
ar
X

iv
:2

40
2.

07
24

8v
1

 [
cs

.L
G

]
 1

1
Fe

b
20

24

Depth Separations in Neural Networks:

Separating the Dimension from the Accuracy

Itay Safran1, Daniel Reichman2, and Paul Valiant1

1Purdue University
2Worcester Polytechnic Institute

Abstract

We prove an exponential separation between depth 2 and depth 3 neural networks, when approximat-

ing an O(1)-Lipschitz target function to constant accuracy, with respect to a distribution with support in

[0, 1]d, assuming exponentially bounded weights. This addresses an open problem posed in Safran et al.

[20], and proves that the curse of dimensionality manifests in depth 2 approximation, even in cases where

the target function can be represented efficiently using depth 3. Previously, lower bounds that were used

to separate depth 2 from depth 3 required that at least one of the Lipschitz parameter, target accuracy or

(some measure of) the size of the domain of approximation scale polynomially with the input dimension,

whereas we fix the former two and restrict our domain to the unit hypercube. Our lower bound holds for

a wide variety of activation functions, and is based on a novel application of an average- to worst-case

random self-reducibility argument, to reduce the problem to threshold circuits lower bounds.

1 Introduction

There is significant empirical evidence suggesting that depth plays a crucial role in the practical success of

deep learning [8, 5]. From a purely theoretical perspective, while depth 2 neural networks are known to be

universal approximators for continuous functions over compact domains [1, 6, 9], it is now well-established

that depth may be necessary to obtain a compact representation of certain target functions [3, 22, 16, 2, 26,

10, 19, 20, 25, 18, 15, 21]. Perhaps the most stark such examples are when separating depth 2 from depth

3 – following the seminal work of Eldan and Shamir [3], many works have demonstrated depth separations

where depth can be exponentially more beneficial than width, even when increased by just one: There exists

a function f : R
d → R that can be approximated to accuracy ε > 0 using a network of depth 3 and

width poly(d, 1/ε), yet any depth 2 network which approximates f to the same accuracy would require

exponentially many more neurons (in d or 1/ε).

Despite the growing number of settings where such separations can be shown, known results often

involve contrived settings with complicated distributions and oscillatory target functions. On the other hand,

functions arising in machine learning settings are often smooth, with bounded fluctuations. Moreover, it

was recently shown that in some examples constructed to show depth separations with neural networks, the

same property which prevents approximation using the shallow architecture, may also prove detrimental for

optimization, even when using a network which is sufficiently deep to express the target function efficiently

[11, 12]. In light of this, several recent works have shifted their focus to devising depth separation results

for functions that are arguably more natural [19, 20, 18, 17, 15, 21]. The rationale is that such results could

1

http://arxiv.org/abs/2402.07248v1

be better aligned with learning problems arising in applications, rather than contrived examples that may not

be representative of broader classes of functions.

In Safran et al. [20], the authors observe, given a depth 2 lower bound for neural network approxima-

tion, that the Lipschitz constant of the target function and the target accuracy parameters, can be traded off

by rescaling the function by a multiplicative factor. Moreover, one can also strengthen the accuracy lower

bound, at the cost of dilating the domain of approximation, by using a change of variables (see [20, Theo-

rem 9] for a precise statement). This important observation suggests, that if either one of these parameters

scales with the input dimension d (as is the case in all known separation results), then it is not possible

to pinpoint whether the true cause of the difficulty in the approximation stems from the input dimension

itself, or from the remaining parameters that were forced to scale with it. In other words, it is not clear if

known approximation lower bounds for depth 2 are a manifestation of the curse of dimensionality, or if the

difficulty lies somewhere else. To study the root cause for the hardness of approximation, the authors pose

the following question:

Can we show a superpolynomial depth 2 vs. depth 3 neural network separation result in terms

of the dimension d, for approximating O(1)-Lipschitz functions up to constant accuracy ε, on a

domain of bounded radius (all independent of d)? [20]

Their main result, is that perhaps surprisingly, if one considers radial target functions that are com-

monly used to show such depth separations, then an exponential dependence on d is not possible. This is

demonstrated by providing a general approximation result wherein width poly(d) suffices.

Motivated by the above question, in this work, we prove a separation result between depth 2 and depth

3, where the target function is O(1)-Lipschitz, the domain of approximation is contained inside the unit

hypercube, and the separation is exponential even if the target accuracy is an absolute constant. We point

out that for technical reasons, our result does not quite resolve the above question, since the unit hypercube

has radius which scales as
√
d. However, our result does provide a separation where the effects of the

parameters other than the input dimension are minimal compared to other results in the literature (see Table 1

for a comparison). Moreover, despite not being bounded in a ball of constant radius, the unit hypercube is

a natural domain to study approximation problems. This is supported by the fact that its d-dimensional

Lebesgue measure is constant (namely, the volume of the domain is independent of d), whereas the unit ball

needs to be rescaled by a factor of Θ(
√
d) to have a constant volume. So at least in some sense, our domain

of approximation is more independent of the input dimension than a domain of constant radius.

Our proof technique is quite different than those commonly used in the literature. While it is common to

use some technical analysis tool such as Fourier spectrum analysis [3] or spherical harmonics [2], our lower

bound relies on a reduction to threshold circuits, where an exact computation lower bound for the IP mod

2 function is used. The key ingredient in our proof is a reduction from an average-case complexity, where

intuitively, only a constant portion of the inputs are classified correctly; to a worst-case complexity, where

we are able to construct a network which is capable of classifying all the inputs correctly. This construction

utilizes the randomization of the input in a manner which preserves its output value, yet induces sufficient

randomness so as to result in a concentration of measure which provides a worst-case guarantee. This

is achieved by a careful analysis of properties of the probability distribution induced by our randomized

self-reduction, and much of the proof of the lower bound is dedicated to this part.

