλnTμng} is complete in L2(R).

Proof. We will leave some details to the reader – see Exercise 13.6. In
order to apply Lemma 13.4.2, we fix ε ∈]0, 1/2[ and δ ∈]0, 1/4[. For a given
K ∈ N, we use the notation in Lemma 13.4.2 and choose a real sequence
{λm}m∈Z such that |λm−m| ≤ ε and {e2πiλmx}m∈Z is complete in C(J). Let

Γ := {(Kn, λm)}m,n∈Z ∪ {(Kn+
1

2
, λm)}m,n∈Z.

The Beurling densities of {λm}m∈Z and {Kn}n∈Z in R are

D({λm}m∈Z) = 1, D({Kn}n∈Z) =
1

K
; (13.20)

it follows from here that

D(Γ) =
2

K
. (13.21)
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We now prove that the irregular Gabor system associated to Λ and the
function g = χJ , i.e.,

{EλmTKnχJ}m,n∈Z ∪ {EλmTKn+ 1
2
χJ}m,n∈Z, (13.22)

is complete in L2(R). Suppose that f ∈ L2(R) is orthogonal to all the
functions in (13.22). Considering an arbitrary fixed value of n ∈ Z, we have

0 = 〈f, EλmTKnχJ〉 =

∫ ∞

−∞
f(x)e−2πiλmxχJ(x−Kn)dx

= e−2πiλmKn

∫

J

f(x+Kn)e−2πiλmxdx.

Since {e−2πiλmx}m∈Z is complete in L2(J), it follows that f(x +Kn) = 0
for a.e. x ∈ J . This holds for all n ∈ Z. A similar argument gives that
f(x + Kn + 1/2) = 0 for a.e. x ∈ J and all n ∈ Z. By the choice of J
in (13.19),

R =

(
⋃

n∈Z

(J +Kn)

)
⋃

(
⋃

n∈Z

(J +Kn+
1

2
)

)

, (13.23)

so we conclude that f = 0. Thus, the functions in (13.22) are complete.
Since this construction is possible for all K ∈ N, we are done. �

It is of course particularly interesting to analyze irregular Gabor systems
from the point of view of the shortcomings of the regular Gabor systems.
For example, knowing from the Balian–Low theorem that a regular Gabor
system {EmbTnag}m,n∈Z cannot form a Riesz basis for L2(R) if the window
g is well localized in time and frequency (see (4.8)), it is natural to ask the
similar question for an irregular Gabor system. The answer is disappointing:
it is shown in [352] that even an irregular Gabor system cannot form a Riesz
basis if the window is well localized in time and frequency. A related result
appears in [18]: a Gabor system with window belonging to Feichtinger’s
algebra S0 (see Section A.6) cannot form a Riesz basis for L2(R).
Let us now return to the conjecture by Heil, Ramanathan, and Topiwala

[393], which we stated already on page 36:

The HRT Conjecture: Given any finite collection of distinct points
{(μn, λn)}n∈F in R

2 and a function g �= 0, the Gabor system {EλnTμng}n∈F
is linearly independent.

Considerable effort has been invested in the conjecture (see, e.g., the
article [387] for a description of the history). The conjecture is proved under
some extra assumptions in [393]. Later, Linnell [499] was able to prove it
in the case where {(μn, λn)} is a lattice (or a subset hereof), i.e., for

{(μn, λn)} = {(na,mb)}N,M
n=1,m=1.
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Thus, finite subsets of a regular Gabor frame {EmbTnag}m,n∈Z for L2(R)
are linearly independent. More results can be found in the paper [88] by
Bownik and Speegle. The general conjecture is still open.
The linear independence of the elements in a frame {EmbTnag}m,n∈Z has

the surprising consequence that the lower frame bounds for finite subfami-
lies {EmbTnag}|m|,|n|≤N (consequently considered as frames for the span of
the elements, i.e., as frame sequences) are forced to go to zero for N →∞
if {EmbTnag}m,n∈Z is overcomplete:

Theorem 13.4.4 Suppose that ab < 1 and that {EmbTnag}m,n∈Z is a
frame for L2(R). Let EN denote a lower frame bound for the frame sequence
{EmbTnag}|m|,|n|≤N. Then

EN → 0 as N →∞.

Proof. For convenience we will prove the result for the case where EN
denotes the optimal lower bound for {EmbTnag}|m|,|n|≤N (this clearly
implies that the result is also correct as stated in the theorem).
By Theorem 11.3.1, the assumption ab < 1 implies that {EmbTnag}m,n∈Z

is not a Riesz basis. By Linnell’s result, {EmbTnag}m,n∈Z is linearly inde-
pendent, so for each N ∈ N, {EmbTnag}|m|,|n|≤N is a (Riesz) basis for its
span. The optimal lower frame bound EN for {EmbTnag}|m|,|n|≤N coincides
with the optimal lower Riesz bound by Theorem 5.4.1, and the sequence
{EN}∞N=1 is decreasing. Now the conclusion follows by Proposition 7.1.2. �

Explicit estimates for the lower frame bound for certain finite Gabor
systems have been carried out in [194]:

Proposition 13.4.5 Assume that

(i) {λm}Mm=1 and {μn}Nn=1 are two finite separated sequences of real
numbers, the latter separated by ε > 0;

(ii) g ∈ L2(R) and supp g ⊆]−∞, c] for some c ∈ R;

(iii) There is a nondegenerate interval I ⊆ [c−ε, ε] and a positive number
d such that

|g(x)| ≥ d ∀ x ∈ I.

Denote a lower bound for {e2πiλmx}Mm=1 in L2(I) by AM and an upper
bound for {e2πiλmxg(x)}Mm=1 in L2(R) by BM . Then the finite Gabor system

{EλmTμng}
M,N
m=1,n=1 is linearly independent; considering the sequence as a

frame sequence, the number

EM,N = d2AM

(
d2AM

16BM

)N−1

(13.24)

is a lower frame bound.
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As we have seen in Proposition 9.8.7, the available lower bounds AM

for the exponentials {e2πiλmx}Mm=1 are already very small; this makes the
bounds EM,N in (13.24) extremely small. The small bounds are partly due
to coarse estimates, but numerical calculations confirm that the bounds
are indeed very small. Let us mention a recent result by Gröchenig [344],
which estimates the lower bounds for finite Gabor systems with windows
in certain modulation spaces:

Proposition 13.4.6 Consider an irregular Gabor system {EλnTμng}n∈I

in L2(R) and assume that

(i) v : R
2 → [0,∞[ is a submultiplicative weight function such that

limn→∞ v(nz)1/n = 1 for all z ∈ R
2;

(ii) The window g belongs to the modulation space M1
v ;

(iii) {EλnTμng}n∈I is an overcomplete frame for L2(R).

For N ∈ N, let IN :=
{
n ∈ I

∣
∣ |μn|2 + |λn|2 ≤ N2

}
, and let EN denote a

lower frame bound for {EλnTμng}n∈IN . Then there exists a constant C > 0
such that

EN ≤ C
1

sup
{
v(μn, λn)2

∣
∣ |μn|2 + |λn|2 > N

} . (13.25)

Already for a polynomial weight v (see (A.6)), the estimate in (13.25) forces
EN to tend very fast to 0 as N → ∞, and for a sub-exponential weight
the convergence is almost exponential. As pointed out by Gröchenig in
[344], this leads to a certain discrepancy between the mathematical as-
pects and the numerical aspects whenever we apply Proposition 13.4.6
to a regular Gabor system {EmbTnag}m,n∈Z : mathematically, the finite
subfamilies {EmbTnag}{m,n∈Z| (mb)2+(na)2≤N2} are linearly independent for
any N ∈ N, but numerically they will be considered as linearly dependent,
already for relatively small values of N. Clearly, this means that results
obtained numerically have to be treated with care.

13.5 Localized Gabor Frames

We will now return to the concept of localization of frames, which we
discussed in general Hilbert spaces in Section 8.2. We will also need results
about modulation spaces (Appendix A.5). Knowledge about the harmonic
analysis approach to Gabor analysis in Section 24.1 will be useful, but not
strictly necessary.
In Section 8.2 we followed the convention of the general frame sec-

tions and considered frames {fk}∞k=1, indexed by the natural numbers. For
our current purpose it is important to notice that the original papers by
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Gröchenig and his coauthors formulated the definitions and results concern-
ing localization of frames for sequences indexed by any countable subset Γ
of Rd. For example, a frame {fk}k∈Γ is self-localized with decay rate s > 1
if there exists a constant C such that

|〈fk, fj〉| ≤ C(1 + |k − j|)−s, ∀k, j ∈ Γ; (13.26)

this is exactly the same as our definition in (8.7), except that |k − j| now
denotes the Euclidean norm on R

d. In the sequel we will apply the results
from Section 8.2 to such instances without further comments.
We will consider irregular Gabor frames, but for reasons that will be

clear soon, we change the notation slightly. Given γ = (μ, λ) ∈ R
2, we

define the operator

π(γ) : L2(R)→ L2(R), π(γ) := EλTμ.

The operators π(γ), γ ∈ R
2 are closely related with the Schrödinger rep-

resentation; see Example 24.1.2. Let us now choose a countable sequence
of points Γ ⊂ R

2 and a window g ∈ L2(R). The following result by For-
nasier and Gröchenig [304] yields conditions for the irregular Gabor system
{π(γ)g}γ∈Γ being self-localized.

Proposition 13.5.1 Let g �= 0 belong to the modulation space M∞
v , where

v is a polynomial weight for some s > 1. Assume that {π(γ)g}γ∈Γ is a
frame for L2(R). Then {π(γ)g}γ∈Γ and its canonical dual frame are both
self-localized, with decay rate s.

Proof. By (A.10) and Lemma A.5.3 (iii), the assumption g ∈M∞
v implies

that for some C > 0,

|〈g, π(γ)g〉| v(γ) ≤ C, ∀γ ∈ Γ;

therefore,

|〈g, π(γ)g〉| ≤ Cv(γ)−1 = C (1 + |γ|)−s , ∀γ ∈ Γ.

It follows that for any γ1, γ2 ∈ Γ,

|〈π(γ1)g, π(γ2)g〉| = |〈g, π(γ2 − γ1)g〉| ≤ C (1 + |γ1 − γ2|)−s
,

i.e., that {π(γ)g}γ∈Γ is self-localized with decay rate s. Using Lemma 8.2.4,
we now conclude that the canonical dual frame is self-localized as well. �

Localized Gabor frames play a central role, not only in L2(R) but also in
the context of Gabor expansions in Banach spaces. We will return to this
in Section 24.3.
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13.6 Wilson Bases

In Chapter 4, we discussed some of the limitations on the function g if we
want a Gabor system {EmbTnag}m,n∈Z to be a Riesz basis for L2(R). In
particular, the Balian–Low theorem shows that g cannot be well localized
in both time and frequency. However, these properties can very well be
combined with {EmbTnag}m,n∈Z being a frame (the Gaussian is a concrete
example), and this is just one motivation for the study of Gabor frames.
Daubechies, Jaffard, and Journé [245] proposed in 1991 another way

to circumvent the Balian–Low theorem. They proved that if one is ready
to give up the Gabor structure, it is possible to obtain a well-localized
orthonormal basis: more precisely, if g ∈ L2(R) is chosen such that the
Fourier transform ĝ is real-valued and {EmTn/2g}m,n∈Z is a tight frame
with bound A = 2, then the collection of functions {ψ�,k}�≥0,k∈Z defined by

ψ�,k(x) =

⎧
⎪⎨

⎪⎩

g(x− k) for � = 0,√
2g(x− k/2) cos(2π�x) for � > 0, k + � even,√
2g(x− k/2) sin(2π�x) for � > 0, k + � odd

constitute an orthonormal basis for L2(R). A basis of the form {ψ�,k}�≥0,k∈Z

is called a Wilson basis. In terms of the modulation operators and
translation operators,

ψ�,k =

⎧
⎪⎨

⎪⎩

E0Tkg for � = 0,
1√
2
(E�Tk/2g + E−�Tk/2g) for � > 0, k + � even,

−i√
2
(E�Tk/2g − E−�Tk/2g) for � > 0, k + � odd,

i.e., the functions in the Wilson basis consist of linear combinations of the
functions in the Gabor system {EmTn/2g}m,n∈Z. By choosing g such that
the abovementioned conditions are satisfied and

(∫ ∞

−∞
|xg(x)|2dx

)(∫ ∞

−∞
|γĝ(γ)|2dγ

)

<∞,

we have obtained an orthonormal basis circumventing the Balian–Low the-
orem. We refer to [21], [48], and [245] for more information, especially to
[245] for a construction of a suitable function g.

Observe that the important feature of the system {ψ�,k}�≥0,k∈Z is that
it is an orthonormal basis. It is not complicated to construct frames with
a similar structure:

Proposition 13.6.1 Let g ∈ L2(R) and a, b > 0 be given, and suppose
that {EmbTnag}m,n∈Z is a frame with upper bound B. Then the functions

{g(x− na)}n∈Z ∪ {cos(2πmbx)g(x− na), sin(2πmbx)g(x− na)}m∈N,n∈Z

constitute a frame for L2(R) with upper bound B.
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For the proof, one can check (Exercise 13.8) that the synthesis operator cor-
responding to the functions in Proposition 13.6.1 is bounded and surjective,
so the result follows by Theorem 5.5.1.
Riesz bases of Wilson type generated by B-splines are investigated by

Trebels and Steidl in [616]; overcomplete Wilson expansions are studied
in [95]. For surveys on Wilson bases, we refer to [63] and [62].

A more recent analysis of Wilson bases for general time–frequency lat-
tices is given by Kutyniok and Strohmer in [470]. An interesting application
of Wilson bases appears in [340], where they are used as a technical tool in
the proof of a kernel theorem on modulation spaces.

13.7 Time–Frequency Localization of Gabor
Expansions

It is well known that no function g �= 0 can have compact support simul-
taneously in the time domain and the frequency domain. However, most
signals appearing in practice are essentially localized in the time–frequency
plane, meaning that the interesting part of the signal takes place on a finite
time interval, with frequencies belonging to a certain finite interval. We will
now analyze how this affects the Gabor frame expansion of such signals.
Given a number T > 0, define the operator

QT : L2(R)→ L2(R), (QT f)(x) = χ[−T,T ](x)f(x).

We will use ||(I − QT )f || as a measure for the content of the function f
outside the interval [−T, T ]. So, intuitively, to say that a function f ∈ L2(R)
essentially is localized on the interval [−T, T ] means that ||(I − QT )f || is
small compared with ||f ||. Similarly, for Ω > 0 we introduce an operator
PΩ (the expression below defines the operator in the Fourier domain) by

PΩ : L2(R)→ L2(R), P̂Ωf(ν) = χ[−Ω,Ω](ν)f̂(ν);

the function f̂ being essentially localized on [−Ω,Ω] means that ||(I−PΩ)f ||
is small compared with ||f ||.
Now assume that the function f is essentially localized in both domains,

i.e., on [−T, T ]× [−Ω,Ω] for some T,Ω > 0. Let

B(T,Ω) :=
{
(m,n) ∈ Z

2
∣
∣ mb ∈ [−Ω,Ω], na ∈ [−T, T ]

}
.

A natural question is how well frame decompositions capture the localiza-
tion of the signal f . That is, considering the frame expansion of f in terms
of dual Gabor frames {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z,

f =
∑

m,n∈Z

〈f, EmbTnah〉EmbTnag, (13.27)
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do we obtain a reasonable approximation of f if we replace the sum over
(m,n) ∈ Z

2 with a sum over (m,n) ∈ B(T,Ω)?
Since the expansion (13.27) involves inner products between the function

f and the functions in the Gabor system {EmbTnah}m,n∈Z, it is natural to
consider windows h with good localization properties. We will prove a result
by Daubechies [241]. It shows that under this assumption, the question has
an affirmative answer, at least if we replace B(T,Ω) by a certain enlarge-
ment B(T + Λ,Ω + Γ). Daubechies formulated the result for the classical
frame decomposition in terms of a Gabor frame and its canonical dual
frame, but the same argument holds for dual Gabor frame pairs.

Theorem 13.7.1 Assume that the Gabor systems {EmbTnag}m,n∈Z and
{EmbTnah}m,n∈Z form a pair of dual frames for L2(R) with upper frame
bounds B and D, respectively, and that for some constants C > 0, α > 1/2,
the decay conditions

|h(x)| ≤ C(1 + x2)−α, x ∈ R, |ĥ(ν)| ≤ C(1 + ν2)−α, ν ∈ R, (13.28)

hold. Then, for any ε > 0, there exist numbers Λ,Γ > 0 such that for all
T,Ω > 0,

∣
∣
∣
∣

∣
∣
∣
∣f −

∑

(m,n)∈B(T+Λ,Ω+Γ)

〈f, EmbTnah〉EmbTnag

∣
∣
∣
∣

∣
∣
∣
∣

≤
√
BD (||I −QT )f ||+ ||(I − PΩ)f ||+ ε ||f ||)

for all f ∈ L2(R).

Proof. Let f ∈ L2(R), and consider some fixed numbers T,Ω > 0.
Then, for any given Λ,Γ>0, the assumption of {EmbTnag}m,n∈Z and
{EmbTnah}m,n∈Z being dual frames implies that

∣
∣
∣
∣

∣
∣
∣
∣f −

∑

(m,n)∈B(T+Λ,Ω+Γ)

〈f, EmbTnah〉EmbTnag

∣
∣
∣
∣

∣
∣
∣
∣

=

∣
∣
∣
∣

∣
∣
∣
∣

∑

(m,n)/∈B(T+Λ,Ω+Γ)

〈f, EmbTnah〉EmbTnag

∣
∣
∣
∣

∣
∣
∣
∣.

Via Lemma 2.3.1(ii), it follows that
∣
∣
∣
∣

∣
∣
∣
∣f −

∑

(m,n)∈B(T+Λ,Ω+Γ)

〈f, EmbTnah〉EmbTnag

∣
∣
∣
∣

∣
∣
∣
∣

= sup
||ϕ||=1

∣
∣
∣
∣〈

∑

(m,n)/∈B(T+Λ,Ω+Γ)

〈f, EmbTnah〉EmbTnag, ϕ〉
∣
∣
∣
∣

≤ sup
||ϕ||=1

∑

(m,n)/∈B(T+Λ,Ω+Γ)

|〈f, EmbTnah〉| |〈EmbTnag, ϕ〉|.
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Observe that

B(T + Λ,Ω+ Γ) ⊆ {(m,n)| |na| > T + Λ} ∪ {(m,n)| |mb| > Ω+ Γ} ;
thus, we arrive at

∣
∣
∣
∣

∣
∣
∣
∣f −

∑

(m,n)∈B(T+Λ,Ω+Γ)

〈f, EmbTnah〉EmbTnag

∣
∣
∣
∣

∣
∣
∣
∣ (13.29)

≤ sup
||ϕ||=1

∑

{(m,n)| |na|>T+Λ}
|〈f, EmbTnah〉| |〈EmbTnag, ϕ〉| (13.30)

+ sup
||ϕ||=1

∑

{(m,n)| |mb|>Ω+Γ}
|〈f, EmbTnah〉| |〈EmbTnag, ϕ〉|. (13.31)

We will now estimate the terms in (13.30) and (13.31) separately. For the
term in (13.30), we use that f = QT +(I−QT )f ; via the triangle inequality,
this implies that

∑

{(m,n)| |na|>T+Λ}
|〈f, EmbTnah〉| |〈EmbTnag, ϕ〉|

=
∑

{(m,n)| |na|>T+Λ}
|〈QT + (I −QT )f, EmbTnah〉| |〈EmbTnag, ϕ〉|

≤
∑

{(m,n)| |na|>T+Λ}
|〈QT f, EmbTnah〉| |〈EmbTnag, ϕ〉|

+
∑

{(m,n)| |na|>T+Λ}
|〈(I −QT )f, EmbTnah〉| |〈EmbTnag, ϕ〉|

≤

⎛

⎝
∑

{(m,n)| |na|>T+Λ}
|〈QT f, EmbTnah〉|2

⎞

⎠

1/2

×

⎛

⎝
∑

{(m,n)| |na|>T+Λ}
|〈EmbTnag, ϕ〉|2

⎞

⎠

1/2

+

⎛

⎝
∑

{(m,n)| |na|>T+Λ}
|〈(I −QT )f, EmbTnah〉|2

⎞

⎠

1/2

×

⎛

⎝
∑

{(m,n)| |na|>T+Λ}
|〈EmbTnag, ϕ〉|2

⎞

⎠

1/2

.

Using that {EmbTnag}m,n∈Z has the upper frame bound B and that the
dual frame {EmbTnah}m,n∈Z has the upper frame bound D, this implies
that

sup
||ϕ||=1

∑

{(m,n)| |na|>T+Λ}
|〈f, EmbTnah〉| |〈EmbTnag, ϕ〉| (13.32)
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≤
√
B

⎛

⎝
∑

{(m,n)| |na|>T+Λ}
|〈QT f, EmbTnah〉|2

⎞

⎠

1/2

+
√
BD ||(I −QT )f ||.

In order to estimate the expression further, we will use the calculation
in (11.23). For this reason, we now assume that f is bounded and has
compact support. Then (11.23) implies that

∑

{(m,n)| |na|>T+Λ}
|〈QT f, EmbTnah〉|2

=
1

b

∣
∣
∣
∣

∑

{n | |na|>T+Λ}

∫ ∞

−∞
QT f(x)h(x− na)×

∑

k∈Z

QT f(x− k/b)h(x− na− k/b)dx

∣
∣
∣
∣

≤ 1

b

∑

{n | |na|>T+Λ}

∑

k∈Z

∫ ∞

−∞
|QT f(x)| |QT f(x− k/b)| ×

|h(x − na)| |h(x− na− k/b)| dx.

Using that QT f has support on [−T, T ] and the decay condition on h leads
to

∑

{(m,n)| |na|>T+Λ}
|〈QT f, EmbTnah〉|2 (13.33)

≤ 1

b

∑

{n | |na|>T+Λ}

∑

k∈Z

sup
|x|≤T,|x−k/b|≤T

|h(x− na)| |h(x− na− k/b)| ×

∫ ∞

−∞
|QT f(x)| |QT f(x− k/b)| dx

≤ ||QT f ||2
b

∑

{n | |na|>T+Λ}

∑

k∈Z

sup
|x|≤T,|x−k/b|≤T

|h(x− na)| |h(x− na− k/b)|

≤ 1

b
||f ||2×

∑

{n | |na|>T+Λ}

∑

k∈Z

sup
|x|≤T,|x−k/b|≤T

1

(1 + (x− na)2)α
1

(1 + (x− na− k/b)2)α
.
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Now, a careful examination performed in [241] (we will skip it) shows that
for some constant κ that is independent of T and Λ,

∑

{n | |na|>T+Λ}

∑

k∈Z

sup
|x|≤T,|x−k/b|≤T

1

(1 + (x− na)2)α
1

(1 + (x− na− k/b)2)α

≤ κ(1 + Λ2)−2α+1.

Together with the calculation in (13.33) and (13.32), this leads to the
following estimate of the term (13.30):

sup
||ϕ||=1

∑

{(m,n)| |na|>T+Λ}
|〈f, EmbTnah〉| |〈EmbTnag, ϕ〉|

≤
√

B

b
κ(1 + Λ2)−2α+1 ||f ||+

√
BD ||(I −QT )f ||. (13.34)

We will now estimate the term (13.31). First,

〈f, EmbTnah〉 = 〈f̂ ,FEmbTnah〉
= e−2πimbna〈f̂ , E−naTmbĥ〉.

Using that f̂ = P̂Ωf + F(I − PΩ)f , calculations like before lead to

sup
||ϕ||=1

∑

{(m,n)| |mb|>Ω+Γ}
|〈f, EmbTnah〉| |〈EmbTnag, ϕ〉|

= sup
||ϕ||=1

∑

{(m,n)| |mb|>Ω+Γ}
|〈f̂ , E−naTmbĥ〉| |〈EmbTnag, ϕ〉|

≤ sup
||ϕ||=1

⎛

⎝
∑

{(m,n)| |mb|>Ω+Γ}
|〈P̂Ωf, EnaTmbĥ〉|2

⎞

⎠

1/2

×

⎛

⎝
∑

{(m,n)| |mb|>Ω+Γ}
|〈EmbTnag, ϕ〉|2

⎞

⎠

1/2

+ sup
||ϕ||=1

⎛

⎝
∑

{(m,n)| |mb|>Ω+Γ}
|〈F(I − PΩ)f, EnaTmbĥ〉|2

⎞

⎠

1/2

×

⎛

⎝
∑

{(m,n)| |mb|>Ω+Γ}
|〈EmbTnag, ϕ〉|2

⎞

⎠

1/2

≤
√
B

⎛

⎝
∑

{(m,n)| |mb|>Ω+Γ}
|〈P̂Ωf, EnaTmbĥ〉|2

⎞

⎠

1/2

+
√
BD ||(I − PΩ)f ||.
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The assumptions that f is bounded and has compact support imply that

P̂Ωf is bounded as well; also, by definition P̂Ωf has compact support. Thus,
exactly as before, we can use (11.23) to prove that

∑

{(m,n)| |mb|>Ω+Γ}
|〈P̂Ωf, EnaTmbĥ〉|2 ≤

≤ 1

a
||P̂Ωf ||2

∑

{m | |mb|>Ω+Γ}

∑

k∈Z

sup
|ν|≤Ω,|ν−k/a|≤Ω

|ĥ(ν − nb)| |ĥ(ν − nb− k/a)|.

The decay condition on ĥ together with the above calculations now leads
to an estimate on (13.31), with some constant η > 0 that is independent of
Ω and Γ:

sup
||ϕ||=1

∑

{(m,n)| |mb|>Ω+Γ}
|〈f, EmbTnah〉| |〈EmbTnag, ϕ〉|

≤
√

B

a
η(1 + Γ2)−2α+1 ||f ||+

√
BD ||(I − PΩ)f ||. (13.35)

Finally, inserting (13.35) and (13.34) in the calculation in (13.29) leads to
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
f −

∑

(m,n)∈B(T+Λ,Ω+Γ)

〈f, EmbTnah〉EmbTnag

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

≤
√

B

b
κ(1 + Λ2)−2α+1 ||f ||+

√
BD ||(I −QT )f ||

+

√
B

a
η(1 + Γ2)−2α+1 ||f ||+

√
BD ||(I − PΩ)f ||,

valid for all bounded functions f ∈ L2(R) with compact support. For a
given ε > 0, one can now find Λ,Γ > 0 such that the conclusion in the
theorem holds for all such functions f ; because the set of bounded functions
with compact support are dense in L2(R), the result actually holds for all
f ∈ L2(R) by Lemma 3.2.6. �

It is interesting that Theorem 13.7.1 only requires decay conditions on
one of the windows for the dual frame pair. In practice, this means that we
can apply the result to any Gabor frame {EmbTnah}m,n∈Z for which the
window h satisfies the conditions (13.28), simply by taking the function g
as an arbitrary dual window. A good candidate for the function h would
be to take a B-spline BN of sufficiently high order N ∈ N. In fact, these
functions have compact support, and fast decay in the Fourier domain can
be obtained by taking N sufficiently large. Furthermore, explicit expres-
sions for a dual window are known for a = 1 and small values of b; see
Section 12.5.
The conclusion is that under the assumptions in Theorem 13.7.1, the

frame expansion indeed captures the time–frequency localization of a given



354 13 Selected Topics on Gabor Frames

signal f ∈ L2(R). That is, if we for a given “allowed deviation” ε > 0 choose
the constants Λ,Γ as in Theorem 13.7.1, and the function f essentially is
localized on [−T, T ]× [−Ω,Ω], then the function

∑

(m,n)∈B(T+Λ,Ω+Γ)

〈f, EmbTnah〉EmbTnag

yields a good approximation of f .

13.8 Applications of Gabor Frames

There is a large diversity of research fields where Gabor systems and frames
play a role. We will mention a few of them as inspiration for further read-
ing and provide a slightly more detailed discussion of an application to
pseudodifferential operators.
We have already noticed that Gabor systems appeared already around

1930 in the context of quantum mechanics and that they also find use in
the study of molecules [250]. A large diversity of applications appear in the
two books [291] and [292], which contain articles by researchers in different
fields. Among the applied papers in [291] are

• Gabor representation and signal detection (Zeira and Friedlander);

• Multi-window Gabor schemes in signal and image representation
(Zeevi, Zibulski, Porat);

• Gabor kernels for affine-invariant object recognition (Ben-Arie and
Wang);

• Gabor’s signal expansion in optics (Bastiaans).

From [292] we mention

• Optimal stochastic approximations and encoding schemes using
Weyl–Heisenberg sets (Balan and Daubechies);

• Orthogonal frequency division multiplexing based on offset-QAM
(Bölcskei).

We also note that an application of Gabor frames to noise reduction
appeared already in [522].
We now go a little more into detail with an application of Gabor frames

to estimation of singular values of compact operators defined via the Weyl
correspondence. In general, the singular values of a compact operator L on
a Hilbert space H are defined as the eigenvalues of the compact self-adjoint
operator (L∗L)1/2. Alternatively, when the singular values are arranged
decreasingly, the nth singular value is

sn(L) = inf{||L− F || : F has finite rank and dimRF < n}. (13.36)
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One says that L belongs to the Schatten–von Neumann class Sp, 0 < p <
∞, if

∞∑

n=1

sn(L)
p <∞.

To introduce the operators we will consider, we need the Wigner
distribution of f, g ∈ L2(R), which is defined by

W (f, g)(ξ, x) =

∫ ∞

−∞
e−2πipξf(x+

p

2
)g(x− p

2
)dp.

Let S(Rd) denote the Schwarz space of rapidly decreasing functions on
R

d. One can show that if f, g ∈ S(R), then W (f, g) ∈ S(R2). The Weyl
correspondence associates to each tempered distribution σ ∈ S ′(R2) a
pseudodifferential operator Lσ : S(R)→ S ′(R), defined via

〈Lσf, g〉 = 〈σ,W (g, f)〉, f, g ∈ S(R).

In case σ corresponds to a function,

〈Lσf, g〉 =
∫ ∞

−∞

∫ ∞

−∞
σ(ξ, x)W (f, g)(ξ, x)dξdx, f, g ∈ S(R).

One also writes

Lσf(x) =

∫ ∞

−∞

∫ ∞

−∞
σ(ξ,

x+ y

2
)e2πi(x−y)ξf(y)dydξ.

It is known that Lσ defines a compact operator on L2(R) if σ ∈ L1(R).
There is a rich literature concerned with estimates of the corresponding
singular values. The first appearance of Gabor frames in this context was
in the paper [556] by Rochberg and Tachizawa, where they were used to
find conditions on σ implying that Lσ belongs to a given Schatten–von
Neumann class (see also [609], where Wilson bases are used instead of
Gabor frames). The same theme was taken up by Heil, Ramanathan, and
Topiwala in [394] (and more recently by Heil in [385]), and we sketch their
main idea here.
The characterization of the singular values in (13.36) indicates how

frames can be used to estimate sn(L), even in the general case of an ope-
rator L on a general Hilbert space H. In fact, letting {fk}∞k=1 be a frame
for H with frame operator S, the finite partial sums of the frame decompo-
sition (5.7) define operators of finite rank. More precisely, for any n ∈ N,
the bounded operator

Fn : H → H, Fnf =

n∑

k=1

〈f, S−1fk〉fk

has rank at most n, so

sn(L) ≤ ||L− LFn−1||.
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The actual technique in [394] is a variation of this idea. In fact, the authors
approximate Lσ by operators of the form Lσn , where σn = Fnσ and {fk}∞k=1

is a Gabor frame for L2(R). With this alternative approach, it is not imme-
diately clear that Lσn has finite rank (and how large it is), but the authors
provide the necessary estimates. From the above short description, it is not
clear why we need to use overcomplete frames in this application. Why not
just use an orthonormal basis? The answer is that for technical reasons, one
needs the generator g of the Gabor frame as well as its Fourier transform
to be well localized, i.e., to decay fast. The exact condition collides with
the Balian–Low theorem and thus cannot be combined with g generating
a basis. For this reason, we have to use an overcomplete frame, where well-
localized generators are possible; in fact, the authors use a Gaussian. The
overcompleteness of the frame by itself is not directly used.
More recent references to Gabor analysis and pseudodifferential oper-

ators are [614] by Toft and [355] by Gröchenig and Rzeszotnik. A large
number of papers deal with representation of operators using Gabor
multipliers; see [319, 227, 260] and the references therein.

Among more recent papers dealing with applications of Gabor frames,
we refer to [272, 589] by Strohmer et al., where linear time-varying ope-
rators (e.g., in mobile communication) are analyzed. Gabor methods for
identification of sparse operators based on the response to a probing signal
are given in [382] by Heckel and Bölcskei. Sampling of operators and app-
lications was considered in the papers [544, 540] by Pfander et al. All of
these papers are directed toward the engineering community and contain
several additional references for applications; the above list is just a small
sample of the literature.

13.9 Exercises

13.1 Let {EmbTnag}m,n∈Z be a frame with frame operator S Complete
the proof of Theorem 13.1.1 by showing that {Em/aTn/bg}m,n∈Z

and {Em/aTn/b(ab)
−1 S−1g}m,n∈Z are biorthogonal.

13.2 Prove (i) and (ii) in Lemma 13.2.2.

13.3 Complete the proof of Proposition 13.2.3 by proving (13.9) and
the similar statement for the lower bound.
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13.4 Let α /∈ Q and prove that the set {nα − �nα�}∞n=1 is dense in
[0, 1]; use, e.g., the following result attributed to Weyl: if f is a
continuous 1-periodic function, then

∫ 1

0

f(x)dx = lim
N→∞

1

N

N∑

n=1

f(nα).

13.5 Prove Corollary 13.3.2.

13.6 In this exercise we ask the reader to provide some of the details in
the proof of Proposition 13.4.3.

(i) Verify (13.20) and (13.21).

(ii) Choose the sequence {λm}m∈Z as in Lemma 13.4.2. Prove that
{e2πiλm}m∈Z is complete in L2(I).

(iii) Verify (13.23).

13.7 Let Q = [0, 1[×[0, 1[. Prove that L2(Q) ⊂ L1(Q), and find a
function f ∈ L1(Q) which does not belong to L2(Q).

13.8 Prove Proposition 13.6.1.
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In concrete applications, a model involving a Gabor frame {EmbTnag}m,n∈Z

for L2(R) will ultimately have to be transferred into a model involving
a finite number of vectors in a finite-dimensional space. In this chap-
ter, we show that it indeed is possible to construct Gabor-type frames
in C

L for L ∈ N, based on certain Gabor frames for L2(R). As interme-
diate steps, we will construct frames for �2(Z) based on sampling of the
frame {EmbTnag}m,n∈Z, as well as frames for the space L2(0, L) based on
periodization. Each of the mentioned steps keeps the frame bounds; fur-
thermore, dual pairs of Gabor frames in one space are turned into dual
pairs in the other spaces as well.
The basic insight was provided by Janssen [429], who showed how to

obtain Gabor-type frames for �2(Z) by sampling of a Gabor frame for
L2(R). A large part of the chapter will deal with his results, but we will
also consider more recent results by Kaiblinger [443], Søndergaard [607],
and Lopez and Han [502].

The following elegant diagram, due to Søndergaard [607], illustrates the
procedure and the involved spaces. The arrows to the left indicate sampling,
and the arrows down indicate periodization:

L2(R)
sampling−−−−−−−→ �2(Z)

⏐
⏐
Dperiodization

⏐
⏐
D

L2(0, L) −−−−→ C
L

©
O. Christensen, An Introduction to Frames and Riesz Bases,
Applied and Numerical Harmonic Analysis,
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359Springer International Publishing Switzerland 2016
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We will provide a more detailed diagram whenever we have derived the
frame constructions in the involved spaces; see page 377.
We begin in Section 14.1 by considering the definitions of the translation

operator and the modulation operator on �2(Z); in particular, this section
highlights an important difference between the modulation operators on
L2(R) and �2(Z). The frame theory for Gabor systems in �2(Z) is very
similar to the Gabor theory in L2(R), and we will only state a few central
results in Section 14.2; more results, stated in the general framework of
shift-invariant systems, can be extracted from Section 14.7. Section 14.3
shows how the well-developed duality theory for Gabor frames in L2(R) and
�2(Z) yields an easy way to construct dual pairs of Gabor frames for �2(Z)
through sampling of a pair of dual frames for L2(R). Section 14.4 presents
work by Janssen and describes how to obtain Gabor frames for �2(Z) by
sampling of Gabor frames for L2(R); the results in this section are based
on weaker assumptions than in Section 14.3. Section 14.5 explains how
to construct periodic Gabor frames for L2(0, L) based on periodization of
Gabor frames for L2(R). Gabor systems in C

L (and how to construct them
based on Gabor frames for L2(R)) are discussed in Section 14.6. Finally,
Section 14.8 connects frames for �2(Z) and filter banks, and Section 14.9
states a few key results about Gabor frames for �2(Zd).
Throughout the chapter, the reader will notice that the Gabor theory has

a very similar structure in the four spaces L2(R), �2(Z), L2(0, L), and C
L.

The mathematical reason for this is that all of the sets R,Z, the torus
T, and the set ZL of integers modulo L are examples of locally compact
abelian (LCA) groups. The general theory for frame decompositions on
LCA groups is presented in Chapter 21; see in particular Section 21.3,
where it is shown that the Gabor systems on the mentioned groups are
identical to the systems considered in the current chapter.
Note that a large part of the theory for discrete Gabor frames has been

implemented by Søndergaard in his time–frequency toolbox (LTFAT); the
toolbox is documented in the article [608].

14.1 Translation and Modulation on �2(Z)

In this chapter, we will see that there is a strong similarity between frame
results for Gabor systems in L2(R) and Gabor systems in �2(Z). This will
be most apparent if we use a similar notation in the two case. Thus, for a
sequence g ∈ �2(Z), we will denote the jth coordinate by g(j) and write

g = (. . . , g(−1), g(0), g(1), . . . ).
The notation g(j), j ∈ Z, is of course similar to the standard notation
g(x), x ∈ R, used for point evaluation of a function g : R→ C.
We now want to define the modulation operator Eb, b ∈ R, on �2(Z). That

is, given g ∈ �2(Z), we want Ebg to be a sequence in �2(Z); we define it to
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be the sequence whose jth coordinate is

Ebg(j) := e2πibjg(j), j ∈ Z. (14.1)

Even though the definition of Eb makes sense for all b ∈ R, we will only
use modulations of the form Em/M , where M ∈ N is fixed and m ∈ Z.
In the terminology used for Gabor systems in L2(R), this corresponds to
having the modulation parameter equal to 1/M . There is, however, one
important difference between the two settings: in the L2(R)-setting, mod-
ulation operators with different parameters are necessarily different, but
this is not the case in the discrete setting discussed here. In fact, with the
definition (14.1), the operators Eb are 1-periodic in b, so,

Em
M

= Em
M

+k for all k ∈ Z.

Therefore, {Em/Mg}m∈Z cannot be a Bessel sequence in �2(Z), except in
the case g = 0. For this reason, we will only consider modulations Em/M

with m = 0, . . . ,M − 1.
We now introduce the translation operator on �2(Z). Given n ∈ Z and

g ∈ �2(Z), we let Tng be the sequence in �2(Z) whose jth coordinate is

Tng(j) = g(j − n), j ∈ Z. (14.2)

The discrete Gabor system generated by a sequence g ∈ �2(Z) and with
modulation parameter 1/M and translation parameter N, (M,N ∈ N)
is now defined as the family of sequences {Em/MTnNg}n∈Z,m=0,...,M−1;
specifically, Em/MTnNg is the sequence in �2(Z) whose jth coordinate is

Em/MTnNg(j) = e2πijm/Mg(j − nN).

If {Em/MTnNg}n∈Z,m=0,...,M−1 is a Bessel sequence in �2(Z) with frame
operator S : �2(Z)→ �2(Z), one can repeat the proof of Lemma 12.3.1 and
show that (Exercise 14.1)

SEm/MTnN = Em/MTnNS. (14.3)

If {Em/MTnNg}n∈Z,m=0,...,M−1 is a frame for �2(Z), this implies that the
canonical dual frame is given by {Em/MTnNS−1g}n∈Z,m=0,...,M−1; that is,
as for Gabor frames in L2(R), it consists of time–frequency shifts of a single
function.

14.2 Dual Gabor Frames in �2(Z)

In (14.3) we already saw the first similarity between Gabor analysis
in L2(R) and in �2(Z). Another one is the duality conditions: compare
the following characterization of dual Gabor frames for �2(Z) with the
characterization of dual Gabor frames for L2(R) given in Theorem 12.3.4!
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Theorem 14.2.1 Let M,N ∈ N, and consider two sequences g, h ∈
�2(Z). If {Em/MTnNg}n∈Z,m=0,...,M−1 and {Em/MTnNh}n∈Z,m=0,...,M−1

are Bessel sequences, they are dual frames for �2(Z) if and only if
∑

k∈Z

g(j − kN − nM)h(j − kN) =
1

M
δn,0, ∀j, n ∈ Z. (14.4)

A proof of Theorem 14.2.1 can be found in the paper [502] by Lopez and
Han, which actually deals with the d-dimensional case (see Section 14.9).
Alternatively Theorem 14.2.1 can be derived from a result stated much
later in Theorem 21.7.10 (Exercise 21.5).
Also the sufficient conditions in Theorem 11.4.2 for {EmbTnag}m,n∈Z

being a Bessel sequence or a frame for L2(R) have similar versions for
Gabor systems in �2(Z). The finite sequences are dense in �2(Z), and
they will often play a similar role as the set of continuous functions
with compact support does in L2(R). In particular, the Gabor system
{Em/MTnNg}n∈Z,m=0,...,M−1 associated with a finite sequence g ∈ �2(Z)
is a Bessel sequence for all choices of M,N ∈ N. On an abstract level, the
reason for the similarity between Gabor analysis in L2(R) and �2(Z) is that
the set R and the set Z are examples of locally compact abelian groups,
which implies that the general theory developed in Chapter 21 applies to
both cases. Alternatively, one can obtain the results for Gabor systems
in �2(Z) simply by repeating the steps in the proofs for the Gabor sys-
tems in L2(R), without referring to the theory for locally compact groups
(Exercise 14.3).
Other results for Gabor systems in �2(Z) are parallel with the case of

Gabor systems in L2(R) as well. For example, a necessary condition for
{Em/MTnNg}n∈Z,m=0,...,M−1 to be a frame for �2(Z) is that N

M ≤ 1, and if
{Em/MTnNg}n∈Z,m=0,...,M−1 is a frame for �2(Z), it is a Riesz basis if and
only if M = N . For a selection of papers on Gabor systems in �2(Z), we
refer to [229, 230, 626, 502, 41], and the references therein.

14.3 Dual Gabor Frames in �2(Z) Through
Sampling

The purpose of this section and the next is to relate Gabor frames for L2(R)
and Gabor frames for �2(Z). To be more precise, we will show that certain
conditions on a Gabor frame for L2(R) imply that the sequences formed
by sampling at the integers yield a frame for �2(Z), and that sampling of
a dual pair of frames for L2(R) also yields a pair of dual frames for �2(Z).
We begin with the case of sampling of a dual pair of frames.
For a continuous function f : R → C, sampling at a point x ∈ R simply

means that we consider the function value f(x). For functions f ∈ L2(R)
that are not assumed to be continuous, we have to be careful with the
meaning of sampling. By definition, L2(R) consists of equivalence classes
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of functions that are identical almost everywhere, so point evaluations do
not immediately make sense. So when we speak about sampling a function
f ∈ L2(R), we really mean that we evaluate a specific representative for
the considered equivalence class. For functions that are not continuous we
will in general assume that the chosen representative has all the integers
among its Lebesgue points.
In general, given a function f ∈ L2(R), define the discrete sequence

fD by

fD := {f(j)}j∈Z. (14.5)

The starting point for our analysis is a Gabor system for L2(R); we
assume it to have the form {Em/MTnNg}m,n∈Z, where g ∈ L2(R) and
M,N ∈ N. The first question is how one can construct sequences, indexed
by Z, based on the Gabor system in L2(R). For each m,n ∈ Z, there
are two natural ways of doing so. In fact, we can consider the sequence
Em/MTnN (fD), obtained by letting the discrete Gabor system Em/MTnN

act on the sequence fD (we have not yet discussed whether fD ∈ �2(Z),
but the expression for the involved operators make sense anyway); or we

can consider the discrete sequence
(
Em/MTnNf

)D
, obtained by sampling

of the function Em/MTnNf ∈ L2(R). Fortunately, the two procedures lead
to the same outcome, and we simply write

Em/MTnNfD = {e2πijm/Mf(j − nN)}j∈Z. (14.6)

Let us now assume that {Em/MTnNg}m,n∈Z is a frame for L2(R). The
basic idea is to ask for conditions such that the family of all the sequences
Em/MTnNgD, where m = 0, . . . ,M−1, n ∈ Z, constitute a frame for �2(Z).
Before we consider the frame condition by itself, we will state a simple and
very satisfying result concerning dual pairs of Gabor frames. The reason
for doing this is that the well-developed theory for duality in L2(R) and
�2(Z) yields an easy way to construct dual pairs of Gabor frames for �2(Z)
through sampling.

Theorem 14.3.1 Let M,N ∈ N be given, and assume that

(i) The functions g and h belong to either Cc(R) or the Feichtinger
algebra S0;

(ii) The Gabor systems {Em/MTnNg}m,n∈Z and {Em/MTnNh}m,n∈Z are
dual frames for L2(R).

Then the discrete Gabor systems {Em/MTnNgD}n∈Z,m=0,...,M−1 and
{Em/MTnNhD}n∈Z,m=0,...,M−1 are dual frames for �2(Z); in the case where
g, h ∈ Cc(R), these sequences are finite.

Proof. In the case where g ∈ S0 and h denotes a dual window in S0, the
result was first reported by Søndergaard [607]. We will give the proof under
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the assumption that g, h ∈ Cc(R) and leave the minor modifications in the
case of S0 to the reader.
If g, h ∈ Cc(R), the associated sequences gD and hD are finite, and

therefore the discrete Gabor systems {Em/MTnNgD}n∈Z,m=0,...,M−1 and
{Em/MTnNhD}n∈Z,m=0,...,M−1 are Bessel sequences. Since
{Em/M TnNg}m,n∈Z and {Em/MTnNh}m,n∈Z are dual frames, we know
from Theorem 12.3.4 that

∑

k∈Z

g(x− kN − nM)h(x− kN) =
1

M
δn,0 (14.7)

for all n ∈ Z and a.e. x ∈ R. Since g and h are continuous functions with
compact support, it follows that (14.7) actually holds for all x ∈ R; taking
x := j ∈ Z now shows that (14.4) holds, and the desired result follows from
Theorem 14.2.1. �

Natural candidates for applications of Theorem 14.3.1 are obtained via
Theorem 12.5.1 by restricting to continuous windows g; this applies, e.g.,
to the B-splines BN with N ≥ 2. This particular construction gives an easy
way to obtain dual pairs of Gabor frames for �2(Z), with windows that are
explicitly given and have finite support.
For a later application we need the following version of Theorem 14.3.1,

which involves more general translation/modulation parameters as well as
an extra “free parameter” � ∈ N. The result is based on an application of
the scaling operator Dc on L2(R), see (2.23).

Corollary 14.3.2 Let � ∈ N and a, b > 0 be given and assume that ab =
N/M for some M,N ∈ N. Consider dual pairs of frames {EmbTnag}m,n∈Z

and {EmbTnah}m,n∈Z for L2(R), and assume that either g, h ∈ Cc(R) or
g, h ∈ S0. Then the discrete Gabor systems

{Em/(M�)TnN�(DbM�g)
D}n∈Z,m=0,...,M�−1

and

{Em/(M�)TnN�(DbM�h)
D}n∈Z,m=0,...,M�−1

are dual Gabor frames for �2(Z).

Proof. Let us first consider a frame {EmbTnag}m,n∈Z. Applying the
unitary scaling operator Dc with c := bM�, the “standard
scaling trick” in Proposition 11.2.4 yields that the Gabor system
{Em/(M�)TnabM�(DbM�g)}m,n∈Z is a frame for L2(R). Similarly,
{Em/(M�)TnabM� (DbM�g)}m,n∈Z is a frame for L2(R), and by Lemma 6.3.3,
these frames are in fact dual frames. Using that the spaces Cc(R) and S0
are invariant under scaling, the result now follows from Theorem 14.3.1. �
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Note that on explicit form, the window (DbM�g)
D in Corollary 14.3.2 is

the sequence

(DbM�g)
D =

{
1√
bM�

g(
j

bM�
)

}

j∈Z

.

14.4 Discrete Gabor Frames Through Sampling

In this section, we will discuss the sampling results for a Gabor system
{Em/MTnNg}m,n∈Z in L2(R), due to Janssen [429]. In contrast to the setup
in Section 14.3, it is not assumed that the window g is continuous or has
compact support. As already mentioned, we have to be careful with the
meaning of “sampling” for noncontinuous functions; furthermore, without
the assumption that the window g is compactly supported, the discrete
sequence gD might not be finite, and we cannot be sure that it belongs to
�2(Z). Parallel to the discussion in Section 14.3, sampling results can be
obtained in an easier way under stronger assumptions, e.g., for windows
g ∈ Cc(R) or g ∈ S0. In fact, the condition in (11.14) for a Gabor system
{EmbTnag}m,n∈Z to be a frame for L2(R) has a similar version in �2(Z) for
the parameter values a = 1/M, b = N ; thus, continuity and fast decay of
the window g will imply that the sampled Gabor system forms a frame as
well.
Following Janssen we will put minimal restrictions on the function

g ∈ L2(R) and find conditions such that the sampled Gabor system
{Em/MTnNgD}n∈Z,m=0,1,...,M−1 forms a frame for �2(Z). The first result
gives conditions on the Gabor system {Em/MTnNg}m,n∈Z in L2(R) which
imply that the discrete time–frequency shifts of gD belong to �2(Z).

Lemma 14.4.1 Let g ∈ L2(R) and let M,N ∈ N be given. Assume
that g contains all the integers among its Lebesgue points and that
{Em/MTnNg}m,n∈Z is a Bessel sequence in L2(R). Then

∑

j∈Z

|g(j)|2 ≤ BN

M
.

In particular, Em/MTnNgD ∈ �2(Z) for all m,n ∈ Z.

Proof. Let j ∈ Z and ε > 0 be given. Letting B denote an upper frame
bound for the Gabor system {Em/MTnNg}m,n∈Z in L2(R), we know from
Proposition 11.3.4 that

∑

n∈Z

|g(x+ nN)|2 ≤ B

M
, a.e. x ∈ R. (14.8)
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In particular, g is essentially bounded. Now let j ∈ Z. The assumption

that j is a Lebesgue point combined with (14.8) shows that |g(j)| ≤
√

B
M .

Assuming that g is real-valued, it follows that
∣
∣ |g(j)|2 − |g(j + x)|2

∣
∣ = |(g(j) + g(j + x))(g(j)− g(j + x))|

≤ 2

√
B

M
|g(j)− g(j + x)|, a.e. x ∈ R.

Using that j is assumed to be a Lebesgue point for g,
∣
∣
∣
∣ |g(j)|

2 − 1

ε

∫ ε/2

−ε/2

|g(x+ j)|2dx
∣
∣
∣
∣ =

∣
∣
∣
∣
1

ε

∫ ε/2

−ε/2

(
|g(j)|2 − |g(x+ j)|2

)
dx

∣
∣
∣
∣

≤ 2

√
B

M

1

ε

∫ ε/2

−ε/2

|g(j)− g(j + x)|dx

→ 0 as ε→ 0.

We conclude that

|g(j)|2 = lim
ε→0

1

ε

∫ ε/2

−ε/2

|g(x+ j)|2dx, ∀j ∈ Z. (14.9)

We have derived this under the assumption that g is real-valued, but it now
follows that (14.9) also holds for complex-valued functions. In the rest of the
proof, we can proceed without assuming g to be real-valued. Using Fatou’s
lemma on X = Z and the counting measure, followed by an application
of (14.8),

∑

j∈Z

|g(j)|2 =
∑

j∈Z

lim inf
ε→0

1

ε

∫ ε/2

−ε/2

|g(x+ j)|2dx

≤ lim inf
ε→0

∑

j∈Z

1

ε

∫ ε/2

−ε/2

|g(x+ j)|2dx

= lim inf
ε→0

N−1∑

j=0

1

ε

∫ ε/2

−ε/2

∑

n∈Z

|g(x+ j + nN)|2dx

≤ BN

M
.

This proves that gD ∈ �2(Z); now the lemma follows because the operators
Em/M and TnN on �2(Z) are norm-preserving. �

The next lemma is an important step from Gabor systems in L2(R)
to Gabor systems in �2(Z). It contains an identity involving functions in
L2(R), which “approaches discrete sequences” for small values of ε:
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Lemma 14.4.2 Let g ∈ L2(R) and M,N ∈ N be given, and assume that
{Em/MTnNg}m,n∈Z is a Bessel sequence in L2(R). Given ε ∈]0, 1

2 [, let

δε =
1

ε
χ]− 1

2 ε,
1
2 ε[

.

Consider a finite linear combination of translates of δε,

f ε =
∑

j∈Z

cjTjδ
ε. (14.10)

Then
∑

m,n∈Z

|〈f ε, Em/MTnNg〉|2

=
∑

n∈Z

M−1∑

m=0

∑

j,k∈Z

cjck
1

ε2

∫ 1
2 ε

− 1
2 ε

Em/MTnNg(x+ j)Em/MTnNg(x+ k)dx.

Proof. First, we use the definition of f ε to write

∑

m,n∈Z

|〈f ε, Em/MTnNg〉|2

=
∑

m,n∈Z

∑

j,k∈Z

cjck〈Tjδ
ε, Em/MTnNg〉〈Em/MTnNg, Tkδ

ε〉

=
∑

n∈Z

M−1∑

m=0

∑

�∈Z

∑

j,k

cjck〈Tjδ
ε, E�+m/MTnNg〉〈E�+m/MTnNg, Tkδ

ε〉.

Now, via Lemma 11.2.2,

〈Tjδ
ε, E�+m/MTnNg〉

= 〈E−m/MTjδ
ε, E�TnNg〉

=

∫ 1

0

(
∑

r∈Z

Tjδ
ε(x− r)Em/MTnNg(x− r)

)

e−2πi�xdx,

which is the �th Fourier coefficient of the 1-periodic function

αj(x) =
∑

r∈Z

Tjδ
ε(x− r)Em/MTnNg(x− r)

in L2(0, 1). Note that for x ∈ [−1/2, 1/2],

αj(x) = δε(x)Em/MTnNg(x+ j)

=
1

ε
χ]− 1

2 ε,
1
2 ε[

(x)Em/MTnNg(x+ j).
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Via Lemma 3.8.2,
∑

�∈Z

〈Tjδ
ε, E�+m/MTnNg〉〈E�+m/MTnNg, Tkδ

ε〉

= 〈αj , αk〉 =
∫ 1

2

− 1
2

αj(x)αk(x)dx

=
1

ε2

∫ 1
2 ε

− 1
2 ε

Em/MTnNg(x+ j)Em/MTnNg(x+ k)dx,

and the result follows. �

If we impose stronger conditions on the window g, we can obtain a
Gabor frame for �2(Z) by sampling of a Gabor frame {Em/MTnNg}m,n∈Z

for L2(R).We will use “condition (R)”, see (12.2); this condition is satisfied,
e.g., if the window g belongs to Feichtinger’s algebra S0.

Theorem 14.4.3 Let M,N ∈ N. Assume that g ∈ L2(R) satisfies con-
dition (R) and that {Em/MTnNg}m,n∈Z is a frame for L2(R) with frame
bounds A,B. Then the discrete Gabor system {Em/MTnNgD}n∈Z,m=0,...,M−1

is a frame for �2(Z) with frame bounds A,B.

Proof. In order to prove that {Em/MTnNgD}n∈Z,m=0,...,M−1 is a frame

for �2(Z), we consider a finite sequence {ck}k∈Z. For ε ∈]0, 1
2 [, consider the

function f ε in (14.10); we have ||f ε||2 = 1
ε

∑
j∈Z
|cj |2. Applying the frame

condition for {Em/MTnNg}m,n∈Z on f ε gives that for all ε ∈]0, 12 [,

A
∑

j∈Z

|cj |2 ≤ ε
∑

m,n∈Z

|〈f ε, Em/MTnNg〉|2 ≤ B
∑

j∈Z

|cj |2.

For the proof of Theorem 14.4.3, it is therefore enough to show that

lim inf
ε→0

ε
∑

m,n∈Z

|〈f ε, Em/MTnNg〉|2 =
∑

n∈Z

M−1∑

m=0

∣
∣
∣
∣

∑

j

cjEm/MTnNg(j)

∣
∣
∣
∣

2

. (14.11)

In fact, if (14.11) is satisfied for all finite sequences {ck}k∈Z, then
{Em/MTnNgD}n∈Z,m=0,...,M−1 satisfies the frame condition in �2(Z) on a
dense set and therefore on �2(Z) by Lemma 5.1.9.
First we note that

∑

n∈Z

M−1∑

m=0

∣
∣
∣
∣

∑

j

cjEm/MTnNg(j)

∣
∣
∣
∣

2

=
∑

n∈Z

M−1∑

m=0

∑

j,k

cjckEm/MTnNg(j)Em/MTnNg(k),
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while by Lemma 14.4.2

ε
∑

m,n∈Z

|〈f ε, Em/MTnNg〉|2

=
∑

n∈Z

M−1∑

m=0

∑

j,k

cjck
1

ε

∫ 1
2 ε

− 1
2 ε

Em/MTnNg(x+ j)Em/MTnNg(x+ k)dx.

Comparing the two expressions, we see that (14.11) follows if we can prove
that

∑

n∈Z

1

ε

∫ 1
2 ε

− 1
2 ε

Em/MTnNg(x+ j)Em/MTnNg(x+ k)dx

→
∑

n∈Z

Em/MTnNg(j)Em/MTnNg(k) as ε→ 0

for all m = 0, . . . ,M − 1 and j, k ∈ Z (recall that the sums over j, k are
finite). Now,

∣
∣
∣
∣
∣

1

ε

∫ 1
2 ε

− 1
2 ε

Em/MTnNg(x+ j)Em/MTnNg(x+ k)dx

− Em/MTnNg(j)Em/MTnNg(k)
∣
∣
∣

≤ 1

ε

∫ 1
2 ε

− 1
2 ε

∣
∣Em/MTnNg(x+ j)Em/MTnNg(x+ k)

−Em/MTnNg(j)Em/MTnNg(k)
∣
∣dx

=
1

ε

∫ 1
2 ε

− 1
2 ε

∣
∣g(x+ j − nN)g(x+ k − nN)− g(j − nN)g(k − nN)

∣
∣dx

≤ 1

ε

∫ 1
2 ε

− 1
2 ε

∣
∣g(x+ j − nN)− g(j − nN)|

∣
∣g(x+ k − nN)

∣
∣dx

+
1

ε

∫ 1
2 ε

− 1
2 ε

∣
∣g(j − nN)

∣
∣ |g(x+ k − nN)− g(k − nN)| dx.

It follows that

∣
∣
∣
∣
∣

∑

n∈Z

1

ε

∫ 1
2 ε

− 1
2 ε

Em/MTnNg(x+ j)Em/MTnNg(x+ k)dx

−
∑

n∈Z

Em/MTnNg(j)Em/MTnNg(k)

∣
∣
∣
∣
∣
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≤ 1

ε

∑

n∈Z

∫ ε
2

− ε
2

|g(x+ j − nN)− g(j − nN)| |g(x+ k − nN)| dx (14.12)

+
1

ε

∑

n∈Z

∫ 1
2 ε

− 1
2 ε

|g(j − nN)| |g(x+ k − nN)− g(k − nN)| dx. (14.13)

Both (14.12) and (14.13) converge to zero as ε→ 0; we give the argument
for (14.12). Applying Cauchy–Schwarz inequality twice,

1

ε

∑

n∈Z

∫ 1
2 ε

− 1
2 ε

∣
∣g(x+ j − nN)− g(j − nN)

∣
∣ |g(x+ k − nN)| dx

≤ 1

ε

∑

n∈Z

(∫ 1
2 ε

− 1
2 ε

|g(x+ j − nN)− g(j − nN)|2dx
)1/2

×
(∫ 1

2 ε

− 1
2 ε

|g(x+ k − nN)|2 dx
)1/2

≤ 1

ε

(
∑

n∈Z

∫ 1
2 ε

− 1
2 ε

|g(x+ j − nN)− g(j − nN)|2dx
)1/2

×
(
∑

n∈Z

∫ 1
2 ε

− 1
2 ε

|g(x+ k − nN)|2 dx
)1/2

= (∗).

Via Lemma 14.4.1, the second term in (*) can be estimated by

(
∑

n∈Z

∫ 1
2 ε

− 1
2 ε

|g(x+ k − nN)|2 dx
)1/2

≤
√

BN

M
ε;

thus,

(∗) ≤
√

BN

M

(
1

ε

∑

n∈Z

∫ 1
2 ε

− 1
2 ε

|g(x+ j − nN)− g(j − nN)|2dx
)1/2

,

which converges to zero for ε → 0 because of condition (R); the proof is
completed. �

Following the proof of Corollary 14.3.2, it is easy to derive a version of
Theorem 14.4.3 with additional freedom.

Corollary 14.4.4 Let � ∈ N and a, b > 0 be given and assume that ab =
N/M for some M,N ∈ N. Consider a frame {EmbTnag}m,n∈Z for L2(R) for
L2(R) with bounds A,B, and assume that g ∈ S0. Then the discrete Gabor
system {Em/(M�)TnN�(DbM�g)

D}n∈Z,m=0,...,M�−1 is a frame for �2(Z), with
bounds A,B.
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In continuation of the above results and with similar techniques, Janssen
proves the following result in [427]:

Lemma 14.4.5 Suppose that g ∈ L2(R) satisfies condition (R) and that
{Em/MTnNg}m,n∈Z is a Bessel sequence in L2(R) for some M,N ∈ N.
Then any function of the form

φ =
∑

m,n∈Z

cmnEm/NTnMg, where {cmn}m,n∈Z ∈ �1(Z2) (14.14)

also satisfies condition (R).

Note that the lattice associated with the given Bessel sequence
{Em/MTnNg}m,n∈Z is {(nN,m/M)}m,n∈Z and that the functions φ
in (14.14) are linear combinations of the Gabor system with respect to

the dual lattice {(nM,m/N)}m,n∈Z. Since the Gaussian g(x) = e−
1
2x

2

sat-
isfies condition (R) (see Exercise 12.2) and {EmTng}m,n∈Z is complete in
L2(R), Lemma 14.4.5 gives an alternative argument for condition (R) being
satisfied on a dense set of functions in L2(R).

Lemma 14.4.5 has an interesting application to sampling of the frame
operator S associated with a frame {Em/MTnNg}m,n∈Z for L2(R). For the
proof, we will use a result from [426], which uses “condition (A)”; see (12.1);
this condition is satisfied, e.g., if the window g belongs to Feichtinger’s
algebra S0.

Lemma 14.4.6 Let g ∈ L2(R), M,N ∈ N, and assume that the
Gabor system {Em/MTnNg}m,n∈Z is a frame for L2(R), with frame
operator S. If {Em/MTnNg}m,n∈Z satisfies condition (A), then also
{Em/MTnNS−1g}m,n∈Z satisfies condition (A).

Proposition 14.4.7 Let g ∈ L2(R), M,N ∈ N, and assume that
{Em/MTnNg}m,n∈Z is a Bessel sequence and satisfies condition (A).
Then, for any f ∈ L2(R) which satisfies condition (R) and for which
{Em/MTnNf}m,n∈Z is a Bessel sequence,

Sf(j) =
M

N

∑

m,n∈Z

〈g, Em/NTnMg〉Em/NTnMf(j), j ∈ Z. (14.15)

If furthermore g satisfies condition (R) and we denote the frame operator
for {Em/MTnNgD}n∈Z,m=0,...,M−1 by SD : �2(Z)→ �2(Z), then

(Sf)D = SDfD; (14.16)

if we also add the assumption that {Em/MTnNg}m,n∈Z is a frame, then

(S−1g)D = (SD)−1gD. (14.17)
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Proof. By Theorem 12.2.5, the frame operator has the representation

Sf =
M

N

∑

m,n∈Z

〈g, Em/NTnMg〉Em/NTnMf, f ∈ L2(R).

If f satisfies condition (R) and {Em/MTnNf}m,n∈Z is a Bessel sequence,
then Sf satisfies condition (R) by Lemma 14.4.5. In particular we can
sample Sf at the integers; this yields (14.15), with absolute convergence
of the series because {〈g, Em/NTnMg〉}m,n∈Z ∈ �1(Z2). For the proof that
the extra assumption implies (14.16), we refer to [429]. Now, assume that
{Em/MTnNg}m,n∈Z is a frame. By Corollary 12.2.4(ii),

S−1g =
M

N

∑

m,n∈Z

〈S−1g, Em/NTnMS−1g〉Em/NTnMg.

Since {Em/MTnNS−1g}m,n∈Z satisfies condition (A) by Lemma 14.4.6 and
{Em/NTnMS−1g}m,n∈Z is a Bessel sequence, we can apply (14.16) to the
function f := S−1g, and (14.17) follows. �

In words, (14.16) means that we can obtain knowledge about the
frame operator for a Gabor system in L2(R) based on the frame opera-
tor for a Gabor system in �2(Z). Using functional calculus, Janssen has
extended (14.16) considerably. In fact, there are conditions such that the
sampling procedure can be generalized to operators ϕ(S), where ϕ is an
analytic function. Hereby the obtained sampling results are also applicable
to the function S−1/2g which generates the canonical tight frame associated
with {Em/MTnNgD}n∈Z,m=0,...,M−1. Janssen’s proof is published in [201].

14.5 Gabor Frames for L2(0, L) via Periodization

This section will deal with construction of Gabor frames for L2(0, L), where
L ∈ N. We will consider the functions in L2(0, L) as L-periodic functions
on R. The construction will be based on a periodization of a Gabor frame
for L2(R).
Most of the section is based on work by Søndergaard [607]. As stated

in [607], Gabor frames in L2(0, L) are not widely used; but they play an
important role as an intermediate step toward the results in Section 14.6,
where a Gabor frame for L2(R) ultimately is turned into a discrete model
in C

L.
Let us first define the central operators on L2(0, L) for a fixed choice of

L ∈ N. For any a ∈ R, we can define the translation operator

Ta : L2(0, L)→ L2(0, L), Taf(x) = f(x− a), x ∈ R. (14.18)

Note that the expression for Ta is well-defined, because we consider L2(0, L)
as a space of L-periodic functions.
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The modulation operator Eb on L2(0, L) is for b ∈ L−1
Z defined by

Eb : L
2(0, L)→ L2(0, L), Ebf(x) = e2πibxf(x). (14.19)

The choice of the parameter b implies that Ebf is indeed L-periodic when-
ever f ∈ L2(0, L). Exactly as the corresponding operators on L2(R), the
translation operators and modulation operators are unitary operators on
L2(0, L).
Still fixing L ∈ N, let b ∈ L−1

N and choose a ∈ N such that N ′ := L/a ∈
N. The corresponding Gabor system in L2(0, L), generated by a function
g ∈ L2(0, L), is defined by

{EmbTnag}m∈Z,n=0,...,N ′−1 := {e2πimbxg(x− na)}m∈Z,n=0,...,N ′−1. (14.20)

The periodization operator PL on L2(R) is formally defined by

(PLf)(x) :=
∑

k∈Z

f(x+ kL), x ∈ R. (14.21)

Note that we need stronger conditions than f ∈ L2(R) in order for PLf to
be well-defined; one such condition is that f ∈ S0.

Finally, we will need the Fourier transform on L2(0, L), i.e., the operator
that associates the sequence of Fourier coefficients to a given function f ∈
L2(0, L). Note that the functions

{
1√
L
e2πikx/L

}

k∈Z

form an orthonormal

basis for L2(0, L); see (3.31). We define the Fourier transform F[0,L] by

F[0,L] : L
2(0, L)→ �2(Z), F[0,L]f :=

{
(F[0,L]f)(k)

}
k∈Z

, (14.22)

where

(F[0,L]f)(k) :=
1√
L

∫ L

0

f(x)e−2πikx/L dx, k ∈ Z. (14.23)

Using (3.32) with the functions ek defined by (3.31) [the parameter “b”
in these expressions is different from the b in the current context and is
chosen as the number L−1], we see that any function f ∈ L2(0, L) has the
expansion

f =
∑

k∈Z

〈f, ek〉ek =
1√
L

∑

k∈Z

(F[0,L]f)(k)e
2πikx/L;

thus, the inverse Fourier transform F−1
[0,L] : �

2(Z)→ L2(0, L) is given by

(
F−1

[0,L]{c(k)}k∈Z

)
(x) =

1√
L

∑

k∈Z

c(k)e2πikx/L. (14.24)

The Fourier transform F[0,L] and its inverse F−1
[0,L] are unitary operators

(we allow ourselves to use the name “unitary” even though the domain
and the range spaces are different). Exactly as in the case of the Fourier
transformation on L2(R), we can derive commutator relationships for com-
positions of F[0,L] with the operators Eb and Ta. Note however that because
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the domain space and the range space of F[0,L] are different, we need to be
careful with the meaning of these operators; i.e., we must specify the space
they act on. We leave the proof of the result to the reader (Exercise 14.4):

Lemma 14.5.1 Let L ∈ N be given.

(i) For b ∈ L−1
Z, let Eb denote the modulation operator on L2(0, L) and

let TbL be the translation operator on �2(Z). Then

F[0,L]Eb = TbLF[0,L] on L2(0, L) (14.25)

and

EbF−1
[0,L] = F

−1
[0,L]TbL on �2(Z). (14.26)

(ii) For a ∈ Z, let Ta denote the translation operator on L2(0, L) and let
Ea/L be the modulation operator on �2(Z). Then

F[0,L]Ta = E−a/LF[0,L] on L2(0, L), (14.27)

and

TaF−1
[0,L] = F

−1
[0,L]E−a/L on �2(Z). (14.28)

We note that Poisson’s summation formula (see Lemma A.6.3) has a
formulation in terms of the periodization operator PL and the Fourier
transform F[0,L]. Recall the notation fD used for the sampling sequence
associated with a function f ∈ L2(R); see (14.5).

Lemma 14.5.2 Given L ∈ N, let DL denote the scaling operator on
L2(R), see (2.23), and let as usual F denote the Fourier transform on
L2(R). Then, given f ∈ S0,

(PLf)(x) =
(
F−1

[0,L](DLFf)D
)
(x), ∀x ∈ R.

We are now ready to show how to obtain Gabor frames and pairs of
dual Gabor frames in L2(I) for certain intervals I ⊂ R, by periodization of
frames for L2(R).

Theorem 14.5.3 Let �,M,N ∈ N. Then the following hold:

(i) If g ∈ S0 and {Em/MTnNg}m,n∈Z is a frame for L2(R) with bounds
A,B, then the periodized Gabor system {Em/MTnN

PNM�g}n∈Z,m=0,...,M�−1 is a frame for L2(0, NM�) with bounds A,B.

(ii) Let g, h ∈ S0. If {Em/MTnNg}m,n∈Z and {Em/MTnNh}m,n∈Z are
dual frames for L2(R), then the periodized Gabor systems {Em/MTnN

PNM�g}n∈Z,m=0,...,M�−1 and {Em/MTnN PNM�h}n∈Z,m=0,...,M�−1

are dual frames for L2(0, NM�).
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Proof. Under the assumptions in (i), Proposition 11.2.5 shows that the
Gabor system {EmNTn/M ĝ}m,n∈Z also is a frame for L2(R) with bounds
A,B. The Feichtinger algebra S0 is invariant under the Fourier transform,
so by Corollary 14.4.4 the sampled Gabor system

{Em/(M�)TnN�(DNM�ĝ)
D}n∈Z,m=0,...,M�−1

is a frame for �2(Z). Now, using Lemma 14.5.1,

F−1
[0,NM�]Em/(M�)TnN�(DNM�ĝ)

D = T−mNF−1
[0,NM�]TnN�(DNM�ĝ)

D

= T−mNEn/MF−1
[0,NM�](DNM�ĝ)

D.

Since F−1
[0,NM�] : �2(Z) → L2(0, NM�) is unitary, it follows that

{T−mNEn/MF−1
[0,NM�](DNM�ĝ)

D}n∈Z,m=0,...,M�−1 is a frame for L2(0, NM�)

with bounds A,B. A moment thought shows that the Gabor sys-
tem equals {TmNEn/MF−1

[0,NM�](DNM�ĝ)
D}n∈Z,m=0,...,M�−1. Note also

that exchanging the order of the translation operator and the mod-
ulation operator just introduces an irrelevant complex factor of abso-
lute value 1 and does not change the frame property or the frame
bounds. Thus, {En/MTmNF−1

[0,NM�](DNM�ĝ)
D}n∈Z,m=0,...,M�−1 is a frame

for L2(0, NM�), with bounds A,B. Finally, using now Lemma 14.5.2,
we conclude that {En/MTmNPNM�g}n∈Z,m=0,...,M�−1 is indeed a frame
for L2(0, NM�). This proves (i); the proof of (ii) is similar, using
Corollary 14.3.2 instead of Corollary 14.4.4. �

It is interesting to note that we proved Theorem 14.5.3 without hav-
ing derived any sufficient conditions for a Gabor system being a frame
in L2(0, L)! The technical reason for this is that we could construct the
systems by applying the inverse Fourier transform to a Gabor frame
for �2(Z).
If necessary, it is possible to follow the approach in Chapters 11–13 and

derive characterizations of Gabor frames and dual frames in L2(0, L). The
reason that the results and their proofs and similar to the L2(R)-case is
that both cases are concrete manifestations of the general theory for Gabor
systems on LCA groups; see Chapter 21, in particular Example 21.3.3.

14.6 Gabor Frames in C
L

Gabor systems also have a natural version in the finite-dimensional spaces
C

L, L ∈ N. We will describe this now; in order to connect with the results
for frames in �2(Z), we will write a sequence g ∈ C

L as

g = (g(0), g(1), . . . , g(L− 1)).

The definition of the modulation operator on �2(Z) given in (14.1) also
defines Eb as an operator on C

L. In contrast, the definition (14.2) of the
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translation operator Tn, n ∈ Z, does not immediately make sense on C
L

because j−n does not always belong to {0, 1, . . . , L− 1}. The natural way
to solve this problem is to extend g ∈ C

L to a periodic sequence indexed
by Z. That is, we define

g(j + kL) = g(j) for j = 0, . . . , L− 1, k ∈ Z.

With this convention, we can apply the translation operators Tn, n ∈ Z, to
sequences in C

L.
Given any L ∈ N, let M,N ∈ N and assume that M ′ := L/M ∈ N and

N ′ := L/N ∈ N. Given a sequence g ∈ C
L, we now define the associated

Gabor system on C
L by

{Em/MTnNg}m=0,...,M−1;n=0,...,N ′−1 (14.29)

= {e2πin(·)/Mg(· − nN)}m=0,...,M−1;n=0,...,N ′−1.

Thus, the Gabor system consists of MN ′ vectors in C
L. Note that the

definition in (14.29) corresponds precisely to the one that arises by consid-
ering C

L as an LCA group; see Example 21.3.2. A characterization of dual
Gabor frames in C

L can be obtained either by direct calculations or as a
consequence of Theorem 21.7.10 (Exercise 14.7):

Theorem 14.6.1 Two Gabor systems {Em/MTnNg}m=0,...,M−1;n=0,...,N ′−1

and {Em/MTnNg}m=0,...,M−1;n=0,...,N ′−1 as above form dual frames for CL

if and only if

N ′−1∑

k=0

g(j − kN − nM)h(j − kN) =
1

M
δn,0

for all j ∈ {0, . . . , N − 1}, n ∈ {0, . . . ,M ′ − 1}.

The sampling procedures described in Section 14.4 transfer frames for
L2(R) into frames for �2(Z) and hereby take an important step toward con-
crete applications. However, in signal and image processing, we ultimately
need a finite model, with a finite number of vectors spanning a finite-
dimensional space. Based on the material in the current chapter, there are
two ways of transferring a Gabor frame {EmbTnag}m,n∈Z in L2(R) into a
finite frame:

• Applying the sampling results in Sections 14.3–14.4 to the frame
{EmbTnag}m,n∈Z yields a Gabor frame in �2(Z); using a similar pe-
riodization method as in Section 14.5 on this frame yields a finite
Gabor frame in C

L.

• Applying the periodization results in Section 14.5 to the frame
{EmbTnag}m,n∈Z yields a Gabor frame in L2(0, L); using a similar
sampling method as in Sections 14.3–14.4 on this frame yields a finite
frame in C

L.
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Note that for both methods, we have done “half the work”: the steps from
L2(R) to �2(Z) and from L2(R) to L2(0, L) have been described carefully in
the previous sections, while the steps from �2(Z) to CL and from L2(0, L) to
C

L have not been discussed yet. Since these periodization/sampling steps
are completely analog to the material in Sections 14.3–14.5, we will just
state the final result and refer to the papers [443] by Kaiblinger and [607]
by Søndergaard for details.
We will state the version where a function g ∈ L2(R) is first sampled

and then periodized. Let us fix L ∈ N. For a sequence gD ∈ �2(Z), the
periodization is formally defined by

(
PLg

D
)
(j) :=

∑

n∈Z

gD(j − nL), j = 1, . . . , L− 1. (14.30)

Thus, PL is a sequence in C
L whenever it is well-defined; clearly this is the

case at least whenever gD ∈ �1(Z).
Skipping the intermediate steps mentioned above, the final transition

from a Gabor system in L2(R) to a finite-dimensional Gabor system reads
as follows:

Theorem 14.6.2 Let N,M, � ∈ N be given. Then the following hold:

(i) If g ∈ S0 and the Gabor system {Em/MTnNg}m,n∈Z is a frame for
L2(R) with bounds A,B, then the discrete Gabor system
{Em/MTnNPNM�g

D}m=0,...,M−1,n=0,...,M�−1 is a frame for C
NM�

with bounds A,B.

(ii) If g, h ∈ S0 and the Gabor systems {Em/MTnNg}m,n∈Z and
{Em/MTnNg}m,n∈Z are dual frames for L2(R), then the discrete
Gabor systems {Em/MTnNPNM�g

D}m=0,...,M−1,n=0,...,M�−1 and
{Em/MTnNPNM�g

D}m=0,...,M−1,n=0,...,M�−1 are dual frames for

C
NM�.

In Theorem 14.6.2, the notation indicates that we first sample the window
g in order to obtain the sequence gD, and then apply the periodization
operator PNM� on �2(Z) in order to arrive at the window PNM�g

D for the
discrete Gabor frame in C

NM�. However, for any L ∈ N,
(
PLg

D
)
(j) =

∑

n∈Z

g(j − nL) = (PLg)
D
(j); (14.31)

thus, Theorem 14.6.2 has exactly the same form for the case where we first
periodize the Gabor frame and then perform the sampling.
We can now provide a detailed diagram, which demonstrates the entire

procedure of constructing finite-dimensional Gabor frames based on a
Gabor frame {EmbTnag}m,n∈Z for L2(R). Recall from Søndergaard’s origi-
nal diagram on page 359 that the arrows to the left indicate sampling and
that the arrows down indicate periodization:
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L2(R), {Em/MTnNg} sampling−−−−−−−→ �2(Z), {Em/MTnNgD}⏐⏐periodization ⏐⏐
L2(0, NM�), {Em/MTnNPNM�g} −−−−−→ C

NM�, {Em/MTnNPNM�g
D}

For the sake of clarity the index sets of the various Gabor systems are
eliminated in the diagram; we refer to Theorem 14.3.1, Theorem 14.5.3,
and Theorem 14.6.2 for the details.
Note that the diagram states the Gabor frames and the involved

spaces explicitly, including the free parameter �. This parameter allows to
obtain finite-dimensional models in spaces of various dimensions. Look-
ing at the diagram, it is natural to ask about the relation between
the given Gabor frame {EmbTnag}m,n∈Z and its “finite-dimensional ver-
sion” {Em/MTnNPNM�g

D}m=0,...,M−1,n=0,...,M�−1 in C
NM� for large values

of � ∈ N. Kaiblinger [443] and Søndergaard [607] have indeed used
Theorem 14.6.2 to develop methods to approximate the inverse frame
operator associated with a frame {EmbTnag}m,n∈Z for L2(R); in a
vague form, one can say that the finite-dimensional frame {Em/MTnN

PNM�g
D}m=0,...,M−1,n=0,...,M�−1 for C

NM� approximates the frame
{EmbTnag}m,n∈Z “well” whenever the parameter � is large.
The constructions in Theorem 14.3.1, Theorem 14.5.3, and Theo-

rem 14.6.2 have a number of important features that are worth mentioning
explicitly. In fact, since they ultimately transfer a frame {EmbTnag}m,n∈Z

for L2(R) into a finite frame, it is natural to examine how this frame per-
form compared to the “wish list” for finite frames; see page 43. Recall that
for any frame with frame operator S, the condition number denotes the
ratio between the optimal upper frame bound and the optimal lower frame
bound; see the discussion in the finite-dimensional context in Section 1.3.

• Any Gabor frame is an equal-norm frame, i.e., the elements in the
frame have the same norm. In particular, this holds for the given
Gabor frame {Em/MTnNg}m,n∈Z in L2(R) and the constructed Gabor
frames in �2(Z), L2(0, L), and C

L.

• As stated explicitly in the theorems concerning the steps of sampling
and periodization, all transitions keep the frame bounds; the optimal
bounds of the frames obtained by sampling and periodization might
even be “tighter” than for the given frame. In particular, if the proce-
dure is applied to a tight Gabor frame for L2(R), also the constructed
frames in �2(Z), L2(0, L), and C

L will be tight.

• More generally, and a direct consequence of the preceding comment,
the condition number for the frame operator associated with the
Gabor frame {Em/MTnNg}m,n∈Z in L2(R) is dominating the con-
dition number for the constructed frames in �2(Z), L2(0, L), and C

L.
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In particular, if {EmbTnag}m,n∈Z is well-conditioned , i.e., if the asso-
ciated frame operator has a low condition number, the same is true
for the frames obtained by sampling and periodization. As stated
above, sampling and periodization might even lead to frames with a
better condition number.

• A natural candidate for concrete applications would be the B-splines
BN , N ≥ 2. They are continuous, have compact support, and be-
long to S0. Furthermore, explicitly given dual windows with the same
properties can be constructed via Theorem 12.5.1.

Now consider a general Gabor system
{Em/M TnNg}m=0,...,M−1;n = 0, . . . , N ′ − 1 in C

L. It was shown by
Lawrence, Pfander, and Walnut [480] that whenever L is prime, the
Gabor system has full spark for a.e. g ∈ C

L; it was proved by
Malikiosis [508] that the assumption of L being prime can be re-
moved, i.e., the result holds in full generality. On the other hand,
Kutyniok proved in [466] that nontrivial subsets of the Gabor system
{Em/MTnNg}m=0,...,M−1;n=0,...,N ′−1 cannot be linearly independent for all
g ∈ C

L \ {0}; that is, {Em/MTnNg}m=0,...,M−1;n=0,...,N ′−1 cannot have full
spark for all choices of g ∈ C

L \ {0}. It is interesting to compare this result
with the fact that a Gabor system {EmbTnag}m,n∈Z in L2(R) is linearly in-
dependent for all g ∈ L2(R)\ {0}. Also, compare with the discussion about
linear independence of general Gabor systems in L2(R); see page 343.

Note that finite-dimensional systems can be obtained from a Gabor frame
{EmbTnag}m,n∈Z for L2(R) in several ways. For example, one could also
consider the frame sequences {EmbTnag}|m|,|n|≤N for some N ∈ N. How-
ever, as we have seen in Section 13.4 and in particular in Theorem 13.4.4,
this always leads to badly conditioned systems whenever {EmbTnag}m,n∈Z

is overcomplete; thus, from the numerical point of view, an application
based on this system would not be attractive.
Let us end this section with a result by Qiu und Feichtinger [290]

about the Gabor frame operator associated with a finite Gabor system
{Em/MTnNg}m=0,...,M−1;n=0,...,N ′−1 :

Theorem 14.6.3 For L ∈ N, let M,N ∈ N and assume that M ′ :=
L/M ∈ N and N ′ := L/N ∈ N. Let g ∈ C

L, and consider the Gabor
system {Em/MTnNg}m=0,...,M−1;n=0,...,N ′−1 in C

L and its frame opera-
tor S : C

L → C
L. Then the jkth entry in the matrix representation of

the operator S w.r.t. the canonical orthonormal basis {ek}L−1
k=0 for C

L is
given by

〈Sek, ej〉 =
{

M
∑N ′−1

n=0 TnNg(k)TnNg(j) if j − k ∈MZ,
0 if j − k /∈MZ.
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Proof. The jkth entry in the matrix representation for S : CL → C
L is

〈Sek, ej〉 =

N ′−1∑

n=0

M−1∑

m=0

〈ek, Em/MTnNg〉〈Em/MTnNg, ej〉

=

N ′−1∑

n=0

M−1∑

m=0

Em/MTnNg(k)Em/MTnNg(j)

=

⎛

⎝
N ′−1∑

n=0

TnNg(k)TnNg(j)

⎞

⎠

(
M−1∑

m=0

e2πim(j−k)/M

)

.

