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Abstract

In this paper we consider the problem of approximating a function be-

longing to some function space � by a linear combination of n trans-

lates of a given function G. Using a lemma by Jones (1990) and Barron

(1991) we show that it is possible to de�ne function spaces and func-

tions G for which the rate of convergence to zero of the error is O( 1p
n
)

in any number of dimensions. The apparent avoidance of the \curse of

dimensionality" is due to the fact that these function spaces are more

and more constrained as the dimension increases. Examples include

spaces of the Sobolev type, in which the number of weak derivatives is

required to be larger than the number of dimensions. We give results

both for approximation in the L2 norm and in the L1 norm. The

interesting feature of these results is that, thanks to the constructive

nature of Jones' and Barron's lemma, an iterative procedure is de�ned

that can achieve this rate.
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1 Introduction

Let � be a normed space of functions and let A be a subset of �. The

prototypical problem in approximation theory consists in approximating an

element f of � by an element of A, that is looking for an element in A that

has minimum distance from f . It is also natural to consider the distance of
f from A as

�(f;A) � inf
a2A

kf � ak (1)

and to study this quantity for di�erent choices of A and f 2 �. In the classical

theory of approximation the set A is usually a linear k-dimensional subspace

Ak � � (Lorentz, 1986) (the algebraic or the trigonometric polynomials of

given degree and the splines with �xed knots are typical examples of such

subspaces), while in nonlinear approximation theory the linear subspace Ak

is replaced by a k-dimensional manifoldMk (DeVore, 1991). Usually one has

a family of manifolds fMkg
1
k=1 such that

S
k
Mk is dense in � and

M1 �M2 � : : : �Mn � : : :

so that the quantity �(f;Mk) is a monotone decreasing function of k converg-

ing to zero and the approximation in Mk gets arbitrarily close to f provided

one takes k su�ciently large. However, since the computational time needed

to �nd an approximation to f inMk is going to increase with k, it is of great

interest to know the rate of convergence to zero of �(f;Mk) as a function

of k. This rate of convergence can be taken as a measure of the complexity

of f with respect to the manifolds Mk, in the sense that \simple" functions

should have a fast rate of convergence.

As an example, let us consider as space � the space �d

s�
of the functions

whose partial derivatives of order s are bounded in the uniform norm on

the d-dimensional cube I = [0; 1]d and satisfy a Lipschiz condition with

exponent � (Lorentz, 1986, p. 50). On the space � we consider the uniform

norm kfk = maxI jf(x)j. Choosing as manifold Mk the set of polynomials

of degree n� 1 in each of the d variables, that is a linear space of dimension

k = nd, the following bound can be obtained (Lorentz, 1986):

�(f;Mk) � Ndk�
s+�

d (2)

where N is a constant that depends on f and s.

From this example we see that the rate of convergence dramatically

slows down when the dimension d increases, revealing the discouraging phe-

nomenon known under the name of \curse of dimensionality" (Bellman,
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1961). However, for every �xed number of dimensions, arbitrary inverse-

power rates of convergence can be obtained if the smoothness index s is

chosen big enough. This result is typical in linear approximation theory

since the computation of the n-width of the space �d

s�
shows that the best

linear technique cannot improve the rate of convergence O(k�
s+�

d ) (Lorentz

1986, p. 135).

Similar results, in both linear and nonlinear approximation theory (De-

Vore, 1991), hold for other spaces of functions in which smoothness is mea-

sured in a di�erent way. We are therefore led to argue that in practical

situations we can only approximate functions whose smoothness increases

with the dimension. As an example we consider again the spaces �d

s�
for

s = d. It is clear from eq. (2) that in this case the rate of convergence of

polynomial approximation to an f 2 �d

d�
is O(k�1) and it is in this sense

\independent on dimensionality".

In a recent paper (1990) Jones showed how to construct a sequence of

functions fn that approximate certain functions in a Hilbert space with a

rate of convergence O( 1p
n
). A statement of Jones' lemma is given in section

2. An application of this result to projection pursuit regression and neural

networks has already been presented in (Jones 1990; Barron 1991), where

appropriate approximation schemes and spaces �d of functions in Rd are

described in which the complexity of approximation increases mildly with

d. It is worthwhile to observe that this is obtained at the expense that the

functions contained in �d are more and more \regular" when d increases.

