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ABSTRACT. One of the central problems in the study of deep learning theory is
to understand how the structure properties, such as depth, width and the num-
ber of nodes, affect the expressivity of deep neural networks. In this work, we
show a new connection between the expressivity of deep neural networks and
topological entropy from dynamical system, which can be used to characterize
depth-width trade-offs of neural networks. We provide an upper bound on the
topological entropy of neural networks with continuous semi-algebraic units by
the structure parameters. Specifically, the topological entropy of ReLU network
with l layers and m nodes per layer is upper bounded by O(l logm). Besides,
if the neural network is a good approximation of some function f , then the size
of the neural network has an exponential lower bound with respect to the topo-
logical entropy of f . Moreover, we discuss the relationship between topological
entropy, the number of oscillations, periods and Lipschitz constant.

1. INTRODUCTION

Deep neural network has been a hot topic in machine learning, which has lots
of applications ranging from pattern recognition to computer vision. Understand-
ing the representation power of neural network is one of the key problems in deep
learning theory. Universal approximation theorem tells us that any continuous
function can be approximated by a depth-2 neural network with some activation
function on a bounded domain [Cyb89,HMW89,Fun89,Bar94]. However, the size
of the neural network in this approximation can be exponential which is imprac-
tical in real life. Hence, we are interested in the neural networks with bounded
size.

One natural question is to investigate the trade-offs between depth and width.
The benefits of depths on the representational power of neural networks has at-
tracted lots of attention, and there are many results based on the depth separation
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argument [ES16,Tel15,Tel16,Sch00,MPCB14,MSS19,PLRDG16,RPJKGSD17,
ABMM16, LS16, KTB19]. Depth separation argument has also been considered
in other computational models, such as boolean circuits [Has86, Hås87, PGM94,
RST15] and sum-product networks [DB11, MM14]. To get a depth separation ar-
gument for neural networks, several measures to quantify the complexity of the
functions have been introduced, such as the number of linear regions [MPCB14],
Fourier spectrum [ES16], global curvature [PLRDG16], trajectory length [RPJKGSD17],
fractals [MSS19] and so on.

Recently, Telgarsky used the number of oscillations as a measure of the com-
plexity of function to prove that there exist neural networks with θ(k3) layers, θ(1)
nodes per layer which can not be approximated by networks with O(k) layers and
O(2k) nodes [Tel16]. Moreover, Chatziafratis et al provided a connection between
the representation power of neural networks and the periods of the function by
the well-known Sharkovsky’s Theorem [CNPW19]. Furthermore, by revealing a
tighter connection between periods, Lipschitz constant and the number of oscilla-
tions, Chatziafratis et al gave an improved depth-width trade-offs [CNP20].

In this work, we show the connection between the representation power of neu-
ral networks and topological entropy, a well-known concept in dynamic system to
quantify the complexity of the system. First, we provide an upper bound on the
topological entropy of neural networks with semi-algebraic units by the structure
parameters like depth and width. For example, for the ReLU network with l layers
and m nodes per layer, the topological entropy is upper bounded by O(l logm).
Besides, if the neural network is a good approximation of some function f , then
the size has an exponential lower bound with respect to the topological entropy of
f . Furthermore, we discuss the connection between topological entropy, number
of oscillations, periods and Lipschitz constant.

2. PRELIMINARIES

2.1. Background about dynamic system. In this subsection, we will introduce
some basic facts about one-dimensional dynamic system. First, let us introduce
the definition of topological entropy. Topological entropy of a dynamic system
quantifies the complexity of the system, such as the number of different orbits
and the sensitivity of evolution on the initial states. There are several equivalent
definitions of topological entropy. Here we take the one introduced by Adler,
Konheim, and McAndrew [AKM65].

Let X be a compact Hausdorff space, f be a continuous map from X to X . Given
a set A of subsets of X , if their union is X , then A is called a cover of X . If each
element in A is an open set, then A is called an open cover of X . Given open
covers A1,A2, ...,An of X , we denote

∨n
i=1 Ai as follows,

n∨
i=1

Ai := {A1∩A2...∩An : Ai ∈Ai,∀i, and A1∩A2...∩An 6= /0} .
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Given an open cover A , we can define the open cover f−i(A ) and A n
f as

follows

f−i(A ) := { f−i(A) : A ∈A } ,

A n
f =

n−1∨
i=0

f−i(A ).

