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This is a survey of nonlinear approximation, especially that part of the sub-
ject which is important in numerical computation. Nonlinear approximation
means that the approximants do not come from linear spaces but rather from
nonlinear manifolds. The central question to be studied is what, if any, are the
advantages of nonlinear approximation over the simpler, more established, lin-
ear methods. This question is answered by studying the rate of approximation
which is the decrease in error versus the number of parameters in the approx-
imant. The number of parameters usually correlates well with computational
effort. It is shown that in many settings the rate of nonlinear approximation
can be characterized by certain smoothness conditions which are significantly
weaker than required in the linear theory. Emphasis in the survey will be
placed on approximation by piecewise polynomials and wavelets as well as
their numerical implementation. Results on highly nonlinear methods such
as optimal basis selection and greedy algorithms (adaptive pursuit) are also
given. Applications to image processing, statistical estimation, regularity for
PDEs, and adaptive algorithms are discussed.
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1. Nonlinear approximation: an overview

The fundamental problem of approximation theory is to resolve a possibly
complicated function, called the target function, by simpler, easier to com-
pute functions called the approximants. Increasing the resolution of the
target function can generally only be achieved by increasing the complexity
of the approximants. The understanding of this trade-off between resolution
and complexity is the main goal of constructive approximation. Thus the
goals of approximation theory and numerical computation are similar, even
though approximation theory is less concerned with computational issues.
The differing point in the two subjects lies in the information assumed to
be known about the target function. In approximation theory, one usually
assumes that the values of certain simple linear functionals applied to the
target function are known. This information is then used to construct an
approximant. In numerical computation, information usually comes in a
different, less explicit form. For example, the target function may be the
solution to an integral equation or boundary value problem and the numer-
ical analyst needs to translate this into more direct information about the
target function. Nevertheless, the two subjects of approximation and com-
putation are inexorably intertwined and it is impossible to understand fully
the possibilities in numerical computation without a good understanding of
the elements of constructive approximation.

It is noteworthy that the developments of approximation theory and nu-
merical computation followed roughly the same line. The early methods
utilized approximation from finite-dimensional linear spaces. In the begin-
ning, these were typically spaces of polynomials, both algebraic and trigono-
metric. The fundamental problems concerning order of approximation were
solved in this setting (primarily by the Russian school of Bernstein, Cheby-
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shev, and their mathematical descendants). Then, starting in the late 1950s
came the development of piecewise polynomials and splines and their incor-
poration into numerical computation. We have in mind the finite element
methods (FEM) and their counterparts in other areas such as numerical
quadrature, and statistical estimation.

It was noted shortly thereafter that there was some advantage to be gained
by not limiting the approximations to come from linear spaces, and therein
emerged the beginnings of nonlinear approximation. Most notable in this
regard was the pioneering work of Birman and Solomyak (1967) on adapt-
ive approximation. In this theory, the approximants are not restricted to
come from spaces of piecewise polynomials with a fixed partition; rather,
the partition was allowed to depend on the target function. However, the
number of pieces in the approximant is controlled. This provides a good
match with numerical computation since it often represents closely the cost
of computation (number of operations). In principle, the idea was simple:
we should use a finer mesh where the target function is not very smooth
(singular) and a coarser mesh where it is smooth. The paramount question
remained, however, as to just how we should measure this smoothness in
order to obtain definitive results.

As is often the case, there came a scramble to understand the advantages
of this new form of computation (approximation) and, indeed, rather exotic
spaces of functions were created (Brudnyi 1974, Bergh and Peetre 1974),
to define these advantages. But to most, the theory that emerged seemed
too much a tautology and the spaces were not easily understood in terms
of classical smoothness (derivatives and differences). But then came the
remarkable discovery of Petrushev (1988) (preceded by results of Brudnyi
(1974) and Oswald (1980)) that the efficiency of nonlinear spline approxima-
tion could be characterized (at least in one variable) by classical smoothness
(Besov spaces). Thus the advantage of nonlinear approximation became
crystal clear (as we shall explain later in this article).

Another remarkable development came in the 1980s with the develop-
ment of multilevel techniques. Thus, there were the roughly parallel devel-
opments of multigrid theory for integral and differential equations, wavelet
analysis in the vein of harmonic analysis and approximation theory, and
multiscale filterbanks in the context of image processing. From the view-
point of approximation theory and harmonic analysis, the wavelet theory
was important on several counts. It gave simple and elegant unconditional
bases (wavelet bases) for function spaces (Lebesgue, Hardy, Sobolev, Besov,
Triebel–Lizorkin) that simplified some aspects of Littlewood–Paley theory
(see Meyer (1990)). It provided a very suitable vehicle for the analysis of the
core linear operators of harmonic analysis and partial differential equations
(Calderón–Zygmund theory). Moreover, it allowed the solution of various
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functional analytic and statistical extremal problems to be made directly
from wavelet coefficients.

Wavelet theory provides simple and powerful decompositions of the target
function into a series of building blocks. It is natural, then, to approximate
the target function by selecting terms of this series. If we take partial sums
of this series we are approximating again from linear spaces. It was easy
to establish that this form of linear approximation offered little, if any,
advantage over the already well established spline methods. However, it
is also possible to let the selection of terms to be chosen from the wavelet
series depend on the target function f and keep control only over the number
of terms to be used. This is a form of nonlinear approximation which is
called n-term approximation. This type of approximation was introduced
by Schmidt (1907). The idea of n-term approximation was first utilized for
multivariate splines by Oskolkov (1979).

Most function norms can be described in terms of wavelet coefficients.
Using these descriptions not only simplifies the characterization of functions
with a specified approximation order but also makes transparent strategies
for achieving good or best n-term approximations. Indeed, it is enough to
retain the n terms in the wavelet expansion of the target function that are
largest relative to the norm measuring the error of approximation. Viewed
in another way, it is enough to threshold the properly normalized wavelet
coefficients. This leads to approximation strategies based on what is called
wavelet shrinkage by Donoho and Johnstone (1994). Wavelet shrinkage is
used by these two authors and others to solve several extremal problems
in statistical estimation, such as the recovery of the target function in the
presence of noise.

Because of the simplicity in describing n-term wavelet approximation, it
is natural to try to incorporate a good choice of basis into the approxima-
tion problem. This leads to a double stage nonlinear approximation problem
where the target function is used both to choose a good (or best) basis from
a given library of bases and then to choose the best n-term approximation
relative to the good basis. This is a form of highly nonlinear approximation.
Other examples are greedy algorithms and adaptive pursuit for finding an
n-term approximation from a redundant set of functions. Our understand-
ing of these highly nonlinear methods is quite fragmentary. Describing the
functions that have a specified rate of approximation with respect to highly
nonlinear methods remains a challenging problem.

Our goal in this paper is to be tutorial rather than complete in our de-
scription of nonlinear approximation. We spare the reader some of the finer
aspects of the subject in search of clarity. In this vein, we begin in Section 2
by considering approximation in a Hilbert space. In this simple setting the
problems of linear and nonlinear approximation are easily settled and the
distinction between the two subjects is readily seen.
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In Section 3, we consider approximation of univariate functions by piece-
wise constants. This form of approximation is the prototype of both spline
approximation and wavelets. Understanding linear and nonlinear approx-
imation by piecewise constants will make the transition to the fuller aspects
of splines (Section 6) and wavelets (Section 7) more digestible.

In Section 8, we treat highly nonlinear methods. Results in this subject are
in their infancy. Nevertheless, the methods are already in serious numerical
use, especially in image processing.

As noted earlier, the thread that runs through this paper is the following
question: what properties of a function determine its rate of approximation
by a given nonlinear method? The final solution of this problem, when it
is known for a specific method of approximation, is most often in terms of
Besov spaces. However, we try to postpone the full impact of Besov spaces
until the reader has, we hope, developed significant feeling for smoothness
conditions and their role in approximation. Nevertheless, it is impossible
to understand this subject fully without finally coming to grips with Besov
spaces. Fortunately, they are not too difficult when viewed via moduli of
smoothness (Section 4) or wavelet coefficients (Section 7).

Nonlinear approximation is used significantly in many applications. Per-
haps the greatest success for this subject has been in image processing. Non-
linear approximation explains the thresholding and quantization strategies
used in compression and noise removal. It also explains how quantization
and thresholding may be altered to accommodate other measures of error.
It is also noteworthy that it explains precisely which images can be com-
pressed well by certain thresholding and quantization strategies. We discuss
some applications of nonlinear methods to image processing in Section 10.

Another important application of nonlinear approximation lies in the solu-
tion of operator equations. Most notable, of course, are the adaptive finite
element methods for elliptic equations (see Babuška and Suri (1994)) as well
as the emerging nonlinear wavelet methods in the same subject (see Dahmen
(1997)). For hyperbolic problems, we have the analogous developments of
moving grid methods. Applications of nonlinear approximation in PDEs are
touched upon in Section 10.

In approximation theory, one measures the complexity of the approxima-
tion process by the number of parameters needed to specify the approxim-
ant. This agrees in principle with the concepts of complexity in information
theory. However, it does not necessarily agree with computational complex-
ity, which measures the number of computations necessary to render the
approximant. This is particularly the case when the target function is not
explicitly available and must be computed through a numerical process such
as in the numerical solution of integral or differential equations. We shall
not touch on this finer notion of computational complexity in this survey.
Good references for computational complexity in the framework of linear
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and nonlinear approximation is given in the book of Traub, Wasilkowski
and Woźniakowski (1988), the paper of E. Novak (1996), and the references
therein.

Finally, we close this introduction with a couple of helpful remarks about
notation. Constants appearing in inequalities will be denoted by C and
may vary at each occurrence, even in the same formula. Sometimes we will
indicate the parameters on which the constant depends. For example, C(p)
(respectively, C(p, α)) means the constant depends only on p (respectively,
p and α). However, usually the reader will have to consult the text to
understand the parameters on which C depends. More ubiquitous is the
notation

A � B, (1.1)

which means there are constants C1, C2 > 0 such that C1A ≤ B ≤ C2A.
Here A and B are two expressions depending on other variables (paramet-
ers). When there is any chance of confusion, we will indicate in the text the
parameters on which C1 and C2 depend.

2. Approximation in a Hilbert space

The problems of approximation theory are simplest when they take place in
a Hilbert space H. Yet the results in this case are not only illuminating but
very useful in applications. It is worthwhile, therefore, to begin with a brief
discussion of linear and nonlinear approximation in this setting.

LetH be a separable Hilbert space with inner product 〈·, ·〉 and norm ‖·‖H
and let ηk, k = 1, 2, . . ., be an orthonormal basis forH. We shall consider two
types of approximation corresponding to the linear and nonlinear settings.

For linear approximation, we use the linear space Hn := span{ηk : 1 ≤
k ≤ n} to approximate an element f ∈ H. We measure the approximation
error by

En(f)H := inf
g∈Hn

‖f − g‖H. (2.1)

As a counterpart in nonlinear approximation, we have n-term approxima-
tion, which replaces Hn by the space Σn consisting of all elements g ∈ H
that can be expressed as

g =
∑
k∈Λ

ckηk, (2.2)

where Λ ⊂ N is a set of indices with #Λ ≤ n.1 Notice that, in contrast to
Hn, the space Σn is not linear. A sum of two elements in Σn will in general

1 We use N to denote the set of natural numbers and #S to denote the cardinality of a
finite set S.
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need 2n terms in its representation by the ηk. Analogous to En, we have
the error of n-term approximation

σn(f)H := inf
g∈Σn

‖f − g‖H. (2.3)

We pose the following question. Given a real number α > 0, for which
elements f ∈ H do we have

En(f)H ≤Mn−α, n = 1, 2, . . . , (2.4)

for some constant M > 0? Let us denote this class of f by Aα((Hn)),
where our notation reflects the dependence on the sequence (Hn), and define
|f |Aα((Hn)) as the infimum of all M for which (2.4) holds. Aα is called an
approximation space: it gathers under one roof all f ∈ H which have a
common approximation order. We denote the corresponding class for (Σn)
by Aα((Σn)).

We shall see that it is easy to describe the above approximation classes in
terms of the coefficients in the orthogonal expansion

f =
∞∑
k=1

〈f, ηk〉ηk. (2.5)

Let us use in this section the abbreviated notation

fk := 〈f, ηk〉, k = 1, 2, . . . . (2.6)

Consider first the case of linear approximation. The best approximation
to f from Hn is given by the projection

Pnf :=
n∑
k=1

fkηk (2.7)

onto Hn and the approximation error satisfies

En(f)2
H =

∞∑
k=n+1

|fk|2. (2.8)

We can characterize Aα in terms of the dyadic sums

Fm :=

 2m∑
k=2m−1+1

|fk|2
1/2

, m = 1, 2, . . . . (2.9)

Indeed, it is almost a triviality to see that f ∈ Aα((Hn)) if and only if

Fm ≤M2−mα, m = 1, 2, . . . , (2.10)
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and the smallest M for (2.10) is equivalent to |f |Aα((Hn)). To some, (2.10)
may not seem so pleasing since it is so close to a tautology. However, it usu-
ally serves to characterize the approximation spaces Aα((Hn)) in concrete
settings.

It is more enlightening to consider a variant of Aα. Let Aα2 ((Hn)) denote
the set of all f such that

|f |Aα2 ((Hn)) :=

( ∞∑
n=1

[nαEn(f)H]2
1
n

)1/2

(2.11)

is finite. From the monotonicity of Ek(f)H, it follows that

|f |Aα2 ((Hn)) �
( ∞∑
k=0

22kαE2k(f)2
H

)1/2

. (2.12)

The condition for membership in Aα2 is slightly stronger than membership
in Aα. The latter requires that the sequence (nαEn) is bounded while the
former requires that it is square summable with weight 1/n.

The space Aα2 ((Hn)) is characterized by
∞∑
k=1

k2α|fk|2 ≤M2 (2.13)

and the smallest M satisfying (2.13) is equivalent to |f |Aα2 ((Hn)). We shall
give the simple proof of this fact since the ideas in the proof are used often.
First of all, note that (2.13) is equivalent to

∞∑
m=1

22mαF 2
m ≤ (M ′)2 (2.14)

with M of (2.13) and M ′ of (2.14) comparable. Now, we have

22mαF 2
m ≤ 22mαE2m−1(f)2

H,

which, when using (2.12), gives one of the implications of the asserted equi-
valence. On the other hand,

22mαE2m(f)2
H = 22mα

∞∑
k=m+1

F 2
k

and therefore
∞∑
m=0

22mαE2m(f)2
H ≤

∞∑
m=0

22mα
∞∑

k=m+1

F 2
k ≤ C

∞∑
k=1

22kαF 2
k ,

which gives the other implication of the asserted equivalence.
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Let us digest these results with the following example. We take for H
the space L2(T) of 2π-periodic functions on the unit circle T which has the
Fourier basis {(2π)−

1
2 eikx : k ∈ Z}. (Note here the indexing of the basis

functions on Z rather than N.) The space Hn := span{eikx : |k| ≤ n} is the
space Tn of trigonometric polynomials of degree ≤ n. The coefficients with
respect to this basis are the Fourier coefficients f̂(k) and therefore (2.13)
states that Aα2 ((Tn)) is characterized by the condition∑

k∈Z\{0}
|k|2α|f̂(k)|2 ≤M. (2.15)

If α is an integer, (2.15) describes the Sobolev space Wα(L2(T)) of all 2π-
periodic function with their αth derivative in L2(T) and the sum in (2.15)
is the square of the semi-norm |f |Wα

2 (L2(T)). For noninteger α, (2.15) char-
acterizes, by definition, the fractional order Sobolev space Wα(L2(T)). One
should note that one half of the characterization (2.15) of Aα2 ((Tn)) gives
the inequality ( ∞∑

n=1

[nαEn(f)H]2
1
n

)1/2

≤ C|f |Wα(L2(T)) (2.16)

which is slightly stronger than the inequality

En(f)H ≤ Cn−α|f |Wα(L2(T)), (2.17)

which is more frequently found in the literature.
Using (2.10), it is easy to prove that the space Aα((Tn)) is identical with

the Besov space Bα
∞(L2(T)) and, for noninteger α, this is the Lipschitz space

Lip(α,L2(T)). (We introduce and discuss amply the Besov and Lipschitz
spaces in Sections 3.2 and 4.5.)

Let us return now to the case of a general Hilbert space H and nonlinear
approximation from Σn. We can characterize the space Aα((Σn)) by using
the rearrangement of the coefficients fk. We denote by γk(f) the kth largest
of the numbers |fj|. We first want to observe that f ∈ Aα((Σn)) if and only
if

γn(f) ≤Mn−α−1/2 (2.18)

and the infimum of all M which satisfy (2.18) is equivalent to |f |Aα((Σn)).
Indeed, we have

σn(f)2
H =

∑
k>n

γk(f)2. (2.19)

Therefore, if f satisfies (2.18), then clearly

σn(f)H ≤ CMn−α,

so that f ∈ Aα((Σn)) and we have one of the implications in the asserted
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characterization. On the other hand, if f ∈ Aα((Σn)), then

γ2n(f)2 ≤ n−1
2n∑

m=n+1

γm(f)2 ≤ n−1σn(f)2
H ≤ |f |2Aα((Σn))n

−2α−1.

Since a similar inequality holds for γ2n+1(f), we have the other implication
of the asserted equivalence.

It is also easy to characterize other approximation classes such as the
Aα2 ((Σn)), which is the analogue of Aα2 ((Hn)). We shall formulate such
results in Section 5.

Let us return to our example of trigonometric approximation. Approx-
imation by Σn is n-term approximation by trigonometric sums. It is easy
to see the distinction between linear and nonlinear approximation in this
case. Linear approximation corresponds to a certain decay in the Fourier
coefficients f̂(k) as the frequency k increases, whereas nonlinear approxim-
ation corresponds to a decay in the rearranged coefficients. Thus, nonlinear
approximation does not recognize the frequency location of the coefficients.
If we reassign the Fourier coefficients of a function f ∈ Aα to new fre-
quency locations, the resulting function is still in Aα. Thus, in the nonlinear
case there is no correspondence between rate of approximation to classical
smoothness as there was in the linear case. It is possible to have large coef-
ficients at high frequency just as long as there are not too many of them.
For example, the functions eikx are obviously in all of the spaces Aα even
though their derivatives are large when k is large.

3. Approximation by piecewise constants

For our next taste of nonlinear approximation, we shall consider in this
section several types of approximation by piecewise constants correspond-
ing to linear and nonlinear approximation. Our goal is to see in this very
simple setting the advantages of nonlinear methods. We begin with a target
function f defined on Ω := [0, 1) and approximate it in various ways by
piecewise constants with n pieces. We shall be interested in the efficiency of
such approximation, that is, how the error of approximation decreases as n
tends to infinity. We shall see that, in many cases, we can characterize the
functions f which have certain approximation orders (for instance O(n−α),
0 < α ≤ 1). Such characterizations will illuminate the distinctions between
linear and nonlinear approximation.

3.1. Linear approximation by piecewise constants

We begin by considering approximation by piecewise constants on parti-
tions of Ω which are fixed in advance. This will be our reference point for
comparisons with nonlinear approximations that follow. This form of linear
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approximation is also important in numerical computation since it is the
simplest setting for FEM and other numerical methods based on approx-
imation by piecewise polynomials. We shall see that there is a complete
understanding in this case of the properties of the target function needed
to guarantee certain approximation rates. As we shall amplify below, this
theory explains what we should be able to achieve with proper numerical
methods and also tells us what form good numerical estimates should take.

Let N be a positive integer and let T := {0 =: t0 < t1 < · · · < tN := 1}
be an ordered set of points in Ω. These points determine a partition Π :=
Π(T ) := {Ik}Nk=1 of Ω into N disjoint intervals Ik := [tk−1, tk), 1 ≤ k ≤ N .
Let S1(T ) denote the space of piecewise constant functions relative to this
partition. The characteristic functions {χI : I ∈ Π} form a basis for S1(T ):
each function S ∈ S1(T ) can be represented uniquely by

S =
∑
I∈Π

cIχI . (3.1)

Thus S1(T ) is a linear space of dimension N .
For 0 < p ≤ ∞, we introduce the error in approximating a function

f ∈ Lp[0, 1) by the elements of S1(T ):

s(f, T )p := inf
S∈S1(T )

‖f − S‖Lp[0,1). (3.2)

We would like to understand what properties of f and T determine s(f, T )p.
For the moment, we shall restrict our discussion to the case p = ∞ which
corresponds to uniformly continuous functions f on [0, 1) to be approximated
in the uniform norm (L∞-norm) on [0, 1). The quality of approximation that
S′(T ) provides is related to the mesh length

δT := max
0≤k<N

|tk+1 − tk|. (3.3)

We shall first give estimates for s(f, T )∞ and then later ask in what sense
these estimates are best possible. We recall the definition of the Lipschitz
spaces Lipα. For each 0 ≤ α ≤ 1 and M > 0, we let LipM α denote the set
of all functions f on Ω such that

|f(x)− f(y)| ≤M |x− y|α.
Then Lipα := ∪M>0LipM α. The infimum of all M for which f ∈ LipM α is
by definition |f |Lipα. In particular, f ∈ Lip 1 if and only if f is absolutely
continuous and f ′ ∈ L∞; moreover, |f |Lip 1 = ‖f ′‖L∞ .

If the target function f ∈ LipM α, then

s(f, T )∞ ≤M(δT /2)α. (3.4)

Indeed, we define the piecewise constant function S ∈ S1(T ) by

S(x) := f(ξI), x ∈ I, I ∈ Πn,
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with ξI the midpoint of I. Then, |x− ξI | ≤ δT /2, x ∈ I, and hence

‖f − S‖L∞[0,1) ≤M(δT /2)α, (3.5)

which gives (3.4).
We turn now to the question of whether the estimate (3.4) is the best we

can do. We shall see that this is indeed the case in several senses. First,
suppose that for a function f we know that

s(f, T )∞ ≤MδαT , (3.6)

for every partition T . Then, we can prove that f is in Lipα and moreover
|f |Lipα ≤M . Results of this type are called inverse theorems in approxim-
ation theory whereas results like (3.4) are called direct theorems.

To prove the inverse theorem, we need to estimate the smoothness of f
from the approximation errors s(f, T )∞. In the case at hand, the proof
is very simple. Let ST be a best approximation to f from S1(T ) in the
L∞(Ω)-norm. (A simple compactness argument shows the existence of best
approximants.) If x, y are two points from Ω that are in the same interval
I ∈ Π(T ), then from (3.6)

|f(x)− f(y)| ≤ |f(x)− ST (x)| + |f(y)− ST (y)|
+ |ST (x)− ST (y)| ≤ 2s(f, T )∞ ≤ 2MδαT (3.7)

because ST (x) = ST (y) (ST is constant on I). Since we can choose T so
that δT is arbitrarily close to |x− y|, we obtain

|f(x)− f(y)| ≤ 2M(δT )α ≤ 2M |x− y|α (3.8)

which shows that f ∈ Lipα and |f |Lipα ≤ 2M .
Here is one further observation on the above analysis. If f is a function

for which s(f, T )∞ = o(δT ) holds for all T , then the above argument gives
that f(x + h) − f(x) = o(h), h → 0, for each x ∈ Ω. Thus f is constant
(its derivative is 0 everywhere). This is called a saturation theorem in ap-
proximation theory. Only trivial functions can be approximated with order
better than O(δT ).

The above discussion is not completely satisfactory for numerical ana-
lysis. In numerical algorithms, we usually have only a sequence of partitions.
However, with some massaging, the above arguments can be applied in this
case as well. Consider, for example, the case where

∆n := {k/n : 0 ≤ k ≤ n} (3.9)

consists of n equally spaced points from Ω (with spacing 1/n). Then, for
each 0 < α ≤ 1, a function f satisfies

sn(f)∞ := s(f,∆n)∞ = O(n−α) (3.10)

if and only if f ∈ Lipα (see DeVore and Lorentz (1993)). The saturation
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result holds as well. If sn(f)∞ = o(n−1) then f is constant. Of course the
direct estimates in this setting follow from (3.4). The inverse estimates are
a little more subtle and use the fact that the sets ∆n mix; that is, each
point x ∈ (0, 1) falls in the ‘middle’ of many intervals from the partitions
associated to ∆n. If we consider partitions that do not mix then, while
direct estimates are equally valid, the inverse estimates generally fail. A
case in point are the dyadic partitions whose sets of breakpoints ∆2n are
nested. A piecewise constant function from S1(∆2n) will be approximated
exactly by elements from S1(∆2m), m ≥ n, and yet these functions are not
even continuous.

An analysis similar to that given above holds for approximation in Lp, for
1 ≤ p <∞, and even for 0 < p < 1. To explain these results, we define the
space Lip(α,Lp(Ω)), 0 < α ≤ 1, 0 < p ≤ ∞, which is the set of all functions
f ∈ Lp(Ω) for which

‖f(·+ h)− f‖Lp[0,1−h) ≤Mhα, 0 < h < 1. (3.11)

Again, the smallest M ≥ 0 for which (3.11) holds is |f |Lip(α,Lp(Ω)).
By analogy with (3.4), there are ST ∈ S1(T ) such that

s(f, T )p ≤ ‖f − ST ‖Lp(Ω) ≤ Cp|f |Lip(α,Lp(Ω))δ
α
T (3.12)

with the constant Cp depending at most on p. Indeed, for p ≥ 1, we can
define ST by

ST (x) := aI(f), x ∈ I, I ∈ Π(T ), (3.13)

with2

aI(f) :=
1
|I|

∫
I
f dx

the average of f over I. With this definition of ST one easily derives (3.12);
see Section 2 of Chapter 12 in DeVore and Lorentz (1993). When 0 < p < 1,
we replace aI(f) by the median of f on the interval I (see Brown and Lucier
(1994)).

Inverse estimates follow the same lines as the case p =∞ discussed above.
We limit further discussion to the case ∆n of equally spaced breakpoints
given by (3.9). Then, if f satisfies

sn(f)p := s(f,∆n)p ≤Mn−α, n = 1, 2, . . . , (3.14)

for some 0 < α ≤ 1, M > 0, then f ∈ Lip(α,Lp(Ω)) and

|f |Lip(α,Lp(Ω)) ≤ CpM.

2 We shall use the notation |E| to denote the Lebesgue measure of a set E throughout
this paper.
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The saturation theorem is also valid: if sn(f)p = o(n−1), n→∞, then f is
constant.