Since
(

M−1∑

m=0

e2πim(j−k)/M

)

=

{
M if j − k ∈MZ,
0 if j − k /∈MZ,

this proves the result. �

In words, Theorem 14.6.3 says that only every Mth subdiagonal in the
matrix representation of the frame operator S is nonzero. In [290] the result
is used to find fast algorithms to calculate the dual frame. For further read-
ing, we note that Qiu has a series of papers [548, 549] about the structure
of Gabor systems in C

L.

14.7 Shift-Invariant Systems

As in the L2(R)-case, the discrete Gabor systems in �2(Z) are special
cases of general shift-invariant systems. Given a collection of sequences
{gm}m=0,...,M−1 in �2(Z) and a shift-parameter N ∈ N, consider the
sequence gnm ∈ �2(Z) with entries

gnm(j) = gm(j − nN), j ∈ Z.

Similar to our notation for shift-invariant systems in L2(R), we will skip
the indices and simply denote the system {gnm}n∈Z,m=0,...,M−1 by {gnm}.
The results for continuous shift-invariant systems in Section 10.1 have

discrete counterparts, which are stated in [430]. In order to formulate the
results, we consider the Fourier transform of a sequence h ∈ �2(Z), given by

ĥ(ν) =
∑

j∈Z

h(j)e−2πijν , a.e. ν ∈ R.

Given a shift-invariant system {gnm}, we define, analogous to (10.13),
the matrix-valued function

H(ν) = (ĝm(ν − k/N))k=0,...,N−1,m=0,...M−1 , a.e. ν ∈ R.
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Observe that this is an N ×M matrix.

Theorem 14.7.1 In the setting above, the following hold:

(i) {gnm} is a Bessel sequence in �2(Z) with upper bound B if and only
if the matrix H(ν) for a.e. ν ∈ R defines a bounded linear mapping
from C

M into C
N of norm at most

√
NB.

(ii) {gnm} is a frame for �2(Z) with frame bounds A,B if and only if

NAI ≤ H(ν)H(ν)∗ ≤ NBI, a.e. ν ∈ R.

(ii) {gnm} is a tight frame for �2(Z) if and only if there is a constant
c > 0 such that

M−1∑

m=0

ĝm(ν − k/N)ĝm(ν) = cδk,0, k ∈ Z, a.e. ν ∈ R.

(iv) Two shift-invariant systems {gnm} and {hnm}, which form Bessel
sequences in �2(Z), are dual frames if and only if

M−1∑

m=0

ĝm(ν − k/N)ĥm(ν) = Nδk,0, k ∈ Z, a.e. ν ∈ R.

Most proofs follow by repeating the arguments from the continuous set-
ting, and we will not go into detail. Again, the statements have direct
consequences for discrete Gabor frames in �2(Z) (Exercise 14.5).

14.8 Frames in �2(Z) and Filter Banks

Shift-invariant systems appear in signal processing, especially in connection
with filter banks. We refer to the book by Vetterli and Kovačević [626] for a
detailed description of this subject and its relationship to signal expansions.
We will think about a filter bank as some kind of “black box,” which
performs some operations (i.e., processing) on a given input signal and
then delivers an output. An example could be that the filter bank performs
an analysis of the signal f via a shift-invariant system {gnm} and then a
synthesis via another system {hnm}; the outcome will be a sequence

f̃ =
∑

m,n

〈f, gnm〉hnm. (14.32)

Note that the words “synthesis” and “analysis” correspond to the names
of the operator T and its adjoint T ∗ (cf. page 122).
The study of the relations between frames and filter banks was initiated

by Cvetković and Vetterli [229, 230] and has been elaborated on by many
other authors (see, e.g., [96, 97, 587] and the references given there). We
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will not go into detail with any of the obtained results but only guide the
reader to the terminology in filter bank theory and provide links to further
reading.
The case of a perfect reconstruction filter bank corresponds to {gnm} and

{hnm} being dual frames. In this case the outcome f̃ in (14.32) equals f .
A paraunitary filter bank corresponds to the special case where {gnm} is
a tight frame, implying that we can take hnm to be a multiple of gnm.
A modulated filter bank is a Gabor system, and if it is oversampled , we
have an overcomplete Gabor frame.
In the signal processing literature the results are often formulated via

the polyphase representation, which is called the discrete Zak transform by
mathematicians. For a given signal h ∈ �2(Z) and a parameter N ∈ N, it
is defined by

(Zh)(j, ν) =
∑

�∈Z

h(j − �N)e2πi�ν , j ∈ Z, a.e. ν ∈ R.

An interpretation of the discrete Zak transform is that for a.e. ν ∈ R it
defines a sequence (Zh)(·, ν). In terms of the polyphase representation one
can now define a polyphase matrix, which plays a similar role for discrete
Gabor systems as the Zibulski–Zeevi matrix in the continuous case. Among
the results in [229, 230] are

• Characterizations of frames and tight frames in terms of the
polyphase matrix.

• Conditions for the dual frame to consist of vectors in �2(Z) with finite
length (i.e., only finitely many nonzero entries).

• Characterizations of tight Gabor frames in �2(Z), generated by a
vector with finite length.

Some further results and extensions were later given by Bölcskei,
Hlawatsch, and Feichtinger in [97]. Among their results are

• A parameterization of all synthesis filter banks providing perfect
reconstruction for a given analysis filter bank.

• Methods for estimation of the frame bounds.

• Conditions for the shift-invariant system forming the analysis filter
bank to be a frame.

• Construction of paraunitary filter banks from perfect reconstruction
filter banks.

Let us finally mention the paper [587] by Strohmer, where he provides
methods for approximation of the canonical dual frame associated to a
shift-invariant frame.
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14.9 Gabor frames in �2(Zd)

Theorem 14.2.1 is just the one-dimensional version of a result by Lopez
and Han that yields dual pair of discrete Gabo frames in �2(Zd). As in the
original paper, we will describe the results using group-theoretic terms that
will appear in a more general setting in Section 21.1.
LetA and B denote invertible d×dmatrices with real entries, and assume

that B−1 has integer entries. Consider the subgroup G := B−1
Z
d of Zd, and

let Ω denote a collection of coset representatives of the coset Z
d/G; that

is, Zd is a disjoint union of the sets G+m, where m ∈ Ω. It is well known
that the number of elements in Ω is

|Ω| = | det(B−1)| = 1

| detB| .

Let us now fix any sequence {c(j)}j∈Zd ∈ �2(Zd). Consider the Gabor system
in �2(Zd) generated by the sequence {c(j)}j∈Zd and the matrices A,B, i.e.,
the collection of sequences {cm,n}m,n∈Zd ⊂ �2(Zd) given by

cm,n(j) = e2πiBm·jc(j−An), j ∈ Z
d. (14.33)

Given two sequences {c(j)}j∈Z, {d(j)}j∈Z ∈ �2(Zd) such that {cm,n}m,n∈Zd

and {dm,n}m,n∈Zd are Bessel sequences, it was shown in Theorem 1.4 in
[502] that {cm,n}m,n∈Zd and {dm,n}m,n∈Zd are dual frames for �2(Zd) if
and only if

∑

k∈Zd

c(j−Ak−Bn)d(j−Ak) = | detB| δn,0 (14.34)

for all j,n ∈ Z
d. Parallel to our discussion in Section 14.4, dual pairs of

discrete Gabor frames can be obtained via sampling of dual pairs of Gabor
frames for L2(Rd), using the results in Section 20.5; see the paper [186].
Note also that characterizations of duality of two Gabor systems in

�2(Zd), in terms of the Fourier transform on Z
d, can be obtained via the

group-theoretic approach in Chapter 21; see Theorem 21.6.4.

14.10 Exercises

14.1 Prove (14.3) under the stated assumptions.

14.2 Consider the sequence

δ = (· · · , 0, . . . , 0, 1, 0, . . .0, . . . ),

and show that the sequences {Tkδ}k∈Z form an orthonormal basis
for �2(Z). Compare with the result in Theorem 9.2.1!
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14.3 Derive conditions for {Em/MTnNg}n∈Z,m=0,...,M−1 being a Bessel
sequence or a frame for �2(Z) by appropriate modifications of the
proof of Theorem 11.4.2.

14.4 Prove Lemma 14.5.1.

14.5 Derive the consequences of Theorem 14.7.1 for discrete Gabor
systems.

14.6 Here we ask the reader to prove an extension of Proposition 1.4.3.
In fact, show that for a bi-infinite matrix Λ = {λm,n}m,n∈Z

, the
following are equivalent:

(i) There exist constants A,B > 0 such that

A
∑

k∈Z

|ck|2 ≤ ||Λ{ck}k∈Z||2 ≤ B
∑

k∈Z

|ck|2 for all finite

sequences {ck}k∈Z.

(ii) The columns in Λ constitute a Riesz basis for their closed span
in �2(Z).

(iii) The rows in Λ constitute a frame for �2(Z).

14.7 Prove Theorem 14.6.1 based on Theorem 21.7.10.



15
General Wavelet Frames in L2(R)

A fundamental question in wavelet analysis is what conditions we have to
impose on a function ψ such that a given signal f ∈ L2(R) can be expanded
via translated and scaled versions of ψ, i.e., via functions

ψa,b(x) := (TbDaψ)(x) =
1

|a|1/2ψ(
x− b

a
), a �= 0, b ∈ R. (15.1)

Thus, there is a basic similarity between wavelet analysis and Gabor
analysis: both concern sequences of functions defined by letting a special
class of operators act on a fixed function, i.e., in both cases, we are dealing
with coherent systems. The connections are even closer, and both can be
seen as manifestations of the theory for generalized shift-invariant systems
(Chapter 20), as well as the theory for decompositions in terms of group
representations (Chapter 24). As in Gabor analysis there are two ways in
which one can think about expansions of a signal f in terms of the functions
ψa,b. One way is to ask for representations of f as integrals involving the
functions ψa,b over the entire parameter range (R\ {0})×R. Alternatively,
one can restrict the parameters a, b to a discrete subset Λ of R2 and ask
for series expansions of f in terms of the corresponding functions ψa,b. For
applications, the latter is usually the most convenient choice, and most of
this chapter will deal with the question of how we can choose the discrete
subset Λ and ψ such that {ψa,b}(a,b)∈Λ is a frame for L2(R).
Collections of functions of the type (15.1) have been used in different

contexts a long time before the wavelet era began; see, for example, the
construction by Haar discussed in Example 3.9.1. Morlet was the first to
propose representing signals as integrals involving ψa,b, and together with

©
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Grossmann, he introduced in [333] what is now known as the wavelet trans-
form. Again it was Grossmann who brought the theory a big step forward
by proposing to construct frames consisting of a countable number of func-
tions ψa,b. Together with Daubechies and Meyer, he published the first
constructions in [244].
Another breakthrough came with the concept of multiresolution anal-

ysis, as developed by Mallat and Meyer. As discussed in Section 3.9, its
original purpose is to construct orthonormal bases for L2(R) of the form
{2j/2ψ(2jx − k)}j,k∈Z. The importance of this new subject was immedi-
ately recognized by the mathematical as well as the engineering community,
and very soon most of the effort in wavelet analysis was concentrated on
construction of orthonormal bases with prescribed properties. Nowadays
“wavelet analysis” is for many people almost synonymous with “multires-
olution analysis,” but wavelet analysis is in fact a much broader subject.
For historical accuracy the reader is encouraged to consult the paper [241]
by Daubechies, which was written around the time when multiresolution
analysis was introduced. The paper contains a large number of important
wavelet results, but multiresolution analysis is barely mentioned. The same
remark applies to the excellent survey paper [395] by Heil and Walnut,
which was published in 1989. At that time one could certainly not predict
that soon almost all effort would go into constructions via multiresolution
analysis.
This chapter and the following four chapters will deal with different

aspects related to overcomplete collections of functions of the form (15.1).
As discussed in Section 4.3, overcompleteness is introduced in order to
obtain more flexibility and be able to make constructions which cannot
be done with, e.g., orthonormal bases. We follow the historical devel-
opment and begin by constructing frames without any multiresolution
structure. Frames based on various multiresolution schemes are discussed
in Chapters 17–18. We focus on one-dimensional wavelet systems; for the
higher-dimensional case some of the key results are proved in Section 20.6.
A few words on terminology are needed. The word wavelet is usually

reserved for a function ψ for which

{2j/2ψ(2jx− k)}j,k∈Z = {ψ2−j ,2−jk}j,k∈Z (15.2)

is an orthonormal basis for L2(R). We will follow this tradition, but the
word “wavelet” will appear in several constellations. Since we are inter-
ested in more general ways of choosing the translates and dilates than
in (15.2), we will call any discrete family of the type {ψa,b}(a,b)∈Λ, Λ ⊂ R

2,
a wavelet system.
We begin with a section on the continuous wavelet transform, which

delivers integral representations of each f ∈ L2(R) of the type

f =

∫ ∞

−∞

∫ ∞

−∞
cf (a, b)ψ

a,bdadb, (15.3)
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provided that ψ satisfies some admissibility conditions and that the integral
is interpreted in the right sense.
Then we move to construction of frames for L2(R) consisting of functions

of the type {ψa,b}(a,b)∈Λ. The obtained representations can be considered
as discrete versions of (15.3), but our presentation does not rely on any
result about the continuous wavelet transform. In Section 15.2 we con-
sider the (regular) case, where the dilation parameter “two” in (15.2) is
replaced by a number a > 1 and integer translation is replaced by trans-
lation with a step size b > 0, i.e., we consider wavelet systems of the form
{aj/2ψ(ajx− kb)}j,k∈Z. Later, in Section 19.1 and Section 20.6, we discuss
certain irregular choices of the discretization.
Section 15.3 deals with dual pairs of wavelet frames, a topic that will

follow us throughout all the wavelet chapters. In contrast to the analogue
issue for Gabor systems, we will see that a wavelet frame might not have
a dual frame with the same structure; thus, the desire of obtaining dual
pairs of wavelet puts additional restrictions on the function that is used to
generate the wavelet frame.

15.1 The Continuous Wavelet Transform

Let ψ ∈ L2(R), and denote the Fourier transform of ψ by ψ̂. We say that
ψ satisfies the admissibility condition if

Cψ :=

∫ ∞

−∞

|ψ̂(γ)|2
|γ| dγ <∞. (15.4)

We also say that ψ is admissible. Note that if ψ̂ is continuous in 0
[e.g., if ψ ∈ L1(R)], then (15.4) can only be satisfied if ψ̂(0) = 0, i.e.,
if
∫∞
−∞ ψ(x)dx = 0. But if this condition is satisfied, relatively weak decay

conditions on ψ̂ imply that (15.4) is satisfied.
Now consider an admissible function ψ ∈ L2(R). Given f ∈ L2(R), the

continuous wavelet transform of f with respect to ψ is defined as a function
Wψ(f) of two variables, given by

Wψ(f)(a, b) := 〈f, ψa,b〉

=

∫ ∞

−∞
f(x)

1

|a|1/2ψ(
x− b

a
)dx, (a, b) ∈ (R \ {0})× R.

We will now prove that the wavelet transform has a similar property as
what we saw for the short-time Fourier transform in Proposition 11.1.2. In
fact, whenever (R \ {0})×R is equipped with a certain weighted Lebesgue
measure, the wavelet transform is a multiple of an isometry from L2(R)
to L2((R \ {0}) × R). The role of the particular measure is explained in
Example 24.1.3.
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Proposition 15.1.1 Assume that ψ is admissible. Then, for all functions
f, g ∈ L2(R),

∫ ∞

−∞

∫ ∞

−∞
Wψ(f)(a, b)Wψ(g)(a, b)

dadb

a2
= Cψ〈f, g〉. (15.5)

Proof. Assume first that ψ is admissible and ψ̂ ∈ Cc(R). Using the
commutator relations for the Fourier transform and the operators Tb, Da,

Wψ(f)(a, b) = 〈f, ψa,b〉 = 〈Ff,FTbDaψ〉

= 〈f̂ , E−bD1/aψ̂〉 =
∫ ∞

−∞
f̂(γ)e2πibγ |a|1/2ψ̂(aγ)dγ.

If we for a moment consider a fixed value for a, this expression is the Fourier
transform of the function

Fa(γ) = f̂(γ)|a|1/2ψ̂(aγ),

calculated in the point −b. If we define Ga(γ) similarly, it follows that
∫ ∞

−∞
Wψ(f)(a, b)Wψ(g)(a, b)db =

∫ ∞

−∞
F̂a(−b)Ĝa(−b)db

= 〈F̂a, Ĝa〉 = 〈Fa, Ga〉

=

∫ ∞

−∞
f̂(γ)ĝ(γ) |a| |ψ̂(aγ)|2dγ.

Inserting this expression in the left-hand side of (15.5) and using Fubini’s
theorem gives

∫ ∞

−∞

∫ ∞

−∞
Wψ(f)(a, b)Wψ(g)(a, b)

dadb

a2

=

∫ ∞

−∞

∫ ∞

−∞
f̂(γ)ĝ(γ) |a| |ψ̂(aγ)|2dγ da

a2

=

∫ ∞

−∞

(∫ ∞

−∞

1

|a| |ψ̂(aγ)|
2da

)

f̂(γ)ĝ(γ)dγ.

For γ �= 0 a change of variable shows that
∫ ∞

−∞

1

|a| |ψ̂(aγ)|
2da =

∫ ∞

−∞

1

|a| |ψ̂(a)|
2da = Cψ ;

thus,
∫ ∞

−∞

∫ ∞

−∞
Wψ(f)(a, b)Wψ(g)(a, b)

dadb

a2
= Cψ〈f̂ , ĝ〉 = Cψ〈f, g〉,

as desired. The extension to general admissible ψ is standard. �
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Similar to the Gabor case, we can write (15.5) as

f =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
Wψ(f)(a, b)ψ

a,b dadb

a2
, f ∈ L2(R), (15.6)

where the integral is understood in the weak sense. Slightly stronger con-
ditions imply that the weakly defined integral can be approximated by
integrals over growing compact sets in R

2; see [412].
As an immediate consequence of Proposition 15.1.1, we obtain that

the wavelet system forms a continuous frame whenever the admissibility
condition is satisfied:

Corollary 15.1.2 If ψ ∈ L2(R) is admissible, then {ψa,b}a�=0,b∈R is a con-
tinuous tight frame for L2(R) with respect to (R \ {0}) × R equipped with
the measure 1

a2 dadb. The frame bound is A = Cψ.

15.2 Sufficient and Necessary Conditions

We now turn to the construction of (discrete) frames having the wavelet
structure. We will first consider the case where the points (a, b) in (15.1) are
restricted to discrete sets of the type {(aj , kbaj)}j,k∈Z, where a > 1, b > 0
are fixed; a is the dilation parameter or scaling parameter, and b is the
translation parameter. We hereby obtain the functions

(TkbajDajψ)(x) = (DajTkbψ)(x) =
1

aj/2
ψ(

x

aj
− kb), j, k ∈ Z.

Re-indexing (i.e., replacing j by −j), we see that

{TkbajDajψ}j,k∈Z = {aj/2ψ(ajx− kb)}j,k∈Z. (15.7)

The re-indexing is purely introduced in order to get the wavelet system
on the convenient form in (15.7). In the introductory sections, we will in
general denote the wavelet systems by {aj/2ψ(ajx−kb)}j,k∈Z, but later we
will use the operator notation {DajTkbψ}j,k∈Z.

Definition 15.2.1 Let a > 1, b > 0 and ψ ∈ L2(R). A frame for L2(R) of
the form {aj/2ψ(ajx− kb)}j,k∈Z is called a wavelet frame.

The main purpose of this chapter is to present sufficient conditions for
{aj/2ψ(ajx − kb)}j,k∈Z to be a frame. The results will be stated in terms
of the functions

G0(γ) =
∑

j∈Z

|ψ̂(ajγ)|2, G1(γ) =
∑

k �=0

∑

j∈Z

|ψ̂(ajγ)ψ̂(ajγ + k/b)|, γ ∈ R. (15.8)

Because we usually consider fixed values of a, b, the dependence of these
parameters is suppressed in the notation. Note that

G0(aγ) = G0(γ), G1(aγ) = G1(γ), γ ∈ R.
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Figure 15.1. The functions G0 (the upper graph) and G1 based on the Mexican
hat and the parameters a = 2, b = 1.5.

Geometrically this means that the graphs for G0, G1 for |γ| ∈ [aj , aj+1]
are stretched versions of their graphs for |γ| ∈ [aj−1, aj]. See Fig-
ure 15.1 for an illustration based on the Mexican hat wavelet described
in Example A.7.2. It follows that

sup
γ∈R

Gk(γ) = sup
|γ|∈[1,a]

Gk(γ), inf
γ∈R

Gk(γ) = inf
|γ|∈[1,a]

Gk(γ), k = 0, 1.

The role played by the functions G0 and G1 in wavelet analysis corre-
sponds to the role of the functions G and

∑
k �=0 |Hk(x)| defined in (11.16)

and (11.27) in Gabor analysis. Similar to Proposition 11.3.4 (but techni-
cally more involved, especially for the lower bound), the following necessary
condition for {aj/2ψ(ajx−kb)}j,k∈Z to be a frame was proved by Chui and
Shi [214].

Proposition 15.2.2 Let a > 1, b > 0 and ψ ∈ L2(R) be given. If
{aj/2ψ(ajx− kb)}j,k∈Z is a frame for L2(R) with frame bounds A,B, then

bA ≤
∑

j∈Z

∣
∣ψ̂(ajγ)

∣
∣2 ≤ bB, a.e. γ ∈ R.

We will now state convenient sufficient conditions for a wavelet system
{aj/2ψ(ajx−kb)}j,k∈Z being a Bessel sequence or a frame. A generalization
to wavelet systems in L2(Rd) is proved in Theorem 20.6.1, using a different
approach.
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Theorem 15.2.3 Let a > 1, b > 0 and ψ ∈ L2(R) be given. Suppose that

B :=
1

b
sup

|γ|∈[1,a]

∑

j,k∈Z

∣
∣ψ̂(ajγ)ψ̂(ajγ + k/b)

∣
∣ <∞. (15.9)

Then {aj/2ψ(ajx − kb)}j,k∈Z is a Bessel sequence with bound B, and for

all functions f ∈ L2(R) for which f̂ ∈ Cc(R),

∑

j,k∈Z

|〈f,DajTkbψ〉|2 =
1

b

∫ ∞

−∞
|f̂(γ)|2

∑

j∈Z

|ψ̂(ajγ)|2dγ (15.10)

+
1

b

∑

k �=0

∑

j∈Z

∫ ∞

−∞
f̂(γ)f̂(γ − ajk/b)ψ̂(a−jγ)ψ̂(a−jγ − k/b)dγ.

If furthermore

A :=
1

b
inf

|γ|∈[1,a]

⎛

⎝
∑

j∈Z

∣
∣ψ̂(ajγ)

∣
∣2 −

∑

k �=0

∑

j∈Z

∣
∣ψ̂(ajγ)ψ̂(ajγ + k/b)

∣
∣

⎞

⎠ > 0,

(15.11)

then {aj/2ψ(ajx− kb)}j,k∈Z is a frame for L2(R) with bounds A,B.

Proof. Let f ∈ L2(R) and assume that f̂ is continuous and has compact
support. We begin with some calculations leading to (15.14) below, which
will be a key ingredient in the proof. Fix j ∈ Z. Then

∫ aj/b

0

∑

k∈Z

∣
∣f̂(γ − ajk/b)ψ̂(a−jγ − k/b)

∣
∣dγ

=
∑

k∈Z

∫ aj/b

0

|f̂(γ − ajk/b)ψ̂(a−jγ − k/b)|dγ

=
∑

k∈Z

∫ −aj k
b +

aj

b

−aj k
b

|f̂(γ)ψ̂(a−jγ)|dγ

=

∫ ∞

−∞

∣
∣
∣f̂(γ)ψ̂(a−jγ)

∣
∣
∣ dγ

≤
(∫ ∞

−∞
|f̂(γ)|2dγ

)1/2(∫ ∞

−∞
|ψ̂(a−jγ)|2dγ

)1/2

< ∞.

Thus we can define a function Fj : R→ C by

Fj(γ) =
∑

k∈Z

f̂(γ − ajk/b)ψ̂(a−jγ − k/b), a.e. γ ∈ R.
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The function Fj is aj/b-periodic, and the above argument gives that Fj ∈
L1(0, aj/b). In fact, we even have Fj ∈ L2(0, aj/b). To see this, we first
note that

|Fj(γ)|2 ≤
∑

k∈Z

|f̂(γ − ajk/b)|2
∑

k∈Z

|ψ̂(a−jγ − k/b)|2.

Since f̂ ∈ Cc(R), the function γ →
∑

k∈Z
|f̂(γ − ajk/b)|2 is bounded; now

an argument similar to above shows that Fj ∈ L2(0, aj/b). We leave it to
the reader to verify this and also that

∫ ∞

−∞
f̂(γ)ψ̂(a−jγ)e2πima−jbγdγ =

∫ aj/b

0

Fj(γ)e
2πima−jbγdγ. (15.12)

Since {a−j/2b1/2e2πima−jbγ}m∈Z is an orthonormal basis for L2(0, aj/b),
Parseval’s equality shows that

∑

m∈Z

∣
∣
∣
∣

∫ aj/b

0

Fj(γ)e
2πima−jbγdγ

∣
∣
∣
∣

2

=
aj

b

∫ aj/b

0

|Fj(γ)|2dγ; (15.13)

combining (15.12), (15.13), and the definition of Fj , we obtain that

∑

m∈Z

∣
∣
∣
∣

∫ ∞

−∞
f̂(γ)ψ̂(a−jγ)e2πima−jbγdγ

∣
∣
∣
∣

2

(15.14)

=
aj

b

∫ aj/b

0

∣
∣
∣
∣

∑

k∈Z

f̂(γ − ajk/b)ψ̂(a−jγ − k/b)

∣
∣
∣
∣

2

dγ.

We now prove (15.10) for our special choice of the function f . The
most delicate point in the proof is several interchanges of sums and in-
tegrals. In order to make the argument rigorous, we will first show that∑

j,k∈Z
|〈f,DajTkbψ〉|2 is finite by replacing all occurring functions by their

absolute values. For positive functions, all interchanges are allowed. After
showing that the sum is finite, all calculations can be repeated without
absolute sign to get the exact expression (15.10). We will not perform the
repetition, and for that reason, we keep all occurring complex conjugations
in the first part of the calculation, even though they are superfluous for the
first part.
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The first step is to use the commutator relations for the Fourier transform
and the operators Da, Tb:

∑

j,k∈Z

|〈f,DajTkbψ〉|2 =
∑

j∈Z

∑

m∈Z

|〈f,DajTmbψ〉|2

=
∑

j∈Z

∑

m∈Z

|〈Ff,FDajTmbψ〉|2

=
∑

j∈Z

∑

m∈Z

|〈f̂ , Da−jE−mbψ̂〉|2

=
∑

j∈Z

∑

m∈Z

|〈f̂ , E−majbDa−j ψ̂〉|2

=
∑

j∈Z

aj
∑

m∈Z

∣
∣
∣
∣

∫ ∞

−∞
f̂(γ)ψ̂(ajγ)e2πimajbγdγ

∣
∣
∣
∣

2

= (∗).

Since we are summing over all j ∈ Z, we can replace j by −j; doing so,
and continuing using (15.14), we have

(∗)

=
∑

j∈Z

a−j a
j

b

∫ aj/b

0

∣
∣
∣
∣

∑

k∈Z

f̂(γ − ajk/b)ψ̂(a−jγ − k/b)

∣
∣
∣
∣

2

dγ (15.15)

≤ 1

b

∑

j∈Z

∫ aj/b

0

∣
∣
∣
∣

∑

k∈Z

|f̂(γ − ajk/b)ψ̂(a−jγ − k/b)|
∣
∣
∣
∣

2

dγ

= (∗∗).

Using that |c|2 = cc for any complex number,

(∗∗)

≤ 1

b

∑

j∈Z

∫ aj/b

0

(
∑

�∈Z

|f̂(γ − aj�/b)ψ̂(a−jγ − �/b)|

×
∑

k∈Z

|f̂(γ − ajk/b)ψ̂(a−jγ − k/b)|
)

dγ

=
1

b

∑

j∈Z

∑

�∈Z

∫ aj/b

0

(
|f̂(γ − aj�/b)ψ̂(a−jγ − �/b)|

×
∑

k∈Z

|f̂(γ − ajk/b)ψ̂(a−jγ − k/b)|
)

dγ

= (∗ ∗ ∗).
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The function γ �→
∑

k∈Z
|f̂(γ − ajk/b)ψ̂(a−jγ − k/b)| is aj/b-periodic, so

we can continue with

(∗ ∗ ∗) =
1

b

∑

j∈Z

∫ ∞

−∞
|f̂(γ)ψ̂(a−jγ)| ·

∑

k∈Z

|f̂(γ − ajk/b)ψ̂(a−jγ − k/b)|dγ

=
1

b

∑

k∈Z

∑

j∈Z

∫ ∞

−∞
|f̂(γ)f̂(γ − ajk/b)ψ̂(a−jγ)ψ̂(a−jγ − k/b)|dγ

=
1

b

∫ ∞

−∞
|f̂(γ)|2

∑

j∈Z

|ψ̂(a−jγ)|2dγ

+
1

b

∑

k �=0

∑

j∈Z

∫ ∞

−∞

∣
∣
∣f̂(γ)f̂(γ − ajk/b)ψ̂(a−jγ)ψ̂(a−jγ − k/b)

∣
∣
∣ dγ

=
1

b

∫ ∞

−∞
|f̂(γ)|2 ·

∑

j∈Z

|ψ̂(a−jγ)|2dγ +
1

b
R,

where

R =
∑

k �=0

∑

j∈Z

∫ ∞

−∞
|f̂(γ)f̂(γ − ajk/b)ψ̂(a−jγ)ψ̂(a−jγ − k/b)|dγ.

We now estimate the term R. Using Cauchy–Schwarz’ inequality twice,
first on the integral and then on the sum over k, we obtain

R ≤
∑

j∈Z

∑

k �=0

(∫ ∞

−∞
|f̂(γ)|2 |ψ̂(a−jγ) ψ̂(a−jγ − k/b)|dγ

)1/2

×
(∫ ∞

−∞
|f̂(γ − ajk/b)|2 |ψ̂(a−jγ) ψ̂(a−jγ − k/b)|dγ

)1/2

≤
∑

j∈Z

⎛

⎝
∑

k �=0

∫ ∞

−∞
|f̂(γ)|2 |ψ̂(a−jγ) ψ̂(a−jγ − k/b)|dγ

⎞

⎠

1/2

×

⎛

⎝
∑

k �=0

∫ ∞

−∞
|f̂(γ − ajk/b)|2 |ψ̂(a−jγ) ψ̂(a−jγ − k/b)|dγ

⎞

⎠

1/2

=
∑

j∈Z

(∗)(∗∗),
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where

(∗) =

⎛

⎝
∑

k �=0

∫ ∞

−∞
|f̂(γ)|2 |ψ̂(a−jγ) ψ̂(a−jγ − k/b)|dγ

⎞

⎠

1/2

,

(∗∗) =

⎛

⎝
∑

k �=0

∫ ∞

−∞
|f̂(γ − ajk/b)|2 |ψ̂(a−jγ) ψ̂(a−jγ − k/b)|dγ

⎞

⎠

1/2

.

The terms (*) and (**) are actually identical; in fact, by the change of
variable γ → γ + ajk/b in (**),

(∗∗) =

⎛

⎝
∑

k �=0

∫ ∞

−∞
|f̂(γ)|2 |ψ̂(a−jγ + k/b) ψ̂(a−jγ)|dγ

⎞

⎠

1/2

=

⎛

⎝
∑

k �=0

∫ ∞

−∞
|f̂(γ)|2 |ψ̂(a−jγ) ψ̂(a−jγ − k/b)|dγ

⎞

⎠

1/2

= (∗).

Therefore,

R ≤
∑

j∈Z

∑

k �=0

∫ ∞

−∞
|f̂(γ)|2 |ψ̂(a−jγ) ψ̂(a−jγ − k/b)|dγ.

It follows that
∑

j,k∈Z

|〈f,DajTkbψ〉|2

≤ 1

b

∫ ∞

−∞
|f̂(γ)|2

∑

j∈Z

|ψ̂(a−jγ)|2dγ

+
1

b

∫ ∞

−∞
|f̂(γ)|2

∑

k �=0

∑

j∈Z

|ψ̂(a−jγ)ψ̂(a−jγ − k/b)|dγ

=
1

b

∫ ∞

−∞
|f̂(γ)|2

∑

k∈Z

∑

j∈Z

|ψ̂(a−jγ)ψ̂(a−jγ − k/b)|dγ.

Note that
∑

k∈Z

∑

j∈Z

|ψ̂(a−jγ)ψ̂(a−jγ − k/b)| =
∑

k∈Z

∑

j∈Z

|ψ̂(ajγ)ψ̂(ajγ + k/b)|;

using the assumption (15.9), we therefore have
∑

j,k∈Z

|〈f,DajTkbψ〉|2 ≤ B ||f̂ ||2 = B ||f ||2.
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Since this holds for all functions f for which f̂ is continuous and has com-
pact support, it holds for all f ∈ L2(R) by Lemma 3.2.6; thus, the wavelet
system {aj/2ψ(ajx − kb)}j,k∈Z is a Bessel sequence with bound B. We
can now go back and repeat all the above calculations without absolute
sign, still with f̂ ∈ Cc(R), to get the announced expression (15.10) for∑

j,k∈Z
|〈f,DajTkbψ〉|2; since we can just skip the single inequality (15.15),

we obtain an exact expression. If we also assume that (15.11) is satisfied,
then

∑

j,k∈Z

|〈f,DajTkbψ〉|2

≥ 1

b

∫ ∞

−∞
|f̂(γ)|2

∑

j∈Z

|ψ̂(ajγ)|2

−
∣
∣
∣
∣
1

b

∑

k �=0

∑

j∈Z

∫ ∞

−∞
f̂(γ)f̂(γ − ajk/b)ψ̂(a−jγ)ψ̂(a−jγ − k/b)dγ

∣
∣
∣
∣

≥ 1

b

∫ ∞

−∞
|f̂(γ)|2

⎛

⎝
∑

j∈Z

|ψ̂(ajγ)|2 −
∑

k �=0

∑

j∈Z

|ψ̂(ajγ)ψ̂(ajγ + k/b)|

⎞

⎠dγ

≥ A ||f ||2.
The proof is now completed via Lemma 5.1.9. �

If ψ̂ is continuous in 0 [e.g., if ψ ∈ L1(R)], the condition (15.9) can

only be satisfied if ψ̂(0) = 0, because ψ̂(ajγ) → ψ̂(0) as j → −∞. If this

necessary condition is satisfied, then very reasonable conditions on ψ̂ will
imply that {aj/2ψ(ajx−kb)}j,k∈Z is a frame whenever b is sufficiently small.
We need some lemmas before we prove a formal version of this statement
in Proposition 15.2.6.

Lemma 15.2.4 Let x, y ∈ R. Then, for all δ ∈ [0, 1],

1

1 + (x + y)2
≤ 2

(
1 + x2

1 + y2

)δ

.

Proof. Given x, y ∈ R, the function δ → 2
(

1+x2

1+y2

)δ

is monotone, so it is

enough to prove the result for δ = 0 and δ = 1. The case δ = 0 is clear; for
δ = 1, we use that 2ab ≤ a2 + b2 for all a, b ∈ R to obtain that

1 + y2 = 1 + ((y + x)− x)2

= 1 + (y + x)2 + x2 − 2x(y + x)

≤ 1 + 2((y + x)2 + x2)

≤ 2(1 + (y + x)2)(1 + x2).

�
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Lemma 15.2.5 Let ψ ∈ L2(R) and assume that there exists a constant
C > 0 such that

|ψ̂(γ)| ≤ C
|γ|

(1 + |γ|2)3/2 a.e. γ ∈ R.

Then, for all a > 1 and b > 0,
∑

k �=0

∑

j∈Z

|ψ̂(ajγ)ψ̂(ajγ + k/b)|

≤ 16C2b4/3
(

a2

a− 1
+

a

a2/3 − 1

)

. (15.16)

Proof. The decay condition on ψ gives that

|ψ̂(ajγ)ψ̂(ajγ + k/b)| ≤ C2 |ajγ|
(1 + |ajγ|2)3/2

|ajγ + k/b|
(1 + |ajγ + k/b|2)3/2

≤ C2 |ajγ|
(1 + |ajγ|2)3/2

(1 + |ajγ + k/b|2)1/2
(1 + |ajγ + k/b|2)3/2

= C2 |ajγ|
(1 + |ajγ|2)3/2

1

1 + |ajγ + k/b|2 .

Applying Lemma 15.2.4 on (1 + |ajγ + k/b|2)−1 with δ = 2
3 gives

|ψ̂(ajγ)ψ̂(ajγ + k/b)| ≤ 2C2 |ajγ|
(1 + |ajγ|2)3/2

(
1 + |ajγ|2
1 + |k/b|2

)2/3

≤ 2C2 |ajγ|
(1 + |ajγ|2)5/6

(
1

1 + |k/b|2

)2/3

.

In this last estimate, j and k appear in separate terms. Thus,
∑

k �=0

∑

j∈Z

|ψ̂(ajγ)ψ̂(ajγ + k/b)|

≤ 2C2

⎛

⎝
∑

j∈Z

|ajγ|
(1 + |ajγ|2)5/6

⎞

⎠

⎛

⎝
∑

k �=0

(
1

1 + |k/b|2

)2/3
⎞

⎠ . (15.17)

For the sum over k �= 0,

∑

k �=0

(
1

1 + |k/b|2

)2/3

= 2

∞∑

k=1

b4/3

(b2 + k2)2/3

≤ 2b4/3
∞∑

k=1

1

k4/3
≤ 8b4/3.

In order to estimate the sum over j ∈ Z in (15.17), we define the function

f(γ) =
∑

j∈Z

|ajγ|
(1 + |ajγ|2)5/6 , γ ∈ R.
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We want to show that f is bounded. Note that f(aγ) = f(γ) for all γ; it is
therefore enough to consider |γ| ∈ [1, a], so we can use that

|ajγ| ≤ aj+1, 1 + |ajγ|2 ≥ 1 + a2j .

Thus,

∑

j∈Z

|ajγ|
(1 + |ajγ|2)5/6 ≤

∑

j∈Z

aj+1

(1 + a2j)5/6

=

0∑

j=−∞

aj+1

(1 + a2j)5/6
+

∞∑

j=1

aj+1

(1 + a2j)5/6

≤
0∑

j=−∞
aj+1 +

∞∑

j=1

aj+1

a5j/3

= a

∞∑

j=0

a−j + a

∞∑

j=1

(a−2/3)j

=
a2

a− 1
+

a

a2/3 − 1
.

That is, f is bounded as claimed. Putting all information together and
using (15.17), we now arrive at

∑

k �=0

∑

j∈Z

|ψ̂(ajγ)ψ̂(ajγ + k/b)|

≤ 2C2

⎛

⎝
∑

j∈Z

|ajγ|
(1 + |ajγ|2)5/6

⎞

⎠

⎛

⎝
∑

k �=0

(
1

1 + |k/b|2

)2/3
⎞

⎠

≤ 16C2b4/3
(

a2

a− 1
+

a

a2/3 − 1

)

,

as desired. �

We are now ready to give sufficient conditions for {aj/2ψ(ajx−kb)}j,k∈Z

to be a frame for small values of b:

Proposition 15.2.6 Let ψ ∈ L2(R) and a > 1 be given. Assume that

(i) inf |γ|∈[1,a]

∑
j∈Z
|ψ̂(ajγ)|2 > 0.

(ii) There exists a constant C > 0 such that

|ψ̂(γ)| ≤ C
|γ|

(1 + |γ|2)3/2 , a.e. γ ∈ R. (15.18)

Then {aj/2ψ(ajx− kb)}j,k∈Z is a frame for L2(R) for all sufficiently small
translation parameters b > 0.
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Proof. We first prove that {aj/2ψ(ajx−kb)}j,k∈Z is a Bessel sequence for
all b > 0. Arguments similar to the one used in the proof of Lemma 15.2.5
show that (Exercise 15.1)

∑

j∈Z

|ψ̂(ajγ)|2 ≤
(

1

a4 − 1
+

a4

a2 − 1

)

C2. (15.19)

Via Lemma 15.2.5, it follows that
∑

k∈Z

∑

j∈Z

|ψ̂(ajγ)ψ̂(ajγ + k/b)|

≤ 16C2b4/3
(

a2

a− 1
+

a

a2/3 − 1

)

+

(
1

a4 − 1
+

a4

a2 − 1

)

C2;

by Theorem 15.2.3, we conclude that {aj/2ψ(ajx − kb)}j,k∈Z is a Bessel
sequence. By choosing b sufficiently small, the assumption (i) implies that

inf
|γ|∈[1,a]

⎛

⎝
∑

j∈Z

|ψ̂(ajγ)|2 − 16C2b4/3
(

a2

a− 1
+

a

a2/3 − 1

)
⎞

⎠ > 0, (15.20)

and in this case, by Lemma 15.2.5,

inf
|γ|∈[1,a]

⎛

⎝
∑

j∈Z

|ψ̂(ajγ)|2 −
∑

k �=0

∑

j∈Z

|ψ̂(ajγ)ψ̂(ajγ + k/b)|

⎞

⎠ > 0.

Theorem 15.2.3 now gives the desired conclusion. �

The proof of Proposition 15.2.6 shows that {aj/2ψ(ajx − kb)}j,k∈Z is a
frame whenever b > 0 satisfies (15.20). In concrete cases, we can often use
much larger values of b:

Example 15.2.7 Let a = 2 and consider the function

ψ(x) =
2√
3
π−1/4(1− x2)e−

1
2x

2

.

Due to its shape, ψ is called the Mexican hat. As proved in Example A.7.2,

ψ̂(γ) = 8

√
2

3
π9/4γ2e−2π2γ2

.

A numerical calculation shows that

inf
|γ|∈[1,2]

∑

j∈Z

|ψ̂(2jγ)|2 > 3.27.

Also, (15.18) is satisfied for C = 4, so a direct calculation using (15.20)
shows that {2j/2ψ(2jx− kb)}j,k∈Z is a frame if b < 0.0084. This is far from
being optimal: numerical calculations based on the expressions for A,B in
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Theorem 15.2.3 gives that {2j/2ψ(2jx−kb)}j,k∈Z is a frame if b < 1.97! The
obtained frame bounds A,B for some selected values for b are as follows:

b 0.25 0.5 0.75 1 1.25 1.5 1.75 1.97
A 13.1 6.55 4.36 3.26 2.33 1.25 0.422 0.0069

B 14.2 7.1 4.73 3.57 3.09 3.13 3.5 3.54

For small values of b, the frame bounds are almost identical to the values
obtained in [242] via a different criterion. For large values of b, the bounds
above are sharper (for b = 1.5, the bounds given in [242] are A = 0.325
and B = 4.221). Furthermore, the criterion used in [242] suggests that the
frame property breaks down already before b = 1.75.
In terms of the functions G0 and G1 in (15.8), Theorem 15.2.3 says that

{2j/2ψ(2jx− kb)}j,k∈Z is a frame with lower frame bound A if

A := inf
γ∈[1,2]

1

b
(G0(γ)−G1(γ)) > 0. (15.21)

As upper frame bound, we can use

B = sup
γ∈[1,2]

1

b
(G0(γ) +G1(γ)) .

�

The Fourier transform of the Mexican hat decays much faster than
assumed in (15.18). Thus it is not a surprise that direct estimates via
Theorem 15.2.3 give that {2j/2ψ(2jx − kb)}j,k∈Z is a frame for larger val-
ues of b than suggested by Proposition 15.2.6. The same will happen for all
functions ψ for which ψ̂ decay faster than assumed in (15.18). In fact, it is

the decay of ψ̂ that will make |ψ̂(ajγ)ψ̂(ajγ+k/b)| small, so when ψ̂ decays

much faster than (15.18), it is clear that
∑

k �=0

∑
j∈Z
|ψ̂(ajγ)ψ̂(ajγ + k/b)|

will be significantly smaller than the bound in (15.16). Even for the function
ψ given by

ψ̂(γ) =
|γ|

(1 + |γ|2)3/2 , (15.22)

the estimate in Proposition 15.2.6 is far from being sharp: a numerical
estimate shows that

inf
|γ|∈[1,2]

∑

j∈Z

|ψ̂(2jγ)|2 ∼ 1.5,

which implies that {2j/2ψ(2jx − kb)}j,k∈Z is a frame if b < 0.037, while
numerical estimates based on Theorem 15.2.3 just give that b < 0.24 is
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sufficient (Exercise 15.2). Proposition 15.2.6 is mainly interesting because it
gives the existence of an interval ]0, b0[ such that all translation parameters
b belonging to the interval lead to a frame; it does not yield the maximal
value of b0.
There is one remarkable difference between Theorem 15.2.3 and Theo-

rem 11.4.2 for Gabor frames: in the condition for the lower bound in the
Gabor version, it is the sum over k of

∣
∣
∣
∣

∑

n∈Z

g(x− na)g(x− na− k/b)

∣
∣
∣
∣

that has to be subtracted from
∑

n∈Z
|g(x − na)|2. That is, the absolute

sign is outside the sum over n. This is in contrast to the condition in
Theorem 15.2.3, where the absolute sign is inside the sums. The condition
in the Gabor version is clearly the best, since the position of the absolute
sign opens up for possible cancellations. For a = 2, it is known that the
condition in Theorem 15.2.3 can be replaced with a condition where the
absolute sign is outside (cf. [241], Theorem 2.9). A more detailed discussion
of this phenomenon for other values of a was given by Laugesen in [478].
A sufficient condition for {aj/2(ψ(ajx−kb)}j,k∈Z being a Bessel sequence

was obtained by Chui and Shi in [212]:

Proposition 15.2.8 Let θ : [0,∞[→ [0,∞[ be a function which is
nondecreasing on [0, 1

2π ], nonincreasing on [ 1
2π ,∞[, and for which

∫ ∞

0

θ(γ)(1 +
1

γ
)dγ <∞.

Then every function ψ ∈ L2(R) for which

|ψ̂(γ)| ≤ θ(|γ|), a.e. γ ∈ R,

generates a Bessel sequence {aj/2(ψ(ajx− kb)}j,k∈Z for any b > 0, a > 1.

15.3 Dual Pairs of Wavelet Frames

From now on the operators used to generate a wavelet system will play a
key role. For this reason we will primarily use the notation {DajTkbψ}j,k∈Z

to denote a wavelet system.
Given a wavelet frame {DajTkbψ}j,k∈Z for L2(R) with frame operator S,

the frame decomposition (5.7) takes the form

f =
∑

j,k∈Z

〈f, S−1DajTkbψ〉DajTkbψ, (15.23)

In the analog case of a Gabor system, we were able to simplify the frame
decomposition, due to the observation that the frame operator commutes
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with the involved modulation/translation operators. The situation is more
complicated in the wavelet case, but at least the frame operator commutes
with the scaling operator (Exercise 15.3):

Proposition 15.3.1 Let {DajTkbψ}j,k∈Z be a wavelet frame for L2(R),
with frame operator S. Then

SDa = DaS (15.24)

and

S−1Da = DaS
−1. (15.25)

The result in (15.25) implies that the canonical dual frame of a wavelet
frame {DajTkbψ}j,k∈Z has the form

{S−1DajTkbψ}j,k∈Z = {DajS−1Tkbψ}j,k∈Z.

Unfortunately Example 16.1.1 will show that in general the frame operator
S and its inverse S−1 do not commute with the translation operators Tkb.
This implies that in general the canonical dual frame will not have wavelet
structure.
If {DajTkbψ}j,k∈Z is a Riesz basis, then the dual frame is unique by

Theorem 3.6.2, and we cannot replace the sequence {S−1DajTkbψ}j,k∈Z by
another sequence in the frame decomposition (15.23). But in the case of
a wavelet frame that is not a Riesz basis, we know from general theory
(Lemma 6.3.1) that there exist other dual frames than the canonical dual
frame. Thus, it is natural to exploit the freedom offered by the redundancy
and examine whether there exists an alternative dual frame which has the
wavelet structure. Daubechies and B. Han gave in [246] an example of a
wavelet frame {DjTkψ}j,k∈Z for which the canonical dual does not have

the wavelet structure; however, there exist infinitely many functions ψ̃ for
which {DjTkψ̃j,k}j,k∈Z is a dual frame (see the paper [82] for a technical
correction). The generator of the frame {DjTkψ}j,k∈Z has the property

that ψ̂ = χk for a compact subset K of R; frames of this type are the
subject of Section 16.3.
A characterization of all pairs of dual wavelet frame pairs was obtained

by Chui and Shi [217]. We will prove the result on page 515.

Theorem 15.3.2 Given a > 1, b > 0, two Bessel sequences
{Daj Tkbψ}j,k∈Z and {DajTkbψ̃}j,k∈Z, where ψ, ψ̃ ∈ L2(R), form dual
wavelet frames for L2(R) if and only if the following two conditions are
satisfied:

(i)
∑

j∈Z
ψ̂(ajγ)

̂̃
ψ(ajγ) = b for a.e. γ ∈ R.

(ii) For any number α �= 0 of the form α = m/aj, m, j ∈ Z,
∑

{(j,m)∈Z2 | α=m/aj}
ψ̂(ajγ)

̂̃
ψ(ajγ +m/b) = 0, a.e. γ ∈ R. (15.26)
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The condition (15.26) is clearly satisfied if

ψ̂(ajγ)
̂̃
ψ(ajγ + q/b) = 0, a.e. γ ∈ R, ∀ q ∈ Z \ {0}.

In particular, if ψ̂ and
̂̃
ψ have compact support, then for sufficiently small

values of b > 0, the wavelet systems {DajTkbψ}j,k∈Z and {DajTkbψ̃}j,k∈Z

form dual frames for L2(R) when the condition (i) in Theorem 15.3.2 is
satisfied. Lemvig used in [483] this observation to construct dual pairs of
wavelet frames. The construction is parallel to the approach we saw for
Gabor frames in Theorem 12.5.1: the basic condition (12.36) appearing in
the Gabor case is replaced by a partition of unity condition of the form

∑

j∈Z

ψ̂(ajγ) = 1, γ ∈ R. (15.27)

The connections between the Gabor case and the wavelet case are even
closer. As shown in [175] by Christensen and Goh, certain dual pairs of
wavelet frames can be constructed directly based on the Gabor frames
obtained via Theorem 12.5.1:

Example 15.3.3 Consider two Gabor Bessel sequences {EmbTng}m,n∈Z

and {EmbTnh}m,n∈Z, generated by functions g, h that are supported in an
interval [M,N ]. Assume that

b ≤ min((N −M)−1, 2−1a−N ) (15.28)

and that
∑

k∈Z

g(x− k)h(x− k) = b, x ∈ [0, 1].

Then {EmbTng}m,n∈Z and {EmbTnh}m,n∈Z are dual Gabor frames for
L2(R) by Theorem 12.3.4. Now, fix a > 1 and define the functions

ψ, ψ̃ ∈ L2(R) by

ψ̂(γ) = g(loga(|γ|)),
̂̃
ψ(γ) = h(loga(|γ|)), γ �= 0. (15.29)

Then, for a.e. γ ∈ R,
∑

j∈Z

ψ̂(ajγ)
̂̃
ψ(ajγ) =

∑

j∈Z

g(loga(|ajγ|))h(loga(|ajγ|))

=
∑

j∈Z

g(j + loga(|γ|))h(j + loga(|γ|)) = b,

i.e., the condition (i) in Theorem 15.3.2 is satisfied. The definition of the

functions ψ and ψ̃ shows that ψ̂ and
̂̃
ψ are supported on

[−aN ,−aM ] ∪ [aM , aN ] ⊂ [−aN , aN ];
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Figure 15.2. Plots of geometric splines ψ̂ and
̂̃
ψ obtained via the procedure in

Example 15.3.3, based on the exponential spline of order 2 in Example A.9.3.
The function ψ̂ is a geometric spline with knots at the points ±1,±e,±e2; the

function
̂̃
ψ is a geometric spline with knots at the points ±e−1,±1,±e2,±e3.
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Figure 15.3. Plots of geometric splines ψ̂ and
̂̃
ψ obtained via the procedure

in Example 15.3.3, based on the exponential spline of order 3 in Exam-
ple A.9.3. The function ψ̂ is a geometric spline with knots at the points

±1,±e,±e2,±e3; the function
̂̃
ψ is a geometric spline with knots at the points

±e−2,±e−1,±1,±e3,±e4,±e5. Note that
̂̃
ψ(γ) = 0 for |γ| ∈ [−e−2, e−2] and that̂̃

ψ(γ) = 1 for |γ| ∈ [1, e3]. Arbitrary smoothness can be obtained by applying the
procedure to higher-order exponential B-splines, at the price of increased support
size.



15.4 Exercises 405

thus, by the choice of b in (15.28) the condition (ii) in Theorem 15.3.2 is
also satisfied. We conclude that the wavelet systems {DajTkbψ}j,k∈Z and

{DajTkbψ̃}j,k∈Z form dual frames for L2(R).
In [175] this approach is applied on dual Gabor frames {EmbTng}m,n∈Z,

{EmbTnh}m,n∈Z, obtained by using Theorem 12.3.4 on exponential
B-splines. The outcome is a dual pair of wavelet frames, generated by func-
tions ψ, ψ̃, whose Fourier transforms are compactly supported splines with
geometrically distributed knots and desired smoothness; see Figures 15.2
and 15.3. �

The idea of using the log-transform to transfer results from the Gabor
setting to the wavelet setting also appears in the paper [410] by Holighaus
and Wiesmeyr.
Note also that the transformation in (15.29) yields a natural way to

obtain functions ψ satisfying the partition of unity condition (15.27) for
some a > 1. In fact, taking g ∈ L2(R) such that supp g ⊆ [M,N ] and

∑

k∈Z

g(x− k) = 1, x ∈ R,

the function ψ given by (15.29) will satisfy (15.27).

15.4 Exercises

15.1 Prove the inequality (15.19).

15.2 Consider the function ψ given by (15.22) and find, based on Propo-
sition 15.2.6, respectively Theorem 15.2.3, values for b0 such that
{2j/2ψ(2jx− kb)}j,k∈Z is a frame for all b ∈]0, b0].

15.3 Prove Proposition 15.3.1.
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Dyadic Wavelet Frames for L2(R)

In this chapter we consider dyadic wavelet systems, i.e., wavelet systems for
L2(R) with scaling parameter a = 2 and translation parameter b = 1. We
will usually denote the resulting wavelet systems {2j/2ψ(2jx− k)}j,k∈Z by
{DjTkψ}j,k∈Z or {ψj,k}j,k∈Z. Recall that bases of this type were considered
already in Section 3.9.
In Section 16.1 we state results concerning the structure of the canonical

dual frame associated with a dyadic wavelet frame. In particular, we show
that the canonical dual of a wavelet frame might not have the wavelet
structure. In case the given frame is not a Riesz basis, we know from
Lemma 6.3.1 that other duals exist, and this naturally leads to the question
whether an alternative dual having the wavelet structure exists. We state
the formal definition of dual (multi)wavelet frames [see below] and a char-
acterization hereof; concrete constructions will appear in Chapters 17–18.
In Section 16.3 we present results concerning wavelet frames generated by
a function whose Fourier transform is a characteristic function.
In this chapter we will also consider wavelet frames generated by more

than one function. That is, we consider a finite number of functions
ψ1, . . . , ψn ∈ L2(R) and ask for

{DjTkψ1}j,k∈Z ∪ {DjTkψ2}j,k∈Z ∪ · · · ∪ {DjTkψn}j,k∈Z (16.1)

to be a frame for L2(R). A frame of this type is called a multi-
wavelet frame and will usually be denoted by {DjTkψ�}j,k∈Z,�=1,...,n or
{ψ�;j,k}j,k∈Z,�=1,...,n. We will often skip the word “multi” and simply use
the shorter name “wavelet frame.”

©
O. Christensen, An Introduction to Frames and Riesz Bases,
Applied and Numerical Harmonic Analysis,
DOI 10.1007/978-3-319-25613-9 16

407Springer International Publishing Switzerland 2016
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16.1 Wavelet Frames and Their Duals

The canonical dual frame associated to a wavelet frame {DjTkψ}j,k∈Z with
frame operator S is given by {S−1DjTkψ}j,k∈Z. Due to the difficulty in
inverting S explicitly it is usually hard to find the dual frame, but in the
following example from [241] it can be done by direct computation. The
example is important because it demonstrates that the dual of a wavelet
frame might not have the wavelet structure. The example also shows that
the frame operator for a wavelet frame {DjTkψ}j,k∈Z might not commute
with the translation operators Tk, k ∈ Z; see the discussion in Section 15.3.

Example 16.1.1 Let {DjTkψ}j,k∈Z be a wavelet orthonormal basis for
L2(R). Given ε ∈]0, 1[, we define a function θ by

θ = ψ + εDψ.

We want to prove that {DjTkθ}j,k∈Z is a Riesz basis and compute the dual
Riesz basis. It will be convenient to use the notation

{ψj,k}j,k∈Z = {DjTkψ}j,k∈Z, {θj,k}j,k∈Z = {DjTkθ}j,k∈Z.

The idea is to consider the function θ as a small perturbation of ψ and use
a stability result for frames to conclude that {θj,k}j,k∈Z is a Riesz basis.
First, the commutator relation (2.28) shows that

ψj,k − θj,k = −εDjTkDψ = −εDj+1T2kψ; (16.2)

thus, given any finite scalar sequence {cj,k}j,k∈Z,
∣
∣
∣
∣

∣
∣
∣
∣

∑

j,k∈Z

cj,k(ψj,k − θj,k)

∣
∣
∣
∣

∣
∣
∣
∣

2

= ε2
∣
∣
∣
∣

∣
∣
∣
∣

∑

j,k∈Z

cj,kD
j+1T2kψ

∣
∣
∣
∣

∣
∣
∣
∣

2

= ε2
∑

j,k∈Z

|cj,k|2;

the last equality follows from {Dj+1T2kψ}j,k∈Z being a subfamily of the
orthonormal basis {ψj,k}j,k∈Z. Via the general perturbation result stated
in Theorem 22.1.1, we see that {θj,k}j,k∈Z is a Riesz basis for L2(R). By
the definition of a Riesz basis we can define a bounded invertible operator

U : L2(R)→ L2(R), Uψj,k := θj,k.

Via Exercise 5.20, the frame operator for {θj,k}j,k∈Z is S = UU∗, so the
canonical dual associated to {θj,k}j,k∈Z is

{S−1θj,k}j,k∈Z = {(U∗)−1
U−1θj,k}j,k∈Z = {

(
U−1

)∗
ψj,k}j,k∈Z. (16.3)
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We want to obtain a more concrete expression for the canonical dual frame
of {θj,k}j,k∈Z. In terms of the operator U , (16.2) means that

(I − U)ψj,k = −εDj+1T2kψ = −εψj+1,2k;

expanding an arbitrary f ∈ L2(R) in the orthonormal basis {ψj,k}j,k∈Z, it
follows that

(I − U)f = −ε
∑

j,k∈Z

〈f, ψj,k〉ψj+1,2k.

Thus, for f, g ∈ L2(R),

〈f, (I − U)∗g〉 = 〈(I − U)f, g〉
= −ε

∑

j,k∈Z

〈f, ψj,k〉〈ψj+1,2k, g〉

= 〈f,−ε
∑

j,k∈Z

〈g, ψj+1,2k〉ψj,k〉.

It follows that

(I − U∗)g = (I − U)∗g

= −ε
∑

j,k∈Z

〈g, ψj+1,2k〉ψj,k. (16.4)

In particular, ||I−U∗|| = ε < 1, which implies that (U∗)−1 can be expanded
in a Neumann series,

(U∗)−1 =

∞∑

n=0

(I − U∗)n .

Now (16.3) implies that the dual Riesz basis of {θj,k}j,k∈Z is

{S−1θj,k}j,k∈Z =

{ ∞∑

n=0

(I − U∗)n ψj,k

}

j,k∈Z

. (16.5)

We can go one step further. In fact, the action of I − U∗ on the func-
tions ψj,k, j, k ∈ Z can be found via (16.4) using that {ψj,k}j,k∈Z is an
orthonormal basis; the outcome depends on k being even or odd:

(I − U∗)ψj,2k = −εψj−1,k, while (I − U∗)ψj,2k+1 = 0, ∀j, k ∈ Z. (16.6)

In particular, via (16.5),

S−1θj,2k+1 = ψj,2k+1 for all j, k ∈ Z.

Also, for any k �= 0, the equations in (16.6) show that there exists a value
of n ∈ N for which

(I − U∗)n ψj,2k = 0;
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thus, S−1θj,2k is a finite linear combination of functions {ψj,k}j,k∈Z,

S−1θj,2k = ψj,2k + (I − U∗)ψj,2k + · · ·+ (I − U∗)nψj,2k

= ψj,2k − εψj−1,k + · · ·+ 0.

For k = 0, we have

S−1θj,0 =
∞∑

n=0

(−ε)nψj−n,0. (16.7)

In particular, the canonical dual frame of {θj,k}j,k∈Z does not have the
wavelet structure; the functions {S−1θj,k}j,k∈Z do not even have the same
norm. This is in contrast to the situation for Gabor frames and frames of
translates, where we saw that the canonical dual has the same structure as
the frame itself. We know from Proposition 15.3.1 that

S−1DjTkθ = DjS−1Tkθ; (16.8)

thus, the fact that the canonical dual frame of {θj,k}j,k∈Z does not have
wavelet structure also implies that the operator S−1 cannot commute with
all the operators Tk, k ∈ Z; as a consequence, the frame operator S does
not commute with all the operators Tk in this example.
The above calculations show that there are other properties which are

not inherited by the canonical dual frame. For example, if we assume
that the function ψ has compact support, then also θ has compact sup-
port, and all the functions {θj,k}j,k∈Z have compact support. If we look
at the dual frame {S−1θj,k}j,k∈Z, then we obtain functions with compact
support when k �= 0 because the elements in the dual frame are finite lin-
ear combinations of the functions in {ψj,k}j,k∈Z in this case. However, for
k = 0 the expression (16.7) shows that the functions S−1θj,0 do not have
compact support. �

Example 16.1.1 is disappointing. Wavelet frames were introduced because
their structure makes them convenient to work with, but as soon as we
want to apply the frame decomposition we need to know the canonical
dual frame. If the canonical dual frame has the wavelet structure, we can
find it by calculating one single function (the generator) and then simply
applying the operators DjTk, j, k ∈ Z to get the other elements. But if the
canonical dual frame does not have the wavelet structure, we have to find it
using (16.8). That is, we have to apply S−1 to the infinite set of functions
Tkψ; this is a much harder task than applying S−1 on a single function.
This is exactly the point where the flexibility of frame theory comes in

again. We know that overcomplete frames have various dual frames, so if the
canonical dual frame does not have wavelet structure, we might search for
an alternative dual frame which has wavelet structure. The following formal
definition expresses that we want to obtain constructions of dual pairs of
frames, both having wavelet structure. For reasons that will become clear
later (see, e.g., Theorem 18.5.1), we state it for multiwavelet frames.



16.2 Tight Wavelet Frames 411

Definition 16.1.2 Consider two sequences of functions

ψ1, . . . , ψn ∈ L2(R) and ψ̃1, . . . , ψ̃n ∈ L2(R).

We say that {DjTkψ�}j,k∈Z,�=1,...,n and {DjTkψ̃�}j,k∈Z,�=1,...,n are a pair
of dual wavelet frames if both are Bessel sequences and

f =

n∑

�=1

∑

j,k∈Z

〈f,DjTkψ�〉DjTkψ̃�, ∀f ∈ L2(R). (16.9)

That Bessel sequences {DjTkψ�}j,k∈Z,�=1,...,n and {DjTkψ̃�}j,k∈Z,�=1,...,n

are frames if they satisfy (16.9) follows from Lemma 6.3.2. A pair of dual
wavelet frames is called sibling frames in [209] and bi-frames in [248].

A characterization of all dual dyadic wavelet frame pairs was obtained
by Frazier et al. [309]. We will derive the result as a consequence of a
characterization of dual GSI-systems, see page 515.

Theorem 16.1.3 Let ψ1, . . . , ψn, ψ̃1, . . . , ψ̃n ∈ L2(R) and assume that

{DjTkψ�}j,k∈Z,�=1,...,n and {DjTkψ̃�}j,k∈Z,�=1,...,n are Bessel sequences.

Then {DjTkψ�}j,k∈Z,�=1,...,n and {DjTkψ̃�}j,k∈Z,�=1,...,n are a pair of dual
wavelet frames if and only if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑

�=1

∑

j∈Z

ψ̂�(2
jγ)

̂̃
ψ�(2jγ) = 1, a.e. γ ∈ R;

n∑

�=1

∞∑

j=0

ψ̂�(2
jγ)

̂̃
ψ�(2j(γ + q)) = 0 for all odd integers q, a.e. γ ∈ R.

Constructions of dual wavelet frames will appear in Chapter 18; more
constructions are given in the original papers [209, 248].

16.2 Tight Wavelet Frames

As we have discussed in Section 6.1, tight frames are very convenient be-
cause the frame decomposition can be applied without any cumbersome
inversion of the frame operator. The dual of a tight frame {DjTkψ}j,k∈Z

with frame bound A is simply { 1
AD

jTkψ}j,k∈Z; that is, in contrast to the
situation for general wavelet frames, the canonical dual of a tight wavelet
frame automatically has wavelet structure. The frame decomposition
in (5.7) takes the form

f =
1

A

∑

j,k∈Z

〈f,DjTkψ〉DjTkψ, ∀f ∈ L2(R).
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The functions ψ generating a tight wavelet frame can be characterized
based on the characterization of dual wavelet pairs. We leave the details to
the reader (Exercise 16.2) and also note that a direct proof can be found
in, e.g., [400].

Theorem 16.2.1 A function ψ ∈ L2(R) generates a tight wavelet frame
{DjTkψ}j,k∈Z with frame bound A if and only if

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

j∈Z

|ψ̂(2jγ)|2 = A, a.e. γ ∈ R;

∞∑

j=0

ψ̂(2jγ)ψ̂ (2j(γ + q)) = 0 for all odd integers q, a.e. γ ∈ R.

Note that the only difference between the conditions for {DjTkψ}j,k∈Z

being a tight frame with frame bound A = 1 and the characterization of
wavelets in Lemma 3.9.4 is that the condition ||ψ|| = 1 does not appear
in Theorem 16.2.1. We can, in fact, derive Lemma 3.9.4 as a consequence
of Theorem 16.2.1. Indeed, if ψ is a wavelet, then {DjTkψ}j,k∈Z is a tight
wavelet frame with bound A = 1 and ||ψ|| = 1; thus, by Theorem 16.2.1
the conditions (3.53) and (3.54) in Lemma 3.9.4 are satisfied. On the other
hand, the conditions (3.53) and (3.54) imply that {DjTkψ}j,k∈Z is a tight
frame with frame bound A = 1; via Proposition 3.4.8 the assumption
||ψ|| = 1 then implies that {DjTkψ}j,k∈Z is an orthonormal basis, i.e.,
ψ is a wavelet.
Chapter 18 will yield several constructions of tight wavelet frames based

on an extension of the classical multiresolution analysis scheme.

16.3 Wavelet Frame Sets

Theorem 15.2.3 gives a sufficient condition for a function ψ ∈ L2(R) to
generate a wavelet frame {DjTkψ}j,k∈Z, expressed in terms of the Fourier

transform ψ̂. For special classes of functions ψ we can give simpler condi-
tions for ψ generating a wavelet frame; one natural choice is to consider
functions ψ for which ψ̂ is a characteristic function for a Lebesgue measur-
able set K in R. In order for χK to belong to L2(R), we assume that K
has finite Lebesgue measure.

Definition 16.3.1 A Lebesgue measurable set K in R is called a wavelet
frame set if |K| < ∞ and the function ψ defined by ψ̂ = χK generates a
wavelet frame {DjTkψ}j,k∈Z for L2(R).

We will give a short description of results obtained by D. Han [362] and
Dai et al. [237], respectively. We begin with some definitions:
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Definition 16.3.2 Let K be a measurable set in R with finite measure.
We say that

(i) x, y ∈ R are δ-equivalent if there is an j ∈ Z such that

x = 2jy.

For x ∈ K, the number of elements y ∈ K which belong to its
δ-equivalence class is denoted by δK(x). Finally, let

K(δ, k) := {x ∈ K : δK(x) = k}, k ∈ N.

(ii) x, y ∈ R are τ-equivalent if there is an k ∈ Z such that

x = y + k.

For x ∈ K, the number of elements y ∈ K which belong to its
τ-equivalence class is denoted by τK(x). Finally, let

K(τ, k) := {x ∈ K : τK(x) = k}, k ∈ N.

Using the above notation, Dai et al. were almost able to characterize frame
wavelet sets:

Theorem 16.3.3 Let K be a Lebesgue measurable set in R with finite
measure. Then the following hold:

(i) K is a wavelet frame set if ∪j∈Z2
jK(τ, 1) = R (up to a null set) and

there exists M ∈ N such that K(δ,m) and K(τ,m) are null sets for
m > M ; in this case one is a lower frame bound for {DjTkψ}j,k∈Z

and M5/2 is an upper frame bound.

(ii) If K is a wavelet frame set, then ∪j∈Z2
jK = R (up to a null set),

and there exists M ∈ N such that K(δ,m) and K(τ,m) are null sets
for m > M .

For wavelet frame sets generating a tight frame, a complete characteri-
zation is obtained:

Theorem 16.3.4 A Lebesgue measurable set K in R with finite measure
is a wavelet frame set generating a tight frame if and only if the following
conditions hold:

(i) ∪j∈Z2
jK = R (up to a null set);

(ii) for some m ≥ 1 we have K = K(τ, 1) = K(δ,m).

In case (i) and (ii) are satisfied, the frame bound for {DjTkψ}j,k∈Z is
A = m.
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Let us show how the conditions in Theorem 16.3.4 can be reformulated.
The condition K = K(τ, 1) means that for γ ∈ R, the point γ + k belongs
to the set K for at most one value of k ∈ Z or, expressed differently, that

∑

k∈Z

χK(γ + k) ≤ 1, a.e. γ ∈ R. (16.10)

Now assume that
⋃

j∈Z

2jK = R, and for some m ∈ N, K = K(δ,m). (16.11)

Then, given γ ∈ R there exists j′ ∈ Z such that 2−j′γ ∈ K. The δ-
equivalence class of 2−j′γ contains exactly m elements, so

∑

j∈Z

χ2jK(γ) = m, a.e. γ ∈ R. (16.12)

Similarly, one proves that if (16.12) holds for some m ∈ N, then (16.11)
holds. Thus, we have obtained an equivalent formulation of Theorem 16.3.4:

Theorem 16.3.5 A Lebesgue measurable set K in R with finite measure
is a wavelet frame set generating a tight frame if and only if (16.10)
and (16.12) are satisfied for some m ≥ 1.

In the case where K is a finite union of closed intervals, the sufficiency
of the conditions (16.10) and (16.12) was obtained by D. Han a couple
of years before Dai et al. proved Theorem 16.3.4. We illustrate the use of
Theorem 16.3.5 with some examples:

Example 16.3.6 (i) Let K = [− 1
2 ,−

1
4 [∪]

1
4 ,

1
2 ]. Then, except for γ = 0

there exists exactly one value of j ∈ Z such that γ ∈ 2jK, so (16.12)
is satisfied with m = 1. Equation (16.10) is also satisfied, so K is a
frame wavelet set, which generates a tight frame with frame bound
A = 1.

(ii) Similarly, for n = 1, 2, . . . , the set K = [− 1
2 ,−

1
2n+1 [∪] 1

2n+1 ,
1
2 ] is a

wavelet frame set, which generates a tight frame with frame bound
A = n.

(iii) Let K = [− 3
4 ,−

1
4 [∪[

1
8 ,

1
2 [. Then

K(τ, 1) = [−1

2
,−1

4
[∪[ 1

8
,
1

4
[,

and ∪j∈Z2
jK = R up to a null set. Also, for m ≥ 2 we have

K(δ,m) = K(τ,m) = 0.

Thus, by Theorem 16.3.3, K is a wavelet frame set. �

Note that wavelet frame sets in R
d have been considered in [238].
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16.4 Frames and Multiresolution Analysis

The classical definition of multiresolution analysis was introduced with the
purpose to construct orthonormal bases for L2(R). There are several natu-
ral ways to extend the scope to construction of Riesz bases or frames. The
biorthogonal multiresolution by Cohen, Daubechies, and Feauveau [223] de-

livers dual Riesz bases {DjTkψ}j,k∈Z, {DjTkψ̃}j,k∈Z via the construction
of two coupled multiresolution analyses. Another option is to consider Def-
inition 3.9.2 without modifications and ask for the existence of a function
ψ ∈ V0 for which {DjTkψ}j,k∈Z is a Riesz basis or a frame for L2(R). This
idea was elaborated by Zalik. In [638] he characterizes all functions ψ which
appear via some multiresolution analysis and generate Riesz bases.
Other authors have constructed dyadic wavelet frames by modifying the

original definition of a multiresolution analysis. In the next chapter we
discuss frame multiresolution analysis as defined by Benedetto and Li. In
Chapter 18 we give a treatise of another approach by Ron and Shen and its
further development with contributions from many researchers. Common
for these approaches is that they keep the conditions in Definition 3.9.2,
except condition (v). Note also that the literature contains several other
variations on the theme, e.g., the generalized multiresolution considered in
the paper [24] and the references therein.

16.5 Exercises

16.1 Assume that K is a frame wavelet set, and let θ ∈ L2(R) be a
function with support on K. Assume that there exist constants
C,D > 0 such that C ≤ |θ| ≤ D. Prove that the function ψ ∈
L2(R) defined by ψ̂ = θχK generates a wavelet frame.

16.2 Prove Theorem 16.2.1 via Theorem 16.1.3.
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Frame Multiresolution Analysis

The introduction of multiresolution analysis by Mallat and Meyer was the
beginning of a new era; the short descriptions in Section 3.9 and Section 4.3
only give a glimpse of the research activity based on this new tool, aiming
at construction of orthonormal bases {ψj,k}j,k∈Z.
As described in Section 4.3 and Section 16.4, the “classical” theory has

been extended in different ways with the purpose of removing some of its
constraints; as an example, we mention the biorthogonal multiresolution
analysis, which leads to constructions of Riesz bases and their duals. In this
chapter and the next, we go one step further and extend the multiresolution
scheme in such a way that we can construct overcomplete wavelet frames.
It is important to notice that we insist on the key idea of multiscales;
they make the constructions attractive from the computational aspect, as
a reader familiar with multiresolution analysis will know.
This chapter will deal with frame multiresolution analysis as defined

by Benedetto and Li; here the condition (v) in Definition 3.9.2 is simply
replaced with the condition that {Tkφ}k∈Z is a frame for V0. This seem-
ingly innocent change causes many technical difficulties, but under certain
conditions, we are actually able to construct wavelet frames from here.
Frame multiresolution analysis is not the most general way to obtain

frames via multiscale techniques, but it provides us with a natural link from
the classical constructions described in Section 3.9 to the more advanced
theory presented in Chapter 18.
This chapter is independent of Chapters 15–16. However, the results for

frames of translates (especially Theorem 9.2.5) will play an important role.

©
O. Christensen, An Introduction to Frames and Riesz Bases,
Applied and Numerical Harmonic Analysis,
DOI 10.1007/978-3-319-25613-9 17

417Springer International Publishing Switzerland 2016
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17.1 Frame Multiresolution Analysis

Frame multiresolution analysis was introduced by Benedetto and Li [52],
[51]. The purpose of the theory is to construct wavelet frames for L2(R)
of the form {2j/2ψ(2jx − k)}j,k∈Z. We will use the notation introduced at
the beginning of Chapter 16 and denote such a frame by {DjTkψ}j,k∈Z or
{ψj,k}j,k∈Z.
We introduce some terminology before we define frame multiresolution

analysis. The interval ]− 1
2 ,

1
2 [ is identified with the torus T, and the class of

1-periodic functions on R whose restriction to ]− 1
2 ,

1
2 [ belongs to L2(− 1

2 ,
1
2 )

is denoted by L2(T). Similarly, L∞(T) consists of the bounded measurable
1-periodic functions on R. With this notation, L∞(T) ⊂ L2(T). We note
that L2(T) and L∞(T) actually consist of equivalence classes of functions
which are identical almost everywhere, so when we speak about pointwise
relationships between functions, it is understood that they can only be ex-
pected to hold almost everywhere. In the entire section, we will not mention
this explicitly, i.e., we will not follow the equations by “a.e.”
One of the main tools will be Fourier expansions of functions in L2(T).

Using the complex exponentials Ek(x) = e2πikx, the Fourier series of a
function f ∈ L2(T) will be written as

f =
∑

k∈Z

ckEk, where ck =

∫ 1
2

− 1
2

f(x)E−k(x)dx.

Formally, a frame multiresolution analysis is defined as a multiresolu-
tion analysis, with the condition “{Tkφ}k∈Z is a orthonormal basis for V0”
replaced by a frame condition:

Definition 17.1.1 A frame multiresolution analysis for L2(R) consists of
a sequence of closed subspaces {Vj}j∈Z of L2(R) and a function φ ∈ V0

such that

(i) · · ·V−1 ⊂ V0 ⊂ V1 · · · .

(ii) ∪j∈ZVj = L2(R) and ∩j∈ZVj = {0}.

(iii) Vj = DjV0.

(iv) f ∈ V0 ⇒ Tkf ∈ V0, ∀k ∈ Z.

(v) {Tkφ}k∈Z is a frame for V0.

If the conditions in Definition 17.1.1 are satisfied, it follows that

Vj := Dj(span{Tkφ}k∈Z) = span{DjTkφ}k∈Z, j ∈ Z. (17.1)

The starting point for a construction of a frame multiresolution analysis
is indeed to choose a function φ ∈ L2(R) such that {Tkφ}k∈Z is a frame
sequence. Defining the spaces Vj by (17.1), it follows that ∩j∈ZVj = {0}



17.2 Sufficient Conditions 419

without any extra assumption; this is actually a classical result from mul-
tiresolution analysis! In [242], for example, it is proved that ∩j∈ZVj = {0}
under the assumption that {Tkφ}k∈Z is a Riesz sequence, but the first step
in the proof is to observe that then {Tkφ}k∈Z is a frame sequence, and this
is all that is needed for the argument. A more general result obtained by
deBoor, DeVore, and Ron [71] shows that even the frame condition can be
removed:

Lemma 17.1.2 Let φ ∈ L2(R) and define the spaces Vj by (17.1). Then
∩j∈ZVj = {0}.

With this in mind, it is convenient to formulate a shorter definition of a
frame multiresolution analysis, where the redundancy in Definition 17.1.1
is removed (see also Exercise 17.1):

Definition 17.1.3 A function φ ∈ L2(R) generates a frame multireso-
lution analysis if {Tkφ}k∈Z is a frame sequence and the spaces {Vj}j∈Z

defined by (17.1) satisfy the conditions

(i) · · ·V−1 ⊂ V0 ⊂ V1 · · · .
(ii) ∪j∈ZVj = L2(R).

We will consequently refer to this version of the definition.
Two major questions concerning frame multiresolution analysis are:

(i) Under which conditions does a function φ ∈ L2(R) generate a frame
multiresolution analysis?

(ii) If φ ∈ L2(R) generates a frame multiresolution analysis, can we con-
struct a function ψ such that {2j/2ψ(2jx − k)}k∈Z is a frame for
L2(R)?

It turns out that sufficient conditions for φ to generate a frame multires-
olution analysis can be found by small modifications of results concerning
“classical” multiresolution analysis, so we will only give a relatively
short description of this part in Section 17.2. The question (ii) is more
complicated, and we will treat it in detail in Section 17.4.

17.2 Sufficient Conditions

In this section we find sufficient conditions for a function φ ∈ L2(R) to
generate a frame multiresolution analysis. We are mainly interested in
the case where {Tkφ}k∈Z is an overcomplete frame sequence; note that
Proposition 9.3.8 puts some restrictions on φ in order for this to happen.



420 17 Frame Multiresolution Analysis

As starting point, we will consider a function φ for which {Tkφ}k∈Z is
a frame sequence; recall that Theorem 9.2.5 gives an equivalent condition
for this in terms of the function

Φ(γ) :=
∑

k∈Z

|φ̂(γ + k)|2.

In order for the spaces Vj defined by (17.1) to satisfy (i) and (ii) in
Definition 17.1.3, it is natural to follow the approach used in the classical
multiresolution analysis. In [242] the density of ∪Vj in L2(R) is obtained
by assuming that

(i) {Tkφ}k∈Z is a Riesz sequence.

(ii) φ̂ is bounded and continuous in 0 with φ̂(0) �= 0.

The first step in the proof in [242] is to notice that a Riesz sequence is
a frame sequence; no special properties for Riesz sequences are needed.
Thus, we can replace the word “Riesz sequence” in (i) by “frame sequence.”

Concerning (ii), we observe that by Theorem 9.2.5, the function φ̂ is auto-
matically bounded when {Tkφ}k∈Z is a frame sequence. Also, the condition

of continuity of φ̂ in 0 with a nonvanishing function value can be replaced by

(iii) |φ̂| > 0 on a neighborhood of zero.

Now we only need a condition ensuring that Vj ⊂ Vj+1 for all j ∈ Z. For
this purpose, we first state some properties for Vj .

Lemma 17.2.1 Let φ ∈ L2(R) and assume that {Tkφ}k∈Z is a frame se-
quence with frame bounds A,B. With Vj , j ∈ Z, defined as in (17.1), the
following hold:

(i) {DjTkφ}k∈Z is a frame for Vj with frame bounds A,B.

(ii) A function f ∈ L2(R) belongs to Vj if and only if f =
∑

k∈Z
ckD

jTkφ
for some {ck}k∈Z ∈ �2(Z).

(iii) A function f ∈ L2(R) belongs to Vj if and only if there exists a
1-periodic function F ∈ L2(T) such that

f̂(2jγ) = F (γ)φ̂(γ). (17.2)

If f ∈ Vj , the function F is uniquely determined on all γ for which
Φ(γ) �= 0; if Φ(γ) = 0, one can choose F (γ) = 0.

Proof. Since D is unitary, (i) follows from Lemma 5.3.3. (ii) is a con-
sequence of (i) combined with Theorem 5.5.1. For the proof of (iii), let
f ∈ Vj ; taking the Fourier transform of the expression in (ii) and using the
commutator relations, we have (see Lemma 9.2.2)

f̂ = FDj
∑

k∈Z

ckTkφ = D−j
∑

k∈Z

ckE−kφ̂.
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This implies that

f̂(2jγ) = 2−j/2(Dj f̂)(γ) = 2−j/2
∑

k∈Z

ckE−k(γ)φ̂(γ).

Thus, we have the formula (17.2) with F (γ) = 2−j/2
∑

k∈Z
ckE−k(γ). On

the other hand, if f ∈ L2(R) and F ∈ L2(T) satisfy (17.2) for some j ∈ Z,
let us denote its Fourier coefficients for F by {dk}k∈Z and define ck =
2j/2dk; then f =

∑
k∈Z

c−kD
jTkφ ∈ Vj .

For the last part of (iii), we note that if Φ(γ) �= 0 for some γ, then there

exists k ∈ Z such that φ̂(γ + k) �= 0; since

f̂(2j(γ + k)) = F (γ + k)φ̂(γ + k),

and F is assumed to be 1-periodic, it follows that

F (γ) =
f̂(2j(γ + k))

φ̂(γ + k)
.

If Φ(γ) = 0 for some γ, then φ̂(γ+k) = 0 for all k ∈ Z. The equation (17.2)
is satisfied no matter how F (γ) is defined, but if we want F to be 1-periodic,
we must require F (γ + k) = F (γ), k ∈ Z. One choice is to take F (γ) = 0
for all γ for which Φ(γ) = 0. �

Conditions for Vj ⊂ Vj+1 are given in the following lemma:

Lemma 17.2.2 Assume that φ ∈ L2(R) and that {Tkφ}k∈Z is a frame
sequence. Define the spaces Vj by (17.1). Then the following conditions are
equivalent:

(i) Vj ⊂ Vj+1 for all j ∈ Z.