Let us denote N (A ) to be the minimal cardinality of the subcover from A . Math-
ematically, N (A ) can be defined as follows

N (A ) = min{Card(B) : B ⊂A and B is a cover of X} ,
where Card(B) denotes the cardinality of B.

Now, we are ready to define topological entropy.

Definition 1. [AKM65] Given a compact Hausdorff topological space X , and a
continuous map f : X → X , for an open cover A , the topological entropy of f on
the cover A is defined as

htop( f ,A ) = lim
n→∞

1
n

log2 N (A n
f ).

The topological entropy of f is defined as

htop( f ) = sup
A : open cover of X

htop( f ,A ). (1)

The topological entropy takes value from [0,+∞]. (See Fig 1 for the examples
of functions with finite and infinite topological entropy.) Topological entropy has
some nice properties, which we have listed in the Appendix A. In this work, we
consider the case where X is a closed interval [a,b] and f is a continuous func-
tion from [a,b] to [a,b]. For such interval map, topological entropy has several
nice characterization. In this work, we will use the following one. We list other
characterizations in Appendix A.

Definition 2. A continuous function f : [a,b]→ [a,b] is piece-wise monotone, if
there exists a finite partition of [a,b] such that f is monotone on each piece. Let us
denote c( f ) to be minimal number of monotonicity of f .

Lemma 3. [Mis80b, You81] If the continuous function f : [a,b]→ [a,b] is piece-
wise monotone, then

htop( f ) = lim
n→∞

1
k

logc( f k) = inf
k

1
k

logc( f k),

where c( f ) is the number of intervals of monotonicity of f .

Now let us introduce the definition of periods in the dynamical system.

Definition 4. A continuous function f : [a,b]→ [a,b] has a point of period n if
there exists x0 ∈ [a,b] such that

f n(x0) = x0,

f i(x0) 6= x0, ∀1≤ i≤ n−1.

The set {x0, f (x0), ..., f n−1(x0)} is called a n-cycle of f .
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(a)
 

(b)

FIGURE 1. Examples of functions with finite and infinite topolog-
ical entropy. (a) g : [0,1]→ [0,1] with htop(g) = 3; (b) f : [0,1]→
[0,1] with htop( f ) = +∞, where f is conjugate to gn on the inter-
val [2−(n−1),2−n] for each integer n ≥ 0 and f (0) = 0. (See the
definition of conjugacy in Appendix A.)

There is a well-known theorem called Sharkovsky’s Theorem, which describes
the structure of the periods of cycles of the interval map.

Definition 5 (Sharkovsky’s ordering). Let us define Sharkovsky ordering as fol-
lows

3B 5B 7B · · ·B
B 3 ·2B 5 ·2B 7 ·2B · · ·B
B 3 ·22 B 5 ·22 B 7 ·22 B · · ·B

...
B 3 ·2n B 5 ·2n B 7 ·2n B · · ·B

...
B · · ·B 23 B 22 B 2B 1

Let us define Per( f ) to be the set of periods of cycles of a map f : [a,b]→ [a,b]
and denote Nsh =N∪{2∞ }. Sharkovsky’s Theorem tells us that Sharkovsky’s or-
dering can be used to characterize the periods of a continuous function as follows.

Theorem 6. [Sha64, Sha65] Given a continuous function f : [a,b]→ [a,b], there
exists s ∈ Nsh such that Per( f ) = {k ∈ N : sB k}. Conversely, for any s ∈ Nsh,
there exists a continuous function f : [a,b]→ [a,b] such that Per( f )= {k ∈ N : sB k}.

Next, let us give the definition of crossings (or oscillations), where the rela-
tionship between the number of crossings and periods has been considered in
[CNPW19, CNP20].
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Definition 7. Given a continuous function f : [a,b]→ [a,b], for any [x,y]⊂ [a,b],
f crosses [x,y] if there exists c,d ∈ [a,b] such that f (c) = x, f (d) = y. We use
Cx,y( f ) to denote the number that f crosses [x,y], which means there exists c1,d1 <
c2,d2 < ... < ct ,dt with t =Cx,y( f ) such that f (ci) = x, f (di) = y for any 1 ≤ i ≤
Cx,y( f ).