We point out that our separation holds for a wide family of activation functions, which also includes

commonly used functions like the ReLU, threshold and sigmoidal activations. Similarly to other lower

bounds in the literature that are shown with respect to compactly supported distributions, our result assumes

a mild exponential upper bound on the magnitude of the weights of the approximating network. In contrast,

2

Table 1: Several known lower bounds for approximation using depth 2 neural networks, where the target

function is scaled to be O(1)-Lipschitz, and for the sake of comparison, the distribution is scaled to either

contain the unit hypercube (for compactly supported distributions), or normalized to have most of its prob-

ability mass contained within the unit hypercube (non-compactly supported distributions). An asterisk ∗

denotes that the result in Daniely [2] is not for a radial function, but can be reduced to one taking the form

x 7→ 1
2πd2.5 sin(2πd

2.5‖x‖2), which oscillates in any direction from the origin (see [20, 23]). In contrast, our

result is non-oscillatory in all such directions, but it can be seen rather as an extension of a Boolean function

to the unit hypercube. Safran et al. [20] use a reduction to the main result of Eldan and Shamir [3] to show a

lower bound for a non-oscillatory function, but the cost of removing this oscillation is that the accuracy gets

worse by a factor of d−2. To the best of our knowledge, our lower bound, which is highlighted in bold, is the

only constant accuracy lower bound in this setting. Since in many machine learning applications the input

dimension is quite large, we have that lower bounds that scale as 1/poly(d) are too permissive, in contrast

to our constant lower bound.

Reference Distribution Function Accuracy

Eldan and Shamir [3] Radial, heavy-tailed Radial, oscillatory Ω
(

d−4
)

Daniely [2] Radial∗, compactly supported Radial∗, oscillatory Ω
(

d−2
)

Safran et al. [20] Radial, heavy-tailed, Radial, non-oscillatory Ω
(

d−6
)

Venturi et al. [25] Product, heavy-tailed Product, oscillatory Ω
(

d−4
)

This paper Product, compactly supported Non-oscillatory Ω (1)

lower bounds that do not impose any restrictions on the magnitude of the weights, rely on the technique in

Eldan and Shamir [3], and use heavy-tailed data distributions. To the best of our knowledge, it remains a

major open problem to show a superpolynomial separation result between depth 2 and depth 3, with respect

to a distribution with bounded support, and when allowing unbounded weights.

The remainder of this paper is structured as follows: After presenting our contributions in this paper

in more detail below, we discuss related work in the literature. In Sec. 2 we present the notation used

throughout this paper, followed by a formal construction of our separation setting, the set of assumptions

used in our results, and the main result in this paper. Sec. 3 details our depth 2 lower bound, as well as

provides a sketch of the proof. Sec. 4 details our depth 3 positive approximation result, as well as provides

a concrete example of the construction for the ReLU activation function.

Our contributions

• We prove that under mild assumptions on the activation function σ (Assumption 1), a depth 2 neu-

ral network with σ activations cannot well-approximate a certain O(1)-Lipschitz function fd (see

Eq. (1)). It is shown that there exists a simple distribution with support in [0, 1]2d, such that fd cannot

be approximated to better than constant accuracy with respect to this distribution, unless the width of

the network scales as Ω
(

exp(Ω(d))
poly(C)

)

(Thm. 3.1).

• We prove that under different, mild assumptions on the activation function σ (Assumption 2), a depth

3 neural network with σ activations can approximate the same function fd to arbitrary accuracy in an

L∞ sense, using width that scales polynomially with the target accuracy and d (Thm. 4.1).

• Combining our lower and upper bounds, we obtain our main result (Thm. 2.1), which demonstrates

3

the manifestation of the curse of dimensionality in depth 2 approximation, even if the target function

is easy to approximate using depth 3. This is in contrast with previously known results that only imply

an exponential lower bound in a high-accuracy regime where the target accuracy scales as 1/poly(d).

Related work

Separating depth 2 from depth 3, continuous, L2 lower bound setting. For concreteness, let us fo-

cus here on the setting of separating depth 2 from depth 3 in a continuous, L2 lower bound setting. The

seminal work of Eldan and Shamir [3] provided the first exponential L2 lower bound for depth 2 neural

networks. The authors construct an approximately radial, oscillatory target function, and use a Fourier spec-

trum analysis argument to prove their unconstrained lower bound (imposing no bounds on the magnitude

of the weights). As an artifact of this technique, a superposition argument is required to guarantee that the

target function cannot be approximated with fewer than exponentially many neurons. This, however, also

forces the Lipschitz constant and the number of oscillations to scale as poly(d). Venturi et al. [25] adapt

the technique of Fourier spectrum analysis to a setting with product target functions and distributions, rather

than radial ones. Due to this technique, both works [3, 25] require the target accuracy to scale as Ω
(

d−4
)

for

the curse of dimensionality to manifest. Safran et al. [21] also use Fourier spectrum analysis to show a depth

separation result between depth 2 and depth 3, for approximating the non-oscillatory 1-Lipschitz maximum

function on the domain [0, 1]d, with respect to the uniform distribution. However, their separation is only

polynomial in magnitude, and for accuracy which scales as 1/poly(d) rather than a constant.

Daniely [2] used a simple and elegant harmonic analysis technique, to show a depth 2 vs. depth 3

separation, using exponentially bounded weights, for oscillatory target functions, over a product distribution

on two spheres (that can be reduced to a radial distribution – see [20, 23] for more details). With some

careful analysis, it can be shown that with this technique, the approximation error required for the curse

of dimensionality to manifest is Ω
(

d−2
)

. [18, 15] prove depth 2 approximation lower bounds for non-

oscillatory target functions, by using the main result in Daniely [2], and decoupling the dependence of the

input dimension from the accuracy in the lower bound. However, both results require the accuracy to scale

as d−2 for the curse of dimensionality to manifest, a property inherited by the proof technique being used.

Safran and Shamir [19], Safran et al. [20] use reductions to the main result of Eldan and Shamir [3]

to derive exponential depth 2 lower bounds for non-oscillatory functions. Safran and Shamir [19] show

this for non-Lipschitz ellipsoid indicator functions, and Safran et al. [20] show this for a 1-Lipschitz radial

function. Like the previous results using Fourier spectrum analysis, these results require accuracy scaling

with Ω
(

d−4
)

to have exponential dependence on the input dimension, but additionally, simplifying the

function to be non-oscillatory results in an additional d−2 factor, for an overall accuracy lower bound of

Ω
(

d−6
)

. In contrast, our lower bound is also for a non-oscillatory function, but it is already exponential for

constant accuracy.