In summary, we know precisely when a function satisfies sn(f)p = O(n−α),
n = 1, 2, . . .; it should be in the space Lip(α,Lp(Ω)). This provides a guide to
the construction and analysis of numerical methods based on approximation
by piecewise constants. For example, suppose that we are using S1(∆n) to
generate a numerical approximation Anu to a function u which is known to
be in Lip(1, Lp(Ω)). The values of u would not be known to us but would
be generated by our numerical method. The estimates (3.4) or (3.12) tell us
what we could expect of the numerical method in the best of all worlds. If
we are able to prove that our numerical method satisfies

‖u−Anu‖Lp(Ω) ≤ Cp|f |Lip(1,Lp(Ω))n
−1, n = 1, 2, . . . , (3.15)

we can rest assured that we have done the best possible (save for the numer-
ical constant Cp). If we cannot prove such an estimate then we should try
to understand why. Moreover, (3.15) is the correct form of error estimates
based on approximation by piecewise constants on uniform partitions.

There are numerous generalizations of the results given in this section.
First of all, piecewise constants can be replaced by piecewise polynomials
of degree r with r arbitrary but fixed (see Section 6.2). One can require
that the piecewise polynomials have smoothness Cr−2 at the breakpoints
with an identical theory. Of course, inverse theorems still require some
mixing condition. Moreover, all of these results hold in the multivariate
case as is discussed in Section 6.2. We can also do a more subtle analysis of
approximation orders where O(n−α) is replaced by a more general statement
on the rate of decay of the error. This is important for a fuller understanding
of approximation theory and its relationship to function spaces. We shall
discuss these issues in Section 4 after the reader has more familiarity with
more fundamental approximation concepts.

3.2. Nonlinear approximation by piecewise constants

In linear approximation by piecewise constants, the partitions are chosen in
advance and are independent of the target function f . The question arises
whether there is anything to be gained by allowing the partition to depend on
f . This brings us to try to understand approximation by piecewise constants
where the number of pieces is fixed but the actual partition can vary with
the target function. This is the simplest case of what is called variable knot
spline approximation. It is also one of the simplest and most instructive
examples of nonlinear approximation.

If T is a finite set of points 0 =: t0 < t1 < · · · < tn := 1 from Ω, we denote
by S1(T ) the functions S which are piecewise constant with breakpoints
from T . Let Σn := ∪#T=n+1S1(T ), where #T denotes the cardinality of T .
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Each function in Σn is piecewise constant with at most n pieces. Note that
Σn is not a linear space; for example, adding two functions in Σn results
in a piecewise constant function but with as many as 2n pieces. Given
f ∈ Lp(Ω), 0 < p ≤ ∞, we introduce

σn(f)p := inf
S∈Σn

‖f − S‖Lp(Ω), (3.16)

which is the Lp-error of nonlinear piecewise constant approximation to f .
As noted earlier, we would like to understand what properties of f de-

termine the rate of decrease of σn(f)p. We shall begin our discussion with
the case p = ∞, which corresponds to approximating the continuous func-
tion f in the uniform norm. We shall show the following result of Kahane
(1961). For a function f ∈ C(Ω) we have

σn(f)∞ ≤ M
2n , n = 1, 2, . . . , (3.17)

if and only if f ∈ BV, i.e., f , is of bounded variation on Ω and |f |BV :=
VarΩ(f) is identical with the smallest constant M for which (3.17) holds.

We sketch the proof of Kahane’s result since it is quite simple and in-
structive. Suppose first that f ∈ BV with M := VarΩ(f). Since f is, by
assumption, continuous, we can find T := {0 =: t0, . . . , tn := 1} such that
Var[tk−1,tk)f ≤M/n, k = 1, . . . , n. If ak is the median value of f on [tk−1, tk],
and Sn(x) := ak, x ∈ [tk−1, tk), k = 1, . . . , n, then Sn ∈ Σn and satisfies

‖f − Sn‖L∞(Ω) ≤M/2n, (3.18)

which shows (3.17).
Conversely, suppose that (3.17) holds for someM > 0. Let Sn ∈ Σn satisfy
‖f − Sn‖L∞(Ω) ≤ (M + ε)/(2n) with ε > 0. If x0 := 0 < x1 < · · · < xm := 1
is an arbitrary partion for Ω and νk is the number of values that Sn attains
on [xk−1, xk), then one easily sees that

|f(xk)−f(xk−1)| ≤ 2νk‖f −Sn‖L∞(Ω) ≤ νk(M+ε)
n , k = 1, 2, . . . ,m. (3.19)

Since
∑m

k=1 νk ≤ m+ n, we have
m∑
k=1

|f(xk)− f(xk−1)| ≤
m∑
k=1

νk(M+ε)
n ≤ (M + ε)(1 + m

n ). (3.20)

Letting n→∞ and then ε→ 0 we find
m∑
k=1

|f(xk)− f(xk−1)| ≤M, (3.21)

which shows that VarΩ(f) ≤M .
There are elements of the above proof that are characteristic of nonlin-

ear approximation. Firstly, the partition providing (3.17) depends on f .
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Fig. 1. Best selection of breakpoints for f(x) = x1/2 when n = 6

Secondly, this partition is obtained by balancing the variation of f over
the intervals I in this partition. In other types of nonlinear approxima-
tion, VarI(f) will be replaced by some other expression B(f, I) defined on
intervals I (or other sets in more general settings).

Let us pause now for a moment to compare Kahane’s result with what
we know about linear approximation by piecewise constants in the uniform
norm. In both cases, we can characterize functions which can be approx-
imated with efficiency O(n−1). In the case of linear approximation from
S1(Tn) (as described in the previous section), this is the class of functions
Lip (1, L∞(Ω)) or, equivalently, functions f for which f ′ ∈ L∞(Ω). On the
other hand, for nonlinear approximation, it is the class BV of functions of
bounded variation. It is well known that BV = Lip(1, L1(Ω)) with equival-
ent norms. Thus in both cases the function is required to have one order
of smoothness but measured in quite different norms. For linear approxim-
ation the smoothness is measured in L∞, the same norm as the underlying
approximation. For nonlinear approximation the smoothness is measured
in L1. Thus, in nonlinear approximation, the smoothness is measured in a
weaker norm. What is the significance of L1? The answer lies in the Sobolev
embedding theorem. Among the spaces Lip(1, Lp(Ω)), 0 < p ≤ ∞, p = 1
is the smallest value for which this space is embedded in L∞(Ω). In other
words, the functions in Lip(1, L1(Ω)) barely get into L∞(Ω) (the space in
which we measure error) and yet we can approximate them quite well.

An example might be instructive. Consider the function f(x) = xα with
0 < α < 1. This function is in Lip(α,L∞(Ω)) and in no higher-order Lip-
schitz space. It can be approximated by elements of S1(Tn) with order
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Fig. 2. Linear and nonlinear approximation in C

exactly O(n−α). On the other hand, this function is clearly of bounded
variation (being monotone) and hence can be approximated by the elements
of Σn to order O(n−1). It is easy to see how to construct such an approxim-
ant. Consider the graph of f as depicted in Figure 1. We divide the range
of f (which is the interval [0, 1)) on the y-axis into n pieces corresponding
to the y values yk := k/n, k = 0, 1, . . . , n. The preimage of these points is
the set {xk := (k/n)1/α : 0 ≤ k ≤ n}, which forms our set T of breakpoints
for the best piecewise polynomial approximant from Σn.

It will be useful to have a way of visualizing spaces of functions as they
occur in our discussion of approximation. This will give us a simple way to
keep track of various results and also add to our understanding. We shall
do this by using points in the upper right quadrant of the plane. The x-axis
will correspond to the Lp spaces except that Lp is identified with x = 1/p
not with x = p. The y axis will correspond to the order of smoothness.
For example y = 1 will mean a space of smoothness order one (or one
time differentiable, if you like). Thus (1/p, α) corresponds to a space of
smoothness α measured in the Lp-norm. For example, we could identify
this point with the space Lip(α,Lp) although when we get to finer aspects
of approximation theory we may want to vary this interpretation slightly.

Figure 2 gives a summary of our knowledge so far. The vertical line
segment (marked L) connecting (0, 0) (L∞) to (0, 1) (Lip(1, L∞)) corres-
pond to the spaces we engaged when we characterized approximation order
for linear approximation (approximation from S1(Tn)). For example, (0, 1)
(Lip(1, L∞)) was the space of functions with approximation order O(n−1).
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(1/p,1) (Lip(1,Lp))
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Fig. 3. Linear and nonlinear approximation in Lp

On the other hand, for nonlinear approximation from Σn, we saw that the
point (1, 1) (Lip(1, L1)) describes the space of functions which are approx-
imated with order O(n−1). We shall see later (Section 4) that the point
(α,α) on the line connecting (0, 0) to (1, 1) (marked NL) describes the space
of functions approximated with order O(n−α) (a few new wrinkles come in
here which is why we are postponing a precise discussion).

More generally, approximation in Lp, 0 < p ≤ ∞, is depicted in Figure 3.
The spaces corresponding to linear approximation lie on the vertical line
segment (marked L) connecting (1/p, 0) (Lp) to (1/p, 1) (Lip(1, Lp), whereas
the line segment (marked NL) emanating from (1/p, 0) with slope one will
describe the nonlinear approximation spaces. The points on this line are of
the form (1/τ, α) with 1/τ = α+ 1/p. Again, this line segment in nonlinear
approximation corresponds to the limiting spaces in the Sobolev embedding
theorem. Spaces to the left of this line segment are embedded into Lp; those
to the right are not.

There are various generalizations of nonlinear piecewise constant approx-
imation which we shall address in due course. For univariate approximation,
we can replace piecewise constant functions by piecewise polynomials of fixed
degree r with n free knots with a similar theory (Section 6.3). However, mul-
tivariate approximation by piecewise polynomials leads to new difficulties,
as we shall see in Section 6.5.

Approximation by piecewise constants (or more generally piecewise poly-
nomials) with free knots is used in numerical PDEs. It is particularly useful
when the solution is known to develop singularities. An example would be a
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nonlinear transport equation in which shocks appear (see Section 10). The
significance of the above results to the numerical analyst is that it clarifies
what is the optimal performance that can be obtained by such methods.
Once the norm has been chosen in which the error is to be measured, then
we understand the minimal smoothness that will allow a given approxima-
tion rate. We also understand what form error estimates should take. For
example, consider numerically approximating a function u by a piecewise
constant function Anu with n free knots. We have seen that, in the case of
uniform approximation, the correct form of the error estimate is

‖u−Anu‖L∞(Ω) ≤ C
|u|BV

n
. (3.22)

This is in contrast to the case of fixed knots where |u|BV is replaced by
‖u′‖L∞(Ω). A similar situation exists when error is measured in other Lp-
norms, as will be developed in Section 6.

The above theory of nonlinear piecewise constant approximation also tells
us the correct form for local error estimators. Approximating in L∞, we
should estimate local error by local variation. Approximating in Lp, the
variation will be replaced by other set functions obtained from certain Besov
or Sobolev norms (see Section 6.1).

3.3. Adaptive approximation by piecewise constants

One disadvantage of piecewise constant approximation with free knots is that
it is not always easy to find partitions that realize the optimal approxima-
tion order. This is particularly true in the case of numerical approximation
when the target function is not known to us but is only approximated as
we proceed numerically. One way to ameliorate this situation is to gener-
ate partitions adaptively. New breakpoints are added as new information is
gained about the target function. We shall discuss this type of approxima-
tion in this section with the goal of understanding what is lost in terms of
accuracy of approximation when adaptive partitions are used in place of free
partitions. Adaptive approximation is also important because it generalizes
readily to the multivariate case when intervals are replaced by cubes.

The starting point for adaptive approximation is a function E(I) which is
defined for each interval I ⊂ Ω and estimates the approximation error on I.
Namely, let E(f, I)p be the local error in approximating f by constants in
the Lp(I)-norm:

E(f, I)p := inf
c∈R
‖f − c‖Lp(I). (3.23)

Then, we assume that E satisfies

E(f, I)p ≤ E(I). (3.24)
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In numerical settings, E(I) is an upper bound for E(f, I)p obtained from
the information at hand. It is at this point that approximation theory and
numerical analysis sometimes part company. Approximation theory assumes
enough about the target function to have an effective error estimator E , a
property not always verifiable for numerical estimators.

To retain the spirit of our previous sections, let us assume for our illustra-
tion that p = ∞ so that we are approximating continuous functions in the
L∞(Ω) norm. In this case, a simple upper bound for E(f, I)∞ is provided
by

E(f, I)∞ ≤ VarI(f) ≤
∫
I
|f ′(x)|dx, (3.25)

which holds whenever these quantities are defined for the continuous func-
tion f (i.e., f should be in BV for the first estimate, f ′ ∈ L1 for the second).
Thus, we could take for E any of the three quantities appearing in (3.25).
A common feature of each of these error estimators is that

E(I1) + E(I2) ≤ E(I1 ∪ I2), I1 ∩ I2 = ∅. (3.26)

We shall restrict our attention to adaptive algorithms that create parti-
tions of Ω consisting of dyadic intervals. Our development parallels com-
pletely the standard treatment of adaptive numerical quadrature. We shall
denote by D := D(Ω) the set of all dyadic intervals in Ω; for specificity we
take these intervals to be closed on the left end-point and open on the right.
Each interval I ∈ D has two children. These are the intervals J ∈ D such
that J ⊂ I and |J | = |I|/2. If J is a child of I then I is called the parent of
J . Intervals J ∈ D such that J ⊂ I are descendants of I those with I ⊂ J
are ancestors of I.

A typical adaptive algorithm proceeds as follows. We begin with our
target function f , an error estimator E , and a target tolerance ε which
relates to the final approximation error we want to attain. At each step of
the algorithm we have a set G of good intervals (on which the local error
meets the tolerance) and a set B of bad intervals (on which we do not
meet the tolerance). Good intervals become members of our final partition.
Bad intervals are further processed: they are halved and their children are
checked for being good or bad.

Initially, we check E(Ω). If E(Ω) ≤ ε then we define G = {Ω}, B := ∅ and
we terminate the algorithm. On the other hand, if E(Ω) > ε, we define G = ∅,
B := {Ω} and proceed with the following general step of the algorithm.

General step. Given any interval I in the current set B of bad intervals,
we process it as follows. For each of the two children J of I, we check E(J).
If E(J) ≤ ε, then J is added to the set of good intervals. If E(J) > ε, then
J is added to the set of bad intervals. Once a bad interval is processed it is
removed from B.
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The algorithm terminates when B = ∅, and the final set of good intervals
is denoted by Gε := Gε(f). The intervals in Gε form a partition of Ω, that is,
they are pairwise disjoint and their union is all of Ω. We define

Sε :=
∑
I∈Gε

cIχI , (3.27)

where cI is a constant that satisfies

‖f − cI‖L∞(I) ≤ E(I) ≤ ε, I ∈ Gε.

Thus, Sε is a piecewise constant function approximating f to tolerance ε:

‖f − Sε‖L∞(Ω) ≤ ε. (3.28)

The approximation efficiency of the adaptive algorithm depends on the
number Nε(f) := #Gε(f) of good intervals. We are interested in estimating
Nε so that we can compare adaptive efficiency with free knot spline approx-
imation. For this we recall the space L logL, which consists of all integrable
functions for which

‖f‖L logL :=
∫

Ω
|f(x)|(1 + log |f(x)|) dx

is finite. This space contains all spaces Lp, p > 1, but is strictly contained
in L1(Ω). We have shown in DeVore (1987) that any of the three estimators
of (3.25) satisfy

Nε(f) ≤ C ‖f
′‖L logL

ε
. (3.29)

We shall give the proof of (3.29), which is not difficult. It will allow us
to introduce some concepts that are useful in nonlinear approximation and
numerical estimation, such as the use of maximal functions. The Hardy–
Littlewood maximal function Mf is defined for a function in L1(Ω) by

Mf(x) := sup
I3x

1
|I|

∫
I
|f(y)|dy, (3.30)

where the sup is taken over all intervals I ⊂ Ω which contain x. Thus
Mf(x) is the smallest number that bounds all of the averages of |f | over
intervals which contain x. The maximal function Mf is at the heart of
differentiability of functions (see Chapter 1 of Stein (1970)). We shall need
the fact (see pages 243–246 of Bennett and Sharpley (1988)) that

‖f‖L logL �
∫

Ω
Mf(y) dy. (3.31)
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We shall use Mf to count Nε. We assume that Gε 6= {Ω}. Suppose that
I ∈ Gε. Then the parent J of I satisfies

ε < E(J) ≤
∫
J
|f ′(y)|dy ≤ |J |Mf ′(x), (3.32)

for all x ∈ J . In particular, we have

ε ≤ |J | inf
x∈I

Mf ′(x) ≤ |J ||I|

∫
I
Mf ′(y) dy = 2

∫
I
Mf ′(y) dy. (3.33)

Since the intervals in Gε are disjoint, we have

Nεε ≤ 2
∑
I∈Gε

∫
I
Mf ′(y) dy = 2

∫
Ω
Mf ′(y) dy ≤ C‖f ′‖L logL,

where the last inequality uses (3.31). This proves (3.29).
In order to compare adaptive approximation with free knot splines, we

introduce the adaptive approximation error

an(f)∞ := inf{ε : Nε(f) ≤ n}. (3.34)

Thus, with the choice ε = (C‖f ′‖L logL)/n, and C the constant in (3.29), our
adaptive algorithm generates a partition G with at most n dyadic intervals
and, from (3.28), we have

an(f)∞ ≤ ‖f − Sε‖L∞(Ω) ≤ C
‖f ′‖L logL

n
. (3.35)

Let’s compare an(f)∞ with the error σn(f)∞ for free knot approximation.
In free knot splines we obtained the approximation rate σn(f)∞ = O(n−1)
if and only if f ∈ BV. This condition is slightly weaker than requiring that
f ′ is in L1(Ω) (the derivative of f should be a Borel measure). On the other
hand, assuming that f satisfies the slightly stronger condition f ′ ∈ L logL,
we find an(f)∞ ≤ C/n. Thus, the cost in using adaptive algorithms is slight
from the viewpoint of the smoothness condition required on f to produce
the order O(n−1).

It is much more difficult to prove error estimates for numerically based
adaptive algorithms. What is needed is a comparison (from above and be-
low) of the error estimator E(I) with the local approximation error E(f, I)p
or one of the good estimators like

∫
I |f ′|. Nevertheless, the above results are

useful in that they give the form such error estimators E(I) should take and
also give the form the error analysis should take.

There is a comparable theory for adaptive approximation in other Lp-
norms and even in several variables (Birman and Solomyak 1967).
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3.4. n-term approximation: a first look

There is another view toward the results we have obtained thus far, which is
important because it generalizes readily to a variety of settings. In each of
the three types of approximation (linear, free knot, and adaptive), we have
constructed an approximant of the form

S =
∑
I∈Λ

cIχI , (3.36)

where Λ is a set of intervals and the cI are constants. Thus, a general
approximation problem that would encompass all three of the above is to
approximate using sums (3.36) where #Λ ≤ n. This is called n-term ap-
proximation. We formulate this problem more formally as follows.

Let Σ∗n be the set of all piecewise constant functions that can be written
as in (3.36) with #Λ ≤ n. Then, Σ∗n is a nonlinear space. As in our previous
considerations, we define the Lp-approximation error

σ∗n(f)p := inf
S∈Σ∗n

‖f − S‖Lp(Ω). (3.37)

Note that we do not require that the intervals of Λ form a disjoint partition;
we allow possible overlap in the intervals.

It is easy to see that the approximation properties of n-term approxima-
tion is equivalent to that of free knot approximation. Indeed, Σn ⊂ Σ∗n ⊂
Σ2n, n = 1, 2, . . ., and therefore

σ2n(f)p ≤ σ∗n(f)p ≤ σn(f)p. (3.38)

Thus, for example, a function f satisfies σ∗n(f)p = O(n−α) if and only if
σ∗n(f)p = O(n−α).

The situation with adaptive algorithms is more interesting and enlight-
ening. In analogy to the above, one defines Σa

n as the set of functions S
which can be expressed as in (3.36), but now with Λ ⊂ D and σan defined
accordingly. The analogue of (3.38) would compare σan and am. Of course,
σan ≤ an, n ≥ 1. But no comparison acn ≤ σan, n = 1, 2, . . ., is valid for any
fixed constant c ≥ 1. The reason is that adaptive algorithms do not create
arbitrary functions in Σa

n. For example, the adaptive algorithm cannot have
a partition with just one small dyadic interval; it automatically carries with
it a certain entourage of intervals. We can explain this in more detail by
using binary trees.

Consider any of the adaptive algorithms of the previous section. Given an
ε > 0, let Bε be the collection of all I ∈ D such that E(I) > ε (the collection
of bad intervals). Then, whenever I ∈ Bε, its parent is too. Thus Bε is a
binary tree with root Ω. The set of dyadic intervals Gε is precisely the set
of good intervals I (i.e., E(I) ≤ ε) whose parent is bad. The inefficiency
of the adaptive algorithm occurs when Bε contains a long chain of intervals
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I1 ⊃ I2 ⊃ · · · ⊃ Im with Ik the parent of Ik+1 with the property that the
other child of Ik is always good, k = 1, . . . ,m− 1. This occurs, for example,
when the target function f has a singularity at some point x0 ∈ Im but is
smooth otherwise. The partition Gε will contain one dyadic interval at each
level (the sibling Jk of Ik). Using free knot partitions, we would zoom in
faster on this singularity and thereby avoid this entourage of intervals Jk.

There are ways of modifying the adaptive algorithm to make it compar-
able to approximation from Σa

n, which we now briefly describe. If we are
confronted with a long chain I0 ⊃ I1 ⊃ · · · ⊃ Im of bad intervals from
Bε, the adaptive algorithm would place each of the sibling intervals Jk of
Ik, k = 0, . . . ,m, into the good partition. We can decrease the number
of intervals needed in the following way. We find the shortest subchain
I0 = Ij0 ⊃ Ij1 ⊃ · · · ⊃ Ij` = Im for which E(Ij−1 \ Ij) < ε, j = 1, . . . , `.
Then, it is sufficient to use the intervals Iji , i = 0, . . . , `, in place of the
intervals Jk, k = 0, . . . ,m, in the construction of an approximant from Σa

n

(see DeVore and Popov (1987) or Cohen, DeVore, Petrushev and Xu (1998)
for a further elaboration on these ideas).

3.5. Wavelets: a first look; the Haar system

The two topics of approximating functions and representing them are closely
related. For example, approximation by trigonometric sums is closely related
to the theory of Fourier series. Is there an analogue in approximation by
piecewise constants? The answer is yes. There are in fact several represent-
ations of a given function f using a basis of piecewise constant functions.
The most important of these is the Haar basis, which we shall now describe.

Rather than simply introducing the Haar basis and giving its properties,
we prefer to present this topic from the viewpoint of multiresolution analysis
(MRA) since this is the launching point for the construction of wavelet bases,
which we shall discuss in more detail in Section 7. Wavelets and multilevel
methods are increasingly coming into favour in numerical analysis.

Let us return to the linear spaces S1(∆n) of piecewise constant functions
on the partition of Ω with spacing 1/n. We shall only need the case n = 2k

and we denote this space by Sk := S1(∆2k). The characteristic functions χI ,
I ∈ Dk(Ω), are a basis for Sk. If we approximate well a smooth function f by
a piecewise constant function S =

∑
I∈Dk cIχI from Sk, then the coefficients

cI will not change much: cI will be close to cJ if I is close to J . We would
like to take advantage of this fact to find a more compact representation
for S. That is, we should be able to find a more favourable basis for Sk for
which the coefficients of S are either zero or small.

The spaces Sk form a ladder: Sk ⊂ Sk+1, k = 0, 1, . . .. We let Wk :=
Sk+1 	 Sk be the orthogonal complement of Sk in Sk+1. This means that
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Wk consists precisely of the functions in w ∈ Sk+1 orthogonal to Sk:∫
Ω
w(x)S(x) dx = 0, for all S ∈ Sk.

We then have
Sk+1 = Sk ⊕Wk, k = 0, 1, . . . . (3.39)

Thus Wk represents the detail that must be added to Sk in order to obtain
Sk+1.

The spaces Wk have a very simple structure. Consider, for example,
W := W0. Since S1 = S0 +W0, and S1 has dimension 2 and S0 dimension 1,
the space W1 will be spanned by a single function from S1. Orthogonality
gives us that this function is a nontrivial multiple of

H(x) := χ[0,1/2) − χ[1/2,1) =
{

1, 0 ≤ x < 1/2,
−1, 1/2 ≤ x < 1. (3.40)

H is called the Haar function. More generally, it is easy to see that Wk is
spanned by the following (normalized) shifted dilates of H:

Hj,k(x) := 2k/2H(2kx− j), j = 0, . . . , 2k − 1. (3.41)

The function Hj,k is a scaled version of H fitted to the interval 2−k[j, j + 1)
which has L2(Ω)-norm one: ‖Hj,k‖L2(Ω) = 1.

From (3.39), we find

Sm = S0 ⊕W0 ⊕ · · · ⊕Wm−1. (3.42)

It follows that χΩ together with the functions Hj,k, j = 0, . . . , 2k − 1, k =
0, . . . ,m− 1, form an orthonormal basis for Sm which is, in many respects,
better than the old basis χI , I ∈ Dm. But, before taking up that point, we
want to see that we can take m → ∞ in (3.42) and thereby obtain a basis
for L2(Ω).

It will be useful to have an alternative notation for the Haar functions
Hj,k. Each j, k corresponds to the dyadic interval I := 2−k[j, j + 1). We
shall write

HI := Hj,k = |I|−1/2H(2k · −j). (3.43)

From (3.42) we see that each S ∈ Sm has the representation

S = 〈S, χΩ〉χΩ +
∑

I∈∪0≤k<mDk

〈S,HI〉HI , (3.44)

where

〈f, g〉 :=
∫

Ω
f(x)g(x) dx (3.45)

is the inner product in L2(Ω).
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Let Pm denote the orthogonal projector onto Sm. Thus, Pmf is the best
L2(Ω)-approximation to f from Sm. It is the unique element in Sm such
that f − Pmf is orthogonal to Sm. Using the orthonormal basis of (3.44),
we see that

Pmf = 〈f, χΩ〉χΩ +
∑

I∈∪0≤k<mDk

〈f,HI〉HI . (3.46)

Since dist(f,Sm)L2(Ω) → 0, m → ∞, we can take the limit in (3.46) to
obtain

f = 〈f, χΩ〉χΩ +
∑
I∈D
〈f,HI〉HI (3.47)

In other words, χΩ together with the functions HI , I ∈ D, form an orthonor-
mal basis, called the Haar basis, for L2(Ω).

Some of the advantages of the Haar basis for Sm over the standard basis
(χI , I ∈ Dm) are obvious. If we wish to increase our resolution of the
target function by approximating from Sm+1 rather than Sm, we do not
need to recompute our approximant. Rather, we merely add a layer of
the decomposition (3.47) to the approximant corresponding to the wavelet
space Wm+1. Of course, the orthogonality of Wm to Sm means that this new
information is independent of our previous information about f . It is also
clear that the coefficients of the basis function HI , I ∈ Dm, tend to zero as
m→∞. Indeed, we have

‖f‖2L2(Ω) = |〈f, χΩ〉|
2 +

∑
I∈D
|〈f,HI〉|2. (3.48)

Therefore, this series converges absolutely.