Finally, let us introduce the concept called f -covering [ALM00].

Definition 8 ( f -covering). Given a continuous function f : [a,b]→ [a,b] and two
intervals I1, I2 ⊂ [a,b], we say that I1 f -covers I2 if there exists a subinterval J of
I1 such that f (J) = I2. Besides, we say that I1 f -covers I2 t times if there exists
t subintervals J1, ..,Jt of I1 with pairwise disjoint interior such that f (Ji) = I2 for
i = 1, ..., t.

Based on the definitions of crossing and f -covering, it is easy to see that Cx,y( f )=
t iff the maximal times that [a,b] f -covers [x,y] is equal to t.

2.2. Neural networks with semi-algebraic units. A neural network is a function
defined by a connected directed graph with some activation function σ : R→ R
and a set of parameters: a weight for each edge and a bias for each node of the
graph. Usually the activation function σ : R→R is a nonlinear function. The root
nodes do the computation on the input vector, while the internal nodes do the com-
putation on the output from other nodes. The activation function for nodes may be
different, and there are two common choices: (1) ReLU gate: ~x→ σR(〈~a,~x〉+b),
where σR(x) = max{0,x}; (2) maximaization gate Max: ~x→maxn

i=1 xi.
Here we consider an important class of activation functions, called semi-algebraic

units (or semi-algebraic gates) [Tel16]. The definition of a semi-algebraic gate is
given as follows

Definition 9. A function σ : Rn → R is called (t,d1,d2) semi-algebraic, if there
exists t polynomials { pi }ti=1 of degree ≤ d1 and s tripes (L j,U j,q j)

s
j=1 where Li

and Ui are subsets of {1,2, ...., t }, and each q j is a polynomial of degree≤ d2 such
that

f (~x) =
s

∑
j=1

q j(~x)
(
Πi∈L jI(pi(~x)< 0)

)(
Πi∈U jI(pi(~x)< 0)

)
, (2)

where I(·) is the indicator function.

Here, we are interested in the continuous semi-algebraic unit, that is the function
σ : Rn → R is continuous and semi-algebraic. For example, the standard ReLU
gate ~x→ σR(〈~a,~x〉+ b) is a continuous and (1,1,1) semi-algebraic unit [Tel16].
The maximization gate Max : Rn→ R defined as Max(~x) = maxn

i=1 xi is a contin-
uous and (n(n−1),1,1) semi-algebraic unit [Tel16].

Definition 10. A function σ : R→R is called (t,d)-poly, if there exists a partition
of R into ≤ t intervals such that σ is a polynomial of degree ≤ d on each interval.

Denote Nn(l,m, t,d1,d2) to be the set of neural networks with ≤ l layers, ≤
m nodes per layer, the activation function being continuous and (t,d1,d2) semi-
algebraic and the input dimension being n. As the function f we would like to
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represent is a continuous function f : [a,b]→ [a,b], we consider the neural net-
works with input dimension being 1, i.e., N1(l,m, t,d1,d2).

3. INFORMAL STATEMENT OF OUR MAIN RESULTS

Our first result shows the connection between topological entropy and the depth,
width of deep neural networks, and provides an upper bound of the topological
entropy of neural networks with continuous semi-algebraic units by the structure
parameters.

Theorem 11 (Informal version of Theorem 14). For any neural networks g with
l layers, m nodes per layer and (t,d1,d2) semi-algebraic units as activation func-
tion, then

htop(τ ◦g)≤ l(1+ log2 m+ log2 t + log2 d1)+ l2 log2 d2, (3)

where τ : R→ R is defined as follows (See Figure 2.)

τ(x) =

 a,x≤ 1,
x,a≤ x≤ b

b,x > b.
(4)

 

FIGURE 2. The figure for the function τ(x).

Our second result shows the connection between the topological entropy of a
given function f and the depth-width trade-offs required to have a good approxi-
mation of f .