(ii) V0 ⊂ V1.

(iii) There exists a 1-periodic function H0 ∈ L∞(T) such that

φ̂(γ) = H0(γ/2)φ̂(γ/2). (17.3)

If (17.3) is satisfied, the functions H0 and Φ are related by

Φ(γ) = |H0(γ/2)|2Φ(γ/2) + |H0(γ/2 + 1/2)|2Φ(γ/2 + 1/2). (17.4)

Proof. (iii)⇒(i). Assume that (iii) is satisfied, and let f ∈ Vj . Using
Lemma 17.2.1 (iii) and the assumption, there exists a function F ∈ L2(T)
for which

f̂(2j+1γ) = F (2γ)φ̂(2γ) = F (2γ)H0(γ)φ̂(γ).

The function γ �→ F (2γ)H0(γ) is 1-periodic and belongs to L2(T) because
F ∈ L2(T) and H0 ∈ L∞(T), so Lemma 17.2.1(iii) shows that f ∈ Vj+1.

For (i)⇒(ii) there is nothing to prove. To prove that (ii)⇒(iii), as-
sume that (ii) is satisfied. Then φ ∈ V0 ⊂ V1, and D−1φ ∈ V0. By
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Lemma 17.2.1(iii) there exists a 1-periodic function H0 ∈ L2(T) such that

FD−1φ(γ) = H0(γ)φ̂(γ); since FD−1φ(γ) = 21/2φ̂(2γ), a slight redefining
shows the existence of a 1-periodic function H0 ∈ L2(T) such that

φ̂(2γ) = H0(γ)φ̂(γ). (17.5)

Let us choose H0 such that H0(γ) = 0 if Φ(γ) = 0. We now prove (17.4)
and that H0 is bounded. First, (17.5) implies that

Φ(γ) =
∑

k∈Z

|φ̂(γ + k)|2 =
∑

k∈Z

∣
∣H0(

γ + k

2
)φ̂(

γ + k

2
)
∣
∣2.

If we split the sum into sums over even integers 2k, k ∈ Z and odd integers
2k + 1, k ∈ Z, and use the periodicity of H0, we arrive at

Φ(γ) =
∑

k∈Z

∣
∣H0(

γ + 2k

2
)φ̂(

γ + 2k

2
)
∣
∣2

+
∑

k∈Z

∣
∣H0(

γ + 2k + 1

2
)φ̂(

γ + 2k + 1

2
)
∣
∣2

= |H0(γ/2)|2
∑

k∈Z

∣
∣φ̂(γ/2 + k)

∣
∣2

+|H0(γ/2 + 1/2)|2
∑

k∈Z

∣
∣φ̂(γ/2 + 1/2 + k)

∣
∣2

= |H0(γ/2)|2 Φ(γ/2) + |H0(γ/2 + 1/2)|2Φ(γ/2 + 1/2).

This proves (17.4). To show that H0 is bounded, we consider γ ∈ R

such that Φ(γ) �= 0. Let A,B denote frame bounds for {Tkφ}k∈Z. By
Theorem 9.2.5 we have A ≤ Φ(γ) ≤ B, and via (17.4) this gives that

B ≥ Φ(2γ) ≥ |H0(γ)|2 Φ(γ) ≥ A |H0(γ)|2.

Thus H0 ∈ L∞(T) as desired. �

An equation of the type (17.3) is called a refinement equation; we say
that φ is refinable. In the case of a classical multiresolution analysis, where
{Tkφ}k∈Z is an orthonormal system or a Riesz sequence, the function H0

satisfying (17.3) is unique; this follows from Lemma 17.2.1(iii) because Φ
is bounded away from zero by Theorem 9.2.5. For a general frame mul-
tiresolution analysis, several choices for H0 might be possible because Φ(γ)
might be zero for γ belonging to a set with positive Lebesgue measure. A
convenient choice is to define H0(γ) = 0 if Φ(γ) = 0, as we already did
in the proof of Lemma 17.2.2; the function H0 obtained this way is called
the two-scale symbol or the refinement mask for the frame multiresolution
analysis.
By collecting all the obtained information we obtain a sufficient condition

for φ to generate a frame multiresolution analysis:
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Theorem 17.2.3 Suppose that φ ∈ L2(R), that {Tkφ}k∈Z is a frame se-

quence, and that |φ̂| > 0 on a neighborhood of zero. If there exists a function
H0 ∈ L∞(T) such that

φ̂(γ) = H0(
γ

2
)φ̂(

γ

2
), (17.6)

then φ generates a frame multiresolution analysis.

The statement of Theorem 17.2.3 corresponds exactly to the formulation
of the similar result for multiresolution analysis in [637], Theorem 2.13.

Example 17.2.4 Define as in Example 9.2.7 the function φ via its Fourier
transform,

φ̂(γ) = χ[−α,α[, for some α ∈]0, 1
2
[.

We have already seen that {Tkφ}k∈Z is a frame sequence. Note that

φ̂(2γ) = χ[−α
2 ,α2 [(γ) = χ[−α

2 ,α2 [(γ)φ̂(γ).

For |γ| < 1
2 , let

H0(γ) = χ[−α
2 ,α2 [;

extending H0 to a 1-periodic function, we see that (17.6) is satisfied.
By Theorem 17.2.3 we conclude that φ generates a frame multiresolution
analysis.
Given a continuous nonvanishing function θ on [−α, α], we can generalize

the example by considering

φ̂(γ) := θ(γ)χ[−α,α[(γ).

Defining

H0(γ) =

{
θ(2γ)
θ(γ) if γ ∈ [−α

2 ,
α
2 [,

0 if γ ∈ [− 1
2 ,−

α
2 [∪[

α
2 ,

1
2 [,

and extending H0 periodically, it again follows that φ̂ generates a frame
multiresolution analysis. �

17.3 Relaxing the Conditions

In Theorem 17.2.3 all the conditions in frame multiresolution analysis were
derived on the basis of a function φ generating a frame sequence {Tkφ}k∈Z.
In Chapter 18 we will consider another multiresolution scheme, proposed
by Ron and Shen [561], where it is not assumed that {Tkφ}k∈Z is a frame
sequence. For this reason we now show that (i) and (ii) in Definition 17.1.3
can be satisfied without any frame assumption.
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The basic idea of Ron and Shen is to replace the frame condition on
{Tkφ}k∈Z with the condition that φ satisfies a refinement equation. Recall
from Lemma 17.2.2 that if the spaces Vj in (17.1) are nested and {Tkφ}k∈Z

is a frame sequence, then φ satisfies a refinement equation. We now prove
that a refinement equation is enough to imply that Vj are nested, and
Example 17.3.4 will show that nothing guarantees that {Tkφ}k∈Z is a frame
sequence; thus, the idea of Ron and Shen is in fact more general.

Lemma 17.3.1 Assume that φ ∈ L2(R) and that {Tkφ}k∈Z is a Bessel
sequence. Define the spaces Vj by (17.1). Then the following hold:

(i) If ψ ∈ L2(R) and there exists a function F ∈ L∞(T) such that

ψ̂(2γ) = F (γ)φ̂(γ), then ψ ∈ V1.

(ii) If there exists a function H0 ∈ L∞(T) such that

φ̂(2γ) = H0(γ)φ̂(γ), (17.7)

then V0 ⊆ V1.

Proof. Let ψ ∈ L2(R) and assume that for some F ∈ L∞(T), we have

ψ̂(2γ) = F (γ)φ̂(γ). Writing the Fourier series of F as F =
∑

k∈Z
ckEk, we

have (see Lemma 9.2.2)

1√
2
Dψ̂ = Fφ̂ =

∑

k∈Z

ckEkφ̂ = F
∑

k∈Z

ckT−kφ.

Since Dψ̂ = FD−1ψ, this shows that D−1ψ =
√
2
∑

k∈Z
ckT−kφ ∈ V0, i.e.,

ψ ∈ DV0 = V1. This proves (i). (ii) follows from here because V1 is closed
and invariant under integer-translations. �

The condition (ii) in Definition 17.1.3 can also be derived without as-
suming φ to be a frame sequence. This follows from a result by deBoor,
DeVore, and Ron [71]:

Lemma 17.3.2 Let φ ∈ L2(R) and assume that the spaces Vj in (17.1)

are nested. If |φ̂| > 0 on a neighborhood of 0, then ∪jVj is dense in L2(R).

Via Lemma 17.3.1 and Lemma 17.3.2, we have:

Theorem 17.3.3 Let φ ∈ L2(R). Assume that (17.7) is satisfied for

a function H0 ∈ L∞(T) and that |φ̂| > 0 on a neighborhood of 0.
Then the spaces Vj defined in (17.1) satisfy the conditions (i)–(iv) in
Definition 17.1.1.

In this chapter we will always assume that {Tkφ}k∈Z is a frame se-
quence, in which case Theorem 17.3.3 equals Theorem 17.2.3. The role
of Theorem 17.3.3 will be clear in Chapter 18; for now, we just give an
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example, which shows that it can actually happen that all the conditions
in Definition 17.1.1 except (v) are satisfied.

Example 17.3.4 Assume that φ ∈ L2(R) generates a classical multireso-
lution analysis for L2(R), where {Tkφ}k∈Z is an orthonormal basis for V0.
Let

φ̃ = φ+ T1φ.

Then

{Tkφ̃}k∈Z = {Tk+1φ+ Tkφ}k∈Z.

From Example 5.4.6 we know that V0 = span{Tkφ̃}k∈Z and that {Tkφ̃}k∈Z

is not a frame for V0. However, all the other conditions for φ̃ generating a
frame multiresolution analysis are satisfied.
The function φ̃ satisfies a refinement equation. In fact, since φ generates

a multiresolution analysis, it is known from the classical theory or from
Lemma 17.2.2 that there exists a function H0 ∈ L∞(T) such that

φ̂(2γ) = H0(γ)φ̂(γ);

using that

̂̃
φ = (1 + E−1)φ̂,

it follows that

̂̃
φ(2γ) = (1 + e−4πiγ)H0(γ)φ̂(γ)

=
1 + e−4πiγ

1 + e−2πiγ
H0(γ)

̂̃
φ(γ)

=: H̃0(γ)
̂̃
φ(γ), γ �= 1

2
+ Z.

The reader can verify that H̃0 ∈ L∞(T). �

17.4 Construction of Frames

The next question is whether a frame multiresolution analysis can be used
to construct a frame for L2(R). We prove in Theorem 17.4.5 that an extra
condition is needed in order to assure this.
Assume that φ ∈ L2(R) generates a frame multiresolution analysis, and

let Wj denote the orthogonal complement of Vj in Vj+1. Exactly as in the
case of a multiresolution analysis, this gives the orthogonal decomposition

L2(R) =
⊕

j∈Z

Wj . (17.8)
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All we need in order to construct a frame for L2(R) is a function
ψ ∈ L2(R) for which {Tkψ}k∈Z is a frame for W0. This follows from the
observation that the spaces Wj are related by the same dilation property
as we have for Vj :

Lemma 17.4.1 Assume that φ ∈ L2(R) generates a frame multiresolution
analysis. Then the following hold:

(i) Wj = DjW0, ∀j ∈ Z.

(ii) If ψ ∈W0 generates a frame {Tkψ}k∈Z for W0, then for all j ∈ Z, the
family {DjTkψ}k∈Z is a frame for Wj, and {DjTkψ}j,k∈Z is a frame
for L2(R); these frames have the same frame bounds as {Tkψ}k∈Z.

Proof. For the proof of (i), let f ∈ W0. Then f ∈ V1, so Djf ∈ Vj+1.
Furthermore, f⊥V0, so since Dj is unitary, Djf⊥DjV0 = Vj . This proves
that DjW0 ⊆Wj ; the proof of Wj ⊆ DjW0 is similar.

Now assume that {Tkψ}k∈Z is a frame for W0 with frame bounds A,B.
Then Lemma 5.3.3 shows that {DjTkψ}k∈Z is a frame for

span{DjTkψ}k∈Z = DjW0 = Wj ,

also with frame bounds A,B. Let f ∈ L2(R). Denoting the orthogonal
projection of L2(R) onto Wj by Qj , we have by (17.8) that f =

∑
j∈Z

Qjf
and

||f ||2 =
∑

j∈Z

||Qjf ||2.

The last part of the proof follows from this combined with the observation
that

A ||Qjf ||2 ≤
∑

k∈Z

|〈Qjf,D
jTkψ〉|2 =

∑

k∈Z

|〈f,DjTkψ〉|2 ≤ B ||Qjf ||2. �

In the classical case where φ generates a multiresolution analysis, we
know that there always exists a function ψ ∈ W0 such that {Tkψ}k∈Z is
an orthonormal basis for W0 and {ψj,k}j,k∈Z is an orthonormal basis for
L2(R). The corresponding result for a frame multiresolution analysis is
more complicated: there might not exist a function ψ ∈ L2(R) for which
{Tkψ}k∈Z is a frame for W0. Equivalent conditions for the existence of
such a function were found by Benedetto and Treiber [57]; we need some
preparation before we present their result in Theorem 17.4.5.
The first step is to characterize the space W0. In Lemma 17.2.1, we have

seen that if {Tkφ}k∈Z is a frame sequence and F ∈ L2(T), then the function

f defined by f̂(2γ) = F (γ)φ̂(γ) belongs to V1. An extra condition implies
that f ∈ W0.
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Lemma 17.4.2 Assume that φ ∈ L2(R) generates a frame multiresolution
analysis with two-scale symbol H0 ∈ L∞(T). Let F ∈ L2(T) and define

f ∈ V1 by f̂(2γ) = F (γ)φ̂(γ). Then the following hold:

(i) 〈f, Tkφ〉 = 2
∫ 1

2

0

[
FΦ2H0 + T1/2

(
FΦ2H0

)]
E2k.

(ii) f ∈W0 if and only if

H0FΦ + T1/2(H0FΦ) = 0 on [0,
1

2
[. (17.9)

Proof. For k ∈ Z we use the Fourier transform and (17.3) to obtain that

〈f, Tkφ〉 = 〈f̂ , E−kφ̂〉
= 〈F (·/2)φ̂(·/2), E−k(·)H0(·/2)φ̂(·/2)〉

=

∫ ∞

−∞
F (γ/2)φ̂(γ/2)e−2πikγH0(γ/2)φ̂(γ/2)dγ

= 2

∫ ∞

−∞
F (γ)|φ̂(γ)|2H0(γ)e

4πikγdγ.

The function γ �→ F (γ)H0(γ)e
4πikγ is 1-periodic, so (we ask the reader to

justify the rearrangements)

〈f, Tkφ〉 = 2

∫ 1
2

− 1
2

∑

n∈Z

(
F (γ + n)|φ̂(γ + n)|2H0(γ + n)e4πik(γ+n)

)
dγ

= 2

∫ 1
2

− 1
2

F (γ)|Φ(γ)|2H0(γ)e
4πikγdγ.

Splitting the integral in two, we can continue with

〈f, Tkφ〉 = 2

∫ 1
2

0

F (γ)|Φ(γ)|2H0(γ)e
4πikγdγ

+ 2

∫ 1
2

0

F (γ − 1/2)|Φ(γ − 1/2)|2H0(γ − 1/2)e4πik(γ−1/2)dγ

= 2

∫ 1
2

0

[
F (γ)|Φ(γ)|2H0(γ) + T1/2

(
F (γ)|Φ(γ)|2H0(γ)

)]
E2k(γ)dγ.

This proves (i). By definition, f ∈ V1, so in order to prove (ii), we have to
prove that f is orthogonal to V0 = span{Tkφ}k∈Z if and only if (17.9) is
satisfied, but this follows from {

√
2E2k}k∈Z being an orthonormal basis for

L2(0, 12 ). �

Note that the function H0FΦ+T1/2(H0FΦ) is 1
2 -periodic. Thus, if (17.9)

holds on [0, 1/2[, then it holds on R.
We can now give a condition for the existence of a frame {Tkψ}k∈Z for

W0. As standing notation in the rest of the chapter, we let F ∈ L2(T) and
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ψ ∈ V1 be related by

ψ̂(2γ) = F (γ)φ̂(γ). (17.10)

Also, let

Ψ(γ) =
∑

k∈Z

|ψ̂(γ + k)|2.

Proposition 17.4.3 Assume that φ ∈ L2(R) generates a frame multires-
olution analysis with two-scale symbol H0 ∈ L∞(T). Let F ∈ L∞(T) and

define ψ ∈ V1 by ψ̂(2γ) = F (γ)φ̂(γ). If there exist G0, G1 ∈ L∞(T) such
that the three equations

H0FΦ + T1/2(H0FΦ) = 0, (17.11)

H0G0Φ + FG1Φ = Φ, (17.12)

T1/2(H0Φ)G0 + T1/2(FΦ)G1 = 0, (17.13)

are satisfied on T, then {Tkψ}k∈Z is a frame for W0.

Proof. The first step is to show that {Tkψ}k∈Z is a frame sequence. Let
A,B denote frame bounds for {Tkφ}k∈Z. We note that an argument similar
to the proof of (17.4) applies to Ψ; it gives that

Ψ(2γ) = |F (γ)|2Φ(γ) + |F (γ + 1/2)|2Φ(γ + 1/2). (17.14)

We want to apply Theorem 9.2.5, so we have to show that outside its
zero set, the function Ψ is bounded away from zero and above. Since we
have assumed that F is bounded, it immediately follows from (17.14) and
Theorem 9.2.5 that Ψ is bounded above. In order to prove that Ψ is bounded
below, it is enough to estimate Ψ(2γ) for γ ∈ [0, 1

2 [. We examine four cases
separately, so let us define

T1 := {γ ∈ [0,
1

2
[ | Φ(γ) = 0, T1/2Φ(γ) = 0}.

T2 := {γ ∈ [0,
1

2
[ | Φ(γ) > 0, T1/2Φ(γ) > 0}.

T3 := {γ ∈ [0,
1

2
[ | Φ(γ) > 0, T1/2Φ(γ) = 0}.

T4 := {γ ∈ [0,
1

2
[ | Φ(γ) = 0, T1/2Φ(γ) > 0}.

If γ ∈ T1, then Ψ(2γ) = 0, so this case is okay. If γ ∈ T2, it follows
by (17.14) that

Ψ(2γ) ≥ A
(
|F (γ)|2 + |F (γ + 1/2)|2

)
. (17.15)

Furthermore, we see by (17.12) that the two equations

H0(γ)G0(γ) + F (γ)G1(γ) = 1, (17.16)

T1/2(H0G0)(γ) + T1/2(FG1)(γ) = 1, (17.17)
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hold.
Now assume that for some ε ∈]0, (1 + ||H0||∞)−1[ and some γ ∈ T2, we
have

|T1/2F (γ)| ≤ ε2

1 + ||G1||∞
. (17.18)

Then |(T1/2F )(γ)G1(γ)| ≤ ε2, and (17.13) implies that

|(T1/2H0)(γ)G0(γ)| ≤ ε2. (17.19)

Therefore, at least one of the following two options holds:

(i) |T1/2H0(γ)| ≤ ε;

(ii) |G0(γ)| ≤ ε.

We will use (17.15) to obtain a lower bound for Ψ(2γ) in each of these cases
separately. In case (i), (17.17) gives

|T1/2(FG1)(γ)| =
∣
∣1− (T1/2H0(γ))(T1/2G0(γ))

∣
∣ ≥ 1− ε||G0||∞,

and therefore

|T1/2F (γ)| ≥ 1− ε||G0||∞
1 + ||G1||∞

. (17.20)

The equations (17.18) and (17.20) give a contradiction if

1− ε||G0||∞
1 + ||G1||∞

>
ε2

1 + ||G1||∞
,

i.e., if

ε <
−||G0||∞ +

√
||G0||2∞ + 4

2
.

Thus, in the case (i) the inequality (17.18) shows that we have a lower
bound on |T1/2F |; by (17.15) this gives a lower bound on Ψ(2γ). In the
case (ii), we apply (17.16) to get

|F (γ)G1(γ)| = |1−H0(γ)G0(γ)| ≥ 1− |H0(γ)| |G0(γ)| ≥ 1− ε||H0||∞,

which by the choice of ε implies that

|F (γ)| ≥ 1− ε||H0||∞
1 + ||G1||∞

>
1

1 + ||H0||∞
1

1 + ||G1||∞
.

Thus, |F (γ)| is bounded below in case (ii), and again we conclude
via (17.15) that Ψ(2γ) is bounded below.
If γ ∈ T3, then

Ψ(2γ) = |F (γ)|2Φ(γ).
By (17.12) and (17.11), we have

H0(γ)G0(γ) + F (γ)G1(γ) = 1, H0(γ)F (γ) = 0. (17.21)
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The last equation is satisfied if F (γ) = 0 (leading to Ψ(2γ) = 0) or
if H0(γ) = 0; in the latter case, the first equation in (17.21) gives
F (γ)G1(γ) = 1, and therefore |F (γ)| ≥ 1

||G1||∞ . Thus,

Ψ(2γ) ≥ A

||G1||2∞
,

as desired.
Now let γ ∈ T4. Then Ψ(2γ) = |F (γ + 1/2)|2Φ(γ + 1/2). Translat-

ing (17.12), we obtain that

T1/2(H0G0Φ)(γ) + T1/2(FG1Φ)(γ) = T1/2Φ(γ). (17.22)

By (17.11) we have T1/2(H0F )(γ) = 0. If T1/2F (γ) = 0 we have Ψ(2γ) = 0;
otherwise, T1/2H0(γ) = 0, and (17.22) gives that T1/2(FG1)(γ) = 1. As in
the previous case, this leads to

Ψ(2γ) ≥ A

||G1||2∞
.

This completes the analysis of the four separate cases: now we know that
Ψ is bounded away from zero outside the set where it is equal to zero,
so {Tkψ}k∈Z is a frame sequence. The rest of the proof will show that
span{Tkψ}k∈Z = W0. For this purpose we first rewrite the equations (17.12)

and (17.13). If φ̂(γ) �= 0, then Φ(γ) �= 0, and we can multiply (17.12) with
̂φ(γ)
Φ(γ) ; the obtained equation clearly also holds if φ̂(γ) = 0, i.e., we have

H0(γ)G0(γ)φ̂(γ) + F (γ)G1(γ)φ̂(γ) = φ̂(γ), γ ∈ R. (17.23)

We can rewrite (17.13) in the same way to obtain

T1/2(H0φ)(γ)G0(γ) + T1/2(Fφ)(γ)G1(γ) = 0, γ ∈ R;

applying the operator T−1/2 this can also be written

H0(γ)φ(γ)G0(γ + 1/2) + F (γ)φ̂(γ)G1(γ + 1/2) = 0, γ ∈ R. (17.24)

Let {ck}k∈Z and {dk}k∈Z denote the Fourier coefficients for G0 and G1;
then

G0(γ) =
∑

k∈Z

cke
2πikγ , G1(γ) =

∑

k∈Z

dke
2πikγ .

Note that

G0(γ + 1/2) =
∑

k∈Z

cke
2πik(γ+1/2) =

∑

k∈Z

ck(−1)ke2πikγ

with a similar calculation valid for G1. Inserting these expressions in (17.23)

and (17.24) and recalling (17.10) and that H0(γ)φ̂(γ) = φ̂(2γ) by (17.3),
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we obtain the equations

φ̂(γ) = φ̂(2γ)
∑

k∈Z

cke
2πikγ + ψ̂(2γ)

∑

k∈Z

dke
2πikγ

and

0 = φ̂(2γ)
∑

k∈Z

ck(−1)ke2πikγ + ψ̂(2γ)
∑

k∈Z

dk(−1)ke2πikγ .

By addition (respectively subtraction), it follows that

φ̂(γ) = 2φ̂(2γ)
∑

k∈Z

c2ke
2πi2kγ + 2ψ̂(2γ)

∑

k∈Z

d2ke
2πi2kγ

and

φ̂(γ) = 2φ̂(2γ)
∑

k∈Z

c2k+1e
2πi(2k+1)γ + 2ψ̂(2γ)

∑

k∈Z

d2k+1e
2πi(2k+1)γ ;

these two equations imply that

φ̂(γ) = 2φ̂(2γ)
∑

k∈Z

c2k+ne
2πi(2k+n)γ

+2ψ̂(2γ)
∑

k∈Z

d2k+ne
2πi(2k+n)γ , ∀n ∈ Z.

We can rewrite this as

1

2
φ̂(γ/2)e−2πinγ/2 = φ̂(γ)

∑

k∈Z

c2k+ne
2πikγ + ψ̂(γ)

∑

k∈Z

d2k+ne
2πikγ ,

or, in operator notation (see Lemma 9.2.2),

1√
2
D−1

(
E−nφ̂

)
=
∑

k∈Z

c2k+nEkφ̂+
∑

k∈Z

d2k+nEkψ̂. (17.25)

Using the commutator relations for the Fourier transformation and the
operators Ek, D,

1√
2
D−1(E−nφ̂) =

1√
2
D−1FTnφ =

1√
2
FDTnφ;

thus, applying the inverse Fourier transform to (17.25) gives that

DTnφ =
√
2
∑

k∈Z

c2k+nT−kφ+
√
2
∑

k∈Z

d2k+nT−kψ. (17.26)

Note that the two terms on the right-hand side are orthogonal: the first
belongs to V0, while the second belongs to W0 by Lemma 17.4.2. Now let
f ∈ W0. Since W0 ⊂ V1 and {DTkφ}k∈Z is a frame for V1, we can for each
given ε > 0 find a finite sequence {bn}n∈F such that

∣
∣
∣
∣

∣
∣
∣
∣

∑

n∈F
bnDTnφ− f

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ ε.
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Via (17.26), this implies that

∣
∣
∣
∣

∣
∣
∣
∣
√
2
∑

n∈F
bn
∑

k∈Z

c2k+nT−kφ

∣
∣
∣
∣

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∣
∣
∣
∣
√
2
∑

n∈F
bn
∑

k∈Z

d2k+nT−kψ − f

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ ε.

Thus, also

∣
∣
∣
∣

∣
∣
∣
∣
√
2
∑

n∈F
bn
∑

k∈Z

d2k+nT−kψ − f

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ ε,

and we conclude that span{Tkψ}k∈Z is dense in W0. Since we already know
that {Tkψ}k∈Z is a frame sequence, it follows that {Tkψ}k∈Z is a frame for
W0. �

We now need to find conditions such that the three equations in
Proposition 17.4.3 can be solved. It turns out that the set

Γ := {γ ∈ T | Φ(2γ) = 0,Φ(γ) > 0,Φ(γ + 1/2) > 0} (17.27)

will play the key role. Recall that if A is a lower frame bound for {Tkφ}k∈Z,
Theorem 9.2.5 shows that for all γ ∈ Γ,

Φ(γ) ≥ A, Φ(γ + 1/2) ≥ A.

In case Γ has positive Lebesgue measure, we can define some functions
in W0 via their Fourier transforms:

Lemma 17.4.4 Assume that φ ∈ L2(R) generates a frame multiresolution
analysis with two-scale symbol H0. Assume that the set Γ in (17.27) has
positive Lebesgue measure and define F1, F2 ∈ L∞(T) by

F1(γ) = χΓ(γ), F2(γ) = χΓ∩[0, 12 [
(γ)− χΓ∩[− 1

2 ,0[
(γ), γ ∈ [−1

2
,
1

2
[.

Then the functions f1, f2 defined by

f̂i(2γ) = Fi(γ)φ̂(γ), i = 1, 2, (17.28)

belong to W0.

Proof. Lemma 17.2.1(iii) shows that fi ∈ V1, i = 1, 2. Furthermore, they
are not identically zero; in fact, if γ ∈ Γ, then

∑

k∈Z

|f̂i(2γ + 2k)|2 =
∑

k∈Z

|Fi(γ + k)φ̂(γ + k)|2

= |Fi(γ)|2Φ(γ)
≥ A,
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where A is a lower frame bound for {Tkφ}k∈Z. To prove that the functions
are orthogonal to V0 = span{Tkφ}k∈Z, let k ∈ Z; then, by Lemma 17.4.2,

〈fi, Tkφ〉

= 2

∫ 1
2

0

[
Fi(γ)|Φ(γ)|2H0(γ) + T1/2

(
Fi(γ)|Φ(γ)|2H0(γ)

)]
E2k(γ)dγ.

For γ ∈ Γ, (17.4) shows that

0 = Φ(2γ) ≥ |H0(γ)|2Φ(γ),
which implies that H0(γ) = 0. For γ ∈ [− 1

2 ,
1
2 [\Γ, we have

F1(γ) = F2(γ) = 0.

It follows that

〈fi, Tkφ〉 = 0, ∀k ∈ Z,

i.e., f1, f2 ∈ W0. �

The three equations in Proposition 17.4.3 will be the key to the next
step: if they have solutions F,G1, G2 ∈ L∞(T), then there exists a function
ψ ∈ W0 such that {Tkψ}k∈Z is a frame for W0 . In contrast to the case of
a classical multiresolution analysis, the equations cannot always be solved:

Theorem 17.4.5 Assume that φ ∈ L2(R) generates a frame multiresolu-
tion analysis, and let

Γ = {γ ∈ T : Φ(2γ) = 0,Φ(γ) > 0,Φ(γ + 1/2) > 0}.
Then the following hold:

(i) If Γ has positive Lebesgue measure, there does not exist a function
ψ ∈ W0 such that {Tkψ}k∈Z is a frame for W0.

(ii) If Γ has vanishing Lebesgue measure, then there exists a function
ψ ∈ W0 such that {Tkψ}k∈Z is a frame for W0, and {DjTkψ}j,k∈Z is
a frame for L2(R).

Proof. The proof of (i) is by contradiction, so we assume that |Γ| > 0 and
that there exists a function ψ ∈W0 such that {Tkψ}k∈Z is a frame for W0.
We can now apply Lemma 17.2.1 (iii) (with j = 0) on the frame {Tkψ}k∈Z

for W0 and the functions f1, f2 ∈ W0 defined in Lemma 17.4.4; thus, we
obtain the existence of functions C1, C2 ∈ L2(T) such that

f̂i(γ) = Ci(γ)ψ̂(γ), i = 1, 2. (17.29)

Since ψ ∈ W0 ⊂ V1, we can apply Lemma 17.2.1 again, this time on the
frame {Tkφ}k∈Z for V0 and with j = 1; we obtain the existence of a function
F ∈ L2(T) for which

ψ̂(2γ) = F (γ)φ̂(γ). (17.30)
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Combining (17.29) and (17.30) gives

f̂i(2γ) = Ci(2γ)ψ̂(2γ) = Ci(2γ)F (γ)φ̂(γ), i = 1, 2. (17.31)

For γ ∈ Γ we know that Φ(γ) > 0. It follows that there exists k ∈ Z

such that φ̂(γ + k) �= 0. Via (17.31) and the definition of f̂i in terms of Fi

in (17.28) we obtain that

Ci(2(γ + k))F (γ + k)φ̂(γ + k) = Fi(γ + k)φ̂(γ + k),

which implies that

Fi(γ) = Ci(2γ)F (γ), γ ∈ Γ, i = 1, 2. (17.32)

We will show that (17.32) leads to a contradiction. For this purpose, we
first note that

γ ∈ Γ ∩ ]0,
1

2
[ ⇔ γ − 1

2
∈ Γ ∩ ]− 1

2
, 0[.

Since we have assumed that Γ has positive measure, also Γ ∩ ]0, 1
2 [ has

positive measure. Let γ ∈ Γ ∩ ]0, 12 [. Then F1(γ) = F1(γ + 1/2) = 1, so
by (17.32) and the 1-periodicity of Ci we have the equations

C1(2γ)F (γ) = 1, C1(2γ)F (γ + 1/2) = 1.

It follows that

0 �= F (γ) = F (γ + 1/2), γ ∈ Γ ∩ ]0,
1

2
[. (17.33)

We now show that a different result is obtained by looking at the function
F2. If γ ∈ Γ ∩ [0, 1/2[, then F2(γ) = 1, F2(γ − 1/2) = −1. So again
via (17.32),

C2(2γ)F (γ) = 1, C2(2γ)F (γ − 1/2) = −1.
Adding those equations gives

F (γ) = −F (γ + 1/2), γ ∈ Γ ∩ ]0,
1

2
[. (17.34)

The equations (17.33) and (17.34) give a contradiction. Thus, if |Γ| > 0,
there does not exist a function ψ ∈ W0 such that {Tkψ}k∈Z is a frame for
W0. This concludes the proof of (i).
For the proof of (ii), we now assume that Γ is a null set. We want to

use Proposition 17.4.3 and find bounded 1-periodic functions F,G0 and
G1 such that the equations (17.11), (17.12), and (17.13) are satisfied. For
simplicity of the formulation, we only define the functions on T, with the
understanding that we extend them periodically. For convenience we restate
the three key equations here:

H0FΦ+ T1/2(H0FΦ) = 0, (13.11)

H0G0Φ+ FG1Φ = Φ, (13.12)
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T1/2(H0Φ)G0 + T1/2(FΦ)G1 = 0. (13.13)

We split the set T into four sets which we examine separately, as we already
did in the proof of Proposition 17.4.3:

T1 := {γ ∈ T | Φ(γ) = 0, T1/2Φ(γ) = 0}.
T2 := {γ ∈ T | Φ(γ) > 0, T1/2Φ(γ) > 0}.
T3 := {γ ∈ T | Φ(γ) > 0, T1/2Φ(γ) = 0}.
T4 := {γ ∈ T | Φ(γ) = 0, T1/2Φ(γ) > 0}.

In the entire proof, we ignore null sets. When needed, we let as usual A,B
denote frame bounds for {Tkφ}k∈Z. First, we consider γ ∈ T1. Then the
equations (17.11), (17.12), and (17.13) hold for all choices of F,G0 and
G1, so we can define them to be arbitrary bounded functions on T1; in
particular, we can let

F (γ) = G0(γ) = G1(γ) = 0, γ ∈ T1. (17.35)

Now, let γ ∈ T2. Since Γ is a null set, we have Φ(2γ) �= 0, which by
Theorem 9.2.5 implies that Φ(2γ) ≥ A. Therefore, via (17.4),

A ≤ Φ(2γ)

= |H0(γ)|2Φ(γ) + |H0(γ + 1/2)|2Φ(γ + 1/2)

≤
(
|H0(γ)|2 + |H0(γ + 1/2)|2

)
B,

and

|H0(γ)|2 + |H0(γ + 1/2)|2

≤ 1

A

(
|H0(γ)|2Φ(γ) + |H0(γ + 1/2)|2Φ(γ + 1/2)

)

=
Φ(2γ)

A

≤ B

A
.

Altogether this shows that

A

B
≤ |H0(γ)|2 + |H0(γ + 1/2)|2 ≤ B

A
. (17.36)

In order to reduce the number of unknown functions in our three equations,
we now define the function F on T2 by

F (γ) := T1/2(H0Φ)(γ)E−1(γ), γ ∈ T2. (17.37)

As a product of bounded functions, it is clear that F is bounded. With
our choice of F , the equation (17.11) is automatically satisfied. In fact,
observing that

T1/2E−1(γ) = e−2πi(γ− 1
2 ) = −E−1(γ),
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we have

H0FΦ+ T1/2(H0FΦ)

= H0T1/2(H0Φ)E−1Φ+ T1/2

(
H0T1/2(H0Φ)E−1Φ

)

= H0T1/2(H0Φ)E−1Φ−
(
T1/2H0

)
H0ΦE−1T1/2Φ

= 0.

The equations (17.12) and (17.13) are now two linear equations in G0 and
G1; the determinant of the equation system is

Δ = H0ΦT1/2(FΦ)− T1/2(H0Φ)FΦ

= H0ΦT1/2

(
T1/2(H0Φ)E−1Φ

)
− T1/2(H0Φ)T1/2(H0Φ)E−1Φ

= −H0ΦH0ΦE−1T1/2Φ− T1/2(H0Φ)T1/2(H0Φ)E−1Φ

= −ΦT1/2Φ
(
|H0|2Φ + T1/2(|H0|2Φ)

)
E−1.

By (17.36) and the fact that Φ ≥ A, T1/2Φ ≥ A on T2,

|Δ| ≥ A3(|H0|2 + T1/2|H0|2) ≥
A4

B
> 0.

Thus, the set of equations (17.12) and (17.13) has a unique solution. Via
Cramer’s rule,

G0 =

∣
∣
∣
∣
Φ FΦ
0 T1/2(FΦ)

∣
∣
∣
∣

Δ
=

ΦT1/2(FΦ)

Δ
,

so

|G0(γ)| ≤
B2||F ||∞
A4/B

=
B3

A4
||F ||∞, γ ∈ T2.

Thus G0 is bounded. A similar calculation gives G1 and that also this
function is bounded.
Now let γ ∈ T3. Then (17.13) is automatically satisfied. In order to

solve (17.11) and (17.12), we first prove that if H0(γ) �= 0, then
√

A

B
≤ |H0(γ)| ≤

√
B

A
. (17.38)

For γ ∈ T3 we have Φ(γ + 1/2) = 0, so (17.4) implies that

Φ(2γ) = |H0(γ)|2Φ(γ). (17.39)

Also, Φ(γ) �= 0 for γ ∈ T3; by Theorem 9.2.5, this implies that Φ(γ) ≥ A
on T3, so via (17.39)

|H0(γ)|2 =
Φ(2γ)

Φ(γ)
≤ B

A
.
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This proves the right-hand inequality in (17.38). Also, (17.39) shows that
if γ ∈ T3 and H0(γ) �= 0, then Φ(2γ) �= 0; thus,

A ≤ Φ(2γ) = |H0(γ)|2Φ(γ) ≤ B |H0(γ)|2,

which gives the left-hand inequality in (17.38).
Now we return to the equations (17.11) and (17.12). For γ ∈ T3 they

reduce to

H0F = 0, H0G0 + FG1 = 1.

In case H0(γ) = 0, the first equation is satisfied, and the second equation
reduces to F (γ)G1(γ) = 1; this can be obtained by defining

F (γ) = G1(γ) = 1.

In case H0(γ) �= 0, the first equation shows that we are forced to define
F (γ) = 0. Therefore, the second equation simplifies to H0(γ)G0(γ) = 1,
which can be obtained for a bounded function G0 because of (17.38); this
concludes the proof for γ ∈ T3. We note that one choice for the function
F is

F (γ) =

{
1 if γ ∈ T3 and H0(γ) = 0,
0 if γ ∈ T3 and H0(γ) �= 0.

(17.40)

The proof for γ ∈ T4 is similar. In this case, (17.12) is automatically
satisfied, and (17.11) and (17.13) reduce to

T1/2(H0F ) = 0, (T1/2H0)G0 + (T1/2F )G1 = 0. (17.41)

Since γ ∈ T4, we know that γ − 1
2 ∈ T3 (or, at least, its “periodic exten-

sion”). If H0(γ − 1
2 ) �= 0, the first equation in (17.41) forces us to define

F (γ− 1
2 ) = 0; this is consistent with (17.40). The second equation in (17.41)

simplifies to (T1/2H0)(γ)G0(γ) = 0, which is satisfied if we let G0(γ) = 0.

If H0(γ − 1
2 ) = 0, the first equation in (17.41) is satisfied, and the sec-

ond equation gives T1/2F (γ)G1(γ) = 0; this can be obtained by letting
G1(γ) = 0. This completes the analysis of the case γ ∈ T4. Note in partic-
ular that no condition on F (γ) is needed for γ ∈ T4, except that we want
F to be bounded. In particular, we can define

F (γ) = 0, γ ∈ T4. (17.42)

�

In order to conclude that there are frame multiresolution analyses which
do not lead to construction of wavelet frames for L2(R), we have to know
that it is actually possible for Γ to have positive measure. An example
where this happens is given in [57].
In case |Γ| = 0, it is worth noticing that (17.35), (17.37), (17.40),

and (17.42) show how one can define F such that {Tkψ}k∈Z is a frame
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for W0 when ψ is defined by ψ̂(2γ) = F (γ)φ̂(γ); in fact, we can take

F (γ) =

⎧
⎨

⎩

T1/2(H0Φ)(γ)E−1(γ) if γ ∈ T2,
1 if γ ∈ T3 and H0(γ) = 0,
0 otherwise.

(17.43)

The proof of Theorem 17.4.5 also shows how other choices of F can be
made. In particular, nothing forces us to define F on T2 as in (17.43); this
choice was only made in order to simplify the calculations. Also for γ ∈ T3,
we have a useful freedom: on the set of γ ∈ T3 for which H0(γ) = 0, the
only condition is that F (γ)G1(γ) = 1 for some bounded function G1, so we
can choose F to be any function which is bounded above and below on this
set. In contrast, the freedom in the definition on T1 ∪T4 is not helpful. For
γ ∈ T1 ∪ T4 (or its 1-periodic extension), we have Φ(γ) = 0 and therefore

φ̂(γ) = 0; that is, different choices of F will not change the function ψ.
Before we exploit the freedom in the choice of F further, we give an

example, where we solve the three equations in Proposition 17.4.3 by direct
calculations:

Example 17.4.6 We continue Example 17.2.4, and consider the function
φ given by φ̂(γ) = χ[− 1

4 ,
1
4 [
. We have already seen that φ generates a frame

multiresolution analysis. Recall that for |γ| < 1
2 ,

H0(γ) = χ[− 1
8 ,

1
8 [
, and Φ(γ) = χ[− 1

4 ,
1
4 [
.

It is clear that Γ is an empty set, so we know that we can construct a wavelet
frame via the frame multiresolution analysis generated by φ. We will use
the equations (17.11), (17.12), and (17.13) directly to find F ∈ L∞(T) such
that the function ψ defined by

ψ̂(γ) := F (γ/2)φ̂(γ/2) (17.44)

generates a frame for W0. In our search for F , we only consider γ ∈ [− 1
2 ,

1
2 [.

In order to simplify the calculations, we will restrict our search to functions
F for which

F = χI for some set I with I ∩ [−1

8
,
1

8
[= ∅.

This simplification immediately implies that (17.11) is satisfied. (17.12) is
automatically satisfied outside the support of Φ, i.e., for γ /∈ [− 1

4 ,
1
4 [. For

γ ∈ [− 1
4 ,

1
4 [, it reduces to

χ[− 1
8 ,

1
8 [
G0 + FG1 = 1. (17.45)

We can satisfy (17.45) by requiring that

G0 = 1 on [−1

8
,
1

8
[ (17.46)



17.4 Construction of Frames 439

and

F = G1 = 1 on [−1

4
,−1

8
[ ∪ [

1

8
,
1

4
[. (17.47)

We now rewrite (17.13) as

H0(γ)Φ(γ)G0(γ +
1

2
) + F (γ)Φ(γ)G1(γ +

1

2
) = 0;

using our information about F this is equivalent to

χ[− 1
8 ,

1
8 [
(γ)G0(γ +

1

2
) + F (γ)χ[− 1

4− 1
8 [∪[ 18 ,

1
4 [
G1(γ +

1

2
) = 0. (17.48)

In order to satisfy this, we would like both terms to vanish. The first term
will vanish if G0(γ + 1

2 ) = 0 on [− 1
8 ,

1
8 [, i.e., if

G0(γ) = 0, γ ∈ [−1

2
,−1

2
+

1

8
[ ∪ [

1

2
− 1

8
,
1

2
[;

this choice can be made without conflict with (17.46). For the second term
in (17.48) to vanish, we want F (γ)G1(γ+

1
2 ) to vanish on [− 1

4 ,−
1
8 [ ∪ [ 18 ,

1
4 [;

this is obtained by defining

G1 = 0 on [−1

2
+

1

8
,−1

4
[ ∪ [

1

4
,
1

2
− 1

8
[.

Again, this choice is allowed. The construction gives no conditions on F on

[−1

2
,−1

4
[ ∪ [

1

4
,
1

2
[. (17.49)

However, different choices of F on this set will lead to the same function
ψ in (17.44) because φ̂ = χ[− 1

4 ,
1
4 ]

and ψ̂(2γ) = F (γ)φ̂(γ). Note that this
result is in accordance with our proof of Theorem 17.4.5: in the considered
example T1 = ∅, and the set in (17.49) equals T4. �

The choice of F in (17.43) implies that {Tkψ}k∈Z is tight in case
{Tkφ}k∈Z itself is a tight frame with frame bound equal to 1:

Corollary 17.4.7 Assume that φ ∈ L2(R) generates a frame multiresolu-
tion analysis and that {Tkφ}k∈Z is a tight frame with frame bound equal to
1. If |Γ| = 0, there exists a function ψ ∈W0 such that {Tkψ}k∈Z is a tight
frame for W0 and {DjTkψ}j,k∈Z is a tight frame for L2(R).

Proof. We first prove that {Tkψ}k∈Z is a tight frame when ψ is defined
via the choice of F in (17.43). By Theorem 9.2.5 it is enough to prove that
the function Ψ is constant outside its zero set. Recall that

Ψ(2γ) = |F (γ)|2Φ(γ) + |F (γ + 1/2)|2Φ(γ + 1/2).

As before, we split T into the sets Ti, i = 1, .., 4. First, we compute Ψ(2γ)
for γ ∈ T2. For γ ∈ T2, we have Φ(γ) > 0 and Φ(γ+1/2) > 0; since |Γ| = 0,
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we can assume that Φ(2γ) > 0. Now,

Φ(2γ) = Φ(γ) = T−1/2Φ(γ) = 1,

so equation (17.4) shows that

|H0(γ)|2 + |H0(γ + 1/2)|2 = 1.

Thus, by (17.43),

Ψ(2γ) = |F (γ)|2 + |F (γ + 1/2)|2 = T1/2|H0(γ)|2 + |H0(γ)|2 = 1.

Now consider γ ∈ T3. In this case,

Ψ(2γ) = |F (γ)|2Φ(γ) =
{

1 if H0(γ) = 0,
0 if H0(γ) �= 0.

(17.50)

If γ ∈ T4, then Ψ(2γ) = |F (γ + 1/2)|2Φ(γ + 1/2) and γ + 1
2 ∈ T3 (or

its “periodic extension”); thus (17.50) shows that Ψ(2γ) only assumes the
values 0 and 1. Finally, for γ ∈ T1 we have Ψ(2γ) = 0.
We have now proved that Ψ only assumes the values 0 and 1, so {Tkψ}k∈Z

is a tight frame sequence; the choice of F guarantees by Proposition 17.4.3
that it is a frame for W0. �

As a special case we obtain the classical result already mentioned
in (3.47) and (3.48) for construction of an orthonormal basis based on
a multiresolution analysis:

Corollary 17.4.8 Assume that φ ∈ L2(R) generates a multiresolution
analysis with two-scale symbol H0. Let F := (T1/2H0)E−1 and define the

function ψ ∈ V1 by ψ(2γ) := F (γ)φ̂(γ). Then ψ generates an orthonormal
basis {DjTkψ}j,k∈Z for L2(R).

Proof. In the case of a multiresolution analysis, we have T2 = T, and the
proof of Corollary 17.4.7 shows that Ψ = 1. Thus, by Theorem 9.2.5, the
functions {Tkψ}k∈Z constitute an orthonormal basis for W0. �

Using the freedom in the choice of F , we now prove that if φ generates
a frame multiresolution analysis and |Γ| = 0, then we can construct a tight
frame {Tkψ}k∈Z for W0 without assuming that {Tkφ}k∈Z itself is tight. We
again refer to the splitting T = ∪4

i=1Ti from the proof of Theorem 17.4.5.

Theorem 17.4.9 Assume that φ ∈ L2(R) generates a frame multiresolu-
tion analysis and that |Γ| = 0. Let K ∈ L∞(T) be a 1

2 -periodic function
which is bounded below, and define F ∈ L∞(T) by

F (γ) =

⎧
⎪⎨

⎪⎩

T1/2(H0Φ)(γ)E−1(γ)K(γ) if γ ∈ T2,
1√
Φ(γ)

if γ ∈ T3 and H0(γ) = 0,

0 otherwise.

(17.51)
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Then, with ψ ∈ V1 defined by ψ̂(2γ) = F (γ)φ̂(γ), the following hold:

(i) {Tkψ}k∈Z is a frame for W0 and {DjTkψ}j,k∈Z is a frame for L2(R).

(ii) Assume that K is chosen such that on T2 we have

|K|2
(
ΦT1/2Φ(T1/2(|H0|2Φ) + |H0|2Φ

)
= 1. (17.52)

Then {Tkψ}k∈Z is a tight frame for W0 and {DjTkψ}k∈Z is a tight frame
for L2(R); both have frame bounds equal to 1.

Proof. Compared to (17.43) we have only changed F on

T2 ∪ {γ ∈ T3 : H0(γ) = 0};

that is, to prove (i) it is enough to show that the three equations in Propo-
sition 17.4.3 can be solved on this set, with the new choice of F . We have
already on page 438 argued that the choice of F on T3 given in (17.51) is
allowed, because Φ is bounded above and below on T3. For use in (ii), we
note that with this choice,

Ψ(2γ) = |F (γ)|2Φ(γ) = 1 if γ ∈ T3 and H0(γ) = 0. (17.53)

Now we check that the equations (17.11), (17.12), and (17.13) can be sat-
isfied with the new choice of F on T2. Using that K is 1

2 -periodic, we see
that

H0FΦ+ T1/2(H0FΦ)

= H0T1/2(H0Φ)E−1KΦ+ T1/2

(
H0T1/2(H0Φ)E−1KΦ

)

= K
(
H0T1/2(H0Φ)E−1Φ−

(
T1/2H0

)
H0ΦE−1T1/2Φ

)

= 0.

Similarly, we can repeat the rest of the proof of Theorem 17.4.5; the fact
that |K| is bounded above and below will again imply that the determinant
of the set of equations determining G0 and G1 is nonzero and that the
obtained solutions are bounded (Exercise 17.2). This concludes the proof
of (i). To prove (ii), we first argue that one can actually choose K such
that (17.52) is satisfied. Letting A,B denote frame bounds for {Tkφ}k∈Z,
it follows from (17.36) that

A4

B
≤ ΦT1/2Φ

(
T1/2(|H0|2Φ) + |H0|2Φ

)
≤ B4

A
on T2.

Since the function ΦT1/2Φ(T1/2(|H0|2Φ) + |H0|2Φ) is 1
2 -periodic, we can

therefore choose a 1
2 -periodic function K such that (17.52) is satisfied,

and K is bounded below and above. The next step is to show that with the
choice (17.52), the function Ψ will only assume the values 0 and 1. The case
γ ∈ T1 is trivial, and the case γ ∈ T3, H(γ) = 0 is considered in (17.53).
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On T2, we get

Ψ(2·) = |F (·)|2Φ(·) + |F (·+ 1/2)|2Φ(·+ 1/2)

= |K|2
(
T1/2(|H0Φ|2) Φ + |H0Φ|2 T1/2Φ

)

= |K|2
(
ΦT1/2Φ(T1/2(|H0|2Φ) + |H0|2Φ

)
= 1.

In the rest of the cases, the function F is unchanged, so the proof of
Corollary 17.4.7 gives the rest. �

17.5 Frames with Two Generators

In light of the fact that we cannot always associate a wavelet frame
{DjTkψ}j,k∈Z to a frame multiresolution analysis, it is interesting to no-
tice that we can always construct a multiwavelet frame. We need a lemma
before we present the result in Theorem 17.5.2.

Lemma 17.5.1 Assume that φ ∈ L2(R) generates a frame multiresolu-
tion analysis. For j ∈ Z, let Sj : Vj → Vj denote the frame operator for
{DjTkφ}k∈Z and let Pj : L

2(R)→ Vj denote the orthogonal projection onto
Vj. Then:

(i) For any j, k ∈ Z, the following identities hold on Vj :

Sj = DjTkS0T−kD
−j and S−1

j = DjTkS
−1
0 T−kD

−j . (17.54)

(ii) For all j, k ∈ Z,

PjD
j+1T2k = DjTkP0D on V0.

Proof. Let us fix j ∈ Z. Then, for all k ∈ Z and f ∈ V0,

SjD
jTkf =

∑

k′∈Z

〈DjTkf,D
jTk′φ〉DjTk′φ = Dj

∑

k′∈Z

〈Tkf, Tk′φ〉Tk′φ

= Dj
∑

k′∈Z

〈f, Tk′−kφ〉Tk′φ = Dj
∑

k′∈Z

〈f, Tk′φ〉Tk′+kφ

= DjTkS0f.

Thus SjD
jTk = DjTkS0 on V0, and therefore Sj = DjTkS0T−kD

−j on Vj ;
the second equality in (17.54) follows from this. In order to prove (ii), we
apply Proposition 5.2.3 on f ∈ V0 and obtain that

PjD
j+1T2kf =

∑

k′∈Z

〈Dj+1T2kf, S
−1
j DjTk′φ〉DjTk′φ;
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via the commutator relation DT2k = TkD and a change of the summation
index, we continue with

PjD
j+1T2kf = Dj

∑

k′∈Z

〈DjTkDf,DjTk′S−1
0 φ〉Tk′φ

= Dj
∑

k′∈Z

〈Df, Tk′−kS
−1
0 φ〉Tk′φ

= DjTk

∑

k′∈Z

〈Df, Tk′S−1
0 φ〉Tk′φ

= DjTk

∑

k′∈Z

〈Df, S−1
0 Tk′φ〉Tk′φ

= DjTkP0Df.

�

Theorem 17.5.2 Assume that φ ∈ L2(R) generates a frame multires-
olution analysis, and let Qj denote the orthogonal projection onto Wj.
Then

{DjTkQ0Dφ}j,k∈Z ∪ {DjTkQ0DT1φ}j,k∈Z

is a multiwavelet frame for L2(R).

Proof. Let A,B denote frame bounds for {Tkφ}k∈Z, and Pj be the orthog-
onal projection onto Vj . For each j ∈ Z, we know that {Dj+1Tkφ}k∈Z is a
frame for Vj+1 with frame bounds A,B. Since Wj is a subspace of Vj+1, it
follows by Proposition 5.2.3 that {QjD

j+1Tkφ}k∈Z is a frame for Wj , also
with frame bounds A,B. Given f ∈ L2(R), we can write f =

∑
j∈Z

Qjf ,

and ||f ||2 =
∑

j∈Z
||Qjf ||2. Since Qjf ∈ Wj , we have

A ||Qjf ||2 ≤
∑

k∈Z

|〈Qjf,QjD
j+1Tkφ〉|2

=
∑

k∈Z

|〈f,QjD
j+1Tkφ〉|2

≤ B ||Qjf ||2.
Summing over j ∈ Z, we obtain that

A ||f ||2 ≤
∑

j,k∈Z

|〈f,QjD
j+1Tkφ〉|2 ≤ B ||f ||2,

which shows that {QjD
j+1Tkφ}j,k∈Z is a frame for L2(R). We now split this

family in two by considering translations with 2k, k ∈ Z and 2k + 1, k ∈ Z

separately. Observing that Qj = Pj+1 −Pj , Lemma 17.5.1 implies that for
any f ∈ V0,

QjD
j+1T2kf = (Pj+1 − Pj)D

j+1T2kf = Dj+1T2kf − PjD
j+1T2kf

= DjTk(Df − P0Df) = DjTkQ0Df ;
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in the last equality, we used that Df = P1Df because Df ∈ V1. Thus,
applying the result to f = φ and f = T1φ yields

{QjD
j+1Tkφ}j,k∈Z = {QjD

j+1T2kφ}j,k∈Z ∪ {QjD
j+1T2k+1φ}j,k∈Z

= {DjTkQ0Dφ}j,k∈Z ∪ {DjTkQ0DT1φ}j,k∈Z.

�

17.6 Some Limitations

There are some restrictions on which frames one can obtain via frame
multiresolution analysis. If {ψj,k}j,k∈Z is constructed via a frame multires-
olution analysis, the orthogonal decomposition (17.8) together with the fact
that {ψj,k}k∈Z for a given value of j ∈ Z is a frame for Wj implies that

ψj,k⊥ψj′,k′ whenever j �= j′, for all k, k′ ∈ Z.

For this reason, the frame {ψj,k}k∈Z is said to be semiorthogonal. Note
that in [534], Weiss et al. also proposed a multiresolution analysis scheme
which leads to a construction of wavelet frames; the obtained class con-
tains the tight frames in Theorem 17.4.9, but the frames {ψj,k}k∈Z are not
necessarily semiorthogonal. On the other hand, the freedom in the choice
of the function F in the proof of Theorem 17.4.5 also makes it possible to
construct non-tight frames via frame multiresolution analysis.
We have already mentioned that Proposition 9.3.8 restricts the class

of functions φ which can generate an overcomplete frame {Tkψ}k∈Z. We
also note that in the case of a classical multiresolution analysis, where
{Tkφ}k∈Z is assumed to be an orthonormal basis for V0, no frame at all
can be constructed. In fact, in this case we have Φ = 1 on R, and T = T2.
The proof of Proposition 17.4.3 shows that if F ∈ L∞(T) satisfies the

three key equations and we define ψ̂(2γ) = F (γ)φ̂(γ) as usual, then Ψ is
bounded above and below. That is, {Tkψ}k∈Z will be a Riesz sequence,
and {DjTkψ}j,k∈Z is a Riesz basis for L2(R). The conclusion is that no
overcomplete frame for W0 can be constructed this way, and we cannot use
the multiresolution analysis to obtain an overcomplete frame for L2(R). The
same happens if φ generates a frame multiresolution analysis and {Tkφ}k∈Z

is a Riesz sequence.

17.7 Exercises

17.1 Prove that the assumptions in Definition 17.1.3 are enough to make
{Vj , φ} a frame multiresolution analysis.

17.2 Provide the details in the proof of Theorem 17.4.9.



18
Wavelet Frames via Extension
Principles

Frame multiresolution analysis is just one way to construct wavelet frames
via multiscale techniques. We already mentioned in Section 17.3 that the
conditions can be weakened further, and the purpose of this chapter is to
show how one can still construct frames.
We will follow a fundamental idea by Ron and Shen, which (in its first

version) appeared in [561]. As discussed in Section 17.3, the idea is to
modify the classical multiresolution analysis setup in Definition 3.9.2 by
requiring φ to satisfy a scaling equation instead of {Tkφ}k∈Z being an
orthonormal sequence. The other conditions will be stated in the general
setup in the next section; they imply that the spaces Vj defined by

Vj = Djspan{Tkφ}k∈Z (18.1)

satisfy that

Vj ⊂ Vj+1 ∀j ∈ Z, and ∪jVj = L2(R). (18.2)

Thus, the multiscale idea is integrated in the setup, although it will
not appear explicitly in the constructions. The multiscale feature is very
important because of all its computational advances.
In contrast to frame multiresolution analysis, the purpose is no longer to

construct frames for the orthogonal complement of V1 in V0. In fact, we will
construct functions ψ1, . . . , ψn belonging to V1, such that the multiwavelet
system {DjTkψ�}j,k∈Z,�=1,...,n forms a tight frame for L2(R). In practice,
one usually wishes to have as few generators as possible, and we show how
to construct frames with two or three generators (and explain why one
generator does not suffice).

©
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After presenting the general setup in Section 18.1, we prove the original
unitary extension principle of Ron and Shen in Section 18.2; this is the
cornerstone for the constructions of tight wavelet frames. This is followed
by a discussion of more recent results, which facilitate the search for frames
with prescribed properties and also lead to frames with better approxima-
tion properties. Finally, a relatively small modification of the setup leads to
constructions of pairs of dual wavelet frames. This construction is actually
easier than its tight counterpart. Throughout the chapter the results will
be applied to construct multiwavelet frames with B-spline generators.

18.1 The General Setup

We now present the setup for the general multiresolution analysis of Ron
and Shen, which enables us to construct tight frames for L2(R) of the form

{ψ�;j,k}j,k∈Z,�=1,...,n = {DjTkψ1}j,k∈Z ∪ · · · ∪ {DjTkψn}j,k∈Z. (18.3)

As noted before, a frame of this type is called a multiwavelet frame. The
functions ψ1, . . . , ψn will be constructed on the basis of a function ψ0 sat-
isfying a scaling equation. Since we will work with all these functions
simultaneously, it is convenient to change our previous notation slightly
and denote the refinable function by ψ0 instead of φ. Except this, we keep
the notation from Chapters 16–17; note in particular that L2(T), L∞(T)
are introduced on page 418. We now list the standing assumptions and
conventions for this chapter.

General setup: Let ψ0 ∈ L2(R) and assume that

(i) There exists a function H0 ∈ L∞(T) (the refinement mask) such that

ψ̂0(2γ) = H0(γ)ψ̂0(γ), γ ∈ R. (18.4)

(ii) limγ→0 ψ̂0(γ) = 1.

Further, let H1, . . . , Hn ∈ L∞(T), and define ψ1, . . . , ψn ∈ L2(R) by

ψ̂�(2γ) = H�(γ)ψ̂0(γ), � = 1, . . . , n. (18.5)

The functions H1, . . . , Hn are called masks. Let H denote the (n+ 1)× 2
matrix-valued function defined by

H(γ) =

⎛

⎜
⎜
⎜
⎜
⎝

H0(γ) T1/2H0(γ)
H1(γ) T1/2H1(γ)
· ·
· ·

Hn(γ) T1/2Hn(γ)

⎞

⎟
⎟
⎟
⎟
⎠

, γ ∈ R. (18.6)
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We will frequently suppress the dependence on γ and simply speak about
the matrix H .

With this setup, our purpose is to find conditions on the functions
H1, . . . , Hn such that ψ1, . . . , ψn defined by (18.5) generate a multiwavelet
frame for L2(R). By Theorem 17.3.3, the spaces

Vj := span{DjTkψ0}k∈Z, j ∈ Z

automatically satisfy the conditions for a multiresolution analysis in Def-
inition 3.9.2, except (v). In Lemma 18.2.5, we prove that the general
setup implies that {Tkψ0}k∈Z is a Bessel sequence, so by Lemma 17.3.1,
ψ1, . . . , ψn ∈ V1. In the literature, frames constructed on the basis of the
general setup are frequently said to be MRA based.
Ron and Shen gave in [561] a complete characterization of the tight

frames which can be obtained via the general setup. It uses the periodization
of a function f : R→ C, which formally is defined as

Pf(γ) =
∑

n∈Z

f(γ + n).

If f ∈ L1(R), then

∫ 1
2

− 1
2

∑

n∈Z

|f(γ + n)|dγ =

∫ ∞

−∞
|f(γ)|dγ <∞,

so
∑

n∈Z
f(γ+n) is absolutely convergent for almost all γ ∈ R. That is, Pf

is a well-defined 1-periodic function, and the above argument shows that
Pf ∈ L1(T).

Theorem 18.1.1 Let {ψ�, H�}n�=0 be as in the general setup, and define
the function

Θ(γ) :=

∞∑

j=0

n∑

�=1

|H�(2
jγ)|2

j−1∏

m=0

|H0(2
mγ)|2

with the convention
∏−1

m=0 |H0(2
mγ)|2 = 1. Then the following are

equivalent:

(i) {DjTkψ�}j,k∈Z,�=1,...,n is a tight frame.

(ii) For almost all γ for which P(|ψ̂0|2)(γ) > 0, we have

lim
j→−∞

Θ(2jγ) = 1

and

H0(γ)H0(γ +
1

2
)Θ(2γ) +

n∑

�=1

H�(γ)H�(γ +
1

2
) = 0.
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We will not prove Theorem 18.1.1 but instead give direct proofs of the
unitary extension principle and its variants.

18.2 The Unitary Extension Principle

The purpose of this section is to prove the unitary extension principle of
Ron and Shen. It is based on the general setup in Section 18.1. We state
the main result in Theorem 18.2.6, but we need some preparation first. We
follow the approach by Benedetto and Treiber [57]. Recall that Ek is used
as notation for the modulation operator on L2(R), and also for the function
x �→ e2πikx.

Lemma 18.2.1 Let g, ψ0 ∈ L2(R) and assume that P(gψ̂0) ∈ L2(T). Then

P(gψ̂0) =
∑

k∈Z

〈g, ψ̂0Ek〉Ek (18.7)

and
∫ 1

2

− 1
2

|P(gψ̂0)(γ)|2dγ =
∑

k∈Z

|〈g, ψ̂0Ek〉|2. (18.8)

Proof. Since g, ψ0 ∈ L2(R), we know that gψ̂0 ∈ L1(R), so P(gψ̂0) is well
defined. Now,

〈g, ψ̂0Ek〉 =

∫ ∞

−∞
g(γ)ψ̂0(γ)e

−2πikγdγ

=

∫ 1
2

− 1
2

∑

n∈Z

(
ψ̂0(γ + n)g(γ + n)e−2πi(k+n)γ

)
dγ

=

∫ 1
2

− 1
2

(
∑

n∈Z

ψ̂0(γ + n)g(γ + n)

)

e−2πikγdγ,

which is the kth Fourier coefficient for the function
∑

n∈Z
ψ̂0(·+n)g(·+n).

Since this function belongs to L2(T) by assumption, the lemma fol-

lows: (18.7) is just the expansion of P(gψ̂0) in a Fourier series, and (18.8)
is Parseval’s equation. �

The first main result, proved in Theorem 18.2.6, will show that a con-
dition on the matrix H in (18.6) implies that the multiwavelet system
in (18.3) is a tight frame for L2(R). In the proof of this, it is enough to
show that the frame condition is satisfied on a dense subset of L2(R) (cf.
Lemma 5.1.9). Already in the following lemmas, we work with functions

f ∈ L2(R) for which f̂ is a continuous function with compact support,

f̂ ∈ Cc(R).
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Lemma 18.2.2 Let ψ0 ∈ L2(R) and assume that limγ→0 ψ̂0(γ) = 1. Let

f ∈ L2(R) be any function for which f̂ ∈ Cc(R) . Then, for any ε > 0,
there exists J ∈ Z such that

(1− ε)||f ||2 ≤
∑

k∈Z

|〈f,DjTkψ0〉|2 ≤ (1 + ε)||f ||2 for all j ≥ J.

Proof. Let j ∈ Z, f ∈ L2(R), and assume that f̂ ∈ Cc(R). As a product

of L2(R)-functions, (Dj f̂)ψ̂0 ∈ L1(R); thus, P((Dj f̂)ψ̂0) is well defined.

When we only consider γ ∈ T, P((Dj f̂)ψ̂0) can be bounded by a finite

linear combination of translates of ψ̂0, so P((Dj f̂)ψ̂0) ∈ L2(T). Via the
Fourier transform,

〈f,DjTkψ0〉 = 〈Ff,FDjTkψ0〉 = 〈Dj f̂ , E−kψ̂0〉; (18.9)

therefore, Lemma 18.2.1 shows that
∑

k∈Z

|〈f,DjTkψ0〉|2 =
∑

k∈Z

|〈Dj f̂ , E−kψ̂0〉|2

=

∫ 1
2

− 1
2

∣
∣
∣
∣

∑

n∈Z

(Dj f̂)(γ + n)ψ̂0(γ + n)

∣
∣
∣
∣

2

dγ.

Now let ε > 0 be given. By assumption, we can choose b ∈]0, 1/2[ such that

1− ε ≤ |ψ̂0(γ)|2 ≤ 1 + ε whenever |γ| ≤ b. By taking J ∈ Z such that Dj f̂
has support in [−b, b] for j > J , we obtain that for all j > J ,

∫ 1
2

− 1
2

∣
∣
∣
∣

∑

n∈Z

(Dj f̂)(γ + n)ψ̂0(γ + n)

∣
∣
∣
∣

2

dγ =

∫ b

−b

|(Dj f̂)(γ)ψ̂0(γ)|2dγ.

Therefore,

(1− ε)||Dj f̂ ||2 ≤
∑

k∈Z

|〈f,DjTkψ0〉|2 ≤ (1 + ε)||Dj f̂ ||2.

Since Dj and the Fourier transform are unitary operators, the lemma
follows. �

In the rest of this section we assume that {ψ�, H�}n�=0 is as in the general

setup. For a function f with f̂ ∈ Cc(R), an argument as in the proof of
Lemma 18.2.2 shows that

{〈f,DjTkψ�〉}k∈Z ∈ �2(Z) for all � = 1, . . . , n (18.10)

(Exercise 18.1). We can therefore define a family of functions Fj,� ∈ L2(T)
by the Fourier series

Fj,� :=
∑

k∈Z

〈f,DjTkψ�〉E−k, j ∈ Z, � = 0, 1, . . . , n. (18.11)
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Since Fj,� is defined in terms of ψ�, which is again defined via ψ0 and H�,
it is natural to search for an expression for Fj,� in terms of Fj,0 and H�.
For convenience, we work with Fj−1,�:

Lemma 18.2.3 Let {ψ�, H�}n�=0 be as in the general setup. Then, for all
j ∈ Z, � = 0, 1, . . . , n,

Fj−1,�(γ) = 2−1/2(H�Fj,0 + T1/2(H�Fj,0))(γ/2).

Proof. The commutator relations show that

〈f,Dj−1Tkψ�〉 = 〈D−jf,D−1Tkψ�〉 = 〈D−jf, T2kD
−1ψ�〉

= 〈FD−jf,FT2kD
−1ψ�〉 = 〈Dj f̂ , E−2kDψ̂�〉.

By (18.5), we can continue with

〈f,Dj−1Tkψ�〉 = 〈Dj f̂ , E−2k2
1/2H�ψ̂0〉

= 21/2
∫ ∞

−∞
(Dj f̂)H�ψ̂0E2k = 21/2

∫ 1
2

− 1
2

P((Dj f̂)H�ψ̂0)E2k

= 21/2
∫ 1

2

0

(
P((Dj f̂)H�ψ̂0)E2k + T1/2P((Dj f̂)H�ψ̂0) T1/2E2k

)

= 21/2
∫ 1

2

0

(
P((Dj f̂)H�ψ̂0) + T1/2P((Dj f̂)H�ψ̂0)

)
E2k.

This calculation shows that 〈f,Dj−1Tkψ�〉 is the −kth coefficient in the
Fourier expansion for the 1

2 -periodic function

P((Dj f̂)H�ψ̂0) + T1/2P((Dj f̂)H�ψ̂0)

with respect to the orthonormal basis {21/2E2k}k∈Z = {21/2e4πik(·)}k∈Z for
L2(0, 12 ). Using the definition of Fj−1,�, it follows that

Fj−1,�(γ) = 2−1/2
∑

k∈Z

〈f,Dj−1Tkψ�〉21/2E−2k(γ/2)

= 2−1/2
(
P((Dj f̂)H�ψ̂0) + T1/2P((Dj f̂)H�ψ̂0)

)
(γ/2). (18.12)

The function H� is 1-periodic, so

P((Dj f̂)H�ψ̂0) = H�P((Dj f̂)ψ̂0). (18.13)

Also, by the calculation in (18.9) we have 〈f,DjTkψ0〉 = 〈Dj f̂ , E−kψ̂0〉;
via Lemma 18.2.1 (check the assumptions),

Fj,0 =
∑

k∈Z

〈Dj f̂ , E−kψ̂0〉E−k = P((Dj f̂)ψ̂0). (18.14)

Inserting (18.13) and (18.14) in the expression (18.12) for Fj−1,� finally
gives the result. �
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In terms of the matrix H in (18.6), Lemma 18.2.3 shows that

⎛

⎜
⎜
⎜
⎜
⎝

Fj−1,0(γ)
Fj−1,1(γ)

·
·

Fj−1,n(γ)

⎞

⎟
⎟
⎟
⎟
⎠

= 2−1/2H(
γ

2
)

(
Fj,0(

γ
2 )

T1/2Fj,0(
γ
2 )

)

, γ ∈ R. (18.15)

In the rest of the chapter the 2 × 2 matrix H(γ)∗H(γ) will play the
central role; the key condition turns out to be that this matrix equals the
identity matrix I for a.e. γ ∈ T.

Lemma 18.2.4 Let {ψ�, H�}n�=0 be as in the general setup, and assume
that H(γ)∗H(γ) = I for a.e. γ ∈ T. Then, for all j ∈ Z and all f ∈ L2(R)

for which f̂ ∈ Cc(R),

∑

k∈Z

|〈f,DjTkψ0〉|2 =

n∑

�=0

∑

k∈Z

|〈f,Dj−1Tkψ�〉|2.

Proof. The definition of Fj−1,� and Parseval’s equation show that

n∑

�=0

∑

k∈Z

|〈f,Dj−1Tkψ�〉|2 =

n∑

�=0

∫ 1
2

− 1
2

|Fj−1,�|2. (18.16)

The assumption on the matrixH(γ) means that we can considerH(γ) as an
isometry from C

2 into C
n+1 for a.e. γ ∈ T. Using this together with (18.15),

it follows from (18.16) that

n∑

�=0

∑

k∈Z

|〈f,Dj−1Tkψ�〉|2 = 2−1

∫ 1
2

− 1
2

∣
∣
∣
∣

∣
∣
∣
∣H(

γ

2
)

(
Fj,0(γ/2)

T1/2Fj,0(γ/2)

) ∣
∣
∣
∣

∣
∣
∣
∣

2

Cn+1

dγ

= 2−1

∫ 1
2

− 1
2

∣
∣
∣
∣

∣
∣
∣
∣

(
Fj,0(γ/2)

T1/2Fj,0(γ/2)

)∣
∣
∣
∣

∣
∣
∣
∣

2

C2

dγ

= 2−1

∫ 1
2

− 1
2

(
|Fj,0(γ/2)|2 + |T1/2Fj,0(γ/2)|2

)
dγ

=

∫ 1
2

− 1
2

|Fj,0(γ)|2dγ =
∑

k∈Z

|〈f,DjTkψ0〉|2.

This completes the proof. �

The next result shows that the scaling function in the general setup
always generates a Bessel sequence.
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Lemma 18.2.5 Let {ψ�, H�}n�=0 be as in the general setup, and assume
that H(γ)∗H(γ) = I for a.e. γ ∈ T. Then the following hold:

(i) {Tkψ0}k∈Z is a Bessel sequence with bound 1, i.e.,

P(|ψ̂0|2) ≤ 1.

(ii) If f ∈ L2(R), then limj→−∞
∑

k∈Z
|〈f,DjTkψ0〉|2 = 0.

Proof. Consider a function f for which f̂ ∈ Cc(R). Lemma 18.2.4 shows
that for any j ∈ Z,

∑

k∈Z

|〈f,Dj−1Tkψ0〉|2 ≤
∑

k∈Z

|〈f,DjTkψ0〉|2. (18.17)

Let ε > 0 be given. Via Lemma 18.2.2, we can find j > 0 such that
∑

k∈Z

|〈f,DjTkψ0〉|2 ≤ (1 + ε)||f ||2.

Applying (18.17) j times shows that
∑

k∈Z

|〈f, Tkψ0〉|2 ≤
∑

k∈Z

|〈f,DjTkψ0〉|2 ≤ (1 + ε)||f ||2.

Since ε > 0 was arbitrary, it follows that
∑

k∈Z
|〈f, Tkψ0〉|2 ≤ ||f ||2. Because

this inequality holds on a dense subset of L2(R), it holds on L2(R) by
Lemma 3.2.6. Thus, {Tkψ0}k∈Z is a Bessel sequence, and the conclusion in
(i) follows by Theorem 9.2.5.
For the proof of (ii), let f ∈ L2(R). By (i) and the fact that Dj is unitary,

we know that {DjTkψ0}k∈Z is a Bessel sequence with bound 1 for all j ∈ Z.
Let I ⊂ R be any bounded interval; then

∑

k∈Z

|〈f,DjTkψ0〉|2 ≤ 2
∑

k∈Z

|〈fχI , D
jTkψ0〉|2

+2
∑

k∈Z

|〈f(1− χI), D
jTkψ0〉|2

≤ 2
∑

k∈Z

|〈fχI , D
jTkψ0〉|2 + 2 ||f(1− χI)||2.

By choosing I sufficiently large, we can make ||f(1−χI)||2 arbitrarily small.
Thus, it is enough to show that

∑

k∈Z

|〈fχI , D
jTkψ0〉|2 → 0 as j → −∞.

Now,

∑

k∈Z

|〈fχI , D
jTkψ0〉|2 = 2j

∑

k∈Z

∣
∣
∣
∣

∫

I

f(x)ψ0(2jx− k)dx

∣
∣
∣
∣

2

;
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Thus,

∑

k∈Z

|〈fχI , D
jTkψ0〉|2 ≤ ||f ||22j

∑

k∈Z

∫

I

|ψ0(2
jx− k)|2dx

= ||f ||2
∑

k∈Z

∫

2jI−k

|ψ0(x)|2dx.

An application of Lebesgue’s dominated convergence theorem yields that
the final expression goes to zero as j → −∞, which concludes the proof. �

We are now ready to formulate and prove the unitary extension principle.

Theorem 18.2.6 Let {ψ�, H�}n�=0 be as in the general setup, and as-
sume that H(γ)∗H(γ) = I for a.e. γ ∈ T. Then {DjTkψ�}j,k∈Z,�=1,...,n

constitutes a tight frame for L2(R) with frame bound A = 1.

Proof. Let ε > 0 be given, and consider a function f for which f̂ ∈ Cc(R).
By Lemma 18.2.2, we can choose J > 0 such that for all j > J ,

(1− ε)||f ||2 ≤
∑

k∈Z

|〈f,DjTkψ0〉|2 ≤ (1 + ε)||f ||2. (18.18)

For any j ∈ Z, Lemma 18.2.4 shows that

∑

k∈Z

|〈f,DjTkψ0〉|2 =

n∑

�=0

∑

k∈Z

|〈f,Dj−1Tkψ�〉|2

=
∑

k∈Z

|〈f,Dj−1Tkψ0〉|2 +
n∑

�=1

∑

k∈Z

|〈f,Dj−1Tkψ�〉|2;

repeating the argument on
∑

k∈Z
|〈f,Dj−1Tkψ0〉|2, it follows that for all

m < j,

∑

k∈Z

|〈f,DjTkψ0〉|2 =
∑

k∈Z

|〈f,DmTkψ0〉|2 +
n∑

�=1

j−1∑

p=m

∑

k∈Z

|〈f,DpTkψ�〉|2.

Via (18.18), it follows that for all j > J and m < j,

(1− ε)||f ||2 ≤
∑

k∈Z

|〈f,DmTkψ0〉|2 +
n∑

�=1

j−1∑

p=m

∑

k∈Z

|〈f,DpTkψ�〉|2

≤ (1 + ε)||f ||2.
By Lemma 18.2.5, limm→−∞

∑
k∈Z
|〈f,DmTkψ0〉|2 = 0. Therefore, letting

m→ −∞ above yields that for all j > J ,

(1 − ε)||f ||2 ≤
n∑

�=1

j−1∑

p=−∞

∑

k∈Z

|〈f,DpTkψ�〉|2 ≤ (1 + ε)||f ||2.
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Letting j →∞,

(1 − ε)||f ||2 ≤
n∑

�=1

∞∑

p=−∞

∑

k∈Z

|〈f,DpTkψ�〉|2 ≤ (1 + ε)||f ||2.

Since ε > 0 was arbitrary, we conclude that

n∑

�=1

∑

p∈Z

∑

k∈Z

|〈f,DpTkψ�〉|2 = ||f ||2

for all the considered f ; therefore, by Lemma 5.1.9, it holds for all f ∈
L2(R), which concludes the proof. �

As noted in [57] and [248], Theorem 18.2.6 holds slightly more general
than explained here: it is enough to assume that H(γ)∗H(γ) is the identity

whenever P(|ψ̂0|2)(γ) > 0.
The matrix H(γ)∗H(γ) has four entries, so at a first glance, it seems that

we have to solve four scalar equations in order to apply Theorem 18.2.6.
However, it turns out that it is enough to verify two sets of equations
(Exercise 18.4):

Corollary 18.2.7 Let {ψ�, H�}n�=0 be as in the general setup on page 446,
and assume that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

�=0

|H�(γ)|2 = 1,

n∑

�=0

H�(γ)T1/2H�(γ) = 0,

(18.19)

for a.e. γ ∈ T. Then the multiwavelet system {DjTkψ�}j,k∈Z,�=1,...,n

constitutes a tight frame for L2(R) with frame bound A = 1.

18.3 Applications to B-splines I

As an application of Theorem 18.2.6 we show how one can construct com-
pactly supported tight multiwavelet frames based on splines. Note that a
short survey on splines is in Section A.8. In contrast to the Battle–Lemarié
wavelets discussed on page 100, the generators will be finite linear combi-
nations of splines Bm(2x− k), k ∈ Z, and thus have compact support. The
price to pay is that we need multiple generators.

Example 18.3.1 For any m = 1, 2, . . . , we consider the B-spline

ψ0 := B2m
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of order 2m as defined in (A.15). By Corollary A.8.2,

ψ̂0(γ) =

(
sin(πγ)

πγ

)2m

.

It is clear that limγ→0 ψ̂0(γ) = 1, and by direct calculation,

ψ̂0(2γ) =

(
sin(2γ)

2πγ

)2m

=

(
2 sin(πγ) cos(πγ)

2πγ

)2m

= cos2m(πγ)ψ̂0(γ).

Thus, ψ0 satisfies a scaling equation with refinement mask

H0(γ) = cos2m(πγ). (18.20)

Now, let

(
2m
�

)

denote the binomial coefficient (2m)!
(2m−�)!�! and define the

functions H1, . . . , H2m ∈ L∞(T) by

H�(γ) =

√(
2m
�

)

sin�(πγ) cos2m−�(πγ), � = 1, . . . , 2m. (18.21)

Using that cos(π(γ − 1/2)) = sin(πγ) and sin(π(γ − 1/2)) = − cos(πγ), it
follows that the matrix H in (18.6) is given by

H(γ) =

⎛

⎜
⎜
⎜
⎜
⎝

H0(γ) T1/2H0(γ)
H1(γ) T1/2H1(γ)
· ·
· ·

H2m(γ) T1/2H2m(γ)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos2m(πγ) sin2m(πγ)√(
2m
1

)
sin(πγ) cos2m−1(πγ) −

√(
2m
1

)
cos(πγ) sin2m−1(πγ)√(

2m
2

)
sin2(πγ) cos2m−2(πγ)

√(
2m
2

)
cos2(πγ) sin2m−2(πγ)

· ·
· ·√(

2m
2m

)
sin2m(πγ)

√(
2m
2m

)
cos2m(πγ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Now consider the 2 × 2 matrix M := H(γ)∗H(γ). Using the binomial
formula

(x+ y)2m =

2m∑

�=0

(
2m
�

)

x�y2m−�, (18.22)

we see that the first entry in the first row of M is

M1,1 =

2m∑

�=0

(
2m
�

)

sin2�(πγ) cos2(2m−�)(πγ)

=
(
sin2(πγ) + cos2(πγ)

)2m
= 1.

A similar argument gives that M2,2 = 1. Also, using the binomial formula
with x = 1, y = −1,

M1,2

= sin2m(πγ) cos2m(πγ)

(

1−
(

2m
1

)

+

(
2m
2

)

− · · ·+
(

2m
2m

))

= sin2m(πγ) cos2m(πγ)(1 − 1)2m = 0.

Thus M is the identity on C
2 for all γ; by Theorem 18.2.6 this implies that

the 2m functions ψ1, . . . , ψ2m defined by

ψ̂�(γ) = H�(γ/2)ψ̂0(γ/2)

=

√(
2m
�

)
sin2m+�(πγ/2) cos2m−�(πγ/2)

(πγ/2)2m

generate a tight multiwavelet frame {DjTkψ�}j,k∈Z,�=1,...,2m for L2(R). �

We want to study the properties of the frame constructed in Exam-
ple 18.3.1, but for a reason that will become clear soon we first change the
definition slightly by multiplying each of the functions H� in (18.21) with
a complex number of absolute value 1. This modification will not change
the frame properties for the generated wavelet system.

Example 18.3.2 We continue Example 18.3.1, but now we define

H�(γ) = i�

√(
2m
�

)

sin�(πγ) cos2m−�(πγ), � = 1, . . . , 2m. (18.23)

H� only differs from the choice in (18.21) by a constant of absolute value
1, so the functions ψ1, . . . , ψ2m given by

ψ̂�(γ) = H�(γ/2)ψ̂0(γ/2)

= i�

√(
2m
�

)

sin�(πγ/2) cos2m−�(πγ/2)ψ̂0(γ/2) (18.24)
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also generate a tight multiwavelet frame. Instead of inserting the expression

for ψ̂0 in (18.24), we now rewrite H�(γ/2) using Euler’s formula:

H�(γ/2) = i�

√(
2m

�

)(
eπiγ/2 − e−πiγ/2

2i

)� (
eπiγ/2 + e−πiγ/2

2

)2m−�

= 2−2m

√(
2m

�

)(
eπiγ/2 − e−πiγ/2

)� (
eπiγ/2 + e−πiγ/2

)2m−�
.

(18.25)

Via the binomial formula, we see that H�(γ/2) is a finite linear combination
of terms

e−πimγ , e−πi(m−1)γ , . . . , eπi(m−1)γ , eπimγ .