Connection between neural networks and threshold circuits. The connection between approximation

lower bounds when using neural networks and threshold circuits has been studied in multiple works recently.

Martens et al. [13] study lower bounds for depth 2 neural networks with non-threshold activation functions,

by constructing a threshold network which computes the same real-valued function, and applying known

threshold circuit lower bounds. Their work differs from our in a few ways: (i) While we use a similar

reduction technique, we only approximate non-threshold activations using thresholds rather than compute

the exact same real function; (ii) we focus on approximation on continuous domains rather than the discrete

uniform distribution over the Boolean hypercube; and most importantly, (iii) we consider a weaker notion

4

of average-case approximation, whereas their work deals with exact computation of Boolean functions.

Mukherjee and Basu [14] derive sub-linear size lower bounds for neural networks by showing reductions to

known threshold circuit lower bounds. Vardi and Shamir [23] show barriers for achieving depth separations

in neural networks by using reductions to open problems in threshold circuits, and applying known “natural

proof barrier” results, showing that such separations would solve long-standing open problem that are widely

believed to be very difficult. Since their results only apply to networks of depth 4 or more, they do not apply

in the setting investigated in this paper, which to the best of our knowledge does not solve any open problem

in circuit complexity. Vardi et al. [24] use communication complexity to derive size lower bounds for ReLU

networks which compute IP mod 2. While this lower bound applies to any depth, it is for a network size

which is sublinear in the input dimension, whereas we use a similar distribution, but in order to show an

exponential separation between depth 2 and depth 3.

Progress on the open question posed in Safran et al. [20]. To the best of our knowledge, the only

works that made progress with the open question posed in Safran et al. [20], are [20, 7]. Safran et al. [20]

observe that the target accuracy, Lipschitz parameter of the target function, and the radius of the domain of

approximation, can all be traded off with polynomial factors. As one of their main contributions, the authors

show that when all three parameters are held constant, then an exponential separation between depth 2 and

depth 3 is not possible for radial functions, by proving a positive L∞ approximation result in this setting

where width polynomial in d suffices. This indicates that in order to resolve the question, one must consider

non-radial target functions. Hsu et al. [7] consider the question of how many randomly initialized ReLU

neurons are required for the approximation of arbitrary functions with a constant Lipschitz parameter, with

respect to the uniform distribution over [0, 1]d, and with high probability. Their main positive approximation

result is that perhaps surprisingly, if the target accuracy is fixed, then a depth 2, width poly(d) random

ReLU network will approximate any O(1)-Lipschitz function with high probability (hence – there exists a

network with this approximation). However, since this result is with respect to a uniform L2 approximation

rather than an L∞ approximation, it does not imply that lower bounds exponential in d are not possible

for distributions on [0, 1]d that are different from the uniform distribution. Indeed, our lower bound is for

a distribution with support in [0, 1]2d, that has more probability mass concentrated closer to the Boolean

hypercube.

2 Setting and Main Result

In this section, we formally define our setting and present the notation and terminology used throughout the

paper, before turning to present our assumptions and main result.

2.1 Preliminaries and notation

Notation and terminology. We let [n] be shorthand for the set {1, . . . , n}. We denote vectors using

bold-faced letters (e.g. x) and matrices or random variables using upper-case letters (e.g. X). Given a

vector x = (x1, . . . , xd) ∈ R
d, we define round(x) = (round(x1), . . . , round(xd)), where round(x)

rounds x to the nearest integer. We let U(A) denote the uniform distribution on a set A ⊆ R
d. We define

the Boolean functions AND : {0, 1}2 → {0, 1}, AND(x, y) = x · y; and IPd : {0, 1}2d → {0, 1},
IPd(x,y) = 〈x,y〉 mod 2. Given a function f : R → R, we define its total variation on the interval

[a, b] ⊆ R as V b
a (f) := supP

∑nP
i=1 |f(xi)− f(xi−1)|, where the supremum is taken over all the possible

partitions of the interval [a, b].

5

Neural networks and threshold circuits. We consider fully connected, feed-forward neural networks,

computing functions from R
d to R. A σ-network consists of layers of neurons. In every layer except for

the output neuron, an affine function of the inputs is computed, followed by a computation of the non-linear

activation function σ : R → R. The single output neuron simply computes an affine transformation of

its inputs. Each layer with a non-linear activation is called a hidden layer, and the depth of a network

is defined as the number of hidden layers plus one. The width of a network is defined as the number of

neurons in the largest hidden layer, and the size of the network is the total number of neurons across all

layers. Analogously, we define a threshold network as a σ-network which employs the threshold activation

function; namely, where σ(x) = 1 for all x ≥ 0.5, and σ(x) = 0 otherwise. We make the distinction

between a threshold network and a threshold circuit, where in a threshold circuit, the output neuron also has

a non-linear activation rather than a linear activation as is the case for threshold networks.

2.2 Formal construction

We begin with defining the distribution used to show our separation result. Let

Ad := ([0, 0.25] ∪ [0.75, 1])d

be the support of our distribution. We define our distribution to be the uniform distribution over the set

A2d; namely, the distribution U(A2d). It is interesting to note that this distribution can also be seen as an

interpolation between the two distributions U([0, 1]d) and U({0, 1}d), where as discussed in the related work

subsection, the former is too spread to show constant accuracy lower bounds for O(1)-Lipschitz functions,

and the latter is a discrete rather than a continuous distribution – the setting where neural networks are

typically being used. We define our hard to approximate function fd : [0, 1]
2d → R as

fd(x,y) := IPd(round(x), round(y)) ·min
i∈[d]
{4|xi − 0.5|, 4|yi − 0.5|, 1}, (1)

where the inputs satisfy x,y ∈ [0, 1]d. It is straightforward to verify that fd(x,y) = IPd(round(x), round(y))
for all x,y ∈ Ad. Moreover, it is easy to see that fd is 4-Lipschitz on [0, 1]2d:1 It equals 0 if there

exists i ∈ [d] such that xi = 0.5 or yi = 0.5, so it suffices to prove that it is 4-Lipschitz on each

one of the 22d disjoint sub-hypercubes of side length 0.5 that are contained in [0, 1]2d. For each such

sub-hypercube, if IPd equals 0, then fd equals 0 on the sub-hypercube, and it is clearly 4-Lipschitz.