Moreover, it is not completely clear yet how computationally expensive the

approximation fn may be. A very short review of Jones' and Barron's results

is given in section 5.

The aim of this paper is to present an application of Jones' lemma to

the approximation by linear combination of translates of a given function

G. In particular for appropriate choices of G we obtain estimates for the

rate of convergence of certain Radial Basis Functions schemes (Micchelli,

1986; Powell, 1987; Dyn, 1991; Poggio and Girosi, 1990) on certain spaces

of functions of Sobolev type. For the convenience of the reader we collect in

the appendix a few known results about Sobolev spaces and integration of

Banach valued functions.

2 The Maurey-Jones-Barron Lemma

Our result is based on a lemma by Jones (1990) on the convergence rate of an

iterative approximation scheme in Hilbert spaces. A formally similar lemma,
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brought to our attention by R. Dudley (Dudley, 1991), is due to Maurey,

and was published by Pisier in 1981. However Jones' lemma is constructive

while Maurey's is not. Here we report a version of the lemma due to Barron

(Barron 1991) that contains a slight re�nement of Jones' result:

Lemma 2.1 (Maurey-Jones-Barron) If f is in the closure of the convex

hull of a set G in a Hilbert space H with kgk � b for each g 2 G, then for

every n � 1 and for c > b2�kfk2 there is a fn in the convex hull of n points
in G such that

kf � fnk
2 �

c

n
:

The interesting feature of this lemma is that the sequence ffng
1
n=0

has the

following structure:

fn+1 = �nfn + (1 � �n)gn (3)

where �n and gn are chosen in order to \approximately solve" the following

minimization problem:

inf
�n2R;gn2G

kf � �nfn � (1 � �n)gnk

where by \approximately solve" we mean that it is su�cient at each step to

reach a distance from the in�mum of order O( 1

n
2 ). The lemma is therefore

constructive, providing a procedure that can achieve the prescribed rate.

In order to exploit this result we need to de�ne suitable classes of functions

which are the closure of the convex hull of some subset G of a Hilbert space

H. We are therefore naturally led to study functions that can be represented

as \in�nite" convex combinations of the type

f =
1X
i=1

�igi �i � 0 ; gi 2 G ;
1X
i=1

�i = 1 : (4)

One way to approach the problem consists in utilizing the integral represen-

tation of functions. Suppose that the functions in a Hilbert space H can be

represented by the integral

f(x) =
Z
M
Gt(x)d�(t) (5)

where d� is some measure on the parameter setM. If d� is a �nite measure,

the integral (5) can be seen as an in�nite convex combination of the type of
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eq. (4), and therefore the function f belongs to the closure of the convex

hull of some subset of H. In the next section we formalize this idea in the

special case in which the functions Gt(x) are the translates G(x � t) of a

�xed function G and we show how it leads to de�ne approximation techniques

whose rate of convergence in appropriate spaces of functions is O( 1p
n
).

3 Approximation by Translates of a Func-

tion G

Let G be a �xed function belonging to L2(R
d) � L2. We de�ne the space LG

as the set of the functions of the form

f = G � � (6)

where � is any signed Radon measure whose total variation j�jRd � k�k is

�nite and the symbol � stands for the convolution operation. Assuming from

now on that kGkL2 = 1, the following inequality holds (Stein and Weiss,

1971)

kfkL2 � k�k

showing the inclusion LG � L2. It is natural to approximate elements of LG
by elements of the set

Gn = ff 2 L2 j f =
nX
i=1

�iGti ; �i 2 R ; ti 2 Rdg ; (7)

where we indicate by Gt the function G translated by the vector t, that is

Gt(x) = G(x� t). Using lemma 2.1 we can now prove the following

Theorem 3.1 Let f be a function in LG, so that f = G � �, where G 2 L2,

kGkL2 = 1, and � is a Radon signed measure of bounded total variation k�k.
Then f belongs to the L2-closure of the convex hull of the set

A = fsGt j t 2 Rd; jsj � k�kg

and there exist n coe�cients c� and n vectors t� such that:

kf �
nX

�=1

c�G(x� t�)k
2

L2
�

c

n

for all c > k�k2 � kfk2
L2
.
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Proof: We consider the vector-valued function