All coefficients in the linear combination are real. Writing eπikγ = Ek/2(γ)
and using that

ψ̂�(γ) =
√
2H�(γ/2)D

−1ψ̂0(γ),

we see that ψ̂� is a finite linear combination with real coefficients of terms

E k
2
D−1ψ̂0 = FT− k

2
Dψ0 = FDTkψ0, k = −m, . . . ,m.

Thus, ψ� is a finite linear combination with real coefficients of the functions

DTkψ0, k = −m, . . . ,m. (18.26)

That is, ψ� is a real-valued spline. Since DTmψ0 has support in [0,m] and
DT−mψ0 has support in [−m, 0], the spline ψ� has support in [−m,m]. Our
arguments also show that the splines ψ� inherit other properties from ψ0:
they have degree 2m− 1, belong to C2m−2(R), and have knots at Z/2.
Let us be more concrete in the case m = 1. Here, we obtain two functions

ψ1 and ψ2. First, via the expression (18.25) for H1,

ψ̂1(γ) = H1(γ/2)ψ̂0(γ/2)

=

√
2

22
(eπiγ/2 − e−πiγ/2)(eπiγ/2 + e−πiγ/2)B̂2(γ/2)

=
1

2
(eπiγ − e−πiγ)D−1B̂2(γ)

=
1

2

(
E 1

2
D−1FB2(γ)− E−1

2
D−1FB2(γ)

)

=
1

2
F
(
T− 1

2
DB2 − T 1

2
DB2

)
(γ).

Thus,

ψ1(x) =
1

2

(
T− 1

2
DB2(x)− T 1

2
DB2(x)

)

=
1√
2
(B2(2x+ 1)−B2(2x− 1)). (18.27)
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See Figure 18.1. Similarly one proves (Exercise 18.2) that

ψ2(x) =
1

2
(B2(2x+ 1)− 2B2(2x) +B2(2x− 1)) , (18.28)

which is shown in Figure 18.2. �

We note that the computational effort in Example 18.3.1 and Example
18.3.2 increases with the order of the spline B2m. For example, (18.26)
shows that we need to calculate a larger number of coefficients in order
to find ψ� when m increases. The number of generators ψ1, . . . , ψ2m also
increases with the order of the spline B2m. In particular, if we want high
smoothness of the generators ψ�, we are forced to work with splines B2m of
high order and therefore a high number of generators. In contrast, for any
m ∈ N, the results in Section 18.5 will allow us to construct multiwavelets
with two generators which are finite linear combinations of the spline B2m.
That is, any prescribed regularity can be obtained without increasing the
number of generators.

Example 18.3.3 In continuation of Example 18.3.2, we can also construct
spline frames with support on [0, 2m]. We ask the reader to provide the
details in Exercise 18.3. Let ψ0 be the translated B-spline of order 2m
given by ψ0 = TmB̃2m. Then

ψ̂0(2γ) = H0(γ)ψ̂0(γ) (18.29)

with

H0(γ) =

(
1 + e−2πiγ

2

)2m

= e−2πimγ cos2m(πγ).

Since H0 appears from the corresponding function in (18.20) simply by
multiplication with e−2πimγ , the functions

H�(γ) = e−2πimγ

√(
2m
�

)

sin�(πγ) cos2m−�(πγ), � = 1, . . . , 2m

satisfy the condition on H in the unitary extension principle. We prefer to
multiply the functions with a complex number, i.e., to consider

H�(γ) = i�e−2πimγ

√(
2m
�

)

sin�(πγ) cos2m−�(πγ), � = 1, . . . , 2m;

with this choice, we conclude that the functions ψ1, . . . , ψ2m defined by

ψ̂�(γ) = H�(γ/2)ψ̂0(γ/2)

= i�e−2πimγ

√(
2m
�

)
sin2m+�(πγ/2) cos2m−�(πγ/2)

(πγ/2)2m
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Figure 18.1. The function ψ1 given by (18.27).
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Figure 18.2. The function ψ2 given by (18.28).

generate a tight multiwavelet frame for L2(R). Furthermore, the spline
functions ψ1, . . . , ψ2m now have support on [0, 2m]. We return to the case
m = 1 in Example 18.6.3. �

18.4 The Oblique Extension Principle

We now return to the theoretical development. In the entire section, we
keep the assumptions in the general setup in Section 18.1, and our purpose
is to prove a more flexible version of the unitary extension principle. Let
us first give some reasons why we want to do so.
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Often, it is desirable that a multiwavelet frame is generated by func-
tions {ψ�}n�=1 having a large number of vanishing moments. If {ψ�}n�=1 is
constructed via the general setup and the unitary extension principle, we

know that ψ̂�(γ) = H�(γ/2)ψ̂0(γ/2) and that ψ̂0(0) = 1; it follows from
here that the number of vanishing moments for ψ� is equal to the order of
zero at γ = 0 of H�. This actually puts a restriction on the number of van-
ishing moments one can obtain for generators constructed via the unitary
extension principle:

Example 18.4.1 We return to the B-spline B2m considered in
Example 18.3.1; it satisfies the scaling equation with refinement mask

H0(γ) = cos2m(πγ).

If we want to construct a frame via the unitary extension principle, the
condition H(γ)∗H(γ) = I in particular implies that

1 =

n∑

�=0

|H�(γ)|2,

i.e., that

n∑

�=1

|H�(γ)|2 = 1− cos2m(πγ). (18.30)

The order of the zero at γ = 0 for the function 1 − cos2m(πγ) is 2, so
also on the left-hand side of (18.30) we can only factor γ2 out; this implies
that at least one of the functions |H�|2 can at most have a zero at γ = 0
of order 2, and therefore at least one of the functions ψ� can at most have
one vanishing moment. �

Another restriction on constructions via the unitary extension principle
follows from Corollary 1.4.7: it shows that the assumption H(γ)∗H(γ) = I
implies that

|H0(γ)|2 + |H0(γ +
1

2
)|2 ≤ 1.

Due to these restrictions, certain frame constructions seem impossible
when working with a set of functions {ψi, Hi}ni=0 as in the general setup.
However, sometimes another choice of these functions could lead to a sur-
prising construction! Important reformulations of Theorem 18.2.6 were
obtained simultaneously by Daubechies, Han, Ron, and Shen in [248] and
Chui, He, and Stöckler in [209]. They give a more flexible recipe for con-
struction of frames than Theorem 18.2.6; we state the version form [248],
which is called the oblique extension principle:
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Theorem 18.4.2 Let {ψ�, H�}n�=0 be as in the general setup. Assume that
there exists a strictly positive function θ ∈ L∞(T) for which

lim
γ→0

θ(γ) = 1

and such that for a.e. γ ∈ T,

H0(γ)H0(γ + ν)θ(2γ) +

n∑

�=1

H�(γ)H�(γ + ν)

=

{
θ(γ) if ν = 0,
0 if ν = 1

2 .
(18.31)

Then the functions {DjTkψ�}j,k∈Z,�=1,...,n constitute a tight frame for
L2(R) with frame bound A = 1.

Proof. Assume that the conditions in Theorem 18.4.2 are satisfied, and

define the function ψ̃0 ∈ L2(R) by

̂̃
ψ0(γ) =

√
θ(γ)ψ̂0(γ). (18.32)

Define the 1-periodic functions H̃0, . . . , H̃n by

H̃0(γ) =

√
θ(2γ)

θ(γ)
H0(γ), H̃�(γ) =

√
1

θ(γ)
H�(γ), � = 1, . . . , n. (18.33)

The idea in the proof is to apply the unitary extension principle to

ψ̃0, H̃0, . . . , H̃n and thereby obtain a tight frame {DjTkψ̃�}j,k∈Z,�=1,...,n;

finally, it turns out that ψ̃� = ψ�, � = 1, . . . , n.

We now prove that ψ̃0, H̃0, . . . , H̃n satisfy the conditions in the general
setup. First,

̂̃
ψ0(2γ) =

√
θ(2γ)ψ̂0(2γ) =

√
θ(2γ)H0(γ)ψ̂0(γ)

=

√
θ(2γ)

θ(γ)
H0(γ)

̂̃
ψ0(γ) = H̃0(γ)

̂̃
ψ0(γ).

Also,

lim
γ→0

̂̃
ψ0(γ) = lim

γ→0

(√
θ(γ)ψ̂0(γ)

)
= 1.

Via the definition (18.33) and (18.31) with ν = 0,

n∑

�=0

|H̃�(γ)|2 =
θ(2γ)

θ(γ)
|H0(γ)|2 +

n∑

�=1

|H�(γ)|2
θ(γ)

= 1,
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so H̃0, . . . , H̃n ∈ L∞(T). Because θ(2(γ + 1
2 )) = θ(2γ), we also have

n∑

�=0

H̃�(γ)H̃�(γ +
1

2
) =

θ(2γ)
√
θ(γ)θ(γ + 1

2 )
H0(γ)H0(γ +

1

2
)

+
1

√
θ(γ)θ(γ + 1

2 )

n∑

�=1

H�(γ)H�(γ +
1

2
) = 0.

Defining the functions ψ̃1, . . . , ψ̃n by

̂̃
ψ�(2γ) = H̃�(γ)

̂̃
ψ0(γ), � = 1, . . . , n, (18.34)

it follows from Theorem 18.2.6 that the functions {DjTkψ̃�}j,k∈Z,�=1,...,n

constitute a tight frame for L2(R) with frame bound A = 1. The proof is
now completed by the observation that for � = 1, . . . , n,

ψ̂�(2γ) = H�(γ)ψ̂0(γ) =
√

θ(γ)H̃�(γ)
1

√
θ(γ)

̂̃
ψ0(γ) =

̂̃
ψ�(2γ),

which shows that ψ� = ψ̃�. �

By taking θ = 1 in Theorem 18.4.2, we obtain Theorem 18.2.6. From
the extra freedom in Theorem 18.4.2 concerning the choice of θ, one could
expect it to be a more general result than Theorem 18.2.6, but the proof
shows that the class of frames which can be constructed is the same for the
two theorems. However, in practice Theorem 18.4.2 gives more flexibility
because it naturally leads to some constructions one would not expect from
Theorem 18.2.6. Let us explain this in more detail.
First, it is clear that any construction via Theorem 18.2.6 can be per-

formed in exactly the same way via Theorem 18.4.2, simply by taking
θ = 1. On the other hand, suppose that ψ0 is a compactly supported func-
tion satisfying (18.4) for some function H0 ∈ L∞(T) and that the functions
θ,H�, � = 1, . . . , n are trigonometric polynomials satisfying the conditions
in Theorem 18.4.2. Writing H�(γ) =

∑
k∈Z

ck�e
2πikγ (a finite sum), the

definition of ψ� yields that

ψ̂�(2γ) = H�(γ)ψ̂0(γ) = F
∑

k∈Z

ck�T−kψ0(γ).

This shows that the frame {DjTkψ�}j,k∈Z,�=1,...,n is generated by functions
having compact support. Now, the proof of Theorem 18.4.2 shows that the

same frame can be constructed via Theorem 18.2.6: If we define ψ̃0 by

(18.32) and ψ̃� by (18.34) and (18.33), then ψ� = ψ̃� and the functions ψ̃�

will satisfy the conditions in the unitary extension principle. However, ψ̃0

is in general not compactly supported, so the fact that the resulting frame
{DjTkψ�}j,k∈Z,�=1,...,n is generated by compactly supported functions is
somewhat miraculous and could certainly not be predicted in advance. In
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short, this shows that there are constructions which appear naturally via
Theorem 18.4.2, but one would not even think about constructing them
via Theorem 18.2.6.
The flexibility of the oblique extension principle is demonstrated in [248],

where tight frames are obtained via some kind of interpolation between the
B-splines considered in Example 18.3.1 and the functions that were used by
Daubechies in her construction of orthonormal wavelet bases with compact
support. We refer to [248] for details and examples.

18.5 Fewer Generators

The computational effort increases with the number of generators in a
multiwavelet frame, so in general we wish to have as few generators as
possible. Ignoring the issue of “good properties,” the best would be to
construct a pair of functions ψ, ψ̃ such that the associated wavelet sys-
tems {DjTkψ}j,k∈Z, {DjTkψ̃}j,k∈Z form a pair of dual frames. However,
as proved by Chui, He, and Stöckler [209], there are several natural cases
where this is impossible:

Theorem 18.5.1 Assume that {ψ0, H0} are as in the general setup and
that {Tkψ0}k∈Z is a Riesz sequence. If |H0(− 1

4 )| �=
1√
2
, then there does not

exist a dual wavelet frame pair {DjTkψ}j,k∈Z, {DjTkψ̃}j,k∈Z for which ψ, ψ̃
are compactly supported and ψ ∈ V1 = span{DTkψ0}k∈Z.

Although there seems to be several assumptions in Theorem 18.5.1,
it excludes certain desirable constructions with B-splines. Consider, for
example, a B-spline Bm of order m > 1. By Lemma 3.7.5, we know
that {Bm(· − k)}k∈Z is a Riesz sequence, and Bm satisfies (by a cal-
culation as in Example 18.3.1) a scaling equation with refinement mask
H0(γ) = cosm(πγ). In particular, |H0(− 1

4 )| = 2−m/2. Thus, for m > 1,

there do not exist dual wavelet pairs {DjTkψ}j,k∈Z, {DjTkψ̃}j,k∈Z, for
which ψ is a finite linear combination of functionsDTkBm, k ∈ Z. However,
multiwavelet frames with generators made up by finite linear combinations
of DTkBm exist, as we already saw in Example 18.3.2; other constructions
will be given in Example 18.6.
In passing, we note that the case m = 1 actually has to be excluded in

the above discussion. In fact, the Haar function in (3.43) can be written in
terms of the B-spline B1 = χ[− 1

2 ,
1
2 ]
, namely, as

ψ =
1√
2

(
DT− 1

2
B1 −DT− 3

2
B1

)
=

1√
2
T− 1

4
(DB1 −DT−1B1) ;

since the Haar function generates an orthonormal basis for L2(R), also the
function 1√

2
(DB1 −DT−1B1) generates an orthonormal basis for L2(R).
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Now we return to the oblique extension principle and show how to con-
struct frames with two or three generators. We still follow the approach in
[248]. Other constructions of multiwavelet frames with few generators were
in fact previously given by Chui and He [207] and Petukhov [538]. They
proved in particular that the general setup together with the assumption

|H0(γ)|2 + |H0(γ +
1

2
)|2 ≤ 1

always makes it possible to construct a frame with two generators; if H0

is a polynomial of degree m, one can choose H1 and H2 as polynomials of
degree at most m. Petukhov describes all solutions to the matrix equation
H(γ)∗H(γ) = I for n = 2 in [539].
In order to apply the oblique extension principle, one needs to choose the

functions θ and H1, . . . , Hn simultaneously such that (18.31) is satisfied.
It is not clear how to do this in general, but we now prove that an extra
condition on the choice of θ will make it easy to construct frames.

Corollary 18.5.2 Let ψ0 and H0 be as in the general setup on page 446.
Let θ ∈ L∞(T) be a strictly positive function for which limγ→0 θ(γ) = 1,
chosen such that the function

η(γ) := θ(γ)− θ(2γ)

(

|H0(γ)|2 + |H0(γ +
1

2
)|2
)

(18.35)

is positive as well. Fix an integer n ≥ 2 and let {G�}n�=2 be trigonometric
polynomials for which

n∑

�=2

|G�(γ)|2 = 1, and

n∑

�=2

G�(γ)G�(γ +
1

2
) = 0. (18.36)

Let ρ, σ be 1-periodic functions such that

|ρ(γ)|2 = θ(γ), |σ(γ)|2 = η(γ), (18.37)

and define {H�}n�=1 by

H1(γ) = e2πiγρ(2γ)H0(γ +
1

2
), H�(γ) = G�(γ)σ(γ), � = 2, . . . , n.

Then the functions {ψ�}n�=1 given by (18.5) generate a tight frame
{DjTkψ�}j,k∈Z,�=1,...,n for L2(R), with frame bound A = 1.

Proof. We check that the functions θ and H� satisfy (18.31). First,

|H0(γ)|2θ(2γ) +
n∑

�=1

|H�(γ)|2

= |H0(γ)|2θ(2γ) + |H0(γ +
1

2
)|2|ρ(2γ)|2 + |σ(γ)|2

n∑

�=2

|G�(γ)|2

= |H0(γ)|2θ(2γ) + |H0(γ +
1

2
)|2θ(2γ) + η(γ) = θ(γ).
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Similarly,

H0(γ)H0(γ +
1

2
)θ(2γ) +

n∑

�=1

H�(γ)H�(γ +
1

2
)

= H0(γ)H0(γ +
1

2
)θ(2γ)

+ρ(2γ)ρ(2(γ +
1

2
))e2πiγe−2πi(γ+1/2)H0(γ)H0(γ +

1

2
)

+σ(γ)σ(γ +
1

2
)

n∑

�=2

G�(γ)G�(γ +
1

2
)

= H0(γ)H0(γ +
1

2
)θ(2γ)− θ(2γ)H0(γ)H0(γ +

1

2
) = 0.

This concludes the proof. �

A necessary condition for application of the oblique extension principle
is that

θ(γ)− |H0(γ)|2θ(2γ) =
n∑

�=1

|H�(γ)|2. (18.38)

In particular, the expression on the left-hand side of (18.38) has to be
positive; the condition (18.35) on η can naturally be considered as a
strengthening of this. In the next section, we provide examples where con-
dition (18.35) is satisfied; as soon as this is the case, Corollary 18.5.2 makes
it relatively easy to obtain frames with, for example, three generators. In
fact, (18.36) is satisfied with

G2(γ) =
1√
2
, G3(γ) =

1√
2
e2πiγ . (18.39)

Thus, in order to apply Corollary 18.5.2, the remaining work consists in
finding 1-periodic functions ρ, σ such that (18.37) is satisfied. This can be
done via spectral factorization (cf. Lemma 3.8.5).
The assumption (18.35) even implies that we can construct a frame

generated by two functions:

Corollary 18.5.3 Let ψ0 and H0 be as in the general setup on page 446.
Let θ ∈ L∞(T) be a strictly positive function for which limγ→0 θ(γ) = 1,
chosen such that the function η in (18.35) is positive as well. Define the
functions ρ, σ as in (18.37) and let

H1(γ) = e2πiγρ(2γ)H0(γ +
1

2
), H2(γ) = H0(γ)σ(2γ). (18.40)

Then the functions {ψ�}2�=1 given by (18.5) generate a tight frame
{DjTkψ�}j,k∈Z,�=1,2 for L2(R), with frame bound A = 1.
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The proof is similar to the proof of Corollary 18.5.2, except that one has
to replace the function θ in the oblique extension principle by θ − η.
Note that if θ and H0 are trigonometric polynomials, then η defined

in (18.35) is also a trigonometric polynomial. The assumption that θ and η
are positive implies by Lemma 3.8.5 that we can choose ρ, σ in (18.37) to
be trigonometric polynomials. In this case, the generators ψ� in the above
corollaries are finite linear combinations of functions DTkψ0.

18.6 Applications to B-splines II

The oblique extension principle turns out to be very useful in order to con-
struct multiwavelet frames based on B-splines. Even the extra assumptions
in Section 18.5 for reduction to two or three generators can be fulfilled:

Theorem 18.6.1 Let B2m denote the B-spline of order 2m with refine-
ment mask H0(γ) = cos2m(πγ). Then, for each positive integer M ≤ 2m,
there exists a trigonometric polynomial θ of the form

θ(γ) = 1 +

M−1∑

j=1

cj sin
2j(πγ), (18.41)

for which the following hold:

(i) cj ≥ 0 for all j = 1, . . . ,M − 1, i.e., θ(γ) > 0 for all γ ∈ R;

(ii) The function η in (18.35) is positive;

(iii) The generators in the tight wavelet frames constructed via the oblique
extension principle and its corollaries have M vanishing moments.

The coefficients cj , j = 1, . . . ,M−1 can be determined via the requirement
that
⎛

⎝1 +

∞∑

j=1

(2j − 1)!!

(2j)!! (2j + 1)
yj

⎞

⎠

4m

= 1 +

M−1∑

j=1

cjy
j +O(|y|M ) as y → 0.

(18.42)

Theorem 18.6.1 is proved in [248]. Thus, we can apply the results in
Section 18.5 to construct multiwavelet frames with two or more generators
based on any B-spline Bm. Let us for convenience consider Corollary 18.5.3;
the same considerations will be valid for the other results in Section 18.5.
If we choose the functions ρ, σ in (18.37) to be trigonometric polynomials,
then the functions H1, H2 in (18.40) are trigonometric polynomials, which
implies that the associated frame generators ψ1, ψ2 are finite linear combi-
nations of functions Bm(2x − k), k ∈ Z. By choosing m large enough, we
can thus obtain generators belonging to any prescribed smoothness class
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CN (R). In contrast with what we obtained for applications of the unitary
extension principle, the number of generators is not forced to grow with
the desired smoothness.

Example 18.6.2 Let us find the trigonometric polynomial associated with
the B-spline B2m, m ∈ N, and M = 2. Note that

⎛

⎝1 +

∞∑

j=1

(2j − 1)!!

(2j)!! (2j + 1)
yj

⎞

⎠

4m

=

(

1 +
1

6
y +

1

20
y2 + · · ·

)4m

= 1 +
2m

3
y + O(|y|2).

This proves that for M = 2, (18.42) is satisfied with c1 = 2m/3. Thus, the
desired trigonometric polynomial is

θ(γ) = 1+
2m

3
sin2(πγ) = 1+

2m

3

1− cos(2πγ)

2
=

3 +m

3
−m

3
cos(2πγ). �

We now give an example of frame constructions via Theorem 18.2.6 and
Theorem 18.4.2.

Example 18.6.3 We return to the translated B-spline in Example 18.3.3
with m = 1; that is, we consider ψ0 = T1B2 and the refinement mask

H0(γ) =
(1 + e−2πiγ)2

4
= e−2πiγ cos2(πγ).

We first revisit Example 18.3.3 and then give constructions via the oblique
extension principle and its corollaries.

(i) Define H1 and H2 by

H1(γ) = ie−2πiγ
√
2 sin(πγ) cos(πγ) =

1√
2
e−2πiγi sin(2πγ)

=

√
2

4
(1− e−4πiγ),

H2(γ) = −e−2πiγ sin2(πγ) =
(1 − e−2πiγ)2

4
. (18.43)

It follows from Example 18.3.3 that the functions ψ
(i)
1 := ψ1 and ψ2

defined via (18.5) generate a tight frame for L2(R); they are obtained
by translation by one of their counterparts in (18.27) and (18.28),
i.e.,

ψ
(i)
1 (x) =

1√
2
(B2(2x− 1)−B2(2x− 3)), (18.44)

ψ2(x) =
1

2
(B2(2x− 1)− 2B2(2x− 2) +B2(2x− 3)) . (18.45)

See Figures 18.3 and 18.4.
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(ii) An alternative construction can be obtained via the oblique extension
principle. Let

θ(γ) :=
4− cos(2πγ)

3
. (18.46)

In this example, we keep the choice of H2 in (18.43) and therefore the
function ψ2 in (18.45). Thus, if we want to use the oblique extension
principle, we have to chooseH1 such that the two conditions in (18.31)
are satisfied; that is, we require that

|H1(γ)|2 = θ(γ)− |H0(γ)|2θ(2γ)− |H2(γ)|2,

H1(γ)H1(γ +
1

2
) = −H0(γ)H0(γ +

1

2
)θ(2γ)−H2(γ)H2(γ +

1

2
).

Inserting θ,H0, and H1 leads to the equations

|H1(γ)|2 =
1

6
(cos(2πγ) + 2)2(cos(2πγ)− 1)2,

H1(γ)H1(γ +
1

2
) =

1

6
(cos(2πγ) + 2)(cos(2πγ)− 2)

×(cos(2πγ)− 1)(cos(2πγ) + 1).

These equations are satisfied if we let

H1(γ) =
1√
6
(cos(2πγ) + 2)(cos(2πγ)− 1)

=
1√
6
(cos2(2πγ) + cos(2πγ)− 2)

=
1

4
√
6
(e4πiγ + e−4πiγ + 2e2πiγ + 2e−2πiγ − 6).

Via the choice of ψ1 in the general setup,

ψ̂1(γ) = H1(γ/2)ψ̂0(γ/2)

=
1

4
√
6
(e2πiγ + e−2πiγ + 2eπiγ + 2e−πiγ − 6)(FT1B2)(γ/2)

=
1

4
√
3

(
E1 + E−1 + 2E1/2 + 2E−1/2 − 6

)
D−1(FT1B2)(γ)

=
1

4
√
3
F
(
T3/2 + T−1/2 + 2T1 + 2− 6T1/2

)
DB2(γ).

Thus,

ψ1(x) =
1

2
√
6
(B2(2x− 3) +B2(2x+ 1) + 2B2(2x− 2))

+
1

2
√
6
(2B2(2x)− 6B2(2x− 1)) .
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This function has support on [−1, 2]. Instead of taking this generator,
we take

ψ
(ii)
1 (x) := ψ1(x − 1) (18.47)

=
1

2
√
6
(B2(2x− 5) + 2B2(2x− 4)− 6B2(2x− 3))

+
1

2
√
6
(2B2(2x− 2) +B2(2x− 1)) ,

which generate the same wavelet system and has support on [0, 3]. The

function ψ
(ii)
1 is shown in Figure 18.5; by construction, the functions

ψ
(ii)
1 and ψ2 in (18.45) generate a tight frame.

(iii) Systematic constructions with two generators can be given via Corol-
lary 18.5.3. We again define θ by (18.46). Then, the function η
in (18.35) is

η(γ) = θ(γ)− θ(2γ)

(
|H0(γ)|2 + |H0(γ +

1

2
)|2

)

=
4− cos(2πγ)

3
− 4− cos(4πγ)

3

(
cos4(πγ) + cos4(π(γ + 1/2))

)
=

2

3
(8 cos4(πγ) + 1)(cos(πγ)− 1)2(cos(πγ) + 1)2.

Since η(γ) ≥ 0 for all γ, the conditions in Corollary 18.5.3 are satis-
fied. Thus, the remaining work consists in extracting a square root ρ
of the function θ and a square root σ of the function η.

Writing θ(γ) = − 1
3 (cos(2πγ) − 4), the general procedure for spectral

factorization shows that we can take

ρ(γ) =

(
1

2 · 3(4−
√
15)

)1/2

(e2πiγ − 4−
√
15).

Concerning the square root of η, we first find a square root of 8 cos4(γ)+1.
Note that

8y2 + 1 = 8(y4 +
1

8
) = 8(y2 − 81/2i)(y2 − 81/2i)

= 8(y − 81/4ei
π
4 )(y − 81/4ei

5π
4 )(y − 81/4ei

3π
4 )(y − 81/4ei

7π
4 ).

According to the general theory for spectral factorization, we let

z1 = 81/4ei
π
4 +

√
81/2ei

π
2 − 1 = 81/4ei

π
4 + 1 +

√
2i,

z2 = 81/4ei
3π
4 +

√

81/2ei
3π
2 − 1 = 81/4ei

3π
4 + 1−

√
2i.

As a square root of 8 cos4(γ) + 1, we can take
(

1

2|z1| |z2|
)1/2

(e−2iγ − 2e−iγRe(z1) + |z1|2)(e−2iγ − 2e−iγRe(z2) + |z2|2);
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Figure 18.3. The function ψ
(i)
1 given by (18.44).
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Figure 18.4. The function ψ2 given by (18.45).
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Figure 18.5. The function ψ
(ii)
1 given by (18.47).
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evaluating this function in πγ rather than γ and multiplying with the

function
√

2
3 (cos(πγ) − 1)(cos(πγ) + 1), we obtain a square root σ of η.

Inserting the expressions for ρ and η in Corollary 18.5.3, we again obtain
a tight multiwavelet frame with two generators; we will not perform these
calculations. The above computations are rather lengthy and cumbersome,
and other choices of θ could be made such that the spectral factorization
was easier. There is, however, a special reason for the choice of θ, which
will be apparent from Section 18.7. We present a related construction in
Example 18.9.1. �

18.7 Approximation Orders

In this section we give some more reasons for constructing frames
via the oblique extension principle. More information can be found in
[248]. We assume again that {H�, ψ�}n�=0 is as in the general setup and
that {DjTkψ�}j,k∈Z,�=1,...,n is a tight frame constructed via the oblique
extension principle. Based on the refinable function ψ0, we let

Vj = span{DjTkψ0}j,k∈Z.

The oblique extension principle and its corollaries give some freedom in
the construction of tight frames, due to the different choices of θ one can
start with. However, for practical purposes, the main point is which prop-
erties we can expect of the constructed frame, and it turns out that some
desirable properties will restrict the class of usable functions θ considerably.
Let Hs denote the Sobolev space defined in (A.5). We say that ψ0

provides approximation order s if for all f in the Sobolev space Hs(R),

dist(f, Vj) = O(2−js),

i.e., if there exists a constant C > 0 such that

dist(f, Vj) ≤ C2−js, ∀j ∈ Z.

For the tight frame {DjTkψ�}j,k∈Z,�=1,...,n, we know from the frame
decomposition (5.7) that for all f ∈ L2(R),

f =

n∑

�=1

∑

j,k∈Z

〈f,DjTkψ�〉DjTkψ�.

As an approximation of f , we can thus use

QJf :=

n∑

�=1

∑

j<J

∑

k∈Z

〈f,DjTkψ�〉DjTkψ�
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for a reasonably large value of J ∈ Z. We say that the frame
{DjTkψ�}j,k∈Z,�=1,...,n provides approximation order s if for all f ∈ Hs(R),

||f −QJf || = O(2−sJ ).

When speaking about “the approximation order,” it is in both cases
understood that we mean the largest possible order.
By Lemma 17.3.1, we know that ψ1, . . . , ψn ∈ V1, so QJf ∈ VJ for all

J ∈ Z; thus, the approximation order of the frame {DjTkψ�}j,k∈Z,�=1,...,n

cannot exceed the approximation order of the underlying refinable func-
tion ψ0. Note that in the case of a classical multiresolution analysis, where
a refinable function leads to the construction of an orthonormal basis
{DjTkψ}j,k∈Z for L2(R), the operator QJ is the orthogonal projection
onto Vj and the two types of approximation orders coincide; in general
they might be different.
Since every implementation has to be done with a finite collection of

vectors, the approximation order of {DjTkψ�}j,k∈Z,�=1,...,n is clearly im-
portant in applications: we want it to be as large as possible. Assume that
the refinable function ψ0 provides approximation order s and consider the
function

Θ(γ) =

∞∑

j=0

n∑

�=1

|H�(γ)|2
j−1∏

m=0

|H0(2
mγ)|2,

which appeared already in Theorem 18.1.1. One can prove that the approx-
imation order of {DjTkψ�}j,k∈Z,�=1,...,n is min(s, p), where p is the order of

zero of 1 − Θ|ψ̂0|2 at the origin. It is clear that the approximation order
of {DjTkψ�}j,k∈Z,�=1,...,n only can be maximal (i.e., reach the value s) for
some special functions Θ.
One can prove that for given functions H0, . . . Hn, the function Θ satisfies

Θ(γ) = |H0(γ)|2Θ(γ) +

n∑

�=1

|H�(γ)|2,

which is one of the two conditions in the oblique extension principle if we
take θ = Θ; thus, exactly this choice for θ is very natural.
Fortunately, in the important case where the general setup is based on

B-splines, there exists an appropriate choice of θ, which also leads to ful-
fillment of the other conditions in the oblique extension principle. In fact,
there exists a unique trigonometric polynomial θ of minimal order satisfying
the conditions; for the B-spline B2 of order 2, this is exactly the function

θ(γ) = 4−cos(γ)
3 we used in Example 18.6.3(ii).

The approximation order also comes in if we want the functions {ψ�}n�=1

to have a high number of vanishing moments. In fact, if the refinable func-
tion ψ0 provides approximation order s and all the functions {ψ�}n�=1 have
at least m′ vanishing moments, then {DjTkψ�}j,k∈Z,�=1,...,n has approxi-
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mation order min(s, 2m′). Thus, high approximation orders for ψ0 as well
as {DjTkψ�}j,k∈Z,�=1,...,n force a large number of vanishing moments.

18.8 Construction of Pairs of Dual Wavelet Frames

So far the constructions via the extension principles have concerned tight
frames. However, the technique is more far-reaching, and one can actually
extend the results and construct dual wavelet pairs. We cite a result from
[248], which was (in a slightly different form) also obtained by Chui, He,
and Stöckler [209]:

Theorem 18.8.1 Let {H�, ψ�}n�=0 and {H̃�, ψ̃�}n�=0 be two sets of func-
tions, satisfying the conditions in the general setup on page 446. Assume

further that {DjTkψ�}j,k∈Z,�=1,...,n and {DjTkψ̃�}j,k∈Z,�=1,...,n are Bessel
sequences and that for some C > 0 and ρ > 1

2 ,

|ψ̂0(γ)| ≤
C

(1 + |γ|)ρ , |̂̃ψ0(γ)| ≤
C

(1 + |γ|)ρ , a.e. γ ∈ R. (18.48)

Assume that there exists a function θ ∈ L∞(T) such that limγ→0 θ(γ) = 1
and

H0(γ)H̃0(γ + ν)θ(2γ) +

n∑

�=1

H�(γ)H̃�(γ + ν)

=

{
θ(γ) if ν = 0,
0 if ν = 1

2 .
(18.49)

Then {DjTkψ�}j,k∈Z,�=1,...,n and {DjTkψ̃�}j,k∈Z,�=1,...,n are a pair of dual
wavelet frames for L2(R).

Theorem 18.8.1 is a remarkable result. Assuming for the moment that

we can construct the functions ψ� and ψ̃� explicitly, it yields very satisfying
answer to two fundamental problems for wavelet frames:

• Given a general wavelet frame, the canonical dual frame does not
need to have wavelet structure. On the other hand, the assumptions
in Theorem 18.8.1 automatically lead to a pair of dual frames, both
having wavelet structure.

• For a general wavelet frame, application of the frame decomposition is
complicated due to the necessary inversion of the frame operator. On
the other hand, the assumptions in Theorem 18.8.1 lead to dual pairs
of frames, and therefore an alternative to the frame decomposition.
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The decay condition (18.48) is stronger than necessary, but on the other
hand weak enough to be satisfied for almost all interesting constructions.
To find a pair of dual frames via Theorem 18.8.1 is easier than to construct
tight frames via the oblique extension principle: the main reason is that
the function θ is not required to be positive.
We now return to the remaining question of explicit construction of the

functions ψ� and ψ̃�. If the functions ψ0 and ψ̃0 are known explicitly and
the masks H� and H̃� are trigonometric polynomials, then Theorem 18.8.1

yields explicitly given functions ψ� and ψ̃�.
Similar to what we saw for the oblique extension principle, we can use

Theorem 18.8.1 to construct explicitly given dual pairs of frames with
multiple generators. In the rest of this section, we will use the following:

Setup for construction of pairs of dual wavelet frames:

Let {ψ0, H0}, {H̃0, ψ̃0} be as in the general setup on page 446. Assume fur-

ther that {Tkψ0}k∈Z and {Tkψ̃0}k∈Z are Bessel sequences and that (18.48) is
satisfied. Let θ ∈ L∞(T) be a real-valued function for which limγ→0 θ(γ) =
1, and assume that the function

η(γ) := θ(γ)− θ(2γ)

(

H0(γ)H̃0(γ) +H0(γ +
1

2
)H̃0(γ +

1

2
)

)

(18.50)

is real-valued and has a zero of order at least 2 at the origin. Choose
real-valued functions η1, η2 ∈ L∞(T) such that

η(γ) = 2η1(γ)η2(γ), and η1(0) = η2(0) = 0, (18.51)

and choose two 1
2 -periodic and real-valued functions θ1, θ2 such that

θ(2γ) = θ1(γ)θ2(γ). (18.52)

�

Let us comment on these assumptions and choices. First, the choice of 1
2 -

periodic functions in (18.52) is possible because γ �→ θ(2γ) has period 1
2 . In

the construction of tight multiwavelet frames in, e.g., Corollary 18.5.2, we
had to perform a spectral factorization of the functions θ and η. The choices
of the functions η1, η2, θ1, θ2 in (18.51) and (18.52) will replace the spectral
factorization: in fact, we now prove how one can construct a multiwavelet
frame based on these functions. We note that in general it is much easier
to find functions satisfying (18.51) and (18.52) than to perform a spectral
factorization.
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Corollary 18.8.2 Assume the setup on page 474 and define {H�}3�=1 and

{H̃�}3�=1 by

H1(γ) = e2πiγθ1(γ)H̃0(γ +
1

2
), H̃1(γ) = e2πiγθ2(γ)H0(γ +

1

2
),

H2(γ) = η1(γ), H̃2(γ) = η2(γ),

H3(γ) = e2πiγη1(γ), H̃3(γ) = e2πiγη2(γ).

Define the associated functions {ψ�}3�=1 and {ψ̃�}3�=1 as in the general

setup on page 446. Then {DjTkψ�}j,k∈Z,�=1,2,3 and {DjTkψ̃�}j,k∈Z,�=1,2,3

constitute a pair of dual wavelet frames for L2(R).

Proof. For ν = 0,

H0(γ)H̃0(γ)θ(2γ) +

3∑

�=1

H�(γ)H̃�(γ)

= H0(γ)H̃0(γ)θ(2γ) + θ1(γ)θ2(γ)H̃0(γ +
1

2
)H0(γ +

1

2
) + 2η1(γ)η2(γ)

= H0(γ)H̃0(γ)θ(2γ) + θ(2γ)H̃0(γ +
1

2
)H0(γ +

1

2
)

+θ(γ)− θ(2γ)

(

H0(γ)H̃0(γ) +H0(γ +
1

2
)H̃0(γ +

1

2
)

)

= θ(γ).

Similarly, for ν = 1
2 ,

H0(γ)H̃0(γ +
1

2
)θ(2γ) +

3∑

�=1

H�(γ)H̃�(γ +
1

2
)

= H0(γ)H̃0(γ +
1

2
)θ(2γ)

+e2πiγθ1(γ)H̃0(γ +
1

2
)e2πi(γ+1/2)θ2(γ +

1

2
)H0(γ)

+η1(γ)η2(γ +
1

2
) + e2πiγe2πi(γ+1/2)η1(γ)η2(γ +

1

2
)

= 0.

�

As for the oblique extension principle, the number of generators can be
reduced to two:
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Corollary 18.8.3 Assume the setup on page 474 and let

H1(γ) = e2πiγθ1(γ)H̃0(γ +
1

2
), H̃1(γ) = e2πiγθ2(γ)H0(γ +

1

2
),

H2(γ) = η1(2γ)H0(γ), H̃2(γ) = η2(2γ)H̃0(γ).

Then {DjTkψ�}j,k∈Z,�=1,2 and {DjTkψ̃�}j,k∈Z,�=1,2 constitute a pair of dual
wavelet frames for L2(R).

We have assumed the factorizations of θ(2·) and η to be real-valued.

This is not strictly necessary. However, if θ,H0 and H̃0 are trigonometric
polynomials and η1, η2 and θ1, θ2 are real-valued trigonometric polynomi-

als, then the frame generators {ψ�}3�=1 and {ψ̃�}3�=1 are symmetric if the

refinable functions ψ0 and ψ̃0 are symmetric real-valued functions. Thus,
the above process will lead to symmetric dual wavelet pairs when applied
to even order B-splines.
Corollary 18.8.3 is related to a result by Daubechies and Han: they proved

in [246] that based on any two refinable functions with compact support,
one can construct a pair of dual wavelet frames having generators with
compact support.

18.9 Applications to B-splines III

We now return to Example 18.6.3(iii), where construction of a tight frame
turned out to be cumbersome.

Example 18.9.1 We give an example of a frame construction with two
generators. We will base the choices of H1, H2, and H̃1, H̃2 on the same
refinable function, namely, a translated B-spline of order 2. That is, we

take ψ0 = ψ̃0 = T1B2; the associated refinement mask is

H0(γ) =
(1 + e−2πiγ)2

4
= e−2πiγ cos2(πγ).

We again take

θ(γ) =
4− cos(2πγ)

3
;

as proved in Example 18.6.3, this leads to

η(γ) =
2

3
(8 cos4(πγ) + 1)(cos(πγ)− 1)2(cos(πγ) + 1)2. (18.53)

If we want to apply Corollary 18.8.3, we need to find functions η1, η2, θ1, θ2
satisfying (18.51) and (18.52). This is easy: the expression (18.53)
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immediately gives several choices for η1, η2, for example,

η1(γ) =
1

3
(8 cos4(πγ) + 1)(cos(πγ)− 1)(cos(πγ) + 1)2,

η2(γ) = (cos(πγ)− 1).

Concerning θ1, θ2 we simply take

θ1(γ) = 1, θ2(γ) = θ(2γ) =
4− cos(4πγ)

3
.

The functions in Corollary 18.8.3 are now as follows:

H1(γ) = e2πiγθ1(γ)H̃0(γ +
1

2
) = e2πiγ

(1− e2πiγ)2

4
,

H̃1(γ) = e2πiγθ2(γ)H0(γ +
1

2
)

= e2πiγ
(
4

3
− e4πiγ + e−4πiγ

6

)
(1 − e2πiγ)2

4
,

H2(γ) = η1(2γ)H0(γ)

=
1

3

(

8

(
e2πiγ + e−2πiγ

2

)4

+ 1

)(
e2πiγ + e−2πiγ

2
− 1

)

×
(
e2πiγ + e−2πiγ

2
+ 1

)2
(1 + e−2πiγ)2

4
,

H̃2(γ) = η2(2γ)H̃0(γ)

=

(
e2πiγ + e−2πiγ

2
− 1

)
(1 + e−2πiγ)2

4
.

Define the functions {ψ�}2�=1 and {ψ̃�}2�=1 associated with H� and

H̃� as in the general setup on page 446. Then {DjTkψ�}j,k∈Z,�=1,2 and

{DjTkψ̃�}j,k∈Z,�=1,2 constitute a pair of dual wavelet frames. �

18.10 The MRA Literature and Applications

The development of MRA-based wavelets and the unitary extension
principle has generated a huge number of explicit constructions and gen-
eralizations of the setup. For the case of the unitary extension principle,
it is fair to say that the focus has been on obtaining a small number of
generators, combined with attractive properties like symmetry and small
support. Just to mention a few of such papers, see, e.g., the papers [539] by
Petukhov, [440] by Jiang, and the papers [366, 367, 369] by Han and Mo.
For example, in the paper [367], B-splines were used as scaling functions,
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while a more general approach, valid for real-valued, compactly supported,
and symmetric scaling functions, was provided in [369].
Concerning more general approaches, Chui, He, and Stöckler have intro-

duced and analyzed what they call nonstationary wavelet frames in a series
of papers [210, 211]. The construction of such frames is based on a scale of
spaces Vj , j ∈ Z as in the classical MRA setup, but without requiring that
there is a scaling relation between the spaces; also, the spaces Vj are not
necessarily defined in terms of translates of fixed function. The theory is
applicable on bounded as well as unbounded intervals.
In this chapter, we have focused on MRA constructions in the one-

dimensional case. For a discussion (and solution) of some of the problems
that appear in the higher-dimensional case, we refer to, e.g., the papers
[146, 147].
The wavelet frames constructed via the UEP and its variants have

been applied to several problems in image analysis, e.g., in the papers
by Cai, Osher, Shen, and their coauthors [105, 106]. The paper [105] gives
a frame-based approach to image restoration that covers image denoising,
deblurring, inpainting, and cartoon–texture image decomposition. In the
paper [106] the authors provide a link between the spline-based wavelet
frames and the variational methods that are traditionally used in image
restoration. In fact, the authors show that the classical variational method
can be viewed as a frame method.

18.11 Exercises

18.1 Prove (18.10) under the stated assumptions.

18.2 Derive the expression (18.28) for the function ψ2.

18.3 Prove (18.29) and provide the missing details in Example 18.3.3.

18.4 Prove Corollary 18.2.7.

18.5 Prove Corollary 18.5.3.

18.6 Prove the reduction to two generators stated after Corollary 18.8.2.

18.7 Derive the expressions in (18.44) and (18.45).

18.8 Calculate the coefficients cj in Theorem 18.6.1 for m = 4, M = 2.



19
Selected Topics on Wavelet Frames

Continuing the style from the chapters on Gabor frames, we will now
present a few selected topics concerning wavelet frames. The sections deal
with issues that appear in several places in the wavelet literature, and they
can be read independently of each other. We begin in Section 19.1 with
a discussion of irregular wavelet frames. Section 19.2 states a few results
about oversampling of wavelet frames. We analyze the relationship between
two wavelet systems with the same scaling parameter, but different trans-
lation parameters. In particular, we consider the case where one translation
parameter is an integer multiple of the other; surprisingly, it turns out to
play an important role whether this integer is even or odd. Section 19.3 re-
turns to the extension problem considered for general frames in Section 6.4
and for Gabor frame in Section 12.7; while these sections contain complete
and satisfying answers, the corresponding wavelet question is open and
challenging. Section 19.4 gives a short description of wavelet theory from
the signal processing perspective.

©
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Applied and Numerical Harmonic Analysis,
DOI 10.1007/978-3-319-25613-9 19

479Springer International Publishing Switzerland 2016



480 19 Selected Topics on Wavelet Frames

19.1 Irregular Wavelet Frames

In Section 15.2 we exclusively considered translations with integer-multiples
of the parameter b and dilations by aj , j ∈ Z. A more general and
considerably more complicated question is:

Which conditions on a discrete sequence {(λj , μj)}j∈I in R
+ × R and a

function ψ ∈ L2(R) imply that

{λ1/2
j ψ(λjx− μj)}j∈I is a frame for L2(R)?

A frame of this type is called an irregular wavelet frame. Only few re-
sults about irregular wavelet frames are known and, e.g., the proof of
Theorem 15.2.3 does not extend to general sequences {(λj , μj)}j∈I . But
if we assume that the translates are still along the set bZ, the essence of
Theorem 15.2.3 carries over. There are a few points where extra caution is
needed, especially because {λj}j∈Z is usually different from {λ−1

j }j∈Z; in

the proof of Theorem 15.2.3, we were frequently switching between {aj}j∈Z

and {a−j}j∈Z. Also, the function γ �→
∑

j∈Z
|ψ̂(γ/λj)|2 is in general not

periodic, so in order to find its supremum or infimum, we have to in-
vestigate all γ ∈ R. We encourage the reader to check that the proof of
Theorem 15.2.3 works in the irregular case with these modifications taken
into account (Exercise 19.1). A direct proof is in [171]; the result can also
be obtained as a consequence of the theory for generalized shift-invariant
systems; see Theorem 20.3.1.

Theorem 19.1.1 Let {λj}j∈Z be a sequence of positive real numbers, b > 0
and ψ ∈ L2(R). Suppose that

A :=
1

b
inf
γ∈R

(∑

j∈Z

|ψ̂( γ
λj

)|2 −
∑

k �=0

∑

j∈Z

|ψ̂( γ
λj

)ψ̂(
γ

λj
+

k

b
)|
)

> 0,

and

B :=
1

b
sup
γ∈R

∑

j,k∈Z

|ψ̂( γ
λj

)ψ̂(
γ

λj
+

k

b
)| <∞.

Then {λ1/2
j ψ(λjx− kb)}j,k∈Z is a frame with frame bounds A and B.

One can check that parts of Chui and Shi’s proof of Proposition 15.2.2 work

for irregular wavelet frames of the type {λ1/2
j ψ(λjγ − kb)}j,k∈Z:

Lemma 19.1.2 Let ψ ∈ L2(R). If {λj}j∈Z is a sequence in R
+ and

{λ1/2
j ψ(λjγ − kb)}j,k∈Z is a frame with upper bound B for some b > 0,

then

1

b

∑

j∈Z

|ψ̂( γ
λj

)|2 ≤ B, a.e. γ ∈ R.
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Lemma 19.1.2 puts restrictions on the sequences {λj}j∈Z for which

{λ1/2
j ψ(λjγ − kb)}j,k∈Z can be a frame. Let us be more specific about this

point. Following [194], we say that a sequence {λj}j∈Z of positive numbers
is logarithmically separated by λ > 1 if

| log λj − log λk| ≥ log λ, ∀k �= j.

If {λj}j∈Z is ordered increasingly, this is equivalent to
λj+1

λj
≥ λ, ∀j ∈ Z.

Proposition 19.1.3 Let ψ ∈ �L1(R)∩L2(R) and assume that the sequence

{λj}j∈Z in R
+ is chosen such that {λ1/2

j ψ(λjγ − kb)}j,k∈Z is a frame

for L2(R). Then {λj}j∈Z is a finite union of logarithmically separated sets.

Proof. The assumption ψ ∈ L1(R) implies that ψ̂ is continuous. Let
sj :=

1
λj
. Using Lemma 19.1.2, it follows that for each finite set J ∈ Z,

1

b

∑

j∈J

|ψ̂(γsj)|2 ≤ B (19.1)

for all γ ∈ R. Now, take γ0 ∈ R such that ψ̂(γ0) �= 0; we can assume that

γ0 > 0. Let c := |ψ̂(γ0)|2 and choose δ > 0 such that for all γ ∈ I0 :=
[γ0, γ0 + δ[,

|ψ̂(γ)|2 ≥ c

2
.

By taking γ = 1 in (19.1), we see that the number N of elements from
{sj}j∈Z belonging to the interval I0 satisfies N c

2b ≤ B, i.e., N ≤ 2B
c b. Now

let σ := γ0+δ
γ0

and define the intervals

Ik := [γ0σ
k, γ0σ

k+1[.

Clearly {Ik}∞k=−∞ is a disjoint covering of R+ (R+ = ∪∞
k=−∞Ik), and for

given k ∈ Z, the interval Ik contains at most N points from {sj}j∈Z.
Now observe that each point in I0 is logarithmically separated from points
in the intervals I±2, I±4, . . . . Similarly, a point from I1 is logarithmically
separated with points from the intervals I−1, I±3, I±5, . . . . Thus {sj}j∈Z

can be split into at most 2N logarithmically separated subsequences, from
which the result follows. �

Proposition 19.1.3 excludes the frame property for many types of se-
quences {λj}j∈Z. If, for example, λj = jα for some α > 0 and for j larger

than a certain J > 0, then {λ1/2
j ψ(λjγ− kb)}j,k∈Z cannot even be a Bessel

sequence if ψ satisfies the very weak condition in Proposition 19.1.3.
Sun and Zhou proved in [604] the following useful results concerning

wavelet frames where both the dilation and the translation are allowed to
be irregular:
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Theorem 19.1.4 Let ψ ∈ L2(R) be a real-valued function for which all
the functions

x �→ xψ(x), x �→ ψ′(x), x �→ ψ′′(x)

are in L2(R). Assume that ψ̂(0) = 0. Then there exist constants a > 1, b > 0
such that

{

s
−1/2
j,k ψ

(
x− μj,k

sj,k

)}

j,k∈Z

is a frame for L2(R) for all sequences {(sj,k, μj,k)}j,k∈Z for which

(sj,k, μj,k) ∈ [aj , aj+1]× [ajbk, ajb(k + 1)], j, k ∈ Z. (19.2)

Theorem 19.1.4 can naturally be considered as a perturbation result; in

fact, the conditions imply that {a−j/2ψ(x−ajbk
aj )}j,k∈Z is a frame, and the

condition (19.2) is “strong enough to guarantee that {s−1/2
j,k ψ(

x−μj,k

sj,k
)}j,k∈Z

is so close to {a−j/2ψ(x−ajbk
aj )}j,k∈Z that it is itself a frame.” We leave

this as a rather intuitive statement, but we return to general perturbation
theoretic methods in Chapter 22. For the full proof of Theorem 19.1.4 we
refer to [604].

19.2 Oversampling of Wavelet Frames

If {aj/2ψ(ajx − kb)}j,k∈Z is a frame for L2(R), the general frame theory
tells us that the wavelet system contains enough elements to represent
arbitrary functions in L2(R) as infinite linear combinations of the frame
elements. It is clear from the definition of a frame that a wavelet sys-
tem Ψ containing a frame {aj/2ψ(ajx − kb)}j,k∈Z is itself a frame if and
only if Ψ is a Bessel sequence. An example of a wavelet system containing
{aj/2ψ(ajx− kb)}j,k∈Z is

{aj/2ψ(ajx− kb/n)}j,k∈Z, (19.3)

where n ∈ N. We say that the wavelet system in (19.3) is obtained via
oversampling of {aj/2ψ(ajx− kb)}j,k∈Z.
Chui and Shi investigated the frame properties of an oversampled wavelet

system in [212]:

Proposition 19.2.1 Assume that {aj/2ψ(ajx − kb)}j,k∈Z is a wavelet
frame and that ψ satisfies the conditions in Proposition 15.2.8. Then the
wavelet system in (19.3) is a wavelet frame for any n ∈ N.

Oversampling will in general change the frame bounds, and for a
tight wavelet frame it might happen that the oversampled frame is
no longer tight. A positive result was obtained in [212], where the



19.3 An Open Extension Problem 483

given conditions imply that {aj/2ψ(ajx − kb/n)}j,k∈Z is a tight frame if
{aj/2ψ(ajx− kb)}j,k∈Z is tight:

Theorem 19.2.2 Let a ≥ 2 be a positive integer and b > 0. Suppose that
{aj/2ψ(ajx − kb)}j,k∈Z is a frame for L2(R) with bounds A,B. Then, for
any positive integer n which is relatively prime to a, the family in (19.3) is
a frame for L2(R) with bounds nA, nB.

In the special case a = 2, we see that tightness is preserved if n is odd.
There exist examples, showing that tightness might not be preserved if n
is even (cf. [215]).
If the wavelet frame {aj/2ψ(ajx − kb)}j,k∈Z has a dual wavelet frame

{aj/2ψ̃(ajx− kb)}j,k∈Z and n is a positive integer which is relatively prime
to a, then the oversampled system (19.3) also has a dual with the wavelet

structure, namely, { 1
na

j/2ψ̃(ajx−kb/n)}j,k∈Z. We refer to [212] for a proof.
We note that an alternative approach to oversampling was given by Ron

and Shen in [562]. More recent results, especially concerning the case where
the parameter a is allowed to be a rational number rather than just a
positive integer, can be found in the papers [84, 83] by Bownik and Lemvig.

19.3 An Open Extension Problem

Extension problems have played a central role in our analysis of wavelet
systems. So far, the results have been dealing with the unitary extension
principle and its variants and are thus based on the assumption of an
underlying refinable function. In this section we will take a more general
viewpoint and consider extension problems that are not based on such
an assumption. From this point of view the current section is a natural
continuation of the sections about the extension problem for sequences in
general Hilbert spaces (Section 6.4) and for Gabor systems (Section 12.7).
In the general setting of a separable Hilbert space H, the extension prob-

lem concerns the question of how to extend a Bessel sequence {fk}∞k=1 in
H to a (tight) frame {fk}∞k=1 ∪ {pj}j∈J for H; or how to extend a pair of
Bessel sequences in H to a pair of dual frames for H. In Theorem 6.2.1
and Theorem 6.4.1, we have seen that such extensions always exist. These
results can of course be applied to wavelet systems in L2(R) : in other
words, if {DjTkψ1}j,k∈Z is a Bessel sequence in L2(R), there exists a se-
quence {pj}j∈J in L2(R) such that {DjTkψ1}j,k∈Z∪{pj}j∈J is a tight frame
for L2(R). But this general result might not be the appropriate answer to
the question! In fact, if a certain application asks for the wavelet structure
of the sequence {DjTkψ1}j,k∈Z, it is probably essential that {pj}j∈J has
wavelet structure as well.
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Based on this discussion, we will now formulate two key questions:

(i) Given a Bessel sequence {DjTkψ1}j,k∈Z in L2(R), does there exist a
wavelet system {DjTkψ2}j,k∈Z such that

{DjTkψ1}j,k∈Z ∪ {DjTkψ2}j,k∈Z

is a tight frame for L2(R)?

(ii) Given Bessel sequences {DjTkψ1}j,k∈Z and {DjTkψ̃1}j,k∈Z in L2(R),

do there exist wavelet systems {DjTkψ2}j,k∈Z and {DjTkψ̃2}j,k∈Z

such that

{DjTkψ1}j,k∈Z ∪ {DjTkψ2}j,k∈Z and {DjTkψ̃1}j,k∈Z ∪ {DjTkψ̃2}j,k∈Z

form dual frames for L2(R)?

In the case of Gabor systems, we have seen in Section 12.7 that the
answers to the analogue questions are affirmative (if ab ≤ 1). Unfortunately,
it turns out that the extension problem for wavelet systems is considerably
more involved than for Gabor systems. In order to explain this, consider the
proof of Theorem 6.4.1 and assume that the Bessel sequences {fk}∞k=1 and
{gk}∞k=1 have wavelet structure, i.e., they have the form {DjTkψ1}j,k∈Z and

{DjTkψ̃1}j,k∈Z for some ψ1, ψ̃1 ∈ L2(R). Denote the synthesis operators by
T and U, respectively. Then, letting {aj}j∈J and {bj}j∈J be a pair of dual
frames for L2(R), the proof of Theorem 6.4.1 shows that

{DjTkψ1}j,k∈Z ∪ {(I − TU∗)aj}j∈J and {DjTkψ̃1}j,k∈Z ∪ {bj}j∈J

form a pair of dual frames for L2(R).
We can of course choose {aj}j∈J and {bj}j∈J to have wavelet structure;

in this case, the remaining issue is whether the sequence {(I−TU∗)aj}j∈J

has wavelet structure. Unfortunately, as we have seen in Example 16.1.1,
the operator TU∗ in general does not commute with DjTk; thus, the system
{(I − TU∗)aj}j∈J will in general not be a wavelet system.
The conclusion of the above discussion is that the technique that worked

very well in the Gabor case does not work in the wavelet case. In fact, the
questions (i) and (ii) stated above are not answered in the literature.
The following partial result was obtained in [180]. It gives an affirmative

answer to the question (ii) under the assumption that the Fourier trans-

form of ψ̃1 has support within the interval [−1, 1]; furthermore, a slightly
stronger condition implies that if also the Fourier transform of the function
ψ1 is compactly supported, then the extension can be performed with two

functions ψ2 and ψ̃2 enjoying the same property.
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Theorem 19.3.1 Let {DjTkψ1}j,k∈Z and {DjTkψ̃1}j,k∈Z be Bessel se-

quences in L2(R). Assume that the Fourier transform of ψ̃1 satisfies that

supp
̂̃
ψ1 ⊆ [−1, 1]. (19.4)

Then there exist functions ψ2, ψ̃2 ∈ L2(R) such that

{DjTkψ1}j,k∈Z ∪ {DjTkψ2}j,k∈Z and {DjTkψ̃1}j,k∈Z ∪ {DjTkψ̃2}j,k∈Z

form dual frames for L2(R). If ψ̂1 is compactly supported and

supp
̂̃
ψ1 ⊆ [−1, 1] \ [−ε, ε] (19.5)

for some ε > 0, the functions ψ2 and ψ̃2 can be chosen to have compactly
supported Fourier transforms as well.

The open questions in (i) and (ii) on page 484 are strongly connected to
the following conjecture by Han [362]:

Conjecture by Deguang Han: Let {DjTkψ1}j,k∈Z be a wavelet frame
with upper frame bound B. Then there exists D > B such that for each
K ≥ D, there exists ψ2 ∈ L2(R) such that {DjTkψ1}j,k∈Z∪{DjTkψ2}j,k∈Z

is a tight frame for L2(R) with bound K.

The paper [362] contains an example showing that (again in contrast with
the Gabor setting) it might not be possible to extend the Bessel system
{DjTkψ1}j,k∈Z to a tight frame without enlarging the upper bound; hence
it is essential that the conjecture includes the option that the extended
wavelet system has a strictly larger frame bound K than the upper frame
bound B for {DjTkψ1}j,k∈Z. We also note that Han’s conjecture is based

on an example, where supp ψ̂1 ⊆ [−1, 1], i.e., a case that is covered by
Theorem 19.3.1.
Observe that a pair of wavelet Bessel sequences always can be extended

to dual wavelet frame pairs by adding two pairs of wavelet systems. In fact,
we can always add one pair of wavelet systems that cancels the action of
the given wavelet system; and another one that yields a dual pair of wavelet
frames by itself. Thus, the issue is really whether it is enough to add one
pair of wavelet systems, as stated in the formulation of (ii) on page 484.

19.4 The Signal Processing Perspective

In Section 18.2, we gave a functional analytic presentation of the unitary
extension principle. We will now look at this result once more and formulate
it in signal processing terms.
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We will first reformulate the equations in Corollary 18.2.7 in terms of the
Z-transform. Formally, the Z-transform of a sequences {hk}k∈Z is defined
as the infinite series (depending on a variable z ∈ C)

H̃(z) :=
∑

k∈Z

hkz
−k.

We will not worry too much about the exact domain of z ∈ Z for which the
Z-transform of a given sequence {hk}k∈Z converges. The reason is that we
mainly are interested in finite sequences {hk}k∈Z, for which the Z-transform
is defined for all z �= 0. Besides such finite sequences, we will only consider
the Z-transform of sequences {hk}k∈Z, which are Fourier coefficients; for
such sequences, the Z-transform converges for a.e. z ∈ C with |z| = 1, and
this turns out to be sufficient for our purpose. In engineering language, the
sequence {hk}k∈Z is often called a filter.
Consider the 1-periodic functions H�, � = 0, . . . , n, in the general setup

on page 446. We can write these functions in terms of their Fourier series,
with Fourier coefficients hk,�, k ∈ Z:

H�(γ) =
∑

k∈Z

hk,�e
2πikγ .

Note that in terms of the Z-transform, this means that

H�(γ) =
∑

k∈Z

hk,�

(
e−2πiγ

)−k
= H̃�(e

−2πiγ).

We can now formulate the main condition in the unitary extension
principle in terms of the Z-transform:

Theorem 19.4.1 Assume that the functions H�, � = 0, . . . , n, have real
Fourier coefficients hk,�, k ∈ Z. Then the conditions (18.19) hold if and
only if the equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

�=0

H̃�(z)H̃�(z
−1) = 1,

n∑

�=0

H̃�(z)H̃�(−z−1) = 0

(19.6)

hold for a.e. z ∈ C for which |z| = 1.

Proof. Let us rewrite the terms appearing in (18.19):

T1/2H�(γ) = H̃�(e
−2πi(γ−1/2)) = H̃�(−e−2πiγ),

and, because the coefficients hk,� are assumed to be real,

H�(γ) =
∑

k∈Z

hk,�e
−2πikγ = H̃�(e

2πiγ).
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Thus (18.19) is equivalent to the conditions
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

�=0

H̃�(e
−2πiγ)H̃�(e

2πiγ) = 1,

n∑

�=0

H̃�(e
2πiγ)H̃�(−e−2πiγ) = 0.

Putting z = e2πiγ now leads to the result. �

Very often, conditions involving filters are formulated in terms of the
so-called polyphase decomposition of the Z-transform. In order to introduce
that, note that we can decompose a sequence {hk}k∈Z into “even” and
“odd” parts:

(. . . , h−2, h−1, h0, h1, h2, . . . ) = (. . . , h−2, 0, h0, 0, h2, . . . )

+ (. . . , 0, h−1, 0, h1, 0, . . . ).

By linearity, this decomposition implies that the Z-transformation of
{hk}k∈Z can be written as

H̃(z) =
[
· · ·+ h−2z

2 + h0 + h2z
−2 + · · ·

]

+
[
· · ·+ h−1z + h1z

−1 + h3z
−3 + · · ·

]

=
[
· · ·+ h−2z

2 + h0 + h2z
−2 + · · ·

]

+z−1
[
· · ·+ h−1z

2 + h1 + h3z
−2 + · · ·

]

=
∑

k∈Z

h2kz
−2k + z−1

∑

k∈Z

h2k+1z
−2k. (19.7)

The polyphase components of H̃(z) are now defined as the two functions

H̃0(z) :=
∑

k∈Z

h2kz
−k, H̃1(z) =

∑

k∈Z

h2k+1z
−k;

thus, via (19.7), the Z-transformation has the polyphase decomposition

H̃(z) = H̃0(z
2) + z−1H̃1(z

2).

Consider now a given sequence of 1-periodic functions H�, � = 0, . . . , n, or,
equivalently, a sequence of filters {hk,�}k∈Z, � = 0, . . . n. Associated with

the filter {hk,�}k∈Z, we denote the polyphase components of H̃� by H̃�,0

and H̃�,1. Define the (n+ 1)× 2 matrix of polyphase components Hp by

Hp(z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

H̃0,0(z) H̃0,1(z)

H̃1,0(z) H̃1,1(z)
· ·
· ·

H̃n,0(z) H̃n,1(z)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (19.8)
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We will now formulate Theorem 19.4.1 in terms of the matrix Hp(z) and
its transpose HT

p (z).

Theorem 19.4.2 Assume that the functions H�, � = 0, . . . , n have real
Fourier coefficients hk,�, k ∈ Z. Then the condition (19.6) is satisfied if
and only if

HT
p (z

−1)Hp(z) =
1

2
I (19.9)

for almost all z ∈ C with |z| = 1.

Proof. Note that H̃�,k(z
−1) = H̃�,k(z) for � = 0, . . . , n, k = 0, 1; this

implies that HT
p (z

−1) = HT
p (z). In terms of the entries of the matrixHp(z),

the condition (19.9) means that for almost all z ∈ C with |z| = 1,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

�=0

∣
∣
∣H̃�,0(z)

∣
∣
∣
2

=
1

2
,

n∑

�=0

∣
∣
∣H̃�,1(z)

∣
∣
∣
2

=
1

2
,

n∑

�=0

H̃�,0(z
−1)H̃�,1(z) = 0,

n∑

�=0

H̃�,1(z
−1)H̃�,0(z) = 0.

(19.10)

On the other hand, the two terms in (19.6) can be rewritten using the
polyphase decomposition. First,

n∑

�=0

H̃�(z)H̃�(z
−1)

=

n∑

�=0

(
H̃�,0(z

2)) + z−1H̃�,1(z
2)
)(

H̃�,0(z
−2) + zH̃�,1(z

−2)
)
,

i.e,

n∑

�=0

H̃�(z)H̃�(z
−1) =

n∑

�=0

∣
∣
∣H̃�,0(z

2)
∣
∣
∣
2

+

n∑

�=0

∣
∣
∣H̃�,1(z

2)
∣
∣
∣
2

(19.11)

+z

n∑

�=0

H̃�,0(z
2)H̃�,1(z

−2) + z−1
n∑

�=0

H̃�,0(z
−2)H̃�,1(z

2).
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For the second term in (19.6),

n∑

�=0

H̃�(z)H̃�(−z−1) (19.12)

=
n∑

�=0

(
H̃�,0(z

2) + z−1H̃�,1(z
2)
)(

H̃�,0(z
−2)− zH̃�,1(z

−2)
)

=

n∑

�=0

∣
∣
∣H̃�,0(z

2)
∣
∣
∣
2

−
n∑

�=0

∣
∣
∣H̃�,1(z

2)
∣
∣
∣
2

−z
n∑

�=0

H̃�,0(z
2)H̃�,1(z

−2) + z−1
n∑

�=0

H̃�,0(z
−2)H̃�,1(z

2).

From here, it follows that if (19.10) is satisfied, then the conditions in (19.6)
are satisfied as well.
Now assume that (19.6) holds. Adding and subtracting, respectively,

the two equations in (19.6) and using the expressions derived in (19.11)
and (19.12) lead to the equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2
n∑

�=0

∣
∣
∣H̃�,0(z

2)
∣
∣
∣
2

+ 2z−1
n∑

�=0

H̃�,0(z
−2)H̃�,1(z

2) = 1,

2

n∑

�=0

∣
∣
∣H̃�,1(z

2)
∣
∣
∣
2

+ 2z

n∑

�=0

H̃�,0(z
2)H̃�,1(z

−2) = 1.

(19.13)

The terms z−1
∑n

�=0 H̃�,0(z
−2)H̃�,1(z

2) and z
∑n

�=0 H̃�,0(z
2)H̃�,1(z

−2) are
the complex conjugated of each other, but by (19.13), they are also real;
thus,

z−1
n∑

�=0

H̃�,0(z
−2)H̃�,1(z

2) = z
n∑

�=0

H̃�,0(z
2)H̃�,1(z

−2) ∈ R. (19.14)

Finally, applying the first equation in (19.6) with z replaced by −z leads to

1 =

n∑

�=0

H̃�(−z)H̃�(−z−1)

=

n∑

�=0

(
H̃�,0(z

2)− z−1H̃�,1(z
2)
)(

H̃�,0(z
−2)− zH̃�,1(z

−2)
)

=

n∑

�=0

∣
∣
∣H̃�,0(z

2)
∣
∣
∣
2

+

n∑

�=0

∣
∣
∣H̃�,1(z

2)
∣
∣
∣
2

−z
n∑

�=0

H̃�,0(z
2)H̃�,1(z

−2)− z−1
n∑

�=0

H̃�,0(z
−2)H̃�,1(z

2).
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Again by addition and subtraction with the equation in (19.12), this
leads to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2

n∑

�=0

∣
∣
∣H̃�,0(z

2)
∣
∣
∣
2

− 2z

n∑

�=0

H̃�,0(z
2)H̃�,1(z

−2)) = 1,

2

n∑

�=0

∣
∣
∣H̃�,1(z

2)
∣
∣
∣
2

− 2z−1
n∑

�=0

H̃�,0(z
−2)H̃�,1(z

2) = 1.

(19.15)

Combining (19.15) with (19.13) and (19.14) finally leads to (19.10). �

It turns out that the condition (19.9) in Theorem 19.4.2 is well known
in the context of filter banks. In the rest of this section, we discuss this
connection.
Intuitively, a filter bank is some kind of “black box,” which performs

operations on an incoming signal (i.e., a sequence of numbers). Typically, a
filter bank splits the incoming signal into certain subsignals, which contain
particular information about the signal. For this reason, filter banks of
that type are called analysis filter banks. After processing the subsequences
coming out of the analysis filter bank, engineers usually wish to get back to
the original input sequence. Therefore, it is essential that an analysis filter
bank is followed by another filter bank, which reconstructs the original
signal from the subsignals; such a filter bank is called a synthesis filter
bank. In that case, the entire system consisting of the two filter banks is
said to have the perfect reconstruction property.
The filter banks considered here will contain three operations on the

incoming sequence {xk}k∈Z:

• Convolution with a sequence {hk}k∈Z: The outcome is a new
sequence, whose kth coordinate is given by

∑
n∈Z

hnxk−n.

• Downsampling: The outcome is the sequence

↓ {xk}k∈Z := (· · ·x−2, x0, x2, · · · }.

Thus, downsampling removes each second element in the sequence.

• Upsampling: The outcome is the sequence

↑ {xk}k∈Z := (· · ·x−1, 0, x0, 0, x1, · · · }.

Thus, upsampling inserts zeroes between the elements in the
sequence.

Note that downsampling is the left-inverse of upsampling but not the right-
inverse.
We will now describe a particular filter bank. The analysis filter bank will

split the incoming signal {xk}k∈Z into n+1 subsignals: each of these signals
is obtained by convolving {xk}k∈Z with a sequence hk,�, � = 0, . . . , n,
followed by a downsampling. The synthesis filter bank first upsamples each
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xn yn

hk(n) gk(n)

hk(1) gk(1)

hk(0) gk(0)2

2 2

2 2

2

+

Figure 19.1. A filter bank consisting of an analysis filter bank composed with a
synthesis filter bank.

of the incoming n + 1 subsignals, then convolves the resulting sequences
with sequences {gk,�}k∈Z, � = 0, . . . , n, and finally adds the outcoming
n+1 signals; see Figure 19.1. We will assume that the sequences {hk,�}k∈Z

and {gk,�}k∈Z, � = 0, . . . , n are related by

gk,� = h−k,�, k ∈ Z, � = 0, . . . , n.

For the above system consisting of the analysis filter bank followed by the
synthesis filter bank, the perfect reconstruction property can be formulated
in terms of the polyphase components associated with the filters {hk,�}k∈Z:

Theorem 19.4.3 For the considered filter bank, the perfect reconstruction
property is equivalent to the condition

HT
p (z

−1)Hp(z) = I for z ∈ C with |z| = 1. (19.16)

A proof of Theorem 19.4.3 can be found in [93]. Note that the conditions
in (19.16) and (19.9) are really “identical”: if one of these conditions is
satisfied, the other will be satisfied if the filter sequences {hk,�}k∈Z are
either multiplied or divided by

√
2. In other words, if the condition (19.9)

(and the general setup for the unitary extension principle) is satisfied, then
the functions

ψ� =
√
2
∑

k∈Z

hk,�DT−kψ0, � = 1, . . . , n,

generate a tight frame with frame bound 1; if (19.16) is satisfied, the
functions

ψ� =
∑

k∈Z

hk,�DT−kψ0, � = 1, . . . , n,

generate a tight frame with frame bound 1.
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Thus, the conditions in Theorem 19.4.2 for construction of a tight wavelet
frame are equivalent to the perfect reconstruction property for the above
filter bank.

19.5 Exercises

19.1 Prove Theorem 19.1.1.

19.2 Consider the B-spline B2.

(i) Use the results in Example 18.3.1 and Example 18.6.3 to calculate

the Z-transforms H̃�, � = 0, 1, 2, and verify that the conditions in
Theorem 19.4.1 are satisfied.

(ii) Calculate the polyphase components for the Z-transforms H̃�, � =
0, 1, 2, and verify that the matrix HT

p (z) satisfies the conditions in
Theorem 19.4.2.



20
Generalized Shift-Invariant Systems
in L2(Rd)

We have already seen that a Gabor system {EmbTnag}m,n∈Z in L2(R) is
a special case of a shift-invariant system. In contrast, a wavelet system
is not a shift-invariant system. Indeed, looking for example at a dyadic
wavelet system {DjTkψ}j,k∈Z, we can use the commutator relations for
the operators D and Tk to rewrite the system as

{DjTkψ}j,k∈Z = {Tk2−jDjψ}j,k∈Z;

thus, the system is in fact a collection of shifts of the functions Djψ, j ∈ Z,
but the translation parameters depend on j ∈ Z. Therefore the system does
not fall into the framework of shift-invariant systems in Section 10.
On the other hand, some of the results we have derived for Gabor systems

and wavelet systems are very similar, with similar proofs. This is most
evident from the sufficient conditions for such systems to form frames,
derived in Theorem 11.4.2 and Theorem 15.2.3: except for the fact that the
Gabor result is derived in the time domain and the wavelet result in the
frequency domain, the results are clearly parallel.
This makes it natural to look for a general theory that covers these

key results (and others) simultaneously for Gabor systems and wavelet
systems. The way to do this is already apparent from the above description:
we will consider systems of functions, generated by translates of a collection
of “window functions,” with translation parameters that depend on the
window function.
The pioneers in the study of such systems were Hernandez, Labate, and

Weiss [398] and Ron and Shen [564]. We will follow the approach in [398],
but we will adopt the name generalized shift-invariant system coined by

©
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493Springer International Publishing Switzerland 2016
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Ron and Shen. Note also the paper [5] by Aldroubi, Cabrelli, and Molter,
which also provides a common framework for the analysis of Gabor systems
and wavelet systems.
We will be more general than in the previous chapters and describe the

theory in L2(Rd). This implies that the relevant operators (translation,
modulation, and scaling) will be defined in terms of vectors and matrices,
but except for a slightly more involved notation, the proofs are similar
to the one-dimensional case. Besides the convenience of having the result
stated explicitly in L2(Rd), this generalization can also be considered as
an intermediate step to the analysis in Chapter 21, where we consider
generalized shift-invariant systems on locally compact abelian groups.
We begin in Section 20.1 with a short discussion of analysis in R

d, with
focus on Fourier analysis and the operators that are necessary in order
to define Gabor systems and wavelet systems. In Section 20.2 we consider
systems generated by just one function; these systems are actually just
shift-invariant systems like in Chapter 9 but now considered in L2(Rd).
The analysis of the generalized shift-invariant systems is split in two sec-
tions. First, we derive sufficient conditions for the Bessel property and the
frame property in Section 20.3, and then, based on the results for one gen-
erator, we prove the results concerning dual pairs of frames in Section 20.4.
In Section 20.5 we then return to the Gabor systems and state the corre-
sponding special cases of the results in L2(Rd); the same is done for wavelet
systems in Section 20.6. The section also gives a short description of a very
general class of systems that contain as well the Gabor structure as the
wavelet structure, the so-called wave packet systems.

20.1 Analysis in R
d and Notation

Parallel to our development of frame theory in L2(R), we begin our analysis
in L2(Rd) with a formal definition of the relevant operators. We denote the
standard inner product between two vectors x, y ∈ R

d by x · y.

Definition 20.1.1 Consider the following classes of linear operators on
L2(Rd) :

(i) For a ∈ R
d, the translation operator Ta is defined by

(Taf)(x) = f(x− a), x ∈ R
d. (20.1)

(ii) For b ∈ R
d, the modulation operator Eb is

(Ebf)(x) = e2πib·xf(x), x ∈ R
d. (20.2)

(iii) The dilation operator associated with a real and invertible d×d matrix
C is

(DCf)(x) = | detC|1/2f(Cx), x ∈ R
d. (20.3)
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Exactly as for the one-dimensional case considered in Section 2.9, one
can prove that the operators in Definition 20.1.1 actually act as bounded
operators from L2(Rd) to L2(Rd) and are unitary (Exercise 20.1).

Note that the definition of the scaling operator DC differs slightly from
the convention we used in the one-dimensional case, see (2.23): looking
at (20.3) in the case d = 1, a scaling Dc would correspond to the definition
in (2.23) with a = c−1. This change will not cause any problems, but it
implies a few minor changes in the commutator relations, as we will see in
Lemma 20.1.3.
For f ∈ L1(Rd) ∩ L2(Rd), we denote the Fourier transform by

Ff(γ) = f̂(γ) =

∫

Rd

f(x)e−2πiγ·xdx, γ ∈ R
d.

As usual, the Fourier transform is extended to a unitary operator on
L2(Rd).
Exactly as we have seen in the analysis of Gabor systems and wavelet

systems in the one-dimensional case, the interaction between the oper-
ators Ta, Eb, DC and F will be central for our analysis in L2(Rd). The
higher-dimensional setting will require slight modifications in the nota-
tion, which will be apparent already from the statement of the subsequent
Lemma 20.1.3. In particular, we need the following notation:

• Given a matrix C, denote the transposed matrix by CT ;

• If C is an invertible d× d matrix with real entries, let

C = (CT )−1. (20.4)

• Let Td denote the unit cube in R
d, i.e.,

T
d := [0, 1[d. (20.5)

We will often use the following change of variable (see [565]):

Lemma 20.1.2 Let C be an invertible d×d matrix with real entries. Then,
given a measurable set X ⊆ R

d,
∫

C(X)

f(x) dx = | detC|
∫

X

f(Cy) dy

whenever the function f : Rd → C is integrable over C(X).

We will now state the commutator relations between the introduced ope-
rators; the proofs are left to the reader (Exercise 20.2). Note that the
mentioned change in the definition of the scaling operator implies that the
formulas in Lemma 20.1.3 differ slightly from the one-dimensional versions
in (2.26) and (2.27).
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Lemma 20.1.3 Let C be an invertible d× d matrix with real entries, and
let a, b ∈ R

d. Then the following commutator relations hold:

TaEb = e−2πib·aEbTa; DCEb = ECT bDC ; DCTa = TC−1aDC ;

The operators are related to the Fourier transform via

FTa = E−aF ; FEb = TbF ; FDC = DC�F .

We will consider functions f ∈ L2(Td) as Z
d-periodic functions on R

d,
i.e., f(x+k) = f(x) for x ∈ R

d and k ∈ Z
d. The Fourier series of a function

f ∈ L2(Td) is given by

f(x) =
∑

k∈Zd

cke
2πik·x, (20.6)

where the Fourier coefficients ck are

ck =

∫

Td

f(x)e−2πik·x dx, k ∈ Z
d. (20.7)

Parallel to the one-dimensional results described in Section 3.8, we have
the following standard result about Fourier series in L2(Td) :

Lemma 20.1.4

(i) The functions {e2πik·x}k∈Zd form an orthonormal basis for L2(Td).

(ii) If ck and c̃k, k ∈ Z, denote the Fourier coefficients for two functions

F and F̃ in L2(Td), then

〈F, F̃ 〉 =
∑

k∈Zd

ck c̃k.

We will need some preparation before we can start the analysis of gen-
eralized shift-invariant systems, but let us state the central definition by
Ron and Shen [564] already now.

Definition 20.1.5 A generalized shift-invariant system (GSI system for
short) is a system of functions {TCjkφj}j∈J,k∈Zd , where J is a countable
index set, {φj}j∈J ⊂ L2(Rd), and {Cj}j∈J is a collection of invertible d×d
matrices with real entries.

Our goal is to derive a characterization (under weak conditions) of dual
frames of GSI systems. For technical reasons many of the results and proofs
to follow will deal with functions in the space

D :=
{
f ∈ L2(Rd)

∣
∣ suppf̂ is compact and f̂ ∈ L∞(Rd)

}
. (20.8)

The space D is dense in L2(Rd); see Exercise 20.3. We note that in certain
applications it is necessary to consider a slightly more restrictive definition



20.2 The Case of One Generator 497

of D. For example, in the wavelet case we must require that suppf̂ is a
compact set in R\ {0}; this is still a dense subset in L2(Rd), and the entire
analysis will go through.
Note that variations of the generalized shift-invariant systems are known

in the literature under various names. Considering a collection of invert-
ible d× d matrices {Cj}j∈Z with real entries and corresponding functions
{gj}j∈Z ⊂ L2(Rd), systems on the form {ECjkgj}j∈Z,k∈Zd were analyzed
under the name nonstationary Gabor systems by Jaillet in [416] and fur-
ther studied in, e.g., [257] by Dörfler and Matusiak and [409] by Holighaus;
applying the Fourier transform immediately shows that such systems are
equivalent with GSI systems. The special case of a nonstationary Gabor
frame where the matrices Cj are independent of j was called a Fourier-like
system in [197].

20.2 The Case of One Generator

In this section we will consider systems of functions on the form
{TCkφ}k∈Zd , where φ ∈ L2(Rd) and C is an invertible d×d matrix with real
entries. The main purpose is to provide the technical background for the
analysis in Section 20.4, where the case of multiple generators is considered.

Lemma 20.2.1 Let φ ∈ L2(Rd) and let C denote an invertible d×d matrix
with real entries. If f ∈ D, then the following hold:

(i) For any k ∈ Z
d,

〈f, TCkφ〉 =
1

| detC|

∫

Td

∑

n∈Zd

f̂(C(μ+ n))φ̂(C(μ+ n))e2πik·μdμ. (20.9)

(ii) The function F defined by

F (μ) =
1

| detC|
∑

n∈Zd

f̂(C(μ+ n))φ̂(C(μ+ n)) (20.10)

is T
d-periodic and belongs to L2(Td).

(iii) The (−k)th Fourier coefficient for the function F in (20.10) equals
〈f, TCkφ〉.

(iv) We have
∑

k∈Zd

|〈f, TCkφ〉|2

=
1

| detC|2
∫

Td

∣
∣
∣
∣

∑

n∈Zd

f̂(C(μ+ n))φ̂(C(μ+ n))

∣
∣
∣
∣

2

dμ.(20.11)
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Proof. First, observe that for f ∈ D and k ∈ Z
d,

〈f, TCkφ〉 = 〈Ff,FTCkφ〉 =
∫

Rd

f̂(μ)φ̂(μ)e2πiCk·μdμ

=

∫

Rd

f̂(μ)φ̂(μ)e2πik·C
T μdμ.

Making the change of variable μ→ Cμ and splitting the integral now yield
that

〈f, TCkφ〉 = | detC|
∫

Rd

f̂(Cμ)φ̂(Cμ)e2πik·μdμ

=
1

| detC|

∫

Td

∑

n∈Zd

f̂(C(μ+ n))φ̂(C(μ+ n))e2πik·μdμ,

which proves (20.9). The assumption f ∈ D implies that the sum in (20.10)
is finite for each μ ∈ R

d, with a uniform bound on the number of nonzero
terms; thus the periodic function F belongs to L2(Td). Furthermore (20.9)
shows that 〈f, TCkφ〉 is the (−k)th Fourier coefficient for the function F .
The result in (20.11) now follows from Lemma 20.1.4 (ii). �

The expression in (20.11) is well suited to analyze the frame properties
for a system of the form {TCkφ}k∈Zd . When we want to consider dual pairs
of frames of this form, we need the following slight modification:

Lemma 20.2.2 Let φ, φ̃ ∈ L2(Rd) and let C denote an invertible d × d
matrix with real entries. If f ∈ D, then∑

k∈Zd

〈f, TCkφ〉〈TCkφ̃, f〉 = (20.12)

1

|detC|2
∫
Td

∑
n∈Zd

f̂(C�(μ+ n))φ̂(C�(μ+ n))
∑
�∈Zd

f̂(C�(μ+ �))
̂̃
φ(C�(μ+ �)) dμ.