Otherwise, IPd equals 1 on the sub-hypercube, and therefore for all x,y in this sub-hypercube we have

fd(x,y) = mini∈[d]{4|xi − 0.5|, 4|yi − 0.5|, 1} = 4mini∈[d]{|xi − 0.5|, |yi − 0.5|, 0.25}, which is 4-

Lipschitz since the minimum function is 1-Lipschitz.

2.3 Assumptions

Before we can present our main result in this paper, we will first formally state and discuss our assumptions.

We begin with formally stating our assumption on the family of activation functions for which our lower

bound holds.

1We remark that while we define fd to be 4-Lipschitz on [0, 1]2d, this is in fact not necessary, since our distribution is only

supported on A2d ⊂ [0, 1]2d , and therefore it does not matter how fd behaves outside of this set. Nevertheless, we extend it to be

Lipschitz on [0, 1]2d to highlight its simple structure compared to some of the other functions that were used to separate depth 2

from depth 3.

6

Assumption 1 (Lower bound). The activation function σ is (Lebesgue) measurable and satisfies

|σ(x)| ≤ Cσ (1 + |x|ασ)

and

V b
a (σ) ≤ Cσ (1 + (|a|+ |b|)ασ)

for all x ∈ R, a < b and for some constants Cσ, ασ , which depend solely on σ.

The boundedness of |σ(x)| is a standard assumption when proving approximation lower bounds, and

it is also used in Eldan and Shamir [3] for example. Since our proof is based on a reduction to threshold

circuits, our technique fails if we consider certain activation functions that are highly oscillatory, since there

are such pathological activations that can be used to compute any Boolean function f : {0, 1}d → {0, 1},
even with just a single neuron. In light of this, we also make an assumption that the total variation of the

activation function is polynomially bounded on a compact domain. Such an assumption is very mild, and

holds for essentially any activation function which is used in practice.

Having discussed our lower bound assumption, we now move on to state and discuss our upper bound

assumption.

Assumption 2 (Upper bound). There exists a constant cσ which depends solely on σ such that the following

holds: For all R > 0 and any L-Lipschitz function f : [−R,R] → R, and for any δ, there exist scalars

a, {αi, βi, γi}wi=1, where w, |a|, |αi|, |βi|, |γi| ≤ cσ
RL
δ for all i ∈ [w], such that the function

h(x) = a+
w
∑

i=1

αi · σ(βix− γi)

satisfies

sup
x∈[−R,R]

|f(x)− h(x)| ≤ δ.

The above is a slight modification of Assumption 2 in Eldan and Shamir [3], and is satisfied by many

standard activation functions that are used in the literature, which in particular include threshold, ReLU and

sigmoidal activations (see Lemma A.4 in the appendix which implies that the threshold activation satisfies

this property, and see Appendix A in Eldan and Shamir [3] for a proof for the ReLU activation). We point out

that we also require an additional mild requirement in our assumption, that the weights of the approximating

network h are bounded in magnitude. This is in order to control the magnitude of the weights in our

approximation of fd, and get a valid separation that requires weights of polynomials magnitude, which

stands in contrast to our lower bounds, where polynomially bounded weights imply that width exponential

in d is necessary.

2.4 Main result

We are ready to present our main theorem in this paper:

Theorem 2.1. Consider the sequence of distributions {U(A2d)}∞d=1, and the sequence of O(1)-Lipschitz

functions fd : R2d → R defined in Eq. (1). Then for all C > 0 and sufficiently large d, we have for any

activation function σ that satisfies both Assumption 1 and Assumption 2, that the following hold

7

• For any depth 2 σ-network Nd : R
d → R, with weights bounded in magnitude by C , we have

E
x,y∼U(Ad)

[

(fd(x,y) −Nd(x,y))
2
]

>
1

400
,

unless Nd has width at least Ω
(

exp(Ω(d))
poly(C)

)

.

• For all ε > 0, there exists a depth 3, width poly(d, 1/ε), σ-network N ′d, such that

sup
x,y∈Ad

∣

∣fd(x,y) −N ′d(x,y)
∣

∣ ≤ ε,

where the asymptotic notation hides constants that depend solely on σ.

The above theorem is an immediate consequence of our lower bound (Thm. 3.1) and upper bound

(Thm. 4.1), which will be presented in detail in the following sections.

3 Lower Bound

In this section, we present our lower bound for the approximation of the function fd. Thereafter, we provide

a proof sketch which conveys the main technical ideas behind the result. We begin with formally stating our

lower bound as follows.

Theorem 3.1. Suppose that σ satisfies Assumption 1, and let N : R2d → R be a depth 2 σ-network with

weights bounded by C that satisfies

Ex,y∼U(Ad)

[

(N (x,y) − fd(x,y))
2
]

≤ 1

400
.

Then, N has width

Ω

(

exp (Ω (d))

poly(C)

)

,

where the asymptotic notation hides constants that depend solely on σ.

The proof of the above theorem relies on an average- to worst-case reduction in a neural network setting,

followed by a reduction to threshold circuits. Given a network which approximates fd well, we can use it

to construct a network which achieves similar accuracy, but with margins that can be made arbitrarily more

uniform due to a concentration of measure argument. The crux of our proof is identifying a construction that

re-randomizes the input sufficiently well, effectively obtaining a strong enough concentration of measure,

while also doing so in a manner which maintains the output value of the function. Thereafter, a very careful

technical analysis is required to establish that the accuracy lost due to this re-randomization process is at

most a constant. We refer the reader to Subsection 3.1 for a more detailed proof sketch of the theorem, and

to Appendix A.1 for the full proof.

We point out that the constant 1
400 is arbitrary, and our proof technique is capable of improving this to be

arbitrarily close to the constant 1
16 (at the cost of increasing the constants hidden in the asymptotic notation).

Since a trivial approximation of a single constant neuron (which returns the value 0.5) yields accuracy 1
4 , this

indicates that our analysis is very tight, and that adding even exponentially many neurons does not improve

upon the trivial approximation by much.