T : Rd ! L2(R
d)

such that

T (t) = Gt :

The function T is continuous, hence �-measurable, moreover one has

Z
Rd

kT (t)kL2dj�j(t) = kGkL2

Z
Rd

dj�j(t) = k�k < +1 :

Therefore it exists the Bochner integral of T with respect to � (see ap-

pendix A):

� =

Z B

Rd

T (t)d�(t) ;

and by lemma (A.2) we have

� 2 co A (8)

where A = fsGt j t 2 Rd; jsj � k�kg, co A stands for the convex hull of

the set A and the bar stands for the closure in L2. Now we shall prove that

� = f . This can be done by proving that

F �f = F �� ; 8F � 2 (L2)
� (9)

where (L2)
� is the dual space of L2, that is L2 itself. From the properties of

the Bochner integral we have:

F �� = F �
Z B

Rd

T (t)d�(t) =

Z
Rd

(F �Gt))d�(t) :

Taking this into account, the identity (9) can be written as:

Z
Rd

dx �(x)
Z
Rd

G(x� t)d�(t) =
Z
Rd

d�(t)
Z
Rd

dx �(x)G(x� t) ; 8� 2 L2 :

Now by Fubini's theorem the two sides of this last equation are equal, and

therefore � = f .

By eq. (8) f = � belongs to the L2 closure of the convex hull of the set A,

which is contained in the ball of radius k�k. By the Maurey-Jones-Barron

lemma we can �nd a set of n coe�cients c� and n vectors t� such that:
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kf �
nX

�=1

c�G(x� t�)k
2

L2
�

c

n

for all c > C(f) = k�k2 � kfk2
L2
. 2

In theorem (3.1) the approximation error is measured in the L2 norm. Im-

posing some restrictions on the function G a similar estimate can be obtained

for other norms, and in particular for the L1 norm. In fact, suppose that

G 2 Hs;2, where Hs;2(Rd) � Hs;2 is the Sobolev space of the functions whose

weak derivatives up to order s are in L2 (see Appendix B). Then one can

easily see that theorem (3.1) can be formulated in the Hilbert space Hs;2

instead of L2:

Theorem 3.2 Let f be a function such that f = G � �, where G 2 Hs;2,
kGkHs;2 = 1, and � is a Radon signed measure of bounded total variation

k�k. Then f belongs to the Hs;2-closure of the convex hull of the set

A = fsGt j t 2 Rd; jsj � k�kg

and there exist n coe�cients c� and n vectors t� such that:

kf �
nX

�=1

c�G(x� t�)k
2

Hs;2 �
c

n

for all c > k�k2 � kfk2
Hs;2.

We notice that if the condition s > d

2
holds, then the Sobolev embedding

theorem (see Appendix B) guarantees that Hs;2 � C0 and that it exists

c1 > 0 such that

k � k1 � c1k � kHs;2 :

Therefore the approximating sequence ffng converges uniformly, and the

following corollary holds:

Corollary 3.1 Under the conditions of theorem (3.2), if s > d

2
there exists

n coe�cients c�, n vectors t� and a constant c1 such that:

kf �
nX

�=1

c�G(x� t�)k
2

L1
� c1

c

n

for all c > k�k2 � kfk2
Hs;2.
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From a practical point of view, in many cases, what it is really interesting

is an estimate of the error in the sup norm, instead of the L2 or H
s;2 norm.

Think for example of the problem of approximating the trajectory of a robot

arm: it is clear that what is really needed in this case is a small L1 norm of

the di�erence between the desired and the approximated trajectory, while a

small L2 norm is of little interest.

Remark: we notice that the elements of the set Gn de�ned by eq. (7) can

also be seen as points of a manifold Mk whose dimension is k = n(d + 1).

Therefore theorem (3.1) can also be formulated in terms of the number of

parameters k that are needed to achieve a certain error, saying that if f 2 LG
then

�(f;Mk) � C(f)

s
d+ 1

k
:

If we compare this result with the typical estimates (DeVore, 1991), we

notice that in this case the way the dimension a�ects the convergence curve

is much less dramatic, corresponding to a simple scale dilation. This means

that in some sense the complexity of the space LG does not increase very

much when the dimension increases. It is interesting to characterize, for

several speci�c choices of G, the structure of LG and to understand whether

it contains a \su�ciently large" set of functions, where by \su�ciently large"

we mean large enough to contain functions that are encountered in practical

cases. This will be done in the next section for two particular choices of G.