Proof. Note that the convergence of the series in (20.12) follows from
Lemma 20.2.1. Using the function F in (20.10) and the function

F̃ (μ) :=
1

| detC|
∑

�∈Zd

f̂(C(μ+ �))
̂̃
φ(C(μ+ �)), (20.13)

Lemma 20.1.4 and Lemma 20.2.1 yield that

∑

k∈Zd

〈f, TCkφ〉〈TCkφ̃, f〉 =
∫

Td

F (μ)F̃ (μ) dμ;

inserting the expressions for the functions F and F̃ now leads to the desired
conclusion. �
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The next lemma is a key step in the approach to frame properties for
GSI systems. Basically it is an application of (20.12), with the function
f replaced by its translates Tyf, y ∈ R

d. Hereby we obtain a function
K : Rd → C, which turns out to equal the function in (20.14) below, with
only a finite number of nonzero coefficients cm, i.e., it is a trigonometric
polynomial. The idea goes back to Janssen [425] (see Section 10.1) and
Laugesen [476], and was again applied in [398].

Lemma 20.2.3 Let φ, φ̃ ∈ L2(Rd) and let C denote an invertible d × d
matrix with real entries. Fix f ∈ D. Then the function

K : Rd → C, K(y) :=
∑

k∈Zd

〈Tyf, TCkφ〉〈TCkφ̃, Tyf〉 (20.14)

equals the trigonometric polynomial

K(y) =
∑

m∈Zd

cme2πiC
�m·y,

where the Fourier coefficients are

cm =
1

| detC|

∫

Rd

f̂(γ)f̂(γ + Cm)φ̂(γ)
̂̃
φ(γ + Cm) dγ.

Proof. The space D is clearly translation invariant, so the considerations
in Lemma 20.2.2 show that the function K is well defined. Using the com-

mutator relation T̂yf(μ) = E−y f̂(μ) = e−2πiy·μ and Lemma 20.2.2 with
the function f replaced by Tyf, we see that

K(y) =
1

| detC|2
∫

Td

∑

n∈Zd

e−2πiy·(C�(μ+n))f̂(C(μ+ n))φ̂(C(μ+ n))

×
∑

�∈Zd

e−2πiy·(C�(μ+�))f̂(C(μ+ �))
̂̃
φ(C(μ+ �)) dμ

=
1

| detC|2
∫

Td

∑

n∈Zd

∑

�∈Zd

e2πiy·(C
�(�−n))f̂(C(μ+ n))φ̂(C(μ+ n))

× f̂(C(μ+ �))
̂̃
φ(C(μ+ �))dμ.

Letting k = � − n and writing the sums in the above expression as sums
over k and n, it follows that

K(y) =
1

| detC|2
∫

Td

∑

k∈Zd

∑

n∈Zd

e2πiy·C
�kf̂(C(μ+ n))φ̂(C(μ+ n))

×f̂(C(μ+ k + n))
̂̃
φ(C(μ+ k + n)) dμ.

Pulling out the sum over n ∈ Z
d,



500 20 Generalized Shift-Invariant Systems in L2(Rd)

K(y) =
1

| detC|2
∑

n∈Zd

∫

Td

∑

k∈Zd

e2πiy·C
�kf̂(C(μ+ n))φ̂(C(μ+ n))

×f̂(C(μ+ k + n))
̂̃
φ(C(μ+ k + n)) dμ.

Using that the sum over n ∈ Z
d of the integrals over Td yields an integral

over Rd,

K(y)

=
1

| detC|2
∫

Rd

∑

k∈Zd

e2πiy·C�k f̂(C�μ)φ̂(C�μ)f̂(C�(μ + k))
̂̃
φ(C�(μ+ k)) dμ

=
1

| detC|2
∑

k∈Zd

(∫

Rd
f̂(C�μ)φ̂(C�μ)f̂(C�(μ+ k))

̂̃
φ(C�(μ + k)) dμ

)
e2πiy·C�k.

Making the change of variable γ = Cμ in the expression for the coefficient
in the above Fourier series and using that y · Ck = Ck · y finally yield
that

K(y) =
1

| detC|
∑

k∈Zd

(∫

Rd

f̂(γ)f̂(γ + Ck)φ̂(γ)
̂̃
φ(γ + Ck) dγ

)

e2πiC
�k·y,

as claimed. That the Fourier series actually is a trigonometric series follows
from the assumption that f ∈ D. �

The following is the d-dimensional pendant to a calculation that appeared
in the proof of Theorem 9.5.1. See Exercise 20.4 for the corresponding
extension of Theorem 9.5.1.

Lemma 20.2.4 Let φ, φ̃ ∈ L2(Rd) and let C denote an invertible d × d

matrix with real entries. If {TCkφ}k∈Z and {TCkφ̃}k∈Z are Bessel sequences,
then for all f ∈ D,

F

⎛

⎝
∑

k∈Zd

〈f, TCkφ̃〉TCkφ

⎞

⎠ (γ) =
1

| detC| φ̂(γ)
∑

n∈Zd

f̂(γ + Cn)
̂̃
φ(γ + Cn).

Proof. First,

F

⎛

⎝
∑

k∈Zd

〈f, TCkφ̃〉TCkφ

⎞

⎠ (γ) =
∑

k∈Zd

〈f, TCkφ̃〉FTCkφ(γ);
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using Lemma 20.2.1, it follows that

F
⎛
⎝∑

k∈Zd

〈f, TCkφ̃〉TCkφ

⎞
⎠ (γ)

=
φ̂(γ)

|detC|
∑
k∈Zd

⎛
⎝∫

Td

∑
n∈Zd

f̂(C�(μ+ n))
̂̃
φ(C�(μ+ n))e2πik·μdμ

⎞
⎠ e−2πik·CT γ

=
1

|detC| φ̂(γ)
∑
n∈Zd

f̂(C�(CT γ + n))
̂̃
φ(C�(CTγ + n))

=
1

|detC| φ̂(γ)
∑
n∈Zd

f̂(γ + C�n)
̂̃
φ(γ + C�n).

This concludes the proof. �

20.3 Frames with Multiple Generators

The main results in this chapter describe how to construct dual pairs of
frames with the GSI structure; see Theorem 20.4.3. In order to apply this
result we need to know that the involved GSI systems form Bessel seq-
uences. We now state a sufficient condition for the Bessel property and a
corresponding condition for the frame property. The statements and proofs
are similar to what we have seen for Gabor systems in Theorem 11.4.2 and
for wavelet systems in Theorem 15.2.3. For this reason, we only sketch the
proof; it originally appeared in [199] as a generalization of a result in [472].

Theorem 20.3.1 Given a GSI system {TCjkφj}j∈J,k∈Zd in L2(Rd), the
following hold:

(i) If

B := sup
γ∈Rd

∑

j∈J

∑

k∈Zd

1

| detCj |
|φ̂j(γ)φ̂j(γ − C

jk)| <∞, (20.15)

then {TCjkφj}j∈J,k∈Zd is a Bessel sequence with bound B.

(ii) If also

A := inf
γ∈Rd

⎛

⎝
∑

j∈J

1

| detCj | |φ̂j(γ)|2 −
∑

j∈J

∑

k �=0

1

|detCj | |φ̂j(γ)φ̂j(γ − C
jk)|

⎞

⎠ > 0,

then {TCjkφj}j∈J,k∈Zd is a frame for L2(Rd) with bounds A and B.
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Proof. It is sufficient to prove (i) and (ii) for functions f in the dense
subspace D of L2(Rd); see (20.8). Using arguments like in the proof of
Theorem 11.4.2 or Theorem 15.2.3 (see the details in [472]), one can show
that for f ∈ D,

∑

j∈J

∑

k∈Zd

|〈f, TCjkφj〉|2 =

∫

Rd

|f̂(γ)|2
∑

j∈J

1

| detCj |
|φ̂j(γ)|2 +R(f),

where

R(f) =
∑

j∈J

∑

k �=0

1

| detCj |

∫

Rd

f̂(γ)φ̂j(γ)f̂(γ − C
jk)φ̂j(γ − C

jk)dγ.

Furthermore

R(f) ≤
∑

j∈J

∑

k �=0

1

| detCj |

∫

Rd

|f̂(γ)|2|φ̂j(γ)φ̂j(γ − C
jk)|dγ.

Thus
∑

j∈J

∑

k∈Zd

|〈f, TCjkφj〉|2 ≤
∫

Rd

|f̂(γ)|2
∑

j∈J

∑

k∈Zd

1

| detCj |
|φ̂j(γ)φ̂j(γ − C

jk)|dγ.

Using (20.15), it now follows from the density of D in L2(Rd) and
Lemma 3.2.6 that {TCjkφj}j∈J,k∈Zd is a Bessel sequence with bound B.
Also, for f ∈ D,

∑

j∈J

∑

k∈Zd

|〈f, TCjkφj〉|2

≥
∫

Rd

|f̂(γ)|2
∑

j∈J

1

| detCj |
|φ̂j(γ)|2dγ

−|
∑

j∈J

∑

k �=0

1

| detCj |

∫

Rd

f̂(γ)f̂(γ − C
jk)φ̂j(γ)φ̂j(γ − C

jk)dγ|

≥
∫

Rd

|f̂(γ)|2
(∑

j∈J

1

| detCj |
|φ̂j(γ)|2

−
∑

j∈J

∑

k �=0

1

| detCj |
|φ̂j(γ)φ̂j(γ − C

jk)|
)

dγ.

Via Lemma 5.1.9, this concludes the proof of the lower bound in (ii). �

We also note that a necessary condition for a GSI system to be a Bessel
sequence was proved in [398]. We have already seen special cases of the
result: see Proposition 11.3.4 for the Gabor case, Proposition 15.2.2 for
dyadic wavelet systems, and Lemma 19.1.2 for irregular wavelet systems.



20.4 Dual Pairs of Frames with Multiple Generators 503

Proposition 20.3.2 Assume that a GSI system {TCjkφj}k∈Zd,j∈J is a
Bessel sequence with bound B. Then

∑

j∈J

1

| detCj |
|φ̂j(γ)|2 ≤ B, a.e. γ ∈ R

d. (20.16)

Observe that the infinite sum in (20.16) equals one of the terms in the
sufficient condition in (20.15), namely, the one corresponding to k = 0.
Even if {TCjkφj}k∈Zd,j∈J is a frame for L2(Rd), the sum in (20.16) might

not be bounded below by a positive constant. This is in contrast to the spe-
cial cases for Gabor systems in Proposition 11.3.4 for the wavelet systems
in Proposition 15.2.2. We refer to [177] for a more detailed analysis.

20.4 Dual Pairs of Frames with Multiple
Generators

In this section we will prove the main result about GSI systems, which
yields a condition for two such systems to form dual frames for L2(Rd).
The results will be derived based on the calculations in Section 20.2. The
original source is still the paper [398].
The basic idea is to consider a GSI system {TCjkφj}k∈Zd,j∈J in L2(Rd)

as a countable union of the shift-invariant systems {TCjkφj}k∈Zd , i.e.,

{TCjkφj}k∈Zd,j∈J =
⋃

j∈J

{TCjkφj}k∈Zd .

Whenever we want to consider frame properties for {TCjkφj}k∈Zd,j∈J , we
can then apply the result in (20.11) on each of the shift-invariant sys-
tems {TCjkφj}k∈Zd , simply by introducing an extra sum over j ∈ J. In
a similar fashion, we can use Lemma 20.2.2 and Lemma 20.2.3 to exam-
ine the dual frame property for two GSI systems {TCjkφj}k∈Zd,j∈J and

{TCjkφ̃j}k∈Zd,j∈J .
Technically, an important step is to rewrite the sums that occur when we

follow the sketched approach. Given a GSI system {TCjkφj}k∈Zd,j∈J , let

Λ =
{
C

jm
∣
∣ j ∈ J,m ∈ Z

d
}
, (20.17)

where we remember that C
j = (CT

j )
−1. Given α ∈ Λ, there might exist

several pairs (j,m) ∈ J × Z
d for which α = C

jm; let

Jα =
{
j ∈ J

∣
∣ ∃m ∈ Z

d such that α = C
jm

}
. (20.18)

We will need a technical condition, basically to guarantee that the func-
tion ω introduced in the subsequent Lemma 20.4.2 is continuous. Various
versions of the condition can be found in the literature: the condition (i)
in the following Definition 20.4.1 appeared in the paper [398], and the
conditions (ii) & (iii) were introduced in [417] by Jakobsen and Lemvig.
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Definition 20.4.1

(i) A GSI system {TCjkφj}k∈Zd,j∈J satisfies the local integrability
condition (LIC) if

∑

j∈J

∑

m∈Zd

1

| detCj |

∫

supp ̂f

|f̂(γ + C
jm)φ̂j(γ)|2 dγ <∞ (20.19)

for all f ∈ D.

(ii) Two GSI systems {TCjkφj}k∈Zd,j∈J and {TCjkφ̃j}k∈Zd,j∈J satisfy the
dual α-local integrability condition (dual α-LIC) if

∑

j∈J

∑

m∈Zd

1

| detCj |

∫

supp ̂f

|f̂(γ)f̂(γ + C
jm)φ̂j(γ)

̂̃
φj(γ + C

jm)| dγ <∞

for all f ∈ D.
(iii) A GSI system {TCjkφj}k∈Zd,j∈J satisfies the α-local integrability

condition (α-LIC) if (ii) holds with φj = φ̃j .

We leave it to the reader (Exercise 20.5) to prove that the α-LIC is weaker
than the LIC: if {TCjkφj}k∈Zd,j∈J satisfies the LIC, then {TCjkφj}k∈Zd,j∈J

also satisfies the α-LIC.
The following lemma is a key step toward the duality result for GSI

systems.

Lemma 20.4.2 Assume that the GSI systems {TCjkφj}k∈Zd,j∈J and

{TCjkφ̃j}k∈Zd,j∈J satisfy the dual α-LIC, and let f ∈ D. Then the function

ω(y) :=
∑

j∈J

∑

k∈Zd

〈Tyf, TCjkφj〉〈TCjkφ̃j , Tyf〉 (20.20)

is continuous, and

ω(y) =
∑

α∈Λ

⎛

⎝
∫

Rd

f̂(γ)f̂(γ + α)
∑

j∈Jα

1

| detCj |
φ̂j(γ)

̂̃
φj(γ + α)

⎞

⎠ e2πiα·ydγ

pointwise for all y ∈ R
d.

Proof. For j ∈ J, let

ωj(y) :=
∑

k∈Zd

〈Tyf, TCjkφj〉〈TCjkφ̃j , Tyf〉.

By Lemma 20.2.3 the function ωj is continuous and equals a trigonometric

polynomial, ωj(y) =
∑

m∈Zd cm,je
2πiC�

jm·y, where the Fourier coefficients
are

cm,j =
1

| detCj |

∫

Rd

f̂(γ)f̂(γ + C
jm)φ̂j(γ)

̂̃
φj(γ + C

jm) dγ. (20.21)
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The dual α-LIC immediately implies that
∑

j∈J

∑

m∈Zd

|cm,j| <∞. (20.22)

Therefore the function ω in (20.20) is continuous, and

ω(y) =
∑

j∈J

∑

m∈Zd

cm,je
2πiC�

jm·y,

with absolute and uniform convergence of the infinite series. It follows that
the terms can be reordered arbitrarily without affecting the convergence;
using an indexing in terms of the sets Λ and Jα in (20.17) and (20.18),

ω(y) =
∑

α∈Λ

∑

j∈Jα

1

| detCj |

(∫

Rd

f̂(γ)f̂(γ + α)φ̂j(γ)
̂̃
φj(γ + α)

)

e2πiα·ydγ

=
∑

α∈Λ

⎛

⎝
∫

Rd

f̂(γ)f̂(γ + α)
∑

j∈Jα

1

| detCj |
φ̂j(γ)

̂̃
φj(γ+α)

⎞

⎠ e2πiα·ydγ,

as desired. �

We are now ready to state a condition for two GSI systems being dual
frames. Basically it appeared in the paper [398] by Hernandez, Labate, and
Weiss, but following [417] we formulate it using the dual α-LIC rather than
the stronger LIC.

Theorem 20.4.3 Assume that the GSI systems {TCjkφj}k∈Zd,j∈J and

{TCjkφ̃j}k∈Zd,j∈J are Bessel sequences and satisfy the dual α-LIC. Then

{TCjkφj}k∈Zd,j∈J and {TCjkφ̃j}k∈Zd,j∈J are dual frames if and only if

∑

j∈Jα

1

| detCj |
φ̂j(γ)

̂̃
φj(γ + α) = δα,0, a.e. γ ∈ R

d (20.23)

for all α ∈ Λ.

Proof. Let us first assume that (20.23) is satisfied. Now, let f ∈ D; then,
by Lemma 20.4.2 the continuous function ω in (20.20) takes the form

ω(y) =
∑

α∈Λ

⎛

⎝
∫

Rd

f̂(γ)f̂(γ + α)
∑

j∈Jα

1

| detCj |
φ̂j(γ)

̂̃
φj(γ + α)

⎞

⎠ e2πiα·ydγ

=

∫

Rd

f̂(γ)f̂(γ) dγ = ||f ||2;

in particular, for y = 0,
∑

j∈J

∑

k∈Zd

〈f, TCjkφj〉〈TCjkφ̃, f〉 = ||f ||2. (20.24)
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Since (20.24) holds on a dense subspace of L2(Rd), Lemma 6.3.4 now shows

that {TCjkφj}k∈Zd,j∈J and {TCjkφ̃j}k∈Zd,j∈J are dual frames.
In order to show the other implication, assume that {TCjkφj}k∈Zd,j∈J

and {TCjkφ̃j}k∈Zd,j∈J are dual frames. Let f ∈ D, and consider again the
function ω in (20.20); the duality assumption implies that

ω(y) = ||Tyf ||2 = ||f ||2, ∀y ∈ R
d.

It now follows from the expression for the function ω in Lemma 20.4.2 and
the independence of the exponentials (see [398] for details) that
∫

Rd

f̂(γ)f̂(γ + α)
∑

j∈Jα

1

| detCj |
φ̂j(γ)

̂̃
φj(γ + α)dγ = δα,0||f ||2, ∀α ∈ Λ.

(20.25)

In particular, taking α = 0,
∫

Rd

|f̂(γ)|2
∑

j∈J

1

| detCj |
φ̂j(γ)

̂̃
φj(γ)dγ = ||f ||2 = ||f̂ ||2, ∀f ∈ D.

By a standard argument this implies that
∑

j∈J

1

| detCj |
φ̂j(γ)

̂̃
φj(γ) = 1, a.e. γ ∈ R

d;

thus (20.23) holds for α = 0. In order to prove that (20.23) holds for α �= 0,
let

sα(γ) :=
∑

j∈Jα

1

| detCj |
φ̂j(γ)

̂̃
φj(γ + α), γ ∈ R

d.

Applying polarization on (20.25) it follows that
∫

Rd

f̂(γ)ĝ(γ + α)sα(γ)dγ = 0, ∀f, g ∈ D.

Again, from here a standard argument implies that sα(γ) = 0 for a.e.
γ ∈ R

d, as desired. �

We note that the equivalence in Theorem 20.4.3 is wrong if the dual
α-LIC is removed. In fact, an example by Bownik and Rzeszotnik in [86]

shows that {TCjkφj}k∈Zd,j∈J and {TCjkφ̃j}k∈Zd,j∈J can be dual frames
even if (20.23) does not hold.

In the subsequent sections, we will apply the GSI results to Gabor sys-
tems and wavelet systems. Here we will just note that Theorem 20.4.3
simplifies greatly for shift-invariant systems. In fact, if a shift-invariant
system {TCkφj}j∈J,k∈Zd in L2(Rd) is a Bessel sequence, then the LIC is
satisfied (Exercise 20.6), and Theorem 20.4.3 has the following consequence
(Exercise 20.7):
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Corollary 20.4.4 Let C denote an invertible d × d matrix with real en-
tries. Then two Bessel sequences {TCkφj}k∈Zd,j∈J and {TCkφ̃j}k∈Zd,j∈J in
L2(Rd) are dual frames if and only if for all n ∈ Z

d,

∑

j∈J

φ̂j(γ)
̂̃
φj(γ + Cn) = | detC| δn,0, a.e. γ ∈ R

d. (20.26)

20.5 Gabor Systems in L2(Rd)

The results in Section 20.3 and Section 20.4 have immediate consequences
for Gabor systems in L2(Rd). In order to show the power of the approach
in the previous sections, we will state very general results.
Given a function g ∈ L2(Rd) and two invertible invertible d × d

matrices A,B with real entries, we will consider the Gabor system
{EBmTAng}m,n∈Zd in L2(Rd). Explicitly, for m,n ∈ Z

d,

EBmTAng(x) = e2πiBm·xg(x−An), x ∈ R
d.

We will in fact be more general than that and consider a Gabor system
generated by collection of windows {g�}L�=1 ⊂ L2(Rd). Let us begin with
sufficient conditions for such systems to form Bessel sequences or frames:

Theorem 20.5.1 Let A and B denote invertible d × d matrices with real
entries, and consider a finite collection of functions {g�}L�=1 ⊂ L2(Rd). If

B :=
1

| detA| sup
γ∈Rd

L∑

�=1

∑

j∈Zd

∑

m∈Zd

|ĝ�(γ − Bj)ĝ�(γ − Bj −Am)| <∞,

then {EBmTAng�}m,n∈Zd,�=1,...,L is a Bessel sequence with bound B; if also

A :=
1

| detA| inf
γ∈Rd

L∑

�=1

⎛

⎝
∑

j∈Zd

|ĝ�(γ − Bj)|2

−
∑

j∈Zd

∑

m �=0

|ĝ�(γ − Bj)ĝ�(γ − Bj −Am)|

⎞

⎠ > 0,

then {EBmTAng�}m,n∈Zd,�=1,...,L is a frame for L2(Rd) with bounds A,B.

Proof. First, using Lemma 20.1.3, we see that for j, n ∈ Z
d and � =

1, . . . , L,

EBjTAng� = e2πiBj·AnTAnEBjg�; (20.27)

this implies that {EBjTAng�}j,n∈Zd,�=1,...,L is a frame if and only if the
(generalized) shift-invariant system {TAnEBjg�}j,n∈Zd,�=1,...,L is a frame.
The result now follows directly from Theorem 20.3.1. �
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Formulated in the time domain, the sufficient conditions for the upper
and lower frame bounds read as follows (Exercise 20.8):

Theorem 20.5.2 Let A and B denote invertible d × d matrices with real
entries, and consider a finite collection of functions {g�}L�=1 ⊂ L2(Rd). If

B :=
1

| detB| sup
x∈Rd

L∑

�=1

∑

j∈Zd

∑

m∈Zd

|g�(x−Aj)g�(x −Aj − Bm)| <∞,

then {EBmTAng�}m,n∈Zd,�=1,...,L is a Bessel sequence with bound B; if also

A :=
1

| detB| inf
x∈Rd

L∑

�=1

⎛

⎝
∑

j∈Zd

|g�(x −Aj)|2

−
∑

j∈Zd

∑

m �=0

|g�(x−Aj)g�(x−Aj − Bm)|

⎞

⎠ > 0,

then {EBmTAng�}m,n∈Zd,�=1,...,L is a frame for L2(Rd) with bounds A,B.

Corollary 20.4.4 leads to a number of equivalent conditions for two Ga-
bor systems being dual frames for L2(Rd). We collect them in the following
theorem, which also appeared in our main source [398]. Note that the
equivalence (i) ⇔ (iv) is the Wexler–Raz theorem.

Theorem 20.5.3 Let A and B denote invertible d × d matrices with real
entries, and consider finite collections of functions {g�}L�=1, {h�}L�=1 ⊂
L2(Rd). Assuming that the Gabor systems {EBmTAng�}m,n∈Zd,�=1,...,L

and {EBmTAnh�}m,n∈Zd,�=1,...,L are Bessel sequences, the following are
equivalent:

(i) {EBmTAng�}m,n∈Zd,�=1,...,L and {EBmTAnh�}m,n∈Zd,�=1,...,L are dual
frames for L2(Rd).

(ii) For all m ∈ Z
d and a.e. γ ∈ R

d,
L∑

�=1

∑

j∈Zd

ĝ�(γ − Bj)ĥ�(γ − Bj +Am) = | detA| δm,0. (20.28)

(iii) For all m ∈ Z
d and a.e. x ∈ R

d,
L∑

�=1

∑

j∈Zd

g�(x−Aj)h�(x−Aj + Bm) = | detB| δm,0. (20.29)

(iv) For any m,n ∈ Z
d,

L∑

�=1

〈h�, EA�mTB�ng�〉 = | detB| | detA| δm,0δn,0. (20.30)
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Proof. We prove the result in the case of Gabor systems with a single
window and leave the extension to several windows to the reader.
First, using the calculation (20.27) we see that two Gabor systems

{EBjTAng}j,n∈Zd and {EBjTAnh}j,n∈Zd are dual frames if and only if
{TAnEBjg}j,n∈Zd and {TAnEBjh}j,n∈Zd are dual frames; these systems fall
into the framework of shift-invariant systems in Corollary 20.4.4 by letting
C = A and

φj := EBjg, φ̃j := EBjh, j ∈ Z
d. (20.31)

Now the equivalence (i) ⇔ (ii) follows by direct calculation of the
expressions in (20.23).
For the proof of the equivalence (i)⇔ (iii) we again apply Lemma 20.1.3,

which shows that for j,m ∈ Z
d,

F−1EBmTAjg = T−BmF−1TAjg;

thus {EBmTAng}m,n∈Zd and {EBmTAnh}m,n∈Zd are dual frames if and only
if {T−BmF−1TAjg}m,n∈Zd and {T−BmF−1TAjh}m,n∈Zd are dual frames.
From here, the proof is completed in a similar way as the first part of the
proof.
Finally, we will now prove the equivalence (ii)⇔ (iv). First, for any given

m ∈ Z
d, consider the BZd-periodic function

Fm(γ) :=
∑

j∈Zd

ĝ(γ − Bj)ĥ(γ − Bj +Am), γ ∈ R
d.

Recall that the functions {e2πik·x}k∈Zd form an orthonormal basis for
L2(Td). Using a change of variable (Lemma 20.1.2), it follows that

{| detB|−1/2e2πiB
�n·γ}n∈Zd is an orthonormal basis for L2(B[0, 1]d). Thus,

considering the Fourier expansion

Fm(γ) =
∑

n∈Z

cm,ne
2πiB�n·γ ,

the coefficients can be calculated as

cm,n = |detB|−1

∫
BTd

Fm(γ)e−2πiB�n·γdγ

= |detB|−1

∫
BTd

∑
j∈Zd

ĝ(γ − Bj)ĥ(γ − Bj +A�m)e−2πiB�n·γdγ

= |detB|−1

∫
Rd

ĝ(γ)ĥ(γ +A�m)e−2πiB�n·γdγ

= |detB|−1〈T−A�mFh, EB�nFg〉 = |detB|−1〈FE−A�mh,FT−B�ng〉.
Since the Fourier transform is unitary, we can continue with

cm,n = | detB|−1〈E−A�mh, T−B�ng〉 = | detB|−1〈h,EA�mT−B�ng〉.

The equivalence (ii) ⇔ (iv) follows from this calculation. �
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It is immediately clear that Theorem 20.5.3 generalizes Theorem 12.3.4
and Theorem 12.3.5 to the higher-dimensional case. One can use Theo-
rem 20.5.3 to obtain explicit constructions of dual pairs of Gabor frames
in L2(Rd) along the same lines as what we saw in the one-dimensional
setting in Section 12.5; however, for this particular approach the higher-
dimensional case is more complicated [190]. Results that are easier to apply
are given in [454] and [186]; the last-mentioned reference generalizes the
results in Section 12.6 to the higher-dimensional case. We also refer to
the paper [543] by Pfander, Rashkov, and Wang for constructions of tight
Gabor frames in L2(Rd) with compactly supported smooth windows.
Remember that a Gabor system {EmbTnag}m,n∈Z in L2(R) only can be

a frame for L2(R) if ab ≤ 1. An elegant proof for this was given by Janssen
in [425] and generalized to the higher-dimensional case by Labate in [471]:

Corollary 20.5.4 Assume that A and B are invertible d×d matrices with
real entries and that the Gabor system {EBmTAng}m,n∈Zd is a frame for
L2(Rd). Then

| detA| | detB| ≤ 1. (20.32)

Proof. If {EBmTAng}m,n∈Zd is a frame for L2(Rd) with frame opera-
tor S : L2(Rd) → L2(Rd), calculations like in the one-dimensional case
(Exercise 20.10) show that the frame decomposition takes the form

f =
∑

m,n∈Zd

〈f, EBmTAnS
−1g〉EBmTAng, ∀f ∈ L2(Rd). (20.33)

We will now consider f := g, which has the trivial representation

g =
∑

m,n∈Zd

δm,0δn,0EBmTAng.

By Lemma 5.4.2, we know that the frame coefficients
{〈g, EBmTAn S−1g〉}m,n∈Zd have minimal �2-norm among all coefficients
representing g; thus,

∑

m,n∈Zd

|〈g, EBmTAnS
−1g〉|2 ≤ 1,

which clearly implies that |〈g, S−1g〉| ≤ 1. Now, by Theorem 20.5.3 (iv),
we know that 〈g, S−1g〉 = | detB| | detA|, which completes the proof. �

Parts of the proof of Theorem 20.5.3 generalize to the case where
the modulations Bm, m ∈ Z

d, are replaced by an irregular set and the
translation matrix is allowed to depend on m. This no longer yields a shift-
invariant system but a “genuine” GSI system. We will now state this more
general version; note that it is not a “corollary” of Theorem 20.5.3 but
rather a consequence of the insight gained from its proof. We leave the
proof and a formulation of a sufficient condition for the Bessel property to
the reader (Exercise 20.9).
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Corollary 20.5.5 Let {bm}m∈Z be a relatively separated sequence in R
d

and {Am}m∈Z a sequence of invertible d×d matrices with real entries. Fur-
thermore, assume that two GSI Bessel sequences {TAmnEbmg}m∈Z,n∈Zd and
{EbmTAmnh}m∈Z,n∈Zd satisfy the dual α-LIC. Then {TAmnEbmg}m∈Z,n∈Zd

and {EbmTAmnh}m∈Z,n∈Zd are dual frames if and only if for all α ∈ Λ and
a.e. γ ∈ R

d,
∑

j∈Jα

1

| detAj |
ĝ(γ − bj)ĥ(γ − bj + α) = δα,0. (20.34)

Here the sets Λ and Jα are, as usual, defined in (20.17) and (20.18).

20.6 Wavelet Systems in L2(Rd)

We will now turn our attention to wavelet systems. We will be very gen-
eral and consider systems of the form {DAjTBkψ}j∈J,k∈Zd , where B and
{Aj}j∈J are invertible d×d matrices with real entries. Explicitly, for j ∈ J
and k ∈ Z

d,

DAjTBkψ(x) = | detAj |ψ(Ajx− Bk), x ∈ R
d. (20.35)

Note that {DAjTBkψ}j∈J,k∈Zd is the d-dimensional version of the system
considered in Theorem 19.1.1.
We first generalize Theorem 15.2.3 and Theorem 19.1.1 to the d-

dimensional case:

Theorem 20.6.1 Let B and {Aj}j∈J denote invertible d×d matrices with
real entries, and let ψ ∈ L2(Rd). If

B :=
1

| detB| sup
γ∈Rd

∑

j∈J

∑

k∈Zd

|ψ̂(A
jγ)ψ̂(A


jγ − Bk)| <∞,

then {DAjTBkψ}j∈J,k∈Zd is a Bessel sequence in L2(Rd). If furthermore

A :=
1

| detB| inf
γ∈Rd

⎛

⎝
∑

j∈J

|ψ̂(A
jγ)|2 −

∑

j∈J

∑

k �=0

|ψ̂(A
jγ)ψ̂(A


jγ − Bk)|

⎞

⎠ > 0,

then {DAjTBkψ}j∈J,k∈Zd is a frame for L2(Rd) with bounds A,B.

Proof. Using Lemma 20.1.3, we see that

DAjTBkψ = TA−1
j BkDAjψ. (20.36)

Let Cj := A−1
j B and φj := DAjψ. Using again Lemma 20.1.3,

φ̂j(γ) = FDAjψ(γ) = DA�
j
ψ̂(γ) = | detA

j |1/2ψ̂(A

jγ)

= | detAj |−1/2ψ̂(A
jγ). (20.37)



512 20 Generalized Shift-Invariant Systems in L2(Rd)

It is easy to see that A
j(A−1

j B) = B; furthermore, by a direct calculation,

1

| detCj |
|φ̂j(γ)φ̂j(γ − C

jk)| =
1

| detB| |ψ̂(A

jγ)ψ̂(A


jγ − Bk)|.

Now the result follows from Theorem 20.3.1. �

Observe that Theorem 20.6.1 has an immediate extension to wavelet
systems {DAjTB�kψ�}j∈J,k∈Zd,�=1,...,L generated by a finite collection of
functions ψ�, � = 1, . . . , L and matrices B� depending on the generator ψ�.
We can also apply Theorem 20.4.3 to the very general wavelet systems

considered in Theorem 20.6.1, but the condition (20.23) cannot be further
simplified in this case. We will now consider the case where J = Z and
Aj = Aj for some matrix A; in this case (20.23) can be simplified if we
assume that the matrices A and B commute.
Thus, consider two wavelet systems {DAjTBkψ}j∈Z,k∈Zd ,

{DAjTBkψ̃}j∈Z,k∈Zd ; using the calculation (20.36) these wavelet systems

can be considered as GSI systems {TCjkφj}k∈Zd,j∈Z, {TCjkφ̃j}k∈Zd,j∈Z,
where

Cj = A−jB, φj := DAjψ, φ̃j := DAj ψ̃. (20.38)

We will state two versions of the characterizations of dual wavelet frames:

Corollary 20.6.2 Let ψ, ψ̃ ∈ L2(Rd), and let A and B denote invertible
d× d matrices with real entries. Assume that

• AB = BA;

• The wavelet systems {DAjTBkψ}j∈Z,k∈Zd , {DAjTBkψ̃}j∈Z,k∈Zd are
Bessel sequences;

• {TA−jBkDAjψ}j∈Z,k∈Zd and {TA−jBkDAj ψ̃}j∈Z,k∈Zd satisfy the LIC.

Then the following are equivalent:

(i) {DAjTBkψ}j∈Z,k∈Zd , {DAjTBkψ̃}j∈Z,k∈Zd are dual frames for L2(Rd);

(ii) For all m ∈ Z
d and a.e γ ∈ R

d,

∑

{j∈Z | (AT )−jm∈Zd}
ψ̂((AT )−jγ)

̂̃
ψ((AT )−j(γ +Bm)) = | detB| δm,0; (20.39)

(iii) For all m′ ∈ Z
d, j′ ∈ Z,

∑
{(j,m)∈Z×Zd | (AT )j

′
m′=(AT )jm}

ψ̂((AT )−jγ)
̂̃
ψ((AT )−jγ +B�m) = |detB| δm,0.
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Proof. (i) ⇔ (ii). We will show that the condition (20.39) is simply a
reformulation of (20.23). Let α ∈ Λ; then, for some j′ ∈ Z,m ∈ Z

d,

α = C
j′m = ((A−j′B)T )−1m = (AT )j

′
Bm. (20.40)

We will now rewrite the condition (20.23) in terms of the parameters
j′,m. We split the argument into 4 steps:

Step 1: With α written as in (20.40), clearly α = 0 ⇔ m = 0; thus, we
can replace δα,0 in (20.23) by δm,0.

Step 2: We now rewrite the term appearing in the sum in (20.23). With
the definitions in (20.38), the calculation in (20.37) shows that

φ̂(γ) = | detAj |−1/2ψ̂((Aj)γ) = | detA|−j/2ψ̂((AT )−jγ),

and similarly

̂̃
φ(γ) = | detA|−j/2 ̂̃ψ((AT )−jγ).

Thus, inserting the form of α stated in (20.40),

1

|detCj | φ̂j(γ)φ̂j(γ + α) (20.41)

=
1

|detA−jB| |detA|−j ψ̂((AT )−jγ)
̂̃
ψ((AT )−j [γ + (AT )j

′
Bm])

=
1

|detB| ψ̂((A
T )−(j−j′)(AT )−j′γ)

̂̃
ψ((AT )−(j−j′)[(AT )−j′γ +Bm])

=
1

|detB| ψ̂((A
T )−(j−j′)η)

̂̃
ψ((AT )−(j−j′)[η +Bm]).

where we in the last step introduced a new variable η := (AT )−j′γ.
Since (AT )−j′ is invertible, the variable γ runs through R

d if and only
if η runs through R

d.

Step 3: We now rewrite the index set Jα in (20.23) in terms of j′,m. Note
that, still with α = (AT )j

′
Bm as in (20.40),

Jα =
{
j ∈ Z

∣
∣ ∃n ∈ Z

d : (Cj)
n = (AT )j

′
Bm

}

=
{
j ∈ Z

∣
∣ ∃n ∈ Z

d : (AT )jBn = (AT )j
′
Bm

}

=
{
j ∈ Z

∣
∣ ∃n ∈ Z

d : n = BT (AT )−(j−j′)(BT )−1m
}
.

The assumption that A and B commute implies that

BT (AT )−(j−j′)(BT )−1 = (AT )−(j−j′),
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and the description of Jα reduces to

Jα =
{
j ∈ Z

∣
∣ (AT )−(j−j′)m ∈ Z

d
}
. (20.42)

Step 4: We have now written all the ingredients in (20.23) in terms of
j′,m; thus, we can conclude that (20.23) holds for all α ∈ Λ if and
only if

∑

{j∈Z | (AT )−(j−j′)m∈Zd}

1

| detB|
̂ψ((AT )−(j−j′)η)̂˜ψ((AT )−(j−j′)[η + B�m]) = δα,0

holds for a.e. η ∈ R
d and all m ∈ Z

d; the change of summation index
j → j + j′ now yields the result.

(i) ⇔ (iii). The proof is similar to the proof of (i) ⇔ (ii). Let α ∈ Λ; then,
for some j′ ∈ Z,m′ ∈ Z

d, α = (AT )j
′
Bm′. Now, using the first step in the

calculation (20.41) [where m is now m′],

1

| detCj |
φ̂j(γ)φ̂j(γ + α)

=
1

| detB| ψ̂((A
T )−jγ)

̂̃
ψ((AT )−jγ + (AT )−(j−j′)Bm′)

=
1

| detB| ψ̂((A
T )−jγ)

̂̃
ψ((AT )−jγ +B(AT )−(j−j′)m′)

Using the form of Jα in (20.42), we can now rewrite the left-hand side
of (20.23) as

∑

j∈Jα

1

|detCj | φ̂j(γ)
̂̃
φj(γ + α)

=
∑

{j|(AT )−(j−j′)m′∈Zd}

1

|detB| ψ̂((A
T )−jγ)

̂̃
ψ((AT )−jγ +B(AT )−(j−j′)m′)

=
∑

{(j,m)∈Z×Zd | (AT )−(j−j′)m′=m}

1

|detB| ψ̂((A
T )−jγ)

̂̃
ψ((AT )−jγ +Bm)

=
∑

{(j,m)∈Z×Zd | (AT )j′m′=(AT )jm}

1

|detB| ψ̂((A
T )−jγ)

̂̃
ψ((AT )−jγ +Bm).

Inserting this calculation in (20.23) now completes the proof. �

We refer to the original paper [398] for more results about wavelet sys-
tems. In particular, [398] contains a discussion of the LIC and shows that it
is satisfied if the matrix A is expanding on a subspace. Thus, for a wavelet
system {DajTkbψ}j,k∈Z in L2(R) the LIC is automatically satisfied. The pa-
per [398] also contains a number of wavelet constructions; see also the paper
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[484] by Lemvig for explicit constructions of dual pairs of (band-limited)
wavelet frames in L2(Rd).
We will now derive some of the consequences of Corollary 20.6.2 in L2(R).

First, the L2(R)-version of the condition in Corollary 20.6.2 (iii) clearly
yields precisely the conditions (i) and (ii) in Theorem 15.3.2; as explained
above, the LIC is automatically satisfied, so the proof of Theorem 15.3.2 is
completed.
Also Theorem 16.1.3 is a consequence of Corollary 20.6.2:

Proof of Theorem 16.1.3: We will apply the characterization of duality
in Corollary 20.6.2 (ii). Thus, consider m ∈ Z; in the case m = 0, the con-
dition (20.39) clearly corresponds to the first condition in Theorem 16.1.3,
so let us assume that m �= 0. Write m = 2kq, where k ∈ N ∪ {0} and q is
an odd integer. Then the index set in (20.39) is

{j ∈ Z
∣
∣ 2−jm ∈ Z} = {j ∈ Z

∣
∣ 2k−jq ∈ Z} = {k, k − 1, k − 2, . . . }.

Thus, the left-hand side in (20.39) takes the form

k∑
j=−∞

ψ̂(2−jη)
̂̃
ψ(2−j(η +m)) =

k∑
j=−∞

ψ̂(2−j+k[2−kη])
̂̃
ψ(2−j+k([2−kη] + q))

=

∞∑
j=0

ψ̂(2j [2−kη])
̂̃
ψ(2j([2−kη] + q)).

The variable γ := 2−kη runs through R whenever η runs through R. Thus,
the calculation shows that

k∑

j=−∞
ψ̂(2−jη)

̂̃
ψ(2−j(η +m)) = 0

for a.e. η ∈ R if and only if

∞∑

j=0

ψ̂(2jγ)
̂̃
ψ(2j(γ + q)) = 0

for a.e. γ ∈ R. Thus, we arrive at the second condition in Theorem 16.1.3,
and the proof is completed. �

Note that a variation of the wavelet setup, where the scalings are given in
terms of products of certain (in general non-commuting) sets of matrices,
was introduced and analyzed in [359]. The resulting sets, called wavelet
systems with composite dilations, also fall within the framework of the GSI
systems.
Both Gabor systems and wavelet systems have well-established appli-

cations in signal processing, and it is known when one of the systems is
preferable compared to the other one. In order to obtain very flexible frame
decompositions, it is natural to consider systems of functions that contain
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both the structures of Gabor systems and wavelet systems, i.e., systems of
functions that are formed using all the operations’ translation, modulation,
and scaling. Let us state a definition of such a system, where we require a
special structure of the translations.

Definition 20.6.3 Let B and {Aj}j∈Z denote invertible d × d matrices
with real entries, and let {cm}m∈Z be a sequence in R

d. The associated
wave packet system generated by a function ψ ∈ L2(Rd) is the collection of
functions

{
DAjTBkEcmψ

}
j,m∈Z,k∈Zd . (20.43)

Wave packet systems first appeared in the frame context in the paper [399].
In [231], Czaja, Kutyniok, and Speegle proved that certain geometric con-
ditions on the set of parameters in a wave packet systems are necessary in
order for the system to form a frame, and also provided constructions of
frames and orthonormal bases, based on characteristic functions.
As we have seen already in (20.36),

DAjTBkEcmψ = TA−1
j BkDAjEcmψ, (20.44)

so a wave packet system of the form in Definition 20.6.3 is a special case of a
GSI system, with Cj := A−1

j B, j ∈ Z and the functionsDAjEcmψ, j,m ∈ Z,
playing the role as φj . Thus, we can easily state the formal conditions for
such systems to form Bessel sequences or frames and for two such systems
being dual frames. In practice, however, the situation is more complicated
than that. In fact, since a wave packet system is formed by the action of
three classes of operators, such a system might be heavily overcomplete, to
an extent that involves a potential risk for the upper frame condition to be
violated. In general, this forces us to choose in particular the matrices Aj

and the points cm with great care. We refer to the paper [199] for a more
detailed discussion.

20.7 Exercises

20.1 Prove that the operators in Definition 20.1.1 actually map L2(Rd)
boundedly into L2(Rd) and are unitary.

20.2 Prove Lemma 20.1.3.

20.3 Prove that the space D in (20.1.3) is dense in L2(Rd).

20.4 Use Lemma 20.2.4 to formulate and prove a d-dimensional version
of Theorem 9.5.1.
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20.5 Prove the following:

(i) If {TCjkφj}k∈Zd,j∈J satisfies the LIC, then it also satisfies the
α-LIC.

(ii) If {TCjkφj}k∈Zd,j∈J and {TCjkφ̃j}k∈Zd,j∈J satisfy the LIC,
then the dual α-LIC is satisfied.

20.6 Show that if a shift-invariant system {TCkφj}j∈J,k∈Zd in L2(Rd) is
a Bessel sequence, then the LIC is satisfied.
Hint: Use Proposition 20.3.2.

20.7 Prove Corollary 20.4.4.

20.8 Prove Theorem 20.5.2.
Hint: Use that F−1EBmTAj = T−BmF−1TAj .

20.9 Prove Corollary 20.5.5, and state a sufficient condition for
the Bessel property of {EbmTAmng}m∈Z,n∈Zd along the lines of
Theorem 20.5.1.

20.10 Assume that {EBmTAng}m,n∈Zd is a frame for L2(Rd) with
frame operator S : L2(Rd) → L2(Rd). Show that the frame
decomposition takes the form (20.33).



21
Frames on Locally Compact Abelian
Groups

In this chapter we will consider frame theory from a broader viewpoint than
before, namely, as a part of general harmonic analysis. A central part of
harmonic analysis deals with functions on groups and ways to decompose
such functions in terms of either series representations or integral repre-
sentations of certain “basic functions.” One of the strengths of harmonic
analysis is that it allows very general results that cover several cases at once;
for example, instead of developing parallel theories for various groups, we
might obtain all of them as special manifestations of a single theory.
Even though the group aspect has not been explicitly discussed so far,

it is evident that this is implicit in the treatment in the previous chap-
ters. For example, Chapters 11–13 dealt with Gabor analysis in L2(R); in
Section 20.5, we saw that completely similar results hold in L2(Rd), and
Chapter 14 presented parallel results for Gabor analysis in �2(Z). From
the viewpoint of harmonic analysis, the sets R,Rd, and Z are just locally
compact abelian groups, and the similarity between Gabor analysis in the
three cases definitely calls for a general theory that covers all of them. The
purpose of the current chapter is exactly to consider frame theory within
the setup of harmonic analysis on locally compact abelian groups. On short
form, the merits of the approach in the current chapter are as follows:

• It unifies harmonic analysis on the groups R,T,Z,ZL, and R
d;

• It unifies Gabor analysis and wavelet analysis;

• It unifies the continuous theory (integral representations) and the
discrete theory (series expansions).

©
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The idea of connecting frame theory and harmonic analysis is not new. One
of the first contributions to general frame theory, namely, the Feichtinger–
Gröchenig theory developed around 1990 (see [280] or Section 24.2), was
formulated in the language of square-integrable representations of locally
compact groups. And the idea of considering Gabor analysis on locally com-
pact abelian groups has appeared in several publications, including, e.g.,
[233] by Dahlke, [287] by Feichtinger and Kozek, and [339] by Gröchenig.

More recently Kutyniok and Labate [468] extended most of the results
about generalized shift-invariant systems in [398] (i.e., Chapter 20 in the
current book) to locally compact abelian groups. Cabrelli and Paternostro
gave a detailed description of several aspects of the theory for shift-invariant
systems in [101], and Christensen and Goh showed in [176] that also the
explicit frame constructions (based, e.g., on B-splines) can be transferred to
the setting of locally compact abelian groups. Also, a series of recent papers
by Bownik and Ross [85] and Jakobsen and Lemvig [417, 418] presents
a unified approach to Gabor analysis on groups that covers as well the
discrete case (series expansions in terms of frames) as the integral case
(continuous frames).
Our focus will be on some of the key results in the papers [468, 176, 417],

and [418]. We do not aim at a detailed technical treatment but rather at an
overview that connects the abstract theory with its concrete manifestations
within Gabor analysis and wavelet theory. Thus, in many cases we will refer
to the original sources for proofs and additional results.
The chapter is organized as follows. In Section 21.1, we present the basics

about locally compact abelian groups, and Section 21.2 extends the central
objects from classical Fourier analysis to this setting. Section 21.3 gives
a formal introduction to the operators that will be used to generate the
frames and the corresponding Gabor systems and GSI systems. Section 21.4
collects the basic frame calculations on locally compact abelian groups for
the case of a single generator. Section 21.5 is based on [176] by Christensen
and Goh; it shows that with the definition of B-splines on locally compact
groups that was given independently by Dahlke [232, 233] and Tikhomirov
[613] in 1994, not only the abstract theory for Gabor analysis but also the
explicit constructions carry over to locally compact abelian groups. Sec-
tion 21.6 extends the analysis of generalized shift-invariant systems to the
setting of locally compact abelian groups; most of the results are taken from
the paper [468] and follow the same pattern as our analysis in Chapter 20.
Finally, Section 21.7 presents some of the recent results by Bownik & Ross
and Jakobsen & Lemvig; the special case of Gabor systems is treated in
Section 21.8.
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21.1 LCA Groups

In this section we collect the main definitions and classical results related
to locally compact abelian groups. Besides fixing the notation, the main
purpose is to state the concrete forms of the abstract definitions whenever
they are applied to the classical groups (see Example 21.1.2). Most results
are presented without proofs; we refer to any of the standard references, i.e.,
the monographs [402] by Hewitt and Ross, [553] by Reiter and Stegeman,
and [567] by Rudin for proofs and much more information.
Let us first give a precise definition of a locally compact abelian group,

from now on called an LCA group; we refer to Definition A.3.1 for the
definition of a locally compact group.

Definition 21.1.1 An LCA group is a locally compact group for which the
following hold:

(i) The group composition, denoted by the symbol “+,” is abelian, i.e.,

x+ y = y + x, ∀x, y ∈ G;

(ii) G is metrizable, i.e., G can be equipped with a metric.

Note that we have included the condition of G being metrizable in the
definition of an LCA group; remember also that it is already part of the
definition of a locally compact group that the topology is a Hausdorff topol-
ogy and that G is σ-compact, i.e., a countable union of compact sets. The
assumption of G being metrizable and σ-compact implies (and is in fact

equivalent with) that Ĝ is metrizable and σ-compact; this is furthermore
equivalent with L2(G) being separable.

Whenever G is an LCA group, we will always denote the group compo-
sition by the symbol “+” and the neutral element by 0. Let us introduce
the standard cases of LCA groups.

Example 21.1.2 Let d ∈ N.

(i) The set Rd equipped with the usual addition and topology is an LCA
group.

(ii) The set Zd equipped with the usual addition and the discrete topology
is an LCA group.

(iii) The torus

T = {c ∈ C
∣
∣ |c| = 1}

is an LCA group with the composition defined by multiplication and
the topology inherited from C; similarly, Td is an LCA group.

(iv) Given any N ∈ N, let ZN denote the set of integers modulo N. This
group is finite and is usually identified with the set {0, 1, . . . , N − 1};



522 21 Frames on Locally Compact Abelian Groups

it forms an LCA group with respect to addition and the discrete
topology.

(v) Any direct product Rd1×Z
d2×T

d3×ZN , where d1, d2, d3 ∈ N, forms
an LCA group with respect to the natural composition and topology.
In [552], Reiter called such groups elementary LCA groups; see also
the paper [287] by Feichtinger and Kozek. �

Definition 21.1.3 Let G denote an LCA group.

(i) A character on G is a function γ : G → T := {z ∈ C
∣
∣ |z| = 1}, for

which γ(x+ y) = γ(x)γ(y), ∀x, y ∈ G.

(ii) The set of continuous characters on G is denoted by Ĝ.

The set Ĝ forms an abelian group, the dual group of G, when equipped
with the composition

(γ + γ′)(x) := γ(x)γ′(x), γ, γ′ ∈ Ĝ, x ∈ G.

We will now describe a topology on Ĝ that even makes it an LCA group.
Given a compact set K ⊂ G and ε > 0, let

U(K, ε) :=
{
γ ∈ Ĝ

∣
∣ |γ(x)− 1| < ε, ∀x ∈ K.

}

Then the sets U(K, ε), with K ranging through all compact sets in G and
ε > 0 running through R+, form a basis of neighborhoods of the character

γ = 1, for a topology that makes Ĝ a locally compact space.
The Pontryagin duality theorem states that there exists a topological

group isomorphism mapping the dual group of Ĝ, i.e., the group ̂̂G, onto G.

Usually we can identify ̂̂G and G and we will simply write

̂̂G = G. (21.1)

Thus, γ(x) can either be interpreted as the action of γ ∈ Ĝ on x ∈ G, or

as the action of x ∈ ̂̂G = G on γ ∈ Ĝ. For this reason, we will from now on
use the notation

(x, γ) := γ(x), x ∈ G, γ ∈ Ĝ.

The following definition introduces one of the key concepts in an LCA
group.

Definition 21.1.4 Let G denote an LCA group and H a closed subgroup
of G. The annihilator H⊥ of H is defined by

H⊥ :=
{
γ ∈ Ĝ

∣
∣ (x, γ) = 1, ∀x ∈ H

}
.
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It follows from the definition of the topology on Ĝ that the annihilator H⊥

is a closed subgroup of Ĝ.
Now, let G denote an LCA group and H a closed subgroup of G. The sets

x + H, x ∈ G, are called cosets of H. Two cosets x + H and y + H are
identical if x − y ∈ H ; if not, they are disjoint. Taking one representative
of each coset yields the quotient group G/H ; this set is in fact an abelian
group under the composition

(x+H) + (y +H) := x+ y +H.

Let us describe a topology on G/H, which actually makes it an LCA group.
In order to do this, consider the canonical quotient mapping

πH : G→ G/H, πH(x) := x+H. (21.2)

Now, a subset E ⊆ G/H is said to be open if π−1
H (E) is an open set in G.

Let us collect some of the classical results about the introduced concepts.
The proofs can be found, e.g., in [402].

Lemma 21.1.5 Let G be an LCA group and H a closed subgroup in G.
Then the following hold:

(i) If G is discrete, then Ĝ is compact.

(ii) If G is compact, then Ĝ is discrete.

(iii) There exists a topological group isomorphism mapping Ĝ/H onto H⊥,
i.e., (in the sense of this isomorphism)

Ĝ/H = H⊥;

(iv) There exists a topological group isomorphism mapping
̂̂
G/H⊥ onto

H, i.e., (in the sense of this isomorphism)

̂̂
G/H⊥ = H.

(v) (H⊥)⊥ = H.

In Sections 21.2–21.6, we only need some special subgroups of G, the
so-called lattices, to be defined next. Note that in the literature the name
uniform lattice also appears.

Definition 21.1.6 Let G denote an LCA group. A discrete subgroup Λ
of G for which G/Λ is compact is called a (uniform) lattice.

Lattices are known explicitly in most of the classical LCA groups, e.g., for
the elementary LCA groups. However, there also exist LCA groups without
(nontrivial) lattices; see, e.g., [446] and [457]. We return to such groups in
Section 21.7.
A lattice in G leads to a splitting of the group G, as well as the dual

group, into disjoint cosets:
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Lemma 21.1.7 Let G be an LCA group and Λ a lattice in G. Then the
following hold:

(i) There exists a Borel measurable relatively compact set Q ⊂ G such
that

G =
⋃

λ∈Λ

(λ +Q), (λ +Q) ∩ (λ′ +Q) = ∅ for λ �= λ′, λ, λ′ ∈ Λ. (21.3)

(ii) The set Λ⊥ is a lattice in Ĝ, and there exists a Borel measurable

relatively compact set V ⊂ Ĝ such that

Ĝ =
⋃

ω∈Λ⊥
(ω + V ), (ω + V ) ∩ (ω′ + V ) = ∅ for ω 
= ω′, ω, ω′ ∈ Λ⊥. (21.4)

Proof. The result in (i) can be found, e.g., in [446]. Let us show how
the results in Lemma 21.1.5 can be used to prove (ii). First, since G/Λ is
compact by definition, Lemma 21.1.5(ii)+(iii) imply that Λ⊥ is discrete.
Also, since Λ is a discrete subgroup of G, its dual group is compact by
Lemma 21.1.5(i). By (iv) in the same lemma, this implies that Ĝ/Λ⊥ is
compact (recall that the double dual of a group is the group itself). Thus,

Λ⊥ is a lattice in Ĝ, and the result in (ii) follows from (i). �

A set Q as in Definition 21.1.7 (i) is called a fundamental domain asso-
ciated with the lattice Λ; and the density (also called lattice size) of the
lattice Λ is defined as

s(Λ) := μG(Q), (21.5)

where μG denotes the Haar measure on G (see the formal definition in Sec-
tion 21.2). We note that in general the fundamental domainQ is not unique;
however, the density is independent of the choice of the fundamental
domain.
Let us determine the dual group, the lattices, and the corresponding

annihilators for some of the standard LCA groups. Recall that, given an
invertible matrix A with real entries, we use the notation

A := (AT )−1.

Example 21.1.8 For the LCA group G = R
d, the characters are the

functions

γy : G→ C, γy(x) = e2πiy·x,

where y ∈ R
d. That is, the dual group Ĝ can be identified with G = R

d,
and we will simply write (x, y) = e2πiy·x, x, y ∈ R

d. Any lattice has the
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form

Λ = AZd

for some invertible d × d matrix A with real entries; as a corresponding
fundamental domain, we can take Q = A[0, 1[d. The Haar measure on R

d

is just the Lebesgue measure, so the density of the lattice is

s(Λ) = μ(A[0, 1[d) = | detA|.
The annihilator of the lattice Λ is

Λ⊥ = (AT )−1
Z
d = A

Z
d,

and the set

V = A[0, 1[d

is a fundamental domain associated with the lattice Λ⊥ in Ĝ. �

Example 21.1.9 Consider the torus group G = T, which we (as always)
identify with [0, 1[. As in Example 21.1.8, the characters have the form

γy : G→ C, γy(x) = e2πiyx, x ∈ [0, 1[

for some y ∈ R; but due to the periodicity, we have γy(x + 1) = γy(x) for

all x ∈ [0, 1[, and hence y ∈ Z. The dual group of T is in fact Ĝ = Z. There
are only a countable number of lattices in G, namely, the sets of the form

Λ =
1

N
ZN =

{

0,
1

N
, . . . ,

N − 1

N

}

for N ∈ N. The set Q = [0, 1/N [ is a fundamental domain associated with
the lattice Λ, and the annihilator of the lattice Λ is Λ⊥ = NZ. �

Example 21.1.10 For the group G = Z, the dual group is Ĝ = T; in fact,
the characters are

γy : Z→ C, γy(x) = e2πiyx, x ∈ Z,

for y ∈ T. The lattices are of the form Λ = NZ, N ∈ N. The fundamental
domain associated with Λ is Q = {0, . . . , N − 1}; the annihilator is Λ⊥ =
1
NZN , with corresponding fundamental domain V = [0, 1/N [. �

Example 21.1.11 For L ∈ N, let G = ZL; again, the characters have the
form γy : G → C, γy(x) = e2πiyx, x ∈ ZL, for some y ∈ R. Due to the
periodicity, γy(x + L) = γy(x) for all x ∈ {0, 1, . . . , L − 1}, so y ∈ L−1

Z.
Let us change the notation slightly and write the characters as

γy : G→ C, γy(x) = e2πiyx/L
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for y ∈ Z. Note that since x ∈ {0, 1, . . . , L− 1}, the characters y and y+L
are identical; thus, the dual group of ZL can be identified with ZL itself.
Let M ∈ N be a divisor of L, i.e., M� = L for some � ∈ N. Then the set

Λ := {0,M, . . . , (�− 1)M} = MZL/M

is a lattice in G. As corresponding fundamental domain, we can take Q =
{0, 1, . . . ,M − 1} = ZM . Also, by definition the annihilator Λ⊥ consists of

the γ ∈ Ĝ = {0, 1, . . . , L−1} for which e2πiγx/L = 1 for all x ∈ Λ, i.e., such
that e2πiγkM/L = 1 for all k = 0, 1, . . . , L/M − 1; thus,

Λ⊥ = {�, 2�, . . . , (M − 1) �} = L

M
ZM .

As fundamental domain associated with the lattice Λ⊥, we can take
V = {0, 1, . . . , L/M − 1} = ZL/M . �

We note that the dual group of any elementary LCA group can be found
easily, based on the dual groups of R,T,Z, and ZN :

Lemma 21.1.12 Let G1, . . . , Gn denote LCA groups, with corresponding
dual groups Ĝ1, . . . , Ĝn. Then the product group

G := G1 ⊕ · · · ⊕Gn

is an LCA group with dual group

Ĝ = Ĝ1 ⊕ · · · ⊕ Ĝn.

21.2 Fourier Analysis on LCA Groups

We will now introduce the key elements in the Fourier analysis on an LCA
group G.
Let Cc(G) denote the set of continuous functions f : G → C with

compact support. As discussed in Section A.3, any LCA group G can be
equipped with a positive measure μG which is translation invariant, i.e.,
such that for all f ∈ Cc(G),

∫

G

f(x+ y) dμG(x) =

∫

G

f(x) dμG(x), ∀ y ∈ G.

The measure is unique up to multiplication with a positive scalar and is
called the Haar measure. Note that we have chosen to denote the measure
by μG instead of just μ; the reason is that we will need to consider the
Haar measure on several groups simultaneously.
With the Haar measure at hand, we can define the spaces Lp(G), 1 ≤

p < ∞, in the usual way; we will only need the spaces L1(G) and L2(G).
The space L2(G) is a Hilbert space in the obvious way; furthermore, our



21.2 Fourier Analysis on LCA Groups 527

assumption of G being a countable union of compact sets and metrizable
implies (and is, in fact, equivalent to) that L2(G) is separable.

We will always consider the Haar measure μG as fixed. The Fourier
transform is defined as the operator

F : L1(G)→ C0(Ĝ), Ff(γ) :=
∫

G

f(x)(−x, γ) dμG(x), γ ∈ Ĝ; (21.6)

here C0(Ĝ) denotes the functions on Ĝ vanishing at infinity. We will often

use the notation f̂ := Ff.
The standard results about the classical Fourier transform extend to

LCA groups. In particular, we have the inversion theorem and Plancherels
theorem; we refer to [567] for a proof of Theorem 21.2.1.

Theorem 21.2.1 With appropriate normalization of the Haar measure μ
̂G

on Ĝ, the following hold:

(i) Whenever f ∈ L1(G) and f̂ ∈ L1(Ĝ), it holds that

f(x) =

∫

̂G

f̂(γ) (x, γ)dμ
̂G(γ), x ∈ G. (21.7)

(ii) The Fourier transform can be extended to a surjective isometry

F : L2(G)→ L2(Ĝ).

(iii) For any f, g ∈ L2(G),
∫

G

f(x)g(x) dμG(x) =

∫

̂G

f̂(γ)ĝ(γ) dμ
̂G(γ). (21.8)

We will always choose the Haar measure on Ĝ as in Theorem 21.2.1, i.e.,
such that the inversion formula (21.7) holds for the pairs G and Ĝ. Such

Haar measures μG and μ
̂G are called dual measures. Putting φ := f̂ , we

can write (21.7) as

F−1φ(x) =

∫

̂G

φ(γ)(x, γ)dμ
̂G(γ). (21.9)

Let us now again consider a closed subgroup H of G and the canonical
quotient mapping πH : G→ G/H in (21.2). By definition, πH is surjective,
i.e., each ẋ ∈ G/H has the form ẋ = πH(x) for some x ∈ G. Since G/H is an
LCA group, we can equip it with a Haar measure dμG/H(ẋ). Furthermore,
letting dμH denote any Haar measure on H and taking any f ∈ L1(G), the
integral

∫
H
f(x+ h) dμH is constant on the coset x+H. Thus

ẋ �→
∫

H

f(x+ h) dμH

defines a function on G/H. We can now state Weil’s theorem.
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Theorem 21.2.2 Let H denote a closed subgroup of the LCA group G.
Then the following hold:

(i) Taking any Haar measures on two of the LCA groups G,H, and G/H,
the third Haar measure can be normalized such that for all f ∈ L1(G),

∫

G

f(x) dμG(x) =

∫

G/H

∫

H

f(x+ h) dμH(h) dμG/H(ẋ). (21.10)

(ii) If the measures on G,H, and G/H are chosen such that (21.10) holds,

then the corresponding dual measures on the dual groups Ĝ, Ĥ =

Ĝ/H⊥ and Ĝ/H = H⊥ satisfy that for all F ∈ L1(Ĝ),
∫

̂G

F (γ) dγ =

∫

̂G/H⊥

∫

H⊥
F (γ + ω) dμH⊥(ω) dμ

̂G/H⊥(γ̇). (21.11)

The following example shows that in the case of the LCA group R, Weil’s
theorem corresponds to the usual “periodization trick.”

Example 21.2.3 Let G = R, and consider the subgroupH = aZ, for some
a > 0. Then

∫

H

f(x+ h) dμH(h) =
∑

k∈Z

f(x+ ak).

Now let dμG/H(ẋ) denote a Haar measure on G/H. Since the mapping

Φ : Cc(G/H)→ C, Φf :=

∫ a

0

f(x+H) dx =

∫ a

0

f(πH(x)) dx

is a positive and translation-invariant linear functional on Cc(G/H), the
definition of the Haar measure on G/H implies that for some c > 0,

Φf = c

∫

G/H

f(ẋ) dμG/H(ẋ)

for all f ∈ Cc(G/H), or

c

∫

G/H

f(ẋ) dμG/H(ẋ) =

∫ a

0

f(πH(x)) dx.

Thus, Weil’s theorem says that with appropriate normalization of the
measures,

∫ a

0

∑

k∈Z

f(x+ ak) dx =

∫ ∞

−∞
f(x) dx;

this is the well-known “periodization trick.” �

We will need the following consequence of Weil’s theorem.
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Lemma 21.2.4 Let Λ denote a lattice in the LCA group G, and let V ⊂ Ĝ
denote a fundamental domain associated with the annihilator Λ⊥. Choose
the Haar measure μ

̂G on Ĝ such that the inversion formula (21.7) holds.
Then, for all F ∈ L2(V ),

μ
̂G(V )

∫

V

|F (γ)|2 dμ
̂G(γ) =

∑

λ∈Λ

|F̂χV (λ)|2, (21.12)

where the hat denotes the Fourier transform on the group Ĝ.

Proof. Let F ∈ L2(V ). Weil’s formula implies that for an appropriate

normalization of the measure on Ĝ/Λ⊥ and with ġ = g + Λ⊥,
∫

V

|F (γ)|2 dμ
̂G(γ)

=

∫

̂G

|FχV (γ)|2 dμ ̂G(γ) = μ
̂G(V )

∫

̂G/Λ⊥

∑

h∈Λ⊥
|FχV (g + h)|2dμ

̂G/Λ⊥(ġ)

= μ
̂G(V )

∫

̂G/Λ⊥

∣
∣
∣
∣

∑

h∈Λ⊥
FχV (g + h)

∣
∣
∣
∣

2

dμ
̂G/Λ⊥(ġ). (21.13)

Note that with this normalization of the measure on Ĝ/Λ⊥, we have

μ
̂G/Λ⊥(Ĝ/Λ⊥) = 1. Thus, using the Plancherel theorem on Ĝ/Λ⊥, as well

as Lemma 21.1.5 (iv), followed by a new application of Weil’s formula and
the definition of the Fourier transform,

∫

̂G/Λ⊥

∣
∣
∣
∣

∑

h∈Λ⊥
FχV (g + h)

∣
∣
∣
∣

2

dμ
̂G/Λ⊥(ġ)

=
∑

λ∈Λ

∣
∣
∣
∣

∫

̂G/Λ⊥

∑

h∈Λ⊥
(FχV )(g + h)(−g, λ) dμ

̂G/Λ⊥(ġ)

∣
∣
∣
∣

2

=
∑

λ∈Λ

∣
∣
∣
∣

1

μ
̂G(V )

∫

̂G

(FχV )(γ)(−γ, λ)dμ ̂G(γ)

∣
∣
∣
∣

2

=
1

μ
̂G(V )2

∑

λ∈Λ

|F̂χV (λ)|2.

Inserting this in (21.13) yields the result. �

We can consider Lemma 21.2.4 as a general version of Parseval’s
equation:

Example 21.2.5 Consider the groupG := R, with dual group Ĝ = R. The
functions {e2πikx}k∈Z form an orthonormal basis for L2(0, 1); thus, writing

the Fourier coefficients for f ∈ L2(0, 1) as ck =
∫ 1

0
f(x) e−2πikx dx, k ∈ Z,
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Parseval’s equation (see (3.35)) shows that
∫ 1

0

|f(x)|2 dx =
∑

k∈Z

|ck|2.

Via the Fourier transform on L2(R), this can be written as
∫ 1

0

|f(x)|2 dx =
∑

k∈Z

∣
∣
∣f̂χ[0,1](k)

∣
∣
∣
2

. (21.14)

This is a special case of the result in Lemma 21.2.4. In fact, consider the set
V = [0, 1[ as a subset of Ĝ = R. Defining the lattice Λ := Z in R, we have
that Λ⊥ = Z. Thus, the set V = [0, 1[ satisfies (21.4), and Lemma 21.2.4
tells us that (21.12) holds. Inserting the sets V and Λ in (21.12) shows that
this is exactly the same as (21.14). �

21.3 Gabor Systems on LCA Groups

As in the case of frame theory on L2(R), the concrete example of frames
associated with LCA groups will be defined in terms of certain operators:

Definition 21.3.1 Let G denote an LCA group with dual group Ĝ.

(i) For y ∈ G, the translation operator Ty : L2(G)→ L2(G) is defined by

Tyf(x) = f(x− y), x ∈ G. (21.15)

(ii) For η ∈ Ĝ, the modulation operator Eη : L2(G)→ L2(G) is

Eηf(x) = (x, η)f(x), x ∈ G. (21.16)

(iii) For η ∈ Ĝ, the translation operator Tη : L2(Ĝ)→ L2(Ĝ) is

Tηf(γ) = f(γ − η), γ ∈ Ĝ. (21.17)

(iv) For y ∈ G, the modulation operator Ey : L2(Ĝ)→ L2(Ĝ) is

Eyf(γ) := (y, γ) f(γ), γ ∈ Ĝ. (21.18)

Note that the operators Ty and Eη act on L2(G), while Tη and Ey act on

L2(Ĝ). Like in the case of translation operators and modulation operators
on L2(R), one can show (Exercise 21.1) that all four classes of operators
are unitary and that they satisfy the commutator relations

TyEη = (−y, η)EηTy, TηEy = (−y, η)EyTη, y ∈ G, η ∈ Ĝ, (21.19)

and

FTy = E−yF , F−1Ey = T−yF−1, y ∈ G. (21.20)
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Note that in (21.19) and (21.20) the first stated relation is an operator

equation in L2(G), while the second relation takes place in L2(Ĝ). Based on
the operators in Definition 21.3.1, we will consider various classes of systems
of functions, in as well L2(G) as L2(Ĝ). The results in Sections 21.4–21.5
will concern systems of functions arising by actions of a class of operators Eλ
on a countable collection of functions {Φk}k∈I in L2(Ĝ), with λ belonging
to lattices Λk in G that depend on k ∈ I. The resulting class of functions
in L2(Ĝ) is of the form {EλΦk}λ∈Λk,k∈I ; we refer to such a system as
a Fourier-like system. We emphasize that {EλΦk}λ∈Λk,k∈I is a function

system in L2(Ĝ), not in L2(G).
In Section 21.6 the Fourier transform and the commutator relations

in (21.20) are used to turn the Fourier-like systems {EλΦk}λ∈Λk,k∈I in

L2(Ĝ) into GSI systems {Tλφk}λ∈Λk,k∈I in L2(G).
In Section 21.8 we will consider systems in L2(G) of the form

{EηTλg}η∈Γ,λ∈Λ, where translation and modulation of g ∈ L2(G) are along

lattices Λ ⊂ G and Γ ⊂ Ĝ [in fact, the results will deal with a more general
case where the lattices are replaced by certain subgroups]. We will call such
a system a Gabor system in L2(G).

Note that we will encounter Gabor systems in as well L2(G) as in L2(Ĝ).

The Gabor systems in L2(Ĝ) arise naturally as special cases of the Fourier-

like systems {EλΦk}λ∈Λk,k∈I in L2(Ĝ), simply by taking Φk on the form

Φk = TkΦ for a fixed function Φ ∈ L2(Ĝ). Thus, we are naturally led to

Gabor systems in L2(Ĝ) on the form {EλTηΦ}λ∈Λ,η∈Γ, where Φ ∈ L2(Ĝ), Λ

is a lattice in G, and Γ is a lattice in Ĝ.
In the case G = R, the Gabor system in L2(G) is exactly the Gabor

system considered in Chapters 11–13. We will now show that applying the
above abstract approach to the elementary LCA groups leads to the classes
of Gabor systems considered in Chapter 14.

Example 21.3.2 Let G = Z; then Ĝ = T, where we as usual identify T

with [0, 1[. Let g = Φ ∈ �2(Z) and consider a lattice Λ = NZ in G and a

lattice Γ =
{
0, 1

M , . . . , M−1
M

}
in Ĝ; here M,N ∈ N. Then {EηTλg}η∈Γ,λ∈Λ

takes the form

{EηTλg}η∈Γ,λ∈Λ = {e2πim/MxΦ(x− nN)}n∈Z,m=0,...,M−1

= {Em/MTnNΦ}n∈Z,m=0,...,M−1 (21.21)

in L2(G) = �2(Z); this is precisely the Gabor system in �2(Z) considered
in Section 14.1. �
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Example 21.3.3 Let G = T; then Ĝ = Z. By Example 21.1.9, a lattice in
G has the form

Λ =

{

0,
1

N
, . . . ,

N − 1

N

}

for some N ∈ N; and by Example 21.1.10, the lattices in Ĝ have the form
Γ = MZ for some M ∈ Z. Thus, the Gabor system on L2(G) = L2(0, 1)
with window g = Φ ∈ L2(0, 1) takes the form

{EηTλg}η∈Γ,λ∈Λ = {e2πimMxΦ(x− n/N)}m∈Z,n=0,...,N−1

= {EmMTn/NΦ}m∈Z,n=0,...,N−1. (21.22)

If we choose to identify T with the interval [0, L[ for some L ∈ N instead
of [0, 1[, slight modifications of the calculations lead to the Gabor sys-
tem {EmM/LTnL/NΦ}m∈Z,n=0,...,N−1 in L2(G) = L2(0, L); this corresponds
exactly to the form in (14.20). �

Example 21.3.4 Let L ∈ N and consider the finite group G = ZL =
{0, 1, . . . , L − 1}. By Example 21.1.11, we know that the characters have
the form

γ�(x) = e2πi�x/L, x ∈ ZL

for � = 0, 1, . . . , L − 1, i.e., Ĝ = G = ZL. Given N ∈ N, such that N ′ :=
L/N ∈ N, Example 21.1.11 shows that the set

Λ = NZL/N = {0, N, . . . , (N ′ − 1)N}
is a lattice in G; similarly, given M ∈ N such that M ′ := L/M ∈ N, we
consider the lattice

Γ = M ′
ZL/M ′ = {0,M ′, . . . , (M − 1)M ′}

in Ĝ. Then, given g = Φ ∈ C
L, we obtain the Gabor system

{EηTλg}η∈Γ,λ∈Λ = {e2πimM ′x/LΦ(x− nN)}m=0,...,M−1,n=0,...,N ′−1

= {Em/MTnNΦ}m=0,...,M−1,n=0,...,N ′−1 (21.23)

in C
L. This is precisely the Gabor system considered in Section 14.6;

see (14.29). �

21.4 Basic Frame Calculations in L2(Ĝ).

In the entire section we will consider an LCA group G, with dual group Ĝ.
We will fix a Haar measure μG on G, and normalize the Haar measure
μ

̂G on Ĝ such that the inversion formula and Plancherel formula hold.
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The material of the section is taken from the paper [176] by Christensen
and Goh.
Our goal in this section is to analyze Fourier-like systems {EλΦ}λ∈Λ,

where Λ is a lattice in G and Φ ∈ L2(Ĝ); recall that the modulation oper-
ator is defined in (21.18). Compared to Section 21.2, we will simplify the
notation and, for f ∈ L1(G), simply write

∫

G

f(x) dx :=

∫

G

f(x) dμG(x).

Similarly, for F ∈ L1(Ĝ), we write

∫

̂G

F (γ) dγ :=

∫

̂G

F (γ) dμ
̂G(γ).

Also, for technical reasons, we will often need the dense subspace D(Ĝ) of

L2(Ĝ) defined by

D(Ĝ) := {F ∈ L2(Ĝ)
∣
∣ suppF is compact andF ∈ L∞(Ĝ)}. (21.24)

This is analogue to our use of the space D in the context of generalized
shift-invariant systems on L2(Rd); see (20.8). We will use the notation
from Section 21.2, and consequently let V denote a fundamental domain
associated with the annihilator Λ⊥.

We begin with a result, which will play a similar role as Lemma 20.2.1
in the analysis of GSI systems in L2(Rd).

Lemma 21.4.1 Let Λ be a lattice in G, and choose the relatively compact
set V ⊂ Ĝ as a fundamental domain for the lattice Λ⊥. Let F,Φ ∈ L2(Ĝ).
Then the following hold:

(i) The function

α : Ĝ→ C, α(γ) :=
∑

ω∈Λ⊥
F (ω + γ)Φ(ω + γ), (21.25)

is well-defined for a.e. γ ∈ V, belongs to L1(V ), and satisfies that

α(γ + ω′) = α(γ), ∀ γ ∈ Ĝ, ω′ ∈ Λ⊥. (21.26)

(ii) For any λ ∈ Λ,

〈F, EλΦ〉 =
∫

V

α(γ)(λ, γ) dγ = α̂χV (λ), (21.27)

where the hat denotes the Fourier transform on the group Ĝ.
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Proof. Using Lemma 21.1.7(ii),
∫

V

∑

ω∈Λ⊥
|F (ω + γ)Φ(ω + γ)| dγ =

∑

ω∈Λ⊥

∫

V

|F (ω + γ)Φ(ω + γ)| dγ

=
∑

ω∈Λ⊥

∫

ω+V

|F (γ)Φ(γ)| dγ =

∫

̂G

|F (γ)Φ(γ)| dγ,

which is finite by the Cauchy–Schwarz inequality. This shows that α(γ) is
well-defined pointwise for almost all γ ∈ V and also implies that α ∈ L1(V ).

Now, by Lemma 21.1.7 (ii), any γ ∈ Ĝ can be written as γ = γ′ + ω′ for
some γ′ ∈ V, ω′ ∈ Λ⊥. Then

∑

ω∈Λ⊥
|F (ω + γ)Φ(ω + γ)| =

∑

ω∈Λ⊥
|F (ω + γ′ + ω′)Φ(ω + γ′ + ω′)|

=
∑

ω∈Λ⊥
|F (ω + γ′)Φ(ω + γ′)|,

where we used the change of summation variable ω → ω − ω′ (which is
allowed because Λ⊥ is a group). Thus, the series defining α(γ) is absolutely

convergent for a.e. γ ∈ Ĝ. The same argument, just without the absolute
value, shows that α(γ + ω′) = α(γ), which proves (i).
For the proof of (ii), using again Lemma 21.1.7(ii),

〈F, EλΦ〉 =

∫

̂G

F (γ)Φ(γ) (λ, γ) dγ =
∑

ω∈Λ⊥

∫

ω+V

F (γ)Φ(γ) (λ, γ) dγ

=
∑

ω∈Λ⊥

∫

V

F (ω + γ)Φ(ω + γ) (λ, ω + γ) dγ.

Note that since λ ∈ Λ and ω ∈ Λ⊥, we have that

(λ, ω + γ) = (λ, ω)(λ, γ) = (λ, γ).

Thus the calculation yields that

〈F, EλΦ〉 =

∫

V

∑

ω∈Λ⊥
F (ω + γ)Φ(ω + γ) (λ, γ) dγ

=

∫

V

α(γ)(λ, γ) dγ =

∫

V

α(γ)(−λ, γ) dγ = α̂χV (λ),

as desired. �

The next result will be used to examine the Bessel condition for sequences
on the form {EλΦ}λ∈Λ.

Lemma 21.4.2 Let Λ denote a lattice in the group G, and choose the
relatively compact set V ⊂ Ĝ as a fundamental domain for the lattice Λ⊥.
Let Φ ∈ L2(Ĝ). Then the following hold:
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(i) If F ∈ D(Ĝ), then

∑

λ∈Λ

|〈F, EλΦ〉|2 = μ
̂G(V )

∑

ω∈Λ⊥

∫

̂G

F (γ)F (ω + γ) Φ(γ)Φ(ω + γ) dγ

= μ
̂G(V )

(∫

̂G

|F (γ)Φ(γ)|2 dγ +R(F )

)

, (21.28)

where

|R(F )| ≤
∫

̂G

|F (γ)|2
∑

ω∈Λ⊥\{0}
|Φ(γ)Φ(γ + ω)| dγ.

(ii) Assume that

B := μ
̂G(V ) sup

γ∈ ̂G

∑

ω∈Λ⊥
|Φ(γ)Φ(γ + ω)| <∞.

Then {EλΦ}λ∈Λ is a Bessel sequence in L2(Ĝ) with bound B.

Proof. The assumption F ∈ D(Ĝ) will justify all interchanges of sum-

mations and integrals in the following as Ĝ is metrizable and Λ⊥ is a
discrete subgroup of Ĝ. In addition, applying the Cauchy–Schwarz inequal-
ity followed by Lemma 21.1.7(ii), it shows that α ∈ L2(V ). Thus, using
Lemma 21.4.1(ii) and Lemma 21.2.4,

∑

λ∈Λ

|〈F, EλΦ〉|2 =
∑

λ∈Λ

|α̂χV (λ)|2 = μ
̂G(V )

∫

V

|α(γ)|2 dγ

= μ
̂G(V )

∫

V

α(γ)α(γ) dγ. (21.29)

Inserting the expression for α(γ) (while keeping the term α(γ)) leads to

∑

λ∈Λ

|〈F, EλΦ〉|2 = μ
̂G(V )

∫

V

∑

ω∈Λ⊥
F (ω + γ)Φ(ω + γ)α(γ) dγ

= μ
̂G(V )

∑

ω∈Λ⊥

∫

V

F (ω + γ)Φ(ω + γ)α(γ) dγ

= μ
̂G(V )

∑

ω∈Λ⊥

∫

ω+V

F (γ)Φ(γ)α(γ − ω)dγ,

where the last step used the translation invariance of the Haar measure.
Now, by Lemma 21.4.1(i), we have that α(γ−ω) = α(γ) whenever ω ∈ Λ⊥.
Thus, we arrive at

∑

λ∈Λ

|〈F, EλΦ〉|2 = μ
̂G(V )

∑

ω∈Λ⊥

∫

ω+V

F (γ)Φ(γ)α(γ) dγ

= μ
̂G(V )

∫

̂G

F (γ)Φ(γ)α(γ) dγ, (21.30)
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where we used Lemma 21.1.7(ii) in the last step. Inserting again the
expression for α(γ) now yields that

∑

λ∈Λ

|〈F, EλΦ〉|2 = μ
̂G(V )

∫

̂G

F (γ)Φ(γ)
∑

ω∈Λ⊥
F (ω + γ)Φ(ω + γ) dγ

= μ
̂G(V )

∑

ω∈Λ⊥

∫

̂G

F (γ)F (ω + γ) Φ(γ)Φ(ω + γ) dγ.

Pulling out the term corresponding to ω = 0 gives that

∑

λ∈Λ

|〈F, EλΦ〉|2 = μ
̂G(V )

(∫

̂G

|F (γ)|2 |Φ(γ)|2 dγ +R(F )

)

,

where

R(F ) :=
∑

ω∈Λ⊥\{0}

∫

̂G

F (γ)F (ω + γ)Φ(γ)Φ(ω + γ) dγ;

from here, two applications of the Cauchy–Schwarz inequality and a use of
the translation invariance of the measure prove (i) in the lemma (the proof
is similar to the proof of Theorem 11.4.2).
For the proof of (ii), combining what we established in (i) shows that for

F ∈ D(Ĝ),∑
λ∈Λ

|〈F, EλΦ〉|2

≤ μ
̂G(V )

⎛
⎝∫

̂G

|F (γ)Φ(γ)|2 dγ +

∫
̂G

|F (γ)|2
∑

ω∈Λ⊥\{0}
|Φ(γ)Φ(γ + ω)| dγ

⎞
⎠

= μ
̂G(V )

∫
̂G

|F (γ)|2
∑

ω∈Λ⊥
|Φ(γ)Φ(γ + ω)|dγ

≤ μ
̂G(V ) sup

γ∈ ̂G

∑
ω∈Λ⊥

|Φ(γ)Φ(γ + ω)|
∫

̂G

|F (γ)|2.

We conclude that the Bessel inequality holds on a dense subset of L2(Ĝ).

Therefore it holds on L2(Ĝ), and we have now proved (ii). �

We now state a consequence of the above results that will be of
importance when we consider duality issues.