8

We remark that our weight boundedness assumption is mild, since our lower bound remains exponential

in d, as long as C is in itself not exponential in d. In such a case, where the weights required for expressing

fd must have exponential magnitude, it is known that stable gradient descent must run for exponentially

many iterations in order for the weights to reach such a magnitude (see Safran and Lee [18] for a more

formal result of this kind). This suggests that even if a network of size polynomial in d can approximate

fd well, then in practice, learning such a representation using standard techniques is not tractable, and it is

therefore of lesser interest from a practical perspective.

3.1 Techniques, and proof sketch of Thm. 3.1

In this subsection, we detail the key ideas behind the proof of our lower bound. The reader is referred to

Appendix A.1 for the full proof.

3.1.1 Step 1: From a continuous to a discrete distribution

We begin with assuming that we have a depth 2, σ-network N , which approximates fd to accuracy 1
400 ,

where σ satisfies Assumption 1, and our goal is to lower bound its width. By our assumption, this network

provides a good approximation with respect to the continuous distribution U(A2d). Since our aim here is

to eventually use lower bounds from threshold circuits to get a lower bound on the width of N , we aim to

reduce this lower bound over the continuous distribution to the discrete distribution U({0, 1}2d). To this end,

we use a similar argument to the one used in Vardi et al. [24, Prop. 6.1], who observe that the distribution

U(A2d) can be decomposed into the sum of the two distributions U([0, 0.25]2d) and U({0, 0.75}2d). By

using Markov’s inequality on the randomness induced by the former continuous component, we have that

with positive probability, we can find a depth 2 neural network N ′, which has width similar to N ; and a

discrete sub-cube with side length 0.75, which is contained in A2d; such that N ′ approximates IPd to an

average square loss of 1
399 . By performing linear operations in the hidden layer of N ′, which do not affect

its size, we are able to modify it without changing its architecture, making it approximate IPd effectively

with respect to the distribution U({0, 1}2d).

3.1.2 Step 2: From average- to worst-case using randomization

In the previous step, we constructed a depth 2, σ-network N ′, which approximates IPd uniformly over

{0, 1}2d, to an average squared error of 1
399 . Intuitively, this means thatN ′ computes IPd well in an average-

case sense, since by Markov’s inequality, for at least a constant fraction of the inputs x,y ∈ Ad, we have that

round(N ′(x,y)) = IPd(x,y). Our aim is now to use N ′ to construct a depth 2, σ-network N ′′, such that

round(N ′′(x,y)) = IPd(x,y) holds for all inputs x,y ∈ Ad. To this end, we use a randomization scheme

on the input, where we map it to a higher dimensional space, and use a higher dimensional architecture of

N ′. The purpose of this scheme is to alter the input in a manner which induces as much randomness as

possible, but while also keeping its output unchanged. This is achieved by identifying the following three

different alterations:

• Using the identity

IPd(x,y) = IPd(x+ x′,y + y′) + IPd(x
′,y′) + IPd(x+ x′,y′) + IPd(x

′,y + y′) mod 2,

which holds for all x,y,x′,y′ ∈ {0, 1}d, we can generate uniformly random binary vectors x′,y′ ∈
{0, 1}d, and replace x and y with the vectors (x + x′,x′,x + x′,x′) and (y + y′,y′,y′,y + y′),

9

respectively, while keeping the IP mod 2 output unchanged. This additional randomness is useful

for handling cases where the inputs have a lot of structure (e.g., when x,y are the all-zero or all-one

vectors).

• We can pad our modified inputs with O(d) many uniformly generated bits, such that pairs where

xi = yi = 1 are conditioned to be an even number. Due to this conditioning, we have that the inner

product mod 2 value is unchanged. This padding greatly increases the randomness of the input.

• Lastly, since addition mod 2 is commutative, we can sample a random permutation, and apply it to our

modified input, once again altering our input while keeping its IP mod 2 value unchanged. This allows

us to add valuable randomness to our input, since permuted vectors with an almost equal number of

pairs of the form xi = yi = 0, xi = 0, yi = 1, xi = 1, yi = 0, xi = yi = 1 are much closer to

uniformly sampled vectors.

Combining the above into a single randomization process, we have a new, higher dimensional input (but

with at most a linear blow-up), which has the same IP mod 2 value, yet whose probability distribution is

close (in a certain sense) to a uniformly random input from the higher dimensional space. The bulk of the

technical analysis in our proof consists of proving that this process results in a distribution close enough to

uniform, so as to incur at most a constant additional loss in our approximation. This requires a very careful

and tight analysis of the distribution.

After constructing the architecture which performs the above randomization process, we repeat the pro-

cess polynomially many times, we concatenate the obtained hidden layers which perform this computation,

and we use the output neuron to average their outputs. This results in a concentration of measure, which

makes the approximation error much more uniformly spread over the Boolean hypercube. By a union bound

and the probabilistic method, we can find realizations of our random construction that achieve this, and mod-

ify our network to incorporate these realizations without changing the architecture of the network N ′′. This

can be done since the operations of inverting a bit of the input or permuting the inputs are linear operations

that can be absorbed in the weights of the hidden layer.

3.1.3 Step 3: Constructing a threshold circuit computing IPd

Following the previous two steps, we now have a depth 2, σ-network N ′′, such that round(N ′′(x,y)) =
IPd(x,y) for all x,y ∈ {0, 1}d. The final step in our proof is to use this architecture to construct a depth 2

threshold circuit with the same property. To this end, we first need to approximate σ to arbitrary accuracy

using a depth 2 threshold network on a compact domain. This can be done by constructing a piecewise

linear approximation as follows: Beginning with the leftmost point in the domain of approximation, we

choose a constant function which coalesces with σ at this point, and we extend it until its distance from σ
deviates from our target accuracy, in which case we make a ‘jump’ to a different constant value, continuing

in this manner until the approximation is complete. Since each such jump increases the variation of the

constructed approximation, and since σ is of bounded variation due to Assumption 1, we have that we

cannot perform too many such jumps; namely, σ can be approximated by a piecewise linear function with

not too many discontinuities. Replacing each σ with a moderately sized depth 2 threshold network, we

obtain a moderately sized depth 2 threshold network N ′′′ that satisfies round(N ′′′(x,y)) = IPd(x,y).
Lastly, we turn this threshold network into a threshold circuit by adding a threshold activation on the output

neuron. It is a classic result in circuit complexity that IPd cannot be computed by a depth 2 threshold circuit

with bounded weights, unless its width is exponential in d [4]. This implies a lower bound on the width of

N , from which the theorem follows.