Theorem 12 (Informal statement of Theorem 16). Given a continuous function
f : [a,b]→ [a,b] with positive and finite topological entropy, if g is a good approx-
imation of f with respect to ‖·‖L∞ , where g is a neural network with l layers, m
nodes per layer and (t,d1,d2) semi-algebraic units as activation function, then we
have

m≥
exp(Ω(1

l htop( f )))

2td1dl
2

. (5)
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Hence, if the neural network g is a good approximation of f k with respect to ‖·‖L∞ ,
then we have

m≥
exp(Ω(k

l htop( f )))

2td1dl
2

. (6)

Our third result discusses the connection between the topological entropy, peri-
ods, the number of oscillations and Lipschitz constant.

4. CONNECTION BETWEEN TOPOLOGICAL ENTROPY AND THE SIZE OF
NEURAL NETWORKS

First, let us consider the topological entropy of the neural networks with l lay-
ers, m nodes per layer and activation function being (t,d1,d2) semi-algebraic and
continuous, i.e., the functions from N1(l,m, t,d1,d2). Let us define τ : R→ R as
follows

t2(x) =

 a, x≤ 1,
x, a≤ x≤ b,
b, x > b.

We can rewrite τ(x) as follows

τ(x) = a+(x−a)I(x > a)+(b− x)I(x > b). (7)

Hence τ is continuous and (2,1,1) semi-algebraic. Therefore, for any g∈N1(l,m, t,d1,d2),
the function τ ◦g is a continuous function from [a,b] to [a,b]. Thus, we can com-
pute the topological entropy of τ ◦g.

To get an upper bound on the topological entropy of neural networks, we first
need the following lemma, which gives an upper bound on the number of intervals
of monotonicity of f .

Lemma 13. If the function f : [a,b]→ [a,b] is continuous and (t,d)-poly, we have

c( f )≤ td. (8)

Proof. Since f : [a,b]→ [a,b] is (t,d)-poly, then there exists a partition of the
interval [a,b] into subintervals {Ji }ti=1 such that f is a polynomial of degree ≤ d
on each subinterval Ji. It is directly for any polynomial degree ≤ d, we can divide
R into ≤ d intervals such that this polynomial is monotone in each piece. Hence,
we can divide each subinterval Ji into at most d pieces, such that f is monotone on
each piece. Thus

c( f )≤ td.

�

Now, we are ready to prove our first result, which gives an upper bound on
the topological entropy of the neural networks by the structure parameters of the
neural networks.

Theorem 14. For any g ∈N1(l,m, t,d1,d2), the topological entropy for the func-
tion τ ◦g : [a,b]→ [a,b] is upper bounded by the structure parameters as follows

htop(τ ◦g)≤ l(1+ log2 m+ log2 t + log2 d1)+2l2 logd2. (9)
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Proof. It has been proved that if the function f :Rn→R is (t,d1,d2) semi-algebraic,
g1, ...,gn :R→R is (s,d3)-poly, then µ(x) := f (g1(x), ...,gn(x)) is (stn(1+d1d3),d2d3)-
poly [Tel16]. Thus, by analyzing the neural network layer by layer, for any g ∈
N1(l,m, t,d1,d2), τ ◦g is (αl,βl)-poly, where

αl ≤ 2(2mtd1)
ld

1
2 l2+l
2 ,

βl ≤ dl
2.

Therefore, by Lemma 13, we have

c(τ ◦g)≤ 2(2mtd1)
ld2l2

2 .

By Lemma 3, we have

lim
k

1
k

log2 c( f k) = inf
k

1
k

log2 c( f k) = htop( f ),

which implies that

c( f )≥ 2htop( f ).

Therefore, we have

htop(τ ◦g)≤ l(1+ log2 m+ log2 t + log2 d1)+2l2 log2 d2.

�

Next, to get the relationship between topological entropy of the function f and
that of the neural networks, we need to consider the continuity of the topological
entropy.

Lemma 15. [Mis79] For any continuous function f : [a,b]→ [a,b], it holds that

lim
g→ f

infhtop(g)≥ htop( f ), (10)

where g : [a,b]→ [a,b] is continuous and g→ f by L∞ norm.