3.6. n-term approximation: a second look

We shall next consider n-term approximation using the Haar basis. This is
a special case of n-term wavelet approximation considered in more detail in
Section 7.4. Let ΣH

n denote the collection of all functions S of the form

S = cχΩ +
∑
I∈Λ

cIHI , (3.49)

where Λ ⊂ D is a set of dyadic intervals with #Λ ≤ n. As before, we let

σHn (f)p := inf
S∈ΣHn

‖f − S‖Lp(Ω) (3.50)

be the error of n-term approximation.
We shall consider first the case of approximation in L2(Ω) where the

matter is completely transparent. In fact, in this case, in view of the norm
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equivalence (3.48), we see that a best approximation from ΣH
n is given by

S = 〈f, χΩ〉χΩ +
∑
I∈Λ

〈f,HI〉HI , (3.51)

where Λ ⊂ D is a set corresponding to the n biggest Haar coefficients. Since
there may be coefficients of equal absolute values, best approximation from∑H

n is not necessarily unique.
Since we are dealing with an orthonormal system, we can apply the results

of Section 2 to characterize the class of functions f which satisfy

σHn (f)2 ≤Mn−α, n = 1, 2, . . . . (3.52)

Namely, let γn := γn(f) be the absolute of the nth largest Haar coefficient.
It follows from the characterization (2.18) that, for any α > 0, a function f
satisfies (3.52) if and only if

γn(f) ≤ M ′

nα+1/2
. (3.53)

Moreover, the smallest constant M in (3.52) is equivalent (independently of
f) to the smallest constant M ′ in (3.53).

It is interesting to note that the above characterization holds for any
α > 0; it is not necessary to assume that α ≤ 1. It is not apparent how
the characterization (3.53) relates directly to the smoothness of f . We shall
see later, when we develop n-term wavelet approximation in more detail,
that, for 0 < α < 1, (3.53) is tantamount to requiring that f have α orders
of smoothness in Lτ , where τ is defined by 1/τ = α + 1/2. We recall our
convention for interpreting smoothness spaces as points in the upper right
quadrant of R2, as described in Section 3.2. The point (1/τ, α) lies on
the line with slope one which passes through (1/2, 0) (L2(Ω)). Thus, the
characterization of n-term Haar approximation (in L2(Ω)) is the same as
the previous characterizations of free knot approximation.

The study of n-term Haar approximation in L2(Ω) benefited greatly from
the characterization of L2(Ω) in terms of wavelet coefficients. The situation
for approximation in Lp(Ω), 1 < p < ∞, can also be treated, although the
computation of Lp(Ω) norms is more subtle (see (7.27)). It turns out that a
norm close to the Lp norm is given by

‖f‖pBp := |〈f, χΩ〉|
p +

∑
I∈D
‖〈f,HI〉HI‖pLp(Ω), (3.54)

which is known as the Bp norm. For approximation in the Bp norm, the
theory is almost identical to L2(Ω). Now, a best approximation from ΣH

n is
given by

S = 〈f, χΩ〉χΩ +
∑
I∈Λ

〈f,HI〉HI , (3.55)
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where Λ ⊂ D is a set corresponding to the n biggest terms ‖〈f,HI〉HI‖Lp(Ω).
This selection procedure, to build the set Λ, depends on p because

‖HI‖Lp(Ω) = |I|1/p−1/2.

In other words, the coefficients are scaled depending on their dyadic level
before we select the largest coefficients.

This same selection procedure works for approximation in Lp (DeVore,
Jawerth and Popov 1992); however, now the proof is more involved and will
be discussed in Section 7.4 when we treat the more general case of wavelets.

3.7. Optimal basis selection: wavelet packets

We have shown in Section 2 that, in the setting of a Hilbert space, it is a
simple matter to determine a best n-term approximation to a target func-
tion f using elements of an orthonormal basis. A basis is good for f if the
absolute value of the coefficients of f , when they are reordered according to
decreasing size, tend rapidly to zero. We can increase our approximation
efficiency by finding such a good basis for f . Thus, we may want to include
in our approximation process a search over a given collection (usually called
a library) of orthonormal bases in order to choose one which is good for
our target function f . This leads to another degree of nonlinearity in our
approximation process since now we have the choice of basis in addition to
the choice of best n terms with respect to that basis. From a numerical per-
spective, however, we must be careful that this process can be implemented
computationally. In other words, we cannot allow too many bases in our
selection: our library of bases must be computationally implementable. In
the case of piecewise constant approximation, such a library of bases was
given by Coifman and Wickerhauser (1992) and is a special case of what are
known as wavelet packet libraries.

We introduce some notation which will simplify our description of wavelet
packet libraries. If g is a function from L2(R), we let

gI(x) := |I|−1/2g(2nx− k), I = 2−n[k, k + 1). (3.56)

If g is supported on Ω = [0, 1), then gI will be supported on the dyadic
interval I. We also introduce the following scaling operators which appear
in the construction of multiresolution analysis for the Haar function. For a
function g ∈ L2(R), we define

A0g := g(2·) + g(2 · −1)); A1g := g(2·) − g(2 · −1)). (3.57)

If g is supported on Ω, the functions A0g, A1g are also supported on Ω
and have the same L2 norm as g. Also, the functions A0g and A1g are
orthogonal, that is, ∫

Ω
A0gA1g = 0.
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Let γ0 := χΩ and γ1 := H be the characteristic and Haar functions. They
satisfy

γ0 = A0γ0; γ1 = A1γ0. (3.58)

In the course of our development of wavelet packets we will apply the oper-
ators A0 and A1 to generate additional functions. It is most convenient to
index these functions on binary strings b. Such a b is a string of 0s and 1s.
For such a string b, let b0 be the new string obtained from b by appending 0
to the end of b and let b1 be the corresponding string obtained by appending
1 to the end of b. Then, we inductively define

γb0 := A0γb; γb1 := A1γb. (3.59)

In particular, (3.58) gives that γ00 := A0γ0 = χΩ and γ01 := A1γ0 = H.
Note that there is redundancy in that two binary strings b and b′ represent
the same integer in base 2 if and only if γb = γb′ .

We can now describe the wavelet packet bases for Sm with m ≥ 1, a fixed
integer. We associate to each binary string b its length #b, and the space

Γb := span{(γb)I : I ∈ Dm−#b}. (3.60)

The functions (γb)I form an orthonormal basis for Γb. While the two func-
tions γb and γb′ may be identical for b 6= b′, the subspaces Γb and Γb′ are not
the same because b and b′ will have different lengths. For any binary string
b, we have

Γb = Γb0 ⊕ Γb1, (3.61)

and the union of the two bases (given by (3.60)) for Γb0 and Γb1 give an
alternative orthonormal basis for Γb.

The starting point of multiresolution analysis and our construction of the
Haar wavelet was the decomposition Sm = Sm−1 ⊕Wm−1 given in (3.42).
In our new notation, this decomposition is

Γ0 = Γ00 ⊕ Γ01. (3.62)

In multiresolution analysis, the process is continued by decomposing Sm−1 =
Sm−2 ⊕Wm−2 or, equivalently, Γ00 = Γ000 ⊕Γ001. We take Wm−2 = Γ001 in
our decomposition and continue. Our new viewpoint is that we can apply
the recipe (3.57) to further decompose Γ01 = Wm−1 into two orthogonal
subspaces as described in (3.61). Continuing in this way, we get other or-
thogonal decompositions of Sm and other orthonormal bases which span this
space.

We can depict these orthogonal decompositions by a binary tree as given
in Figure 4. Each node of the tree can be indexed by a binary string b.
The number of digits k in b corresponds to its depth in the tree. Associated
to b are the function γb and the space Γb, which has an orthonormal basis
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Fig. 4. The binary tree for wavelet packets

consisting of the functions (γb)I , I ∈ Dm−k. If we move down and to the
left from b we append digit 0 to b, while if we move down one level on the
right branch we append digit 1. The tree stops when we reach level m.

The above construction generates many orthonormal bases of Sm. We
can associate each binary b to the dyadic interval Ib whose left end-point is
b/2#b and whose length is 2−#b, where #b is the number of digits in b (the
level of b in the tree). If we take a collection B of such b, such that the Ib,
b ∈ B, are a disjoint cover of Ω, then Sm = Γ0 =

⊕
b∈B Γb. The union of all

the bases for these spaces form an orthonormal basis for Sm. For example,
in Figure 4, the solid nodes correspond to such a cover. The same story
applies to any node b of the tree. The portion of the tree starting at b has
the same structure as the entire tree and we obtain many bases for Γb by
using interval decompositions of Ib as described above.

Several of the bases for Sm are noteworthy. By choosing just Ω in the
interval decomposition of Ω, we obtain just the space Γ0 and its basis (γ0)I =
χI , I ∈ Dm. The choice B = {00 · · · 0} ∪ {01, 001, . . .} corresponds to the
dyadic intervals 2−m[0, 1), 2−m+1[1/2, 1], . . ., [1/2, 1) and gives the Haar
basis. We can also take all the nodes at the lowest level (level m) of the
tree. These nodes each correspond to spaces of dimension one. The basis
obtained in this way is the Walsh basis from Fourier analysis.

It is important to note that we can efficiently compute the coefficients of
a function S ∈ Sm with respect to all of the spaces Γb by using (3.57). For
example, let γb be the generator of Γb. Then, Γb = Γb0⊕Γb1. If S ∈ Sm and
cb,I := 〈S, (γb)I〉, I ∈ Dm−k are the coefficients of S with respect to these
functions, then, for I ∈ Dm−k−1,

cb0,I =
1√
2

(cb,I0 + cb,I1), cb1,I =
1√
2

(cb,I0 − cb,I1), (3.63)

where I0 and I1 are the left and right halves of I. Similarly, we can obtain
the coefficients cb,I0 , cb,I1 from the coefficients cb0,I , cb1,I . Thus, for example,



Nonlinear approximation 81

starting with the coefficients for the basis at the top (or bottom) of the tree,
we can compute all other coefficients with O(m2m) operations.

For all numerical applications, the above construction is sufficient. One
chooses m sufficiently large and considers all bases of Sm given as above. For
theoretical reasons, however, one may want bases for L2(Ω). This can be
accomplished by letting m → ∞ in the above depiction, thereby obtaining
an infinite tree.

A typical adaptive basis selection algorithm, for approximating the target
function f , chooses a coefficient norm that measures the spread of coef-
ficients, and finds a basis that minimizes this norm. As we have seen in
Section 2, n-term approximation efficiency using orthonormal bases is re-
lated to `τ norms of the coefficients. Thus, a typical algorithm would begin
by fixing a sufficiently large value of m for the desired numerical accuracy,
choosing τ > 0, and finding a basis for the `τ norm, as we shall now describe.

If f is our target function, we let S = Pmf be the orthogonal projection
of f onto Sm. The coefficients 〈f, (γb)I〉 = 〈S, (γb)I〉 can be computed effi-
ciently as described above. Let B be any orthonormal subcollection of the
functions (γb)I and define

Nτ (B) := Nτ (f,B) :=
∑
B

|〈f, (γb)I〉|τ . (3.64)

We want to find a basis B for Γ0 which minimizes (3.64). To do this, we
begin at the bottom of the tree and work our way up, at each step exchanging
the current basis for a new one if the new basis gives a smaller Nτ .

For each node b at the bottom of the tree (i.e., at level m), the space Γb
has dimension one and has the basis {γb}. A node occurring at level m− 1
corresponds to the space Γb. It has two bases from our collection. The first
is {(γb)I}I∈D1 ; the second is {γb0, γb1}. We compare these two bases and
choose the one, which will be denoted by Bb, that minimizes Nτ (B). We
do this for every node b at level m − 1. We then proceed up the tree. If
bases have been chosen for every node at level k, and if b is a node at level
k− 1, we compare Nτ ({((γb)I)I∈Dk−1

}) with Nτ (Bb0 ∪Bb1). The basis that
minimizes Nτ is denoted by Bb and is our best basis for node b. At the
conclusion, we shall have the best basis B0 for node 0, that is, the basis
which gives the smallest value of Nτ (B) among all wavelet packet bases for
Sm. This algorithm requires O(m2m) computations.

4. The elements of approximation theory

To move into the deeper aspects of nonlinear approximation, it will be ne-
cessary to call on some of the main tools of approximation theory. We have
seen in the study of piecewise constant approximation that a prototypical
theorem characterizes approximation efficiency in terms of the smoothness of
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the target function. For other methods of nonlinear approximation, it is not
always easy to decide the appropriate measure of smoothness which char-
acterizes approximation efficiency. There are, however, certain aids which
make our search for this connection easier. The most important of these is
the theory of interpolation of function spaces and the role of Jackson and
Bernstein inequalities. This section will introduce the basics of interpolation
theory and relate it to the study of approximation rates and smoothness.
In the process, we shall engage three types of spaces: approximation spaces,
interpolation spaces, and smoothness spaces. These three topics are intim-
ately connected and it is these connections which give us insight on how to
solve our approximation problems.

4.1. Approximation spaces

In our analysis of piecewise constant approximation, we have repeatedly
asked the question: which functions are approximated at a given rate like
O(n−α)? It is time to put questions like this into a more formal framework.
We shall consider the following general setting in this section. There will
be a normed space (X, ‖ · ‖X), in which approximation takes place. Our
approximants will come from spaces Xn ⊂ X, n = 0, 1, . . ., and we introduce
the approximation error

En(f)X := dist(f,Xn)X := inf
g∈Xn

‖f − g‖X . (4.1)

In the case of linear approximation, n will usually be the dimension of Xn, or
a quantity closely related to dimXn. In nonlinear approximation, n relates
to the number of free parameters. For example, n might be the number
of knots (breakpoints) in piecewise constant approximation with free knots.
The Xn can be quite general spaces; in particular, they do not have to
be linear. But we shall make the following assumptions (some only for
convenience):

(i) X0 := {0}
(ii) Xn ⊂ Xn+1

(iii) aXn = Xn, a ∈ R, a 6= 0
(iv) Xn +Xn ⊂ Xcn for some integer constant c ≥ 1 independent of n
(v) each f ∈ X has a best approximation from Xn

(vi) lim
n→∞

En(f)X = 0 for all f ∈ X.

Assumptions (iii), (iv), and (vi) are the most essential. The others can be
eliminated or modified with a similar theory.

It follows from (ii) and (vi) that En(f)X monotonically decreases to 0 as
n tends to ∞.

We wish to gather under one roof all functions which have a common
approximation rate. In analogy with the results of the previous section, we
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introduce the space Aα := Aα(X), which consists of all functions f ∈ X for
which

En(f)X = O(n−α), n→∞. (4.2)

Our goal, as always, is to characterize Aα in terms of something we know,
such as a smoothness condition. It turns out that we shall sometimes need
to consider finer statements about the decrease of the error En(f)X . This
will take the form of slight variants to (4.2), which we now describe.

Let N denote the set of natural numbers. For each α > 0 and 0 < q <∞,
we define the approximation space Aαq := Aαq (X, (Xn)) as the set of all
f ∈ X such that

|f |Aαq :=

{ (∑∞
n=1[nαEn(f)X ]q 1

n

)1/q
, 0 < q <∞,

supn≥1 n
αEn(f)X , q =∞,

(4.3)

is finite, and further define ‖f‖Aαq := |f |Aαq +‖f‖X . Thus, the case q =∞ is
the spaceAα described by (4.2). For q <∞, the requirement for membership
in Aαq gets stronger as q decreases:

Aαq ⊂ Aαp , 0 < q < p ≤ ∞.

However, all of these spaces correspond to a decrease in error like O(n−α).
Because of the monotonicity of the sequence (En(f)X), we have the equi-

valence

|f |Aαq �
{ (∑∞

k=0[2kαE2k(f)X ]q
)1/q

, 0 < q <∞,
supk≥0 2kαE2k(f)X , q =∞.

(4.4)

It is usually more convenient to work with (4.4) than (4.3).
The next sections will develop some general principles which can be used

to characterize the approximation spaces Aαq .

4.2. Interpolation spaces

Interpolation spaces arise in the study of the following problem of analysis.
Given two spaces X and Y , for which spaces Z is it true that each linear op-
erator T mapping X and Y boundedly into themselves automatically maps
Z boundedly into itself? Such spaces Z are called interpolation spaces for
the pair X, Y and the problem is to construct and, more ambitiously, to
characterize the spaces Z. The classical result in this direction is the Riesz–
Thorin theorem, which states that the spaces Lp, 1 < p < ∞, are interpol-
ation spaces for the pair L1,L∞ and the Calderón–Mitjagin theorem, which
characterizes all the interpolation spaces for this pair as the rearrangement
of invariant function spaces (see Bennett and Sharpley (1988)). There are
two primary methods for constructing interpolation spaces Z: the complex
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method as developed by Calderón (1964a) and the real method of Lions and
Peetre (see Peetre (1963)). We shall only need the latter in what follows.

Interpolation spaces arise in approximation theory in the following way.
Consider our problem of characterizing the approximation spaces Aα(X) for
a given space X and approximating subspaces Xn. If we obtain information
about Aα(X) for a given value of α, is it possible to parlay that informa-
tion into statements about other approximation spaces Aβ(X), with β 6= α?
The answer is yes: we can interpolate this information. Using these ideas,
we can usually characterize approximation spaces as interpolation spaces
between X and a suitably chosen second space Y . Thus, our goal of charac-
terizing approximation spaces gets reduced to that of characterizing certain
interpolation spaces. Fortunately, much effort has been put into the prob-
lem of characterizing interpolation spaces, and characterizations (usually as
smoothness spaces) are known for most classical pairs of spaces X, Y . Thus,
our approximation problem is solved.

An example might motivate the reader. In our study of approximation by
piecewise constants, we saw that Lip(1, Lp(Ω)) characterizes the functions
which are approximated with order O(n−1) in Lp(Ω) by linear approximation
from S1(∆n). Interpolation gives that the spaces Lip(α,Lp(Ω)) characterize
the functions which are approximated with order O(n−α), 0 < α < 1. A
similar situation exists in nonlinear approximation.

Our description of how to solve the approximation problem is a little
unfair to approximation theory. It makes it sound as if we reduce the ap-
proximation problem to the interpolation problem and then call upon the
interpolation theory for the final resolution. In fact, one can go both ways,
that is, one can also think of characterizing interpolation spaces by approx-
imation spaces. Indeed, this is often how interpolation spaces are character-
ized. Thus, both theories shed considerable light on the other, and this is
the view we shall adopt in what follows.

As mentioned, we shall restrict our development to the real method of
interpolation using the Peetre K-functional, which we now describe. Let X,
Y be a pair of normed linear spaces. We shall assume that Y is continuously
embedded in X (Y ⊂ X and ‖·‖X ≤ C‖·‖Y ). (There are a few applications
in approximation theory where this is not the case and one can make simple
modifications in what follows to handle those cases as well.) For any t > 0,
we define the K-functional

K(f, t) := K(f, t;X,Y ) := inf
g∈Y
‖f − g‖X + t|g|Y , (4.5)

where ‖ · ‖X is the norm on X and | · |Y is a semi-norm on Y . We shall
also meet cases where | · |Y is only a quasi-semi-norm, which means that
the triangle inequality is replaced by |g1 + g2|Y ≤ C(|g1|Y + |g2|Y ) with an
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absolute constant C. To spare the reader, we shall ignore this distinction in
what follows.

The function K(f, ·) is defined on R+ and is monotone and concave (being
the pointwise infimum of linear functions). Notice that, for each t > 0,
K(f, t) describes a type of approximation. We approximate f by functions
g from Y with the penalty term t|g|Y . The role of the penalty term is
paramount. As we vary t > 0, we gain additional information about f .
K-functionals have many uses. As noted earlier, they were originally

introduced as a means of generating interpolation spaces. To see that ap-
plication, let T be a linear operator which maps X and Y into themselves
with a norm not exceeding M in both cases. Then, for any g ∈ Y , we have
Tf = T (f − g) + Tg and therefore

K(Tf, t) ≤ ‖T (f − g)‖X + t|Tg|Y ≤M(‖f − g‖X + t|g|Y ). (4.6)

Taking an infimum over all g, we have

K(Tf, t) ≤MK(f, t), t > 0. (4.7)

Suppose further that ‖·‖ is a function norm defined for real-valued functions
on R+. We can apply this norm to (4.7) and obtain

‖K(Tf, ·)‖ ≤M‖K(f, ·)‖. (4.8)

Each function norm ‖·‖ can be used in (4.8) to define a space of functions
(those functions for which the right side of (4.8) is finite) and this space
will be an interpolation space. We shall restrict our attention to the most
common of these, which are the θ, q norms. They are analogous to the norms
we used in defining approximation spaces. If 0 < θ < 1 and 0 < q ≤ ∞,
then the interpolation space (X,Y )θ,q is defined as the set of all functions
f ∈ X such that

|f |(X,Y )θ,q :=

{ (∫∞
0 [t−θK(f, t)]q dt

t

)1/q
, 0 < q <∞,

supt>0 t
−θK(f, t), q =∞,

(4.9)

is finite.
The spaces (X,Y )θ,q are interpolation spaces. The usefulness of these

spaces depends on understanding their nature for a given pair (X,Y ). This
is usually accomplished by characterizing the K-functional for the pair. We
shall give several examples of this in Sections 4.4–4.5.

Here is a useful remark which we shall have need for later. We can apply
the θ, q method for generating interpolation spaces to any pair (X,Y ). In
particular, we can apply the method to a pair of θ, q spaces. The question is
whether we get anything new and interesting. The answer is no: we simply
get θ, q spaces of the original pair (X,Y ). This is called the reiteration the-
orem of interpolation. Here is its precise formulation. Let X ′ := (X,Y )θ1,q1
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and Y ′ := (X,Y )θ2,q2. Then, for all 0 < θ < 1 and 0 < q ≤ ∞, we have

(X ′, Y ′)θ,q = (X,Y )α,q, α := (1− θ)θ1 + θθ2. (4.10)

We make two observations which can simplify the norm in (4.9). Firstly,
using the fact that Y is continuously embedded in X, we obtain an equivalent
norm by taking the integral in (4.9) over [0, 1]. Secondly, since K(f, .) is
monotone, the integral over [0, 1] can be discretized. This gives that the
norm of (4.9) is equivalent to

|f |(X,Y )θ,q �
{ (∑∞

k=0[2kθK(f, 2−k)]q
)1/q

, 0 < q <∞,
supk≥0 2kθK(f, 2−k), q =∞

(4.11)

(see Chapter 6 of DeVore and Lorentz (1993) for details).
In this form, the definitions of interpolation spaces and approximation

spaces are almost identical: we have replaced E2k by K(f, 2−k). It should
therefore come as no surprise that one space can often be characterized by
the other. What is needed for this is a comparison between the error En(f)
and the K-functional K. Of course, this can only be achieved if we make the
right choice of the space Y in the definition of K. But how can we decide
what Y should be? This is the role of the Jackson and Bernstein inequalities
given in the next subsection.

4.3. Jackson and Bernstein inequalities

In this subsection, we shall make a considerable simplification in the search
for a characterization of approximation spaces and bring out fully the con-
nection between approximation and interpolation spaces. We assume that
X is the space in which approximation takes place and assume that we can
find a positive number r > 0 and a second space Y continuously embedded
in X for which the following two inequalities hold.

Jackson inequality: En(f)X ≤ Cn−r|f |Y , f ∈ Y , n = 1, 2, . . ..

Bernstein inequality: |S|Y ≤ Cnr‖S‖X , S ∈ Xn, n = 1, 2, . . ..

Whenever these two inequalities hold, we can draw a comparison between
En(f)X and K(f, n−r,X, Y ). For example, assume that the Jackson in-
equality is valid and let g ∈ Y be such that

‖f − g‖X + n−r|g|Y = K(f, n−r).

(In fact we do not know of the existence of such a g, and so an ε should be
added into this argument, but to spare the reader we shall not insist upon
such precision in this survey.) If S is a best approximation to g from Xn,
then

En(f)X ≤ ‖f − S‖X ≤ ‖f − g‖X + ‖g − S‖X
≤ ‖f − g‖X + Cn−r|g|Y ≤ CK(f, n−r), (4.12)
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where the last inequality makes use of the Jackson inequality.
By using the Bernstein inequality, we can reverse (4.12) in a certain weak

sense (see Theorem 5.1 of Chapter 7 in DeVore and Lorentz (1993)). From
this one derives the following relation between approximation spaces and
interpolation spaces.

Theorem 1 If the Jackson and Bernstein inequalities are valid, then for
each 0 < γ < r and 0 < q ≤ ∞ the following relation holds between
approximation spaces and interpolation spaces

Aγq (X) = (X,Y )γ/r,q (4.13)

with equivalent norms.

Thus, Theorem 1 will solve our problem of characterizing the approxim-
ation spaces if we know two ingredients:

(i) an appropriate space Y for which the Jackson and Bernstein inequal-
ities hold

(ii) a characterization of the interpolation spaces (X,Y )θ,q.

The first step is the difficult one from the viewpoint of approximation (espe-
cially in the case of nonlinear approximation). Fortunately, step (ii) is often
provided by classical results in the theory of interpolation. We shall men-
tion some of these in the next sections and also relate these to our examples
of approximation by piecewise constants. But for now we want to make a
very general and useful remark concerning the relation between approxim-
ation and interpolation spaces by stating the following elementary result of
DeVore and Popov (1988b).

Theorem 2 For any space X and spaces Xn, as well as for any r > 0 and
0 ≤ s ≤ ∞, the spaces Xn, n = 1, 2, . . ., satisfy the Jackson and Bernstein
inequalities for Y = Ars(X). Therefore, for any 0 < α < r and 0 < q ≤ ∞,
we have

Aαq (X) = (X,Ars(X))α/r,q. (4.14)

In other words, the approximation family Aαq (X) is an interpolation family.

We also want to expand on our earlier remark that approximation can
often be used to characterize interpolation spaces. We shall point out that, in
certain cases, we can realize the K-functional by an approximation process.

We continue with the above setting. We say a sequence (Tn), n = 1, 2, . . .,
of (possibly nonlinear) operators, with Tn mapping X into Xn, provides near
best approximation if there is an absolute constant C > 0 such that

‖f − Tnf‖X ≤ CEn(f)X , n = 1, 2, . . . .



88 R. A. DeVore

We say this family is stable on Y if

|Tnf |Y ≤ C|f |Y , n = 1, 2, . . . ,

with an absolute constant C > 0.