4 Examples of functions G

In this section we consider two choices for the function G and study the

corresponding functions spaces LG. We remind that for any givenG 2 L2(R
d)

the space LG is de�ned as

LG = ff 2 L2(R
d) j f = G � � ; � 2 M(Rd)g

whereM(Rd) �M is the space of Radon signed measures of bounded total

variation on Rd.

4.1 The Gaussian

We consider the Gaussian function G(x) = e�kxk
2

, since approximation with

Gaussian basis functions is often used in practical applications (Moody and
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Darken, 1989; Poggio and Girosi, 1990; Poggio and Edelman, 1990; Sanner

and Slotine, 1992). Clearly G 2 L2(R
d), so that the space LG is well de�ned

in any dimension. Due to the smoothness of the Gaussian and to its fast

decay property this space of functions is rather small. However it contains

an interesting subset of the space of band limited functions, the functions

whose Fourier transform has compact support. In particular, let us de�ne

the space of functions Bk(R
d):

Bk(R
d) � ff j ~f 2 Ck

0 (R
d)g ; (10)

that is the set of functions whose Fourier transform has compact support and

k continuous derivatives. Then the following inclusion holds:

Bk(R
d) � LG ; 8k >

d

2
: (11)

In fact if f 2 Bk(R
d) then we have

~f(s)

~G(s)
= �eksk

2 ~f (s) � ~� 2 Ck

0
(Rd) ;

where � is a constant depending only on the dimension d. Therefore f = G��

where � is the Fourier transform of the function ~� =
~f

~G
. Since the following

inclusion holds (see appendix B):

Ck

0 (R
d) � A(Rd) ; 8k >

d

2
;

where A(Rd) is the space of the functions whose Fourier transform belongs

to L1(R
d), then � 2 L1 and f 2 LG.

We notice that the Gaussian function and its derivatives of any order

belongs to L2, and therefore G 2 Hs;2 for any s > 0. Hence we can apply

corollary (3.1) to conclude that the convergence rate O( 1p
n
) also holds for

approximation in the sup norm.

4.2 Bessel-Macdonald Kernels

We now consider the Bessel-Macdonald kernels, a family of functions Gm(x)

de�ned in terms of their Fourier transforms:

~Gm(s) =
1

(1 + 4�2ksk2)
m

2

m > 0 :

8



The functions Gm(x) are integrable functions that decay exponentially at

in�nity and may have a singularity at the origin (Stein, 1970, p. 132). How-

ever if m > d they are continuous and actually di�erentiable of any order

q < m� d. We want to work with continuous funtions and in what follows

we will always make the assumption m > d. Since ~Gm(s) is positive and

radial, we also have that, by Bochner's theorem, Gm(x) is positive de�nite

(Micchelli, 1986), and therefore approximation by translates of Gm(x) is a

Radial Basis Functions approximation scheme. The following observations

can be done regarding the functions Gm and the space LGm
:

1. One has

Gm 2 Hs;2 for 0 < s < m�
d

2
:

Since we have made the assumption m > d one can take s such that
d

2
< s < m � d

2
. Then we can apply corollary (3.1) to conclude that

the rate of convergence O( 1p
n
) also holds for approximation in the sup

norm.

2. Since L1 � M, the space LGm
contains the space L1

m
(Rd) � L1

m
of

those functions that can be written as f = Gm � � with � 2 L1. For

more information about the space L1
m
, which is a special instance of

the so called potential spaces, the reader is referred to (Stein, 1970).

The space L1
m
is related to the Sobolev space Hm;1(Rd) � Hm;1 of the

functions whose weak derivatives up to orderm are in L1 (see Appendix

B). More precisely one has (Stein 1970, p. 160):

Hm;1 � L1
m

� LGm
for all m even :

Therefore we conclude that if m > d and m is even, by superposition of

translates of Gm we can approximate with a rate of convergence O( 1p
n
)

all the functions of Hm;1, and hence all Cm functions which rapidly

decrease to in�nity.