Based on the lower semi-continuity of topological entropy, if the given function
has finite topological entropy, then for any ε > 0, there exists δ > 0 such that for
any continuous function g : [a,b]→ [a,b] with ‖ f −g‖L∞ < δ , we have

htop(g)≥ htop( f )− ε.

If 0 < htop( f )<+∞, let us take ε = 1
2htop( f ), there exists δ ( f )> 0 such that for

any continuous function g with ‖ f −g‖L∞ < δ ( f ), we have

htop(g)≥
1
2

htop( f ).

Theorem 16. Given a continuous function f : [a,b]→ [a,b] with positive and finite
topological entropy, then there exists δ ( f )> 0 such that for any g∈N1(l,m, t,d1,d2)
with ‖ f −g‖L∞ ≤ δ ( f ), we have

m≥ 2
1
2l h( f )

2td1d2l
2
. (11)
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Proof. First, based on Lemma 15, there exists δ ( f )> 0 such that for any continu-
ous function g : [a,b]→ [a,b], we have

htop(τ ◦g)≥ 1
2

htop( f ).

Besides, it is easy to see that τ is a Lipschitz function and |τ(x)−τ(y)| ≤ |x−y|.
Hence, for any g ∈N1(l,m, t,d1,d2) with ‖ f −g‖L∞ ≤ δ ( f ), we have

‖τ ◦g− f‖L∞ ≤ ‖g− f‖L∞ ≤ δ ( f ).

Then the topological entropy of τ ◦g : [a,b]→ [a,b] has the following lower bound,

htop(τ ◦g)≥ 1
2

htop( f ).

However, due to Theorem 14, for any g ∈N1(l,m, t,d1,d2), we have

h(τ ◦g)≤ 1+ l + l log2 m.

Therefore, we have
1
2

htop( f )≤ l(1+ log2 m+ log2 t + log2 d1)+2l2 log2 d2.

That is

m≥ 2
1
2l htop( f )

2td1d2l
2

.

�

Theorem 16 tells us that if the neural network g ∈N1(l,m, t,d1,d2) is a good
approximation (i.e., ‖ f −g‖L∞ ≤ δ ( f ) ), then the depth m has an exponential lower
bound with respect to the topological entropy.

Besides, if we iterate the function for k times, i.e, f k and the neural network g ∈
N1(l,m, t,d1,d2) is a good approximation of f k, we have the following corollary.

Corollary 17. Given a continuous function f : [0,1]→ [0,1] with positive and fi-
nite topological entropy, then there exists δ ( f k)> 0 such that for any g∈N1(l,m, t,d1,d2)
with

∥∥ f k−g
∥∥

L∞ ≤ δ ( f k), we have

m≥ 2
k
2l htop( f )

2td1d2l
2

. (12)

Proof. This corollary comes directly from Theorem 16 and htop( f k) = khtop( f )
for any integer k ≥ 0. (See Lemma 24 in Appendix A.) �

For example, if we take the activation function to be ReLU unit which is contin-
uous and (1,1,1) semi-algebraic, then the following statements come directly from
Theorem 14 and 16.

Proposition 18. For any ReLU network g with at most l layers and at most m
nodes per layer, then

htop(τ ◦g)≤ l(1+ log2 m). (13)
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Proposition 19. Given a continuous function f : [a,b]→ [a,b] with finite topolog-
ical entropy, then there exists δ ( f )> 0 such that for any ReLU network g with at
most l layers and at most m nodes per layer which satisfies ‖ f −g‖L∞ ≤ δ ( f ), we
have

m≥ 2
1
2l htop( f )−1. (14)

Moreover, if g is a good approximation of f k with respect to L∞ norm, i.e.,∥∥ f k−g
∥∥

L∞ ≤ δ ( f k), then we have

m≥ 2
k
2l htop( f )−1. (15)

If the function f we would like to present has infinity topological entropy, i.e.,
htop( f ) = +∞, then due to the lower semi-continuity of topological entropy, for
any N > 0, there exists δN( f )> 0 such that for any continuous function g : [a,b]→
[a,b] with ‖g− f‖L∞ < δN( f ),

htop(g)≥ N (16)