Theorem 3 Let X, Y , (Xn) be as above and suppose that (Xn) satisfies
the Jackson and Bernstein inequalities. Suppose further that the sequence of
operators (Tn) provides near best approximation and is stable on Y . Then,
Tn realizes the K-functional, that is,

‖f − Tnf‖X + n−r|Tnf |Y ≤ CK(f, n−r,X, Y )

with an absolute constant C.

For a proof and further results of this type, we refer the reader to Cohen,
DeVore and Hochmuth (1997).

4.4. Interpolation for L1, L∞

The utility of the K-functional rests on our ability to characterize it and
thereby characterize the interpolation spaces (X,Y )θ,q. Much effort was
put forward in the 1970s and 1980s to establish such characterizations for
classical pairs of spaces. The results were quite remarkable in that the char-
acterizations that ensued were always in terms of classical entities that have
a long-standing place in analysis. We shall give several examples of this.
In the present section, we limit ourselves to the interpolation of Lebesgue
spaces, which are classical to the theory. In later sections, we shall discuss
interpolation of smoothness spaces, which are more relevant to our approx-
imation needs.

Let us begin with the pair L1(A, dµ), L∞(A, dµ) with (A, dµ) a given
sigma-finite measure space. Hardy and Littlewood recognized the import-
ance of the decreasing rearrangement f∗ of a µ-measurable function f . The
function f∗ is a nonnegative, nonincreasing function defined on R+ which is
equimeasurable with f :

µ(f, t) := µ{x : |f(x)| > t} = |{s : f∗(s) > t}|, t > 0, (4.15)

where we recall our notation for |E| to denote the Lebesgue measure of a
set E. The rearrangement f∗ can be defined directly via

f∗(t) := inf{y : µ(f, t) ≤ y}. (4.16)

Thus, f∗ is essentially the inverse function to µ(f, t). We have the following
beautiful formula for the K-functional for this pair (see Chapter 6 of DeVore
and Lorentz (1993)):

K(f, t, L1, L∞) =
∫ t

0
f∗(s) ds, (4.17)
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which holds whenever f ∈ L1 + L∞. From the fact that∫
A
|f |p dµ =

∫ ∞
0

(f∗(s))p ds

it is easy to deduce from (4.17) the Riesz–Thorin theorem for this pair.
With the K-functional in hand, we can easily describe the (θ, q) interpol-

ation spaces in terms of Lorentz spaces. For each 0 < p < ∞, 0 < q ≤ ∞,
the Lorentz space Lp,q(A, dµ) is defined as the set of all µ-measurable f
such that

‖f‖Lp,q :=
{

(
∫∞

0 [t1/pf∗(t)]q dt
t )1/q, 0 < q <∞,

sup t1/pf∗(t), q =∞, (4.18)

is finite. Of course, the form of the integral in (4.18) is quite familiar to us.
If we replace f∗ by 1

t

∫ t
0 f
∗(s) ds = K(f, t)/t and use the Hardy inequalities

(see Chapter 6 of DeVore and Lorentz (1993) for details) we obtain that

(L1(A, dµ), L∞(A, dµ))1−1/p,q = Lp,q(A, dµ), 1 < p <∞, 0 < q ≤ ∞.
(4.19)

Several remarks are in order. The space Lp,∞ is better known as weak Lp
and can be equivalently defined by the condition

µ{x : |f(x)| > y} ≤Mpy−p. (4.20)

The smallest M for which (4.20) is valid is equivalent to the norm in Lp,∞.
The above results include the case when dµ is purely atomic. This will

be useful for us in what follows, in the following context. Let N be the set
of natural numbers and let `p = `p(N) be the collection of all sequences
x = (x(n))n∈N for which

‖x‖`p :=
{

(
∑∞

n=1 |x(n)|p)1/p, 0 < p <∞,
supn∈N |x(n)|, p =∞, (4.21)

is finite. Then, `p(N) = Lp(N, dµ) with µ the counting measure. Hence,
the above results apply. The Lorentz spaces in this case are denoted by `p,q.
The space `p,∞ (weak `p) consists of all sequences that satisfy

x∗(n) ≤Mn−1/p (4.22)

with (x∗(n)) the decreasing rearrangement of (|x(n)|). This can equivalently
be stated as

#{n : |x(n)| > y} ≤Mpy−p. (4.23)

The interpolation theory for Lp spaces applies to more than the pair
(L1, L∞). We formulate this only for the spaces `p,q which we shall use
later. For any 0 < p1 < p2 <∞, 0 < q1, q2 ≤ ∞, we have

(`p1,q1, `p2,q2)θ,q = `p,q, 1/p := 1−θ
p1

+ θ
p2
, 0 < q ≤ ∞, (4.24)
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with equivalent norms. For 1 ≤ p1, p2 ≤ ∞, this follows from (4.19) by using
the reiteration theorem (4.10). The general case needs slight modification
(see Bergh and Löfström (1976)).

Interpolation for the pair (L1, L∞) is rather unusual in that we have an
exact identity for the K-functional. Usually we only get an equivalent char-
acterization of K. One other case where an exact identity is known is inter-
polation between C and Lip 1, in which case

K(f, t;C,Lip 1) =
1
2
ω̄(f, 2t), t > 0,

where ω is the modulus of continuity (to be defined in the next section) and
ω̄ is its concave majorant (see Chapter 6 of DeVore and Lorentz (1993)).

4.5. Smoothness spaces

We have introduced various smoothness spaces in the course of discussing
approximation by piecewise constants. In this section, we want to be a
bit more systematic and describe the full range of smoothness spaces that
we shall need in this survey. There are two important ways to describe
smoothness spaces. One is through notions such as differentiability and
moduli of smoothness. Most smoothness spaces were originally introduced
into analysis in this fashion. A second way is to expand functions into
a series of building blocks (for instance Fourier or wavelet) and describe
smoothness as decay conditions on the coefficients in such expansions. That
these descriptions are equivalent is at the heart of the subject. We shall
give both descriptions. The first is given here in this section; the second in
Section 7 when we discuss wavelet decompositions.

We begin with the most important and best known smoothness spaces,
the Sobolev spaces. Suppose that 1 ≤ p ≤ ∞ and r > 0 is an integer.
If Ω ⊂ Rd is a domain (for us this will mean an open, connected set), we
define W r(Lp(Ω)) as the collection of all measurable functions f defined on
Ω which have all their distributional derivatives Dνf , |ν| ≤ r, in Lp(Ω). Here
|ν| := |ν1|+ · · ·+ |νd| when ν = (ν1, . . . , νd). The semi-norm for W r(Lp(Ω))
is defined by

|f |W r(Lp(Ω)) :=
∑
|ν|=r
‖Dνf‖Lp(Ω)), (4.25)

and their norm by ‖f‖W r(Lp(Ω)) := |f |W r(Lp(Ω)) + ‖f‖Lp(Ω). Thus, Sobolev
spaces measure smoothness of order r in Lp when r is a positive integer and
1 ≤ p ≤ ∞. Their deficiency is that they do not immediately apply when
r is nonintegral or when p < 1. We have seen several times already the
need for smoothness spaces for these extended parameters when engaging
nonlinear approximation.
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We have seen in the Lipschitz spaces that one way to describe smoothness
of fractional order is through differences. We have previously used only
first differences; now we shall need differences of arbitrary order which we
presently define. For h ∈ Rd, let Th denote the translation operator which
is defined for a function f by Thf := f(·+ h) and let I denote the identity
operator. Then, for any positive integer r, ∆r

h := (Th − I)r is the rth
difference operator with step h. Clearly ∆r

h = ∆h(∆r−1
h ). Also,

∆r
h(f, x) :=

r∑
k=0

(−1)r−k
(
r

k

)
f(x+ kh). (4.26)

Here and later we use the convention that ∆r
h(f, x) is defined to be zero

when any of the points x, . . . , x+ rh are not in Ω.
We can use ∆r

h to measure smoothness. If f ∈ Lp(Ω), 0 < p ≤ ∞,

ωr(f, t)p := sup
|h|≤t
‖∆r

h(f, ·)‖Lp(Ω) (4.27)

is the rth order modulus of smoothness of f in Lp(Ω). In the case p = ∞,
L∞(Ω) is replaced by C(Ω), the space of uniformly continuous functions on
Ω. We always have that ωr(f, t)p → 0 monotonically as t → 0. The faster
this convergence to 0 the smoother is f .

We create smoothness spaces by bringing together all functions whose
moduli of smoothness have a common behaviour. We shall particularly
need this idea with the Besov spaces which are defined as follows. There will
be three parameters in our description of Besov spaces. The two primary
parameters are α, which gives the order of smoothness (for instance the
number of derivatives), and p, which gives the Lp space in which smoothness
is to be measured. A third parameter q, which is secondary to the two
primary parameters, will allow us to make subtle distinctions in smoothness
spaces with the same primary parameters.

Let α > 0, 0 < p ≤ ∞, and 0 < q ≤ ∞. We take r := [α]+ 1 (the smallest
integer larger than α). We say f is in the Besov space Bα

q (Lp(Ω)) if

|f |Bαq (Lp(Ω)) :=

{ (∫∞
0 [t−αωr(f, t)p]q dt

t

)1/q
, 0 < q <∞,

supt>0 t
−αωr(f, t)p, q =∞,

(4.28)

is finite. This expression defines the semi-norm on Bα
q (Lp(Ω)); the Besov

norm is given by ‖f‖Bαq (Lp(Ω)) := |f |Bαq (Lp(Ω)) + ‖f‖Lp(Ω). Here, we have
complete analogy with the definitions (4.3) and (4.9) of approximation and
interpolation spaces.

The Besov spaces give a full range of smoothness in that α can be any
positive number, and p can range over (0,∞]. As noted earlier, q is a
secondary index which gives finer gradations of smoothness with the same
primary indices.
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We shall next make some further remarks which will help clarify Besov
spaces, especially their relationship to other smoothness spaces such as the
Sobolev and Lipschitz spaces. We assume from here on that the domain Ω
is a Lipschitz domain (see Adams (1975)) – slightly weaker conditions on Ω
suffice for most of the following statements.

We have taken r as the smallest integer larger than α. Actually, any
choice of r > α will define the same space with an equivalent norm (see
Chapter 2 of DeVore and Lorentz (1993)). If we take α < 1 and q =∞, the
Besov space Bα

∞(Lp(Ω)) is the same as Lip(α,Lp(Ω)) with an identical semi-
norm and norm. However, when α = 1, we get a different space because the
Besov space uses ω2 in its definition but Lip(1, Lp(Ω)) uses ω1. In this case,
the Besov space is larger since ω2(f, t)p ≤ 2max(1/p,1)ω1(f, t)p. Sometimes
B1
∞(C(Ω)) is called the Zygmund space.
For the same reason that Lip 1 is not a Besov space, the Sobolev space

W r
p (Lp(Ω)), 1 ≤ p ≤ ∞, p 6= 2, r an integer, is not the same as the Besov

space Br
∞(Lp(Ω)). The Besov space is slightly larger. We could describe

the Sobolev space W r
p (Lp(Ω)), 1 < p ≤ ∞, by replacing ωr+1 by ωr in

the definition of Br
∞(Lp(Ω)). When α is nonintegral, the fractional order

Sobolev space Wα(Lp(Ω)) is defined to be Bα
p (Lp(Ω)). Two special cases

are noteworthy. When p = 2, the Besov space Br
2(L2(Ω)) is the same as the

Sobolev space W r(L2(Ω)); this is an anomaly that only holds for p = 2. The
Lipschitz space Lip(1, L1(Ω)) is the same as BV when Ω is an interval in
R1. In higher dimensions, we use Lip(1, L1(Ω)) as the definition of BV(Ω);
it coincides with some but not all of the many other definitions of BV.

Increasing the secondary index q in Besov spaces gives a larger space, i.e.,

Bα
q1(Lp(Ω)) ⊂ Bα

q2(Lp(Ω)), q1 < q2.

However, the distinctions between these spaces are small.
The Sobolev embedding theorem gives much additional information about

the relationship between Besov spaces with different values of the paramet-
ers. It is easiest to describe these results pictorially. As earlier, we identify
a Besov space with primary indices p and α with the point (1/p, α) in the
upper right quadrant of R2. The line with slope d passing through (1/p, 0)
is the demarcation line for embeddings of Besov spaces into Lp(Ω) (see Fig-
ure 5). Any Besov space with primary indices corresponding to a point
above that line is embedded into Lp(Ω) (regardless of the secondary index
q). Besov spaces corresponding to points on the demarcation line may or
may not be embedded in Lp(Ω). For example the Besov spaces Bα

τ (Lτ (Ω))
with 1/τ = α/d + 1/p correspond to points on the demarcation line and
they are embedded in Lp(Ω). Points below the demarcation line are never
embedded in Lp(Ω).
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(1/p,0) (Lp)

Sobolev embedding line

Fig. 5. Sobolev embedding

4.6. Interpolation of smoothness spaces

There is a relatively complete description of interpolation between Sobolev
or Besov spaces. We shall point out the results most important for our later
use.

Let us first consider interpolation between Lp(Ω) and a Sobolev space
W r(Lp(Ω)). Interpolation for this pair appears often in linear approxima-
tion. One way to describe the interpolation spaces for this pair is to know
its K-functional. The remarkable fact (proved in the case of domains by
Johnen and Scherer (1977)) is that

K(f, tr, Lp(Ω),W r(Lp(Ω)) � ωr(f, t)p, t > 0. (4.29)

This brings home the point we made earlier that K-functionals can usually
be described by some classical entity (in this case the modulus of smooth-
ness). From (4.29), it is a triviality to deduce that

(Lp(Ω),W r(Lp(Ω)))θ,q = Bθr
q (Lp(Ω)), 0 < θ < 1, 0 < q ≤ ∞, (4.30)

with equivalent norms. From the reiteration Theorem (4.10) for interpola-
tion we deduce that, for α1 < α2 and any 0 < q1, q2 ≤ ∞, we have for any
0 < θ < 1, 0 < q ≤ ∞,

(Bα1
q1 (Lp(Ω)), Bα2

q2 (Lp(Ω)))θ,q = Bα
q (Lp(Ω)), α := (1− θ)α1 + θα2. (4.31)

We can also replace Bα1
q1 (Lp(Ω)) by Lp(Ω) and obtain

(Lp(Ω), Bα
r (Lp(Ω)))θ,q = Bθα

q (Lp(Ω)), 0 < θ < 1, 0 < q ≤ ∞, (4.32)

for any 0 < r ≤ ∞.
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(1/p,0) (Lp(Ω))

(1/p,r) ( W r(Lp(Ω)))

α (1/p,α) (Bα(Bq (Lp(Ω)))

r

Fig. 6. Graphical interpretation of interpolation between Lp(Ω) and W r(Lp(Ω))

We can interpret these results pictorially as in Figure 6. The space Lp(Ω)
corresponds to the point (1/p, 0), and W r(Lp(Ω)) corresponds to the point
(1/p, r). Thus, (4.30) states that the interpolation spaces for this pair cor-
respond to the Besov spaces on the (vertical) line segment connecting the
points (1/p, 0) and (1/p, r). A similar picture interprets (4.31) and (4.32).

This pictorial interpretation is very instructive. When we want to inter-
polate between a pair of spaces (X,Y ), we identify them with their corres-
ponding points in the upper quadrant of R2. The points on the line segment
connecting them are the interpolation spaces and, in fact, given the para-
meter θ, the interpolation space corresponds to the point on this line segment
which divides the segment by the ratio θ : 1 − θ. However, care should be
taken in this interpretation regarding the second parameter q, since it does
not enter into the picture. In some cases, we can take any value of q, as is
the case for the examples considered so far. However, in some cases that we
shall see shortly, this interpretation only holds for certain q appropriately
chosen.

Let us consider another example, which corresponds to interpolation in a
case where the line segment is horizontal. DeVore and Scherer (1979) have
shown that, if 1 ≤ p1 < p2 ≤ ∞, then the (θ, p) interpolation between So-
bolev spaces W r(Lp1(Ω)) and W r(Lp2(Ω)) gives Sobolev spaces W r(Lp(Ω))
when 1

p = 1−θ
p1

+ θ
p2

, while changing θ, p into the more general θ, q gives the
modified Sobolev spaces W r(Lp,q(Ω)) which use the Lorentz spaces Lp,q(Ω)
in their definition (which we do not give).
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There are characterizations for the θ, q interpolation spaces for many other
pairs of Besov spaces (see Bergh and Löfström (1976) or Cohen, DeVore and
Hochmuth (1997), for example). However, we shall restrict our further dis-
cussion to the following special case, which occurs in nonlinear approxima-
tion. We fix a value of p ∈ (0,∞) and consider the Besov spaces Bα

τ (Lτ (Ω))
where τ and α are related by

1
τ

=
α

d
+

1
p
. (4.33)

These spaces all correspond to points on the line segment with slope d
passing through (1/p, 0) (which corresponds to Lp(Ω)). We have the fol-
lowing interpolation result for the pair (Lp(Ω), Bα

τ (Lτ (Ω))):

(Lp(Ω), Bα
τ (Lτ (Ω)))θ,q = Bθα

q (Lq(Ω)), provided
1
q

=
θα

d
+

1
p
. (4.34)

In other words, interpolating between two Besov spaces corresponding to
points on this line, we get another Besov space corresponding to a point on
this line provided we choose the secondary indices in a suitable way.

We shall obtain more information about Besov spaces and their inter-
polation properties in Section 7 when we discuss their characterization by
wavelet decompositions.

5. Nonlinear approximation in a Hilbert space:
a second look

Let us return to the example of approximation in a Hilbert space which
began our discussion in Section 2. We continue with the discussion and
notation of that section.

We have seen that for nonlinear (n-term) approximation in H we could
characterize Ar∞((Hn)) for any r > 0 by the condition

γn(f) ≤Mn−r−1/2, (5.1)

with γn(f) the rearranged coefficients. We now see that (5.1) states that
the sequence fk := 〈f, ηk〉 is in weak `τ(r) (`τ(r),∞), with τ(r) defined by

1
τ(r) = r +

1
2
,

and the smallest M for which (5.1) holds is equivalent to the weak `τ norm.
We can now characterize all of the approximation spaces Aαq (H) in terms

of the coefficients fk. Recall that Theorem 2 shows that, for any r > 0, the
nonlinear spaces Σn(H), satisfy Jackson and Bernstein inequalities for the
space Y := Ar∞(H) and

Aαq (H) = (H,Ar∞(H))α/r,q. (5.2)
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The mapping f → (fk) is invertible and gives an isometry between H
and `2(N) and also between Ar∞ and `τ,∞(N). We can interpolate, and de-
duce that this mapping is an isometry between Aαq (H) and `τ(α),q(N) with
τ defined by 1/τ = α+ 1/2. Hence, we have the following complete charac-
terization of the approximation spaces for nonlinear n-term approximation.

Theorem 4 For nonlinear n-term approximation in a Hilbert space H, a
function f is in Aαq (H)) if and only if its coefficients are in `τ(α),q, τ(α) :=
(α+ 1/2)−1, and |f |Aαq (H) � ‖(fk)‖`τ (α),q.

6. Piecewise polynomial approximation

Now that we have the tools of approximation firmly in hand, we shall sur-
vey the main developments of nonlinear approximation, especially as they
apply to numerical computation. We shall begin in this section with piece-
wise polynomial approximation. The reader should keep in mind the case
of piecewise constant approximation that we used to motivate nonlinear
approximation.

6.1. Local approximation by polynomials

As the name suggests, piecewise polynomial approximation pieces together
local polynomial approximants. Therefore, we need to have a good under-
standing of local error estimates for polynomial approximation. This is an
old and well-established chapter in approximation and numerical computa-
tion, which we shall briefly describe in this section.

For each positive integer r, we let Pr denote the space of polynomials in
d variables of total degree < r (polynomials of order r). Let 0 < p ≤ ∞ and
let I be a cube in Rd. If f ∈ Lp(I), the local approximation error is defined
by

Er(f, I)p := inf
P∈Pr

‖f − P‖Lp(I). (6.1)

The starting point for estimating the efficiency of piecewise polynomial
approximation in Lp is to have good estimates for Er(f, I)p. Perhaps the
simplest of these is the estimate

Er(f, I)p ≤ C|I|r/d|f |W r(Lp(I)), (6.2)

which holds for 1 ≤ p ≤ ∞, |·|W r(Lp(I)) the Sobolev semi-norm of Section 4.5,
and the constant C depending only on r. This is sometimes known as the
Deny–Lions lemma in numerical analysis. There are several proofs of this
result available in the literature (see, for instance, Adams (1975)), usually
by constructing a bounded projector from Lp onto Pr. It can also be proved
indirectly (see DeVore and Sharpley (1984)).
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The estimate (6.2) remains valid when I is replaced by a more general
domain. Suppose, for example, that O is a domain that satisfies the uniform
cone condition (see Adams (1975)) and is contained in a cube I with |I|1/d ≤
Cdiam(O). If f ∈ W r(Lp(O)), then it can be extended to a function on
I with comparable norm (Adams (1975) or DeVore and Sharpley (1984)).
Applying (6.2) for I we deduce its validity on O with a constant C now
depending on r and O. We shall use this in what follows for polyhedral
domains. The constant C then depends on r and the smallest angle in O.
Similar remarks apply to the other estimates for Er(f, I)p that follow.

Using the ideas of interpolation introduced in Section 4 (see (4.29)), one
easily derives from (6.2) that

Er(f, I)p ≤ Crωr(f, |I|, I)p, (6.3)

with ωr the rth order modulus of smoothness of f introduced in Section 4.5.
This is called Whitney’s theorem in approximation and this estimate is
equally valid in the case p < 1. The advantage of (6.3) over (6.2) is that
it applies to any f ∈ Lp(I) and it also implies (6.2) because of elementary
properties of ωr.

Whitney’s estimate is not completely satisfactory when it is necessary to
add local estimates over varying cubes I. A more suitable form is obtained
by replacing ωr(f, |I|, I)p by

wr(f, I)p :=

(
1
|I|

∫
|s|≤|I|1/d

∫
I
|∆r

s(f, x)|p dxds

)1/p

. (6.4)

Then, we have (see, for instance, DeVore and Popov (1988a))

Er(f, I)p ≤ Crwr(f, I)p, (6.5)

which holds for all r ≥ 1 and all 0 < p ≤ ∞ (with the obvious change in
norms for p =∞).

It is also possible to bound Er(f, I)p in terms of smoothness measured in
spaces Lq, q 6= p. Such estimates are essentially embedding theorems and
are important in nonlinear approximation. For example, in analogy with
(6.2), we have for each 1 ≤ q, p ≤ ∞ and r > d(1/q − 1/p)+,

Er(f, I)p ≤ Cr|I|r/d+1/p−1/q |f |W r(Lq(I)). (6.6)

We shall sketch a simple idea for proving such estimates, which is at the
heart of proving embedding theorems. We consider q ≤ p (the other case is
trivial). It is enough to prove (6.6) in the case I = [0, 1]d since it follows for
other cubes by a linear change of variables. For each dyadic cube J ⊂ I, let
PJ be a polynomial in Pr that satisfies

‖f − PJ‖Lq(J) ≤ Er(f, J)q,
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and define Sk :=
∑

J∈Dk(I) PJχJ , where Dk(I) is the collection of all dyadic
subcubes of I of side length 2−k. Then, S0 = PI and Sk → f in Lp(I).
Therefore,

Er(f, I)p ≤ ‖f − PI‖Lp(I) ≤
∞∑
k=0

‖Sk+1 − Sk‖Lp(I). (6.7)

Now, for each polynomial P ∈ Pr and each cube J , we have ‖P‖Lp(J) ≤
C|J |1/p−1/q‖P‖Lq(J) with the constant depending only on r (see Lemma 3.1
of DeVore and Sharpley (1984) for the simple proof). From this, it follows
that

‖Sk+1 − Sk‖pLp(I) =
∑

J∈Dk+1(I)

‖Sk+1 − Sk‖pLp(J)

≤ C2−kd(1−p/q)
∑

J∈Dk+1(I)

‖Sk+1 − Sk‖pLq(J).

Now on J , we have Sk+1 − Sk = PJ ′ − PJ where J ′ is the parent of J . We
write PJ ′ − PJ = PJ ′ − f + f − PJ and use (6.2) (with p replaced by q) on
each difference to obtain

‖Sk+1 − Sk‖pLp(I) ≤ C2−kd(rp/d+1−p/q)
∑

J∈Dk+1(I)

|f |pW r(Lq(J ′))

≤ C2−kd(rp/d+1−p/q)

 ∑
J∈Dk+1(I)

|f |qW r(Lq(J ′))

p/q

= C2−kd(rp/d+1−p/q)|f |pW r(Lq(I)).

Here we used the facts that ‖ · ‖`p ≤ ‖ · ‖`q if q ≤ p and that a point x ∈ I
appears at most 2d times in a cube J ′, as J runs over the cubes in Dk(I).
If we use this estimate in (6.7), we arrive at (6.6).

We can also allow q < 1 and nonintegral r in (6.6) if we use the Besov
spaces. Namely, if r > 0 satisfies r ≥ d(1/q − 1/p)+, then

Er(f, I)p ≤ Cr|I|r/d+1/p−1/q|f |Brq ((Lq(I)). (6.8)

Notice that we can allow r/d+ 1/p− 1/q = 0 in (6.8), which corresponds to
the embedding of Br

q (Lq(I)) into Lp(I). The case r/d > (1/q − 1/p)+ can
be proved as above using the set subadditivity of | · |qBrq (Lq(J)). For proofs of
these results for Besov spaces see DeVore and Popov (1988a).

Finally, as we have remarked earlier, by using extensions, these results can
be established for more general domains such as domains with a uniform cone
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condition. In particular, for any polyhedron C, we have

Er(f, C)p ≤ Crdiam(C)r/d+1/p−1/q |f |W r(Lq(C)), (6.9)

with the constant depending only on r, d, the number of vertices of C,
and the smallest angle in C. Similarly, we have the extension of (6.8) to
polyhedra.

6.2. Piecewise polynomial approximation: the linear case

For the purpose of orienting the results on nonlinear approximation which
follow, we shall in this section consider approximation by piecewise polyno-
mials on fixed partitions. These results will be the analogue of approxima-
tion by piecewise constants on uniform partitions given in Section 3.1. For
convenience, we shall consider approximation on the unit cube Ω := [0, 1]d.
The following results can be established for more general domains by using
extension theorems similar to what we have mentioned earlier in this section.

By a partition of Ω, we mean a finite collection ∆ := {C} of polyhedrons
C which are pairwise disjoint and union to Ω. Given such a collection, we
define the partition diameter

diam(∆) := max
C

diam(C). (6.10)

We assume that the number of vertices of each cell C is bounded independ-
ently of C ∈ ∆.