3. Again for s < m � d

2
and m > d, m even, we have the following

characterization of the space LGm
:

LGm
= ff 2 Hs;2 j (I ��)

m

2 f 2 Mg :

9



In fact, if f 2 LGm
that is f = Gm�� with � 2 M, then (I��)

m

2 f = �

since Gm is the fundamental solution of the operator (I��)
m

2 . On the

other hand, if f 2 Hs;2 and (I ��)
m

2 f = � 2 M, then by taking the

convolution of both sides with Gm we have f = Gm � �.

5 Other Approximation Schemes

Other choices of integral representation lead to di�erent approximation schemes

and di�erent spaces of functions that can be approximated with a similar con-

vergence rate. For example, using the Fourier representation of a function

(if it exists) we have:

f(x) =

Z
R
d

ds cos(s � x+ �(s))j ~f(s)j (12)

where �(s) is the phase of the Fourier transform ~f (s) of f . Jones (1990)

considers the space A(Rd) (appendix B) of the functions such that their

Fourier transform is in L1(R
d) and shows that they can be approximated by

functions of the form

fn(x) =
nX
i=1

�i cos(ti � x+ �i) (13)

with the rate of convergence O( 1p
n
).

Another result of this type has been proved by Barron (1991). He con-

siders the set of the functions such thatZ
Rd

ds kskj ~f(s)j < +1 (14)

that is the functions whose gradient is in A(Rd), and approximates elements

of this set by functions of the form

fn(x) =
nX
i=1

�i�(ti � x+ �i) ;

where �(�) is any sigmoidal function. Condition eq. (14) can be rewritten as

kskj ~f(s)j 2 L1(R
d): (15)

Denoting by Id the function

Id(x) =
1

kxkd�1

10



and noticing that its Fourier transform is ~Id(s) = ksk�1 we can also say that

the space of function that satisfy condition eq. (14) is the space of function

that can be written as

f = Id � � ; � 2 A(Rd): (16)

There is a remarkable analogy between this set of function and the func-

tion space L1
m
considered in section (4.2), that is the set of functions such

that:

f = Gm � � ; � 2 L1(R
d) ; m > d : (17)

In eq. (16), the function Id goes to zero faster and faster as d increases,

while its Fourier transform remains unchanged. In eq. (17), because of

the constraint m > d, it is the Fourier transform of Gm that goes to zero

faster and faster as d increases, while the asymptotic decay of Gm is always

exponential. Moreover, in eq. (17) � has to belong to L1, while in eq. (16)

it is the Fourier transform of � that belongs to L1.

6 Conclusions

We briey summarize the main results presented in this paper.

� Let f be a function onRd and assume that f can be written as f = G��,
where G is square integrable on Rd and � is a signed Radon measure

of bounded total variation. Then there is a linear superposition of n

translates of G that approximates f in the L2 norm with a rate of

convergence O( 1p
n
).

� Let f be a function on Rd whose Fourier transform has compact sup-

port and k continuous derivatives, with k > d

2
. Then there exists a

Gaussian Radial Basis Functions expansion with n basis functions that

approximates f in the L2 norm with a rate of convergence O( 1p
n
). The

same result holds for approximation in the sup norm.

� Let f be any function of the Sobolev space Hm;1(Rd), with m > d,

m even. Then there exists a Radial Basis Functions expansion, whose

basis function is the Bessel-Macdonald kernel Gm(x), that approxi-

mates f with a rate of convergence O( 1p
n
) in the norm of Hs;2, with

d

2
< s < m� d

2
. A similar rate of convergence can also be obtained for

the approximation in the sup norm.

11



All these examples involve spaces of functions with a number of deriva-

tives that increases with the dimension, and are consistent with the intuitive

idea that spaces of function in a high number of dimensions are very di�cult

to approximate, unless some constraints are imposed to prevent their \size"

to grow exponentially fast.