Proposition 20. Given a continuous function f : [a,b] → [a,b] with htop( f ) =
+∞, then any N > 0 sufficiently large, there exists δN( f ) > 0 such that for any
g ∈N1(l,m, t,d1,d2) with ‖ f −g‖L∞ < δN( f ), we have

m≥ 2N/l

2td1dl
2
. (17)

Proof. The proof is the same as Theorem 16. �

4.1. Examples. First, let us consider the tent map tα : [0,1]→ [0,1], where tα(x)
is defined as follows

tα(x) =

 αx,0≤ x≤ 1/2,

α(1− x),1/2 < x≤ 1,

where 0≤ α ≤ 2. (See Figure 3)

Out[ ]=

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

tα ( x )

α=2

α=1.5

α=1

α=0.5

(a) Tent map tα

Out[ ]=

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

tα
4 ( x )

α=2

α=1.5

α=1

α=0.5

(b) t4
α

FIGURE 3. Tent map tα and t4
α with different parameters α .

The topological entropy of tα can be easily computed by Lemma 30, and we
have

htop(tα) =

 0,0≤ α ≤ 1,

log2 α,1 < α ≤ 2.
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(See Figure 4.)

0.5 1.0 1.5 2.0
α

0.2

0.4

0.6

0.8

1.0

htop ( tα )

FIGURE 4. The topological entropy of the tent map tα for 0 < α ≤ 2.

Hence, based on Theorem 16, if we would like to have a good approximation of
tk
α for α > 1, then the width required to represent tk

α with continuous and (t,d1,d2)
semi-algebraic units is

m≥C(t,d1,d2)α
k/l,

where C(t,d1,d2) is a constant which only depends on t,d1,d2.
Next, let us consider the logistic map fβ : [0,1]→ [0,1] as follows

f (x) = βx(1− x),

where the parameter β is taken from [0,4] (See Figure 5). Logistic map has been
used to get lower bounds on the size of sigmoidal neural networks [Sch00].

Out[ ]=

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

fβ ( x )

β=4

β=3

β=2

β=1

(a) Logistic map fβ

Out[ ]=

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

fβ
4 ( x )

β=4

β=3

β=2

β=1

(b) f 4
β

FIGURE 5. Logistic map fβ and f 4
β

with different parameters β .

It is easy to see that htop( fβ ) = 1 when β = 4, and htop( fβ ) = 0 when β = 2.
Hence, based on Theorem 16, if we would like to have a good approximation of
f k
4 , then the width required to represent f k

4 with continuous and (t,d1,d2) semi-
algebraic function is

m≥C(t,d1,d2)2k/l,

where C(t,d1,d2) is a constant which only depends on t,d1,d2.

5. RELATIONSHIP BETWEEN TOPOLOGICAL ENTROPY AND PERIODS,
NUMBER OF CROSSINGS AND LIPSCHITZ CONSTANT

In this section, we will discuss the connection between topological entropy and
periods, number of crossings and Lipschitz constant.
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5.1. Relationship between topological entropy and periods, the number of
crossings. In fact, the relationship between topological entropy and periods has
been discussed in [ALM00], which has the following statement.

Lemma 21 ( [ALM00]). Given a continuous map f : [a,b]→ [a,b], it has positive
topological entropy iff it has a cycle of period which is not a power of 2.

In this subsection, we will show the connection between topological entropy
and the number of crossings for piece-wise monotone function f : [a,b]→ [a,b].
Let us define C( f ) as follows

C( f ) := sup
x<y

Cx,y( f ), (18)

which is the maximal number of crossings over any interval [x,y]⊂ [a,b]. We find
the relationship between the maximal number of crossings C( f ) and topological
entropy htop( f ) in the asymptotic case.