Let Sr(∆) denote the space of piecewise polynomials of order r relative
to ∆. That is, a function S is in Sr(∆) if and only if it is a polynomial of
order r on each cell C ∈ ∆. For 0 < p ≤ ∞, we let

s∆(f)p := inf
S∈Sr(∆)

‖f − S‖Lp(Ω). (6.11)

We shall fix 1 ≤ p ≤ ∞ and estimate s∆(f)p. A similar analysis holds for
p < 1 with Sobolev norms replaced by Besov norms.

We assume that each cell C is contained in a cube J ⊂ I with |J |1/d ≤
Cdiam(C) with C depending only on c∆. Hence, by extending f to this cube
(if it is not already defined there) we see that, for each C ∈ ∆, there is a
polynomial PC ∈ Pr which satisfies (6.9):

‖f − PC‖Lp(C) ≤ Cdiam(∆)r|f |W r(Lp(C)). (6.12)

If we raise the estimates in (6.12) to the power p (in the case p < ∞) and
add them, we arrive at

s∆(f)p ≤ Cdiam ∆r|f |W r(Lp(Ω)). (6.13)

Of course, (6.12) is well known in both approximation and numerical
circles. It is the proper form for numerical estimates based on piecewise
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polynomials of order r. It is the Jackson inequality for this type of ap-
proximation. By interpolation (as described in Section 4.2), we obtain the
following estimate

s∆(f)p ≤ Cωr(f,diam ∆)p, (6.14)

where ωr(f, )̇p = ωr(f, ·,Ω)p is the rth order modulus of smoothness of f in
Lp(Ω) as introduced in Section 4.5. The advantage of (6.14) is that it does
not require that f is in W r(Lp(Ω)) and in fact applies to any f ∈ Lp(Ω).
For example, if f ∈ Lip(α,Lp(Ω)), then (6.14) implies

s∆(f)p ≤ C|f |Lip(α,Lp(Ω))|diam ∆|α. (6.15)

We would now like to understand to what extent estimates like (6.15) are
best possible. It is not difficult to prove that, if f ∈ Lp(Ω) is a function for
which

s∆(f)p ≤M |diam ∆|α (6.16)

holds for every partition ∆, then f ∈ Lip(α,Lp(Ω)) and the smallest M for
which (6.16) holds is equivalent to |f |Lip(α,Lp(Ω)). Indeed, for each h ∈ Rd
and each x ∈ Ω such that the line segment [x, x + rh) ⊂ Ω, there is a
partition ∆ with diam(∆) ≤ |h| and dist(x, ∂C) ≥ const |h| for every C ∈ ∆.
This allows an estimate for |∆r

h(f, x)| by using ideas similar to the inverse
estimates for piecewise constant approximation given in Section 3.1.

We note that the direct and inverse theorems relating approximation order
to smoothness take the same form as those in Section 3.1. Using our inter-
pretation of smoothness spaces given in Figure 6, we see that the approxima-
tion spaces for this form of linear approximation correspond to points on the
vertical line segment joining (1/p, 0) (Lp) to (1/p, r) (Lip(r, Lp). Thus the
only distinction from the piecewise constant case considered in Section 3.1
is that we can allow α to range over the larger interval [0, r] because we are
using piecewise polynomials of order r. Also, note that to achieve approxim-
ation order O(n−α) we would need spaces Sr(∆n) of linear space dimension
≈ nd, that is, we have the curse of dimensionality.

More generally, if we only know (6.16) for a specific sequence of partitions
(∆n), we can still prove that f ∈ Lip(α,Lp(Ω)) provided the partitions mix
sufficiently so that each x falls in the middle of sufficiently many C. We do
not formulate this precisely but refer readers to Section 2 of Chapter 12 of
DeVore and Lorentz (1993) for a precise formulation in the univariate case.

Mixing conditions are not valid in most numerical settings. Indeed, the
typical numerical case is where approximation takes place from a sequence
Sr(∆n), where ∆n is a refinement of ∆n−1. This means that the spaces
are nested: Sr(∆n−1) ⊂ Sr(∆n), n = 1, 2, . . .. In this case, one can prove
the inverse theorems only for a smaller range of α. It is easy to see that
restrictions are needed on α. For example, functions f in Sr(∆n) will be
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approximated exactly for m ≥ n. But functions in Sr(∆n) do not have much
smoothness because they are discontinuous across the faces of the partition.
This can be remedied by considering approximation by elements of Sr(∆n)
which have additional smoothness across the faces of the partition. We do
not formulate inverse theorems in this case but refer the reader to Section 3
of Chapter 12 in DeVore and Lorentz (1993) where similar univariate results
are proved.

We should mention, however, that considering splines with smoothness
brings out new questions concerning direct estimates of approximation like
(6.12). It is not easy to understand the dimension of spaces of smooth
multivariate piecewise polynomials, let alone their approximation power (see
Jia (1983)).

As the reader can now see, there are still interesting open questions con-
cerning the approximation power of splines on general partitions, which
relate the smoothness of the splines to the approximation power. These are
difficult problems and have to a large extent been abandoned with the ad-
vent of box splines and, later, wavelets. These two developments shifted the
viewpoint of spline approximation away from partitions and more toward
the spanning functions. We shall get into this topic more in Section 7 when
we discuss wavelet approximation.

6.3. Free knot piecewise polynomial approximation

To begin our development of nonlinear approximation by piecewise polyno-
mials we shall consider the case of approximating a univariate function f
defined on Ω = [0, 1] by piecewise polynomials of fixed order r. The theory
here is the analogue of piecewise constants discussed in Section 3.2.

Let the natural number r be fixed and for each n = 1, 2, . . ., let Σn := Σn,r

be the space of piecewise polynomials of order r with n pieces on Ω. Thus,
for each element S ∈ Σn there is a partition Λ of Ω consisting of n disjoint
intervals I ⊂ Ω and polynomials PI ∈ Pr such that

S =
∑
I∈Λ

PIχI . (6.17)

For each 0 < p ≤ ∞, we define the error of approximation

σn(f)p := σn,r(f)p := inf
S∈Σn,r

‖f − S‖Lp(Ω). (6.18)

The case p =∞ is sufficiently different that we shall restrict our discussion
to the case p < ∞ and refer the reader to DeVore and Lorentz (1993) or
Petrushev and Popov (1987) for the case p =∞.

We can characterize the functions f that can be approximated with an
order like O(n−α). We recall the approximation spaces

Aαq (Lp(Ω)) = Aαq (Lp(Ω), (Σn)).
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Fig. 7. Nonlinear approximation in Lp

According to the theory in Section 4, we can characterize these approxima-
tion spaces if we establish Jackson and Bernstein inequalities for this type of
approximation. We fix the space Lp(Ω) in which approximation is going to
take place. The space Y will be the Besov space Br

τ (Lτ (Ω)), 1/τ = r + 1/p
which was defined in Section 4.5. To understand this space, we return to our
picture of smoothness spaces in Figure 7. The space Lp(Ω) of course corres-
ponds to the point (1/p, 0). The space Br

τ (Lτ (Ω)) corresponds to the point
(1/τ, r), which lies on the line with slope one that passes through (1/p, 0).
As we have noted several times before, this line corresponds to the limiting
case of the Sobolev embedding theorem. Thus, we are in complete analogy
with the case of piecewise constant approximation described in Section 3.2.

The following inequalities were established by Petrushev (1988)

σn(f)p ≤ Cn−r|f |Brτ (Lτ (Ω)) (6.19)
|S|Brτ (Lτ (Ω)) ≤ Cnr‖f‖Lp(Ω) (6.20)

with the constants C depending only on r. The first of these is the Jackson
inequality and the second the companion Bernstein inequality.

Let us say a few words about how one proves these inequalities, since the
techniques for doing so appear often in nonlinear approximation. To prove
the Jackson inequality, for each f ∈ Bα

τ (Lτ (Ω)), we must find a favourable
partition of Ω into n disjoint intervals. This is done by balancing Φ(I) :=
|f |τBατ (Lτ (I)). The key here is that, with a proper renormalization of the Besov
norm, Φ is set subadditive. Thus, we can find intervals Ij, j = 1, . . . , n, so
that Φ(Ij) = Φ(Ω)/n. This gives our desired partition. We then use (6.8)
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to bound the local approximation error on each Ij , add these and arrive
at (6.19) (see Chapter 12 of DeVore and Lorentz (1993) for more details).
Therefore, as was the case in our introduction of nonlinear approximation by
piecewise constants, we find our optimal partitions by a balancing suitable
set function, in the present case Φ.

The proof of the Bernstein inequality is also very instructive. If S ∈ Σn,
then S =

∑
I∈Λ γI where Λ is a partition of Ω into n intervals and γI = PIχI

with PI ∈ Pr. For each such γI , it is not difficult to calculate its Besov norm
and find

|γI |Bατ (Lτ (Ω)) ≤ C‖γI‖Lp(I), (6.21)

with C an absolute constant. Then, using the subadditivity of | · |τBατ (Lτ (Ω)),
we find that

|S|τBατ (Lτ (Ω)) ≤
∑
I∈Λ

|γI |τBατ (Lτ (Ω))

≤
∑
I∈Λ

‖γI‖τLp(Ω)

≤ Cn1−τ/p
(∑
I∈Λ

‖γI‖pLp(Ω)

)τ/p
= Cnατ‖S‖τLp(Ω).

With the Jackson and Bernstein inequalities in hand, we can now refer to
our general theory in Section 4 and obtain the following characterization of
the approximation spaces: for each 0 < α < r, 0 < q ≤ ∞, 0 < p <∞,

Aαq (Lp(Ω)) = (Lp(Ω), Br
τ (Lτ (Ω)))α/r,q . (6.22)

Therefore, we have a solution to our problem of characterizing the approxim-
ation spaces Aαq (Lp(Ω)) to the extent that we understand the interpolation
spaces appearing in (6.22). Fortunately, we know a lot about these inter-
polation spaces. For example, for each 0 < α < r, there is one value of q for
which this interpolation space is a Besov space. Namely, if 1/q = α + 1/p,
then

Aαq (Lp(Ω)) = (Lp(Ω), Br
τ (Lτ (Ω))α/r,q = Bα

q (Lq(Ω)). (6.23)

For other values of q these interpolation spaces can be described in vari-
ous ways. We defer a discussion of this until we treat nonlinear wavelet
approximation where these interpolation spaces will reappear.

Returning to our picture of smoothness spaces, we see that the approxim-
ation spaces Aαq (Lp(Ω)) correspond to the point (1/τ, α) with 1/τ = α+1/p.
Thus, these spaces lie on the line with slope one passing through (1/p, 0). In
other words, we have the same interpretation as in nonlinear approximation
by piecewise constants except that now α can range over the larger interval
(0, r) corresponding to the order r of the piecewise polynomials.
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We have emphasized that the Besov spaces Bα
τ (Lτ (Ω)), 1/τ = α + 1/p,

which occur in characterizing free knot spline approximation, lie on the de-
marcation line in the Sobolev embedding theorem. This is an indication that
these spaces are quite large when compared to the Besov spaces Bα

q (Lp(Ω))
which appear in characterizing linear approximation. Some examples might
further drive this point home. Any function f which is a piecewise poly-
nomial (with a finite number of pieces) is in all of these spaces, that is, we
can take α arbitrarily large. Indeed, f can be approximated exactly once n
and r are large enough and hence this result follows from (6.22). A simple
argument shows that this remains true for any piecewise analytic function
f . Hence, any such function can be approximated to accuracy O(n−α) for
any α > 0 with nonlinear piecewise polynomial approximation. Another in-
structive example is the function f(x) = xγ, γ > −1/p (so that f ∈ Lp(Ω)).
This function satisfies (see de Boor (1973))

σn,r(f)p = O(n−r).

This can be proved by balancing the approximation errors.

6.4. Free knots and free degree

There are many variants of piecewise polynomial approximation. One of the
most important is to allow not only the partition to vary with f but also
the orders (degrees) of the polynomial pieces. Approximation of this type
occurs in the h-p method in FEM which has been introduced and studied
by Babuška and his collaborators (see Babuška and Suri (1994)). While the
theory for this type of approximation is far from complete, it will be useful
to mention a few facts that separate it from the free knot case discussed
above.

Let Σ∗n denote the set of all piecewise polynomials

S =
∑
I∈∆

PIχI , (6.24)

where ∆ is a partition and for each I ∈ ∆ there is a polynomial PI of order
rI with

∑
I∈∆ rI ≤ n. As usual, we let

σ∗n(f)p := inf
S∈Σ∗n

‖f − Sn‖Lp(Ω). (6.25)

Clearly, for each r = 1, 2, . . ., we have σ∗nr(f)p ≤ σn,r(f)p because Σn,r ⊂
Σ∗nr. To see that σ∗n can be considerably better than σn,r, we consider the
following example, which was studied in DeVore and Scherer (1980). Let
f(x) = xβ with β > 0. We have seen that σn,r(f)p � n−r. On the other
hand, it is shown in the above reference that

σ∗n(f) ≤ Ce−c
√
n, c :=

√
2− 1 (6.26)
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and that this estimate cannot be improved in the sense of a better exponen-
tial rate.

6.5. Free partition splines: the multivariate case

Up to this point our discussion of nonlinear approximation has been almost
entirely limited to approximating univariate functions. The question arises,
for example, whether the results of the previous section on free knot spline
approximation can be extended to the multivariate case.

For the moment, we restrict our discussion to the bivariate case and ap-
proximation on Ω := [0, 1]2. In this case, we consider the space Σ#

n,r consist-
ing of all functions

S =
∑
T∈∆

PTχT (6.27)

with ∆ = {T} a partition of Ω consisting of n triangles and the PT polyno-
mials of total order r on T for each T ∈ ∆. Let

σ#
n,r(f)p := inf

S∈Σ#
n,r

‖f − S‖Lp(Ω). (6.28)

Here # is used to make a distinction from the univariate case.
There is no known characterization of Aαq (Lp(Ω), (Σ#

n,r)) for any values of
α, p, q. This remains one of the most interesting and challenging problems
in nonlinear approximation. We shall mention some of the difficulties en-
countered in trying to characterize these approximation classes, since this
has influenced developments in multivariate nonlinear approximation.

A first remark is that the space Σ#
N does not satisfy assumption (iv) of

Section 4.1: that is, for no constant c do we have Σ#
n + Σ#

n ⊂ Σ#
cn. For

instance, consider a partition ∆1 of Ω consisting of n vertical strips of equal
size, each divided into two triangles, and the corresponding partition ∆2

made from horizontal strips. Let S1 be a piecewise polynomial relative to ∆1

and S2 another piecewise polynomial relative to ∆2. Then the sum ∆1 + ∆2

will be a piecewise polynomial which in general requires 4n2 triangles in its
partition.

Even more relevant to our problem is a result (communicated to us by
Jonathan Goodman) that constructs functions f(x) and g(y) which indi-
vidually can be approximated with order O(1/n) by the elements of Σ#

n

but whose sum can only be approximated to order O(1/
√
n). Thus, the

approximation spaces Aαq (Lp(Ω)) are not linear. This precludes their char-
acterization by classical smoothness spaces, which are always linear.

Here is another relevant comment. The starting point for proving direct
estimates for nonlinear piecewise polynomial approximation are good local
error estimates for polynomial approximation, such as those given in Sec-
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tion 6.1. The appropriate local error estimators for polynomial approxima-
tion on general triangles are not known. They should take into consideration
the shape and orientation of the triangles. For example, less smoothness of
the target function should be required in directions where the triangle is
thin, more in directions where the triangle is fat. While one may guess ap-
propriate error estimators, none have been utilized successfully in nonlinear
schemes.

Given the situation described above concerning nonlinear piecewise poly-
nomial approximation, it comes as no surprise that other avenues were ex-
plored to handle nonlinearity in the multivariate case. The most successful
of these has been n-term approximation, which took the following viewpoint.
In the univariate case the elements in the space Σn can also be desribed as a
sum of n (or perhaps Cn) fundamental building blocks. In the case of piece-
wise constants these are simply the characteristic functions χI of intervals
I. In the general case of univariate, nonlinear piecewise polynomial approx-
imation the building blocks are B-splines. Therefore, one generalization of
Σn to the multivariate case would take the form of n-term approximation
using multivariate building blocks. The first examples were for box splines
(DeVore and Popov 1987) but this was later abandoned for the more com-
putationally favourable wavelets. We shall discuss wavelets in Section 7.

6.6. Rational approximation

Another natural candidate for nonlinear approximation is the set of rational
functions. Let Rn(Rd) denote the space of rational functions in d variables.
Thus, an element R in Rn is the quotient, R = P/Q, of two polynomials
P ,Q (in d variables) of total degree ≤ n. We define the approximation error

rn(f)p := inf
R∈Rn

‖f −R‖Lp(Ω). (6.29)

The status of rational approximation is more or less the same as for piece-
wise polynomials. In one variable, we have

Aαq (Lp(Ω), (Rn)) = Aαq (Lp(Ω), (Σn,r)), 0 < α < r. (6.30)

Thus, on the one hand the approximation problem is solved but on the other
hand the news is somewhat depressing since there is nothing to gain or lose
(in the context of the approximation classes) in choosing rational functions
over piecewise polynomials.

The characterizations (6.30) were proved by Pekarski (1986) and Pet-
rushev (1988) by comparing σn to rn. A typical comparison is given by the
inequalities

rn(f)p ≤ Cn−α
n∑
k=1

kα−1σk,r(f)p, n ≥ r, (6.31)
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which hold for all 1 ≤ p < ∞, α > 0 and approximation on an inter-
val. Similar inequalities reverse the roles of σn,r(f)p and rn(f)p. Thus the
approximation classes for univariate rational approximation coincide with
Besov spaces when 1/q = α + 1/p (see (6.23)). In a strong sense, rational
approximation can be viewed as piecing together local polynomial approxi-
mants similar to piecewise polynomials.

We should also mention the work of Peller (1980), who characterized the
approximation classes for rational approximation in the BMO metric (which
can be considered as a slight variant of L∞). In the process, Peller charac-
terized interpolation spaces between BMO and the Besov space B1

1(L1) and
found the trace classes for Hankel operators, thus unifying three important
areas of analysis.

There are some direct estimates for multivariate rational approximation
(see, for example, DeVore and Yu (1990)) but they fall far short of being
optimal. The characterization of approximation spaces for multivariate ra-
tionals has met the same resistance as piecewise polynomials for more or
less the same reasons.

There have been several other important developments in rational approx-
imation. One of these was Newman’s theorem (see Newman (1964)) which
showed that the function f(x) = |x| satisfies rn(f)∞ = O(e−c

√
n) (a very

stunning result at the time). Subsequently, similar results were proved for
other special functions (such as e−|x|

β
) and even asymptotics for the error

rn(f) were found. A mainstay technique in these developments was Padé
approximation. This is to rational functions what Taylor expansions are to
polynomials. A first reference for Padé approximation is the book of Baker
(1975).

7. Wavelets

Wavelets were ripe for discovery in the 1980s. Multigrid methods in numer-
ical computation, box splines in approximation theory, and the Littlewood–
Paley theory in harmonic analysis all pointed to multilevel decompositions.
However, the great impetus came from two discoveries: the multiresolution
analysis of Mallat and Meyer (see Mallat (1989)) and most of all the discov-
ery by Daubechies (1988) of compactly supported orthogonal wavelets with
arbitrary smoothness.

Wavelets are tailor-made for nonlinear approximation and certain numer-
ical applications. Computation is fast and simple, and strategies for generat-
ing good nonlinear approximations are transparent. Since wavelets provide
unconditional bases for a myriad of function spaces and smoothness spaces,
the characterization of approximation classes is greatly simplified. Moreover,
wavelets generalize readily to several dimensions.
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There are many excellent accounts of multiresolution and wavelet theory.
We shall introduce only enough of the theory to set our notation and provide
us with the vehicle we need for our development of nonlinear approxima-
tion. The Haar function is a wavelet (albeit not a very smooth one) and
(3.47) is typical of wavelet decompositions. We shall begin our discussion
of multiresolution by considering approximation from shift invariant spaces
which provides the linear theory for wavelet approximation.

In the development of wavelets and multiresolution analysis, one needs
to make modest assumptions on the refinement function ϕ so the theory
develops smoothly. We shall not stress these assumptions, and in fact in
many cases not even mention them, in order to keep our exposition short
and to the point. The reader needs to consult one of the following references
to find precise formulations of the results we state here: Daubechies (1992),
Meyer (1990), DeVore and Lucier (1992).

7.1. Shift invariant spaces

In multiresolution analysis, there are two fundamental operations we per-
form on functions: shift and dilation. If f is defined on Rd and j ∈ Zd, then
f(· − j) is the (integer) shift of f by j. Meanwhile, if a > 0 is a real number
then f(a·) is the dilate of f by a. In this section, we consider spaces invari-
ant under shifts. We then dilate them to create new and finer spaces. The
main goal is to understand the approximation properties of these dilated
spaces.

We shall not discuss shift invariant spaces in their full generality in order
to move more directly to multiresolution analysis. The results stated below
have many extensions and generalizations (see de Boor, DeVore and Ron
(1993) and the references therein).

Let ϕ be a compactly supported function in L2(Rd). We define S̃(ϕ) as the
set of all finite linear combinations of the shifts of ϕ. The space S := S(ϕ)
is defined to be the closure of S̃(ϕ) in L2(Rd). We say that S is the principal
shift invariant (PSI) space generated by ϕ.

For each k ≥ 0, the space Sk := Sk(ϕ) is defined to be the dilate of S by
2k. A function T is in Sk if and only if T = S(2k·) with S ∈ S(ϕ). The
space Sk is invariant under the shifts j2−k, j ∈ Zd. We shall be interested
in the approximation properties (in the L2(Rd)-norm) of Sk as k →∞. We
let

Ek(f) := Ek(f)2 := inf
S∈Sk

‖f − S‖L2(Rd), k = 0, 1, . . . . (7.1)

The approximation properties of Sk are related to polynomial reproduc-
tion in S. It was Schoenberg (1946) who first recognized that polynomial re-
production could be described by the Fourier transform ϕ̂ of ϕ; subsequently,
Strang and Fix (1973) used Fourier transforms to describe approximation
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properties. We say ϕ satisfies the Strang–Fix condition of order r ∈ N if

ϕ̂(0) 6= 0, and Djϕ̂(2kπ) = 0, k ∈ Zd \ {0}, |j| < r. (7.2)

When ϕ satisfies the Strang–Fix condition of order r then S(φ) locally con-
tains all polynomials of order r (degree < r). (Actually, this and results
stated below require a little more about ϕ in terms of smoothness, which we
choose not to formulate exactly.) Moreover, it is easy to prove the Jackson
inequality: for all f in the Sobolev space W r(L2(Rd)), we have

Ek(f) ≤ C2−kr|f |W r(L2(Rd)), k = 0, 1, . . . . (7.3)

The companion Bernstein inequality to (7.3) is

|S|W r(L2(Rd)) ≤ C2kr‖S‖L2(Rd), S ∈ Sk. (7.4)

It is valid if ϕ is in W r(L2(Rd)). Under these conditions on ϕ, we can use
the general results of Section 4.3 to obtain the following characterization of
approximation spaces:

Aαq (L2(Rd)) = Bα
q (L2(Rd)), 0 < α < r, 0 < q ≤ ∞. (7.5)

Notice that this is exactly the same characterization as for the other types
of linear approximation we have discussed earlier. There is a similar theory
for approximation in Lp(Rd), 1 ≤ p ≤ ∞, and even 0 < p < 1.

7.2. Multiresolution and wavelet decompositions

Multiresolution adds one essential new ingredient to the setting of the pre-
vious section. We require that the spaces Sk are nested, that is, Sk ⊂ Sk+1,
which is of course equivalent to S0 ⊂ S1. This is in turn equivalent to
requiring that ϕ is in S1.

We shall limit our discussion to the multiresolution analysis that leads
to the biorthogonal wavelets of Cohen, Daubechies and Feauveau (1992).
These are the wavelets used most often in applications. Accordingly, we
start with the univariate case and assume that ϕ is a function for which the
spaces Sk = Sk(ϕ) of the previous section provide approximation:

dist(f,Sk)L2(R) → 0. (7.6)

We know that this will hold, for example, if ϕ satisfies the Strang–Fix con-
dition for some order r > 0. We assume further that the shifts ϕ(· − j),
j ∈ Z, are a Riesz basis for S and that the dual basis is given by the shifts
of a compactly supported function ϕ̃ whose dilated spaces Sk(ϕ̃) also form
a multiresolution analysis. Duality means that∫

R

ϕ(x− j)ϕ̃(x− k) dx = δjk. (7.7)

with δjk the Kronecker delta.
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The fact that ϕ ∈ S1 implies that ϕ is refinable:

ϕ(x) =
∑
k∈Z

ckϕ(2x − k). (7.8)

The compact support of ϕ implies that there is only a finite number of
nonzero coefficents ck in (7.8). They are called the refinement mask for ϕ
(in image processing they are called the (low pass) filter coefficients). The
dual function ϕ̃ satisfies a corresponding refinement equation with mask
coefficients c̃k.

Let 〈·, ·〉 denote the inner product in L2(R) and let P be the projector

Pf :=
∑
j∈Z
〈f, ϕ̃(· − j)〉ϕ(· − j) (7.9)

which maps L2(R) onto S. By dilation, we obtain the corresponding pro-
jectors Pk which map L2(R) onto Sk, k ∈ Z. We are particularly interested
in the projector Q := P1 − P0 which maps L2(R) onto a subspace W of
S1. The space W is called a wavelet space; it represents the detail which,
when added to S0, gives S1 via the formula S = PS +QS, S ∈ S1. One of
the main results of wavelet/multiresolution theory is that W is a PSI space
generated by the function

ψ(x) =
∑
k∈Z

dkϕ̃(2x− k), dk := (−1)k c̃1−k. (7.10)

Also, the shifts ψ(· − j), j ∈ Z, form a Riesz basis for W whose dual
functionals are represented by ψ̃(· − j) where ψ̃ is obtained from ϕ in the
same way ψ was obtained from ϕ̃. In other words,

Qf =
∑
j∈Z

2−k〈f, ψ̃(· − j)〉ψ(· − j). (7.11)

Of course, by dilation, we obtain the spaces Wk, the projectors Qk and the
representation

Qkf =
∑
j∈Z

2k〈f, ψ̃(2k · −j)〉ψ(2k · −j). (7.12)

From (7.6), we know that Pkf → f , k → ∞. It can also be shown that
Pkf → 0, k → −∞, and therefore we have

f =
∞∑

k=−∞
(Pk+1f − Pkf) =

∑
k∈Z

∑
j∈Z

2k〈f, ψ̃(2k · −j)〉ψ(2k · −j). (7.13)

The factor 2k multiplying the inner product arises from scaling. This is
the biorthogonal wavelet decomposition of an arbitrary f ∈ L2(R). We
would like to simplify the wavelet notation and better expose the nature of



Nonlinear approximation 111

the representation (7.13). For this we shall use the following convention. To
j ∈ Zd, k ∈ Z, we associate the dyadic cube I = 2−k(j+Ω) with Ω := [0, 1]d,
the unit cube in Rd. To each function η defined on Rd, we let

ηI(x) := |I|−1/2η(2k · −j). (7.14)

The cube I roughly represents the support of ηI ; in the case that η = χΩ or
η = H with the H the Haar function, then I is precisely the support of ηI .