Lemma 21.4.3 Let {EλΦ}λ∈Λ and {EλΦ̃}λ∈Λ be Bessel sequences in

L2(Ĝ). Then for any F,H ∈ D(Ĝ),

∑
λ∈Λ

〈F, EλΦ〉〈H,EλΦ̃〉 = μ
̂G(V )

∑
ω∈Λ⊥

∫
̂G

F (γ)H(ω + γ) Φ(γ)Φ̃(ω + γ) dγ.

(21.31)
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Proof. The proof follows the lines of the proof of Lemma 21.4.2. First,
the Cauchy–Schwarz inequality shows that the sum on the left-hand side
of (21.31) is absolutely convergent. As in Lemma 21.4.1, letting

β(γ) :=
∑

ω∈Λ⊥
H(ω + γ)Φ̃(ω + γ),

we can write 〈H, EλΦ̃〉 = β̂χV (λ). Thus,

∑

λ∈Λ

〈F, EλΦ〉〈H, EλΦ̃〉 =
∑

λ∈Λ

α̂χV (λ)β̂χV (λ) = μ
̂G(V )

∫

V

α(γ)β(γ) dγ,

where the last step used polarization of the identity in Lemma 21.2.4.
Proceeding exactly as we did in the proof of Lemma 21.4.2 (see (21.29)),
inserting the expression for α(γ) leads to

∑

λ∈Λ

〈F, EλΦ〉〈H, EλΦ̃〉 = μ
̂G(V )

∫

̂G

F (γ)Φ(γ)β(γ) dγ,

corresponding to (21.30). Inserting the expression for β(γ) now
gives (21.31). �

21.5 Explicit Gabor Frame Constructions in L2(Ĝ)

In this section, we will consider Fourier-like systems {EλΦk}λ∈Λk,k∈I , where

{Φk}k∈I is a countable collection of functions in L2(Ĝ) and the sets
Λk are lattices in G. Our purpose is to derive sufficient conditions for
{EλΦk}λ∈Λk,k∈I being a frame for L2(Ĝ); the results turn out to be par-
allel to what we have seen for frame constructions in L2(Rd). Moreover,
we show that not only the theoretical statements are similar; also on the
level of concrete constructions, we are able to mimic constructions we have
considered in L2(Rd). The material of the section is taken from the paper
[176] by Christensen and Goh.
In the entire section we will use the following

General setup: Let I denote a countable index set, and let {Φk}k∈I ,

{Φ̃k}k∈I be two collections of functions in L2(Ĝ). Furthermore, let {Λk}k∈I

denote a family of lattices in G.

Letting Λ⊥
k denote the annihilator of Λk, Lemma 21.1.7(ii) shows that

there exist relatively compact sets Vk in Ĝ such that for each k ∈ I, and
any ω, ω′ ∈ Λ⊥

k , ω �= ω′,

Ĝ =
⋃

ω∈Λ⊥
k

(ω + Vk), (ω + Vk) ∩ (ω′ + Vk) = ∅. (21.32)
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We now state some sufficient conditions for {EλΦk}λ∈Λk,k∈I to be a

Bessel sequence or frame for L2(Ĝ); the reader will immediately recog-
nize the similarity with the results in Theorem 11.4.2 (for Gabor systems in
L2(R)), Theorem 15.2.3 (for wavelet systems in L2(R)), and Theorem 20.3.1
(for GSI systems in L2(Rd)).

Theorem 21.5.1 Under the assumptions in the general setup, the follow-
ing hold:

(i) {EλΦk}λ∈Λk,k∈I is a Bessel sequence in L2(Ĝ) if

B := sup
γ∈ ̂G

∑

k∈I

μ
̂G(Vk)

∑

ω∈Λ⊥
k

|Φk(γ)Φk(γ + ω)| <∞.

(ii) If (i) holds, then {EλΦk}λ∈Λk,k∈I is a frame for L2(Ĝ) if

A := inf
γ∈ ̂G

(
∑

k∈I

μ
̂G(Vk) |Φk(γ)|2−

−
∑

k∈I

μ
̂G(Vk)

∑

ω∈Λ⊥
k \{0}

|Φk(γ)Φk(γ + ω)|

⎞

⎠ > 0.

Proof. Let F ∈ D(Ĝ). For each k ∈ I, Lemma 21.4.2(i) implies that

∑

λ∈Λk

|〈F, EλΦk〉|2 ≤ μ
̂G(Vk)

∫

̂G

|F (γ)|2
∑

ω∈Λ⊥
k

|Φk(γ)Φk(γ + ω)| dγ.

Thus,

∑

k∈I

∑

λ∈Λk

|〈F, EλΦk〉|2 ≤
∫

̂G

|F (γ)|2
∑

k∈I

μ
̂G(Vk)

∑

ω∈Λ⊥
k

|Φk(γ)Φk(γ + ω)| dγ.

Under the assumption in (i), this implies that

∑

k∈I

∑

λ∈Λk

|〈F, EλΦk〉|2 ≤ B

∫

̂G

|F (γ)|2dγ = B ‖F‖2.

Since this holds on a dense set in L2(Ĝ), we conclude that {EλΦk}λ∈Λk,k∈I

is a Bessel sequence in L2(Ĝ). The proof of (ii) is similar. �

The following example shows that Theorem 21.5.1 generalizes
Theorem 20.5.2.

Example 21.5.2 Consider the LCA group G = R
d, and let A,B denote

invertible d × d matrices with real entries. Fixing a function g ∈ L2(Rd),
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consider the Gabor system

{Em
¯
TAkg}m,k∈Zd = {e2πim¯ ·xg(x−Ak)}m,k∈Zd .

We immediately see from Example 21.1.8 that for any λ ∈ G and
F ∈ L2(Ĝ),

EλF (γ) = (λ, γ)F (γ) = e2πiλ·γF (γ).

Thus, with Λ := BZd and Φk(x) := g(x−Ak) for k ∈ Z
d,

{EλΦk}λ∈Λ,k∈I = {EBmTAkg}m,k∈Zd .

Note that by Example 21.1.8, Λ⊥ = B
Z and we can take V = B[0, 1[d

in (21.4). The measure of this set in R
d is

μ(V ) = | detB| = | detB|−1.

Thus, by Theorem 21.5.1 (i), the Gabor system {EBmTAkφ}m,k∈Zd is a
Bessel system with bound B if

B := sup
x∈Rd

∑

k∈Zd

μ(B[0, 1]s)
∑

ω∈Λ⊥
|φ(x −Ak)φ(x −Ak + ω)| <∞,

or

B :=
1

| detB| sup
x∈Rd

∑

k∈Zd

∑

n∈Zd

|φ(x −Ak)φ(x −Ak + Bn)| <∞.

This is precisely the Bessel condition in Theorem 20.5.2. �

Under the assumption that the functions Φk have sufficiently small sup-
ports (in relation to the given lattices Λk), we obtain a characterization of
the frame property for {EλΦk}λ∈Λk,k∈I :

Corollary 21.5.3 In addition to the general setup, assume that for each
k ∈ I, the function Φk satisfies that

suppΦk ∩ suppΦk(·+ ω) = ∅, ∀ω ∈ Λ⊥
k \ {0} (21.33)

(up to a set of measure zero in Ĝ). Then the following hold:

(i) {EλΦk}λ∈Λk,k∈I is a Bessel sequence in L2(Ĝ) if and only if

B := sup
γ∈ ̂G

∑

k∈I

μ
̂G(Vk)|Φk(γ)|2 <∞.

(ii) If (i) holds, then {EλΦk}λ∈Λk,k∈I is a frame for L2(Ĝ) if and only if

A := inf
γ∈ ̂G

∑

k∈I

μ
̂G(Vk)|Φk(γ)|2 > 0.
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Proof. The sufficiency of the conditions in (i) and (ii) follows directly from
Theorem 21.5.1 and the assumption (21.33). Let us show that the condition
in (i) is also necessary for {EλΦk}λ∈Λk,k∈I to be a Bessel sequence with

bound B. First, by (21.28) and the assumption (21.33), for all F ∈ D(Ĝ),
we have

∑

k∈I

∑

λ∈Λk

|〈F, EλΦk〉|2 =
∑

k∈I

μ
̂G(Vk)

∫

̂G

|F (γ)Φk(γ)|2 dγ

=

∫

̂G

|F (γ)|2
∑

k∈I

μ
̂G(Vk) |Φk(γ)|2 dγ.

Thus, if {EλΦk}λ∈Λk,k∈I is a Bessel sequence with bound B,
∫

̂G

|F (γ)|2
∑

k∈I

μ
̂G(Vk) |Φk(γ)|2 dγ ≤ B ‖F‖2

for all F ∈ D(Ĝ). This implies that
∑

k∈I μ ̂G(Vk) |Φk(γ)|2 ≤ B almost
everywhere, as desired: in fact, if

∑
k∈I μ ̂G(Vk) |Φk(γ)|2 > B on a set S of

positive measure (we can assume that the measure is finite by switching to
a subset, if necessary), taking F := χS would lead to a contradiction. The
necessity of the lower bound in (ii) is shown in a similar way. �

We will now provide simple and explicit frame constructions based on
Theorem 21.5.1 and Corollary 21.5.3, in the full generality of LCA groups.
The constructions will be based on a generalization of the classical B-splines
to the setting of LCA groups; see Section A.10.
Using the general setup we will construct concrete Gabor-type frames for

L2(Ĝ) of the form {EλTηΦ}λ∈Λ,η∈Γ, where Φ ∈ L2(Ĝ); furthermore, Λ is a

lattice in G, and Γ is a lattice in Ĝ. The construction is based on splines
of the type in Definition A.10.1, but defined on the group Ĝ.

Theorem 21.5.4 Given a lattice Γ in Ĝ, let Ω ⊂ Ĝ denote a fundamental
domain. For a fixed r ∈ N, consider the function

Wr := g1 χΩ ∗ g2χΩ ∗ · · · ∗ grχΩ,

where g1, . . . , gr ∈ L2(Ω), with the assumption that gj > 0 on Ω for j =
1, . . . , r and gj = C > 0 for at least one index j. Given a lattice Λ in G,
assume that the fundamental domain V associated with Λ⊥ satisfies that
rΩ ⊆ V. Then {EλTηWr}λ∈Λ,η∈Γ is a frame for L2(Ĝ).

Proof. Without loss of generality we can assume that g1 = CχΩ. By
Lemma A.10.2(iv), we have

∑

η∈Γ

Wr(γ − η) = Cr :=
1

μ
̂G(Ω)

r∏

j=1

∫

Ω

gj(η) dη, γ ∈ Ĝ; (21.34)
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it follows that

0 ≤Wr(γ) ≤ Cr, γ ∈ Ĝ, (21.35)

so the function Wr is bounded. Since V ∩ (V +Λ⊥ \ {0})) = ∅ and rΩ ⊆ V,
we have rΩ ∩ (rΩ + (Λ⊥ \ {0})) = ∅; thus, via Lemma A.10.2(ii),

suppWr ∩ suppWr(·+ ω) = ∅, ∀ω ∈ Λ⊥ \ {0}. (21.36)

We will now apply Corollary 21.5.3 with the functions Φk corresponding
to TηWr, η ∈ Γ i.e., we will estimate the supremum and infimum of

∑

η∈Γ

μ
̂G(V )|Wr(γ − η)|2 = μ

̂G(V )
∑

η∈Γ

|Wr(γ − η)|2.

Note that (21.36) implies that (21.33) in Corollary 21.5.3 holds with Λη = Λ

for all η ∈ Γ. Now, by (21.35) and (21.34), we see that for any γ ∈ Ĝ,
∑

η∈Γ

|Wr(γ − η)|2 ≤ Cr

∑

η∈Γ

|Wr(γ − η)| = Cr

∑

η∈Γ

Wr(γ − η) = C2
r .

We will now show that the term
∑

η∈Γ |Wr(γ − η)|2 also has a strictly
positive lower bound. To this end, we notice that

inf
γ∈ ̂G

∑

η∈Γ

|Wr(γ − η)|2 = inf
γ∈Ω

∑

η∈Γ

|Wr(γ − η)|2. (21.37)

The inequality ≤ is obvious. In order to show the opposite inequality, we
use that any γ ∈ Ĝ can be written in a unique way as γ = γ′ + k′ with
k′ ∈ Γ, γ′ ∈ Ω. Thus

∑

η∈Γ

|Wr(γ − η)|2 =
∑

η∈Γ

|Wr(γ
′ + k′ − η)|2;

making the change of variable � = η − k′, this shows that
∑

η∈Γ

|Wr(γ − η)|2 =
∑

�∈Γ

|Wr(γ
′ − �)|2 ≥ inf

ζ∈Ω

∑

η∈Γ

|Wr(ζ − η)|2,

and (21.37) follows.
Now, for r = 1 the (strictly positive) lower bound of

∑
η∈Γ |Wr(γ − η)|2

is obvious because W1 = CχΩ and Ω is the fundamental domain associated
with Γ. Therefore we now assume that r ≥ 2.Given any α ∈ Ω, the partition
of unity condition (21.34), with the nonnegative nature of Wr, shows that
there is a lattice point ηα ∈ Γ such that Wr(α − ηα) > 0. Since Wr is
continuous, for each α ∈ Ω, there is a neighborhood Uα around α such
that Wr(γ − ηα) > 0 for all γ ∈ Uα. The neighborhoods Uα, α ∈ Ω, form
an open cover of the compact set Ω, so we can select a finite collection
of distinct points α1, . . . , αn ∈ Ω such that Ω ⊆ Uα1 ∪ Uα2 ∪ · · · ∪ Uαn ;
thus, for any γ ∈ Ω, at least one of the terms Wr(γ − ηαj ), j = 1, . . . , n, is
positive, and therefore

∑n
j=1 |Wr(γ−ηαj )|2 > 0. SinceWr is continuous and
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Ω is compact, this implies that infγ∈Ω

∑n
j=1 |Wr(γ − ηαj )|2 > 0. Putting

everything together, we conclude that

inf
γ∈ ̂G

∑

η∈Γ

|Wr(γ − η)|2 = inf
γ∈Ω

∑

η∈Γ

|Wr(γ − η)|2 ≥ inf
γ∈Ω

n∑

j=1

|Wr(γ − ηαj )|2 > 0,

providing the promised lower bound. �

Example 21.5.5 Consider a Gabor system in L2(R), with translation pa-
rameter a = 1, i.e., {EmbTkg}k,m∈Z = {e2πimb·g(·−k)}k,m∈Z. The technical
condition rΩ ⊆ V in Theorem 21.5.4 means that [0, r) ⊆ [0, 1/b). Thus, in
this particular case we conclude that the (standard) B-spline Br on R

generates a Gabor frame {EmbTkBr}k,m∈Z for L2(R) if b ≤ 1/r; this is
a special case of Corollary 11.7.1. It is easy to follow the same approach
and find explicit frame constructions for L2(Ĝ) for any group of the form
G = R

d1 × Z
d2 × T

d3 × ZN , as discussed in Example 21.1.2; we leave the
concrete calculations to the reader. �

Let us now consider duality issues for two sequences {EλΦk}λ∈Λk,k∈I and

{EλΦ̃k}λ∈Λk,k∈I . First, as a direct consequence of Lemma 21.4.3, we have
the following:

Proposition 21.5.6 If {EλΦk}λ∈Λk,k∈I and {EλΦ̃k}λ∈Λk,k∈I are Bessel

sequences in L2(Ĝ), then for all F,H ∈ D(Ĝ),
∑

k∈I

∑

λ∈Λk

〈F, EλΦk〉〈H, EλΦ̃k〉

=
∑

k∈I

μ
̂G(Vk)

∑

ω∈Λ⊥
k

∫

̂G

F (γ)H(ω + γ) Φk(γ)Φ̃k(ω + γ) dγ.

Proof. Note that the sum on the left-hand side is convergent by the
Cauchy–Schwarz inequality and the Bessel assumption. Now the result
follows immediately from Lemma 21.4.3. �

Theorem 21.5.7 In addition to the general setup, assume that for each
k ∈ I,

suppΦk ∩ supp Φ̃k(·+ ω) = ∅, ∀ω ∈ Λ⊥
k \ {0} (21.38)

(up to a set of measure zero in Ĝ). If {EλΦk}λ∈Λk,k∈I and {EλΦ̃k}λ∈Λk,k∈I

are Bessel sequences in L2(Ĝ), they are dual frames for L2(Ĝ) if and only if
∑

k∈I

μ
̂G(Vk)Φk(γ)Φ̃k(γ) = 1, a.e. γ ∈ Ĝ. (21.39)
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Proof. If (21.39) holds, then Proposition 21.5.6 shows that for all

F,H ∈ D(Ĝ),
∑

k∈I

∑

λ∈Λk

〈F, EλΦk〉〈H, EλΦ̃k〉 = 〈F,H〉.

By continuity of the inner product, the above equation also holds for all
F,H ∈ L2(Ĝ). Combining with the assumption that {EλΦk}λ∈Λk,k∈I and

{EλΦ̃k}λ∈Λk,k∈I are Bessel sequences, this proves that {EλΦk}λ∈Λk,k∈I and

{EλΦ̃k}λ∈Λk,k∈I are dual frames for L2(Ĝ); see Lemma 6.3.2.

Conversely, assume that {EλΦk}λ∈Λk,k∈I and {EλΦ̃k}λ∈Λk,k∈I are dual

frames such that (21.38) holds. By Proposition 21.5.6, for F = H ∈ D(Ĝ),
∫

̂G

∑

k∈I

μ
̂G(Vk)Φk(γ)Φ̃k(γ)|F (γ)|2dγ =

∫

̂G

|F (γ)|2dγ.

Splitting
∑

k∈I μ ̂G(Vk)Φk(γ)Φ̃k(γ) into real part and imaginary part, i.e.

a(γ) + ib(γ) =
∑

k∈I μ ̂G(Vk)Φk(γ)Φ̃k(γ), yields that
∫

̂G

a(γ)|F (γ)|2dγ =

∫

̂G

|F (γ)|2dγ and

∫

̂G

b(γ)|F (γ)|2dγ = 0

for all F ∈ D(Ĝ), which implies that a(γ) = 1 and b(γ) = 0 for a.e. γ ∈ Ĝ,
by exactly the same argument as in the proof of Corollary 21.5.3. �

Let us return to the setup in Theorem 21.5.4 and consider a Gabor system
in L2(Ĝ) of the form {EλTηWr}λ∈Λ,η∈Γ, where Γ is chosen as a lattice in Ĝ,
Ω is a corresponding fundamental domain, and Wr is a weighted B-spline
with g1 = C > 0 and gj > 0, j = 2, . . . , r, on Ω. By Theorem 21.5.4, such a

system is a frame for L2(Ĝ) if rΩ ⊆ V, but the proof shows that in fact it is
sufficient that rΩ ∩ (rΩ+ (Λ⊥ \ {0})) = ∅. We will now impose a stronger
assumption, which implies that we can find an explicitly given dual frame
{EλTηΦ̃}λ∈Λ,η∈Γ.

Proposition 21.5.8 In addition to the setup in Theorem 21.5.4, assume
that the set

Δ :=
{
k ∈ Γ

∣
∣ rΩ ∩ (k + rΩ) �= ∅

}
(21.40)

satisfies that

rΩ ∩ (Δ + rΩ + (Λ⊥ \ {0})) = ∅. (21.41)

Then, with the constant Cr defined as in (21.34), the function

Φ̃(γ) :=
1

μ
̂G(V )C2

r

∑

k∈Δ

Wr(γ − k), γ ∈ Ĝ, (21.42)

generates a dual frame {EλTηΦ̃}λ∈Λ,η∈Γ of {EλTηWr}λ∈Λ,η∈Γ in L2(Ĝ).
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Proof. Note that in the described setup, the condition (21.39) takes the
form

∑

η∈Γ

Wr(γ − η)Φ̃(γ − η) =
1

μ
̂G(V )

, a.e. γ ∈ Ĝ,

or,
∑

η∈Γ

(WrΦ̃)(γ − η) =
1

μ
̂G(V )

, a.e. γ ∈ Ĝ, (21.43)

Since
∑

η∈Γ Wr(γ − η) = Cr as noted in (21.34), the condition (21.43)

is obviously satisfied if we choose the function Φ̃ such that WrΦ̃ =
(μ

̂G(V )Cr)
−1 Wr. Thus, it suffices to have that Φ̃(γ) = (μ

̂G(V )Cr)
−1 for

γ ∈ rΩ, a condition that is satisfied if we take Φ̃ to be as in (21.42), with
the index set Δ defined by (21.40). To see this, note that if γ ∈ rΩ and
k ∈ Γ \Δ, then γ /∈ k + rΩ, which implies that Wr(γ − k) = 0. Therefore,
for γ ∈ rΩ,

Φ̃(γ) =
1

μ
̂G(V )C2

r

∑

k∈Δ

Wr(γ − k)

=
1

μ
̂G(V )C2

r

⎛

⎝
∑

k∈Δ

Wr(γ − k) +
∑

k∈Γ\Δ
Wr(γ − k)

⎞

⎠

=
1

μ
̂G(V )C2

r

∑

k∈Γ

Wr(γ − k) =
1

μ
̂G(V )Cr

,

as desired. With the choice of Φ̃ in (21.42), the condition (21.41) ensures
that (21.38) holds. Hence, the result follows from Theorem 21.5.7. �

Example 21.5.9 Consider again a Gabor system {EmbTkg}k,m∈Z in
L2(R). Let g := Br, we see that Δ = {−r + 1, . . . , r − 1}. Thus Δ + rΩ =
[−r+1, 2r−1[; therefore (21.41) is satisfied if 1/b ≥ 2r−1, i.e., if b ≤ 1

2r−1 .
This is exactly the condition that was used in Theorem 12.5.1 in order to
construct dual frame pairs. Similar to the case for Theorem 21.5.4, it is
easy to apply Proposition 21.5.8 to construct explicit dual pairs of frames
for L2(Ĝ) for groups of the form G = R

s × Z
p × T

q × Zm, d1, d2, d3 ∈ N.
We leave the calculations to the reader. �

21.6 GSI Systems on LCA Groups

The results in Section 21.5 have immediate consequences for generalized
shift-invariant systems. In fact, let Λ be a lattice in G. Then, for any φ ∈
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L2(G) and λ ∈ Λ,

F−1EλFφ(x) = T−λF−1Fφ(x) = T−λφ(x) = φ(x + λ). (21.44)

Since the inverse Fourier transform is a unitary operator, it preserves
the properties of Bessel sequences, frames, and dual frames from L2(Ĝ)

to L2(G). By setting Φk := φ̂k and Φ̃k :=
̂̃
φk, we obtain the following

immediate consequences of Theorem 21.5.1 and Theorem 21.5.7:

Theorem 21.6.1 Suppose that {Λk}k∈I is a countable family of lattices in
G, and let {Vk}k∈I be fundamental domains for the annihilators {Λ⊥

k }k∈I .

Consider two collections of elements {φk}k∈I , {φ̃k}k∈I in L2(G). Then the
following hold:

(i) {Tλφk}λ∈Λk,k∈I is a Bessel sequence in L2(G) if

B := sup
γ∈ ̂G

∑

k∈I

μ
̂G(Vk)

∑

ω∈Λ⊥
k

∣
∣
∣φ̂k(γ)φ̂k(γ + ω)

∣
∣
∣ <∞.

(ii) If (i) holds, then {Tλφk}λ∈Λk,k∈I is a frame for L2(G) if

A : = inf
γ∈ ̂G

(
∑

k∈I

μ
̂G(Vk) |φ̂k(γ)|2

−
∑

k∈I

μ
̂G(Vk)

∑

ω∈Λ⊥
k \{0}

∣
∣
∣φ̂k(γ)φ̂k(γ + ω)

∣
∣
∣

⎞

⎠ > 0.

(iii) Assume that for each k ∈ I,

supp φ̂k ∩ supp
̂̃
φk(·+ ω) = ∅, ∀ω ∈ Λ⊥

k \ {0},

up to a set of measure zero. If {Tλφk}λ∈Λk,k∈I and {Tλφ̃k}λ∈Λk,k∈I

are Bessel sequences in L2(G), they are dual frames for L2(G) if and
only if

∑

k∈I

μ
̂G(Vk) φ̂k(γ)

̂̃
φk(γ) = 1, a.e. γ ∈ Ĝ.

Let us apply Theorem 21.6.1 to derive a result about a matrix-generated
wavelet system in L2(Rd).

Example 21.6.2 Let G = R
d, with dual group Ĝ = R

d. Given real and
invertible d × d matrices Ak and Bk, k ∈ I, consider a wavelet system of
the form

{DAk
TBkjφ}k∈I,j∈Zd = {| detAk|1/2 φ(Ak · −Bkj)}k∈I,j∈Zd ,
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where φ ∈ L2(Rd). Note that this general setup contains the classical
wavelet systems as well as, e.g., the composite wavelets in [359] as spe-
cial cases. Letting φk(x) := DAk

φ(x) = | detAk|1/2φ(Akx), k ∈ I, x ∈ R
d,

we have that

Tλφk(x) = φk(x − λ) = | detAk|1/2φ(Akx−Akλ).

Thus, taking Λk := A−1
k BkZ

d, the system {Tλφk}k∈I,λ∈Λk
is exactly the

wavelet system {DAk
TBkjφ}k∈I,j∈Zd . Since

Λ⊥
k = ((A−1

k Bk)
T )−1

Z
d = (A−1

k Bk)

Z
d = AT

k B

kZ

d

and

R
d =

⋃

n∈Zd

(n+ [0, 1[d),

we can take Vk = AT
k B


k[0, 1)

d in (21.32). Now,

φ̂k(γ) = FDAk
φ(γ) = DA�

k
φ̂(γ),

so the condition in Theorem 21.6.1(i) amounts to

B := sup
γ∈Rd

∑

k∈I

| det(AT
k B


k)|

∑

ω∈Λ⊥
k

| detA
k| |φ̂(A


kγ)φ̂(A


kγ +A

kω)| <∞,

or

B = sup
γ∈Rd

∑

k∈I

1

| detBk|
∑

n∈Zd

|φ̂(A
kγ)φ̂(A


kγ + B

kn)| <∞.

This generalizes the Bessel condition in Theorem 20.6.1. �

Theorem 21.6.1 shows that the sufficient conditions for a GSI system
{Tλφk}λ∈Λk,k∈I to be a frame for L2(Rd) generalize to the setting of LCA
groups. In [468], Kutyniok and Labate showed that also the characteriza-
tion of tight frames of GSI systems in L2(Rd) (which is a special case of
Theorem 20.4.3) generalizes to LCA groups. Their proof follows closely the
proof for GSI systems in L2(Rd) given in [398], and thus it is not a surprise
that also the characterization of dual frames in Theorem 20.4.3 generalizes
to LCA groups. A detailed proof of this is given in [417], and we will state
the exact result in Theorem 21.6.4.
Given a countable collection {Λk}k∈I of lattices in G, let

Γ :=
⋃

k∈I

Λ⊥
k ; (21.45)

and, given α ∈ Γ, let

Jα :=
{
k ∈ I

∣
∣α ∈ Λ⊥

k

}
. (21.46)

Parallel with the definition in (20.8) for GSI systems on R
d, let
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D :=
{
f ∈ L2(G)

∣
∣ f̂ ∈ L∞(Ĝ) and suppf̂ is compact}. (21.47)

The space D is dense in L2(G). As for the analysis of GSI systems in
L2(Rd), we will assume that a local integrability condition holds:

Definition 21.6.3 Two GSI systems {Tλφk}λ∈Λk,k∈I and {Tλφ̃k}λ∈Λk,k∈I

are said to satisfy the dual α-LIC if

∑

k∈I

∑

ω∈Λ⊥
k

1

s(Λk)

∫

̂G

|f̂(γ)f̂(γ + ω)φ̂k(γ)
̂̃
φk(γ + ω)| d γ <∞ (21.48)

for all f ∈ D.

We can now state the announced characterization of GSI systems
in L2(G).

Theorem 21.6.4 Assume that the GSI systems {Tλφk}λ∈Λk,k∈I and

{Tλφ̃k}λ∈Λk,k∈I are Bessel sequences in L2(G) and satisfy the dual α-LIC.

Then {Tλφk}λ∈Λk,k∈I and {Tλφ̃k}λ∈Λk,k∈I are dual frames if and only if

∑

k∈Jα

1

s(Λk)
φ̂k(γ)

̂̃
φk(γ + α) = δα,0, a.e. γ ∈ Ĝ (21.49)

for all α ∈ Γ.

As an application of Theorem 21.6.4 we will consider a shift-invariant
system in L2(Rd).

Example 21.6.5 Consider a countable collection of functions {φk}k∈I in
L2(Rd) and an invertible d × d matrix A. Consider two Bessel sequences

{TAnφk}k∈I,n∈Zd and {TAnφ̃k}k∈I,n∈Zd ; it is easy to see that they auto-
matically satisfy the dual α-LIC. Letting Λk := AZd, (21.45) and the

calculation in Example 21.1.8 yield the set Γ =
(
AZd

)⊥
= A

Z
d. It follows

that Jα = I for all α ∈ Γ. Finally, again according to Example 21.1.8, the
density of the lattice Λk is s(Λk) = | detA|. By Theorem 21.6.4, we now

conclude that {TAnφk}k∈I,n∈Zd and {TAnφ̃k}k∈I,n∈Zd are dual frames if
and only if

∑

k∈I

φ̂k(γ)
̂̃
φk(ω +An) = | detA| δn,0, ∀n ∈ Z

d. (21.50)

This result was also proved in Corollary 20.4.4 and, in the one-dimensional
case, in Theorem 10.1.7. Remember that for notational convenience
we focussed on the one-dimensional case in the presentation of shift-
invariant systems in Chapter 10. The group-theoretical approach shows
that there actually is no difference between the one-dimensional setting
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and the higher-dimensional case at all – even the matrix case follows the
same way. �

Let us end this section with one more result from [468], which generalizes
Proposition 20.3.2.

Proposition 21.6.6 If the GSI system {Tλφk}λ∈Λk,k∈I is a Bessel
sequence in L2(G) with bound B, then

∑

k∈I

1

s(Λk)
|φ̂k(γ)|2 ≤ B, a.e. γ ∈ Ĝ. (21.51)

21.7 Generalized Translation-Invariant Systems

The purpose of this section is to derive integral/series expansions in terms
of classes of functions that are much more general than the GSI systems
in Section 21.6. The high degree of generality yields a platform on which
a unifying theory for the continuous case and the discrete case can be
derived. Thus, the results about the short-time Fourier transform in Sec-
tion 11.1 and the Gabor systems {EmbTnag}m,n∈Z in Section 11.2 can now
be considered as special cases of general results; the same remark applies
to the results about the continuous wavelet transform and wavelet systems
{DjTkψ}j,k∈Z.
The Fourier-like systems {EλΦk}λ∈Λk,k∈I in Section 21.5 and the GSI

systems {Tλφk}λ∈Λk,k∈I in Section 21.6 are based on a countable set of
lattices {Λk}k∈I in the group G. However, the reader might have observed
that in the proofs the main role is not played by the lattices Λk them-
selves: the key point is that the annihilators Λ⊥

k are discrete and that we
have their corresponding fundamental domains at our disposal. To illustrate
this, look at the formulation of, e.g., the general setup in Section 21.5, or
Theorem 21.6.1.
In 2014, it was observed, independently by Bownik and Ross [85] and

Jakobsen and Lemvig [417], that a more general perspective is possible.
In fact, assume that G is an LCA group and that H is a closed subgroup

for which the quotient group G/H is compact. Then Ĝ/H is discrete by
Lemma 21.1.5 (ii); furthermore, since G/H is metrizable and compact,

the dual group Ĝ/H is countable; see (24.15) in [402]. By Lemma 21.1.5
(iii) we now conclude that the annihilator H⊥ is discrete and countable.
This observation turns out to be the key to a generalization of several
of the results considered in the previous sections, with subgroups replac-
ing the lattices Λk. This allows to obtain frame decompositions based on
LCA groups that do not have (nontrivial) lattices, e.g., the group of p-adic
numbers [417] and the Prüfer group [418].
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The work by Bownik and Ross focusses on what they call translation-
invariant systems; see the following Definition 21.7.5. Such systems
correspond to shift-invariant systems, except that the shifts now can
take place along a possible uncountable subgroup instead of a dis-
crete lattice. The work by Jakobsen and Lemvig deals with generalized
translation-invariant systems; they are related to translation-invariant sys-
tems in a similar fashion as GSI systems are related to shift-invariant
systems. Generalized translation-invariant systems turn out to give a uni-
fied approach to (discrete) frames and continuous frames, with general
formulations of, e.g., admissibility conditions. We will give a presentation
of some of the key results by Jakobsen and Lemvig, and we refer to their
papers [417, 418] for much more information.
Let us first state the central definitions for this section.

Definition 21.7.1 Let G denote an LCA group. A subgroup H of G is
said to be co-compact if G/H is compact.

In the language of Definition 21.7.1, we can now say that if H is a closed co-
compact subgroup of an LCA group G, then the annihilator H⊥ is discrete
and countable.
Even if lattices exist in a given LCA group G, the class of subgroups

is often larger than the class of lattices. That is, even in this case the
work by Bownik & Ross and Jakobsen & Lemvig adds new information, as
illustrated by the following example.

Example 21.7.2 In the LCA group R
d, the subgroups and lattices are

characterized as follows:

• The closed subgroups of Rd have the form

H = A({0}� × R
s × Z

k),

where A is an invertible d × d matrix with real entries, and the pa-
rameters �, k, s ∈ {0, 1, . . . , d} satisfy that �+k+s = d. The subgroup
H is discrete if and only if s = 0.

• The closed co-compact subgroups of Rd have the form

H = A(Rs × Z
d−s),

where A is an invertible d × d matrix with real entries and the
parameter s ∈ {0, 1, . . . , d}. The annihilator isH⊥ = A({0}s×Zd−s).

• The lattices in R
d have the form Λ = AZd for some invertible d× d

matrix A with real entries. Recall that the annihilator is Λ⊥ = A
Z
d.

�
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Now, consider an LCA groupG and a closed subgroupH. Assume that we
have fixed Haar measures on the group G and on the closed subgroup H.
As always, we normalize the Haar measure on the quotient group G/H
such that Weil’s formula (21.11) holds. Generalizing the density of a lattice
in (21.5), the size of the subgroup H is defined by

s(H) =

∫

G/H

dμG/H(ẋ). (21.52)

Note that s(H) is finite if and only if G/H is compact.
Before we state the definition of the systems of functions to be analyzed

in this section, let us recall a few facts about Gabor systems in L2(R). Given
g ∈ L2(R) and two parameters a, b > 0, it follows from the commutator
relation (2.25) that {EmbTnag}m,n∈Z is a frame for L2(R) if and only if
the shift-invariant system {TnaTmbg}m,n∈Z is a frame for L2(R). Similarly,
the set of all time–frequency shifts of g, i.e., the set {EaTbg}a,b∈R, is a
continuous frame for L2(R) if and only if {TbEag}a,b∈R is a continuous
frame for L2(R).
Following Bownik and Ross, we will now define the translation-invariant

systems in L2(G).

Definition 21.7.3 Let G denote an LCA group and Λ a closed, co-compact
subgroup of G. Let P be a countable or uncountable index set and let gp, p ∈
P, denote a collection of functions in L2(G). Then the system of functions

{Tλgp}λ∈Λ,p∈P (21.53)

is called a translation-invariant system (TI system).

Definition 21.7.3 is broad enough to cover a large part of the systems
considered in this book, e.g., the continuous Gabor systems, discrete Gabor
systems, shift-invariant systems, and continuous wavelets. However, it does
not cover the discrete wavelet systems:

Example 21.7.4 In (i) and (ii), we let G denote an LCA group with dual

group Ĝ.

(i) For any given g ∈ L2(G), the Gabor system {EηTλg}η∈ ̂G,λ∈G is a con-

tinuous frame for L2(G) if and only if {TλEηg}η∈ ̂G,λ∈G is a continuous

frame for L2(G); the later system is a TI system with Λ = G, P = Ĝ,

and the functions gp corresponding to Eηg, η ∈ Ĝ.

(ii) Let Γ ⊂ Ĝ and Λ ⊂ G be lattices and let g ∈ L2(G). Then the
(discrete) Gabor system {EηTλg}η∈Γ,λ∈Λ is a frame for L2(G) if and
only if {TλEηg}η∈Γ,λ∈Λ is a frame for L2(G); the later system is a TI
system in L2(G) with P = Γ and the functions gp corresponding to
Eηg, η ∈ Γ.
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(iii) A continuous wavelet system in L2(R) has the form
{TbDaψ}b∈R,a∈R\{0} (see (15.1)): it is a TI system in L2(R) with
Λ = R, P = R \ {0}, and the functions gp corresponding to Daψ, a ∈
R \ {0}.

(iv) A discrete dyadic wavelet system in L2(R) can be rewritten as

{DjTkψ}j,k∈Z = {T2−jkD
jψ}j,k∈Z =

⋃

j∈Z

{T2−jkD
jψ}k∈Z.

This is clearly not a TI system. �

In order also to cover the discrete wavelet systems, an extension of the
setup in Definition 21.7.3 was proposed by Jakobsen and Lemvig [417].
The extension is similar to the step from the shift-invariant systems in
Chapter 10 to the generalized shift-invariant systems in Chapter 20:

Definition 21.7.5 Let G denote an LCA group and let J ⊆ Z be a
countable index set. Furthermore, for each j ∈ J,

(i) Let Λj denote a closed, co-compact subgroup of G.

(ii) Let Pj be a countable or uncountable index set; further, for j ∈ J, let
{gj,p}p∈Pj be a collection of functions in L2(G).

Then the family of functions
⋃

j∈J

{Tλgj,p}λ∈Λj ,p∈Pj (21.54)

is called a generalized translation-invariant system (GTI system for short).

Example 21.7.6 The dyadic wavelet system {DjTkψ}j,k∈Z in Exam-
ple 21.7.4 is a GTI system with J = Z,Λj = 2−j

Z and Pj being a singleton
for each j ∈ Z. For each j ∈ Z there is only one function gj,p, namely, Djψ.

�

The analysis of GTI systems in full generality needs some weak technical
conditions that are automatically satisfied for all the systems appearing
in the current book. First, each index set Pj must be equipped with a σ-
algebra of subsets and a corresponding measure satisfying a few very mild
but technical conditions; see [417, 419]. In the cases of interest, Pj will either
be a countable set equipped with the counting measure, or PJ will itself be
an LCA group with a corresponding Haar measure; the technical conditions
are always satisfied in these cases. Along the same line, we need that the
map p �→ gj,p is continuous from Pj to C for all j ∈ J. This is clearly the case
in Example 21.7.6, which corresponds to Example 21.7.4 (iv); it also holds
in Example 21.7.4 (i)–(iii), due to the fact that the modulation operators
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and the scaling operators depend continuously on their parameters (see
Lemma 2.9.2 for the L2(R)-version of this statement). We will not go into
these details.
We are now ready to consider frame properties for GTI systems⋃
j∈J{Tλgj,p}λ∈Λj ,p∈Pj . The following definition is really just a special case

of Definition 5.6.1:

Definition 21.7.7 Under the setup in Definition 21.7.5, assume that we
have fixed the Haar measures on the groups G and Λj , j ∈ J. Then⋃

j∈J{Tλgj,p}λ∈Λj ,p∈Pj is a GTI frame for L2(G) if there exist constants
A,B > 0 such that

A ||f ||2 ≤
∑

j∈J

∫

Λj

∫

Pj

|〈f, Tλgj,p〉|2dμΛj (λ)dμPj (p) ≤ B ||f ||2, (21.55)

for all f ∈ L2(G). The GTI system is a Bessel family if at least the upper
condition in (21.55) is satisfied.

Note that the formulation of Definition 21.7.7 allows us to choose the nor-
malization of the Haar measure on the groups Λj freely. In contrast, the
definition in [417] required the normalization to be chosen such that the
measure on annihilator Λ⊥

j becomes the counting measure by Weil’s for-
mula. Due to the freedom in Definition 21.7.7, we can obtain the “standard
form” for, e.g., the frame decomposition whenever we apply the definition
to Gabor systems {EmbTnag}m,n∈Z in L2(R). On the other hand, certain
normalization factors appear in [417]. The freedom in Definition 21.7.7
agrees with the setup in [419].

We note that having two dual GTI frames
⋃

j∈J{Tλgj,p}λ∈Λj ,p∈Pj and⋃
j∈J{Tλhj,p}λ∈Λj ,p∈Pj , the frame decomposition (5.26) takes the form

f =
∑

j∈J

∫

Λj

∫

Pj

〈f, Tλhj,p〉Tλgj,p dμΛj (γ)dμPj (p). (21.56)

We need a version of the LIC for GTI systems.

Definition 21.7.8 Two GTI systems
⋃

j∈J{Tλgj,p}λ∈Λj ,p∈Pj and⋃
j∈J{Tλhj,p}λ∈Λj ,p∈Pj satisfy the dual α local integrability condition (dual

α-LIC) if

∑

j∈J

1

s(Λj)

∫

Pj

∑

α∈Λ⊥
j

∫

̂G

|f̂(γ)f̂(γ+α)ĝj,p(γ)ĥj,p(γ+α)| dμ
̂G(γ) dμPj (p) <∞

(21.57)

for all f ∈ D; see (21.47). In the case gj,p = hj,p, the condition (21.57) is
called the α local integrability condition (α-LIC).

It is proved in [417] that:
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• The dual α-LIC is automatically satisfied for any pair of TI systems;

• An analogue of the CC-condition for GTI systems implies that the
α-LIC is satisfied.

The following result from [417] generalizes Proposition 21.6.6.

Proposition 21.7.9 If a GTI system
⋃

j∈J{Tλgj,p}λ∈Λj ,p∈Pj is a Bessel
family with bound B, then

∑

j∈J

1

s(Λj)

∫

Pj

|ĝj,p(η)|2dμPj (p) ≤ B for a.e. η ∈ Ĝ. (21.58)

We will now state one of the key results in [417], namely, a characteriza-
tion of dual frames with the GTI structure.

Theorem 21.7.10 Suppose that the GTI systems
⋃

j∈J{Tλgj,p}λ∈Λj ,p∈Pj

and
⋃

j∈J{Tλhj,p}λ∈Λj ,p∈Pj are Bessel families satisfying the dual α-LIC.
Then the following statements are equivalent:

(i)
⋃

j∈J{Tλgj,p}λ∈Λj ,p∈Pj and
⋃

j∈J{Tλhj,p}λ∈Λj ,p∈Pj are dual frames

for L2(G);

(ii) For each α ∈
⋃

j∈J Λ⊥
j , the equation

∑

{j∈J |α∈Λ⊥
j }

1

s(Λj)

∫

Pj

ĝj,p(η)ĥj,p(η + α) dμPj (p) = δα,0 (21.59)

holds for a.e. η ∈ Ĝ.

The generality in Theorem 21.7.10 is remarkable. As we have seen in
Example 21.7.4 and Example 21.7.6, the GTI systems contain the Gabor
systems and the wavelet systems in as well the discrete case as the contin-
uous case: thus, the duality condition in Theorem 21.7.10 covers all these
cases at once. It also contains several other systems of interest, e.g., the
shearlet systems [469]. For the purpose of applications to continuous Gabor
and wavelet systems, we note that the condition (21.59) simplifies signifi-
cantly for TI systems with Λ = G : in fact, since G⊥ = {0}, there is only
one equation in this case.

Lemma 21.7.11 Suppose that Λj = G for all j ∈ J. Then (21.59)
reduces to

∑

j∈J

∫

Pj

ĝj,p(η)ĥj,p(η) dμPj (p) = 1, a.e. η ∈ Ĝ.

Let us show how to derive the admissibility condition for the continuous
wavelet transform based on Theorem 21.7.10.
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Example 21.7.12 As discussed in Example 21.7.4, a continuous wavelet
system {TbDaψ}b∈R,a∈R\{0} in L2(R) is a TI system with Λ = R, P =
R \ {0}, and the functions gp corresponding to Daψ, a ∈ R \ {0}. We
will equip P with the measure |a|−2da. Recall that the α-LIC is satis-
fied for TI systems; thus, Theorem 21.7.10 and Lemma 21.7.11 imply that
{TbDaψ}b∈R,a∈R\{0} is a continuous Parseval frame for L2(R) (w. r. t. the

set R× (R \ {0}) equipped with the measure 1
a2 dadb ) if and only if

∫

R\{0}

1

|a| |ψ̂(aγ)|
2 da = 1, a.e. γ ∈ R. (21.60)

Via a change of variable the condition (21.60) is equivalent with the
condition

∫

R\{0}

1

|a| |ψ̂(a)|
2 da = 1;

thus, we have recovered the admissibility condition in Corollary 15.1.2. �

The generality of Theorem 21.7.10 also allows to derive a characterization
of Parseval wavelet systems {DjTkψ}j,k∈Z, written on the form in Exam-
ple 21.7.6 (Exercise 21.3). Applications to the Gabor case will be considered
in Section 21.8.

21.8 Co-compact Gabor Systems

The value of the LCA approach and the unification in Section 21.7 is per-
haps most evident by considering Gabor analysis. In the current book, we
have considered continuous Gabor systems {EbTag}a,b∈R in L2(R), discrete
Gabor systems {EmbTnag}m,n∈Z in L2(R), as well as higher-dimensional
versions and Gabor systems in �2(Z), L2(0, L), and C

L; all of these cases
are covered by the general approach in Section 21.7. In this section, we
will derive a few of the concrete manifestations of the theory and leave the
other cases as exercises.
Let G denote an LCA group, and let g ∈ L2(G). We will consider Gabor

systems of the form {EηTλg}η∈Γ,λ∈Λ, where translation and modulation

of g ∈ L2(G) are along closed co-compact subgroups Λ ⊂ G and Γ ⊂ Ĝ,
respectively. Such a system is called a co-compact Gabor system. The first
systematic treatment of co-compact Gabor systems appeared in the paper
[418] by Jakobsen and Lemvig.
In L2(Rd), co-compact Gabor systems are of the form (see Exam-

ple 21.7.2)
{
e2πiγ·xg(x− λ)

}
λ∈A(Rs×Zd−s),γ∈B(Rr×Zd−r)

(21.61)
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for some choice of invertible d×dmatricesA,B with real entries and param-
eters r, s ∈ {0, 1, . . . , d}. Depending on the parameters r and s, these Gabor
systems range from discrete over semicontinuous to continuous families.
Thus, the setup unifies discrete and continuous Gabor theory.
Theorem 21.7.10 has the following immediate consequence for Gabor

systems.

Corollary 21.8.1 Assume that the co-compact Gabor systems
{EηTλg}η∈Γ,λ∈Λ and {EηTλh}η∈Γ,λ∈Λ are Bessel families in L2(G). Then
the following statements are equivalent:

(i) {EηTλg}η∈Γ,λ∈Λ and {EηTλh}η∈Γ,λ∈Λ are dual frames for L2(G);

(ii) For each α ∈ Γ⊥,

1

s(Γ)

∫

Λ

g(x+ λ)h(x+ λ+ α) dμΛ(λ) = δα,0, a.e. x ∈ G;

(iii) For each β ∈ Λ⊥,

1

s(Λ)

∫

Γ

ĝ(η + γ)ĥ(η + γ + β) dμΓ(γ) = δβ,0, a.e. η ∈ Ĝ.

Corollary 21.8.1 covers the explicit characterizations we have obtained
for Gabor systems in L2(R) (as well the discrete cases as the continuous
case), �2(Z), L2(0, L), and C

L. We leave the concrete calculations to the
reader (Exercises 14.7, 21.4, 21.5). Here we will only consider the extreme

case, where Λ = G and Γ = Ĝ :

Example 21.8.2 Let g, h ∈ L2(G) and consider the co-compact Gabor

systems {EηTλg}η∈ ̂G,λ∈G and {EηTλh}η∈ ̂G,λ∈G. We equip G and Ĝ with

their respective Haar measures μG and μ
̂G. For f ∈ L2(G), a standard

calculation (see the proof of Proposition 11.1.2 for the case G = R) yields
that

∫

G

∫

̂G

|〈f, EγTλg〉|2 dμ ̂G(γ) dμG(λ) = ‖f‖2‖g‖2;

clearly, the result also holds with the window g replaced by the win-
dow h. We conclude that both Gabor systems are Bessel families. Since
Γ⊥ = Ĝ⊥ = {0}, Corollary 21.8.1 implies that {EηTλg}η∈ ̂G,λ∈G and

{EηTλh}η∈ ̂G,λ∈G are dual frames for L2(G) if and only if for a.e. x ∈ G
∫

G

g(x− λ)h(x− λ) dμG(λ) = 1.

For the case G = R, this is clearly equivalent with the condition 〈g, h〉 = 1.
Thus, we have recovered the result in Corollary 11.1.3 but now in the
general setting of LCA groups. �
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In [418], Jakobsen and Lemvig extend two of the key results in classical
Gabor analysis to the setting of co-compact Gabor systems. The Wexler–
Raz theorem takes the following form:

Theorem 21.8.3 Two co-compact Gabor systems {EηTλg}η∈Γ,λ∈Λ and
{EηTλh}η∈Γ,λ∈Λ that form Bessel families are dual frames if and only if

〈h,EβTαg〉 = s(Λ)s(Γ)δβ,0δα,0 ∀α ∈ Γ⊥, β ∈ Λ⊥. (21.62)

Also the duality principle extends to co-compact Gabor systems:

Theorem 21.8.4 A co-compact Gabor system {EηTλg}η∈Γ,λ∈Λ is a frame
for L2(G) with bounds A and B if and only if {EβTαg}α∈Γ⊥,β∈Λ⊥ is a
Riesz sequence with bounds s(Λ)s(Γ)A and s(Λ)s(Γ)B.

Note that while the co-compact Gabor system {EηTλg}η∈Γ,λ∈Λ might
be continuous or discrete depending on the choice of the subgroups Λ and
Γ, the system {EβTαg}α∈Γ⊥,β∈Λ⊥ is always discrete.

21.9 Exercises

21.1 Show that the operators in Definition 21.3.1 are unitary and that
the commutator relations (21.19) and (21.18) hold.

21.2 Suppose that Γ ⊂ Ĝ and Λ ⊂ G are closed subgroups. Let
g, h ∈ L2(G) and assume that {EηTλg}η∈Γ,λ∈Λ, {EηTλh}η∈Γ,λ∈Λ

are Bessel families, with mixed frame operator

Sg,h : L2(G)→ L2(G), Sg,hf =

∫

Γ

∫

Λ

〈 f , EηTλg〉EηTλg dλ dη,

as usual understood in the weak sense. Prove the following:

(i) Sg,hEηTλ = EηTλSg,h for all η ∈ Γ and λ ∈ Λ,

(ii) If {EηTλg}η∈Γ,λ∈Λ is a frame, then

S−1EηTλ = EηTλS
−1, ∀ η ∈ Γ, λ ∈ Λ.

21.3 Derive a characterization of Parseval wavelet systems
{DjTkψ}j,k∈Z, based on Theorem 21.7.10.

21.4 Derive Theorem 12.3.4 based on Theorem 21.7.10.

21.5 Derive Theorem 14.2.1 based on Theorem 21.7.10.
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The question of stability plays an important role in connection with bases.
That is, if {fk}∞k=1 is a basis and {gk}∞k=1 is in some sense “close” to
{fk}∞k=1, does it follow that {gk}∞k=1 is also a basis? A classical result states
that if {fk}∞k=1 is a basis for a Banach space X , then a sequence {gk}∞k=1

in X is also a basis if there exists a constant λ ∈]0, 1[ such that
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ck(fk − gk)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ λ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(22.1)

for all finite sequences of scalars {ck}∞k=1. The result is usually attributed to
Paley andWiener [533], but it can be traced back to Neumann [524]: in fact,
it is an almost immediate consequence of Theorem 2.2.3 with Ufk := gk.
In this chapter we concentrate on frames, so the perturbation theory

takes place in a Hilbert space H. Note that if {fk}∞k=1 is a Riesz basis for
H and (22.1) holds for all finite sequences, then (22.1) automatically holds
for all {ck}∞k=1 ∈ �2(N); thus, we can consider (22.1) as a condition on the
operator

K : �2(N)→ H, K{ck}∞k=1 =
∞∑

k=1

ck(fk − gk). (22.2)

For this reason K is called the perturbation operator. The same philosophy
applies to the results in this chapter: all theoretical results will be obtained
by putting appropriate conditions on the operator K. We begin by stating
the general results, and in later sections they are applied to Gabor frames
and wavelet frames.

©
O. Christensen, An Introduction to Frames and Riesz Bases,
Applied and Numerical Harmonic Analysis,
DOI 10.1007/978-3-319-25613-9 22

557Springer International Publishing Switzerland 2016



558 22 Perturbation of Frames

22.1 A Paley–Wiener Theorem for Frames

In the entire section, we assume that {fk}∞k=1 is a frame for a Hilbert space
H. We wish to find conditions on a perturbed family {gk}∞k=1 which implies
that it is a frame. Let us denote the synthesis operators for {fk}∞k=1 and
{gk}∞k=1 by T and U , respectively, i.e.,

T, U : �2(N)→ H, T {ck}∞k=1 =
∞∑

k=1

ckfk, U{ck}∞k=1 =
∞∑

k=1

ckgk.

Note that T is well-defined and bounded by assumption; the synthesis
operator U is at least well-defined on finite sequences, but we have to prove
that {gk}∞k=1 is a Bessel sequence before we know that U is well-defined on
�2(N). See Theorem 3.2.3.
We first note that the condition (22.1) with λ < 1 is too restrictive

if {fk}∞k=1 is an overcomplete frame. In fact, if (22.1) holds for all fi-
nite sequences {ck}∞k=1 and some λ ∈]0, 1[, then for all such sequences
it holds that

∞∑

k=1

ckfk = 0⇔
∞∑

k=1

ckgk = 0;

thus, the condition can only handle perturbations {gk}∞k=1 that have the
“same linear dependence” as {fk}∞k=1. A much more flexible result can be
obtained by adding an extra term in the perturbation condition as in the
following Theorem 22.1.1, first proved by Christensen in [154].

Theorem 22.1.1 Let {fk}∞k=1 be a frame for H with bounds A,B. Let
{gk}∞k=1 be a sequence in H and assume that there exist constants λ, μ ≥ 0
such that λ+ μ√

A
< 1 and

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ck(fk − gk)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ λ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
+ μ

( ∞∑

k=1

|ck|2
)1/2

(22.3)

for all finite scalar sequences {ck}∞k=1. Then {gk}
∞
k=1 is a frame for H with

bounds

A

(

1−
(

λ+
μ√
A

))2

, B

(

1 + λ+
μ√
B

)2

.

Moreover, if {fk}∞k=1 is a Riesz basis, then {gk}∞k=1 is a Riesz basis.

Proof. {fk}∞k=1 is assumed to be a frame, so by Theorem 3.2.3, the syn-

thesis operator T is bounded and ||T || ≤
√
B. The condition (22.3) implies
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that for all finite sequences {ck}∞k=1,
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckgk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
−

∞∑

k=1

ck(fk − gk) +

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
−

∞∑

k=1

ck(fk − gk)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤ (1 + λ)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
+ μ

( ∞∑

k=1

|ck|2
)1/2

.

This calculation even holds for all {ck}∞k=1 ∈ �2(N). To see this, we first
have to prove that

∑∞
k=1 ckgk is convergent for any given {ck}∞k=1 ∈ �2(N).

Given n,m ∈ N with n > m,
∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=1

ckgk −
m∑

k=1

ckgk

∣
∣
∣
∣

∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=m+1

ckgk

∣
∣
∣
∣

∣
∣
∣
∣

≤ (1 + λ)

∣
∣
∣
∣

∣
∣
∣
∣

n∑

k=m+1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣+ μ

(
n∑

k=m+1

|ck|2
)1/2

.

Since {ck}∞k=1 ∈ �2(N) and
∑∞

k=1 ckfk is convergent, this implies that
{
∑n

k=1 ckgk}
∞
n=1 is a Cauchy sequence inH and therefore convergent. Thus,

the analysis operator U is well defined on �2(N); it follows that for all
{ck}∞k=1 ∈ �2(N),

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

ckgk

∣
∣
∣
∣

∣
∣
∣
∣ ≤ (1 + λ)

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣+ μ

( ∞∑

k=1

|ck|2
)1/2

. (22.4)

In terms of the operators T, U , (22.4) states that

||U{ck}∞k=1|| ≤ (1 + λ) ||T {ck}∞k=1||+ μ

( ∞∑

k=1

|ck|2
)1/2

≤
(
(1 + λ)

√
B + μ

)
( ∞∑

k=1

|ck|2
)1/2

, ∀{ck}∞k=1 ∈ �2(N).

Via Theorem 3.2.3 this estimate shows that {gk}∞k=1 is a Bessel sequence
with bound

(
(1 + λ)

√
B + μ

)2

= B

(

1 + λ+
μ√
B

)2

.

Now we prove that {gk}∞k=1 has a lower frame bound. Since {fk}∞k=1 is a
frame, the frame operator S = TT ∗ is invertible by Lemma 5.1.5, and we
can define an operator

T † : H → �2(N), T †f := T ∗(TT ∗)−1f =
{
〈f, (TT ∗)−1fk〉

}∞
k=1

. (22.5)
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Note that {(TT ∗)−1fk}∞k=1 is the dual frame of {fk}∞k=1, so by Lemma 5.1.5,

||T †f ||2 =

∞∑

k=1

|〈f, (TT ∗)−1fk〉|2

≤ 1

A
||f ||2, ∀f ∈ H.

Since
∑∞

k=1 ckfk and
∑∞

k=1 ckgk are convergent for all {ck}∞k=1 ∈ �2(N) and
the synthesis operators T and U are bounded, the inequality (22.3) holds
for all {ck}∞k=1 ∈ �2(N). In terms of the operators T and U ,

||T {ck}∞k=1 − U{ck}∞k=1|| ≤ λ ||T {ck}∞k=1||+ μ

( ∞∑

k=1

|ck|2
)1/2

, (22.6)

for all {ck}∞k=1 ∈ �2(N). Note that for f ∈ H,

TT †f = TT ∗(TT ∗)−1f = f,

UT †f =
∞∑

k=1

(T †f)kgk =
∞∑

k=1

〈f, (TT ∗)−1fk〉gk.

Using (22.6) on the sequence {ck}∞k=1 = T †f yields

||f − UT †f || ≤ λ ||f ||+ μ ||T †f ||

≤
(

λ+
μ√
A

)

||f ||, ∀f ∈ H.

Since we have assumed that λ + μ√
A

< 1, this implies that the operator

UT † is invertible, and (Exercise 22.1)

||UT †|| ≤ 1 + λ+
μ√
A
, ||(UT †)−1|| ≤ 1

1−
(
λ+ μ√

A

) . (22.7)

Now, f ∈ H can be written as

f = UT †(UT †)−1f =

∞∑

k=1

〈(UT †)−1f, (TT ∗)−1fk〉gk.
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Inserting this in the first entry of 〈f, f〉 leads to

||f ||4 = |〈f, f〉|2

=

∣
∣
∣
∣

∞∑

k=1

〈(UT †)−1f, (TT ∗)−1fk〉〈gk, f〉
∣
∣
∣
∣

2

≤
∞∑

k=1

|〈(UT †)−1f, (TT ∗)−1fk〉|2
∞∑

k=1

|〈gk, f〉|2

≤ 1

A
||(UT †)−1f ||2

∞∑

k=1

|〈gk, f〉|2

≤ 1

A

⎛

⎝ 1

1−
(
λ+ μ√

A

)

⎞

⎠

2

||f ||2
∞∑

k=1

|〈gk, f〉|2, ∀f ∈ H.

So

∞∑

k=1

|〈gk, f〉|2 ≥ A

(

1−
(

λ+
μ√
A

))2

||f ||2,

i.e., {gk}∞k=1 is a frame for H.
For the rest of the proof we now assume that {fk}∞k=1 is a Riesz ba-

sis. To prove that {gk}∞k=1 is a Riesz basis, we use Theorem 7.1.1 and
assume that

∑∞
k=1 ckgk = 0 for some coefficients {ck}∞k=1 ∈ �2(N). By The-

orem 5.4.1, the lower frame bound for {fk}∞k=1 is also a lower Riesz basis
bound, so (22.6) implies that
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∣
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ckfk
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∣
∣
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k=1

ckfk
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∣
∣
∣
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∣
∣
∣+ μ

( ∞∑

k=1

|ck|2
)1/2

≤
(

λ+
μ√
A

) ∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣

∣
∣
∣
∣.

Since λ+ μ√
A

< 1, it follows that
∑∞

k=1 ckfk = 0. Using Theorem 7.1.1 on

the Riesz basis {fk}∞k=1, we conclude that ck = 0 for all k ∈ N; therefore
{gk}∞k=1 is a Riesz basis. �

We already argued for the role of the μ-term in the condition (22.3).
Most applications of Theorem 22.1.1 actually take place with λ = 0, so
a natural question is whether the appearance of the λ-term improves the
result. In fact, it does: in Exercise 22.7, we consider an example where the
λ-term guarantees the frame property for a larger class of sequences than
the corresponding result without the λ-term.
We now illustrate Theorem 22.1.1 by an example in a general Hilbert

space. In particular, the example shows that the conclusion in
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Theorem 22.1.1 might fail if the condition λ + μ√
A

< 1 is replaced by

λ+ μ√
A
= 1. In that sense, Theorem 22.1.1 is the best possible perturbation

result.

Example 22.1.2 Let {ek}∞k=1 be an orthonormal basis for H. Given a
sequence {ak}∞k=1 of complex numbers, we consider the family of vectors
{gk}∞k=1 defined by

gk = ek + akek+1, k ∈ N.

Then, for all finite scalar sequences {ck}∞k=1,
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∣
∣
∣

=

( ∞∑

k=1

|ckak|2
)1/2

≤ sup
k
|ak|

( ∞∑

k=1

|ck|2
)1/2

.

Thus, if a := supk |ak| < 1, Theorem 22.1.1 shows that {gk}∞k=1 is a frame
(in fact, a Riesz basis) with bounds (1 − a)2, (1 + a)2.
By taking ak = 1 for all k ∈ N, we obtain the family

gk = ek + ek+1 k ∈ N,

which was considered in Example 5.4.6. In particular, we know that {gk}∞k=1

is not a frame. For any sequence {ck}∞k=1 ∈ �2(N),
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|ck|2
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.

Thus, the condition (22.3) is satisfied with (λ, μ) = (1, 0), or (λ, μ) = (0, 1);
in either case, it shows that the condition λ + μ√

A
< 1 is necessary for

Theorem 22.1.1 to hold in this particular case. �

The operator T † defined in (22.5) is the pseudo-inverse of T ; see The-
orem 5.4.3. By stressing this point it is possible to prove a more general
result than Theorem 22.1.1, where the condition (22.3) is replaced by a
more “symmetric” version which also involves

∑
ckgk on the right-hand

side; the exact condition is
∣
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( ∞∑
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|ck|2
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,

where λ + μ√
A

< 1 and γ ∈ [0, 1[. The conclusion is again that {gk}∞k=1

is a frame, but now the bounds also involve the parameter γ. One can
actually construct examples where this condition is satisfied, but where
the condition (22.3) is not satisfied. This extension of Theorem 22.1.1
is remarkable in light of Example 22.1.2, which showed that one cannot
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extend the range of the parameters λ, μ in the condition (22.3). We refer
to [119], where Casazza and Christensen derive the extension as a conse-
quence of the following interesting generalization of Neumann’s Theorem,
due to Hilding [404]:

Lemma 22.1.3 Let U : H → H be a bounded operator, and assume that
there exist constants λ, μ ∈ [0, 1[ for which

||Ux− x|| ≤ λ ||Ux||+ μ ||x||, ∀x ∈ H.

Then U is invertible.

The fact that a perturbation (in the sense of Theorem 22.1.1) of a Riesz
basis is again a Riesz basis makes it plausible that if {fk}∞k=1 is a near-
Riesz basis, then a family {gk}∞k=1 satisfying (22.3) is a near-Riesz basis
having the same excess. A proof of this fact can be found in [121]. Based
on this result, one could easily believe that a perturbation of any frame
containing a Riesz basis would again contain a Riesz basis, but this turns
out to be wrong. Since this is a surprising result and forces us to deal with
perturbations with great care, we present an example from [121].

Example 22.1.4 Let {ek}∞k=1 be an orthonormal basis for a Hilbert
space K, and consider the Hilbert space H constructed in the proof of
Theorem 7.5.2, together with the frame {fn

k }
n+1,∞
k=1,n=1. Recall that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fn
k = e (n−1)n

2 +k
− 1

n

n∑

j=1

e (n−1)n
2 +j

, 1 ≤ k ≤ n;

fn
n+1 =

1√
n

n∑

j=1

e (n−1)n
2 +j

.

Given ε > 0, define the sequence {gnk}
n+1,∞
k=1,n=1 by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

gnk = e (n−1)n
2 +k

− 1− ε

n

n∑

j=1

e (n−1)n
2 +j

, 1 ≤ k ≤ n

gnn+1 =
1√
n

n∑

j=1

e (n−1)n
2 +j

.

Now, given a finite scalar sequence {cnk}
n+1,∞
k=1,n=1, we have
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2 +j

∣
∣
∣
∣

∣
∣
∣
∣

≤ ε

√
√
√
√

∞∑

n=1

∣
∣
∣
∣

n∑

k=1

cnk
1√
n
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√
√
√
√
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n∑

k=1

|cnk |2. (22.8)
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By the proof of Theorem 7.5.2 we know that {fn
k }

n+1,∞
k=1,n=1 is a tight frame

for H with frame bound 1. If we choose ε < 1, then the perturbation
condition in Theorem 22.1.1 is satisfied with λ = 0, μ = ε, implying that
{gnk}

n+1,∞
k=1,n=1 is a frame for H with bounds (1 − ε)2, (1 + ε)2. It contains

the subfamily {gnk}
n,∞
k=1,n=1, which is a Riesz basis. To see this, note that

(Exercise 22.2)

span{gnk }
n,∞
k=1,n=1 = H. (22.9)

Furthermore, consider an arbitrary finite sequence {cnk}, and observe that
via the opposite triangle inequality and the calculation leading to (22.8),
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|cnk |2.

Thus {gnk}
n,∞
k=1,n=1 is a Riesz basis by Theorem 3.6.6. So actually we have

an example where {fn
k }

n+1,∞
k=1,n=1 does not contain a Riesz basis, but the

perturbed family does. The opposite situation is also possible. In fact, since
{gnk}

n+1,∞
k=1,n=1 has the lower frame bound (1− ε)2, we can by (22.8) consider

{fn
k }

n+1,∞
k=1,n=1 as a perturbation of {gnk }

n+1,∞
k=1,n=1 if ε

1−ε < 1, i.e., if ε < 1
2 .

So we get our example by choosing ε < 1/2 and switching the roles of
{fn

k }
n+1,∞
k=1,n=1 and {gnk }

n+1,∞
k=1,n=1. �

An important special case of Theorem 22.1.1 is given by

Corollary 22.1.5 Let {fk}∞k=1 be a frame for H with bounds A,B, and let
{gk}∞k=1 be a sequence in H. If there exists a constant R < A such that

∞∑

k=1

|〈f, fk − gk〉|2 ≤ R ||f ||2, ∀f ∈ H, (22.10)

then {gk}∞k=1 is a frame for H with bounds

A

(

1−
√

R

A

)2

, B

(

1 +

√
R

B

)2

. (22.11)

If {fk}∞k=1 is a Riesz basis, then {gk}∞k=1 is a Riesz basis.
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Proof. The condition (22.10) corresponds to the condition in Theo-
rem 22.1.1 with λ = 0, μ =

√
R, just formulated in terms of the adjoint of

the synthesis operator (i.e., the analysis operator) instead of the synthesis
operator itself. However, an easier way to prove the frame part is to apply
the triangle inequality in �2(N) to the sequence

{〈f, gk〉}∞k=1 = {〈f, fk〉}∞k=1 − {〈f, fk − gk〉}∞k=1. �

Corollary 22.1.5 implies that if {fk}∞k=1 is a frame for H with lower frame
bound A and {gk}∞k=1 is a sequence such that

∞∑

k=1

||fk − gk||2 < A,

then {gk}∞k=1 is a frame for H (Exercise 22.4). A related result was recently
obtained by Chen, Li, and Zheng [150]:

Proposition 22.1.6 Let {fk}∞k=1 be a frame for H with bounds A,B,
and let {hk}∞k=1 denote a dual frame with Bessel bound D. Consider any
sequence {gk}∞k=1 in H such that

λ :=
∞∑

k=1

||fk − gk||2 <∞

and

μ :=
∞∑

k=1

||fk − gk|| ||hk|| < 1.

Then {hk}∞k=1 is a frame for H with bounds D−1(1− μ)2, B(1 +
√

λ
B )2.

22.2 Compact Perturbation

Another type of condition on the perturbation operator appeared in the
paper [179] by Christensen and Heil:

Theorem 22.2.1 Let {fk}∞k=1 be a frame for H, and let {gk}∞k=1 be a
sequence in H. If

K : �2(N)→ H, K{ck}∞k=1 :=

∞∑

k=1

ck(fk − gk)

is a well-defined compact operator, then {gk}∞k=1 is a frame sequence.
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Proof. Since {fk}∞k=1 is a frame and the perturbation operator K is
bounded, the synthesis operator U for {gk}∞k=1 is well-defined and bounded,
and

||U || = ||T −K|| ≤ ||T ||+ ||K||.

By Theorem 3.2.3 this implies that {gk}∞k=1 is a Bessel sequence. The frame
operator for {gk}∞k=1 is given by

UU∗ = (T −K)(T −K)∗ = S − TK∗ −KT ∗ +KK∗,

where S = TT ∗ is the frame operator for {fk}∞k=1. Since S is invertible, we
can write

UU∗ = S
(
I + S−1(−TK∗ −KT ∗ +KK∗)

)
. (22.12)

Using Lemma 2.4.2, we see that S−1(TK∗ − KT ∗ + KK∗) is a compact
operator and that I+S−1(TK∗−KT ∗+KK∗) has closed range. By (22.12)
also UU∗ has closed range. Since RU = RUU∗ (Exercise 22.3), we conclude
by Corollary 5.5.2 that {gk}∞k=1 is a frame sequence. �

Note that Theorem 22.2.1 only states that {gk}∞k=1 is a frame sequence,
i.e., it might not span the entire Hilbert space. An example where K is
compact and {gk}∞k=1 only spans a subspace is obtained by letting {fk}∞k=1

be an orthonormal basis for H and taking

{gk}∞k=1 := {0, f2, f3, f4, . . . }.

Perturbation via a compact operator as in Theorem 22.2.1 preserves
the excess: if {fk}∞k=1 contains a Riesz basis, then a total family {gk}∞k=1

satisfying the compactness condition also contains a Riesz basis, and the
two frames have the same excess (finite or not). This is proved by Casazza
and Christensen in [121].
An extreme case of “perturbing” an element f� in a frame {fk}∞k=1 is

to replace f� by zero. We have already in Theorem 5.4.7 seen that either
{fk}k �=� is still a frame for H or {fk}k �=� is no longer complete. As a con-
sequence of Theorem 22.2.1 we now prove that in the latter case, we still
have a frame for the closed span of the remaining elements:

Corollary 22.2.2 Let {fk}∞k=1 be a frame for H and {gk}∞k=1 a sequence
in H. If gk = fk except for a finite set of k ∈ N, then {gk}∞k=1 is a frame
sequence.

Proof. Suppose that gk = fk except for k ∈ I, where I is a finite subset
of N. Then the operator

K{ck}∞k=1 =

∞∑

k=1

ck(fk − gk) =
∑

k∈I

ck(fk − gk)
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has a finite-dimensional range and is thus compact. We conclude by
Theorem 22.2.1 that {gk}∞k=1 is a frame sequence. �

Corollary 22.2.2 connects to the theme of erasure frame elements, dis-
cussed in a more applied context in Section 1.9 and Section 1.10. It can
also be applied the other way around to conclude that certain sequences
do not have “simple” extensions to frames:

Example 22.2.3 Let {ek}∞k=1 denote an orthonormal basis for H, and
consider again the family {ek + ek+1}∞k=1 from Example 5.4.6. The family
{ek + ek+1}∞k=1 is not a frame for span{ek + ek+1}∞k=1 = H, and Corol-
lary 22.2.2 shows that {ek + ek+1}∞k=1 cannot be extended to a frame for
H by adding a finite number of elements. �

22.3 Perturbation of Frame Sequences

In Theorem 22.1.1 we assumed that {fk}∞k=1 was a frame for the entire
Hilbert space H, and this is actually an essential assumption. If {fk}∞k=1

only spans a subspace ofH, a perturbation {gk}∞k=1 might not belong to this
subspace, and we can not conclude anything based on the inequality (22.3):

Example 22.3.1 Let {ek}∞k=1 be an orthonormal basis for H and define
the sequence

{fk}∞k=1 = {e1, e2, 0, 0, . . . , 0, . . . }.

Then {fk}∞k=1 is a frame sequence with bounds A = B = 1. Now let ε > 0
be given, and consider the sequence

{gk}∞k=1 =
{
e1, e2,

ε

3
e3,

ε

4
e4,

ε

5
e5, . . . ,

ε

k
ek, · · ·

}
.

For any sequence {ck}∞k=1 ∈ �2(N),

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=1

ck(fk − gk)

∣
∣
∣
∣

∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

k=3

ck
ε

k
ek

∣
∣
∣
∣

∣
∣
∣
∣ ≤

ε

3

( ∞∑

k=1

|ck|2
)1/2

.

Thus, we can satisfy (22.3) with λ = 0 and an arbitrarily small value of μ.
However, {gk}∞k=1 is not a frame sequence for any ε > 0. �

If {fk}∞k=1 is a Riesz sequence the situation in Example 22.3.1 does not
occur, and the perturbation condition in (22.3) is enough to guarantee that
the perturbed sequence {gk}∞k=1 is also a Riesz sequence:
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Theorem 22.3.2 Let {fk}∞k=1 be a Riesz sequence in a Hilbert space H,
with bounds A,B. Let {gk}∞k=1 be a sequence in H and assume that there
exist constants λ, μ ≥ 0 such that λ+ μ√

A
< 1 and

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ck(fk − gk)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ λ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
+ μ

( ∞∑

k=1

|ck|2
)1/2

(22.13)

for all finite scalar sequences {ck}∞k=1. Then {gk}
∞
k=1 is a Riesz sequence

with bounds

A

(

1− (λ +
μ√
A
)

)2

, B

(

1 + λ+
μ√
B

)2

.

Proof. We ask the reader to prove that {gk}∞k=1 is a Bessel sequence
(check the proof of Theorem 22.1.1). Now let {ck}∞k=1 be an arbitrary finite
scalar sequence. Then the opposite triangle inequality together with the
assumption (22.13) implies that

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckgk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≥

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
−
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ck(fk − gk)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≥ (1− λ)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

ckfk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
− μ

( ∞∑

k=1

|ck|2
)1/2

≥
(
(1 − λ)

√
A− μ

)(∑
|ck|2

)1/2

=
√
A

(

1−
(

λ+
μ√
A

))(∑
|ck|2

)1/2

.

�

By involving the gap (a notion introduced by Kato [447]) between certain
subspaces of H one can obtain versions of Theorem 22.1.1 which apply to
frame sequences. Given two arbitrary non-empty subspaces V,W of H, the
gap from V to W is defined by

δ(V,W ) = sup
x∈V,||x||=1

dist(x,W ) = sup
x∈V,||x||=1

inf
y∈W

||x− y||.

Let {fk}∞k=1 be a frame sequence. As before, let T and U denote the synthe-
sis operators corresponding to {fk}∞k=1 and {gk}∞k=1 ; furthermore, denote
their kernels by NT and NU , respectively. Involving the gap between the
kernels of T and U , it turns out that (22.13) is sufficient for {gk}∞k=1 being
a frame sequence if

δ(NT ,NU ) < 1 and λ+
μ√

A(1− δ(NT ,NU )2)1/2
< 1.

We refer to [159] for the proof. Another sufficient condition for {gk}∞k=1

being a frame sequence, now in terms of the gap between span {gk}∞k=1 and
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span{fk}∞k=1 = RT , is given by

λ+
μ√
A

<
√
1− δ(span {gk}∞k=1 , span{fk}∞k=1)

2.

This version is proved in [167]. A further analysis of the case where λ = 0
was performed by Bishop, Heil, Koo, and Lim in [61]; in that case the
authors prove that perturbation in the sense of (22.13) preserves the di-
mension of the space (i.e., dim(span{fk}∞k=1) = dim(span {gk}∞k=1)), the
excess, and the deficit.
It is known that it generally is very hard to calculate the gap. This is

the reason that we do not go into more detail with these results. It would
be interesting to have general results that were easier to apply.
We mention a special case where the condition (22.13) applies without

a bound on (λ, μ) involving the gap. Suppose that {fk}∞k=1 is a frame
sequence for which the analysis operator T has an index, i.e.,

either dim(NT ) <∞ or codim(RT ) := dim(R⊥
T ) <∞. (22.14)

Recall that dim(NT ) <∞ means that {fk}∞k=1 is a near-Riesz basis for its
closed span, and that dim(NT ) measures the excess. In the case (22.14),
the index of T is defined as

ind(T) := dim(NT )− codim(RT ).

Under the stated assumptions it is proved in [159] that a sequence {gk}∞k=1

satisfying (22.13) with λ+ μ√
A

< 1 also is a frame sequence, and that the

corresponding synthesis operator U has an index; in fact,

dim(NU ) ≤ dim(NT ), codim(RU ) ≤ codim(RT ), and ind(U) = ind(T ).

The relation between the various dimensions is particularly interesting in
the case where T is a Fredholm operator, meaning that both dim(NT ) and
codim(RT ) are finite. In this case we see that a perturbation can increase
the dimension of the spanned space, but the excess will decrease with the
same amount. This can be illustrated by an example in R

3:

Example 22.3.3 Let {ei}3i=1 be an orthonormal basis for R3 and let

{fi}3i=1 = {e1, 0, 0}, {gi}3i=1 =

{

e1,
1

2
e2, 0

}

.

{fi}3i=1 spans a one-dimensional subspace, and the excess is 2. {gi}3i=1

is a perturbation of {fi}3i=1 in the sense that (22.13) is satisfied with
(λ, μ) = (0, 1/2) ; however, {gi}3i=1 spans a 2-dimensional subspace, and
the excess is 1. �



570 22 Perturbation of Frames

22.4 Perturbation of Gabor frames

In this section we return to Gabor frames {EmbTnag}m,n∈Z for L2(R).
There are several important perturbation questions related to a Gabor
frame. We will deal with three of them, namely:

(i) If {EmbTnag}m,n∈Z is a Gabor frame and h ∈ L2(R) is “close” to g,
does it follows that {EmbTnah}m,n∈Z is a frame?

(ii) If {EmbTnag}m,n∈Z is a Gabor frame and the points
{(μm,n, λm,n)}m,n∈Z are “close” to {(na,mb)}m,n∈Z, does it follows
that {Eλm,nTμm,ng}m,n∈Z is a frame?

(iii) If {EmbTnag}m,n∈Z is a Gabor frame and (a′, b′) is “close” to (a, b),
does it follow that {Emb′Tna′g}m,n∈Z is a frame?

In all three cases we have to specify what “close” should mean. We
begin with (i). If {EmbTnag}m,n∈Z is a Gabor frame, one could expect
{EmbTnah}m,n∈Z to be a frame if ||g− h|| is sufficiently small, but a result
of this type turns out not to hold. Consider, for example, the orthonor-
mal basis {EmTnχ[0,1]}m,n∈Z from Example 3.8.3; no matter how small
we choose ε > 0, the functions {EmTnχ[0,1−ε]}m,n∈Z are not complete in
L2(R) and therefore cannot form a frame for L2(R), despite the fact that
the norm difference

||χ[0,1] − χ[0,1−ε]|| = ε

can be arbitrarily small. This shows that for the perturbation problem (i),
it is not appropriate just to use ||g − h|| as a measure for how close g and
h are.
A positive result can be obtained directly via Theorem 11.4.2 combined

with Corollary 22.1.5:

Theorem 22.4.1 Let g, h ∈ L2(R) and a, b > 0 be given, and suppose that
{EmbTnag}m,n∈Z is a frame for L2(R) with frame bounds A,B. If

R :=
1

b
sup

x∈[0,a]

∑

k∈Z

∣
∣
∣
∣

∑

n∈Z

(g − h)(x− na)(g − h)(x− na− k/b)

∣
∣
∣
∣ < A, (22.15)

then {EmbTnah}m,n∈Z is a frame for L2(R) with bounds

A

(

1−
√

R

A

)2

, B

(

1 +

√
R

B

)2

.

If {EmbTnag}m,n∈Z is a Riesz basis for L2(R), then {EmbTnah}m,n∈Z is
also a Riesz basis for L2(R).
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As a consequence of Theorem 22.4.1, the frame property is preserved
under small perturbations measured in the Wiener space norm || · ||W,a; see
the definition in (11.30):

Corollary 22.4.2 Let g, h ∈ L2(R) and a, b > 0 be given, and suppose
that {EmbTnag}m,n∈Z is a frame for L2(R) with frame bounds A,B. If

||g−h||W,a <
√

bA
2 , then {EmbTnah}m,n∈Z is a frame for L2(R) with bounds

A

(

1−
√

2

bA
||g − h||W,a

)2

, B

(

1 +

√
2

bB
||g − h||W,a

)2

.

Proof. Define again R by (22.15). By Lemma 11.5.1,

R ≤ 2

b
||g − h||2W,a;

from here, the result now follows from Corollary 22.1.5 with R replaced by
2
b ||g − h||2W,a. �

We now consider the problem (ii) of perturbing the lattice points
{(na,mb)}m,n∈Z. This problem was first considered by Favier and Za-
lik [273] in 1995. Since then, several authors have studied the problem.
Common for most of the results is that only the translations na or the
modulations mb were perturbed. Finally, in 2001 Sun and Zhou [604]
gave conditions such that both could be perturbed simultaneously. To be
more precise, they proved that reasonable conditions on g imply that if
{EmbTnag}m,n∈Z is a frame and the Euclidean distance between (na,mb)
and (μm,n, λm,n) is sufficiently small for all m,n ∈ Z, then the irregular
Gabor system {Eλm,nTμm,ng}m,n∈Z is a frame as well. We state their result,
which is formulated in terms of a function H depending on the choice of
g ∈ L2(R),

H(g) :=

⎛

⎝1

b
sup

x∈[0,a]

∑

n,k∈Z

|g(x− na)g(x− na− k/b)|

⎞

⎠

1/2

.

Theorem 22.4.3 Let g ∈ L2(R) be continuously differentiable and assume
that there exist constants C > 0, α > 2 such that

|g(x)|, |g′(x)| ≤ C

(1 + |x|)α , ∀x ∈ R.

Define g̃(x) = xg(x). Let a, b > 0 be given, and assume that
{EmbTnag}m,n∈Z is a frame with bounds A,B. Let δ, η be any positive
numbers for which

R := (8ηH(g′) + 8σH(g̃) + 64σηH(g̃′))2 < A.
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Then, for any sequence {(μm,n, λm,n)}m,n∈Z ⊂ R
2 for which

|μm,n − na| ≤ η, |λm,n −mb| ≤ σ, ∀m,n ∈ Z,

the Gabor system {Eλm,nTμm,ng}m,n∈Z is a frame with frame bounds

A

(

1−
√

R

A

)2

, B

(

1 +

√
R

B

)2

.

The conditions in Theorem 22.4.3 imply that there exists an open ball
B(0, ε) in R

2 centered at the origin and with radius ε, such that any choice
of points {(μm,n, λm,n)}m,n∈Z with

(μm,n, λm,n) ∈ (na,mb) +B(0, ε), ∀m,n ∈ Z

will lead to a frame {Eλm,nTμm,ng}m,n∈Z. It is remarkable that all points
(na,mb) are allowed to be perturbed equally. A significantly weaker conclu-
sion can be obtained directly via Exercise 22.4, without any decay condition
on g. In fact, assume that {EmbTnag}m,n∈Z is a frame. Then, since the
mapping (x, y) �→ ||ExTyg|| is continuous by Lemma 2.9.2, we can choose
a sequence {(μm,n, λm,n)}m,n∈Z �= {(na,mb)}m,n∈Z such that

∑

m,n∈Z

||EmbTnag − Eλm,nTμm,ng||2 < A; (22.16)

then {Eλm,nTμm,ng}m,n∈Z is a frame. However, the condition (22.16) will
force that

|(na− μm,n,mb− λm,n)| → 0 as m,n→∞.