Proposition 22. Given a continuous function f : [a,b]→ [a,b] which is piece-wise
monotone, then

lim
k→∞

sup
k

1
k

log2C( f k) = htop( f ). (19)

Proof. First, since f is piece-wise monotone, then there exists a finite partition
of [a,b] into subintervals such that f is monotone on each subinterval. For any
subinterval where f is monotone, there is at most one crossing over [x,y]. Thus for
any x,y ∈ [a,b], we have

Cxy( f )≤ c( f ),

i.e., C( f )≤ c( f ). Therefore,

lim
k

sup
k

1
k

log2C( f k)≤ lim
k

1
k

log2 c( f k) = htop( f ).

Besides, if htop( f ) = 0, then we have already got the result as

lim
k→∞

sup
k

1
k

log2C( f k)≥ 0

Hence, we only need to consider the case where htop( f ) > 0. Let us introduce
the concept called s-horeses [Mis79, Mis80a], which is an interval J ⊂ [a,b] and
a partition D of J into s subintervals such that the closure of each element of
D f -covers J. It has been proved in [Mis79, Mis80a] that there exist sequences
{kn }∞

n=1 and {sn }∞

n=1 of positive integers such that limn→∞ kn = ∞ and for each n,
there exists sn-horseshoes (Jn,Dn) for f kn such that

lim
n→∞

1
kn

log2 sn = htop( f ).

Based on the definition of sn-horseshoe, for the map f kn , the closure of each
subinterval in Dn f kn-covers Jn. Thus, based on the definition of crossings, we
have

C( f kn)≥CJn( f kn)≥ sn.
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Therefore

lim
k

sup
k

1
k

log2C( f k)≥ lim
n→∞

1
kn

log2 sn = htop( f ).

�

5.2. Relationship between topological entropy and Lipschitz constant. Let us
consider the connection between Lipschitz constant and topological entropy. Let
us denote the Lipschitz constant of f by L( f ), that is

L( f ) = inf{L≥ 0 : | f (x)− f (y)| ≤ L|x− y|,∀x,y ∈ [a,b]} . (20)

The connection between periods, the number of crossings and Lipschitz con-
stant has been discussed in [CNP20]. It has been proved that if the Lipschitz con-
stant matches the number of crossings, i.e., Cxy( f k) = L( f k), then a L1-separation
between f k and ReLU neural networks can be obtained [CNP20]. Here we discuss
the relationship between Lipschitz constant and topological entropy.

Proposition 23. Given a continuous function f : [a,b]→ [a,b] which piece-wise
monotone, then

lim
k→∞

1
k

log2 L( f k) = inf
k

1
k

log2 L( f k), (21)

and

lim
k→∞

max{0,
1
k

log2 L( f k)} ≥ htop( f ). (22)

Proof. Based on the definition of Lipschitz constant, it is easy to see that

| f n+k(x)− f n+k(y)| = | f n( f k(x))− f n( f k(y))|
≤ L( f n)| f k(x)− f k(y)|
≤ L( f n)L( f k)|x− y|,

for any integers n,k and any x,y ∈ [a,b]. Thus,

L( f n+k)≤ L( f n)L( f k). (23)

i.e., log2 L( f n+k)≤ log2 L( f n)+ log2 L( f k). Hence { log2 L( f k)}k is a subadditive
sequence. Therefore, according to Lemma 31 in Appendix A, the limit

lim
k→∞

1
k

log2 L( f k)

exists and

lim
k→∞

1
k

log2 L( f k) = inf
k

1
k

log2 L( f k).

Let us another characterization of topological entropy of the function, which is
piece-wise monotone, by variation [ALM00] as follows

lim
k→∞

max{0,
1
k

log2Var( f k)}= htop( f ),
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where variation Var( f ) is defined to be the supremum of

t

∑
i=1
| f (xi+1)− f (xi))|,

over all finite sequences x1 < x2 < .... < xt in [a,b]. (See Lemma 29 in Appendix
A.) Due to the definition of Var( f ), it is easy to see

Var( f k)≤ L( f k)|b−a|.

Therefore,

lim
k→∞

1
k

log2 L( f k)≥ lim
k→∞

1
k

log2Var( f k),

which implies that

lim
k→∞

max{0,
1
k

log2 L( f k)} ≥ htop( f ).

�

Based on Proposition 23, if L( f k) ≥ 1, then L( f k) has an exponential lower
bound with respect to the topological entropy of f , i.e., L( f k)≥ 2khtop( f ).