Let D be the set of all dyadic intervals in R and Dk those dyadic intervals
of length 2−k. We can now rewrite (7.13) as

f =
∑
I∈D

cI(f)ψI , cI(f) := 〈f, ψI〉. (7.15)

The Riesz basis property of the ψI gives that

‖f‖L2(R) �
(∑
I∈D
|cI(f)|2

)1/2

. (7.16)

The special case of orthogonal wavelets is noteworthy. In this case, one
begins with a scaling function ϕ whose shifts are an orthonormal system
for S(ϕ). Thus ϕ̃ = ϕ and the space W is orthogonal to S0: each function
S ∈W satisfies ∫

R

SS0 dx = 0, S0 ∈ S0. (7.17)

The decomposition S1 = S0 ⊕W is orthogonal and the functions ψI , I ∈ D
are an orthonormal basis for L2(R).

We turn now to the construction of wavelet bases in several dimensions.
There are several possibilities. The most often used construction is the
following. Let ϕ be a univariate scaling function and ψ its corresponding
wavelet. We define ψ0 := ϕ, ψ1 := ψ. Let E′ denote the collection of vertices
of the unit cube [0, 1]d and E the set of nonzero vertices. For each vertex
e = (e1, . . . , ed) ∈ E′, we define the multivariate functions

ψe(x1, . . . , xd) := ψe1(x1) · · ·ψed(xd) (7.18)

and define Ψ := {ψe : e ∈ E}. If D = D(Rd) is the set of dyadic cubes in
Rd, then the collection of functions

{ψeI , I ∈ D, e ∈ E} (7.19)

forms a Riesz basis for L2(Rd); an orthonormal basis if ψ is an orthogonal
wavelet. The dual basis functions ψ̃eI have an identical construction starting
with ϕ̃ and ψ̃. Thus, each f ∈ L2(Rd) has the wavelet expansion

f =
∑
I∈D

∑
e∈E

ceI(f)ψeI , ceI(f) := 〈f, ψ̃eI〉. (7.20)
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Another construction of multivariate wavelet bases is to simply take the
tensor products of the univariate basis ψI . This gives the basis

ψR(x1, . . . , xd) := ψI1(x1) · · ·ψId(xd), R := I1 × · · · Id, (7.21)

where the R are multidimensional parallelepipeds. Notice that the support
of the function ψR corresponds to R and is nonisotropic. It can be long in
one direction and short in another. This is in contrast to the previous bases
whose supports are isotropic. We shall be almost exclusively interested in
the first basis.

7.3. Characterization of function spaces by wavelet coefficients

Wavelet coefficients provide simple characterizations of most function spaces.
The norm in the function space is equivalent to a sequence norm applied to
the wavelet coefficients. We shall need such characterizations for the case of
Lp spaces and Besov spaces.

It is sometimes convenient in the characterizations that follow to choose
different normalizations for the wavelets, and hence coefficients, appearing
in the decomposition (7.20). In (7.20) we have normalized the wavelets and
dual functions in L2(Rd). We can also normalize the wavelets in Lp(Rd),
0 < p ≤ ∞, by taking

ψeI,p := |I|−1/p+1/2ψeI , I ∈ D, e ∈ E, (7.22)

with a similar definition for the dual functions. Then, we can rewrite (7.20)
as

f =
∑
I∈D

∑
e∈E

ceI,p(f)ψeI,p, ceI,p(f) := 〈f, ψ̃eI,p′〉, (7.23)

with 1/p+ 1/p′ = 1. We also define

cI,p(f) :=

(∑
e∈E
|ceI,p(f)|p

)1/p

. (7.24)

One should note that it is easy to go from one normalization to another.
For example, for any 0, p, q ≤ ∞, we have

ψI,p = |I|1/q−1/pψI,q, cI,p(f) = |I|1/p−1/qcI,q(f). (7.25)

The characterization of Lp spaces by wavelet coefficients comes from the
Littlewood–Paley theorem of harmonic analysis. One cannot simply char-
acterize the Lp spaces by `p norms of the wavelet coefficients. Rather, one
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must go through the square function

S(f, x) :=

(∑
I∈D

cI,2(f)2|I|−1χI(x)

)1/2

=

(∑
I∈D

cI,p(f)2|I|−2/pχI(x)

)1/2

(7.26)
which incorporates the interaction between dyadic levels. Here, as earlier,
χI is the characteristic function of the interval I. For 1 < p <∞, one has

‖f‖Lp(Rd) � ‖S(f, ·)‖Lp(R) (7.27)

with the constants of equivalency depending only on p. Notice that, in the
case p = 2, (7.27) reduces to (7.16). One can find proofs of (7.27) (which
use techniques of harmonic analysis such as maximal functions) in Meyer
(1990) or DeVore, Konyagin and Temlyakov (1998).

The equivalence (7.27) can be extended to the range p ≤ 1 if the space Lp
is replaced by the Hardy space Hp and more assumptions are made of the
wavelet ψ. In this sense, most of the theory of approximation given below
can be extended to this range of p.

We have introduced the Besov spaces Bα
q (Lp(Rd)) for 0 < q, p ≤ ∞, α > 0,

in Section 4.5. The following is the wavelet characterization of these spaces:

|f |Bαq (Lp(Rd) �


(∑∞

k=−∞ 2kαq
(∑

I∈Dk cI,p(f)p
)q/p)1/q

, 0 < q <∞,

supk∈Z2kα
(∑

I∈Dk cI,p(f)p
)1/p

, q =∞.
(7.28)

Several remarks are in order to explain (7.28).

Remark 7.1 Other normalizations for the coefficients cI(f) are frequently
used. The form of (7.28) then changes by the introduction of a factor |I|β
into each term, with β a fixed constant.

Remark 7.2 We can define spaces of functions for all α > 0 by using the
right side of (7.28). However, these spaces will coincide with Besov spaces
only for a certain range of α and p that depend on the wavelet ψ. In the
case 1 ≤ p ≤ ∞, we need that

(a) ψ ∈ Bβ
q (Lp(Rd)), for some β > α,

(b) ψ has r vanishing moments with r > α.

When p < 1, we also need that r > d/p− d (see the following remark).

Remark 7.3 When p < 1, (7.28) characterizes the space Bα
q (Hp(Rd))

(with the correct range of parameters) where this latter Besov space can
be defined by replacing the Lp modulus of smoothness by the Hp modulus
of smoothness (see Kyriazis (1996)). However, if α > d/p− d, this space is
the same as Bα

q (Lp(Rd)).
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Remark 7.4 For a fixed value of 1 ≤ p < ∞, the spaces Bα
τ (Lτ (Rd)),

1/τ = α/d + 1/p, occur, as we know, in nonlinear approximation. If we
choose the wavelets normalized in Lp, then the characterization (7.28) be-
comes simply

|f |Bατ (Lτ (Rd)) �
(∑
I∈D

cI,p(f)τ
)1/τ

. (7.29)

7.4. Nonlinear wavelet approximation

In this and the next subsections, we shall consider n-term approximation
by wavelet sums. The results we present hold equally well in the univariate
and the multivariate case. However, the notation is somewhat simpler in
the univariate case. Therefore, to spare the reader, we shall initially treat
only this case. At the end of the section we shall formulate the results for
multivariate functions.

The idea of how to utilize wavelets in nonlinear approximation is quite
intuitive. If the target function is smooth on a region we can use a coarse
resolution (approximation) on that region. This amounts to putting terms in
the approximation corresponding to low frequency-terms from dyadic level
k with k small. On regions where the target function is not smooth we use
higher resolution. This is accomplished by taking more wavelet functions in
the approximation, that is, terms from higher dyadic levels. The questions
that arise from these intuitive observations are:

(i) exactly how should we measure smoothness to make such demarcations
between smooth and nonsmooth?

(ii) how do we allocate terms in a nonlinear strategy?
(iii) are there precise characterizations of the functions that can be approx-

imated with a given approximation order by nonlinear wavelet approx-
imation?

Fortunately, all of these questions have a simple and definitive solution,
which we shall presently describe.

We shall limit ourselves to the case of biorthogonal wavelets and approx-
imation in Lp, 1 < p <∞. Again, one can work in much more generality. As
will be clear from our exposition, what is essential is only the equivalence of
function norms with norms on the sequence of wavelet coefficients. Thus, the
results we present hold equally well for approximation in the Hardy space
Hp (Cohen, DeVore and Hochmuth 1997) and for more general wavelets.

It will also be convenient to consider approximation on all of Rd (initially
on R). In the following section, we shall discuss briefly how results extend
to other domains.

Let ϕ, ϕ̃ be two refinable functions which are in duality as described in
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Section 7.2 and let ψ and ψ̃ be their corresponding wavelets. Then, each
function f ∈ Lp(R) has the wavelet decomposition (7.15). We let Σw

n denote
the set of all functions

S =
∑
I∈Λ

aIψI , (7.30)

where Λ ⊂ D is a set of dyadic intervals of cardinality #Λ ≤ n. Thus Σw
n is

the set of all functions which are a linear combination of n wavelet functions.
In analogy with our previous studies, we define

σwn (f)p := inf
S∈Σwn

‖f − S‖Lp(R). (7.31)

We can characterize the approximation classes for n-term wavelet approx-
imation by proving Jackson and Bernstein inequalities and then invoking
the general theory of Section 4.3. The original proofs of these inequalities
were given in DeVore, Jawerth and Popov (1992) but we shall follow Cohen,
DeVore and Hochmuth (1997) which introduced some simpler techniques.

Given a finite set Λ of intervals, for each x ∈ R, we let I(x) be the
smallest interval in Λ that contains x. If there is no such interval, then
we define I(x) := R and expressions like |I(x)|−1 are interpreted as zero.
The following lemma of Temlyakov (1998a) is a powerful tool in estimating
norms of wavelet sums.

Lemma 1 Let 1 < p < ∞ and Λ be a finite set. If f ∈ Lp(R) has the
wavelet decomposition

f =
∑
I∈Λ

cI,p(f)ψI,p, (7.32)

with |cI,p(f)| ≤M , for all I ∈ Λ, then

‖f‖Lp(R) ≤ C1M#Λ1/p, (7.33)

with C1 an absolute constant. Similarly, if |cI,p(f)| ≥M , for all I ∈ Λ, then

‖f‖Lp(R) ≥ C2M#Λ1/p, (7.34)

with C2 > 0 an absolute constant.

We shall sketch the proof of (7.33) (which is valid for 0 < p < ∞) since
it gives us a chance to show the role of I(x) and the square function. The
proof of (7.34) is similar. We have

‖f‖Lp(R) ≤ ‖S(f)‖Lp(R) = C‖
(∑
I∈Λ

c2I,p|I|−2/pχI

)1/2

‖Lp(R)

≤ CM‖
(∑
I∈Λ

|I|−2/pχI

)1/2

‖Lp(R) ≤ CM‖|I(x)|−1/p‖Lp(R).
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If J ∈ Λ, then the set J̃ := {x : I(x) = J} is a subset of J . It follows that

‖f‖pLp(R) ≤ CM
p

∫
Rd

|I(x)|−1 dx ≤ CMp
∑
J∈Λ

∫
J̃
|J |−1 ≤ CMp#Λ,

which proves (7.33).
We shall now formulate the Jackson inequality for n-term wavelet ap-

proximation. Let r be the number of vanishing moments of ψ. Recall that r
also represents the order of polynomials that are locally reproduced in S(ϕ).
Recall also that, for 0 < τ < ∞, a sequence (an) of real numbers is in the
Lorentz space w`τ := `τ,∞ if and only if

#{n : |an| > ε} ≤M τ ε−τ (7.35)

for all ε > 0. The norm ‖(an)‖w`τ is the smallest value of M such that (7.35)
holds. Also,

‖(an)‖w`τ ≤ ‖(an)‖`τ .

Theorem 5 Let 1 < p < ∞, and s > 0, and let f ∈ Lp(R) and cI :=
cI,p(f), I ∈ D, be such that (cI)I∈D is in w`τ , 1/τ = s+ 1/p. Then,

σn(f)p ≤ Cn−s‖(cI)‖w`τ , n = 1, 2, . . . , (7.36)

with the constant C depending only on p and s.

We sketch the proof. We have

#{I : |cI | > ε} ≤M τ ε−τ

for all ε > 0 with M := ‖(cI)‖w`τ . Let Λj := {I : 2−j < |cI | ≤ 2−j+1}.
Then, for each k = 1, 2, . . ., we have

k∑
j=−∞

#Λj ≤ CM τ2kτ (7.37)

with C depending only on τ .
Let Sj :=

∑
I∈Λj

cIψI and Tk :=
∑k

j=−∞ Sj . Then Tk ∈ ΣN with N =
CM τ2kτ . We have

‖f − Tk‖Lp(R) ≤
∞∑

j=k+1

‖Sj‖Lp(R). (7.38)

We fix j > k and estimate ‖Sj‖Lp(R). Since |cI | ≤ 2−j+1 for all I ∈ Λj ,
we have, from Lemma 1 and (7.37),

‖Sj‖Lp(R) ≤ C2−j#Λ1/p
j ≤ CM τ/p2j(τ/p−1).
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We therefore conclude from (7.38) that

‖f − Tk‖Lp(R) ≤ CM τ/p
∞∑

j=k+1

2j(τ/p−1) ≤ CM(M2k)τ/p−1

because τ/p− 1 < 0. In other words, for N �M τ2kτ , we have

σN (f)p ≤ CMN1/p−1/τ = CMN−s.

From the monotonicity of σn it follows that the last inequality holds for all
N ≥ 1.

Let us note a couple of things about the theorem. First of all there is
no restriction on s. However, for large s, the set of functions satisfying
(cI,p(f)) ∈ w`τ is not a classical smoothness space. We can use the the-
orem to obtain Jackson inequalities in terms of Besov spaces by using the
characterization of Besov spaces by wavelet coefficients. Recall that this
characterization applies to Bs

τ (Lτ (R)) provided the following two properties
hold:

(i) ψ has r vanishing moments with r > s

(ii) ψ is in Bρ
q (Lτ ) for some q and some ρ > s.

That is, ψ must have sufficient vanishing moments and sufficient smoothness.
Under these assumptions, we have the following result.

Corollary 1 Let 1 < p < ∞, let s > 0 and let f ∈ Bs
τ (Lτ (R)), 1/τ =

s+ 1/p. If ψ satisfies the above two conditions (i) and (ii), then

σn(f)p ≤ C|f |Bsτ (Lτ (R))n
−s, n = 1, 2, . . . , (7.39)

with C depending only on p and s.

We have cI,τ (f) = cI,p(f)|I|1/τ−1/p = cI,p(f)|I|s/d. Thus, from (7.29) we
find

|f |Bsτ (Lτ (R)) = ‖(cI)‖`τ ≥ ‖(cI)‖w`τ .

Hence (7.39) follows from Theorem 5.

7.5. The Bernstein inequality for n-term wavelet approximation

The following theorem gives the Bernstein inequality which is the companion
to (7.39).

Theorem 6 Let 1 < p < ∞, and let the assumptions of Theorem 5 be
valid. If f =

∑
I∈Λ cI,p(f)ψI,p with #Λ ≤ n, we have

‖f‖Bsτ (Lτ (R)) ≤ Cns‖f‖Lp(R). (7.40)
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We sketch the simple proof of this inequality. We first note that, for each
I ∈ Λ, we have

cI |I|−1/pχI ≤ S(f),

because the left side is one of the terms appearing in the square function
S(f). Hence, with I(x) defined as the smallest interval in Λ that contains
x, we have, from (7.29),

|f |τBsτ (Lτ (R)) =
∫
R

∑
I∈Λ

|cI |τ |I|−1χI =
∫
R

∑
I∈Λ

cτI |I|−τ/pχI |I|
−1+τ/pχI

≤ C

∫
R

S(f)τ
∑
I∈Λ

|I|−1+τ/pχr ≤ C
∫
R

S(f, x)τ |I(x)|−1+τ/p dx

≤ C

(∫
R

S(f, x)p
)τ/p(∫

R

|I(x)|−1

)1−τ/p
dx

≤ Cn1−τ/p‖S(f)‖τLp(R) ≤ Cn1−τ/p‖f‖τLp(R).

7.6. Approximation spaces for n-term wavelet approximation

The Jackson and Bernstein inequalities of the previous sections are equally
valid in Rd. The only distinction is that n±s should be replaced by n±s/d.
The proofs are identical to the univariate case except for the more elaborate
notation needed in the multivariate formulation.

With the Jackson and Bernstein inequalities in hand, we can apply the
general machinery of Section 4.3 to obtain the following characterization of
the approximation spaces for n-term wavelet approximation. We formulate
the results for the multivariate case.

Let 1 < p < ∞ and s > 0 and let 1/τ := s/d + 1/p. If ψ satisfies the
vanishing moments and smoothness assumptions needed for the Jackson and
Bernstein inequalities, then, for any 0 < γ < s and any 0 < q ≤ ∞,

Aγ/dq (Lp(Rd)) = (Lp(Rd), Bs
τ (Lτ (Rd)))γ/s,q. (7.41)

Several remarks are in order about (7.41).

Remark 7.5 We have seen the interpolation spaces on the right side of
(7.41) before for free knot spline approximation and d = 1.

Remark 7.6 For each γ there is one value of q where the right side is a
Besov space; namely, when 1/q = γ/d + 1/p, the right side of (7.41) is the
Besov space Bγ

q (Lq(Rd)) with equivalent norms.

Remark 7.7 There is a description of the interpolation spaces on the right
of (7.41) in terms of wavelet coefficients. Namely, a function is in the space
(Lp(Rd), Bs

τ (Lτ (Rd)))γ/s,q if and only if (cI,p(f))I∈D is in the Lorentz space
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`µ,q where 1/µ := γ/d+ 1/p and, in fact, we have

|f |Aγ/dq (Lp)
� ‖(cI,p(f))‖`µ,q .

This verifies Remark 7.6 that, in the case that q = µ, then Aγ/dµ (Lp(Rd)) =
Bγ
µ(Rd)) with equivalent norms.

These results can be proved by a slightly finer analysis of n-term wavelet
approximation (see Cohen, DeVore and Hochmuth (1997) and Temlyakov
(1998a))

There is a further connection between n-term approximation and inter-
polation that we wish to bring out. Let p, s, and τ have the same meaning as
above. For each n, let fn denote a best n-term approximation to f in Lp(Rd)
(which can be shown to exist – see Temlyakov (1998a)). It follows from what
we have proved and Theorem 3 of Section 4.3 that, for n = 1, 2, . . ., we have

K(f, n−s, Lp(Rd), Bs
τ (Lτ (Rd))) = ‖f − fn‖Lp(Rd) + n−s|fn|Bsτ (Lτ (Rd)).

In other words, fn realizes this K-functional at t = n−s.
In summary, n-term wavelet approximation offers an attractive alternative

to free knot spline approximation on several counts. In one space dimension
(the only case where free knot spline approximation is completely under-
stood), it provides the same approximation efficiency and yet is more easily
numerically implementable (as will be discussed subsequently).

7.7. Wavelet decompositions and n-term approximation on domains in Rd

In numerical considerations, we usually deal with functions defined on a
finite domain Ω ⊂ Rd. The above results can be generalized to that setting in
the following way. We assume that the boundary ∂Ω of of Ω is Lipschitz (it is
possible to work under slightly weaker assumptions). Under this assumption,
it follows that any function f in the Besov space Bα

q (Ω) can be extended to
all of Rd in such a way that the extended function Ef satisfies

|Ef |Bαq (Lp(Rd)) ≤ C|f |Bαq (Lp(Ω)). (7.42)

We refer the reader to DeVore and Sharpley (1984, 1993) for a discussion
of such extensions. The extended function Ef has a wavelet decomposition
(7.23) and the results of the previous section can be applied. The n-term
approximation to Ef will provide the same order of approximation to f
on Ω and one can delete in the approximant all terms corresponding to
wavelets that are not active on Ω (that is, all wavelets whose support does
not intersect Ω).

While the above remarks concerning extensions are completely satisfact-
ory for theoretical considerations, they are not always easily implementable
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in numerical settings. Another approach which is applicable in certain set-
tings is the construction of a wavelet basis for the domain Ω. This is partic-
ularly suitable in the case of an interval Ω ⊂ R. Biorthogonal wavelet bases
can be constructed for an interval (see Cohen, Daubechies and Vial (1993))
and can easily be extended to parallelepipeds in Rd and even polyhedral
domains (see Dahmen (1997) and the references therein).

7.8. Thresholding and other numerical considerations

We have thus far concerned ourselves mainly with the theoretical aspects
of n-term wavelet approximation. We shall now discuss how this form of
approximation is implemented in practice. We assume that approximation
takes place on a domain Ω ⊂ Rd which admits a biorthogonal basis as
discussed in the previous section. For simplicity of notation, we assume that
d = 1. We shall also assume that the wavelet decomposition of the target
function f is finite and known to us. This provides a good match with certain
applications such as image processing. When the wavelet decomposition is
not finite, one usually assumes more about f that allows truncation of the
wavelet series while retaining the desired level of numerical accuracy.

In the case of approximation in L2(Ω), the best n-term approximation
to a target function f is obtained by choosing the n terms in the wavelet
series (7.20) of f for which the coefficients are largest. A similar strategy
applies in the case of Lp(R) approximation. Now, we write f in its wavelet
expansion with respect to Lp normalized wavelets (see (7.23)) and choose
the n-terms for which |cI,p(f)| is largest. The results of Section 7.4 show
that this approximant will provide the Jackson estimates for n-term wavelet
approximation. It is remarkable that this simple strategy also gives a near
best approximant fn to f . Temlyakov (1998a) has shown that

‖f − fn‖Lp(Ω) ≤ Cσn(f)p, n = 1, 2, . . . , (7.43)

with a constant C independent of f and n.
In numerical implementation, one would like to avoid the expensive sorting

inherent in the above description of n-term approximation. This can be done
by employing the following strategy known as thresholding. We fix the Lp(Ω)
space in which the approximation error is to be measured. Given a tolerance
ε > 0, we let Λε(f) denote the set of all intervals I for which |cI,p(f)| > ε
and define the hard thresholding operator

Tε(f) :=
∑

I∈Λε(f)

cI(f)ψI =
∑

|cI(f)|>ε
cI(f)ψI . (7.44)

If the target function f is in weak `τ , with 1/τ = s+ 1/p, then it follows
from the definition of this space that

#(Λε) ≤M τ ε−τ (7.45)
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Table 1. Thresholding values

Threshold Number of coefficients Error

ε Mτ ε−τ Mτ/pε1−τ/p

M−1/(ps)η1/(sτ) M1/sη−1/s η
MN−1/τ N MN−s

with M the weak `τ norm of the coefficients. Moreover, arguing as in the
proof of Theorem 5, we obtain

‖f − Tε(f)‖Lp(Ω) ≤ CM τ/pε1−τ/p. (7.46)

For example, if ε = MN−1/τ , then #(Λε(f)) ≤ N and ‖f − Tε(f)‖Lp(Ω) ≤
CMN−s. In other words, thresholding provides the Jackson estimate. In
this sense, thresholding provides the same approximation efficiency as n-
term approximation.

Table 1 records the relationship between thresholding and n-term approx-
imation. Here, M = |f |`τ,∞, ε is a thresholding tolerance, η is a prescribed
error, and N is a prescribed number of coefficients.

For example, the second row of this table gives bounds on the threshold-
ing parameter and the number of coefficients needed to achieve an error
tolerance η > 0.

Hard thresholding has a certain instability in that coefficients just below
the thresholding tolerance are set to zero and those just above are kept
intact. This instability can be remedied by soft thresholding. Given ε > 0,
we define

sε(x) :=

 0, |x| ≤ ε,
2(|x| − ε) signx, ε ≤ |x| ≤ 2ε,
x, |x| > 2ε.

(7.47)

Then, the soft thresholding operator

T ′ε(f) :=
∑
I∈D

sε(cI,p(f))ψI,p (7.48)

has the same approximation properties as Tε.

8. Highly nonlinear approximation

Nonlinear wavelet approximation in the form of n-term approximation or
thresholding is simple and effective. However, two natural questions arise.
How does the effectiveness of this form of approximation depend on the
wavelet basis? Secondly, is there any advantage to be gained by adaptively
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choosing a basis which depends on the target function f? To be reason-
able, we would have to limit our search of wavelet bases to a numerically
implementable class. An example of such a class is the collection of wave-
let packet bases defined in Section 3.7. We call such a class L of bases a
library. We shall limit our discussion to approximation in a Hilbert space
H and libraries of orthonormal bases for H. So our problem of nonlinear
approximation would be given a target function f ∈ H, to choose both a
basis B ∈ L and an n-term approximation to f from this basis. We call such
an approximation problem highly nonlinear since it involves another layer
of nonlinearity in the basis selection.

A closely related form of approximation is n-term approximation from a
dictionary D ⊂ H of functions. For us, a dictionary will be an arbitrary
subset of H. However, dictionaries have to be limited to be computation-
ally feasible. Perhaps the first example of this type of approximation was
considered by E. Schmidt (1907), who considered the approximation of func-
tions f(x, y) of two variables by bilinear forms

∑m
i=1 ui(x)vi(y) in L2([0, 1]2).

This problem is closely connected with properties of the integral operator
with kernel f(x, y).

We mention some other important examples of dictionaries. In neural
networks, one approximates functions of d-variables by linear combinations
of functions from the set

{σ(a · x+ b) : a ∈ Rd, b ∈ R},

where σ is a fixed univariate function. The functions σ(a · x+ b) are planar
waves; also called ridge functions. Usually, σ is required to have additional
properties. For example, the sigmoidal functions, which are used in neural
networks, are monotone nondecreasing, tend to 0 as x→ −∞, and tend to
1 as x→∞.

Another example, from signal processing, uses the Gabor functions

ga,b(x) := eiaxe−bx
2

and approximates a univariate function by linear combinations of the ele-
ments from

D := {ga,b(x− c) : a, b, c ∈ R}.

Gabor functions are one example of a dictionary of space(time)-frequency
atoms. The parameter a serves to position the function ga,b in frequency
and c does the same in space. The shape parameter b localizes ga,b.