10

4 Upper Bound

Having presented our lower bound, in this section, we turn to complement it with an upper bound for depth 3

networks. We also provide a concrete example in the case where σ is the ReLU activation function, in which

our required width and magnitude of the weights provides a stronger result than the bounds guaranteed in

our theorem.

We now formally state our upper bound result below.

Theorem 4.1. Let ε > 0, and suppose that σ satisfies Assumption 2. Then, there exists a depth 3, width

O
(

d2

ε

)

σ-network N , with weights bounded in magnitude by O
(

d
ε2

)

, such that

sup
(x,y)∈A2d

|N (x,y) − fd(x,y)| ≤ ε.

The proof of the theorem, which appears in Appendix A.2, utilizes the fact that fd can be approximated

efficiently by composing two different simple functions. Since a depth 3 network has two hidden layers

with non-linear σ activations, we are able to use each hidden layer to compute each function, and obtain the

desired approximation.

We remark that we provide our positive approximation result in terms of the L∞ norm rather than

the L2 norm with respect to the uniform distribution supported on A2d as our lower bound does. Since

L∞ approximation is more stringent than L2, this provides a more general result which implies an L2

approximation of fd(·, ·) with respect to any distribution supported on A2d.

To give a more concrete example of an approximation obtained by our theorem, below we specify how

this construction can be done when σ is the ReLU activation.

Example 4.2. Let [x]+ := max{0, x} denote the ReLU activation function, and define

td(x) := [z]+ +

d
∑

i=1

2 · (−1)i [z − i]+ .

Then, the network given by

N (x,y) := td

(

d
∑

i=1

[4xi + 4yi − 5]+ − [4xi + 4yi − 6]+

)

satisfies

sup
x,y∈Ad

|N (x,y) − fd(x,y)| = 0.

It is straightforward to verify that N is a depth 3, width 2d ReLU network, with weights bounded in

magnitude by O(d). Moreover, a simple computation shows that N coalesces with fd on A2d. Lastly, this

approximation is also sparse, in the sense that it requires only O(d) neuron connections (see Fig. 1 for a

visualization of the functions computed in each layer).

Following the works [11, 12], which show that some functions that were used to prove approximation

lower bounds for neural networks cannot be learned efficiently using standard methods, Safran and Lee [18]

have shown an optimization-based separation result where the deeper architecture can provably learn the

efficient representation from finite data, using standard techniques such as gradient descent. It is interesting

to note that Example 4.2 provides a simple, linear in size and sparse approximation of fd. This simplicity

11

0
0.2

0.4
0.6

0.8 1 0

0.5

1
0

0.5

1

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

(b)

Figure 1: Computing fd using a depth 3 ReLU network. Subfigure 1a plots the function (x, y) 7→
[4x+ 4y − 5]+ − [4x+ 4y − 6]+, which equals AND(round(x), round(y)) for all x, y ∈ A1. Subfig-

ure 1b plots the function x 7→ td(x), defined in Example 4.2. When composing the latter with a sum of

the former, iterating over all pairs of coordinates xi, yi, we obtain a function that coalesces with fd on A2d.

Best viewed in color.

is much desired, since it may suggest that similarly to Safran and Lee [18], learning this representation

from finite data using a standard learning algorithm is tractable, and despite the simplicity of this ReLU

approximation, our lower bound for this function provides a separation which is stronger than previously

known results. We leave the study of proving such a stronger optimization-based separation result as an

intriguing future work direction.

Acknowledgements.

Paul Valiant is partially supported by NSF award CCF-2127806. We thank Srikanth Srinivasan for useful

discussions.

References

[1] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,

signals and systems, 2(4):303–314, 1989.

[2] Amit Daniely. Depth separation for neural networks. In Conference on Learning Theory, pages 690–

696, 2017.

[3] Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference

on learning theory, pages 907–940. PMLR, 2016.

[4] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán. Threshold circuits

of bounded depth. Journal of Computer and System Sciences, 46(2):129–154, 1993.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

770–778, 2016.

12

[6] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are univer-

sal approximators. Neural networks, 2(5):359–366, 1989.

[7] Daniel Hsu, Clayton H Sanford, Rocco Servedio, and Emmanouil Vasileios Vlatakis-Gkaragkounis.

On the approximation power of two-layer networks of random relus. In Conference on Learning

Theory, pages 2423–2461. PMLR, 2021.

[8] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[9] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward net-

works with a nonpolynomial activation function can approximate any function. Neural networks, 6(6):

861–867, 1993.

[10] Shiyu Liang and Rayadurgam Srikant. Why deep neural networks for function approximation? arXiv

preprint arXiv:1610.04161, 2016.

[11] Eran Malach and Shai Shalev-Shwartz. Is deeper better only when shallow is good? Advances in

Neural Information Processing Systems, 32, 2019.

[12] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. The connection between ap-

proximation, depth separation and learnability in neural networks. In Conference on Learning Theory,

pages 3265–3295. PMLR, 2021.

[13] James Martens, Arkadev Chattopadhya, Toni Pitassi, and Richard Zemel. On the representational

efficiency of restricted boltzmann machines. Advances in Neural Information Processing Systems, 26,

2013.

[14] Anirbit Mukherjee and Amitabh Basu. Lower bounds over boolean inputs for deep neural networks

with relu gates. arXiv preprint arXiv:1711.03073, 2017.

[15] Eshaan Nichani, Alex Damian, and Jason D Lee. Provable guarantees for nonlinear feature learning in

three-layer neural networks. arXiv preprint arXiv:2305.06986, 2023.

[16] Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao. Why and

when can deep-but not shallow-networks avoid the curse of dimensionality: a review. International

Journal of Automation and Computing, 14(5):503–519, 2017.