6. CONCLUSION

In this paper, we have investigated the relationship between topological entropy
and expressivity of deep neural networks. We provide a depth-width trade-offs
based on the topological entropy from the theory of dynamic system. For exam-
ple, the topological entropy of the ReLU network with l layers and m nodes per
layer is upper bounded by O(l logm). Besides, we show that the size of the neu-
ral network required to represent a given function has an exponential lower bound
with respect to the topological entropy of the function, where the exponential lower
bound holds for L∞-error approximation. For example, if we would like to repre-
sent the function f by ReLU network with l layers and m nodes per layer, then the
width m has a lower bound exp(Ω(htop( f )/l)). Moreover, we discuss the relation-
ship between topological entropy, periods, Lipschitz constant and the number of
crossings, especially the relationship in the asymptotic case.

Note that one key step to get exponential lower bound on the size of neural net-
works for L∞-error approximation is the lower semi-continuity of topological en-
tropy with respect to L∞ norm. If the lower semi-continuity of topological entropy
with respect to Lp norm (e.g., L1 norm) holds, it will lead to exponential lower
bound (with respect to topological entropy) for Lp-error approximation. Further
studies on the (semi-)continuity of topological entropy are desired. Besides, it
would be quite interesting to study the relationship between topological entropy
and VC dimension. We leave it for further study.
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APPENDIX A. PROPERTIES OF TOPOLOGICAL ENTROPY

Here, we list some useful facts about topological entropy. More information can
be found in [ALM00].

Lemma 24. [ALM00] Given a compact Hausdorff space X and a continuous
function f : X→ X, topological entropy of f and f k has the following relatiobship

htop( f k) = khtop( f ), (24)

for any integer k ≥ 0.

Proposition 25. [ALM00] Given compact Hausdorff spaces X ,Y , f : X → X ,g :
Y → Y,φ : X → Y are continuous maps such that the following diagram

X
f−→ X

ϕ ↓ ↓ ϕ

Y
g−→ Y

(25)

commutes, i.e., ϕ ◦ f = g◦ϕ , we have the following properties
(a) if ϕ is injective, then htop( f )≤ htop(g),
(b) if ϕ is surjective, then htop( f )≥ htop(g),
(c) if ϕ is bijective, then htop( f ) = htop(g). And ϕ is called a conjugacy between

f and g (or f and g are conjugate).

If X = [a,b], then we have the following characterization of topological entropy
for a continuous function f : [a,b]→ [a,b].

Definition 26 ( [Mis79, Mis80a]). Given a continuous function f : [a,b]→ [a,b],
an s-horseshoe with s≥ 2 for f is (J,D), where J ⊂ [a,b] is an interval and D is a
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partition J into s subintervals such that the closure of each element of D f -covers
J.

Lemma 27 ( [Mis79, Mis80a]). Given a continuous function f : [a,b] → [a,b]
with positive entropy, then there exist sequences {kn }∞

n=1 and {sn }∞

n=1 of positive
integers such that limn→∞ kn = ∞, for each n the map f kn has an sn-horseshoe and

lim
n→∞

1
kn

logsn = htop( f ). (26)

Definition 28. [ALM00] Given a continuous function f : [a,b]→ [a,b], the vari-
ation Var( f ) is defined to be the supremum of

t

∑
i=1
| f (xi+1)− f (xi))| (27)

over all finite sequences x1 < x2 < .... < xt in [a,b].

Lemma 29. [ALM00] Given a continuous function f : [a,b]→ [a,b] which piece-
wise monotone, then we have

lim
k→∞

max{0,
1
k

log2Var( f k)}= htop( f ). (28)

Lemma 30. [Mis80b] Given a continuous function f : [a,b]→ [a,b], which is
piece-wise monotone, if f is affine with the slope coefficient of absolute value s on
each piece of monotonicity, then

htop( f ) = max{0, log2 s} . (29)

Lemma 31. [ALM00] Given a subadditive sequence {ak }∞

k=1(i.e. an+k ≤ an +
ak), we have

lim
k→∞

ak

k
(30)

exists and is equal to infk
ak
k .
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