The common feature of these examples is that the family of functions used
in the approximation process is redundant. There are many more functions
in the dictionary than needed to approximate any target function f . The
hope is that the redundancy will increase the efficiency of approximation.
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On the other hand, redundancy may slow down the search for good approx-
imations.

Results on highly nonlinear approximation are quite fragmentary and a
cohesive theory still needs to be developed. We shall present some of what is
known about this theory, both for its usefulness and in the hope of bringing
attention to this interesting area.

8.1. Adaptive basis selection

It will be useful to begin by recalling the results of Sections 2 and 5 on n-term
approximation using the elements of an orthonormal basis. Let B := {ηk} be
an orthonormal basis for H and let Σn(B) denote the functions in H which
can be written as a linear combination of n of the functions ηk, k = 0, 1, . . . ,
and further let

σn(f,B) := σn(f,B)H := inf
S∈Σn(B)

‖f − S‖H (8.1)

be the corresponding approximation error.
We have seen that the decrease of the approximation errors σn(f,B) is

completely determined by the rearranged coefficients 〈f, ηk〉. As before, we
let γk(f,B) be the kth largest of the absolute values of these coefficients.
For example, we have seen that for any α > 0, a function f from H is in
Aα∞ (i.e., σn(f,B) = O(n−α), n → ∞), if and only if (γn(f,B)) is in weak
`τ (i.e., in `τ,∞) with τ := (α + 1/2)−1. Moreover,

‖(γn(f,B))‖`τ,∞ � |f |Aα∞ , (8.2)

with constants of equivalency independent of B.
Suppose now that L = {B} is a library of such orthonormal bases B. We

define the approximation error

σLn (f)H := inf
B∈L

σn(f,B)H. (8.3)

The approximation classes Aαq (H,L) are defined in the usual way (see Sec-
tion 4.1). It is of great interest to characterize the approximation classes in
concrete settings since this would give us a clear indication of the advantages
of adaptive basis selection. A few results are known in discrete settings (see,
for instance, Kashin and Temlyakov (1997)). We shall limit ourselves to the
following rather trivial observations.

In view of (8.2), we have the upper estimate

σLn (f)H ≤ Cn−α inf
B
‖(γn(f,B))‖`τ,∞ (8.4)

with C an absolute constant. Moreover, for any α > 0, we have

∩BAα∞(H, B) ⊂ Aα∞(H,L). (8.5)

We can interpret these results in the following way. For each basis B, the
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condition (γn(f)) ∈ `τ,∞, τ := (α + 1/2)−1 can be viewed as a smoothness
condition on f relative to the basis B. Thus the infimum on the right side
of (8.4) can be thought of as the infimum of smoothness conditions relative
to the different bases B. Similarly, we can view the classes Aα∞(H, B) as
smoothness classes with respect to the basis B. The right side of (8.5) is
an intersection of smoothness classes. Thus, an advantage of optimal basis
selection is that we are allowed to take the basis B ∈ L in which f is
smoothest.

In general (8.4) and (8.5) are not reversible. One can easily construct
two basis B1, B2, and a target function f so that, as n varies, we alternate
between the choices B1 and B2 as the best basis selection for varying n. It
is less clear whether this remains the case when the library is chosen to have
some structure as in the case of wavelet packets. Thus the jury is still out as
to whether (8.4) and (8.5) can sometimes be reversed in concrete situations
and thereby obtain a characterization of Aα∞(H,L).

The above discussion for q =∞ generalizes to any 0 < q ≤ ∞.

8.2. Two examples of wavelet libraries

We would be remiss in not mentioning at least a couple of simple examples
of libraries of bases that are useful in applications. The understanding of
the approximation properties in such examples would go a long way toward
understanding highly nonlinear approximation.

Our first example is to generalize the wavelet packets of Section 3.7. Since
the situation is completely analogous to that section, we shall be brief. In
place of χΩ and the Haar function H, we can take any orthogonal scaling
function ϕ and its orthogonal wavelet ψ. We take for H the space L2(R).
The function ϕ satisfies the refinement equation (7.8) with refinement coef-
ficients ck, k ∈ Z, and likewise the wavelet ψ satisfies (7.10). Therefore, the
operators of (3.57) are replaced by

A0g :=
∑
k

ckg(2 · −k); A1g :=
∑
k

dkg(2 · −k). (8.6)

Then, A0(ϕ) = ϕ, and A1(ϕ) = ψ.
Starting with γ0 := ϕ, we generate the functions γb and the spaces Γb

exactly as in Section 3.7. The interpretation using the binary tree of Figure 4
applies and gives the same interpretation of orthonormal bases for Sm(ϕ).
These bases form the library of wavelet packet bases. For further discussion
of wavelet packet libraries and their implementation, we refer the reader to
Wickerhauser (1994).

For our second example, we take H = L2(R2) and again consider a com-
pactly supported, refinable function ϕ ∈ L2(R) with orthonormal shifts and
its corresponding orthogonal wavelet ψ. We define ψ0 := ϕ, ψ1 := ψ. To
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each vertex e of the unit square [0, 1]2, each j = (j1, j2) ∈ Z2, k = (k1, k2) ∈
Z2, we associate the function

ψej,k(x1, x2) := 2(k1+k2)/2ψe1(2k1x1 − j1)ψe2(2k2x2 − j2). (8.7)

Each of these functions has L2(R2) norm one. We let L denote the library of
all complete orthonormal systems which can be made up from the functions
in (8.7). In particular L will include the usual wavelet bases given in (7.19)
and the hyperbolic basis (7.21), which is the tensor product of the univariate
wavelet basis.

As a special case of the above library consider ϕ = χ[0,1) and ψ = H, with
H the Haar function. We approximate functions defined on the unit square
Ω := [0, 1)2. The library L includes bases of the following type. We can
take an arbitrary partition P of Ω into dyadic rectangles R. On each R we
can take a standard or hyperbolic wavelet Haar basis. This library of bases
is also closely related to the CART algorithm studied by Donoho (1997).

8.3. Approximation using n-terms from a dictionary

Suppose that D is a dictionary of functions from H. It will be convenient
to assume (without loss of generality in n-term approximation) that each
g ∈ D has norm one (‖g‖H = 1) and that −g ∈ D whenever g ∈ D. One
particular example of a dictionary is to start with an orthonormal basis B
for H and to take D := {±b : b ∈ H}. We shall say that this is the dictionary
generated by B. For each n ∈ N, we let Σn := Σn(D) denote the collection
of all functions in H which can be expressed as a linear combination of at
most n elements of D. Thus each function S ∈ Σn can be written in the
form

S =
∑
g∈Λ

cgg, Λ ⊂ D, #Λ ≤ n, (8.8)

with the cg ∈ R. It may be possible to write an element from Σn(D) in the
form (8.8) in more than one way.

For a function f ∈ H, we define its approximation error

σn(f) := σn(f,D)H := inf
S∈Σn

‖f − S‖H. (8.9)

We shall be interested in estimates for σn (from above and below). For
this purpose, we introduce the following way of measuring smoothness with
respect to the dictionary D.

For a general dictionary D, and for any τ > 0, we define the class of
functions

Koτ (D,M) :=

f =
∑
g∈Λ

cgg : Λ ⊂ D, #Λ <∞ and
∑
g∈Λ

|cg|τ ≤M τ

 ,
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and we define Kτ (D,M) as the closure (in H) of Koτ (D,M). Furthermore,
we define Kτ (D) as the union of the classes Kτ (D,M) over all M > 0. For
f ∈ Kτ (D), we define the semi-norm

|f |Kτ (D) (8.10)

as the infimum of all M such that f ∈ Kτ (D,M). Notice that, when τ = 1,
K1 is the class of functions which are a convex combination of the functions
in D.

The case when D is generated by a basis B is instructive for the results
that follow. In this case, n-term approximation from D is the same as n-
term approximation from B which we have analysed in Sections 2 and 5.
We have shown that if 1/τ = α+ 1/2, then f is in the approximation class
Aατ (D) if and only if ∑

k

|〈f, hk〉|τ

is finite and this last expression is equivalent to |f |τAτ (B). In particular, this
shows that

σn(f,D)H ≤ Cn−α|f |Kτ (D ) (8.11)

in the special case that D is given by an orthonormal basis B.
We are now interested in understanding whether (8.11) holds for more

general dictionaries D. The results in the following section will show that
(8.11) is valid for a general dictionary provided α ≥ 1/2. The first result
of this type was due to Maurey (see Pisier (1980)) who showed that, in the
case α = 1/2, (8.11) is valid for any dictionary. An iterative algorithm to
generate approximants from Σn(D) that achieves this estimate (for α = 1/2)
was given by Jones (1992). For α > 1/2, (8.11) is proved in DeVore and
Temlyakov (1996). For α < 1/2 (1 ≤ τ ≤ 2) there seems to be no obvious
analogue of (8.11) for general dictionaries.

8.4. Greedy algorithms

The estimate (8.11) can be proved for a general dictionary by using greedy
algorithms (also known as adaptive pursuit). These algorithms are often
used computationally as well. We shall mention three examples of greedy
algorithms and analyse their approximation properties. In what follows, ‖·‖
is the norm in H and 〈·, ·〉 is the inner product in H.

The first algorithm, known as the pure greedy algorithm, can be applied
for any dictionary D. Its advantage is its simplicity. It begins with a target
function f and successively generates approximants Gm(f) ∈ Σm(D), m =
1, 2, . . .. In the case that D is generated by an orthonormal basis B, Gm(f)
is a best m-term approximation to f .
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If f ∈ H, we let g = g(f) ∈ D denote an element from D which maximizes
〈f, g〉:

〈f, g(f)〉 = sup
g∈D
〈f, g〉. (8.12)

We shall assume for simplicity that such a maximizer exists; if not, suitable
modifications are necessary in the algorithms that follow. We define

G(f) := G(f,D) := 〈f, g(f)〉g(f)

and

R(f) := R(f,D) := f −G(f).

Then, G(f) is a best one-term approximation to f from D and R(f) is the
residual of this approximation.

Pure greedy algorithm. Initially, we set R0(f) := R0(f,D) := f and
G0(f) := 0. Then, for each m ≥ 1, we inductively define

Gm(f) := Gm(f,D) := Gm−1(f) +G(Rm−1(f)),
Rm(f) := Rm(f,D) := f −Gm(f) = R(Rm−1(f)).

The pure greedy algorithm converges to f for each f ∈ H (see Davis,
Mallat and Avellaneda (1997)). This algorithm is greedy in the sense that
at each iteration it approximates the residual Rm(f) as best possible by a
single function from D. If D is generated by an orthonormal basis, then it
is easy to see that Gm(f) is a best m-term approximation to f from D and

σm(f,B)H = ‖f −Gm(f)‖H = ‖Rm(f)‖H.

However, for general dictionaries, this is not the case, and in fact the ap-
proximation properties of this algorithm are somewhat in doubt, as we shall
now describe.

For a general dictionary D, the best estimate (proved in DeVore and
Temlyakov (1996)) known for the pure greedy algorithm is that for each
f ∈ K1(D) we have

‖f −Gm(f)‖H ≤ |f |K1(D)m
−1/6. (8.13)

Moreover, the same authors have given an example of a dictionary D and a
function f which is a linear combination of two elements of D such that

‖f −Gm(f)‖H ≥ Cm−1/2, (8.14)

with C an absolute constant. In other words, for the simplest of functions f
(which are in all of the smoothness classes Kτ (D)), the pure greedy algorithm
provides approximation of at most order O(m−1/2). Thus, this algorithm
cannot provide estimates like (8.11) for α > 1/2.
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There are modifications of the pure greedy algorithm with more favourable
approximation properties. We mention two of these: the relaxed greedy algo-
rithm and the orthogonal greedy algorithm.

Relaxed greedy algorithm. We define Rr0(f) := Rr0(f,D) := f and
Gr0(f) := Gr0(f,D) := 0. For m = 1, we define Gr1(f) := Gr1(f,D) := G1(f)
and Rr1(f) := Rr1(f,D) := R1(f). As before, for a function h ∈ H, let
g = g(h) denote a function from D which maximizes 〈h, g〉. Then, for each
m ≥ 2, we inductively define

Grm(f) := Grm(f,D) :=
(

1− 1
m

)
Grm−1(f) +

1
m
g(Rrm−1(f)),

Rrm(f) := Rrm(f,D) := f −Grm(f).

Thus, the relaxed greedy algorithm is less greedy than the pure greedy
algorithm. It makes only modest use of the greedy approximation to the
residual at each step. The number 1/m appearing at each step is the relax-
ation parameter.

Algorithms of this type appear in Jones (1992), who showed that the
relaxed greedy algorithm provides the approximation order

‖f −Grm(f)‖ ≤ Cm−1/2, m = 1, 2, . . . . (8.15)

for any f ∈ K1(D). Unfortunately, this estimate requires the knowledge
that f ∈ K1(D). In the event that this information is not available – as
would be the case in most numerical considerations – the choice of relaxation
parameter 1/m is not appropriate.

The relaxed greedy algorithm gives a constructive proof that (8.11) holds
for a general dictionary D in the case α = 1/2. We shall discuss how to prove
(8.11) in the next section. But first we want to put out on the table another
variant of the greedy algorithm, called the orthogonal greedy algorithm,
which removes some of the objections to the choice of the relaxation para-
meter in the relaxed greedy algorithm.

To motivate the orthogonal greedy algorithm, let us return for a mo-
ment to the pure greedy algorithm. This algorithm chooses functions gj :=
G(Rj(f)), j = 1, . . . ,m, to use in approximating f . One of the deficiencies
of the algorithm is that it does not provide the best approximation from the
span of g1, . . . , gm. We can remove this deficiency as follows.

If H0 is a finite-dimensional subspace of H, we let PH0 be the orthogonal
projector from H onto H0, that is, PH0(f) is the best approximation to f
from H0.

Orthogonal greedy algorithm. We define Ro0(f) := Ro0(f,D) := f and
Go0(f) := Go0(f,D) := 0. Then, for each m ≥ 1, we inductively define

Hm := Hm(f) := span{g(Ro0(f)), . . . , g(Rom−1(f))},



Nonlinear approximation 129

Gom(f) := Gom(f,D) := PHm(f),
Rom(f) := Rom(f,D) := f −Gom(f).

Thus, the distinction between the orthogonal greedy algorithm and the
pure greedy algorithm is that the former takes the best approximation by
linear combinations of the functions G(R0(f)), . . . , G(Rm−1(f)) available at
each iteration. The first step of the orthogonal greedy algorithm is the same
as the pure greedy algorithm. However, they will generally be different at
later steps.

DeVore and Temlyakov (1996) have shown (as will be discussed in more
detail in the next section) that the orthogonal greedy algorithm satisfies the
estimate

‖f −Gom(f,D)‖H ≤ |f |K1(D)m
−1/2. (8.16)

Thus, the orthogonal greedy algorithm gives another constructive proof
that (8.11) holds for a general dictionary D. However, one should note that
the orthogonal greedy algorithm is computationally more expensive in the
computation of the best approximation from Hm.

From (8.16), it is easy to prove the following theorem from DeVore and
Temlyakov (1996).

Theorem 7 Let D be any dictionary, let α ≥ 1/2 and 1/τ = α + 1/2. If
f ∈ Kτ (D), then

σm(f,D)H ≤ C|f |Kτ(D)m
−α, m = 1, 2, . . . , (8.17)

where C depends on τ if τ is small.

We sketch the simple proof. It is enough to prove (8.17) for functions f
which are a finite sum f =

∑
j cjgj , gj ∈ D, with

∑
j |cj |τ ≤ M τ . Without

loss of generality we can assume that the cj are positive and nonincreasing.
We let s1 :=

∑n
j=1 cjgj and R1 := f − s1 =

∑
j>n cjgj . Now,

cτn ≤
1
n

n∑
j=1

|cj |τ ≤
M τ

n
, n = 1, 2, . . . .

Hence, cj ≤Mn−1/τ , j > n and it follows that∑
j>n

cj =
∑
j>n

c1−τj cτj ≤M1−τn1−1/τ
∑
j>n

cτj ≤Mn1−1/τ .

This gives that R1 is in K1(D,Mn1−1/τ ). Using (8.16), there is a function
s2 which is a linear combination of at most n of the g ∈ D such that

‖f − (s1 + s2)‖ = ‖R1 − s2‖ ≤ 2Mn1−1/τn−1/2 = 2Mn−α,

and (8.17) follows.
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8.5. Further analysis of greedy algorithms

To determine the performance of a greedy algorithm, we try to estimate the
decrease in error provided by one step of the pure greedy algorithm. Let D
be an arbitrary dictionary. If f ∈ H and

ρ(f) := 〈f, g(f)〉/‖f‖H, (8.18)

where as before g(f) ∈ D satisfies

〈f, g(f)〉 = sup
g∈D
〈f, g〉,

then
R(f)2 = ‖f −G(f)‖2H = ‖f‖2H(1− ρ(f)2). (8.19)

The larger ρ(f) is, the better the decrease of the error in the pure greedy
algorithm.

The following theorem from DeVore and Temlyakov (1996) estimates the
error in approximation by the orthogonal greedy algorithm.

Theorem 8 Let D be an arbitrary dictionary in H. Then, for each f ∈
K1(D,M) we have

‖f −Gom(f,D)‖H ≤Mm−1/2. (8.20)

Proof. We can assume that M = 1 and that f is in Ko1(D, 1). We let
f om := Rom(f) be the residual at step m of the orthogonal greedy algorithm.
Then, from the definition of this algorithm, we have

‖f om+1‖H ≤ ‖f om −G(fom,D)‖H.
Using (8.19), we obtain

‖fom+1‖2H ≤ ‖f om‖2H(1− ρ(fom)2). (8.21)

Since f ∈ Ko1(D, 1), we can write f =
∑N

k=1 ckgk with ck > 0, k = 1, . . . ,N ,
and

∑N
k=1 ck = 1. By the definition of the orthogonal greedy algorithm,

Gom(f) = PHmf , and hence f om = f −Gom(f) is orthogonal to Gom(f). Using
this, we obtain

‖fom‖2H = 〈fom, f〉 =
N∑
k=1

ck〈fom, gk〉 ≤ ρ(fom)‖fom‖H.

Hence,
ρ(fom) ≥ ‖f om‖H.

Using this inequality in (8.21), we find

‖fom+1‖2H ≤ ‖f om‖2H(1− ‖f om‖2H).

It is now easy to derive from this that ‖f om‖2H ≤ 1/m. 2
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9. Lower estimates for approximation: n-widths

In this section, we shall try to understand better the limitations of linear and
nonlinear approximation. Our analysis thus far has relied on the concept
of approximation spaces. For example, we started with a sequence of linear
or nonlinear spaces Xn and defined the approximation classes Aα∞ consist-
ing of all functions that can be approximated with accuracy O(n−α) by the
elements of Xn. We have stressed the importance of characterizing these ap-
proximation spaces in terms of something more classical such as smoothness
spaces and in fact we have accomplished this in many settings. In this way,
we have seen among other things that the classical nonlinear methods of
approximation (like free knot splines or n-term approximation) outperform
their counterparts in linear approximation.

To make these points more clearly, let us recall perhaps the simplest
setting for the results we have presented. Namely, we consider L2(Ω)-
approximation, Ω := [0, 1), using the Haar wavelet H. Every function in
L2(Ω) has a decomposition

f = aχ[0,1) +
∑

I∈D([0,1))

cI(f)HI , cI(f) := 〈f,HI〉, (9.1)

with the HI normalized in L2(Ω) and a the average of f over Ω.
In linear approximation, we take as our approximation to f the partial sum

of the series (9.1) consisting of the first n terms with respect to the natural
order of dyadic intervals (this is the ordering which gives priority first to
size and then to orientation from left to right). For this approximation,
we have seen that f is approximated in the norm of L2(Ω) with accuracy
O(n−α), 0 < α < 1/2, if and only if f ∈ Lip(α,L2(Ω)). The upper limit of
1/2 for the characterization comes about because the Haar wavelet H is in
Lip(1/2, L2(Ω)) but in no higher-order Lipschitz space.

In nonlinear approximation, we approximated f by taking the partial sum
of (9.1) which consists of the n terms with largest coefficients. It is clear that
this form of approximation is at least as efficient as the linear approximation.
We have seen that we can characterize the functions approximable with order
O(n−α) by conditions on the wavelet coefficients that roughly correspond
to smoothness of order α in Lτ with 1/τ = α + 1/2 (see Remark 7.7 on
page 118). In fact, it is easy to see that each function in Lip(α,Lγ(Ω)) with
γ > τ is approximated with this order by the nonlinear method.

Is this really convincing proof that nonlinear methods outperform linear
methods? Certainly it shows that this nonlinear wavelet method outper-
forms the linear wavelet method. However, what can prevent some other
linear method (not the wavelet method just described) from also containing
the Lip(α,Lγ(Ω)) classes in its Aα∞? There is a way of deciding whether
this is possible by using the concept of n-widths, which we now describe.
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There are many definitions of n-widths. For our purpose of measuring
the performance of linear methods, the following definition of Kolmogorov
is most appropriate. If X is a Banach space and K is a compact subset of
X, we define

dn(K) := inf
dim(Xn)=n

sup
f∈K

E(f,Xn)X , (9.2)

where the infimum is taken over all n-dimensional linear spaces and of course
E(f,Xn)X is the error in approximating f by the elements of Xn in the norm
of X. So dn measures the performance of the best n-dimensional space on
the class K.

To answer our question posed above, we would like to know the n-width
of the unit ball Uαγ of Lip(α,Lγ(Ω)) in L2(Ω) (this unit ball is a compact
subset of L2(Ω) provided γ > τ = (α+ 1/2)−1). The Kolmogorov n-widths
of Besov and Lipschitz balls are known and can be found, for example,
in Chapter 14 of Lorentz, von Golitschek and Makovoz (1996). We shall
limit our discussion to the results relevant to our comparison of linear and
nonlinear approximation.

We fix the space Lp(Ω), Ω = [0, 1), where approximation is to take place.
While we shall discuss only univariate approximation in this section, all
results on n-widths hold equally well in the multivariate case. In Figure 8,
we use our usual interpretation of smoothness spaces as points in the upper
right quadrant to give information about the n-widths of the unit balls
Uαr (Lq(Ω)) of the Besov spaces Bα

r (Lq(Ω)). The shaded region of that figure
corresponds to those Besov spaces whose unit ball has n-width O(n−α).

Several remarks will complete our understanding of Figure 8 and what it
tells us regarding linear and nonlinear methods.

Remark 9.1 The n-width of Uαr (Lq(Ω)) is never better than O(n−α). In
other words, once we know the smoothness index α of the space, this provides
a limit as to how effective linear methods can be.

Remark 9.2 The sets Uαr (Lp(Ω)) which correspond to the Besov spaces
on the linear line (L) always have Kolmogorov n-width � n−α. Thus, for
these spaces the classical methods of approximation such as polynomials or
fixed knot splines provide the best order of approximation for these classes.

Remark 9.3 For approximation in Lp(Ω), with 2 < p ≤ ∞, and for
α > 1/p there is always a certain range of q (depicted in Figure 8 by the
shaded region) where the Kolmogorov n-width of Uαr (LqΩ)) is still � n−α.
This is a rather surprising result of Kashin (1977). We know that classical
methods cannot provide this order of approximation because we have char-
acterized their approximation classes Aα∞(Lp(Ω)) and these classes do not
contain general functions from Uαr (Lq(Ω)) once q < p. So there are lin-
ear spaces with super approximation properties (which to a limited extent
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Fig. 8. Shaded region gives (1/q, α) such that Uαr (Lq([0, 1)) has
n-width of order O(n−α) in Lp, 2 ≤ p ≤∞

mimic the advantages of nonlinear approximation). What are these spaces?
Unfortunately these spaces are not known constructively. They are usually
described by probabilistic methods. So, while their existence is known, we
cannot put our hands on them and definitely can’t use them numerically.

Remark 9.4 The range of q where the super linear spaces come into play
always falls well short of the nonlinear line. Thus nonlinear methods always
perform better than linear methods, in the sense that their approximation
classes are strictly larger.

Remark 9.5 We have not depicted the case p ≤ 2 since in this case there
are no Besov balls Uαr (Lq(Ω)) which have the order O(n−α) save for the case
q ≥ p which we already know from the classical linear theory.

Remark 9.6 Now, here is an important point that is sometimes misun-
derstood. It is not always safe to say that, for a specific target function,
nonlinear methods will perform better than linear methods. Let us forget
for a moment the super linear theory since it is not relevant in numerical
situations anyway. Given f , there will be a maximal value of α – let’s call
it αL – for which f is in Bα

∞(Lp(Ω)). Then, we know that approximation
from classical n-dimensional linear spaces will achieve an approximation rate
O(n−αL), but they can do no better. Let us similarly define αN as the largest
value of α for which f is in the space BαN∞ (Lγ) for some γ > (α + 1/p)−1;
then nonlinear methods such as n-term wavelet approximation will provide
an approximation error O(n−αN ). If αN > αL, then certainly nonlinear
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methods outperform linear methods (at least asymptotically as n → ∞).
However, if αL = αN then there is no gain in using nonlinear methods to
approximate the target function f .

The questions we have posed for linear approximation can likewise be
posed for nonlinear methods. For example, consider univariate approxim-
ation in Lp(Ω), Ω = [0, 1). We know that classical nonlinear methods ap-
proximate functions in Bα

∞(Lγ), γ > (α + 1/p)−1 with accuracy n−α. But
can it be that other nonlinear methods do better? Questions of this type
can be answered by introducing nonlinear n-widths.

There are several definitions of nonlinear n-widths, the most prominent
of which is the Alexandrov width. However, we shall only be concerned
with the manifold n-width, which was introduced by DeVore, Howard and
Micchelli (1989), since it fits best with numerical methods. Let X be the
space in which we shall measure error (we shall assume that X is equipped
with a norm ‖ ·‖X). By a (nonlinear) manifoldMn of dimension n, we shall
mean the image of a continuous mappingM : Rn → X. (Thus our manifolds
are not the manifolds of differential topology.) We shall approximate using
the elements of Mn. For each compact set K ⊂ X, we define the manifold
width

δn(K,X) := inf
M,a

sup
f∈K
‖f −M(a(f))‖X , (9.3)

where the infimum is taken over all manifolds of dimension n and all con-
tinuous parameter mappings a : K → Rn.

We make a couple of remarks which may help explain the nature of the
width δn.

Remark 9.7 For any compact set, we can select a countable number of
points which are dense in K and construct a one-dimensional manifold (a
continuous piecewise linear function of t ∈ R) passing through each of these
points. Thus, without the restriction that the approximation arises through
a continuous parameter selection a, we would always have δn(K) = 0.

Remark 9.8 The function a also guarantees stability of the approximation
process. If we perturb f slightly the continuity of a guarantees that the
parameters a(f) only change slightly.