[17] Yunwei Ren, Mo Zhou, and Rong Ge. Depth separation with multilayer mean-field networks. arXiv

preprint arXiv:2304.01063, 2023.

[18] Itay Safran and Jason Lee. Optimization-based separations for neural networks. In Conference on

Learning Theory, pages 3–64. PMLR, 2022.

[19] Itay Safran and Ohad Shamir. Depth-width tradeoffs in approximating natural functions with neural

networks. In International conference on machine learning, pages 2979–2987. PMLR, 2017.

[20] Itay Safran, Ronen Eldan, and Ohad Shamir. Depth separations in neural networks: what is actually

being separated? In Conference on Learning Theory, pages 2664–2666. PMLR, 2019.

[21] Itay Safran, Daniel Reichman, and Paul Valiant. How many neurons does it take to approximate

the maximum? In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 3156–3183. SIAM, 2024.

13

[22] Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning theory, pages

1517–1539. PMLR, 2016.

[23] Gal Vardi and Ohad Shamir. Neural networks with small weights and depth-separation barriers. arXiv

preprint arXiv:2006.00625, 2020.

[24] Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. Size and depth separation in approxi-

mating benign functions with neural networks. In Conference on Learning Theory, pages 4195–4223.

PMLR, 2021.

[25] Luca Venturi, Samy Jelassi, Tristan Ozuch, and Joan Bruna. Depth separation beyond radial functions.

The Journal of Machine Learning Research, 23(1):5309–5364, 2022.

[26] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:

103–114, 2017.

A Proofs

A.1 Proof of Thm. 3.1

Before we can prove the theorem, we will first state and prove several auxiliary lemmas that will be used

later on. In what follows, we use the notation ‖D‖2 to denote the L2 norm of a discrete distribution D.

Namely, for a random variable X ∼ D sampled from a sample space X , we have

‖D‖2 :=
∑

x∈X

(

P
x∼D

[X = x]

)2

.

The following lemma provides an upper bound on certain subsets of the L2 norm of the distribution we

analyze in our reduction scheme.

Lemma A.1. For d,D positive integers divisible by 4, and given d1, d2, d3, d4 ≥ 0 with d1+d2+d3+d4 = d
then we have:

∑

(D1,D2,D3,D4):
∑

i Di=D

(

D
D1,D2,D3,D4

)2

(

D+d
D1+d1,D2+d2,D3+d3,D4+d4

) ≤ e
4
D

∑4
i=1(di−

d
4
)2 ·
(

1 +
d

D

)3/2

· 4D−d (2)

Proof. We start by comparing
(Di+di)!

Di!
to

(D/4+di)!
D/4! . For Di ≥ D/4 the ratio of these two expressions equals

∏Di

j=D/4+1
j+di
j ≤ ∏Di

j=D/4+1
D/4+di
D/4 = (1 + 4di

D)Di−D/4. On the other hand, for Di < D/4 that ratio

of our two expressions equals
∏D/4

j=Di+1
j

j+di
≤ ∏D/4

j=Di+1
D/4

D/4+di
= (1 + 4di

D)Di−D/4. Thus in all cases,

(Di+di)!
Di!

≤ (1 + 4di
D)Di−D/4 (D/4+di)!

D/4! . We apply this inequality to bound the terms on the left hand side of

Eq. (2):
(D
D1,D2,D3,D4

)

(

D+d
D1+d1,D2+d2,D3+d3,D4+d4

) =
D!

(D + d)!

(D1 + d1)!

D1!

(D2 + d2)!

D2!

(D3 + d3)!

D3!

(D4 + d4)!

D4!
(3)

≤
(

D
D/4,D/4,D/4,D/4

)

(

D+d
D/4+d1,D/4+d2,D/4+d3,D/4+d4

)

4
∏

i=1

(1 +
4di
D

)Di−D/4

14

We will evaluate the sum in Equation 2 and using the identity

(p1 + p2 + p3 + p4)
D =

∑

(D1,D2,D3,D4):
∑

i Di=D

(

D

D1,D2,D3,D4

)

pD1
1 pD2

2 pD3
3 pD4

4

along with the above equation we can write,

∑

(D1,D2,D3,D4):
∑

i Di=D

(D
D1,D2,D3,D4

)2

(D+d
D1+d1,D2+d2,D3+d3,D4+d4

)

=
∑

(D1,D2,D3,D4):
∑

i Di=D

(

D

D1,D2,D3,D4

)

(D
D1,D2,D3,D4

)

(

D+d
D1+d1,D2+d2,D3+d3,D4+d4

)

≤
(D
D/4,D/4,D/4,D/4

)

(

D+d
D/4+d1,D/4+d2,D/4+d3,D/4+d4

)

(

4
∏

i=1

(1 +
4di
D

)−D/4

)

∑

(D1,D2,D3,D4):
∑

i Di=D

(

D

D1,D2,D3,D4

) 4
∏

i=1

(1 +
4di
D

)Di

=

(D
D/4,D/4,D/4,D/4

)

(D+d
D/4+d1,D/4+d2,D/4+d3,D/4+d4

)

(

4
∏

i=1

(1 +
4di
D

)−D/4

)

(4 +
4
∑

i di
D

)D

Since the second derivative of the function log(x) is ≥ −1 for inputs x ≥ 1, we use the Lagrange

remainder form of the Taylor expansion around any ℓ ≥ 1 to lower bound the logarithm function for all

x ≥ 1 as log(x) ≥ log(ℓ) + 1
ℓ (x− ℓ)− 1

2(x− ℓ)2. We use this to bound the last two terms above, bounding

log(x) for x = 1 + 4di
D , centering our approximation at ℓ = 1 + d

D , and using the fact that
∑

i di = d:

(

4
∏

i=1

(1 +
4di
D

)−D/4

)

(4 +
4
∑

i di
D

)D ≤

4
∏

i=1

(

e
log(1+ d

D
)+

4di−d

D(1+ d
D

)
− 1

2
(
4di−d

D
)2
)−D/4

 (4 +
4
∑

i di
D

)D

= 4De
∑4

i=1 2
(di−

d
4)2

D

We then turn to the first term, which we reexpress as
(D
D/4,D/4,D/4,D/4

)

(D+d
D/4+d1,D/4+d2,D/4+d3,D/4+d4

) =
D!