The statement of Theorem 22.4.3 indicates that the key to obtain reason-
able perturbation results is to put the right assumptions on g. Feichtinger
and Kaiblinger [286] have provided strong support to this statement by
proving the following important result, where g is assumed to belong to
the Feichtinger algebra S0:

Theorem 22.4.4 Assume that g, h ∈ S0 and let a, b > 0 be given.
If {EmbTnag}m,n∈Z is a frame, then there exists ε > 0 such that
{Emb′Tna′h}m,n∈Z is a frame if

|a− a′| < ε, |b− b′| < ε, ||g − h||S0 < ε.

Theorem 22.4.4 is in a sense very surprising, even when we let h = g. In
fact, when (a′, b′) �= (a, b), the functions

x �→ EmbTnag(x) = e2πimbxg(x− na)

and

x �→ Emb′Tna′g(x) = e2πimb′xg(x− na′)
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are moving far apart from each other for large values of m,n, so in a
pointwise sense one cannot consider {Emb′Tna′g}m,n∈Z as a perturbation
of {EmbTnag}m,n∈Z. The assumption g ∈ S0 is important in order to obtain
that {Emb′Tna′h}m,n∈Z is nevertheless a frame when (a′, b′) and (a, b) are
sufficiently close. To illustrate this, we can look at the function g = χ[0,1];
then {EmTng}m,n∈Z is a frame, but {EmTn(1+ε)g}m,n∈Z is not a frame for
any ε > 0; it is not even complete, because the shifts Tn(1+ε)g do not cover
the entire real axis.
Theorem 22.4.4 was later generalized to the irregular case, i.e., the case of

a Gabor frame {EλnTμng}n∈I where {(μn, λn)}n∈I is an arbitrary sequence
of points in R

2. In this case it was proved in [18] that {EρλnTρμnh}n∈I is
also a frame, provided that ρ is sufficiently close to 1 and that the window
h sufficiently close to g, measured in the S0-norm. Clearly, the assumption
g ∈ S0 is essential here as well.
More general nonlinear deformations that keep the frame property have

recently been considered by Gröchenig, Ortega-Cerda, and Romero [353].

22.5 Perturbation of Wavelet Frames

The perturbation theory for wavelet frames is less developed than its Gabor
counterpart: some results about perturbation of the generator are known,
but the literature for perturbation of the translation/scaling parameters is
sparse.
We leave the proof of the following result concerning perturbation of the

generator to the reader (Exercise 22.5).

Theorem 22.5.1 Let ψ, ϕ ∈ L2(R) and a > 1, b > 0 be given, and assume
that {aj/2ψ(ajx− kb)}j,k∈Z is a frame with bounds A,B. If ϕ ∈ L2(R) and

R :=
1

b
sup

|γ|∈[1,a]

∑

j,k∈Z

∣
∣
∣(ψ̂ − ϕ̂)(ajγ)(ψ̂ − ϕ̂)(ajγ + k/b)

∣
∣
∣ < A,

then {aj/2ϕ(ajx− kb)}j,k∈Z is a frame for L2(R) with frame bounds

A

(

1−
√

R

A

)2

, B

(

1 +

√
R

A

)2

.

Favier and Zalik [273] have proved that if ψ ∈ L2(R) satisfies some mild
conditions and {aj/2ψ(ajx−kb)}j,k∈Z is a frame for some a > 1, b > 0, then
{aj/2ψ(ajx−kb′)}j,k∈Z is also a frame if b′ is sufficiently close to b. A result
where both a and b are perturbed has apparently not been proved yet.
Note that the result by Sun and Zhou stated in Theorem 19.1.4

can also be considered as a perturbation result: in fact, the condi-
tions imply that {aj/2ϕ(ajx − kb)}j,k∈Z is a frame for L2(R) and that
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{
s
−1/2
j,k ψ

(
x−μj,k

sj,k

)}

j,k∈Z

is also a frame for L2(R) whenever the points

{(sj,k, μj,k)}j,k∈Z are “sufficiently close” to {(aj, ajkb)}j,k∈Z. However, this
result concerns the possibility of constructing irregular wavelet frames,
which is another question than that of perturbing the parameters a and b.

22.6 Perturbation of the Haar Wavelet

Let us return to the wavelet orthonormal basis {DjTkψ}j,k∈Z generated by
the Haar wavelet,

ψ = χ[0,1/2[ − χ[1/2,1[.

One of the main problems with this wavelet is the missing regularity, which,
e.g., leads to bad localization of its Fourier transform ψ̂. A very natural
idea is to consider perturbations ψ̃ of ψ, and ask for ψ̃ to belong to a certain
smoothness class Cm(R) and {DjTkψ̃}j,k∈Z to be a Riesz basis for L2(R).
Govil and Zalik did that in [326]. To be more precise, they modified the
Haar wavelet pointwise by adding linear combinations of mth order splines
with support in small neighborhoods of the discontinuity points 0, 12 , 1.
Hereby they obtained, for any integer m ≥ 2 and any ε > 0, a function
ψ̃ ∈ L2(R) (we suppress the dependence on the parameters in the notation)
such that

(i) ψ̃ ∈ Cm(R),

(ii) supp ψ̃ ⊆ [−ε, 1 + ε],

(iii) {DjTkψ̃}j,k∈Z is a Riesz basis for L2(R).

The proof is based on Theorem 22.1.1. By letting ε → 0, the function
ψ̃ will approach the Haar wavelet in Lp(R), 0 < p < ∞, and the frame

bounds converge to 1. The constructed functions ψ̃ cannot be generated by
a multiresolution analysis: Zalik proved in [638] that there does not exist a
multiresolution analysis with associated scaling function φ such that

ψ̃(x) =
∑

k∈Z

ckφ(2x− k) for some {ck}k∈Z ∈ �2(Z).

22.7 Exercises

22.1 Prove the estimates (22.7).

22.2 Prove (22.9).
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22.3 Let U be a bounded operator between Hilbert spaces. Prove that
if at least one of the spaces RU and RUU∗ is closed, then

RU = RUU∗ .

22.4 Let {fk}∞k=1 be a frame for H with frame bounds A,B, and let
{gk}∞k=1 be a sequence in H. Prove that if

∞∑

k=1

||fk − gk||2 < A,

then {gk}∞k=1 is a frame for H, with bounds as in (22.11)

22.5 Prove Theorem 22.5.1.

22.6 Extend Corollary 22.1.5 to Riesz sequences.

22.7 Let {e1, e2} be an orthonormal basis for C2, and consider the frame
{f1, f2} given by

f1 = e1, f2 = 2e2.

Given a number c ∈ C, let

g1 = e1, g2 = ce2.

Based on the frame {f1, f2}, we want to find the range of parameter
c for which {g1, g2} is also a frame.

(i) Apply Theorem 22.1.1 with λ = 0 – for which c ∈ C does the
result guarantee that {g1, g2} is a frame?

(ii) Apply Theorem 22.1.1 with μ = 0 – for which c ∈ C does the
result guarantee that {g1, g2} is a frame?

(iii) What is the exact range of c ∈ C for which {g1, g2} is a
frame?



23
Approximation of the Inverse Frame
Operator

Consider a frame {fk}∞k=1 for a Hilbert space H and the associated frame
operator,

S : H → H, Sf =

∞∑

k=1

〈f, fk〉fk.

One of the main results in frame theory, the frame decomposition (5.7),
states that each f ∈ H has the representation

f =

∞∑

k=1

〈f, S−1fk〉fk. (23.1)

In practice it can be very difficult (or impossible) to apply the frame de-
composition directly: the reason is that H usually is an infinite-dimensional
Hilbert space, which makes it hard to invert the frame operator. In case we
cannot find S−1 explicitly, we need to approximate S−1 (or at least approx-
imate the frame coefficients {〈f, S−1fk〉}∞k=1). In this chapter we present
some methods for approximation that only use vectors in finite-dimensional
vector spaces. This has the consequence that all calculations in principle
can be done using linear algebra.
The first method for approximation of the inverse frame operator will

be discussed in Section 23.1. It does not work for all frames, but it leads
in a natural way to the Casazza–Christensen method in Section 23.2 –
a method that works for all frames. The analysis of the method is continued
in Section 23.3, where convergence estimates due to Song and Gelb are pre-
sented. In Section 23.4 the method is applied to Gabor frames; the special
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case of integer-oversampled Gabor frames is considered in Section 23.5. Fi-
nally, Section 23.6 deals with the finite section method, with applications
to Gabor frames given in Section 23.7.

23.1 The First Approach

In the entire chapter we letH denote a Hilbert space. Given a frame {fk}∞k=1

with frame operator S : H → H, we know from general frame theory
that S is invertible. However, explicit calculation of the inverse S−1 is
usually not possible, which clearly makes it impossible to apply the frame
decomposition (23.1) directly. It is natural to try to circumvent the problem
by suitable approximations of S−1, e.g., using finite subsets of {fk}∞k=1.
Given n ∈ N, the family {fk}nk=1 is a frame for Hn := span{fk}nk=1 by
Proposition 1.1.2; denote its frame operator by

Sn : Hn → Hn, Snf =

n∑

k=1

〈f, fk〉fk. (23.2)

From Lemma 5.2.3 we know that the orthogonal projection Pn of H onto
Hn is given by

Pnf =

n∑

k=1

〈f, S−1
n fk〉fk, f ∈ H. (23.3)

Note that Hn is finite-dimensional; thus, at least in principle, we can find
S−1
n using linear algebra. Now, since

Pnf =

n∑

k=1

〈f, S−1
n fk〉fk → f =

∞∑

k=1

〈f, S−1fk〉fk for n→∞,

it is natural to ask whether S−1
n approximates S−1 in the sense that

〈f, S−1
n fk〉 → 〈f, S−1fk〉 as n→∞, ∀f ∈ H, ∀k ∈ N. (23.4)

The question makes sense: for a given value of k ∈ N, fk is in the domain
Hn for S−1

n as soon as n ≥ k. The following result was proved in [152].

Theorem 23.1.1 Let {fk}∞k=1 be a frame for H. Then (23.4) holds if and
only if

∀j ∈ N ∃cj ∈ R : ||S−1
n fj || ≤ cj , ∀n ≥ j. (23.5)

Proof. First, suppose that (23.5) is satisfied. Fix j ∈ N, and define

φn := S−1
n fj − S−1fj , n ≥ j.
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We need to prove that for all f ∈ H, 〈f, φn〉 → 0 as n→∞. Observe that

Sf =

∞∑

k=1

〈f, fk〉fk = Snf +

∞∑

k=n+1

〈f, fk〉fk. (23.6)

We will use this to obtain an alternative formula for φn. First, since

Sφn = SS−1
n fj − fj,

an application of (23.6) on S−1
n fj yields

Sφn = SnS
−1
n fj +

∞∑

k=n+1

〈S−1
n fj, fk〉fk − fj

=

∞∑

k=n+1

〈S−1
n fj, fk〉fk.

It follows that

φn =

∞∑

k=n+1

〈S−1
n fj, fk〉S−1fk, n ≥ j.

Therefore, for f ∈ H,

|〈f, φn〉|2 =

∣
∣
∣
∣

∞∑

k=n+1

〈fk, S−1
n fj〉〈f, S−1fk〉

∣
∣
∣
∣

2

≤
∞∑

k=n+1

|〈S−1
n fj , fk〉|2

∞∑

k=n+1

|〈f, S−1fk〉|2

≤ B
∣
∣
∣
∣S−1

n fj
∣
∣
∣
∣2

∞∑

k=n+1

|〈f, S−1fk〉|2

≤ Bc2j

∞∑

k=n+1

|〈S−1f, fk〉|2.

Since {fk}∞k=1 is a frame,
∑∞

k=n+1 |〈S−1f, fk〉|2 → 0 as n→∞. Therefore,
our estimate proves that 〈f, φn〉 → 0 as n → ∞, as desired. On the other
hand, if we assume that (23.4) is satisfied, we can fix an arbitrary j ∈ N

and consider the functionals

An : H → C, Anf = 〈f, S−1
n fj〉, n ≥ j.

Each An is bounded, and by (23.4) the family of operators {An}n≥j is
pointwise convergent; by Theorem 2.2.1 the family of norms {||An||}n≥j is
therefore bounded, i.e., there is a constant cj > 0 such that

||An|| = ||S−1
n fj || ≤ cj , ∀n ≥ j. �
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Via Proposition 5.4.4 we obtain the following immediate consequence of
Theorem 23.1.1:

Corollary 23.1.2 Assume that {fk}∞k=1 is a Riesz frame. Then (23.4)
holds.

In particular, (23.4) holds if {fk}∞k=1 is a Riesz basis. Intuitively, one
could expect the same to be true if {fk}∞k=1 is “close to be a Riesz basis,”
but this turns out not to be true. After adding a single element to a Riesz
basis, the property (23.4) might no longer hold:

Example 23.1.3 Let {ek}∞k=1 be an orthonormal basis for H, and define

f1 = e1, fk = ek−1 +
1

k
ek, k ≥ 2.

By Example 22.1.2 we know that {fk}∞k=2 is a Riesz basis with bounds
1
4 ,

9
4 ; so {fk}∞k=1 is a frame with excess equal to 1. For n ∈ N we want to

find f := S−1
n f1, i.e., to solve the equation

n∑

k=1

〈f, fk〉fk = f1, f ∈ Hn.

In terms of the orthonormal basis {ek}∞k=1, the equation can be written as

n−1∑

k=1

(
1

k
〈f, fk〉+ 〈f, fk+1〉

)

ek +
1

n
〈f, fn〉en = e1. (23.7)

It follows from here that

〈f, fn〉 = 0 and that 〈f, fk〉 = −k〈f, fk+1〉, k = 2, . . . , n− 1,

so 〈f, fk〉 = 0 for all k = 2, . . . , n. Again by (23.7) we have 〈f, f1〉 = 1;
expressing the last two conclusions in terms of {ek}∞k=1, we have

〈f, e1〉 = 1, 〈f, e2〉 = −2〈f, e1〉 = −2,

and in general

〈f, ek〉 = −k〈f, ek−1〉 = (−1)k−1k!, k = 2, . . . , n.

Since f ∈ Hn = span{ek}nk=1, this implies that

f =

n∑

k=1

〈f, ek〉ek =

n∑

k=1

(−1)k−1k!ek. (23.8)

In particular,

||S−1
n f1|| =

(
n∑

k=1

(k!)2

)1/2

→∞ as n→∞.
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Therefore (23.5) does not hold. We can actually be more concrete and
exhibit a vector g ∈ H for which the desired convergence in (23.4) fails. In
fact, with

g :=

∞∑

k=1

(−1)k−1

k!
ek,

the expression for S−1
n f1 in (23.8) shows that

〈g, S−1
n f1〉 = n.

Thus, {〈g, S−1
n f1〉}∞k=1 is divergent, and (23.4) does not hold. �

The question of convergence in (23.4) can in fact be used to give yet
another characterization of a frame being a Riesz basis:

Proposition 23.1.4 A frame {fk}∞k=1 is a Riesz basis if and only if
{fk}∞k=1 is linearly independent and (23.4) holds.

Proof. A Riesz basis is linearly independent and satisfies (23.4) by
Corollary 23.1.2. Now assume that {fk}∞k=1 is linearly independent and
that (23.4) holds. Let n ∈ N. The linear independence of {fk}∞k=1 implies
that {fk}nk=1 is a (Riesz) basis for Hn. By Corollary 1.1.7, the dual basis
is {S−1

n fk}nk=1, so

〈fk, S−1
n fj〉 = δk,j , k, j = 1, 2, . . . , n.

By letting n→∞ and using (23.4), we obtain that

〈fk, S−1fj〉 = δk,j , ∀k, j ∈ N.

By Theorem 7.1.1 we conclude that {fk}∞k=1 is a Riesz basis. �

Example 23.1.3 is of course disappointing because it provides an example
where the approximation method does not work. We will now prove that
the method does not apply for overcomplete Gabor frames either:

Corollary 23.1.5 Let {EmbTnag}m,n∈Z be a Gabor frame with frame op-
erator S, and let {fk}∞k=1 denote an arbitrary re-indexing of the frame
elements. Then (23.4) holds if and only if {EmbTnag}m,n∈Z is a Riesz basis,
i.e., if and only if ab = 1.

Proof. As discussed on page 36 and page 343, the elements in
{EmbTnag}m,n∈Z are linearly independent. Thus, by Proposition 23.1.4 we
know that (23.4) holds if and only if {EmbTnag}m,n∈Z is a Riesz basis. �

It is not known whether there exist overcomplete wavelet frames for
which (23.4) hold. But the negative outcome for Gabor frames prompts us
to develop a more general theory.
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23.2 The Casazza–Christensen Method

In this section we derive a method for approximation of the inverse frame
operator which works for all frames. It can be considered as an improvement
of the method from the last section. The initial results (up to Theo-
rem 23.2.3) were proved by Casazza and Christensen in [124], and the rest
are from [160]. We keep our previous notation, and let {fk}∞k=1 denote a
frame with frame operator S; we again consider finite subfamilies {fk}nk=1

and the associated finite-dimensional vector space Hn = span{fk}nk=1. Let
Pn denote the orthogonal projection of H onto Hn, and let

In := {1, 2, . . . , n} , n ∈ N. (23.9)

With this notation, the purpose is to approximate S−1 via sets of the
form {fk}k∈In , n ∈ N. It is only for notational convenience that the follow-
ing results are formulated for a frame indexed by N and for this choice of
In; given a frame indexed by a countable set I, similar results with identical
proofs hold for any family {In}∞n=1 of finite subsets of I for which

I1 ⊂ I2 ⊂ · · · ⊂ In ↑ I.
In order to make the general result clear from our presentation, we will

denote the number of elements in In by |In|, despite the fact that with our
choice (23.9), we simply have |In| = n.
We begin with a lemma.

Lemma 23.2.1 Let {fk}∞k=1 be a frame for H with lower bound A. Given
n ∈ N, there exists a positive integer m(n) such that

A

2
||f ||2 ≤

n+m(n)∑

k=1

|〈f, fk〉|2, ∀f ∈ Hn. (23.10)

Proof. Let n ∈ N. Given ε > 0, choose a finite set of elements {gj}Jj=1 in
Hn such that ||gj || = 1 for all j = 1, . . . , J , and such that the balls

B(gj , ε) := {f ∈ Hn : ||f − gj|| ≤ ε}

cover the compact set {f ∈ Hn | ||f || = 1}. Since

A ≤
∞∑

k=1

|〈gj , fk〉|2, ∀j = 1, . . . , J,

we can choose m(n) such that

A
2

3
≤

n+m(n)∑

k=1

|〈gj , fk〉|2, ∀j = 1, . . . , J.

Let B denote an upper frame bound for {fk}∞k=1, and consider f ∈
Hn, ||f || = 1. Choose j such that f ∈ B(gj , ε). By the opposite triangle
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inequality applied to

{〈f, fk〉}n+m(n)
k=1 = {〈gj, fk〉 − 〈gj − f, fk〉}n+m(n)

k=1 ,

we have
⎛

⎝
n+m(n)∑

k=1

|〈f, fk〉|2
⎞

⎠

1/2

≥

⎛

⎝
n+m(n)∑

k=1

|〈gj , fk〉|2
⎞

⎠

1/2

−

⎛

⎝
n+m(n)∑

k=1

|〈gj − f, fk〉|2
⎞

⎠

1/2

≥
√

A
2

3
−
√
B ||gj − f || ≥

√

A
2

3
−
√
Bε.

By choosing ε small enough,
√
A2

3 −
√
Bε ≥

√
A
2 , from which the result

follows. �

The next lemma shows that for any frame {fk}∞k=1, we can construct
a family of frames “approaching {fk}∞k=1,” which have common frame
bounds. Remember that (23.4) holds for every Riesz frame; the lemma
below turns out to be the key to an improved method that works for every
frame.

Lemma 23.2.2 Let {fk}∞k=1 be a frame with bounds A,B. For any n ∈
N, choose a positive integer m(n) such that (23.10) is satisfied. Then

{Pnfk}n+m(n)
k=1 is a frame for Hn with bounds A

2 , B; the associated frame
operator is

PnSn+m(n) : Hn → Hn,

and

||PnSn+m(n)|| ≤ B, ||(PnSn+m(n))
−1|| ≤ 2

A
.

Proof. Fix n ∈ N and let f ∈ Hn. Then, with our choice of m(n),

n+m(n)∑

k=1

|〈f, Pnfk〉|2 =

n+m(n)∑

k=1

|〈f, fk〉|2 ≥
A

2
||f ||2.

Also,

n+m(n)∑

k=1

|〈f, Pnfk〉|2 =

n+m(n)∑

k=1

|〈f, fk〉|2 ≤
∞∑

k=1

|〈f, fk〉|2 ≤ B ||f ||2.
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So {Pnfk}n+m(n)
k=1 is a frame for Hn with the claimed bounds. The frame

operator is given by the mapping

f �−→
n+m(n)∑

k=1

〈f, Pnfk〉Pnfk = Pn

n+m(n)∑

k=1

〈f, fk〉fk = PnSn+m(n)f, f ∈ Hn.

Now where PnSn+m(n) is identified as the frame operator for a frame with

bounds A
2 , B, the norm estimates for PnSn+m(n) and (PnSn+m(n))

−1 follow
from Proposition 5.4.4. �

Technically, the merit of the frames constructed in Lemma 23.2.2 is
that the frame operators are well-conditioned: the condition number for
PnSn+m(n) is at most 2B/A, regardless of n ∈ N. In contrast, the frame
operators for the finite subfamilies {fk}nk=1 of {fk}∞k=1 might be badly
conditioned, as we have discussed in Section 7.2.
We are now ready to prove that S−1 can be approximated arbitrarily

well in the strong operator topology using the operators

(PnSn+m(n))
−1Pn : Hn → Hn, n ∈ N.

Note that PnSn+m(n) is an operator on a finite-dimensional vector space.
This implies that its inverse, and therefore (PnSn+m(n))

−1Pn, in principle
can be found using finite-dimensional linear algebra. In practice, of course,
large values of n will complicate the calculations. The method is called the
Casazza–Christensen method.

Theorem 23.2.3 Let {fk}∞k=1 be a frame with bounds A,B. For n ∈ N,
choose a positive integer m(n) such that (23.10) is satisfied. Then

(PnSn+m(n))
−1Pnf → S−1f for n→∞, ∀f ∈ H. (23.11)

Proof. Let f ∈ H. Then

S−1f − (PnSn+m(n))
−1Pnf = PnS

−1f − (PnSn+m(n))
−1Pnf

+(I − Pn)S
−1f.

Since (I − Pn)S
−1f → 0 as n→∞, it is enough to show that

ψn := PnS
−1f − (PnSn+m(n))

−1Pnf → 0 as n→∞.

Since ψn ∈ Hn we can apply the operator PnSn+m(n) to get

ψn = (PnSn+m(n))
−1(PnSn+m(n)PnS

−1f − Pnf).

Consequently, via Lemma 23.2.2,

||ψn|| ≤ ||(PnSn+m(n))
−1|| ||PnSn+m(n)PnS

−1f − Pnf ||

≤ 2

A
||Sn+m(n)PnS

−1f − f || → 0 for n→∞,

as desired. �
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At the moment the approximation method in Theorem 23.2.3 is purely
theoretical: it depends on the choice of the positive number m(n), which
has not been estimated yet. We now want to obtain a more explicit result,
giving more information about how to choose m(n) such that (23.10) is
satisfied. Recall that according to our chosen notation, In = {1, 2, . . . . , n}.
In the rest of the section we will, for each given n ∈ N, consider an index
set Jn containing In. The reader can simply consider

Jn := In+m(n); (23.12)

this is somehow the “natural choice,” but (23.12) is not necessary for the
following results to hold.
We will need the following estimate.

Lemma 23.2.4 Let {fk}∞k=1 be a sequence in H and let n ∈ N. Let An

denote a lower frame bound for the frame sequence {fk}nk=1. Then for any
set Jn containing In,

∑

k/∈Jn

|〈f, fk〉|2 ≤
|In|
An

maxj∈In

∑

k/∈Jn

|〈fk, fj〉|2 ||f ||2, ∀f ∈ Hn.

Proof. Let f ∈ Hn. Since {fk}nk=1 is a frame for Hn, we can use the frame
decomposition f =

∑
j∈In

〈f, S−1
n fj〉fj to get

|〈f, fk〉|2 =

∣
∣
∣
∣〈
∑

j∈In

〈f, S−1
n fj〉fj , fk〉

∣
∣
∣
∣

2

=

∣
∣
∣
∣

∑

j∈In

〈f, S−1
n fj〉〈fj , fk〉

∣
∣
∣
∣

2

.

Now, by Cauchy–Schwarz’ inequality and the fact that {S−1
n fj}j∈In is a

frame for Hn with upper bound 1
An

, we have

|〈f, fk〉|2 ≤
∑

j∈In

|〈f, S−1
n fj〉|2

∑

j∈In

|〈fj , fk〉|2

≤ 1

An
||f ||2

∑

j∈In

|〈fj, fk〉|2.

Thus
∑

k/∈Jn

|〈f, fk〉|2 ≤
∑

k/∈Jn

1

An
||f ||2

∑

j∈In

|〈fj , fk〉|2

=
1

An
||f ||2

∑

j∈In

∑

k/∈Jn

|〈fj , fk〉|2

≤ |In|
An

||f ||2 maxj∈In

∑

k/∈Jn

|〈fj , fk〉|2,

as claimed. �
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We will now state a more explicit version of Theorem 23.2.3, formu-
lated in terms of the frame operator Vn for the finite family {Pnfk}k∈Jn ;
by Lemma 23.2.2 this operator is precisely the one that appears in
Theorem 23.2.3. Compared with Theorem 23.2.3, the result gives more
information about how to choose the set Jn and also provides some insight
concerning the speed of convergence in (23.11). More direct convergence
estimates will be considered in Section 23.3.

Theorem 23.2.5 Let {fk}∞k=1 be a frame for H with bounds A,B. Let
{εn}∞n=1 ⊆]0, A[ be a decreasing sequence of numbers converging to zero.
For n ∈ N, choose a finite set Jn containing In such that

∑

k/∈Jn

|〈f, fk〉|2 ≤ εn||f ||2, ∀f ∈ Hn. (23.13)

Let Vn : Hn → Hn denote the frame operator for the finite family
{Pnfk}k∈Jn . Then, for all f ∈ H,

||S−1f − V −1
n Pnf || ≤

εn
A(A− εn)

||f ||+
(

B

A− εn
+ 1

)

||(I − Pn)S
−1f ||.

Proof. Let n ∈ N. Denote the restriction of PnS − Vn to Hn by
(PnS − Vn)|Hn

; the reader can check that (PnS − Vn)|Hn
is self-adjoint.

Furthermore, for f ∈ Hn, we have

〈(PnS − Vn)|Hn
f, f〉 = 〈(PnS − Vn)f, f〉

= 〈PnSf, f〉 − 〈Vnf, f〉

=

〈 ∞∑

k=1

〈f, fk〉Pnfk, f

〉

−
〈
∑

k∈Jn

〈f, Pnfk〉Pnfk, f

〉

=

∞∑

k=1

|〈f, fk〉|2 −
∑

k∈Jn

|〈f, fk〉|2

=
∑

k/∈Jn

|〈f, fk〉|2 ≥ 0.

It follows from (2.8) and the condition (23.13) that

||(PnS − Vn)|Hn
|| = supf∈Hn,||f ||=1 |〈(PnS − Vn)f, f〉|

= supf∈Hn,||f ||=1

∑

k/∈Jn

|〈f, fk〉|2 ≤ εn.

Also, for f ∈ Hn,
∑

k∈Jn

|〈f, Pnfk〉|2 =
∑

k∈Jn

|〈f, fk〉|2

=

∞∑

k=1

|〈f, fk〉|2 −
∑

k/∈Jn

|〈f, fk〉|2 ≥ (A− εn)||f ||2.



23.2 The Casazza–Christensen Method 587

So A − εn is a lower frame bound for {Pnfk}k∈Jn ; by Proposition 5.4.4,
this implies that ||V −1

n || ≤ 1
A−εn

. Now let f ∈ H. We have

||S−1f − V −1
n Pnf || ≤ ||(I − Pn)S

−1f ||+ ||PnS
−1f − V −1

n Pnf ||
≤ ||(I − Pn)S

−1f ||+ ||V −1
n || ||VnPnS

−1f − Pnf ||

≤ ||(I − Pn)S
−1f ||+ 1

A− εn
||VnPnS

−1f − Pnf ||.

Now,

||VnPnS
−1f − Pnf || ≤ ||VnPnS

−1f − PnSPnS
−1f ||

+||PnSPnS
−1f − Pnf ||

≤ ||(Vn − PnS)PnS
−1f ||+ ||SPnS

−1f − f ||
≤ εn ||PnS

−1f ||+ ||S|| ||PnS
−1f − S−1f ||

≤ εn
A
||f ||+B ||(I − Pn)S

−1f ||.

Altogether,

||S−1f − V −1
n Pnf || ≤

εn
A(A− εn)

||f ||+
(

B

A− εn
+ 1

)

||(I − Pn)S
−1f ||.

This completes the proof. �

It is always possible to chose a set Jn such that (23.13) is satisfied
(Exercise 23.2). By Theorem 23.2.5, this choice of Jn implies that

V −1
n Pnf → S−1f for n→∞, ∀f ∈ H.

That is, the operators {V −1
n Pn}∞n=1 converge to S−1 in the strong operator

topology. In particular, the frame coefficients can be approximated:

〈f, V −1
n Pnfk〉 → 〈f, S−1fk〉 for n→∞, ∀f ∈ H, k ∈ N. (23.14)

Let us compare the conclusion in (23.14) with the initial question (23.4).
While the convergence in (23.4) was proved only to hold for some frames,
the convergence in (23.14) holds for all frames {fk}∞k=1. Since {Pnfk}k∈Jn

is a finite set, the frame operator Vn and its inverse can be computed using
finite-dimensional linear algebra, exactly as in the case of the projection
method in Section 23.1. This does not make it trivial to apply the results,
but calculation of V −1

n Pn is a drastic simplification compared to inversion
of the frame operator S.
Under the conditions in Theorem 23.2.5, it even holds that the sequence

of coefficients {〈f, V −1
n Pnfk〉}k∈Jn , n ∈ N, converges to {〈f, S−1fk〉}∞k=1 in

�2-sense as n→∞:
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Theorem 23.2.6 For n ∈ N, choose Jn as in Theorem 23.2.5. Then
∑

k∈Jn

|〈f, V −1
n Pnfk〉 − 〈f, S−1fk〉|2 +

∑

k/∈Jn

|〈f, S−1fk〉|2

→ 0 for n→∞, ∀f ∈ H.

Proof. Let f ∈ H. It is clear that
∑

k/∈Jn
|〈f, S−1fk〉|2 → 0 for n → ∞.

Concerning the first term, we have
∑

k∈Jn

|〈f, V −1
n Pnfk〉 − 〈f, S−1fk〉|2

=
∑

k∈Jn

|〈V −1
n Pnf, fk〉 − 〈S−1f, fk〉|2

≤ B ||(V −1
n Pn − S−1)f ||2 → 0 as n→∞,

as desired. �

For applications of Theorem 23.2.5 the pure existence of sets Jn sat-
isfying (23.13) is not enough: we need to be able to find Jn. The
condition (23.13) is quite complicated because it has to be satisfied for
all f ∈ Hn. Combining Theorem 23.2.5 and Lemma 23.2.4, we will now
show that it can be replaced by a condition only involving the finite set of
vectors fj, j ∈ In:

Theorem 23.2.7 Let {fk}∞k=1 be a frame for H with bounds A,B. Let
{εn}∞n=1 ⊆]0, A[ be a decreasing sequence of numbers converging to zero.
For n ∈ N, let An denote a lower frame bound for the frame sequence
{fk}nk=1 and choose a finite set Jn containing In such that

∑

k/∈Jn

|〈fj , fk〉|2 ≤
εnAn

|In|
, ∀j ∈ In. (23.15)

Let Vn : Hn → Hn denote the frame operator for the finite family
{Pnfk}k∈Jn . Then, for all f ∈ H,

||S−1f − V −1
n Pnf || ≤

εn
A(A − εn)

||f ||+
(

B

A− εn
+ 1

)

||(I − Pn)S
−1f ||.

Observe that for n ∈ N, (23.15) consists of |In| conditions on the set Jn.
In Section 23.4 we apply this result to Gabor frames, where the number
of conditions can be reduced further. Applications to wavelet frames are
given in [160]; also in this case the number of conditions can be reduced.
One important issue remains. In fact, Theorem 23.2.5 and Theo-

rem 23.2.7 do not provide concrete information about how fast the
operators V −1

n Pn converge to S−1; the main problem is that the estimates
in these results contain the term ||(I − Pn)S

−1f ||. In Section 23.3 we will
address the question of how to obtain more explicit estimates for the speed
of convergence.
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23.3 Convergence Estimates for Localized Frames

In this section, we continue to consider a frame {fk}∞k=1 for a Hilbert space
H, with frame operator denoted by S. In [578] Song and Gelb studied the
convergence rate in Theorem 23.2.5 under the extra assumption that the
frame {fk}∞k=1 is self-localized with decay rate s > 1; see Definition 8.2.3.
The paper [578] also marks an interesting shift in the viewpoint: while
Theorem 23.2.5 aims at approximation of S−1f for arbitrary f ∈ H, we
will now restrict the attention to the vectors f satisfying the condition

|〈f, fk〉| ≤ C0 k
−s, k ∈ N (23.16)

for some C0 > 0. The results in [578] show that the value of the parameter
s plays an important role for the speed of convergence of the approximation
method.
As in Section 23.2 we let Hn = span{fk}nk=1; Pn denotes the orthogonal

projection of H onto Hn, and In := {1, 2, . . . , n}. The results in Theo-
rem 23.2.5 and Theorem 23.2.7 show that we for any given f ∈ H can
approximate S−1f using calculations taking place in the finite-dimensional
spaces Hn. However, in order to obtain a more quantitative information,
we need an estimate for ||(I −Pn)S

−1f || for the given element f ∈ H; this
is exactly what the following result will give us.

Lemma 23.3.1 Assume that the frame {fk}∞k=1 is self-localized with decay
rate s > 1 and consider an element f ∈ H satisfying the condition (23.16)
for some C0 > 0. Then there exists a constant C > 0 such that the following
estimates hold:

|〈f, S−1fk〉| ≤ Ck−s, ∀k ∈ N; (23.17)

||(I − Pn)f || ≤ Cn−(s−1/2), ∀n ∈ N; (23.18)

||(I − Pn)S
−1f || ≤ Cn−(s−1/2), ∀n ∈ N. (23.19)

Proof. We first prove (23.17). Via the frame decomposition on the form

f =

∞∑

j=1

〈f, fj〉S−1fj ,

we have that

|〈f, S−1fk〉| =

∣
∣
∣
∣〈

∞∑

j=1

〈f, fj〉S−1fj, S
−1fk〉

∣
∣
∣
∣

≤
∞∑

j=1

|〈f, fj〉| |〈S−1fj , S
−1fk〉|. (23.20)

We have assumed that {fk}∞k=1 is self-localized, so by Lemma 8.2.4 (ii)
the canonical dual frame {S−1fk}∞k=1 is also self-localized, with the same



590 23 Approximation of the Inverse Frame Operator

decay rate. Using the assumption (23.16) and (23.20), we conclude that
there exists a constant C1 > 0 such that

|〈f, S−1fk〉| ≤ C1

∞∑

j=1

j−s(1 + |k − j|)−s. (23.21)

Standard arguments now imply that the sum in (23.21) is bounded by a
constant times k−s, which leads to the estimate in (23.17).

In order to prove (23.18), we use the frame decomposition on the form

f =
∞∑

j=1

〈f, S−1fj〉fj .

Let us consider the partial sum
∑n

j=1〈f, S−1fj〉fj , which belongs to Hn.
Since the orthogonal projection Pnf is the element in Hn which is closest
to f, we have that

||(I − Pn)f ||2 = ||f − Pnf ||2

≤
∣
∣
∣
∣

∣
∣
∣
∣f −

n∑

j=1

〈f, S−1fj〉fj
∣
∣
∣
∣

∣
∣
∣
∣

2

=

∣
∣
∣
∣

∣
∣
∣
∣

∞∑

j=n+1

〈f, S−1fj〉fj
∣
∣
∣
∣

∣
∣
∣
∣

2

=

∞∑

j,k=n+1

〈f, S−1fj〉〈S−1fk, f〉〈fj, fk〉.

Using (23.17) and that {fk}∞k=1 is self-localized, this shows that there is a
constant C2 > 0, which is independent of n and such that

||(I − Pn)f ||2 ≤ C2

∞∑

j,k=n+1

j−sk−s(1 + |k − j|)−s. (23.22)

The sum in (23.22) is bounded by a constant (depending on s) times
n−(2s−1). This proves (23.18).
Finally, we need to prove the estimate (23.19); note that this is “the

same” as (23.18), just with the element f replaced by S−1f. Thus, we can
prove (23.19) simply by proving that the condition (23.16) holds with f
replaced by S−1f. Now, using that the inverse of the frame operator is
self-adjoint followed by an application of (23.17),

|〈S−1f, fk〉| = |〈f, S−1fk〉| ≤ Ck−s, ∀k ∈ N;

this is exactly what we need in order to complete the proof of (23.19). �

Let us now return to the Casazza–Christensen method. Under the as-
sumptions in Lemma 23.3.1, Song and Gelb [578] found a suitable set Jn
in Theorem 23.2.5 and showed that for some C > 0,
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||S−1f − V −1
n Pnf || ≤ Cn−(s−1/2). (23.23)

We will not repeat the proof here. Instead we show how such an estimate
can be obtained by an appropriate choice of the numbers εn in (23.15) and
the corresponding sets Jn. Recall that In = {1, . . . , n}.

Theorem 23.3.2 Assume that

(i) {fk}∞k=1 is a frame with bounds A,B;

(ii) {fk}∞k=1 is self-localized with decay rate s > 1;

(iii) For n ∈ N, the finite set Jn containing In is chosen such that

∑

k/∈Jn

|〈fj , fk〉|2 ≤
An

|In|
n−(s−1/2), ∀j ∈ In, (23.24)

where An denote a lower frame bound for the frame sequence {fk}nk=1;

(iv) f is a given element in H and (23.16) holds for some C0 > 0.

Let Vn : Hn → Hn denote the frame operator for the finite family
{Pnfk}k∈Jn . Then there is a constant C > 0 such that

||S−1f − V −1
n Pnf || ≤ Cn−(s−1/2), ∀n ∈ N.

Proof. Take εn := n−(s−1/2). Then, for n sufficiently large, we have
A− εn ≥ A/2, and therefore

εn
A(A − εn)

≤ 2

A2
εn ≤

2

A2
n−(s−1/2).

The result now follows by combining Theorem 23.2.7 with the
estimate (23.19). �

23.4 Applications to Gabor Frames

As noted at the beginning of Section 23.2, the methods for approximation
of the inverse frame operator can also be applied to frames indexed by Z

2:
we only have to replace the index sets {In}∞n=1 in (23.9) by finite subsets
of Z2 for which

I1 ⊂ I2 ⊂ · · · ⊂ In ↑ Z2.

In this chapter, we denote Gabor frames by {EkbTlag}k,l∈Z; recall that
here a, b > 0 and g ∈ L2(R). For a Gabor frame it is natural to choose the
sets In as “finite lattices,”

In :=
{
(k, l) ∈ Z

2 : |kb| ≤ Dn, |la| ≤ Cn
}
, (23.25)
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where C,D are positive constants; the freedom in the “lattice size” gained
by introducing these constants will prove useful. Our purpose is to show
that the condition on the finite set Jn in Theorem 23.2.7 can be simplified in
the case of a Gabor frame. By taking Jn of the form Jn = In+m(n), the ques-
tion is how to find a value for the positive integer m(n) such that (23.15)
is satisfied. We begin with a technical lemma.

Lemma 23.4.1 Let n ∈ N and m(n) be an arbitrary nonnegative integer.
Then, for all (k′, l′) ∈ In, we have

∑

(k,l)/∈In+m(n)

|〈Ek′bTl′ag, EkbTlag〉|2 ≤
∑

(k,l)/∈Im(n)

|〈EkbTlag, g〉|2.

Proof. Let (k′, l′) ∈ In. Then
∑

(k,l)/∈In+m(n)

|〈Ek′bTl′ag, EkbTlag〉|2

=
∑

(k,l)/∈In+m(n)

|〈E(k−k′)bT(l−l′)ag, g〉|2

=
∑

k,l∈Z

|〈E(k−k′)bT(l−l′)ag, g〉|2 −
∑

(k,l)∈In+m(n)

|〈E(k−k′)bT(l−l′)ag, g〉|2

=
∑

k,l∈Z

|〈EkbTlag, g〉|2 −
∑

(k,l)∈In+m(n)

|〈E(k−k′)bT(l−l′)ag, g〉|2.

Let C,D > 0 be the constants in (23.25); then
∑

(k,l)∈In+m(n)

|〈E(k−k′)bT(l−l′)ag, g〉|2

=
∑

|kb|≤(n+m(n))D

∑

|la|≤(n+m(n))C

|〈E(k−k′)bT(l−l′)ag, g〉|2

≥
∑

|kb|≤(m(n))D

∑

|la|≤(m(n))C

|〈EkbTlag, g〉|2 =
∑

(k,l)∈Im(n)

|〈EkbTlag, g〉|2.

It follows that for all (k′, l′) ∈ In,
∑

(k,l)/∈In+m(n)

|〈Ek′bTl′ag, EkbTlag〉|2

≤
∑

k,l∈Z

|〈EkbTlag, g〉|2 −
∑

(k,l)∈Im(n)

|〈EkbTlag, g〉|2

=
∑

(k,l)/∈Im(n)

|〈EkbTlag, g〉|2.

This concludes the proof. �
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Combining Theorem 23.2.7 and Lemma 23.4.1, we get

Theorem 23.4.2 Let {EkbTlag}k,l∈Z be a Gabor frame with bounds A,B,
and let {εn}∞n=1 ⊆]0, A[ be a decreasing sequence of numbers converging to
zero. For n ∈ N, let An be a lower frame bound for the frame sequence
{EkbTlag}(k,l)∈In and choose a positive integer m(n) such that

∑

(k,l)/∈Im(n)

|〈EkbTlag, g〉|2 ≤
Anεn
|In|

. (23.26)

Let Vn : Hn → Hn be the frame operator for {PnEkbTlag}(k,l)∈In+m(n)
.

Then, for all f ∈ L2(R),

||S−1f − V −1
n Pnf || ≤

εn
A(A − εn)

||f ||+
(

B

A− εn
+ 1

)

||(I − Pn)S
−1f ||.

Thus, in the case of a Gabor frame the single condition (23.26) is
enough to determine the choice of Jn. Observe that by the frame con-
dition

∑
k,l∈Z

|〈EkbTlag, g〉|2 is finite; thus, to satisfy (23.26) is “only” a
question of choosing m(n) sufficiently big.
For the Gaussian, a direct estimate for

∑
(k,l)/∈Im(n)

|〈EkbTlag, g〉|2 can

be given:

Example 23.4.3 Let g(x) = 21/4e−πx2

. It is well known, cf. [300], that

|〈EkbTlag, g〉| = e−(k2a2+l2b2)π/2.

Thus, taking C = D = 1 in (23.25),
∑

(k,l)/∈Im(n)

|〈EkbTlag, g〉|2

≤
∑

|k|>m(n)

∑

l∈Z

e−π(k2a2+l2b2) +
∑

|l|>m(n)

∑

k∈Z

e−π(k2a2+l2b2)

≤ 4

⎛

⎝
∞∑

k=(m(n)+1)2

e−πka2
∞∑

l=0

e−πlb2 +
∞∑

l=(m(n)+1)2

e−πla2
∞∑

k=0

e−πkb2

⎞

⎠

= 4

(
e−πa2(m(n)+1)2 + e−πb2(m(n)+1)2

(1− e−πb2)(1− e−πa2)

)

.

If a lower frame bound An for {EkbTlag}(k,l)∈In is known, we can now
use (23.26) to find a suitable value for the positive integer m(n). Note that
by Theorem 13.4.4 (see also Lemma 7.2.1), we know that An → 0 when
n→∞. �
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23.5 Integer Oversampled Gabor Frames

In this section we consider a Gabor frame {EkbTlag}k,l∈Z which is integer
oversampled, i.e., we assume that

ab =
1

N
, where N ∈ N.

In this case we choose the index sets In in (23.25) as

In :=
{
(k, l) ∈ Z

2 | |k|, |l| ≤ nN
}
.

With this choice of the index set In, Theorem 23.4.2 applies with

|In| = (2nN + 1)2.

We will show how to obtain estimates for the approximation rate for the
dual window S−1g in the case of integer oversampling. As before Pn will
denote the projection of L2(R) onto

Hn = span {EkbTlag}(k,l)∈In
= span {EkbTlag}|k|,|l|≤nN .

Let HH∗ be the Gram matrix for {Em/aTn/bg}m,n∈Z, as defined
in (12.32). In case g and the Fourier transform ĝ decay exponentially,
Strohmer proved in [588] that there exist constants C, λ > 0 such that

|(HH∗)l,k;l′,k′ | ≤ Ce−λ(|k−k′|+|l−l′|).

Using Lemma 12.4.3, it follows that for some C′, λ′,

|[(HH∗)−1]l,k;0,0| ≤ C′e−λ′(|k|+|l|). (23.27)

In the context of the finite section method (see Section 23.7), Strohmer
proved that the duality principle in Gabor analysis leads to an estimate for
the speed of convergence of the approximation method. The same principle
can be applied in the setup discussed here:

Theorem 23.5.1 Suppose that {EkbTlag}k,l∈Z is an integer oversampled
frame and that g and its Fourier transform ĝ decay exponentially. Under
the assumptions in Theorem 23.4.2, there exist constants λ,C > 0 such that

||S−1g − V −1
n Png|| ≤

εn
A(A− εn)

||f ||+ Ce−λn, ∀n ∈ N.

Proof. By the Janssen representation (12.33) of the inverse frame
operator, we have

S−1g = ab
∑

k,l∈Z

[(HH∗)−1]l,k;00Ek/aTl/bg

= ab
∑

k,l∈Z

[(HH∗)−1]l,k;00EkNbTlNag.
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For |k|, |l| ≤ n, we have that PnEkNbTlNag = EkNbTlNag. Thus,

(I − Pn)S
−1g = ab(I − Pn)

∑

|k|>n or |l|>n

[(HH∗)−1]l,k;00EkNbTlNag.

By Theorem 13.1.1 we know that {Ek/aTl/bg}k,l∈Z is a Riesz sequence with
upper bound Bab. Therefore the subfamily

{EkNbTlNag}|k|>n or‖l|>n

is also a Riesz sequence with upper bound Bab. Using the estimate (23.27)
for [(HH∗)−1]l,k;00, we get

||(I − Pn)S
−1g||2

≤ Bab(ab)2
∑

|k|>n or |l|>n

|[(HH∗)−1]l,k;0,0|2

≤ B(C′)2(ab)3
∑

|k|>n or |l|>n

e−2λ′(|k|+|l|)

≤ B(C′)2(ab)3

⎛

⎝
∑

|k|>n

e−2λ′|k| ∑

l∈Z

e−2λ′|l| +
∑

|l|>n

e−2λ′|l| ∑

k∈Z

e−2λ′|k|

⎞

⎠

≤ 8B(C′)2(ab)3
e−2λ′

(1− e−2λ′)2
e−2λ′n.

Now the result follows from Theorem 23.4.2. �

23.6 The Finite Section Method

The finite section method is a standard tool to approximate solutions to
an infinite system of linear equations,

Kx = y, (23.28)

where K : �2(Z2) → �2(Z2) is a given invertible operator and y ∈ �2(Z2)
is a given vector. Depending on the properties of the given operator K,
several variants of the method can be found in the literature. The problem
of inverting the frame operator can easily be turned into the form (23.28):

Example 23.6.1 Consider a frame {fk}∞k=1 for a Hilbert space H, with
frame operator S : H → H. Then, to find S−1f for a given f ∈ H amounts
to solve the equation

Sg = f. (23.29)
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Letting now {ek}∞k=1 denote any orthonormal basis for H, we can write any
g ∈ H as

g =

∞∑

k=1

ckek (23.30)

for some coefficients {ck}∞k=1 ∈ �2(N). If g is a solution to (23.29), then
f = Sg =

∑∞
k=1 ckSek; thus

〈f, ej〉 =
∞∑

k=1

ck〈Sek, ej〉, j ∈ N. (23.31)

This is an infinite set of linear equations to determine the coefficients
{ck}∞k=1 in the solution g in (23.30). Letting K denote the bi-infinite ma-
trix where the jkth entry is 〈Sek, ej〉, the system of equations takes the
form (23.28) with y := {〈f, ej〉}∞j=1 and x = {ck}∞k=1. We note that K sim-
ply is the matrix representation of the operator S and hence is a positive
operator. �

In the rest of this section, we give a short presentation of the finite
section methods for positive operators. In Section 23.7 we apply the results
to Gabor frames.
For y ∈ �2(Z2) and n ∈ N, we define the orthogonal projections Pn by

Pn : �2(Z2)→ �2(Z2), (Pny)k,l =

{
yk,l if max{|k|, |l|} ≤ n,

0 otherwise.
(23.32)

The first version of the method reads as follows:

Lemma 23.6.2 Let K : �2(Z2) → �2(Z2) be a bounded and invertible op-
erator and {Kn}∞n=1 a sequence of positive bounded operators on �2(Z2)
which converge strongly to K. If each operator Kn maps Pn�

2(Z2) onto
itself (thus, Kn restricted to this space is invertible) and there exists a
constant C > 0 such that

CI ≤ Kn on Pn�
2(Z2), ∀n ∈ N, (23.33)

then

K−1
n Pny → K−1y, ∀y ∈ �2(Z2). (23.34)

Proof. Let y ∈ �2(Z2). Then
∣
∣
∣
∣K−1y −K−1

n Pny
∣
∣
∣
∣ ≤

∣
∣
∣
∣K−1y − PnK

−1y
∣
∣
∣
∣+

∣
∣
∣
∣PnK

−1y −K−1
n Pny

∣
∣
∣
∣ .

We see immediately that
∣
∣
∣
∣K−1y − PnK

−1y
∣
∣
∣
∣ → 0 as n → ∞. Thus we

have to show that also the second term converges to zero. Now, for any
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n ∈ N, Theorem 2.4.3 implies that K−1
n ≤ 1

C I on Pn�
2(Z2), so

∣
∣
∣
∣
∣
∣
(
Kn |Pn�2(Z2)

)−1
∣
∣
∣
∣
∣
∣ ≤

1

C
.

Thus
∣
∣
∣
∣PnK

−1y −K−1
n Pny

∣
∣
∣
∣ ≤

∣
∣
∣
∣
∣
∣
(
Kn |Pn�2(Z2)

)−1
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣KnPnK

−1y − Pny
∣
∣
∣
∣

≤ 1

C

∣
∣
∣
∣KnPnK

−1y − Pny
∣
∣
∣
∣

→ 0 as n→∞.

�

Note that the proof of Lemma 23.6.2 does not give much information
about the speed of convergence in (23.34). A natural candidate for the
operator Kn in Lemma 23.6.2 is Kn := PnKPn, a so-called finite section
of the operator K; however, we cannot be sure that this operator satisfies
the technical condition (23.33). We will now formulate a slightly revised
version of Lemma 23.6.2 for this particular choice of Kn, which also yields
an error estimate. The result is taken from [99] and [356].

Lemma 23.6.3 Let K : �2(Z2) → �2(Z2) be a bounded and invertible op-
erator, and assume that the finite section Kn := PnKPn is invertible on
Pn�

2(Z2) for some n ∈ N. Then

||K−1y −K−1
n Pny|| ≤

(
1 + ||K−1

n Pn|| ||K||
)
||(I − Pn)K

−1y||, ∀y ∈ �2(Z2).

Proof. We immediately get that

||K−1y −K−1
n Pny|| ≤ ||(I − Pn)K

−1y||+ ||PnK
−1y −K−1

n Pny||. (23.35)

Now observe that

K−1
n PnK(1− Pn)K

−1y = K−1
n Pny −K−1

n PnKPnK
−1y

= K−1
n Pny − PnK

−1y;

inserting this in (23.35) yields that

||K−1y −K−1
n Pny||

≤ ||(I − Pn)K
−1y||+ ||K−1

n PnK(1− Pn)K
−1y||

≤ ||(I − Pn)K
−1y||+ ||K−1

n Pn|| ||K|| ||(1− Pn)K
−1y||,

which leads to the desired result. �

If there exists an n0 ∈ N such that the operator Kn = PnKPn is in-
vertible on Pn�

2(Z2) for all n ≥ n0 and supn≥n0
||K−1

n Pn|| < ∞, then
Lemma 23.6.3 yields that

||K−1y −K−1
n Pny|| ≤ C ||(I − Pn)K

−1y||, ∀n ≥ n0,
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for some constant C > 0. Note that a similar term as ||(I − Pn)K
−1y||

also appeared in the estimates for the methods in Section 23.2; see, e.g.,
Theorem 23.2.5. A more general version of Lemma 23.6.3 on weighted
�p−spaces and quantitative error estimates are given in the paper [356]
by Gröchenig, Rzeszotnik, and Strohmer.

23.7 The Finite Section Method for Gabor Frames

In this section we present a direct method for approximation of the dual
frame for a Gabor frame {EkbTlag}k,l∈Z. It was developed by Strohmer
[588] and is based on the finite section method in Section 23.6.
Formula (12.33) and Theorem 13.1.1 are the main ingredients for this

approach. The key point is that the approximation problem for Gabor
frames can be translated into an approximation problem for Gabor Riesz
sequences via the duality principle.
The starting point is to return to the discussion in Section 12.4 and con-

sider the analysis operatorH associated with the frame {EkbTlag}k,l∈Z, i.e.,

H : L2(R)→ �2(Z2), Hf = {〈f, Em/aTn/bg〉}m,n∈Z. (23.36)

Letting again Pn denote the orthogonal projection defined in (23.32), we
define truncated versions of the operator H in (23.36) by

Hn : L2(R)→ �2(Z2), Hnf = PnHf,

which we identify with

Hn : L2(R)→ C
(2n+1)2 , Hnf = {〈f, Ek/aTl/bg〉}|k|,|l|≤n. (23.37)

The matrix

HnH
∗
n = PnHH∗Pn = {〈Ek′/aTl′/bg, Ek/aTl/bg〉}|k|,|l|,|k′|,|l′|≤n, (23.38)

is a finite section of the infinite-dimensional matrix HH∗. Motivated
by (12.30), we let

γ(n) := abH∗
n(HnH

∗
n)

−1Pn{δk,0δl,0}k,l∈Z (23.39)

= abH∗
n(HnH

∗
n)

−1{δk,0δl,0}|k|,|l|≤n for n ∈ N.

We now prove that the functions γ(n) in (23.39) indeed converge to S−1g
for n→∞.

Theorem 23.7.1 Let g ∈ L2(R) and a, b > 0 be given, and assume that
{EkbTlag}k,l∈Z is a frame for L2(R). Then

γ(n) → S−1g for n→∞.
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Proof. Letting A,B be frame bounds for {EkbTlag}k,l∈Z, we know by
Theorem 13.1.1 that {Ek/aTl/bg}k,l∈Z is a Riesz sequence with bounds
abA, abB. In particular, for each finite scalar sequence {ck,l},

abA
∑

|k|,|l|≤n

|ck,l|2 ≤
∣
∣
∣
∣

∣
∣
∣
∣

∑

|k|,|l|≤n

ck,lEk/aTl/bg

∣
∣
∣
∣

∣
∣
∣
∣

2

≤ abB
∑

|k|,|l|≤n

|ck,l|2.

In terms of the operator Hn, this means that

||HnH
∗
n|| = ||H∗

n||2 ≥ abA.

Since HnH
∗
n → HH∗ strongly for n→∞, we can now apply Lemma 23.6.2

to conclude that

(HnH
∗
n)

−1Pn → (HH∗)−1 for n→∞.

Now the definition of γ(n) in (23.39) combined with (12.30) yields that

γ(n) = abH∗
n(HnH

∗
n)

−1Pn{δk,0δl,0}k,l∈Z

→ abH∗(HH∗)−1{δk,0δl,0}k,l∈Z = S−1g.

�

In [588] Strohmer also proves that the above method converges exponen-
tially if g as well as the Fourier transform ĝ decay exponentially. That is,
the assumptions imply that for some constants C ′, λ′ > 0,

∣
∣
∣
∣
∣
∣S−1g − γ(n)

∣
∣
∣
∣
∣
∣ ≤ C ′e−λ′n

The proof uses Lemma 12.4.3 and is not constructive. It would be very
useful to have knowledge of concrete values of C′, λ′.

Prior to the paper [588], Strohmer proved similar results for approxima-
tion of the inverse frame operator associated to shift-invariant systems in
�2(Z). We refer to [587] for details.

23.8 Exercises

23.1 Prove that the near-Riesz basis in Example 23.1.3 is not a Riesz
frame.

23.2 Prove that for an arbitrary frame {fk}∞k=1 and n ∈ N, one can
choose a set Jn such that (23.13) is satisfied.



24
Expansions in Banach Spaces

The material presented in this book naturally splits in two parts: a func-
tional analytic treatment of frames in general Hilbert spaces, and a more
direct approach to structured frames like Gabor frames and wavelet frames.
For the second part the most general results were presented in Chapter 21,
in the setting of generalized shift-invariant systems on an LCA group.
The current chapter is in a certain sense a natural continuation of both

tracks. We consider connections between frame theory and abstract har-
monic analysis and show how we can construct frames in Hilbert spaces via
the theory for group representations. In special cases the general approach
will bring us back to the Gabor systems and wavelet systems. The abstract
framework adds another new aspect to the theory: we will not only obtain
expansions in Hilbert spaces but also in a class of Banach spaces.
In Section 24.1 we show how the orthogonality relations for square-

integrable group representations lead to integral representations in terms
of continuous frames for the underlying Hilbert space; on a concrete level,
this gives an alternative approach to Gabor systems and wavelet systems.
Section 24.2 presents that basics of Feichtinger–Gröchenig theory, showing
that the group-theoretic setup allows us to obtain frames, as well as series
expansions in a large scale of Banach spaces. This naturally led Gröchenig
to define frames in Banach spaces, which are discussed in Section 24.3. In
Section 24.4 we consider p-frames. They are defined by removing some of
Banach frame conditions and were first studied separately by Aldroubi,
Sun, and Tang in the context of the Lp-spaces. Later they were general-
ized to other classes of Banach spaces. Finally, Section 24.5 discusses a few
aspect of the theory for Gabor systems and wavelet systems in Lp-spaces.

©
O. Christensen, An Introduction to Frames and Riesz Bases,
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DOI 10.1007/978-3-319-25613-9 24

601Springer International Publishing Switzerland 2016
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This chapter is more advanced than the previous chapters. It is less
detailed and also states open problems for future research.

24.1 Representations of Locally Compact Groups

The elements in a group can be quite abstract objects, so it is desirable to
transfer questions on a group into a more familiar setting. This is done by
the concept of a group representation, which identifies (see the comment
after the definition) the group elements with certain operators on a Hilbert
space.

Definition 24.1.1 Let G be a locally compact group with left Haar measure
μ, and let H be a Hilbert space. A representation of G on H is a family of
bounded invertible operators {π(x)}x∈G on H for which

(i) π(xy) = π(x)π(y), ∀x, y ∈ G.

(ii) for all f ∈ H, the mapping x �→ π(x)f is continuous from G into H.

We further say that

(iii) π is unitary if all the operators {π(x)}x∈G are unitary.

(iv) π is irreducible if the only closed subspaces of H which are invariant
under all the operators {π(x)}x∈G are {0} and H.

(v) A unitary irreducible representation π is integrable if

A :=

{

f ∈ H
∣
∣
∫

G
|〈π(x)f, f〉|dμ(x) <∞

}

�= {0}. (24.1)

A square-integrable representation is defined similarly.

Condition (ii) (called strong continuity of π) is not always part of the def-
inition of a group representation. As said before, the idea behind a group
representation is to identify elements in G with operators. For this to hold,
we also need the mapping x �→ π(x) to be injective; a representation with
this property is said to be proper.
A representation π is irreducible if and only if (Exercise 24.2)

span{π(x)g}x∈G = H, ∀g ∈ H \ {0}.

Assuming that π is irreducible and fixing an arbitrary g ∈ H\{0}, we can
thus approximate any f ∈ H arbitrarily well by finite linear combinations
of vectors π(x)g, x ∈ G. It is therefore very natural to ask if we can find
g ∈ H and a sequence {xk}∞k=1 in G such that {π(xk)g}∞k=1 is a frame.
The answer turns out to be yes in a very general case if π is an integrable
representation. Before we present results in that direction, we give some
concrete examples of groups and their representations.
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Example 24.1.2 The Heisenberg group is the set G := R×R×T equipped
with the product topology and the group composition

(a1, b1, t1) · (a2, b2, t2) = (a1 + a2, b1 + b2, t1t2e
2πib1a2).

The Heisenberg group is not abelian, but it is unimodular and the Haar
measure is the product measure of the three involved Lebesgue measures;
see, e.g., [395]. The definition of the group composition implies that we can
define a representation of G on L2(R) by

[π(a, b, t)g](y) = te2πib(y−a)g(y − a), g ∈ L2(R), (a, b, t) ∈ G, y ∈ R. (24.2)

This is the Schrödinger representation. To see that π actually defines
a representation, note that in terms of the operators Ea and Tb from
Section 2.9,

[π(a, b, t)g](y) = te−2πiabEbTag(y).

Using the commutator relations for the operators Ea and Tb, one can now
prove that (i) of Definition 24.1.1 is satisfied (Exercise 24.3) and (ii) follows
by Lemma 2.9.2, which also shows that π is unitary. To see that π is
irreducible, let g ∈ H\{0} and assume that f⊥π(a, b, t)g for all (a, b, t) ∈ G.
Then, by Proposition 11.1.2,

0 =

∫ ∞

−∞

∫ ∞

−∞

∫ 1

0

|〈f, π(a, b, t)g〉|2dtdadb

=

∫ ∞

−∞

∫ ∞

−∞
|〈f, EaTbg〉|2dadb

= ||f ||2 ||g||2.

Therefore f = 0 and π is irreducible. We also observe that for the
Schrödinger representation, the set in (24.1) is A = S0, the Feichtinger
algebra, which is dense in L2(R); thus π is integrable. Finally,

[π(na,mb, 1)g](y) = e−2πimnabEmbTnag(y), m, n ∈ Z,

i.e., up to a (usually irrelevant) factor of absolute value 1, the Schrödinger
representation sampled on the set {(na,mb, 1)}m,n∈Z and applied to g ∈
L2(R) corresponds to the regular Gabor system {EmbTnag}m,n∈Z.

A technical detail: the torus component in the Heisenberg group will
never play any practical role in this context. It is only introduced in order
to obtain a group representation involving the operators EaTb; in fact,
the operators defined by ρ(a, b) = EaTb do not form a representation of
R

2 on L2(R); they form a so-called projective group representation; see
Exercise 24.3, page 611, and [156]. �
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Example 24.1.3 The ax+ b group is the set G = R× (R \ {0}) equipped
with the product topology and the composition

(b, a) · (x, s) = (ax+ b, as).

The left Haar measure is 1
a2 dadb and the right Haar measure is 1

|a|dadb,
where dadb is the Lebesgue measure on R

2. In particular, the group is
not unimodular. The ax + b group is also called the affine group in the
literature; we refer to [335] for a more detailed discussion of its properties.
One can define a unitary representation on L2(R) by

[π(b, a)f ](y) = TbDaf(y) =
1

√
|a|

f(
y − b

a
), (b, a) ∈ G, f ∈ L2(R), y ∈ R.

Note that

[π(bkaj, aj)g](y) = a−j/2g(a−jy − kb), j, k ∈ Z,

i.e., the wavelet systems appear by appropriate samplings of the represen-
tation. The representation satisfies the integrability condition (24.1), but
is not irreducible. This is not a problem in practice: it is possible to extend
the ax+b group to a larger group such that an appropriate extension of π is
a unitary irreducible representation satisfying the integrability condition.
We shall not go into the technical details, but this is the reason that we still
speak about this representation in the context of integrable representations
(see, e.g., the discussion on page 605). We refer to [311] for a description
of the role played by irreducibility in the general case. �

Given a representation π of G on H, we choose g ∈ H and consider the
transformation

Vg : H → C(G), Vg(f)(x) = 〈f, π(x)g〉. (24.3)

Here C(G) denotes the set of continuous complex-valued functions on G.
With our convention for the inner product, Vg is a linear operator – but it
depends conjugated linear on g. Note that if π is the representation of the
ax + b group considered in Example 24.1.3, then Vg(f) is the continuous
wavelet transform of f with respect to g. For this reason, the misleading
word “wavelet transform” has also been associated to the transform in the
general case. The correct terminology used in abstract harmonic analysis is
that Vg(f) is a representation coefficient for the representation π. Similarly,
g has frequently been called the “mother wavelet,” while “analyzing atom”
or “generator” is more appropriate.
Our purpose is to show how an integrable group representation π leads to

expansions of the elements in the Hilbert space associated with π, as well as
in a class of related Banach spaces. The starting point is the orthogonality
relations, first proved in [261] (see also [334]). They give an expression for
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the inner product between two representation coefficients in L2(G) in terms
of an (in general unbounded) operator U on a domain D(U) ⊆ H:

Theorem 24.1.4 Let G be a locally compact group with left Haar measure
μ, and assume that π is a square-integrable representation of G on H. Then
there exists a unique positive self-adjoint operator

U : D(U) ⊆ H → H,

such that

(i) Vg(g) ∈ L2(G)⇔ g ∈ D(U).

(ii) For all g1, g2 ∈ D(U) and f1, f2 ∈ H,
∫

G
〈f1, π(x)g1〉〈f2, π(x)g2〉dμ(x) = 〈Ug1, Ug2〉〈f2, f1〉. (24.4)

The domain D(U) is dense in H. If G is unimodular, then D(U) = H and
U is a multiple of the identity on H.

Theorem 24.1.4 immediately leads to continuous frames as discussed in
Section 5.6:

Corollary 24.1.5 Let π be a square-integrable representation of G on H.
Then, for all g ∈ D(U) \ {0}, {π(x)g}x∈G is a tight continuous frame for
H (with respect to G equipped with the left Haar measure). In particular,
this holds for all g ∈ H \ {0} if G is unimodular.

Corollary 24.1.5 gives an abstract explanation of the differences we
have observed between Gabor analysis and wavelet analysis. The Weyl–
Heisenberg group is unimodular and the Schrödinger representation is
square-integrable, so all g ∈ L2(R) \ {0} leads to continuous frames, in
accordance with our direct proof in Corollary 11.1.4. On the other hand
the ax+b-group is not unimodular, so there might be g ∈ L2(R)\{0} which
does not generate a continuous frame {π(x)g}x∈G . This fact is expressed
by the admissibility condition in Corollary 15.1.2.
It is worth noting that the two representation coefficients appearing in

the orthogonality relations (24.4) might be with respect to different an-
alyzing atoms g1, g2 in the transforms. In Proposition 15.1.1 we did not
use this freedom: the same function ψ was used for both of the appearing
wavelet transforms. Additional freedom is actually obtained if we choose
different functions for the two wavelet transforms: this allows to obtain
dual continuous frame pairs in L2(R) rather than just tight frames.
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24.2 Feichtinger–Gröchenig Theory

The Feichtinger–Gröchenig theory was presented in a series of papers ap-
pearing around 1990. The purpose of the papers was to obtain series
expansions in a large class of Banach spaces based on the theory for inte-
grable group representations.We will give a short introduction to the theory
and refer to [280], [281], and [336] for more details and further results.
Let G be a locally compact group with left Haar measure μ. Define the

translation operator Tx, x ∈ G, acting on functions f : G → C, by

(Txf)(y) = f(x−1y), y ∈ G.

In the generality discussed here, Tx is called the left regular representation;
in the special case G = R, it equals our translation operator in Section 2.9.

For functions F,G ∈ L1(G), the convolution F ∗G : G → C is defined by

F ∗G(y) :=

∫

G
F (x)G(x−1y)dμ(x) =

∫

G
F (x)TxG(y)dμ(x), y ∈ G.

The assumption F,G ∈ L1(G) implies that F ∗ G is well-defined and
belongs to L1(G). However, the convolution is well-defined under many
other conditions on F,G, and we will use the convolution symbol for any
pair of functions F,G for which F ∗G is a well-defined function.
If the function F does not oscillate too much, the convolution F ∗G can

be considered as the limit of a sequence of linear combinations of translates
of the function G, with weights determined by F .
Lemma 24.2.1 below relates convolution and the orthogonality relations.

It gives a reformulation of the orthogonality relations, which is the starting
point for Feichtinger–Gröchenig theory.

Lemma 24.2.1 Let π be a square-integrable representation of G on H.
Then the following hold:

(i) Vg(π(y)f) = TyVg(f), ∀f ∈ H, y ∈ G.

(ii) The operator U introduced in Theorem 24.1.4 is injective.

(iii) Choosing g ∈ D(U) such that ||Ug|| = 1, we have

Vg(f) = Vg(f) ∗ Vg(g), ∀f ∈ H, (24.5)

and the orthogonal projection of L2(G) onto the range RVg of Vg is

F �→ F ∗ Vg(g), F ∈ L2(G). (24.6)

Proof. (i) follows by computation. To prove (ii) we let g ∈ D(U), and
assume that Ug = 0. Via the orthogonality relations, we see that for f �= 0,

0 = ||Ug||2 =
1

||f ||2
∫

G
|〈f, π(x)g〉|2dμ(x);
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by the continuity of the representation coefficients we conclude that

〈f, π(x)g〉 = 0 for all x ∈ G.
Since this holds for all f �= 0, we have π(x)g = 0 for all x ∈ G, and therefore
g = 0.
For the proof of (iii) we first show that F ∗ Vg(g) is well defined for any

F ∈ L2(G). Note that by (i) and the left invariance of the Haar measure,
∫

G
|Vg(π(y)g)(x)|2dμ(x) =

∫

G
|Vg(g)(y

−1x)|2dμ(x)

=

∫

G
|Vg(g)(x)|2dμ(x) <∞,

i.e., Vg(π(y)g) ∈ L2(G). Since

F (x)Vg(g)(x
−1y) = F (x)〈g, π(x−1y)g〉 = F (x)〈π(y)g, π(x)g〉

= F (x)Vg(π(y)g)(x), (24.7)

it follows that the function

x �→ F (x)Vg(g)(x
−1y)

is integrable for y ∈ G, i.e., that F ∗ Vg(g) is well defined.
As a consequence of (ii), an arbitrary g ∈ D(U) \ {0} can be normalized

such that ||Ug|| = 1. Doing so, and applying the orthogonality relations
with g1 = g2 = g, f1 = π(y)g, and f2 = f for an arbitrary f ∈ H,

Vg(f)(y) = 〈f, π(y)g〉

=

∫

G
〈π(y)g), π(x)g〉〈f, π(x)g〉dμ(x)

=

∫

G
〈g, π(x−1y)g〉〈f, π(x)g〉dμ(x)

= Vg(f) ∗ Vg(g)(y).

This proves in particular that the mapping F �→ F ∗Vg(g) is the identity on
RVg . For the second part of (iii) we only need to prove that F ∗ Vg(g) = 0
for all F belonging to the orthogonal complement of RVg in L2(G). But for
these F , (24.7) shows that

F ∗ Vg(g)(y) =

∫

G
F (x)Vg(g)(x

−1y)dμ(x) = 〈F, Vg(π(y)g)〉 = 0,

as desired. �

The result in (i) is expressed by saying that Vg is an intertwining op-
erator for the representations π(x) and Tx. Formula 24.5 gives an integral
representation of all functions Vg(f),

Vg(f)(y) = Vg(f) ∗ Vg(g)(y) =

∫

G
Vg(f)(x)TxVg(g)(y)dμ(x), f ∈ H, y ∈ G.
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With our interpretation of the convolution on page 606, it is natural to
search for a representation of F = Vg(f) via an infinite superposition of
translates of Vg(g); formulated in short, to search for expansions

F =
∞∑

k=1

ck(F )Txk
Vg(g), F ∈ RVg . (24.8)

The question is how to choose the points {xk}∞k=1 in G and the coefficient
functionals ck. We will base the choice of {xk}∞k=1 on our knowledge from
series expansions via a Gabor frame.
Recall from Theorem 11.3.1 that in order for a Gabor system

{EmbTnag}m,n∈Z to be a frame, it is necessary that ab ≤ 1. We can interpret
this in terms of the Schrödinger representation π of the Weyl–Heisenberg
group, discussed in Example 24.1.2: {EmbTnag}m,n∈Z corresponds (up to
a constant) to {π(na,mb, 1)g}m,n∈Z, so the condition ab ≤ 1 means that
the points {(na,mb)g}m,n∈Z have to be “sufficiently dense” in R

2. On the
other hand, for an irregular Gabor family {π(xk, yk, 1)g}∞k=1 to be a frame,
the points {(xk, yk)}∞k=1 are not allowed to be “too dense” (Exercise 24.4).
Motivated by these considerations, we introduce some definitions related
to general locally compact groups.

Definition 24.2.2 Let {xk}∞k=1 be a sequence in G.
(i) Let V ∈ O(e) be relatively compact. If

∞⋃

k=1

xkV = G,

then {xk}∞k=1 is said to be V -dense.

(ii) If there exists a relatively compact neighborhood V ∈ O(e) such that
xkV ∩ xjV = ∅ for k �= j, then {xk}∞k=1 is said to be separated.
{xk}∞k=1 is relatively separated if it is a finite union of separated sets.

In order to derive appropriate coefficient functionals such that (24.8)
holds, we need to introduce a new version of the partition of unity condition:

Definition 24.2.3 Let V ∈ O(e) be compact. A family Ψ = {ψk}∞k=1 of
continuous functions on G is a partition of unity of size V if

(i) 0 ≤ ψk(x) ≤ 1 and
∑∞

k=1 ψk(x) = 1, ∀x ∈ G.
(ii) There exists a relatively separated and V -dense set {xk}∞k=1 in G for

which supp ψk ⊆ xkV, ∀k ∈ N.

It is important to notice that such partitions of unity can be constructed
for arbitrarily small neighborhoods V ∈ O(e) (see [275]).
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We will now state a special case of the main result in [280], formu-
lated within the frame work of Hilbert spaces. Recall that the set A was
introduced in Definition 24.1.1 (v).

Theorem 24.2.4 Let G be a unimodular locally compact group and π an
integrable representation of G on H. Given g ∈ A \ {0}, there exists a
neighborhood V ∈ O(e) with the following property: for every V -dense and
relatively separated family {xk}∞k=1, there exists a bounded operator

Λ : H → �2(N), Λf = {λk(f)}∞k=1,

such that

f =

∞∑

k=1

λk(f)π(xk)g, ∀f ∈ H. (24.9)

Proof. We will not give a full proof but only sketch the main points. The
basic idea is to approximate the convolution operator F �→ F ∗ Vg(g) by
operators of the type

CΨ : RVg →RVg , CΨ(F ) =

∞∑

k=1

〈F, ψk〉Txk
Vg(g),

where Ψ = {ψk}∞k=1 is a partition of unity of size V . One can prove that
if V is chosen small enough and {xk}∞k=1 denotes a set of points in G as in
Definition 24.2.3, then CΨ(F ) is well defined and for some constant C < 1,

||F ∗ Vg(g)− CΨ(F )|| ≤ C||F ||, ∀F ∈ RVg .

Since the operator F �→ F ∗ Vg(g) is the identity on the Banach space RVg

according to Lemma 24.2.1, this implies that the operator CΨ is invertible
on RVg ; thus each F ∈ RVg has a representation

F = CΨC
−1
Ψ (F ) =

∞∑

k=1

〈C−1
Ψ (F ), ψk〉Txk

Vg(g).

That is, for f ∈ H,

Vg(f) =

∞∑

k=1

〈C−1
Ψ (Vg(f)), ψk〉Txk

Vg(g).

Applying the intertwining property in Lemma 24.2.1(i), we obtain a
representation of f ∈ H:

f = V −1
g Vg(f) =

∞∑

k=1

〈C−1
Ψ (Vg(f)), ψk〉V −1

g Txk
Vg(g)

=

∞∑

k=1

〈C−1
Ψ (Vg(f)), ψk〉π(xk)g.
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The proof that the operator f �→ {〈C−1
Ψ (Vg(f)), ψk〉}∞k=1 is bounded from

H into �2(N) can be found in [280]. �

Corollary 24.2.5 The conditions in Theorem 24.2.4 imply that
{π(xk)g}∞k=1 is a frame for H.

Proof. We only verify the lower frame condition and refer to [281] for
the proof that {π(xk)g}∞k=1 is a Bessel sequence. Let f ∈ H. Then, putting
the expression for f from Theorem 24.2.4 into the first entry of 〈f, f〉, we
obtain that

||f ||4 =

[ ∞∑

k=1

λk(f)〈π(xk)g, f〉
]2

≤
∞∑

k=1

|λk(f)|2
∞∑

k=1

|〈π(xk)g, f〉|2

≤ ||Λ||2 ||f ||2
∞∑

k=1

|〈π(xk)g, f〉|2,

from which the result follows. �

When we apply Theorem 24.2.4 to the Heisenberg group and the
Schrödinger representation, we obtain a result about irregular Gabor
frames. For the proof we only need to recall from Example 24.1.2 that in
this case the set A in Definition 24.1.1 (v) equals the Feichtinger algebra S0.

Corollary 24.2.6 Let g ∈ S0 \ {0}. Then there exists an open set V ⊂ R
2

such that {Eλk
Tμk

g}∞k=1 is a frame for L2(R) for every separated sequence
{(μk, λk)}∞k=1 in R

2 for which

∞⋃

k=1

[(μk, λk) + V ] = R
2.

This short description is far from giving full justice to the work by Fe-
ichtinger and Gröchenig; we will now mention a few central points where
the theory is more general than described here.
From the sketch of the proof of Theorem 24.2.4 it is not clear why G needs

to be unimodular, and it is in fact an unnecessary assumption. However,
without this assumption, we need to be slightly more restrictive with the
choice of g ∈ H. The class of usable g ∈ H is still dense in H, but its
definition is slightly more involved; see [280].

Of even more importance is the fact that Feichtinger–Gröchenig theory
extends to series expansions in a scale of Banach spaces. The key point in
[280] is the observation that the convolution identity (24.5) can be extended
to hold for a large class of distributions f ; here the notation

Vg(f) = 〈f, π(x)g〉
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has to be reinterpreted as the action of the distribution f on π(x)g. To a
large class of Banach function spaces Y (including weighted Lp-spaces), one
can associate a sequence space Yd and a Banach space CoY such that The-
orem 24.2.4 holds with H replaced by CoY and �2(I) replaced by Yd. The
spaces CoY are called coorbit spaces, and many classical function spaces
are found among these spaces. For example, it is proved in [336] that Besov
spaces and Triebel–Lizorkin spaces appear as coorbit spaces via the rep-
resentation in Example 24.1.3 and certain choices of the function space
Y . Via the Schrödinger representation in Example 24.1.2, one obtains the
modulation spaces originally introduced by Feichtinger and discussed in
detail in [278] and [340]; see also the short introduction in Section A.5.

Note that Feichtinger–Gröchenig theory has been generalized in many
different directions over the years. An extension to projective group repre-
sentations appeared in [156]; this allows to apply the theory directly to the
operators ρ(a, b) = EaTb instead of extending the group by an irrelevant
torus component. Extensions to homogeneous spaces are treated in the pa-
pers [234, 235, 236] by Dahlke et al. Also, a generalization to continuous
frames not arising from a square-integrable representation was given by
Fornasier and Rauhut in [303].

24.3 Banach Frames

In the entire book we have focused on series expansions in Hilbert spaces,
with most concrete constructions taking place in L2(R) and L2(Rd). We
have already mentioned that a more general viewpoint is possible: the
original theory by Feichtinger and Gröchenig takes place in a scale of Ba-
nach spaces, and we have also noticed that localized frames lead to series
expansions in certain Banach spaces.
Extensions of frame theory to Banach spaces are an important issue, not

only from the theoretically point of view: several applications involve signals
in Banach spaces and call for associated expansions in terms of well-chosen
“building blocks.” Mathematically, the extension of frame theory to Banach
spaces is highly nontrivial and deeply connected with certain well-known
problems in Banach space theory.
The purpose of this section is to introduce some of the natural general-

izations of frame theory to Banach spaces. We will highlight some points
where the extended theory behaves radically different from the frame the-
ory in Hilbert spaces; and we will also discuss how localization assumptions
on a Gabor frame in L2(R) imply that the associated frame decomposition
automatically extends to a class of Banach spaces.
In the entire section we let X denote a Banach space; the dual Banach

space, i.e., the set of continuous linear functionals g : X → C, will be
denoted by X∗. Natural examples will be to take X = Lp(R) for some



612 24 Expansions in Banach Spaces

p ∈]1,∞[; then the dual space X∗ can be identified with Lq(R) for q chosen
such that p−1+q−1 = 1. Another central ingredient will be a Banach space
consisting of sequences {ck}∞k=1, where ck ∈ C for each k ∈ N; such a space
will be called a Banach sequence space and will be denoted by Xd.

There are several ways to extend frame theory to Banach spaces. We
first state the definition of an atomic decomposition:

Definition 24.3.1 Let X be a Banach space and Xd a Banach sequence
space indexed by N. Let {fk}∞k=1 be a sequence in X and {gk}∞k=1 a sequence
in X∗. Then the pair ({gk}∞k=1 , {fk}∞k=1) is an atomic decomposition of X
with respect to Xd if

(i) {gk(f)}∞k=1 ∈ Xd for all f ∈ X;

(ii) there exist constants A,B > 0 such that

A ||f ||X ≤ ||{gk(f)}∞k=1||Xd
≤ B ||f ||X , ∀f ∈ X ;

(iii) f =
∑∞

k=1 gk(f)fk, ∀f ∈ X.

Note that the analog to frames in Hilbert spaces would consist only of
parts (i) and (ii) in Definition 24.3.1. In a Hilbert space H the assumptions
(i) and (ii) with X = H and Xd = �2(N) are enough to obtain the frame
decomposition, but in the current Banach space setting they do not imply
the existence of a sequence {gk}∞k=1 in X∗ such that (iii) holds. We come
back to this point on page 618.
In [336] Gröchenig defined Banach frames as follows.

Definition 24.3.2 Let X be a Banach space and Xd a Banach sequence
space indexed by N. Let {gk}∞k=1 be a sequence in X∗ and S : Xd → X be a
bounded operator. Then ({gk}∞k=1 , S) is a Banach frame for X with respect
to Xd if

(i) {gk(f)}∞k=1 ∈ Xd for all f ∈ X;

(ii) there exist constants A,B > 0 such that

A ||f ||X ≤ ||{gk(f)}∞k=1||Xd
≤ B ||f ||X , ∀f ∈ X ;

(iii) S{gk(f)} = f, ∀f ∈ X.

We note that Definition 24.3.2 is closely related to the development of
Feichtinger–Gröchenig: in fact, in the “general version” of Theorem 24.2.4
from [336] Gröchenig shows that {π(xk)g}∞k=1 is a Banach frame for a
coorbit space (for an appropriate operator S and with respect to a certain
sequence space Xd).
Let us compare atomic decompositions and Banach frames. First, the

definition of an atomic decomposition expresses the desire to obtain a series
expansion of f ∈ X as for frames in Hilbert spaces. On the other hand, the
definition of a Banach frame opens up for the possibility of a reconstruction
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formula not necessarily given by an infinite series, allowing one to come
back to f ∈ X from the coefficients {gk(f)}∞k=1. In [136], Casazza, Han,
and Larson show that in case the canonical unit vectors {δk}∞k=1 belong
to the sequence space Xd and constitute a basis for Xd, there is a simple
relationship between Banach frames and atomic decompositions:

Proposition 24.3.3 Let X be a Banach space and Xd a Banach sequence
space indexed by N. Assume that the canonical unit vectors {δk}∞k=1 consti-
tute a basis for Xd; finally, let {gk}∞k=1 be a sequence in X∗ and consider
a bounded operator S : Xd → X. Then the following are equivalent:

(i) ({gk}∞k=1 , S) is a Banach frame for X with respect to Xd.

(ii) ({gk}∞k=1 , {S(δk)}∞k=1) is an atomic decomposition of X with respect
to Xd.

In [136] it is also proved that every separable Banach space possesses a
Banach frame:

Proposition 24.3.4 Every separable Banach space X can be equipped with
a Banach frame with respect to an appropriately chosen sequence space Xd.

Proof. SinceX is assumed to be separable, we can choose a dense sequence
{xj}∞j=1 in X\{0}. Given j ∈ N, there exists (see, e.g., [401], Theorem 28.3)
an element gj ∈ X∗ such that

gj(xj) = ||xj ||, and ||gj || = 1.