The nonlinear widths of each of the Besov balls Uαr (Lτ (Ω)) in the space
Lp(Ω) are known. If this ball is a compact subset of Lp(Ω), then the non-
linear n-width is

δn(Uαr (Lτ (Ω)) � n−α, n→∞. (9.4)

This shows, therefore, that we cannot obtain a better approximation or-
der for these balls than what we obtain via n-term wavelet approximation.
However, n-term approximation, as it now stands, is not described as one
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of the procedures appearing in (9.3). However, this requires only a little
massaging. Using certain results from topology, DeVore, Kyriazis, Leviatan
and Tikhomirov (1993) have shown nonlinear approximation in terms of
soft thresholding of the coefficients can be used to describe an approxima-
tion process which provides the upper estimate in (9.3). We shall not go
into the details of this construction.

On the basis of the evidence we have thus far provided about linear and
nonlinear methods, is it safe to conclude that the nonlinear methods such as
n-term wavelet approximation are superior to other nonlinear methods? The
answer is definitely not. We only know that if we classify functions according
to their Besov smoothness, then for this classification no other nonlinear
methods can do better. On the other hand, each nonlinear method will
have its approximation classes and these need not be Besov spaces. A case
in point where we have seen this is the case of approximation in a Hilbert
space by n terms of an orthonormal basis. In this setting, we have seen
that the approximation classes depend on the basis and that smoothness of
a function for this type of approximation should be viewed as decay of the
coefficients with respect to the basis. This will generally not be a Besov
space. In other words, there are other ways to measure smoothness in which
wavelet performance will not be optimal.

Our discussion thus far has not included lower estimates for optimal basis
selection or n-term approximation from a dictionary. We do not know of a
concept of widths that properly measures the performance of these highly
nonlinear methods of approximation. This is an important open problem
in nonlinear approximation because it would shed light on the role of such
methods in applications such as image compression (see the section below).

Finally, we want to mention the VC dimension of Vapnik and Chervon-
enkis (see the book of Vapnik (1982)). The VC dimension measures the size
of nonlinear sets of functions by looking at the maximum number of sign al-
ternations of its elements. It has an important role in statistical estimation
but has not been fully considered in approximation settings. The paper of
Mairov and Ratasby (1998) uses VC dimension to define a new n-width and
analyses the widths of Besov balls. Their results are similar to those above
for nonlinear widths.

10. Applications of nonlinear approximation

Nonlinear methods have found many applications both numerical and ana-
lytical. The most prominent of these have been to image processing, stat-
istical estimation, and the numerical and analytic treatment of differential
equations. There are several excellent accounts of these matters: see Mallat
(1998) for image processing; Donoho and Johnstone (1994), Donoho, John-
stone, Kerkyacharian and Picard (1996) for statistical estimation; Dahmen
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(1997) and Dahlke, Dahmen and DeVore (1997) for applications to PDEs.
We shall limit ourselves to a broad outline of the use of nonlinear approx-
imation in image processing and PDEs.

10.1. Image processing

We shall discuss the processing of digitized grey-scale images. Signals, col-
our images, and other variants can be treated similarly but have their own
peculiarities. A digitized grey-scale image I is an array of numbers (called
pixel values) which represent the grey scale. We assume 8-bit grey-scale im-
ages, which means the pixel values range from 0 (black) to 255 (white). We
shall also assume (only for the sake of specificity) that the array consists of
1024× 1024 pixel values. Given such images, the generic problems of image
processing are: compression, noise reduction, feature extraction, and object
recognition.

To utilize techniques from mathematical analysis in image processing, it is
useful to have a model for images as functions. One such model is to assume
that the pixel values are obtained from an underlying intensity function f
by averaging over dyadic squares. In our case, the dyadic squares are those
in Dm := Dm(Ω), Ω := [0, 1)2, with m = 10, thus resulting in 1024 squares
and the same number of pixel values. We denote the pixel values by

pI = 1
|I|

∫
I
f(x) dx, I ∈ Dm. (10.1)

Of course, there is more than one function f with these pixel values. Since
the pixel values are integers, another possibility would be to view them as
integer quantizations of the averages of f . In other words, other natural
models may be proposed. But the main point is to visualize the image as
obtained from an intensity function f .

Compression
A grey-scale image I of the type described is represented by its pixel array,
I ∼ (pI)I∈Dm , which is a file of size one megabyte. For the purposes of
transmission, storage, or other processing, we would like to represent this
image with fewer bits. This can be accomplished in two ways. Lossless
encoding of the image uses techniques from information theory to encode
the image in fewer bits. The encoded image is identical to the original; in
other words the process of encoding is reversible. Lossy compression replaces
the original image by an approximation. This allows for more compression
but with the potential loss of fidelity. Lossless encoders will typically result
in compression factors of 2–1 which means the original file is reduced by
half. Much higher compression factors can be obtained in lossy compression
with no perceived degradation of the original image (images compressed by
factors of 10–1 are typically indistinguishable from the original).
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Fig. 9. Schematic of a typical wavelet-based compression algorithm

We can use the techniques of approximation theory and functional analysis
for lossy compression. We view the intensity function as our target function
and consider methods for approximating it from the pixel values. Wavelet-
based methods proceed as follows.

We choose a multivariate scaling function ϕ and represent the image by
the series

I ∼
∑
I∈Dm

pIϕI . (10.2)

Here pI , I ∈ Dm, are some appropriate extension of the pixel values. (When
using wavelets other than Haar, one has to do some massaging near the
boundary, which we shall not discuss.) We use the Fast Wavelet Trans-
form to convert pixel values to wavelet coefficients. This gives the wavelet
representation of I:

I ∼ P0 +
m−1∑
k=0

∑
I∈Dk

∑
e∈E

aeIψ
e
I , (10.3)

where P0 consists of all the scaling function terms from level 0, and the
other notation conforms to our multivariate wavelet notation of Section 7
(see (7.20)).

The problem of image compression is then viewed as nonlinear wavelet
approximation and the results of Section 7 can be employed. Figure 9 gives
a schematic of typical compression algorithms. We use thresholding to ob-
tain a compressed file (ãeI) of wavelet coefficients which correspond to a
compressed image Ĩ. The compressed coefficient file is further compressed
using a lossless encoder. The encoded compressed file is our compressed
representation of the original image. We can reverse the process. From the
encoded compressed file of wavelet coefficients, we apply a decoder and then
the Inverse Fast Wavelet Transform to obtain the pixel values of the com-
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pressed image Ĩ. The following remarks will help clarify the role of nonlinear
approximation in this process.

Remark 10.1 We apply nonlinear wavelet approximation in the form of
thresholding (Section 7.8). We choose a value of p (corresponding to the Lp
space in which we are to measure error) and retain all coefficients that satisfy
‖aeIψeI‖Lp > ε. We replace by zero all coefficients for which ‖aeIψeI‖Lp ≤
ε. Soft thresholding can also be used in place of hard thresholding. This
gives compressed wavelet coefficients āeI . The larger we choose ε the more
coefficients ãeI will be zero. In most applications, p is chosen to be 2. Larger
values of p will emphasize edges, smaller values emphasize smoothness.

Remark 10.2 Further compression, in terms of number of bits, can be
attained by quantizing the compressed wavelet coefficients. This means
that āeI is replaced by a number ãeI which requires fewer bits in its binary
representation. Quantization can be combined with thresholding by finding
ãeI with the fewest bits which satisfies ‖(aeI − ãeI)ψeI‖Lp ≤ ε.

Remark 10.3 The wavelet coefficient file consisting of the ãeI is further
compressed by using a lossless encoder such as run length encoding or arith-
metic encoding. The position of the coefficients must be encoded as well as
their value. This can be done by keeping the entire array of coefficients in
natural order (which will necessarily have many zero entries) or separately
encoding positions.

Remark 10.4 The most efficient wavelet-based compression algorithms,
such as the zero tree encoders (see Shapiro (1993) or Xiong, Ramchandran
and Orchard (1997)) or bitstream encoder (see Gao and Sharpley (1997)),
take advantage of the spatial correlation of the wavelet coefficients. For
example, if we represent the coefficients by means of quadtrees with each
node of the tree corresponding to one of the dyadic square I appearing in
(10.3), then there will be many subtrees consisting only of zero entries, and
one tries to encode these efficiently.

Remark 10.5 We can measure the efficiency of compression by the error

σn := ‖I − Ĩ‖Lp , (10.4)

where n is the number of nonzero coefficients in the compressed wavelet file
for Ĩ . Nonlinear approximation theory gives a direct relation between the
rate of decrease of σn and the smoothness of the intensity function f . For
example, consider approximation in L2. If f is in the Besov class Bα

τ (Lτ ),
1/τ = α/2 + 1/2, then σn ≤ Cn−α/2. Indeed, assuming this smoothness
for f , one can show that the function in (10.2) inherits this smoothness
(see Chambolle, DeVore, Lee and Lucier (1998)) and therefore the claim
follows from the results of Sections 7.6–7.7. An inverse theorem provides
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converse statements that deduce smoothness of the intensity function from
the rate of compression. However, for these converse results one must think
of varying m, that is, finer and finer pixel representations. The point is that
one can associate to each image a smoothness index α which measures its
smoothness in the above scale of Besov spaces, and relate this directly with
efficiency of wavelet compression (DeVore, Jawerth and Lucier 1992).

Remark 10.6 In image compression, we are not interested in the number
of nonzero coefficients of the compressed image per se, but rather the number
of bits in the encoded coefficient file. This leads one to consider the error

ρn := ‖I − Ĩ‖Lp , (10.5)

where n is the number of bits in the encoded file of wavelet coefficients
for Ĩ. It has recently been shown by Cohen, Daubechies, Guleryuz and
Orchard (1997) that a similar analysis to that developed here for nonlinear
wavelet approximation exists for the error ρn. For example, they show that
if a univariate intensity function f is in the Besov space Bα

∞(Lq), with
q > α+ 1/2, then with a proper choice of encoder one has ρN ≤ N−α. This
matches the error rate σn in terms of the number of coefficients. Related
results hold in a stochastic setting (see Mallat and Falzon (1997) and Cohen,
Daubechies, Guleryuz and Orchard (1997)).

Remark 10.7 Adaptive basis selection for the wavelet packet library has
been used successfully in compression. Most applications have been to signal
processing (in particular speech signals). There is, however, the interesting
application of compressing the FBI fingerprint files. Rather than use a
different basis for each file, the current algorithms choose one basis of the
wavelet packet library chosen by its performance on a sample collection of
fingerprint files.

Noise reduction
Noise reduction is quite similar to compression. If an image is corrupted
by noise then the noisy pixel values will be converted to noisy wavelet coef-
ficients. Large wavelet coefficients are thought to carry mostly signal and
should be retained; small coefficients are thought to be mostly noise and
should be thresholded to zero. Donoho and Johnstone have put forward al-
gorithms for noise reduction (called wavelet shrinkage) which have elements
similar to the above theory of compression. We give a brief description of
certain aspects of this theory as it relates to nonlinear approximation. We
refer the reader to Donoho, Johnstone, Kerkyacharian and Picard (1996),
and the papers referenced therein, for a more complete description of the
properties of wavelet shrinkage.

Wavelet-based noise reduction algorithms are applied even when the noise
characteristics are unknown. However, the theory has its most complete
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description in the case that the pixel values are corrupted by Gaussian noise.
This means we are given a noisy image Ĩ = I +N with noisy pixel values

p̃I = pI + ηI , (10.6)

where the pI are the original (noise-free) pixel values and the ηI are inde-
pendent, identically distributed Gaussians with mean 0 and variance σ2

0. If
we choose an orthonormal wavelet basis for L2(Ω), Ω = [0, 1)2, then the
wavelet coefficients computed from the p̃I will take the form

c̃eI = ceI + εeI , (10.7)

where ceI are the original wavelet coefficients of I and εeI are independent,
identically distributed Gaussians with variance σ2

02−2m. Wavelet shrinkage
with parameter λ > 0 replaces c̃eI by the shrunk coefficients sλ(ceI) where

sλ(t) :=
{

(|t| − λ)sign t, λ < t,
0, |t| ≤ λ, (10.8)

Thus, large coefficients (i.e., those larger than λ in absolute value) are shrunk
by an amount λ and small coefficients are shrunk to zero. We denote the
function with these wavelet coefficients by

fλ := P0 +
m−1∑
j=0

∑
I∈Dj

∑
e∈E

sλ(c̃eI)ψI,e, (10.9)

with the term P0 incorporating the scaling functions from the coarsest level.
We seek a value of λ which minimizes the expected error

E(‖f − fλ‖2L2(Ω)). (10.10)

Donoho and Johnstone propose the parameter choice λ∗ =
√

2 ln 2m2mσ0

and show its near optimality in several statistical senses. One of the extremal
problems studied by them, as well as by DeVore and Lucier (1992), is the
following. We assume that the original image intensity function f comes
from the the Besov space Bα

τ (Lτ (Ω)), with τ = (α/2+1/2)−1. We know that
these spaces characterize the approximation space Aατ (L2(Ω)) for bivariate
nonlinear wavelet approximation. It can be shown that the above choice of
λ gives the noise reduction

E(‖f − fλ‖2) ≤ C(λ)‖f‖τBατ (Lτ (Ω))[σ02−m]2−τ . (10.11)

The choice of λ = λ∗ gives an absolute constant c(λ∗). A finer analysis
of this error was given by Chambolle, DeVore, Lee and Lucier (1998) and
shows that choosing the shrinkage parameter to depend on α will result in
an improved error estimate.

Significant improvements in noise reduction (at least in the visual quality
of the images) can be obtained by using the technique of cycle spinning, as
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proposed by Coifman and Donoho (1995). The idea behind their method
can be described by the following analysis of discontinuities of a univari-
ate function g. The performance of wavelet-based compression and noise
reduction algorithms depends on the position of the discontinuities. If a
discontinuity of g occurs at a coarse dyadic rational, say 1/2, it will affect
only a few wavelet coefficients. These coefficients will be the ones that are
changed by shrinking. On the other hand, if the discontinuity occurs at a
fine level rational binary, say 2−m, then all coefficients will feel this discon-
tinuity and can potentially be affected by shrinkage. This less favourable
situation can be circumvented by translating the image, so that the dis-
continuity appears at a coarse binary rational, and then applying wavelet
shrinkage to the translated image. The image is shifted back to the original
position to obtain the noise reduced image. Since it is not possible to an-
ticipate the position of the discontinuities, Coifman and Donoho propose
averaging over all possible shifts. The result is an algorithm that involves
O(m22m) computations.

Feature extraction and object recognition
The time-frequency localization of wavelets allows for the extraction of fea-
tures such as edges and texture. These can then be utilized for object
recognition by matching the extraction to a corresponding template for the
object to be extracted. Edges and other discontinuities are identifiable by
the large wavelet coefficients. These occur at every dyadic level. Retention
of high frequency (i.e., the highest level) coefficients is like an artist’s sketch
of an image.

Feature extraction has been a prominent application of adaptive basis
selection and approximation from a dictionary. A dictionary of waveforms
is utilized which is robust enough to allow the feature to be approximated
with a few terms. Examples are the Gabor functions mentioned in Section 8.
In some cases, an understanding of the physics of wave propagation can allow
the designing of dictionaries appropriate for the features to be extracted. A
good example of this approach in the context of Synthetic Aperture Radar is
given by McClure and Carin (1997). The use of adaptive basis selection for
feature extraction is well represented in the book of Wickerhauser (1994).
The application of greedy algorithms and approximation from dictionaries
is discussed in detail in the book of Mallat (1998). Other techniques based
on wavelet decompositions can be found in DeVore, Lucier and Yang (1996)
(in digital mammography), and DeVore et al. (1997) (in image registration).

10.2. Analytical and numerical methods for PDEs

To a certain extent, one can view the problem of numerically recovering a
solution u to a PDE (or system of PDEs) as a problem of approximating the



142 R. A. DeVore

target function u. However, there is a large distinction in the information
available about u in numerical computation versus approximation theory.
In approximation theory one views information such as point values of a
function or wavelet coefficients as known, and constructs methods of ap-
proximation using this information. However, in numerical methods for
PDEs, the target function is unknown except through the PDE. Thus, the
information the approximation theorist wants and loves so much is not avail-
able except through numerical computation. In spite of this divergence of
viewpoints, approximation theory can be very useful in numerical compu-
tation in suggesting numerical algorithms and, more importantly, to clarify
the performance expected from linear and nonlinear numerical methods.

Adaptive methods are commonly used for numerically resolving PDEs.
These methods can be viewed as a form of nonlinear approximation with
the target function the unknown solution u to the PDE. Most adaptive
numerical methods have not even been shown to converge and certainly
have not been theoretically proven to have numerical efficiency over linear
methods. Nevertheless, they have been very successful in practice and their
effficiency has been experimentally established.

Nonlinear approximation can be very useful in understanding when and
how adaptive numerical methods should be used. For example, from the
analysis put forward in this paper, we know that adaptive piecewise polyno-
mial methods, as well as the n-term wavelet approximation methods, have
increased efficiency over linear methods when the target function u has cer-
tain types of singularities; specifically, singularities that would destroy the
smoothness of u in the Sobolev scale but would not impair its smoothness
in the Besov scale for nonlinear approximation.

To be more precise, suppose that u is to be approximated in the Lp(Ω)
norm with Ω a domain in Rd. Let αL be the largest value of α such that u is in
the Besov space Bα

∞(Lp(Ω)). We know that u can be approximated by linear
methods such as piecewise polynomial or linear wavelet approximation with
accuracy O(n−αL/d), with n the dimension of the linear space. However, we
do not know (unless we prove it) whether our particular numerical method
has this efficiency. If we wish to establish the efficiency of our particular
linear numerical method, we should seek an estimate of the form

‖u− un‖Lp(Ω) ≤ C|u|BαL∞ (Lp(Ω))n
−αL/d, (10.12)

where un is the approximate solution provided by our numerical method.
In many papers, WαL(Lp(Ω)) is used in place of BαL∞ (Lp(Ω). The form of
such estimates is familiar to the numerical analyst in finite element methods
where such estimates are known in various settings (especially in the case
p = 2 since this can be related to the energy norm).

Note that n is related to the numerical effort needed to compute the
approximant. However, the number of computations needed to compute an
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approximant with this accuracy may exceed Cn. This may be the case, for
example, in solving elliptic equations with finite element methods, since the
coefficients of the unknown solution must be computed as a solution to a
matrix equation of size n× n.

We can do a similar analysis for nonlinear methods. According to the
results reviewed in this article, the appropriate scale of Besov spaces to
gauge the performance of nonlinear algorithms are the Bα

q (Lq(Ω)) where
1/q = α/d + 1/p (see Figure 3 in the case d = 1). Let αN be the largest
value of α such that u is in the Besov space Bα

q (Lq(Ω)), 1/q = α/d +
1/p. If αN > αL, then nonlinear approximation will be more efficient than
linear approximation in approximating u and therefore the use of nonlinear
methods is completely justified. However, there still remains the question
of how to construct a nonlinear algorithm that approximates u with the
efficiency O(n−αN/d). If we have a particular nonlinear numerical method
in hand and wish to analyse its efficiency, then the correct form of an error
estimate for such a nonlinear algorithm would be

‖u− un‖Lp(Ω) ≤ C|u|BαNq (Lq(Ω))n
−αN/d, 1/q = αN/d+ 1/p. (10.13)

How could we decide beforehand whether nonlinear methods offer a be-
nefit over linear methods? This is the role of regularity theorems for PDEs.
A typical regularity theorem infers the smoothness of the solution u to a
PDE from information such as the coefficients, inhomogeneous term, initial
conditions, or boundary conditions. We shall discuss this in a little more
detail in a moment, but for now we want to make the point of what form
these regularity theorems should take. The most common regularity theor-
ems are in the form of Sobolev regularity and are compatible with the linear
theory of numerical methods. Much less emphasis has been placed on the
regularity in the nonlinear scale of Besov spaces but this is exactly what we
need for an analysis of adaptive, or other nonlinear, algorithms.

To go a little further in our discussion, we shall consider two model prob-
lems, one hyperbolic and the other elliptic, to elucidate the points discussed
above.

Conservation laws
Consider the scalar univariate conservation law{

ut + f(u)x = 0, x ∈ R, t > 0,
u(x, 0) = u0(x), x ∈ R, (10.14)

where f is a given flux, u0 a given initial condition, and u is the sought-after
solution. This is a well studied nonlinear transport equation with transport
velocity a(u) = f ′(u) (see, for instance, the book of Godlewski and Raviart
(1991)). We shall assume that the flux is strictly convex, which means the
transport velocity is strictly increasing. The important fact for us is that,
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even when the initial condition u0 is smooth, the solution u(·, t) will develop
spontaneous shock discontinuities at later times t.

The proper setting for the analysis of conservation laws is in L1 and,
in particular, the error of numerical methods should be measured in this
space. Thus, concerning the performance of linear numerical methods, the
question arises as to the possible values of the smoothness parameter αL of
u(·, t) as measured in L1. It is known that, if the initial condition u0 is in
BV = Lip(1, L1), then the solution u remains in this space for all later time
t > 0. However, since this solution develops discontinuities, no matter how
smooth the initial condition is, the Sobolev embedding theorem precludes
u being in any Besov space Bα

∞(L1)) for any α > 1. This means that the
largest value we can expect for αL is αL = 1. Thus, the optimal performance
we can expect from linear methods of approximation is O(n−1), with n the
dimension of the linear spaces used in the approximation. Typical numerical
methods utilize spaces of piecewise polynomials on a uniform mesh with
mesh length h and the above remarks mean that the maximum efficiency
we can expect for numerical methods is O(h), h → 0. In reality, the best
proven estimates are O(

√
h) under the assumption that u0 ∈ Lip(1, L1).

This discrepancy between the possible performance of numerical algorithms
and the actual performance is not unusual. The solution is known to have
sufficient regularity to be approximated, for example, by piecewise constants
with uniform mesh h to accuracy O(h), but algorithms which capture this
accuracy are unkown.

To understand the possible performance of nonlinear methods such as
moving grid methods, we should estimate the smoothness of the solution in
the nonlinear Besov scale Bα

τ (Lτ )), 1/τ = α + 1, corresponding to approx-
imation in the L1-norm. A rather surprising result of DeVore and Lucier
(1990) shows that, starting with a smooth initial condition u0, the solution
u will be in each of these Besov spaces for all α > 0. In other words, de-
pending on the smoothness of u0, αN can be arbitrarily large. This means
that nonlinear methods such as moving grid methods could provide arbitrar-
ily high efficiency. In fact, such algorithms, based on piecewise polynomial
approximation, can be constructed using the method of characteristics (see
Lucier (1986) for the case of piecewise linear approximation).

Unfortunately, the situation concerning numerical methods for multivari-
ate conservation laws is not as clear. While the linear theory goes through
almost verbatim, the nonlinear theory is left wanting. The proper form of
nonlinear approximation in the multivariate case would most likely be by
piecewise polynomials on free triangulations. As we have noted earlier, it is
an unsolved problem in nonlinear approximation to describe the smoothness
conditions that govern the efficiency of this type of approximation. For a
further discussion of the multivariate case see DeVore and Lucier (1996).

Because of their unique ability to detect singularities in a function, wavelet
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methods seem a natural candidate for numerical resolution of solutions to
conservation laws. However, it is not yet completely clear how wavelets
should be used in numerical solvers. Attempts to use wavelets directly in a
time-stepping solver have not been completely effective. Ami Harten (1994)
and his collaborators have suggested the use of wavelets to compress the
computations in numerical algorithms. For example, he proposes the use of
a standard time-stepping solver, such as Godunov, based on cell averages
for computing the solution at time step tn+1 from the numerically computed
solution at time step tn, but to utilize wavelet compression to reduce the
number of flux computations in the solution step.

Elliptic equations
An extensive accounting of the role of linear and nonlinear approximation
in the solution of elliptic problems is given in Dahmen (1997) and Dahlke,
Dahmen and DeVore (1997). We shall therefore limit ourselves to reiterating
a couple of important points about the role of regularity theorems and the
form of nonlinear estimates. We consider the model problem

4u = f on Ω ⊂ Rd,
u = 0 on ∂Ω (10.15)

of Poisson’s equation on a domain Ω ⊂ Rd with zero boundary conditions.
We are interested in numerical methods for recovering the solution to (10.15)
and, in particular, in the question of whether nonlinear methods such as
adaptive solvers are of any benefit. We shall also limit our discussion to
estimating error in the L2-norm, although various results are known for
general p.

Consider first the case where f ∈ L2(Ω) and Ω has a smooth boundary.
Then, the solution u to (10.15) has smoothness W 2(L2(Ω)). In our previous
notation, this means that αL = 2. In general, the solution will not have
higher smoothness in the nonlinear Besov scale Bα

q (Lq(Ω)), 1/q = α/d+1/2,
for L2 approximation. Therefore αN = 2 and there is no apparent advantage
to nonlinear methods. The solution can be approximated by linear spaces of
piecewise polynomials of dimension n to accuracy O(n−2/d). This accuracy
can actually be achieved by finite element methods using uniformly refined
partitions. There is no evidence to suggest any better performance using
adaptive methods.

If the boundary ∂Ω of Ω is not smooth then the solutions (10.15) have
singularities due to corners or other discontinuities of ∂Ω (see, for instance,
Kondrat’ev and Oleinik (1983)). Regularity theory in the case of a non-
smooth boundary is a prominent area of PDEs. For some of the deepest
and most recent results see Jerison and Kenig (1995). For example, on a
general Lipschitz domain, we can only expect that the solution u to (10.15)
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is in the Sobolev space W 3/2(L2(Ω)). Thus, in the notation given earlier in
this section, we will only have αL = 3/2.

Because of the appearance of singularities due to the boundary, adaptive
numerical techniques are suggested for numerically recovering the solution u.
We understand that to justify the use of such methods we should determine
the regularity of the solution in the scale of Besov spaces Bα

q (Lq(Ω)), 1/q =
α/d+ 1/2. Such regularity has been studied by Dahlke and DeVore (1997).
They prove, for example, that, for d = 2, 3, 4, we have u ∈ Bα

q (Lq), 1/q =
α/d+ 1/2, for each α < 2. In other words, αN > αL and the use of adaptive
methods is completely justified. There are also more general results which
apply for any d > 1 and show that we always have αN > αL.

We reiterate that the above results on regularity of elliptic equations only
indicate the possibility of constructing nonlinear methods with higher effi-
ciency. It remains a difficult problem to construct adaptive methods and
prove that they exhibit the increased accuracy indicated by the approxim-
ation theory. The aim is to construct numerical methods that provide the
error estimate (10.13). We refer the reader to Dahmen (1997) for a com-
prehensive discussion of what is known about adaptive methods for elliptic
equations.
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