One interesting feature of these results is that, thanks to the constructive

nature of Jones' and Barron's lemma, an iterative procedure is provided that

can achieve that rate. Clearly, these results concern the approximation of

a function f which is known everywhere, while in many practical situations

one would like to construct an approximation of a function f knowing only

the values of f on some (�nite) set of points. For this last problem, in the

case of approximation by sigmoidal ridge functions, some results by Barron

(1992) are already available, and show that also with this further source of

error one can obtain results \independent on the dimension", for suitable

spaces of functions. It should be possible to obtain similar results for the

approximation scheme we considered here, using the same technique.
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A The Bochner Integral

Let 
 � Rd and let � be a positive measure on 
. For functions f : 
! X

with X a Banach space there are several available notions of measurability

and integration (Dunford and Schwartz, 1958; Diestel and Uhl, 1977). In

particular for all (strongly) �-measurable functions f such that
R


kfkX d� <

+1 we can de�ne the Bochner integral

Z B




f d� : (18)

Clearly if � is a Borel measure the continuous functions f : 
 ! X are

(strongly) measurable. One has lemma A.1 below (Diestel and Uhl 1977,

page 48).

Lemma A.1 Let � be a positive Borel measure on 
 � Rd and f(t) : 
! X

with X a Banach space. If f is Bochner integrable with respect to � then

1

�(
)

Z B




f(t)d�(t) 2 co f(E) :

12



If one considers a signed Radon measure � on 
 one can still de�ne the

integral of a measurable function f : 
! X with respect to � as

Z B




f(t)d�(t) �
Z B




f(t)
d�

dj�j
(t)dj�j(t) (19)

where j�j is the total variation of � and d�

dj�j denotes the Radon-Nikodym

derivative of � with respect to j�j. From lemma (A.1) one can easily obtain:

Lemma A.2 Let � be a signed Radon measure on 
 � Rd and f(t) : 
! X

with X a Banach space. If f is �-measurable and is such that

Z



kfk dj�j < +1

then the Bochner integral of f with respect to � is well de�ned and

1

j�j(
)

Z B




f(t) d�(t) 2 co S : (20)

where

S = fsf(
) j s 2 R ; jsj � 1g :

In fact the scalar function d�

dj�j(t) is measurable, the function f(t) d�

dj�j(t) is

measurable, and moreover

Z



kf
d�

dj�j
k
Z



kfk dj�j < +1 :

Hence the integral
R B

 f d� is well de�ned as the right member of (14).

Then by lemma (A.1) applied to the function h(t) = f(t) d�

dj�j(t) one has:

1

j�j(
)

Z B




f(t)
d�

dj�j
(t) dj�j(t) 2 co h(
) :

On the other hand since j d�
dj�jj = 1 one has

co h(
) = co S

and (20) follows.
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B Sobolev Spaces and the Space A

Here we collect a few facts about certain spaces of functions frequently used

in the paper.

Sobolev Spaces. For each positive integer s and 1 � p � 1 one de�nes

the Sobolev Space Hs;p(Rd) � Hs;p as the space of those Lp functions in

Rd whose derivatives up to the order s are Lp functions.The space H
s;p is a

Banach space with the norm

X
j�j�s

kD�fkLp

where � is a multi-index and D� is the derivative of order �. The space Hs;2

is a Hilbert space with respect to the scalar product

(u; v) =
X
j�j�s

Z
Rd

D�u D�v :

One has also the characterization

Hs;2 = fu 2 L2 j (1 + j!j2)
s

2 ~u(!) 2 L2g

which can be used also to de�ne the Sobolev spaces Hs;2 for non integer s.

One has the following result, which is a special case of the Sobolev embedding

theorem (Stein, 1970):

Theorem B.1 If k is a positive integer and s > k + d

2
then

Hs;2 � Ck

and there is a constant c1 such that

max
j�j�k

sup
x2Rd

jD�f(x)j � c1kfkHs;2:

The Fourier algebra A. The space A of the tempered distributions whose

Fourier transform is a summable function is in current use in Fourier analysis

(Herz, 1968; Katznelson, 1968). One has

Hk;2 � A for k >
d

2

In fact (Barron, 1991; footnote) one may write

14



~f =
1

(1 + j!j2)
k

2

[ ~f(1 + j!j2)
k

2 ]

where both factors on the right side belong to L2 if k >
d

2
. In particular it

follows that Ck

0
� Hk;2 � A for k > d

2
.

It is also clear that A � C0 where C0 is the completion in the L1 norm

of C0
0 i.e. the space of continuous bounded functions that converge to zero

for kxk !1.
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