Given f ∈ X , we can choose a subsequence of {xj}∞j=1, say, {xkj}∞j=1, which
converges to f as j →∞. Since

||xkj || = ||gkj (xkj )|| ≤ ||gkj (f)||+ ||gkj (xkj − f)|| ≤ ||gkj (f)||+ ||f − xkj ||,

it follows that

||f || ≤ sup
j∈N

||gj(f)||.

Since we also have ||f || ≥ supj∈N
||gj(f)||, we have proved that {gk}∞k=1 ⊂

X∗ satisfies

||f || = sup
k∈N

|gk(f)|, ∀f ∈ X.

Let Xd be the subspace of �∞(N) consisting of all sequences {gk(f)}∞k=1,
where f ∈ X . Defining the operator S : Xd → X by S{gk(f)}∞k=1 = f , we
obtain that ({gk}∞k=1 , S) is a Banach frame for X with respect to Xd. �

Already in Chapter 3 we mentioned that there exist separable Banach
spaces having no basis. From this point of view one could say that the con-
cept of Banach frames is very satisfying because they always exist. However,



614 24 Expansions in Banach Spaces

one could also be suspicious and ask if the pure existence of Banach frames
is interesting. In order for a Banach frame to be practically useful, it has
to be defined with respect to a convenient and easily identifiable sequence
space Xd; this is not the case with the Banach frame constructed in the
proof of Proposition 24.3.4. One should rather ask for the existence of Ba-
nach frames with respect to a nice class of sequence spaces, which would
make Banach frames share more of the properties we know from frames in
Hilbert spaces. This point of view is supported by a result by Stoeva, pub-
lished in [131]: it says that every total sequence in X∗ is a Banach frame
for X with respect to some sequence space Xd. For example, let {ek}∞k=1

be an orthonormal basis for a Hilbert space H, and consider the family
{ek + ek+1}∞k=1 in Example 5.4.6: then

• {ek + ek+1}∞k=1 is a Banach frame for H with respect to a certain
sequence space Xd;

• {ek + ek+1}∞k=1 is not a frame for H.

The existence of such examples shows that the definition of Banach frames
does not match the definition of frames in Hilbert spaces, and it gives a
strong argument for restricting the class of Banach frames to more useful
ones. Several attempts to the “right definition” of a Banach frame can be
found in the literature. Feichtinger and Gröchenig have advocated to use
some special frames in Hilbert spaces as the starting point: in fact, there
exist Hilbert space frames which are at the same time frames for a scale of
Banach spaces. A general framework for this was developed by Gröchenig
[341], who introduced localized frames in Hilbert spaces; see Section 8.2.
To such a frame one can associate a class of Banach spaces, and all the
central frame objects carry over from the Hilbert space to these spaces.
In particular, the frame operator extends to a bounded bijection on each
space, which leads to frame decompositions exactly as in Theorem 5.1.6.
Following Fornasier and Gröchenig [304], we state the definition of the
relevant class of Banach spaces and some of the key results concerning the
associated series expansions. Note that weight functions are discussed in
Section A.5.

Definition 24.3.5 Let {fk}∞k=1 denote a frame for a Hilbert space H and
let {gk}∞k=1 be any dual frame. Let

H0 =

{ ∞∑

k=1

ckfk
∣
∣ {ck}∞k=1 is finite

}

.

For p ∈ [1,∞[ and any weight function m on N, define a norm || · ||Hp
m

on
H0 by

||f ||Hp
m
:= ||{〈f, gk}∞k=1||�pm , f ∈ H0.

Furthermore, let Hp
m denote the completion of the space H0 with respect to

this norm.
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The following results from [304] show that the frame decomposition (5.7)
extends to the Banach spaces Hp

m :

Theorem 24.3.6 Assume that the frame {fk}∞k=1 for H is self-localized
with decay rate s > 1. Denote the frame operator by S. Given a weight
function m on N, the canonical dual frame {S−1fk}∞k=1 is a Banach frame
for Hp

m for all 1 ≤ p <∞, and the reconstruction formula

f =

∞∑

k=1

〈f, S−1gk〉fk

holds for all f ∈ Hp
m, with unconditional convergence.

Concrete manifestations of Theorem 24.3.6 appear by considering a Ga-
bor frame for L2(R). Under certain conditions on the weight functions m
and v, it was proved in [304] that the assumptions in Proposition 13.5.1
imply that the space Hp

m equals the modulation space Mp
m; see Sec-

tion A.5; furthermore, {π(γ)g}γ∈Γ is a Banach frame for Mp
m, and the

frame expansion

f =
∑

γ∈Γ

〈f, π(γ)S−1g〉π(γ)g (24.10)

holds for all f ∈Mp
m. Note that the expansion (24.10) also can be obtained

without reference to localized frames and the theory for the space Hp
m; see

Corollary 12.2.6 in [340].
Let us now assume that that the conditions (i) and (ii) in Definition 24.3.2

are satisfied. Then the analysis operator

U : X → Xd, Uf := {gk(f)}∞k=1 (24.11)

is injective and thus has an inverse on its range RU ,

U−1 : RU ⊆ Xd → X, U−1{gk(f)}∞k=1 = f, f ∈ X.

The only condition that is missing in order for ({gk}∞k=1, U
−1) to be a

Banach frame is that the operator U−1 can be extended to an operator
on Xd. If the range RU is complemented in Xd, the operator U−1 can be
extended by zero on a complement; however, no easily verifiable condition
for a subspace to be complemented exists in general, even in the case where
Xd is an �p-space. Thus, in general, it is not very fruitful to try to obtain
Banach frames this way.
Note that [302] by Fornasier and [75, 76] by Borup and Nielsen construct

atomic decompositions and Banach frames in the context of Besov spaces
and α-modulation spaces.
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24.4 p-frames

A different approach to series expansions in a class of Banach spaces was
given in the paper [9] by Aldroubi, Sun, and Tang. They considered the
first part of the definition of a Banach frame separately in the case where
X is a general Banach space and Xd is an �p-space:

Definition 24.4.1 Let p ∈]1,∞[ be given. A sequence {gk}∞k=1 in X∗ is a
p-frame for X if there exist constants A,B > 0 such that

A ||f ||X ≤
( ∞∑

k=1

|gk(f)|p
)1/p

≤ B ||f ||X , ∀f ∈ X. (24.12)

{gk}∞k=1 is a p-Bessel sequence if at least the upper p-frame condition is
satisfied.

In [9] p-frames are used to obtain series expansions in shift-invariant
subspaces of Lp(R). Let

W̃ =

{

f : R→ C | sup
x∈R

∑

k∈Z

|Tkf(x)| <∞
}

.

If φ ∈ W̃ and p ∈]1,∞[ is given, then
∑

k∈Z
ckTkφ converges in Lp(R) for

all {ck}k∈Z ∈ �p(Z), and we can consider the space

Sp :=

{
∑

k∈Z

ckTkφ | {ck}k∈Z ∈ �p(Z)

}

.

Note that for p = 2, the space Sp appeared in Section 9.7.
The main result in [9] yields expansions in the spaces Sp in terms of

p-frames:

Theorem 24.4.2 Let φ ∈ W̃ and p ∈]1,∞[. Then the following statements
are equivalent:

(i) Sp is closed in Lp(R).

(ii) {Tkφ}k∈Z is a p-frame for Sp.

(iii) There exists a function ψ ∈ W̃ such that each f ∈ Sp has
unconditionally convergent expansions

f =
∑

k∈Z

〈f, Tkφ〉Tkψ =
∑

k∈Z

〈f, Tkψ〉Tkφ. (24.13)

Note that in the coefficients in (24.13) the function f might not belong to
L2(R), so the notation 〈f, g〉 should be interpreted as

∫
fg and not as an

inner product. The original article [9] is more general than stated above,
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and it applies to a space Sp generated by a finite collection of functions
rather than just the single function φ. The cases p = 1 and p = ∞ are
covered by requiring that φ belongs to the Wiener space W , which is a
stronger condition than membership of W̃ . If φ ∈ W , it is also proved that
the conditions in Theorem 24.4.2 are independent of the choice of p; in
particular, if {Tkφ}k∈Z is a p0-frame for one value of p0, it is a p-frame
for all p ∈ [1,∞]. This implies that if {Tkφ}k∈Z is a frame sequence in
L2(R), we automatically obtain series expansions like (24.13) in a scale of
Banach spaces. In other words: we can focus on the simpler task of designing
appropriate frame sequences {Tkφ}k∈Z in L2(R) and obtain expansions in
a class of Banach spaces as a consequence.
The definition of Riesz bases can also be extended to Banach spaces.

The definition will often be applied in the dual Banach space of the given
Banach space X , so in order to avoid confusion we state it in a Banach
space to be denoted by Y . Furthermore, as a standard convention we let q
denote the conjugated exponent of p ∈]1,∞[, i.e.,

1

p
+

1

q
= 1.

Definition 24.4.3 Let q ∈]1,∞[ be given, and let Y be a Banach space.
A sequence {gk}∞k=1 in Y is a q-Riesz basis for Y if span {gk}∞k=1 = Y
and there exist constants A,B > 0 such that for all finite scalar sequences
{dk}∞k=1,

A

( ∞∑

k=1

|dk|q
)1/q

≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

k=1

dkgk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Y

≤ B

( ∞∑

k=1

|dk|q
)1/q

. (24.14)

Note that completeness is part of our definition of a q-Riesz basis (in
contrast to the definition in [9]). Standard arguments show that the assump-
tions in Definition 24.4.3 imply that

∑∞
k=1 dkgk converges unconditionally

for all {dk}∞k=1 ∈ �q(N) and that (24.14) holds also for these sequences
(Exercise 24.7).
For windows in the Feichtinger algebra S0, it was recently proved by

Gröchenig, Ortega-Cerda, and Romero [353] that the p-frame property for
a Gabor system in the modulation space Mp is independent of the choice
of p ∈ [1,∞] :

Theorem 24.4.4 Assume that the set {(μk, λk)}k∈I ⊂ R
2 is relatively

separated and that g ∈ S0. Then the following hold:

(i) If {Eλk
Tμk

g}k∈I is a p-frame for the modulation space Mp, then it
is a p-frame for Mp for all p ∈ [1,∞].

(ii) If {Eλk
Tμk

g}k∈I is a q-Riesz sequence in the modulation space M q,
then it is a q-Riesz sequence for M q for all q ∈ [1,∞].
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In the rest of this section we discuss results by Christensen and Stoeva
[200]. As standing assumption, we will consider a Banach space X. First,
note that if X can be equipped with a p-frame, then X is isomorphic to
a closed subspace of �p and therefore reflexive. A characterization of the
p-frame property in terms of the synthesis operator is given by the following
result, which generalizes Theorem 3.2.3:

Theorem 24.4.5 Let X be a reflexive Banach space and {gk}∞k=1 a
sequence in X∗. Then {gk}∞k=1 is a p-frame for X if and only if

T : {dk}∞k=1 →
∞∑

k=1

dkgk

is a well-defined mapping of �q onto X∗.

Note that Theorem 24.4.5 does not mean that the p-frame property is
enough to obtain frame-like expansions in X∗. The result only says that if
{gk}∞k=1 is a p-frame, then each g ∈ X∗ has a representation g =

∑∞
k=1 dkgk

for some {dk}∞k=1 ∈ �q(N), but nothing guarantees that the coefficients
{dk}∞k=1 can be chosen as continuous linear functionals on X∗.
Theorem 24.4.5 sheds some light on the reason for adding the condition

(iii) to the definition of a Banach frame, see Definition 24.3.2: it shows that
in the special case of Xd = �p(N), the norm-equivalence in Definition 24.3.2
(ii) alone is equivalent to some kind of “expansion property” in the dual
Banach space X∗. This is clearly different from obtaining expansions in the
Banach space X itself.
In Proposition 3.6.4 we saw that a Riesz basis for a Hilbert space H also

is a frame for H. This result has a natural extension to q-Riesz bases and
p-frames:

Corollary 24.4.6 Let {gk}∞k=1 be a q-Riesz basis for X∗ with q-Riesz basis
bounds A,B. Then {gk}∞k=1 is a p-frame for X with p-frame bounds A
and B.

For q-Riesz bases, the desired expansions exist without further assump-
tions, in X as well as in X∗:

Theorem 24.4.7 If {gk}∞k=1 is a q-Riesz basis for X∗ with bounds A,B,
there exists a unique p-Riesz basis {fk}∞k=1 for X for which

f =
∞∑

k=1

gk(f)fk, ∀f ∈ X, (24.15)

g =

∞∑

k=1

g(fk)gk, ∀g ∈ X∗. (24.16)

Furthermore, {fk}∞k=1 has the bounds 1
B , 1

A .
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In [131] it is proved that for some Banach spaces X and p �= 2, there exist
p-frames {gk}∞k=1 for X , for which no sequence {fk}∞k=1 in X satisfies that

f =

∞∑

k=1

gk(f)fk, ∀f ∈ X. (24.17)

Since a q-Riesz basis for X∗ is a special case of a p-frame for X , Theo-
rem 24.4.7 suggests the following question: given a p-frame {gk}∞k=1 ⊂ X∗

for X , under what conditions can we find a q-frame {fk}∞k=1 for X∗ such
that (24.17) is satisfied? A theoretical answer is contained in the following
theorem; it is formulated on terms of the analysis operator U in (24.11)
and its range RU .

Theorem 24.4.8 Suppose that the sequence {gk}∞k=1 in X∗ is a p-frame
for X. Then the following are equivalent:

(i) RU is complemented in �p.

(ii) The operator U−1 : RU → X can be extended to a bounded linear
operator V : �p → X.

(iii) There exists a q-Bessel sequence {fk}∞k=1 ⊂ X for X∗ such that

f =
∞∑

k=1

gk(f)fk, ∀f ∈ X.

(iv) There exists a q-Bessel sequence {fk}∞k=1 ⊂ X for X∗ such that

g =

∞∑

k=1

g(fk)gk, ∀g ∈ X∗.

(v) {gk}∞k=1 is a Banach frame for X with respect to �p.

If (one of) the conditions are satisfied, the sequence {fk}∞k=1 in (iii) is a
q-frame.

24.5 Gabor Systems and Wavelets in
Lp(R) and Related Spaces

For p �= 2 the Lp-spaces are not the right spaces to search for uncondi-
tionally convergent Gabor expansions. Feichtinger–Gröchenig theory leads
to unconditionally convergent expansions in coorbit spaces, but in [284] it
is proved that Lp(R) is not a coorbit space under the Schrödinger repre-
sentation for p ∈ [1,∞[\{2}. The “right spaces” in connection with Gabor
analysis are the modulation spaces as described on page 611 and explained
in detail in [340].
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If one is satisfied with conditionally convergent Gabor expansions, one
can obtain convergence for functions in Lp(R) by requiring that the window
for the Gabor frame as well as the window for the canonical dual frame be-
long to the Wiener space W. The following result was proved by Gröchenig
and Heil in [345].

Theorem 24.5.1 Let p ∈]1,∞[, g ∈ W , and a, b > 0 be given. Assume
that the Gabor system {EmbTnag}m,n∈Z is a frame for L2(R). Furthermore,
denote the frame operator by S and assume that S−1g ∈ W . Then, for an
arbitrary f ∈ Lp(R),

∑

|m|≤N

∑

|n|≤N

〈f, EmbTnaS
−1g〉EmbTnag → f in Lp(R) as N →∞.

Similar results using pairs of dual Gabor frames generated by Schwartz
functions were obtained by Grafakos and Lennard [329]; that paper also
covers the case p = 1 in terms of a certain Cesaro-type sum.
For wavelet systems it is well known that a large class of wavelet or-

thonormal bases in L2(R) are unconditional bases for Lp(R) for all p ∈]1,∞[
(most wavelet books contain versions of this statement). Chui and Shi [213]
have stated sufficient conditions for the frame operator for a Bessel se-
quence {2j/2ψ(2jx − k)}j,k∈Z in L2(R) to extend to a bounded operator
on Lp(R), p ∈]1,∞[; sufficient conditions for the mixed frame operator as-
sociated with two wavelet systems to extend to a bijection on Lp(R) were
found by Bui and Laugesen [92]. The completeness problem, e.g., for the
Mexican hat wavelet, is considered by the same authors in [90] and [91].
Atomic decompositions in Lp(R) and Sobolev spaces based on the oblique
extension principle were obtained by Borup, Gribonval, and Nielsen in [74].

24.6 Exercises

24.1 Prove that every abelian locally compact group is unimodular.

24.2 Prove that a representation π is irreducible if and only if
span{π(x)g}x∈G = H, ∀g ∈ H \ {0}.

24.3 Prove that π defined by (24.2) satisfies condition (i) in
Definition 24.1.1. Prove also that the operators ρ(a, b) = EaTb do
not form a representation of (R2,+) on L2(R).

24.4 Prove that if {(xk, yk)}∞k=1 ⊂ R
2 has an accumulation point, then

the samples of the Schrödinger representation {π(xk, yk, 1)g}∞k=1

cannot be a frame for any g ∈ L2(R).
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24.5 Prove that an integrable representation is also square-integrable.

24.6 Let π be an integrable representation. Show that the set A defined
in (24.1) is dense in H.

24.7 Show that the assumptions in Definition 24.4.3 imply that∑∞
k=1 dkgk converges unconditionally for all {dk}∞k=1 ∈ �q(N) and

that (24.14) holds for {dk}∞k=1 ∈ �q(N).
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Appendix

A.1 Linear Algebra

Let V,W be finite-dimensional vector spaces, equipped with inner products
〈·, ·〉V and 〈·, ·〉W , respectively (when it is clear from the context in which
space the inner product is taken we will skip the subscript). Assume that

dimV = n, dimW = m.

Assume that T : V → W is a linear map and that we have fixed an
orthonormal basis {ek}nk=1 in V and an orthonormal basis {ẽj}mj=1 in W .
The matrix of T with respect to the chosen bases is the m × n matrix,
where the kth column consists of the coordinates of the image under T of
the kth basis vector in V , in terms of the given basis in W . The jkth entry
in the matrix representation is 〈Tek, ẽj〉, k = 1, . . . , n; j = 1, . . . ,m.

The matrix representation gives a convenient way to find the action of
the linear map T on a given v ∈ V : by writing v =

∑n
k=1 ckek, the result

of multiplying the matrix representation of T with {ck}nk=1 is the sequence
of coordinates representing Tv in the basis for W . We will always identify
the linear map and its matrix representation.
Given a linear operator T : V → W , the adjoint operator T ∗ : W → V

is characterized by

〈Tx, y〉 = 〈x, T ∗y〉, x ∈ V, y ∈ W.

©
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In matrix language, T ∗ is represented by the Hermitian transpose of
the matrix for T , i.e., the matrix we obtain by complex conjugation and
transposing.
The kernel for T is

NT = {x ∈ V | Tx = 0},
and the range is

RT = {Tx | x ∈ V }.
The vector spaces NT and RT∗ are subspaces of V , and

NT = R⊥
T∗ ;

in particular, the linear map T induces orthogonal decompositions of V
and (via T ∗) W given by

V = NT ⊕RT∗ , (A.1)

W = NT∗ ⊕RT . (A.2)

In case T = T ∗ (this can only happen when V = W ), we say that T is
self-adjoint. The finite-dimensional version of the spectral theorem says that
a self-adjoint operator has enough eigenvectors to span the entire space:

Theorem A.1.1 If T : V → V is self-adjoint, then all eigenvalues are
real, and V has an orthonormal basis consisting of eigenvectors for T .

A.2 Integration

Here we state some basic facts from the theory of integration. The proofs
and further results can be found in any standard book on the subject,
e.g., [565].
Let X be a set and M a σ-algebra of subsets of X , in which there is

defined a measure μ. We will exclusively consider positive measures, which
means that μ(A) ∈ [0,∞] for all A ∈ M. An example is the real numbers
R with the Borel subsets as σ-algebra, and the Lebesgue measure. Another
example is the natural numbers N equipped with the σ-algebra consisting of
all subsets, and the counting measure. See [565, 567] or any other standard
text on integration for more information.
A null-set is a measurable set with measure zero. A condition holds

almost everywhere (abbreviated a.e.) if it holds except on a null set.
We now state Fatou’s Lemma:

Lemma A.2.1 Let fn : X → [0,∞], n ∈ N be a sequence of measurable
functions. Then

∫

X

lim inf
n→∞ fndμ ≤ lim inf

n→∞

∫

X

fndμ.
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Lebesgue’s dominated convergence theorem is the main tool to inter-
change sums and integrals:

Theorem A.2.2 Suppose that fn : X → C, n ∈ N is a sequence of
measurable functions, that fn(x) → f(x) pointwise, and that there exists
a positive, measurable function g such that |fn| ≤ g for all n ∈ N and∫
X gdμ <∞. Then

lim
n→∞

∫

X

fndμ =

∫

X

fdμ.

We will frequently need the following standard result.

Lemma A.2.3 Let μ be a positive measure on a σ-algebra M. Assume
that {An}∞n=1 ⊂M and

A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ . . . .

If μ(A1) <∞, then

μ

( ∞⋂

n=1

An

)

= lim
n→∞μ(An).

A.3 Locally Compact Groups

Let G denote a group with neutral element e. The group composition of
two elements x, y ∈ G will be written x ·y or simply xy; the inverse of x ∈ G
is denoted by x−1. Let us give the formal definition of a locally compact
group.

Definition A.3.1 Let G denote a group which is equipped with a Hausdorff
topology, i.e., every pair of distinct points in G has disjoint neighborhoods.
We say that G is a locally compact group if the following conditions are
satisfied:

(i) The neutral element e has a neighborhood whose closure is compact;

(ii) G can be covered by a countable union of compact sets, i.e., G is
σ-compact.

Let O(e) denote the family of neighborhoods of e, i.e., the sets V ⊆ G
containing e in the interior.
Every locally compact group G can be equipped with a unique (up to

scalar multiplication) positive measure μ which is regular and left-invariant
in the sense that for all continuous functions F : G → C with compact
support

∫

G
F (yx)dμ(x) =

∫

G
F (x)dμ(x), ∀y ∈ G. (A.3)
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The measure μ is called the left Haar measure. The right Haar measure
is defined similarly, simply by replacing the composition yx in (A.3) by
xy. If the right and left Haar measures coincide (after appropriate nor-
malizations), we simply speak about the Haar measure, and G is said to
be unimodular. In particular, a locally compact abelian group is obviously
unimodular.
The simplest example of a locally compact group is R

n equipped with
the composition “+” and the Euclidean topology. Another example is the
torus

T = {z ∈ C | |z| = 1};
here the composition is complex multiplication and the topology is inherited
from C.

A.4 Some Infinite-Dimensional Vector Spaces

1) Given a family of Hilbert spaces {Hn}∞n=1, their direct sum is denoted
by

H =
(∑∞

n=1
⊕Hn

)

�2
; (A.4)

by definition, H consists of all sequences g = (g1, g2, . . . ) for which
gn ∈ Hn for all n ∈ N, and

∑∞
n=1 ||gn||2 < ∞. H is a Hilbert space

with respect to the inner product

〈f, g〉 =
∞∑

n=1

〈fn, gn〉Hn , f, g ∈ H;

the associated norm is

||g||2 =

∞∑

n=1

||gn||2.

2) Given a parameter s > 0, we define the Sobolev space

Hs(R) =

{

f ∈ L2(R)

∣
∣
∣
∣

∫ ∞

−∞
|f̂(γ)|2(1 + |γ|2)sdγ <∞

}

. (A.5)

Hs(R) is a Banach space with respect to the natural norm,

||f ||Hs =

(∫ ∞

−∞
|f̂(γ)|2(1 + |γ|2)sdγ

)1/2

.

3) The Schwartz space S consists of all f ∈ C∞(R) which decay faster
than any inverse polynomial; that is, for any α, k ∈ N ∪ {0},

sup
x∈R

∣
∣
∣
∣x

α d
kf

dxk
(x)

∣
∣
∣
∣ <∞.
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A.5 Modulation Spaces

Modulation spaces were introduced by Feichtinger in [274] and play a key
role in Gabor analysis. They are well described in the literature; see, e.g.,
Feichtinger’s survey article [278] and the book [340] by Gröchenig. We will
just state the definition and some of the general results.
Before we define the modulation spaces we need to consider various

weight functions. We state the general definition for weight functions on
R

d, but we actually only need the case d = 2.

Definition A.5.1

(i) A continuous function v : Rd → [0,∞[ is called a weight function.

(ii) A weight function v is said to be submultiplicative if

v(z1 + z2) ≤ v(z1) v(z2), ∀z1, z2 ∈ R
d.

(iii) Given weight functions m and v, we say that m is v-moderate if there
exists a constant C > 0 such that

m(z1 + z2) ≤ Cv(z1)m(z2), ∀z1, z2 ∈ R
d.

Letting | · | denote the Euclidean norm on R
d, some standard examples of

weight functions are:

(i) The polynomial weights, which, for a given s ≥ 0, have the form

v(z) := (1 + |z|)s, z ∈ R
d; (A.6)

these weights are submultiplicative.

(i) The exponential weights, which, for a given a > 0, have the form

v(z) := ea|z|, z ∈ R
d. (A.7)

(iii) The sub-exponential weights, which, for given a > 0 and b ∈]0, 1[,
have the form

v(z) := ea|z|
b

, z ∈ R
d. (A.8)

The modulation spaces are defined in terms of the behavior of the short-
time Fourier transform, given in (11.3). We will formulate the definition
directly in terms of the involved modulation and translation operators.
First, given any function g belonging to the Schwartz space S, we will
denote the action of a tempered distribution f ∈ S ′ on g ∈ S by 〈f, g〉. We
note that the Schwartz space is invariant under the action of the translation
operators and modulation operators. In the definition of the modulation
spaces we will first consider a particular choice of a Schwartz function,
namely, the Gaussian:
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Definition A.5.2 Let m and v denote weight functions on R
2, and assume

that m is v-moderate. Furthermore, let g(x) := e−x2

, x ∈ R.

(i) For any 1 ≤ p, q < ∞, the modulation space Mp,q
m consists of all

tempered distributions f ∈ S ′ such that
∫ ∞

−∞

(∫ ∞

−∞
|〈f, ExTyg〉|p m(x, y)p dx

)q/p

dy <∞. (A.9)

(ii) For p = q, we write Mp
m := Mp,p

m .

(iii) If m = 1, we write Mp,q := Mp,q
m .

(iv) The above definitions extend to the case where p = ∞ or q = ∞ (or
both) via standard modifications; in particular the space M∞

m consists
of the tempered distributions f ∈ S ′ for which

sup
(x,y)∈R2

|〈f, ExTyg〉|m(x, y) <∞. (A.10)

Note that Proposition 11.1.2 and (11.3) with f1 = f2, g1 = g2 immediately
shows that M2 = M2,2 = L2(R). The modulation space M1 is also known
as the Feichtinger algebra and will be treated separately in Section A.6.
The following result collects some of the key properties of the modulation

spaces. Note in particular that in the definition of the modulation spaces,
the Gaussian can be replaced by any other function g ∈ S \ {0}; this yields
the same space and an equivalent norm.

Lemma A.5.3 Let m and v denote weight functions on R
2, and assume

that m is v-moderate. Let g(x) = e−x2

, x ∈ R. Then the following hold:

(i) For any 1 ≤ p, q ≤ ∞, the space Mp,q
m is a Banach space with respect

to the natural norm, for the case 1 ≤ p, q <∞ given by

||f ||Mp,q
m

=

(∫ ∞

−∞

(∫ ∞

−∞
|〈f, ExTyg〉|p m(x, y)p dx

)q/p

dy

)1/q

and for the space M∞
m given by

||f ||M∞
m

= sup
(x,y)∈R2

|〈f, ExTyg〉|m(x, y).

(ii) For any 1 ≤ p, q ≤ ∞, the space Mp,q
m is dense in L2(R).

(iii) For any 1 ≤ p, q ≤ ∞, the function g(x) = e−x2

in the definition of
Mp,q

m can be replaced by any function g ∈ S \{0}; this yields the same
space and an equivalent norm.

(iv) For any 1 ≤ p, q ≤ ∞, the space Mp,q
m is invariant under time–

frequency shifts, and there is a constant C > 0 such that

||TxEyf ||Mp,q
m
≤ C v(x, y) ||f ||Mp,q

m
, ∀f ∈Mp,q

m , ∀x, y ∈ R.
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The modulation spaces with p = q = 1 play a particular role and can for
submultiplicative weights be characterized as follows:

Lemma A.5.4 Assume that the weight function v : R
2 → [0,∞[ is

submultiplicative. Then a function f belongs to M1
v if and only if

∑

(k1,k2)∈Z2

sup
(x,y)∈[0,1]2

(|〈f, Ex+k1Ty+k2f〉| v(x, y)) <∞. (A.11)

Note that for the case v = 1, the condition in (A.11) means that the
function (x, y) �→ |〈f, ExTyf〉| belongs to a two-dimensional variant of the
Wiener amalgam space defined in (11.29). Besides their applications within
frame theory, modulation spaces have found applications in many topics
that are not treated in this book, e.g., in the analysis of pseudodifferential
operators and as symbol classes.

A.6 Feichtinger’s algebra S0
The Feichtinger algebra S0 is a special case of the modulation spaces Mp

discussed in Section A.5. Letting g(x) := e−x2

, x ∈ R, the Feichtinger alge-
bra is defined as the vector space consisting of all f ∈ L2(R) for which the
short-time Fourier transform Ψg(f) introduced in Definition 11.1.1 belongs
to L1(R2), i.e.,

∫ ∞

−∞

∫ ∞

−∞
|〈f, ExTyg〉|dxdy <∞. (A.12)

Thus S0 = M1, and we have the general results about modulation spaces
in Section A.5 at our disposal. In particular, S0 is a Banach space with
respect to the norm

||f ||S0 = ||Ψg(f)||L1(R2) =

∫ ∞

−∞

∫ ∞

−∞
|〈f, ExTyg〉|dxdy,

and it is dense in L2(R). Also, Lemma A.5.3 shows that in the definition of
S0, we can replace the Gaussian by any nonzero function in S0; this yields
the same space and an equivalent norm.
We also see that S0 corresponds to the set A in (24.1) whenever π is

chosen as the Schrödinger representation, see Example 24.1.2.
Several characterizations of S0 can be found in the literature; see, e.g.,

Feichtinger’s paper [274], and [340]; in particular, S0 consists of all countable
superpositions of time–frequency shifts of the Gaussian with �1-coefficients:

S0 =

{

f =

∞∑

k=1

ckEyk
Txk

g

∣
∣
∣
∣ {(xk, yk)}∞k=1 ⊂ R

2, {ck}∞k=1 ∈ �1(N)

}

.
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The infimum of all �1-norms
∑
|ck|, taken over coefficients representing a

given f , gives an equivalent norm on S0.
It is generally accepted by the scientific community that S0 is the “correct

window class” for Gabor analysis, considered as a branch of time–frequency
analysis. In the rest of the section we will collect some of the important
results about functions in S0.
We first state a result from [274], giving a convenient criterion for a

function to belong to S0.

Lemma A.6.1 The set of functions
{
f ∈ Cc(R)

∣
∣f̂ ∈ L1(R)

}

is contained in S0.

In particular, Lemma A.6.1 implies that the B-splines Bn in Section A.8
belong to S0 whenever n ≥ 2; see Theorem A.8.1 and Corollary A.8.2.
The following result relates the Schwartz space S, the Wiener space W,

and the Feichtinger algebra S0.

Lemma A.6.2 S ⊂ S0 ⊂W.

Proof. We will only show the inclusion between the Feichtinger algebra
and the Wiener space. Thus, consider a function f ∈ S0. By Lemma A.5.3
we can replace the Gaussian by any nonzero function g ∈ S0 in the def-
inition of S0; we will take a compactly supported function g such that
0 ≤ g(x) ≤ 1 for all x ∈ R and g(x) = 1 for x ∈ [−1, 1]. An example of such

a function would be g(x) =
∑1

k=−1 B2(x + k), where B̃2 is the B-spline
defined in (A.18); up to the factor 3, this function equals the function h2

in (12.41), shown in Figure 12.2 (a). Now, χ[0,1](x) ≤ Ttg(x), ∀t ∈ [0, 1],
x ∈ R, so via Fourier’s inversion formula

||fTkχ[0,1]||∞ ≤ ||fTk+tg||∞ ≤ ||F(fTk+tg)||1

=

∫ ∞

−∞

∣
∣〈f, EωTk+tg〉

∣
∣ dω, ∀t ∈ [0, 1].

Integrating over t ∈ [0, 1] yields that

||fTkχ[0,1]||∞ ≤
∫ 1

0

(∫ ∞

−∞

∣
∣〈f, EωTk+tg〉

∣
∣ dω

)

dt;

thus,

∑

k∈Z

||fTkχ[0,1]||∞ ≤
∫ ∞

−∞

(∫ ∞

−∞

∣
∣〈f, EωTxg〉

∣
∣ dω

)

dt <∞,

i.e., f ∈ W. �
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The following versions of the Poisson summation formula can also be
found in [274]. The stated condition implies that the left-hand side of (A.13)
converges absolutely and defines an α-periodic function in the variable x;
now the proof follows by expanding this function in a Fourier series.

Lemma A.6.3 Assume that either f ∈ S0 or the decay conditions

|f(x)| ≤ C(1 + |x|)−1−ε, |f̂(γ)| ≤ C(1 + |γ|)−1−ε

hold for some ε > 0. Let α > 0 be given. Then for all x ∈ R,

∑

k∈Z

f(x+ kα) =
1

α

∑

k∈Z

f̂(k/α)e2πikx/α, (A.13)

with absolute convergence on both sides.

Let us collect some of the key properties of S0:

• S0 is invariant under translation, modulation, scaling, and the Fourier
transform;

• If f, g ∈ L2(R) and the short-time Fourier transform Ψg(f) (see
Definition 11.1.1) belongs to L1(R), then f, g ∈ S0; see [340].

• The Zak transform Zf (see Section 13.2) is continuous if f ∈ S0;

• If a Gabor system {EmbTnag}m,n∈Z is a frame with frame operator
S and g ∈ S0, then S−1g ∈ S0; see [349];

• If g ∈ S0, the synthesis operator for a Gabor system {EmbTnag}m,n∈Z

is bounded from �p(Z2) into the modulation space Mp, for all param-
eters a, b > 0 and p ∈ [1,∞]; the analysis operator is bounded from
Mp into �p(Z2), and the frame operator is bounded on Mp. See [340].

• The Walnut representation of the Gabor frame operator is available
whenever the window belongs to S0; see Theorem 12.2.1;

• Condition A (see Section 12.1) is satisfied whenever f ∈ S0; in par-
ticular, the Janssen representation of the Gabor frame operator is
available; see Theorem 12.2.5.

• Condition R (see Section 12.1) is satisfied whenever f ∈ S0.

• The linear mapping f �→ {f(k)}k∈Z is bounded from S0 into �1(Z);
see [282].

• S0 is continuously embedded in L1(R), i.e., there exists a constant
C > 0 such that

||f ||L1(R) ≤ C ||f ||S0 , ∀f ∈ S0.
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Figure A.1. The Mexican hat

A.7 Some Special Functions

The Gaussian with parameter a > 0 is the function

ga(x) := e−ax2

, x ∈ R.

It plays a special role in Fourier analysis, partly because it is (up to
constants) invariant under the Fourier transform:

Lemma A.7.1 For a > 0,

Fga(γ) =
√

π

a
e−

π2

a γ2

.

Another important function is the Mexican hat (Figure A.1), which can be
derived from the Gaussian with a = 1

2 :

Example A.7.2 We consider the Gaussian g(x) = e−
1
2x

2

. Its first
derivatives are

g′(x) = −xe− 1
2x

2

, g′′(x) = −(1− x2)e−
1
2x

2

.

One can show that
∫∞
−∞ |g

′′(x)|2dx = 3
4π

1/2; normalizing g′′ in L2(R) gives
the Mexican hat

ψ(x) :=
2√
3
π−1/4(1− x2)e−

1
2x

2

.

Direct calculation yields that

ψ̂(γ) = 8

√
2

3
π9/4γ2e−2π2γ2

.

�
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A.8 B-Splines

In short, splines are functions which are piecewise polynomials; in the one-
dimensional case, this means that one can split the domain of a spline into
intervals in such a way that the function is a polynomial on each interval.
The points where the function changes from one polynomial to another
polynomial are called knots. In the general setting no assumption on the
knots are made, and one can also consider splines in more variables.
For our purpose, however, the most elementary splines, namely, B-

splines, will suffice. They are defined inductively: the first is simply

B1(x) = χ[− 1
2 ,

1
2 ]
(x), (A.14)

and, assuming that we have defined Bn for some n ∈ N, the next is defined
by a convolution:

Bn+1(x) = Bn ∗B1(x) =

∫ ∞

−∞
Bn(x − t)B1(t)dt

=

∫ 1
2

− 1
2

Bn(x − t)dt. (A.15)

The functions Bn defined by (A.14) and (A.15) are called B-splines, and n
is the order. See Figure A.2 for graphs of B-splines B2 and B3. We collect
some of their fundamental properties; they can be proved by induction.

Theorem A.8.1 Given n ∈ N, Bn has the following properties:

(i) If n ≥ 2, then Bn ∈ Cn−2(R).

(ii) supp Bn = [−n
2 ,

n
2 ] and Bn > 0 on ]− n

2 ,
n
2 [.

(iii)
∫∞
−∞ Bn(x)dx = 1.

(iv)
∑

k∈Z
Bn(x − k) = 1 for all x ∈ R (for n = 1, except for x ∈ Z).

(v) For any continuous function f : R→ C,
∫ ∞

−∞
Bn(x)f(x)dx =

∫

[− 1
2 ,

1
2 ]

n

f(x1 + · · ·+ xn)dx1 · · · dxn. (A.16)

If n is even, the restriction of Bn to each interval [k, k + 1], k ∈ Z, is a
polynomial of degree at most n−1; if n is odd, the restriction of Bn to each
interval [k − 1

2 , k + 1
2 ], k ∈ Z, is a polynomial of degree at most n− 1.

Explicit expressions for the B-splines B2 and B3 are given by (Exer-
cise 12.10)

B2(x) =

⎧
⎨

⎩

1 + x if x ∈ [−1, 0],
1− x if x ∈ [0, 1],
0 otherwise,
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and

B3(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2x

2 + 3
2x+ 9

8 if x ∈ [− 3
2 ,−

1
2 ],

−x2 + 3
4 if x ∈ [− 1

2 ,
1
2 ],

1
2x

2 − 3
2x+ 9

8 if x ∈ [ 12 ,
3
2 ],

0 otherwise.

Note in particular that the integer-translates of any Bn form a partition
of unity for all n ∈ N, and that the regularity and the support size of Bn

increase with n. Via (A.16) we can find the Fourier transform of Bn:

Corollary A.8.2 For n ∈ N,

B̂n(γ) =

(
eπiγ − e−πiγ

2πiγ

)n

=

(
sin(πγ)

πγ

)n

. (A.17)

Proof. Using that f̂ ∗ g = f̂ ∗ ĝ for f, g ∈ L1(R), the definition of the
B-spline Bn immediately gives that

B̂n(γ) =
(
B̂1(γ)

)n

=

(∫ 1
2

− 1
2

e−2πixγdx

)n

=

(
eπiγ − e−πiγ

2πiγ

)n

,

as desired. �

With our definition of the B-splines, all the functions Bn have support
on a symmetric interval around zero. By Theorem A.8.1, the translated
spline

B̃n(x) := Tn
2
Bn(x) = Bn(x−

n

2
) (A.18)

has support on the interval [0, n]. Alternatively, the splines B̃n can be
defined inductively exactly as the B-splines, starting with the function
B̃1 = χ[0,1]. Explicit expressions for the B-splines B̃2 and B̃3 are given by

B̃2(x) =

⎧
⎨

⎩

x, x ∈ [0, 1[,
2− x, x ∈ [1, 2[,
0, x /∈ [0, 2[,

B̃3(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1/2 x2, x ∈ [0, 1[,
−3/2 + 3x− x2, x ∈ [1, 2[,
9/2− 3x+ 1/2 x2, x ∈ [2, 3[,
0, x /∈ [0, 3[.

Using Corollary A.8.2 we can find the Fourier transform of the translated
splines B̃n :

Corollary A.8.3 Fore n ∈ N,

̂̃
Bn(γ) =

(
1− e−2πiγ

2πiγ

)n

. (A.19)
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Figure A.2. The B-splines B2 and B3

We will now derive an alternative expression for the B-splines B̃n. For a
real-valued function f , let

f(x)+ := max{0, f(x)}.

Also, for any nonnegative integer n, let

f(x)n+ := (f(x)+)
n
.

Finally, for n ∈ N and j = 0, 1, . . . , n, let

(
n

j

)

:=
n!

j!(n− j)!
.

Theorem A.8.4 For each n = 2, 3, . . . , the B-spline B̃n can be written

B̃n(x) =
1

(n− 1)!

n∑

j=0

(−1)j
(
n

j

)

(x− j)n−1
+ , x ∈ R. (A.20)

Proof. We prove (A.20) by induction. For n = 2, the result can be proved

by a direct calculation. Now, assume that (A.20) holds for the B-spline B̃n

for some n ∈ N, and consider the B-spline B̃n+1; we want to show that

B̃n+1(x) =
1

n!

n+1∑

j=0

(−1)j
(
n+ 1

j

)

(x − j)n+, x ∈ R. (A.21)

First we notice that for x < 0, we have B̃n+1(x) = 0 and (x − j)+ = 0 for
all j = 0, . . . , n+1; thus, the equation in (A.21) holds. Let us now consider
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x ∈ [0, n+ 1]. Via the induction hypothesis, we derive that

B̃n+1(x) =

∫ 1

0

B̃n(x − t) dt

=
1

(n− 1)!

n∑

j=0

(−1)j
(
n

j

)∫ 1

0

(x− t− j)n−1
+ dt. (A.22)

For technical reasons, we will now split the interval [0, n+1] into subinter-
vals and consider x ∈ [J, J+1] for some arbitrary but fixed J ∈ {0, 1, . . . , n};
if we can prove (A.21) for such x, the result holds for all x ∈ [0, n+1]. In or-
der to calculate the integrals in (A.22), we split the index set j = 0, 1, . . . , n
into three groups:

• For j = J + 1, J + 2, . . . , n,

∫ 1

0

(x − t− j)n−1
+ dt = 0.

• For j = J ,

∫ 1

0

(x− t− J)n−1
+ dt =

∫ x−J

0

(x − t− J)n−1 dt

=
1

n
(x− J)n.

• For j = 0, 1, . . . , J − 1,

∫ 1

0

(x − t− j)n−1
+ dt =

∫ 1

0

(x − t− j)n−1 dt

=
1

n
((x− j)n − (x− 1− j)n) .

We now have all the information needed to calculate the sum in (A.22).
Let us first consider the partial sum corresponding to j = 0, . . . , J − 1:

J−1∑

j=0

(−1)j
(
n

j

)∫ 1

0

(x− t− j)n−1
+ dt

=
1

n

J−1∑

j=0

(−1)j
(
n

j

)

((x − j)n − (x− 1− j)n)

=
1

n

J−1∑

j=0

(−1)j
(
n

j

)

(x− j)n − 1

n

J−1∑

j=0

(−1)j
(
n

j

)

(x− 1− j)n = (∗).
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Splitting of the sum into two and reordering of the terms lead to

(∗) =
1

n

J−1∑

j=0

(−1)j
(
n

j

)

(x − j)n +
1

n

J∑

j=1

(−1)j
(

n

j − 1

)

(x− j)n

=
1

n
xn +

1

n

J−1∑

j=1

(−1)j
((

n

j

)

+

(
n

j − 1

))

(x− j)n

+
1

n
(−1)J

(
n

J − 1

)

(x − J)n.

Using that
(
n

j

)

+

(
n

j − 1

)

=

(
n+ 1

j

)

, (A.23)

this implies that

J−1∑

j=0

(−1)j
(
n

j

)∫ 1

0

(x− t− j)n−1
+ dt

=
1

n
xn +

1

n

J−1∑

j=1

(−1)j
(
n+ 1

j

)

(x − j)n +
1

n
(−1)J

(
n

J − 1

)

(x − J)n.

We can now find B̃n+1 using (A.22):

B̃n+1(x)

=
1

(n− 1)!

n∑

j=0

(−1)j
(
n

j

)∫ 1

0

(x− t− j)n−1
+ dt

=
1

(n− 1)!

J∑

j=0

(−1)j
(
n

j

)∫ 1

0

(x− t− j)n−1
+ dt

=
1

(n− 1)!

⎛

⎝ 1

n
xn +

1

n

J−1∑

j=1

(−1)j
(
n+ 1

j

)

(x− j)n

⎞

⎠

+
1

(n− 1)!

1

n
(−1)J

(
n

J − 1

)

(x− J)n

+
1

(n− 1)!

1

n
(−1)J

(
n

J

)

(x− J)n

=
1

n!
xn +

1

n!

J−1∑

j=1

(−1)j
(
n+ 1

j

)

(x − j)n

+
1

n!
(−1)J

((
n

J − 1

)

+

(
n

J

))

(x− J)n.
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Using (A.23) again, this leads to

B̃n+1(x) =
1

n!

J∑

j=0

(−1)j
(
n+ 1

j

)

(x− j)n

=
1

n!

n+1∑

j=0

(−1)j
(
n+ 1

j

)

(x− j)n+.

This proves (A.21) for x ∈ [0, n + 1]. The proof that (A.21) holds for
x > n+ 1 is similar and is left to the reader. �

Theorem A.8.4 has some direct consequences.

Corollary A.8.5 For n = 2, 3, . . . , the B-spline B̃n has the following
properties:

(i) B̃n ∈ Cn−2(R).

(ii) The restriction of B̃n to each interval [k, k+1], k ∈ Z, is a polynomial
of degree at most n− 1.

We now state a lemma concerning linear independence of translated
versions of a B-spline. We will only need the lemma in Section 9.5.

Lemma A.8.6 Let n ∈ N. Then the functions B̃n(·+k), k = 0, . . . , n−1,
are linearly independent on [0, 1].

Proof. For 0 ≤ x ≤ 1 and k = 0, . . . , n− 1, it follows from (A.20) that

B̃n(x+ k) =
1

(n− 1)!

n∑

j=0

(−1)j
(
n

j

)

(x+ k − j)n−1
+

=
1

(n− 1)!

k∑

j=0

(−1)j
(
n

j

)

(x+ k − j)n−1

=
1

(n− 1)!

k∑

�=0

(−1)k−�

(
n

k − �

)

(x + �)n−1

=
(−1)k
(n− 1)!

k∑

�=0

(−1)�
(

n

k − �

)

(x+ �)n−1.

This calculation shows that the linear operator that maps the functions

(·+ �)n−1, � = 0, 1, . . . , n− 1,

onto the functions

B̃n(·+ k), k = 0, 1, . . . , n− 1
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is lower triangular, with nonzero diagonal entries; thus, the transformation
is invertible. Consider the operator

∇f(x) := f(x+ 1)− f(x);

in the literature, this is often called the forward difference operator. For
k = 0, . . . , n−1, ∇k(xn−1) is a polynomial of exact degree n−1−k, which
is a linear combination of xn−1, (x+ 1)n−1, · · · , (x+ k)n−1. It follows that

span{(·+ k)n−1 : k = 0, . . . , n− 1}

equals the space of all polynomials of degree less than n. Therefore, the
polynomials (·+ k)n−1, k = 0, . . . , n− 1 are linearly independent on [0, 1].

As we have seen, (·+k)n−1, k = 0, . . . , n−1 and B̃n(·+k), k = 0, 1, . . . , n−1
are related by an invertible operator; as a consequence, we infer that the
functions B̃n(·+ k), k = 0, 1, . . . , n− 1 are linearly independent on [0, 1]. �

We refer to the books by Chui [205] and de Boor [70] for information
about general splines.

A.9 Exponential B-Splines

Exponential B-splines are defined in a similar way as the B-splines, but
with the characteristic functions multiplied by exponential functions. For
the purpose in this book it is enough to consider the following types:

Definition A.9.1 Consider a finite sequence of scalars β1, β2, . . . , βn ∈ R,
for some n ∈ N, and let

ek(x) := eβkxχ[0,1](x), k = 1, . . . , n.

An exponential B-spline is a function En : R→ C of the form

En := e1 ∗ e2 ∗ · · · ∗ en. (A.24)

The exponential B-splines share many properties with the classical
B-splines given by the choice βk = 0, k = 1, . . . , n. In particular, the expo-
nential B-spline En is n− 2 times differentiable (for n ≥ 2) and its support
is [0, n]. For more general information about exponential B-splines, we refer
to the papers [240], [558], and [624].
Some of the exponential B-splines have a property that is close to the

partition of unity property for B-splines. In fact, Theorem 3.1 in [107] shows
that the function

∑
k∈Z
En(x − k) is constant if and only if βk = 0 for at

least one value of k ∈ {1, . . . , n}.
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The stated references contain several formulas that are appropriate for
calculation of the exponential B-splines. We will only need the following
results from [107]:

Lemma A.9.2 Consider an exponential B-spline of the form (A.24),
n ≥ 2, and assume that

βk = (k − 1)β, k = 1, . . . , n (A.25)

for some β > 0. Then

∑

k∈Z

En(x− k) =

n−1∏

m=1

(
eβm − 1

)

βn−1(n− 1)!
, (A.26)

and

En(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

βN−1

n−1∑

k=0

1
n∏

j=1
j �=k+1

(k + 1− j)

eβkx, x ∈ [0, 1],

(−1)�−1

βn−1

n−1∑

k=0

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

0≤j1<···<j�−1≤n−1

j1,...,j�−1 �=k

eβj1+···+βj�−1

n∏

j=1
j �=k+1

(k + 1− j)

⎞
⎟⎟⎟⎟⎟⎟⎠

eβk(x−�+1),
x ∈ [�− 1, �],

� = 2, . . . , n,

0, x /∈ [0, n].

Note that Lemma A.9.2 corrects a typo in the expression for En(x) for
x ∈ [k − 1, k] on page 304 of [107]: in the result in [107] and using the
notation from [107], the term eaj1 + · · ·+ eajk−1 should be eaj1+···+ajk−1 .

Example A.9.3 Consider the exponential B-spline E2 in (A.24) with the
choice β1 = 0, β2 = 1, i.e., (A.25) holds with n = 2 and β = 1. Then

E2(x) =

⎧
⎪⎨

⎪⎩

ex − 1, if x ∈ [0, 1],

e− e−1ex, if x ∈ [1, 2],

0, if x /∈ [0, 2].

By (A.26) we have

∑

k∈Z

E2(x− k) = e− 1, x ∈ R.

This shows that the function g2(x) := (e− 1)−1E2(x) satisfies the partition
of unity condition.
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Similarly, taking n = 3 and letting βk = k − 1, k = 1, 2, 3,

E3(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(
1− 2ex + e2x

)
, x ∈ [0, 1],

1
2

(
−(e+ e2) + 2(e−1 + e)ex − (e−2 + e−1)e2x

)
, x ∈ [1, 2],

1
2

(
e3 − 2ex + e−3e2x

)
, x ∈ [2, 3],

0, x /∈ [0, 3].

By (A.26) we have

∑

k∈Z

E3(x − k) =
1

2
(e− 1)(e2 − 1), x ∈ R.

Thus g3(x) := 2(e − 1)−1(e2 − 1)−1E3(x) satisfies the partition of unity
condition. �

A.10 Splines on Locally Compact Abelian Groups

The classical B-splines were generalized to the setting of locally com-
pact abelian (LCA) groups in 1994, independently by Dahlke [232] and
Tikhomirov [613]. We will now introduce a slight extension of these splines
from [176]; in fact, we will allow certain weight functions to appear,
see (A.27) below. This enlarges the class of obtained splines in the same
sense as the exponential splines generalize the classical B-splines.
We will use the notation and terminology from Chapter 21 without fur-

ther comments. Given an LCA group G and functions f, g : G → C, the
convolution is the function f ∗ g given by

(f ∗ g)(y) :=
∫

G

f(y − x)g(x) dx, y ∈ G,

whenever the integral exists; as usual, the integral is with respect to the
Haar measure.

Definition A.10.1 Let Λ denote a lattice in the LCA group G, with as-
sociated fundamental domain Q. Let n ∈ N. Given functions g1, . . . , gn ∈
L2(Q), the function on G defined by the n-fold convolution

Wn := g1 χQ ∗ g2χQ ∗ · · · ∗ gnχQ (A.27)

is called a weighted B-spline of order n.

Note that since Q is relatively compact, the assumption gj ∈ L2(Q)
implies that gj ∈ L1(Q). Therefore the convolution in (A.27) is well defined,
and the terms in the convolution can be reordered without changing the
function Wn.



642 Appendix A. Appendix

Lemma A.10.2 Let Λ denote a lattice in the LCA group G, with asso-
ciated fundamental domain Q. Given functions g1, . . . , gn ∈ L2(Q), the
weighted B-spline Wn has the following properties:

(i) {TλWn}λ∈Λ is a Bessel sequence with bound
∏n

j=1 ‖gj‖2L2(Q).

(ii) For x ∈ G, Wn(x) �= 0 only if x ∈ nQ := Q+Q + · · ·+Q; therefore
suppWn ⊆ nQ.

(iii) If n ≥ 2, then Wn ∈ Cc(G); in particular, Wn ∈ Lp(G) for all p ≥ 1.

(iv) If gj > 0 on Q for j = 1, . . . , n and gj = C for at least one index
j, then Wn is nonnegative on G and satisfies the partition of unity
condition up to a constant, i.e.,

∑

λ∈Λ

Wn(x− λ) =
1

μG(Q)

n∏

j=1

∫

Q

gj(y) dy, x ∈ G.

Proof. (i) Given just one function g ∈ L2(Q), the system {Tλ(gχQ)}λ∈Λ

is an orthogonal system (the orthogonality follows from Lemma 21.1.7)
and therefore a Bessel sequence, with Bessel bound ‖g‖2L2(Q). We will now

use a result by Cabrelli and Paternostro [101], which states that a system
{Tλφ}λ∈Λ is a Bessel sequence with bound B if and only if

∑

ω∈Λ⊥
|φ̂(γ + ω)|2 ≤ B, a.e. γ ∈ V,

where V is a fundamental domain in Ĝ associated with the lattice Λ⊥.
Applied to W1 := gχQ, this shows that

∑

ω∈Λ⊥
|ĝχQ(γ + ω)|2 ≤ ‖g‖2L2(Q). (A.28)

Consider now any weighted B-spline Wn. It follows from (A.28) that
all function values of ĝjχQ, j = 1, . . . , n − 1, are bounded by ‖gj‖L2(Q).
Then (A.28) applied to gn implies that

∑

ω∈Λ⊥
|Ŵr(γ + ω)|2 =

∑

ω∈Λ⊥

n∏

j=1

|ĝjχQ(γ + ω)|2

≤
n−1∏

j=1

‖gj‖2L2(Q)

∑

ω∈Λ⊥
|ĝrχQ(γ + ω)|2 ≤

n∏

j=1

‖gj‖2L2(Q).

This shows that {TλWn}λ∈Λ is a Bessel sequence with the claimed bound.

(ii) This is an immediate consequence of the definition of the convolution.

(iii) Since g1, g2 ∈ L2(Q), it follows from standard results for convolution
(see [567, pp. 4–5]) that

W2 := g1 χQ ∗ g2χQ ∈ Cc(G),
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implying that W2 ∈ Lp(G) for all p ≥ 1. Iterating the argument leads to
the result.

(iv) First, let f1 be any nonnegative compactly supported function on G
for which there is a constant C1 such that

∑
λ∈Λ f1(x − λ) = C1, x ∈ G.

Then, if f2 ∈ L1(G), we have

∑

λ∈Λ

f1 ∗ f2(x− λ) =
∑

λ∈Λ

∫

G

f1(x− y − λ)f2(y) dy

=

∫

G

∑

λ∈Λ

f1(x− y − λ)f2(y) dy

= C1

∫

G

f2(y) dy. (A.29)

This eventually shows that a convolution has the partition of unity property
(up to a constant) if at least one of the factors has the property. Indeed, if
gj = C for at least one j ∈ {1, . . . , n}, let us reorder the terms and assume
that g1 = C. Then W1 := g1χQ = CχQ satisfies that

∑

λ∈Λ

W1(x− λ) = C =
1

μG(Q)

∫

Q

g1(y) dy, x ∈ G.

The general result now follows by induction based on (A.29). �

A.11 Notes

In this section we provide references for further reading.

Chapter 1: Frames in finite-dimensional spaces have recently attracted
more attention because of their use in signal processing. See [46] by
Benedetto and Fickus, as well as [138], [143], and [116] by Casazza et al.
Frames {fk}∞k=1 where the frame condition even holds if some of the terms
|〈f, fk〉|2 are replaced by −|〈f, fk〉|2 are studied by Peng and Waldron
in [537], with special emphasis on finite frames. Results on tight frames
and applications to coding and communication are given by Strohmer and
Heath [591].

Chapter 3: Donoho proved in [255] that the use of unconditional bases
leads to optimal sparsity in signal representations. A survey on local
trigonometric bases is in [62]. He and Volkmer use Riesz bases in the con-
text of Sturm–Liouville equations in [384]. Local trigonometric bases were
introduced by Malvar [512] and Coifman & Meyer [224].

Chapter 5: Frames and operator algebras are studied by Han and Larson
[377]. An algorithm (the matching pursuit algorithm) to represent elements
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in a Hilbert space via an overcomplete system was proposed by Mallat and
Zhang in [511]; it applies to highly overcomplete systems which are not
Bessel sequences, for example, combined wavelet and Gabor systems with
arbitrary parameters. See also [151]. There is a large literature on greedy
algorithms and m-term approximation; see e.g., [612] by Temlyakov, where
overcomplete systems are used. A survey on frame theory which discusses
several open problems is given by Casazza [115]. Frames in Bargmann
spaces are considered by Daubechies and Grossmann [243], by Gröchenig
and Walnut [358], and by Lyubarskii [505]. Frames in Hilbert C∗-modules
were introduced in [306] by Frank and Larson; see also the papers [449] and
[448].

Chapter 7: Casazza and Christensen proved in [118] that a frame is
unconditional if and only if it is a near-Riesz basis.

Chapter 9: Results on Riesz–Fischer sequences of exponentials are given
by Reid in [551].

Chapter 11-14: Gabardo and Han [317] considered Gabor frames for
subspaces of L2(R) and operator algebras.

Chapters 15–18: An early approach to wavelet frames in L2(R) is given by
Frazier and Jawerth [310]. Libraries of frames, i.e., wavelet packet frames,
are studied by Long and Chen in [500] and by Chen in [148]; a less advanced
approach is in [162]. Wavelet frames in Sobolev are considered by Oswald
[532]. Gribonval and Nielsen [331] use spline-generated wavelet frames in
approximation theory. Among the alternatives to wavelet bases we mention
brushlets, which were introduced by Laeng [474] and Meyer and Coifman
[518]; they are based on a local trigonometric basis multiplied with a bell
function. Ridgelets were introduced by Candes [108] as a tool to obtain
better performance in image processing with images having edges. Around
2005 shearlets were introduced by Guo, Kutyniok, and Labate, also with the
purpose of obtaining efficient representations of high-dimensional signals;
a comprehensive collection of papers concerning shearlets appear in [469].

Chapter 24: Atomic decompositions of Hardy spaces appeared already in
[225] by Coifman and Weiss. Wilson bases in coorbit spaces are discussed
by Feichtinger, Gröchenig, and Walnut in [284].



List of Symbols

R : The real numbers
R

+ : The strictly positive real numbers
N : The natural numbers: 1,2,3,. . .
Z : The integers

ZM : The integers modulo M, i.e., the (cyclic) set
{0, 1, . . . ,M − 1}

Q : The rational numbers
C : The complex numbers

gcd(p, q) : The largest common divisor for p, q ∈ N

�x� : The integer part of x ∈ R, i.e., the largest integer not
exceeding x

x : The complex conjugated of x ∈ C

X,Y : Banach spaces
X∗ : dual of the Banach space X
Xd : Banach sequence space
H,K : Hilbert spaces

Lp(R) : The space of measurable functions f : R �→ C for which∫
R
|f(x)|pdx <∞

Ck(R) : The space of k times differentiable functions with a
continuous k-th derivative
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C0(R) : The space of continuous functions vanishing at
infinity

Ff(γ) = f̂(γ) : The Fourier transform, for f ∈ L1(R) given by

f̂(γ) =
∫
R
f(x)e−2πixγdx

�2(I) : The space of square summable sequences on I
|I| : The Lebesgue measure of a Borel set I, or when I

is discrete,
the number of elements in I

χA : The characteristic function for a set A,
χA(x) = 1 if x ∈ A, otherwise 0

A : The closure of a set A
A⊥ : The orthogonal complement of a subset A in a

Hilbert space
suppf : The support of the function f:

suppf = {x ∈ R : f(x) �= 0}
δk,j : The Kronecker delta: δk,j = 1 if k = j, δk,j = 0 if

k �= j
Ta : The translation operator (Taf)(x) = f(x− a)
Eb : The modulation operator (Ebf)(x) = e2πibxf(x)
Da : The dilation operator (Daf)(x) =

1√
a
f(xa ), a > 0

D : The dilation operator (Df)(x) = 21/2f(2x)
S : The frame operator
T : The pre-frame operator
U † : The pseudo-inverse of the operator U
NU : The kernel of the operator U
RU : The range of the operator U

Ĝ : The dual group of an LCA group G
H⊥: The annihilator of a subgroup H of an LCA group G
πH : The canonical quotient map πH(x) = x+H from an

LCA group G into G/H
A : The matrix (A−1)T

S0 : The Feichtinger algebra
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[282] Feichtinger, H.G., Gröchenig, K.: Gabor frames and time-frequency
analysis of distributions. J. Funct. Anal. 146, 464–495 (1997)
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[338] Gröchenig, K.: Acceleration of the frame algorithm. IEEE Trans.
Signal Process. 41(12), 3331–3340 (1993)
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[350] Gröchenig, K., Lyubarskii, Y.: Gabor frames with Hermite functions.
C. R. Math. Acad. Sci. Paris 344(3), 157–162 (2007)
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[352] Gröchenig, K., Malinnikova, E.: Phase space localization of Riesz
bases for L2(Rd). Rev. Mat. Iberoam. 29(1), 115–134 (2013)



References 671
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Birkhäuser, Boston (2002)

[433] Janssen, A.J.E.M.: On generating tight Gabor frames at critical
density. J. Fourier Anal. Appl. 9(2), 175–214 (2003)

[434] Janssen, A.J.E.M., Strohmer, T.: Characterization and computation
of canonical tight windows for Gabor frames. J. Fourier Anal. Appl.
8(1), 1–28 (2002)

[435] Janssen, A.J.E.M., Strohmer, T.: Hyperbolic secants yield Gabor
frames. Appl. Comput. Harmon. Anal. 12(3), 259–267 (2002)

[436] Janssen, A.J.E.M., Søndergaard, P.: Iterative algorithms to approx-
imate canonical Gabor windows: computational aspects. J. Fourier
Anal. Appl. 13(2), 211–241 (2007)

[437] Jasper, J., Mixon, D.G., Fickus, M.: Kirkman equiangular tight
frames and codes. IEEE Trans. Inf. Theory 60(1), 170–181 (2014)

[438] Jensen, H.E., Høholdt, T., Justesen, J.: Double series representations
of bounded signals. IEEE Trans. Inf. Theory 34(4), 613–624 (1988)
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V -dense set, 608
α-LIC for GTI-systems, 552
α-modulation space, 615
α−LIC, 504
α−local integrability condition, 504
ω-dependence, 168
ω-independent sequence, 69
σ-compact, 625
{ek + ek+1}, 132, 148, 209, 567, 614
ax+ b group, 604
v-moderate weight function, 627

A
abc-problem, 281
abelian composition, 521
absolutely convergent series, 49
adjoint matrix, 623
adjoint operator, 5, 53
admissibility condition, 387
affine group, 604
alphabet, 26
alternate dual, 153
analysis filter bank, 490
analysis operator, 5, 122

analysis operator (unbounded), 195
analysis operator in Banach space,

615
analyzing atom, 604
annihilator, 522
approximately dual frames, 162
approximately dual Gabor frames,

319
approximation of the inverse frame

operator, 586–588, 591
approximation of the inverse Gabor

frame operator, 593, 594, 598
approximation order, 471
arithmetic mean, 41
atomic decomposition, 612
atomic decompositions in Lp(R),

620
atomic decompositions in Sobolev

spaces, 620
axiom of choice, 171

B
B-spline, 633
B-spline generated dual Gabor

frames, 309
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B-spline generated dual wavelet
frames, 476

B-spline generated Gabor frames, 283
B-spline generated Riesz sequence,

94, 208, 215
B-spline generated tight Gabor

frames, 324
B-spline generated tight wavelet

frames, 454, 456, 458, 460, 467
B-spline on LCA group, 641
B-spline scaling equation, 108
B-splines and oblique duals, 221, 226,

240
Balian–Low theorem, 113, 347, 356
Banach frame, 612
Banach sequence space, 612
Banach space, 48
Banach–Steinhaus theorem, 51
band-limited function, 103
basis, 3
basis constant, 72, 173
basis in Banach space, 68
basis with brackets, 178
Battle–Lemarié wavelets, 100
Besov space, 611, 615
Bessel bound, 74
Bessel family, 145, 552
Bessel sequence, 74
Bessel sequence, characterization, 75,

83
best approximative solution, 179
Beurling densities, 201
bi-frames, 411
biorthogonal basis, 78
biorthogonal MRA, 117
biorthogonal system, 72, 76
bounded operator, 50

C
canonical basis for �2(N), 80
canonical dual frame, 7, 124
canonical dual frame of {Tkφ}k∈Z,

214
canonical dual g-frame, 187
canonical dual Gabor window,

303, 305
canonical dual generator, 297
canonical dual of Gabor frame, 296
canonical dual of wavelet frame, 410

canonical dual window, 297
canonical quotient map, 523
canonical tight frame, 154
canonical tight frame associated with

Gabor frame, 296
Casazza–Christensen method, 584
Cauchy sequence, 48
Cauchy–Schwarz inequality, 53

character, 522
Chebyshev acceleration, 15
closed operator, 194
closed range, 54
co-compact Gabor system, 554

co-compact subgroup, 549
coefficient functional, 72
coherent frame, 199
coherent structure, 96
commutator relations in L2(G), 530

commutator relations in L2(Ĝ), 530
commutator relations in L2(0, L), 374

commutator relations in L2(R), 65
commutator relations in L2(Rd), 496
commutator relations in �2(Z), 374
compact operator, 54
compact perturbation, 565

complete sequence, 50
complex exponentials, 35
compression, 116
condition (A), 288
condition (CC), 273

condition (R), 288, 324, 368, 371
condition (UCC), 289
condition number, 12, 43, 378
condition number for Gabor frame

operator, 379
conjugate gradient method, 15
continuous frame, 145, 611
continuous Gabor frame, 261
continuous Gabor transform, 259

continuous operator, 50
continuous wavelet frame, 389
continuous wavelet transform, 387
convergent series, 49
convolution on �1(Z), 63, 490

convolution on L1(R), 62
convolution on LCA group, 641
convolution on locally compact

group, 606
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coorbit space, 611
coset, 383, 523
coset representatives, 383

D
Daubechies wavelets, 101
deblurring, 478
deficit for Gabor system, 267
denoising, 478
dense subset, 50
density of lattice in group, 524
DFT matrix, 22
dilation operator on L2(R), 63
dilation operator on L2(Rd), 494
dilation parameter, 63
direct sum of Hilbert spaces, 626
discrete Fourier transform basis, 23
discrete Fourier transform matrix, 22
discrete Gabor system, 361
discrete Zak transform, 382
downsampling, 490
dual α-LIC for GTI-systems, 552
dual α-LIC on groups, 547
dual α−LIC, 504
dual α−local integrability condition,

504
dual Banach space, 51, 611
dual basis, 78
dual continuous frames, 146
dual frame, 11, 125, 153, 157
dual frame pair, 158
dual frames, characterization, 157,

159
dual g-frame, 187
dual Gabor frames for L2(Ĝ), 543
dual Gabor frames in �2(Zd), 383
dual Gabor frames in L2(R),

298–300, 306
dual Gabor frames in L2(Rd), 508
dual Gabor frames in �2(Z), 361
dual Gabor frames in C

L, 377
dual Gabor frames through

periodization, 375
dual generator, 297
dual group, 522
dual GSI frames, 505
dual GTI frames, 553
dual Haar measures, 527
dual lattice, 288, 328

dual of Gabor frame in L2(R), 295
dual of wavelet frame in L2(R), 408
dual pair of wavelet frames,

construction, 473, 474
dual Riesz basis, 87
dual shift-invariant systems in L2(R),

250
dual shift-invariant systems in

L2(Rd), 506
dual wavelet frames in L2(R),

characterization, 402, 411
dual wavelet frames in L2(Rd), 512
dual window, 282, 297
duality principle, 191, 303, 328
duality principle for co-compact

Gabor systems, 556
dyadic scaling operator, 63
dyadic wavelet frame, 407

E
elementary LCA group, 522
equal-norm frame, 43, 378
equiangular frame, 43
equivalence, δ-, 413
equivalence, τ -, 413
erasure of frame elements, 39, 43
exact frame, 121
excess of frame, 24, 170
excess of Gabor frame, 266
expansion property, 110
exponential B-spline, 639
exponential decay, 305
exponential weight function, 627
exponentially localized frame, 188
extension problem, Gabor systems,

318
extension problem, Hilbert spaces,

155, 161
extension problem, wavelet systems,

484

F
Fatou’s lemma, 61, 624
Feichtinger–Gröchenig theory, 606
Feichtingers algebra, 273, 276,

282, 283, 288, 305, 306, 309,
335, 340, 343, 363, 368, 371,
373, 572, 603, 610, 628, 629

Feichtingers conjecture, 181
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fiber, 246
filter, 486

filter bank, 381, 490

finite section, 597
finite section method, 595

finite section method for Gabor
frames, 591

finite sequence, 50

FNTF (finite normalized tight
frame), 43

forward difference operator, 639
Fourier coefficients, 94

Fourier frame, 232

Fourier series in L2(0, 1/b), 94
Fourier series in L2(Td), 496

Fourier transform on L2(0, L), 373

Fourier transform on L2(R), 62
Fourier transform on L2(Rd), 495

Fourier transform on �2(Z), 63, 380

Fourier transform on L1(R), 62
Fourier transform on LCA group, 527

Fourier-like system, 253, 497

Fourier-like system on groups, 531,
537

Fourier-like systems, dual pair of
frames characterization, 253

frame, 3, 120
frame algorithm, 13

frame bounds, 3, 121

frame bounds, optimal, 121
frame coefficients, 7, 124

frame decomposition, 5, 124

frame decomposition for tight frame,
124

frame expansion in Banach spaces,
615

frame multiresolution analysis, 418
frame of exponentials, 232

frame of subspaces, 185

frame of translates, 203
frame of translates in �2(Z), 203

frame of translates, characterization,
206

frame of translates, irregular, 203

frame of translates, regular, 203
frame operator, 5, 122

frame operator for Gabor frame, 274,
294, 295

frame operator for shift-invariant
system, 254

frame operator for system of
translates, 214

frame potential, 42
frame radius, 232

frame sequence, 121
frame sequence, characterization, 137
frame set, 279

frame, characterization, 127, 136, 138
frame-like decomposition via

unbounded synthesis operator,
194

frames and extensions to tight
frames, 10, 155

frames and operators, 129
frames and projections onto

subspaces, 9

frames versus Riesz bases, 130,
166, 167, 179

Fredholm operator, 569

full spark, 26
full spark for Gabor system in C

L,
379

functional, 51, 53
fundamental domain, 524
FUNTF (finite unit norm tight

frame, 43
fusion frame, 37, 184
fusion frame bounds, 37

fusion frame decomposition, 38
fusion frame operator, 38

G

g-frame, 184
g-frame bounds, 184
g-frame decompositions, 187

g-frame operator, 187
Gabor basis, 96
Gabor Bessel sequence, sufficient

condition, 273, 277
Gabor expansion in Lp(R), 620

Gabor frame for L2(Ĝ), 540
Gabor frame for L2(R), 262
Gabor frame for L2(R), change of

parameters, 265
Gabor frame for L2(R),

characterization, 264
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Gabor frame for L2(R), excess, 266
Gabor frame for L2(R), necessary

conditions, 266, 267
Gabor frame for L2(R), redundancy,

267
Gabor frame for L2(R), sufficient

conditions, 270, 275, 279
Gabor frame in L2(Rd), necessary

condition, 510
Gabor frame in L2(Rd), sufficient

condition, 507, 508
Gabor frame operator, condition

number, 280
Gabor frame set, 283
Gabor frames for L2(R) and

B-splines, 283
Gabor frames for L2(R) and odd

functions in S0, 282
Gabor frames for L2(R) and the

characteristic functions, 280
Gabor frames for L2(R) and the

exponential functions, 281
Gabor frames for L2(R) and the

Gaussian, 279
Gabor frames for L2(R) and the

hyperbolic secant, 280
Gabor frames for L2(R) and totally

positive functions, 281
Gabor frames for L2(R), tight, 321
Gabor frames for �2(Z) through

sampling, 363, 364, 368, 371
Gabor Riesz basis for L2(R),

characterization, 333
Gabor Riesz basis for L2(R),

necessary conditions, 266
Gabor Riesz basis, no-go result, 334
Gabor system, 36
Gabor system in L2(0, L), 373
Gabor system in L2(R), deficit, 267
Gabor system in L2(Rd), 507
Gabor system in �2(Z), 361
Gabor system in C

L, 376
Gabor system on LCA group, 531
Gabor system, rationally

oversampled, 335
gap, 568
Gaussian, 628, 632
Gaussian Gabor frames, 280, 305
generalized dual, 163

generalized frame, 145
generalized inverse, 28, 33
generalized multiresolution analysis,

415
generalized shift-invariant system

(GSI), 496
generalized translation-invariant

system (GTI), 551
generator, 262
Gram matrix, 82, 89
Gram matrix for frame sequence, 127
Grassmanniam frame, 44
group of p-adic numbers, 548
group representation, 602
GSI Bessel sequence in L2(Rd),

necessary condition, 502
GSI frame for L2(G), 545
GSI frame for L2(Rd), sufficient

condition, 501
GTI frame, 552

H
Haar function, 98
Haar measure, 626
harmonic frames, 23
harmonic mean, 41
Hausdorff topology, 625
Heisenberg group, 603
Hilbert space, 52
homogeneous space, 611
HRT-conjecture, 36, 343
hyperbolic secant, 280

I
index of operator, 569
inpainting, 478
integer oversampled Gabor system,

594
integer part, 645
integrable group representation, 602
integral representation, 257, 386, 607
intertwining operator, 607
intrinsically localized frame, 188
inverse frame operator for Gabor

frame, 274
inverse frame operator,

approximation, 586–588, 591
inverse Gabor frame operator,

approximation, 593, 594, 598



696 Index

inversion formula for the Fourier
transform on L2(R), 62

inversion formula for the Fourier
transform on LCA group, 527

invertible operator, 51
irreducible group representation, 602
irregular frame of translates, 203
irregular Gabor frame, 262, 340, 610
irregular wavelet frame, 480, 481

J
Janssen representation, 304
Janssen representation of the frame

operator, 294
Janssen’s tie, 281

K
Kadec’s 1/4-theorem, 237
kernel, 624
knots, 633

L
lattice in R

2, 262
lattice in group, 523
lattice parameters, 336
lattice size, 524
LCA group, 360, 362, 521
Lebesgue point, 60, 66, 324
Lebesgue’s theorem, 625
left Haar measure, 626
left regular representation, 606
left-invariant measure, 625
left-inverses, characterization, 159
LIC, 504
linear independence, 3, 35, 343
local average sampling, 105
local integrability condition, 504
local integrability condition on

groups, 547
localized frame, 188, 589, 614
locally compact abelian group, 521
locally compact group, 625
logarithmically separated sequence,

481
lower bound for finite Gabor system,

344
lower bound for set of exponentials,

238
LTFAT (toolbox), 360

M
mask, 446
matching pursuit algorithm, 643
matrix representation, 17, 623
mean-square error, 40
Mercedes Benz frame, 45
metrizable, 521
Mexican hat, 399, 620, 632
minimal sequence, 69
mixed frame operator, 157
mixed frame operator for Gabor

systems, 290
modulated filter bank, 382
modulation operator, 241, 257
modulation operator on L2(0, L), 373
modulation operator on L2(R), 63
modulation operator on L2(Rd), 494
modulation operator on �2(Z), 360
modulation operator on LCA group,

530
modulation parameter, 63
modulation space, 345, 346, 611,

615, 628
moment problem, 58, 179, 223, 303
Moore–Penrose inverse, 30
multi-window Gabor frame, 273
multiresolution analysis, 98, 415
multiwavelet frame, 407
multiwavelets, 117

N
near-Riesz basis, 170
nested subspaces, 98
Neumann perturbation theorem, 557
Neumann’s theorem, 51
noise, 40, 196
nonexact frame, 130
nonharmonic Fourier series, 119, 232
nonstationary Gabor system, 253, 497
nonstationary wavelet frames, 478
normalized frame, 3
null set, 624

O
oblique dual, 128, 218
oblique dual of {Tkφ}k∈Z,

characterization, 218
oblique duals and B-splines, 221, 226,

240
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oblique extension principle, 460, 620
operator, 50
operator norm, 50
optimal frame bounds, 3, 121, 131
optimal Riesz bounds, 91
orthogonal complement, 52
orthogonal projection, 55
orthogonal projections and frames,

128
orthogonality relations, 605
orthonormal basis, 3, 79
orthonormal basis, characterization,

79, 81
orthonormalization trick, 216
overcomplete frame, 4, 130
oversampled filter bank, 382
oversampled Gabor system, 337
oversampling, 231
oversampling of wavelet frame, 482

P
p-adic numbers, 548
p-Bessel sequence, 616
p-frame, 616
p-frame expansion, 619
p-frames in modulation spaces, 617
p-frames in shift-invariant spaces, 616
p-frames versus q-Riesz bases, 618
pair of dual frames, 158
pair of dual Gabor frames in L2(R),

297
pair of dual Riesz bases, 87
pair of dual wavelet frames, 411
Paley–Wiener perturbation theorem,

557
Paley–Wiener space, 103, 127, 147
Paley–Wiener theorem for frames,

558
paraunitary filter bank, 382
Parseval frame, 5, 121, 154
Parseval’s equation, 80, 95
partition of unity for B-splines, 633
partition of unity for exponential

B-splines, 639
partition of unity for scaling, 403
partition of unity, general, 608
partition of unity, translates, 284,

306, 324
perfect reconstruction, 490

perfect reconstruction filter bank, 382
periodization of Gabor frame in

L2(R), 374
periodization of Gabor frame in

�2(Z), 377
periodization of sequence in �2(Z),

377
periodization operator, 373, 447
perturbation in Banach space, 557
perturbation of frame, 558, 564
perturbation of frame of

exponentials, 238
perturbation of frame sequences, 567
perturbation of frames, 558
perturbation of Gabor frame, 570
perturbation of Riesz basis, 558, 564
perturbation of Riesz sequence, 567
perturbation of the Haar wavelet, 574
perturbation of wavelet frame, 573
phaseless reconstruction, 42
Plancherel theorem on groups, 527
Plancherel’s equation, 62
Poisson summation formula, 374, 631
polar decomposition, 56
polarization identity, 53
polynomial weight function, 627
polynomially localized frame, 188
polyphase components, 487
polyphase decomposition, 487
polyphase matrix, 382
polyphase representation, 382
Pontryagin duality theorem, 522
positive measure, 624
positive operator, 55
Prüfer group, 548
pre-frame operator, 5, 74, 122
projective representation, 603, 611
proper representation, 602
pseudo-inverse matrix, 28
pseudo-inverse of unbounded

operator, 194
pseudo-inverse operator, 57, 129
pseudodifferential operator, 355
pseudodual, 128

Q
q-Riesz basis, 617
q-Riesz basis expansion, 618
quantization, 196
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quantization error, 26
quasi-periodicity of Zak transform,

332
quotient group, 523

R
R-dual sequence, 192
range, 624
rank, 17, 54
rational oversampled Gabor system,

305, 334
rationally related parameters, 336
reconstruction formula, 613
redundancy for Gabor frame, 267
redundancy, lower, 25
redundancy, upper, 25
redundant frame, 4, 130
refinable function, 422
refinement equation, 99, 422
refinement mask, 422, 446
reflexive Banach space, 51
regular frame of translates, 203
regular Gabor frame, 262
relatively separated set, 200, 608
removal of frame elements, 39, 43
representation coefficient, 604
representation of group, 602
reproducing kernel, 147
reproducing kernel Hilbert space

(RKHS), 147
ridgelet, 644
Riemann-Lebesgue lemma, 62
Riesz basis, 86
Riesz basis, characterization, 88, 91,

166, 167, 179, 581
Riesz bounds, 91
Riesz frame, 170, 580
Riesz sequence, 92
Riesz sequence, characterization,

92, 93
Riesz subsequence theorem, 60
Riesz’ representation theorem, 53
Riesz–Fischer sequence, 179
right-inverse operator, 56

S
sampling, 362
sampling of dual pair of Gabor

frames, 363

sampling of function in L2(R), 363
sampling of Gabor frame in L2(0, L),

377
sampling of Gabor frame in L2(R),

368
sampling of Gabor frame operator,

372
sampling problem, 102
scaling equation, 99, 446
scaling operator on L2(R), 63
scaling parameter, 63
Schatten–von Neumann class, 355
Schauder basis, 68
Schrödinger representation, 346, 603
Schur’s lemma, 84
Schwartz space, 246, 276,

305, 306, 626, 627, 630
self-adjoint matrix, 624
self-adjoint operator, 54
self-localized frame, 188, 589
semiorthogonal wavelet system, 444
separable normed space, 50
separated set, 200
separated set in locally compact

group, 608
separation constant, 200
sesquilinear form, 164
set of sampling, 229
Shannon’s sampling theorem, 103
shearlet, 644
shift-invariant space, 616
shift-invariant system in L2(R), 242
shift-invariant system, Bessel

characterization, 248
shift-invariant system, frame

characterization in L2(R), 250
shift-invariant systems in L2(Rd), 507
shift-invariant systems in �2(Z), 380
short-time Fourier transform, 259, 629
sibling frames, 411
Sigma-Delta quantization, 27
signal processing, 196, 381
signal transmission, 40, 197
sinc-function, 103
singular value decomposition, 31
singular value of compact operator,

354
singular values, 31
size of subgroup, 550
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Sobolev dual, 27
Sobolev space, 341, 471, 626
spectral factorization, 97, 465,

469, 471, 474
spectral tetris, 43
spectral theorem, 624
spline, 633
spline on LCA group, 641
spline wavelet, 100
square root of positive operator, 55
square-integrable representation, 602
stability, 557
strong operator topology, 51
strongly continuous representation,

602
sub-exponential weight function, 627
subframe property, 172
submultiplicative weight function,

627
synthesis filter bank, 490
synthesis operator, 5, 74, 122
synthesis operator (unbounded), 194
synthesis operator in Banach space,

618

T
tempered distribution, 355, 627
thresholding, 116
tight frame, 5, 121
tight frames versus dual frame pairs,

11, 28, 160
tight Gabor frames for L2(R), 321
tight wavelet frame construction,

453, 454, 460, 464, 465
tight wavelet frames,

characterization, 412
time-frequency analysis, 259
time-frequency lattice, 288
time-frequency localization of Gabor

expansions, 348
time-frequency shifts, 259
topology on dual group Ĝ, 522
topology on quotient group G/H , 523
torus, 626
total sequence, 50
totally positive function, 282
translation operator, 241, 257
translation operator on L2(0, L), 372
translation operator on L2(R), 63

translation operator on L2(Rd), 494
translation operator on �2(Z), 361
translation operator on LCA group,

530
translation parameter, 63
translation-invariant system (TI), 550
Triebel-Lizorkin space, 611
trigonometric polynomial, 96
truncation, 196
two-scale symbol, 422

U
unconditional basis, 68
unconditional basis constant, 72
unconditionally convergent series, 49
uniform boundedness principle, 51
uniform density, 233
uniform lattice, 523
unimodular group, 626
unitary extension principle, 453
unitary group representation, 602
unitary operator, 54
upsampling, 490

V
Vandermonde matrix, 26, 35
vanishing moments, 115

W
Walnut representation, 254, 290
wave packet system, 516
wavelet, 36, 97, 386
wavelet basis, 97
wavelet expansions in Lp(R), 620
wavelet expansions in Sobolev spaces,

620
wavelet frame for L2(R), 389
wavelet frame for L2(R), necessary

condition, 390
wavelet frame for L2(R), sufficient

condition, 391, 398
wavelet frame for L2(Rd), sufficient

condition, 511
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