(D + d)!

(D/4 + d1)!

(D/4)!

(D/4 + d2)!

(D/4)!

(D/4 + d3)!

(D/4)!

(D/4 + d4)!

(D/4)!

We bound (D/4+ di)! by reexpressing it via the Gamma function as Γ(1+D/4+ di). We then use the

Lagrange remainder form of the Taylor expansion of the function f(x) := log Γ(x) around ℓ = 1 + D
4 + d

4
to conclude that there exists y between ℓ and x such that

f(x) = f(ℓ) + (x− ℓ)f ′(ℓ) +
1

2
f ′′(y)(x− ℓ)2

The second derivative of the log Γ function at x is bounded by x+1
x2 ≤ x+1

x2−1 = 1
x−1 . Thus, letting

xi = 1 +D/4 + di, we have, that there exist yi between xi and ℓ for which

4
∏

i=1

(D/4 + di)! ≤
4
∏

i=1

ef(ℓ)+(xi−ℓ)f ′(ℓ)+ 1
2
f ′′(yi)(xi−ℓ)2

= (D/4 + d/4)!4e
1
2

∑4
i=1 f

′′(yi)(di−
d
4
)2

≤ (D/4 + d/4)!4e
2
D

∑4
i=1(di−

d
4
)2

15

where the equality makes use of the fact that the middle (linear in xi) term vanishes since
∑4

i=1(xi−ℓ) = 0;

the last inequality makes use of the fact that both xi, ℓ ≥ 1 +D/4, and thus, since yi is between these, we

have yi ≥ 1 +D/4, and hence our bound on the second derivative of log Γ(y) is at most 4
D .

Thus, overall, we have shown

∑

(D1,D2,D3,D4):
∑

i Di=D

(D
D1,D2,D3,D4

)2

(D+d
D1+d1,D2+d2,D3+d3,D4+d4

) ≤ 4De
∑4

i=1 2
(di−

d
4)2

D
D!(D/4 + d/4)!4

(D + d)!(D/4)!4
e

2
D

∑4
i=1(di−

d
4
)2

= 4D
D!(D/4 + d/4)!4

(D + d)!(D/4)!4
e

4
D

∑4
i=1(di−

d
4
)2

Finally, we bound the ratio of factorials as follows. Define the function f on integer input f(j) :=

4−4j
(4j
j,j,j,j

)

= 4−4j (4j)!
j!4

. We will show that for any integers k ≥ j we have
f(j)
f(k) ≤ (j/k)3/2. We have

f(j)
f(j+1) = (4j+4)3

(4j+1)(4j+2)(4j+3) . Expressing each term in the denominator as a weighted average of 4j and

4j+4 and applying the (weighted) AM-GM inequality to each term on the denominator separately, we thus

lower bound the denominator by (4j)3/2(4j + 4)3/2 and thus upper bound
f(j)

f(j+1) ≤
(4j+4)3/2

(4j)3/2
= (j+1

j)3/2.

Multiplying this bound for all numbers between j and k yields
f(j)
f(k) ≤ (j/k)3/2 as claimed.

Thus
D!(D/4+d/4)!4

(D+d)!(D/4)!4
≤
(

D+d
D

)3/2
. And we have derived Eq. (2) as claimed.

The following lemma bounds the moment generating function of a certain distribution, which arises in

our analysis of the reduction scheme.

Lemma A.2. For any dimension d and any vectors x,y ∈ {0, 1}d, consider the process of picking random

vectors x′,y′ ← {0, 1}d and outputting

A := (x+ x′,x′,x+ x′,x′),

B := (y + y′,y′,y′,y + y′),

where all additions are mod 2. Among these 4d entries, let d1 count the number of indices j ∈ {1, . . . , 4d}
where Aj = Bj = 0; let d2 count the entries where Aj = 0, Bj = 1; let d3 count the entries where

Aj = 1, Bj = 0; and let d4 count the entries where Aj = Bj = 1. Then

E
d1,d2,d3,d4

[

es
∑4

i=1(di−d)
2
]

≤
(

1

1− 24ds

)2

Proof. Our overall analysis technique will be to first compute the moment generating function (MGF) of the

distribution of (d1, d2, d3, d4), centered at its mean, (d, d, d, d). Explicitly, since we have a 4-dimensional

distribution, the MGF has 4 parameters:

M(t1, t2, t3, t4) := E
d1,d2,d3,d4

[

e
∑4

i=1 ti(di−d)
]

Crucially, the MGF of the sum of independent random vectors multiplies; thus we will compute the

MGF for the contribution to (d1, d2, d3, d4) from each location Aj , Bj separately.

After we have computed the MGF, we will use this to compute the quantity in the lemma statement,

Ed1,d2,d3,d4

[

es
∑4

i=1(di−d)
2
]

. Since the MGF of the Gaussian N (0, 2s) equals est
2
, the MGF for the cor-

responding 4-dimensional Gaussian, after a slight change of variables, yields the relation that, for any

d1, d2, d3, d4:

E
(t1,t2,t3,t4)←N (0,2s)

[e
∑4

i=1 ti(di−d)] = es
∑4

i=1(di−d)
2

16

and thus that

E
(t1,t2,t3,t4)←N (0,2s)

[M(t1, t2, t3, t4)] = E
d1,d2,d3,d4

[es
∑4

i=1(di−d)
2
] (4)

Consider, for some index j, the 4 cases for the pair xj , yj , and the 4-tuple of pairs of entries (xj +
x′j, yj + y′j), (x

′
j , y
′
j), (xj + x′j, y

′
j), (x

′
j , yj + y′j) they induce in A,B.

If xj = 0, yj = 0, then the 4-tuple of pairs (xj + x′j , yj + y′j), (x
′
j , y
′
j), (xj + x′j, y

′
j), (x

′
j , yj +

y′j) produced in the vectors A,B contains simply 4 copies of the randomly chosen pair of bits (x′j, y
′
j).

Thus the contribution to the counts d1, d2, d3, d4 will be uniformly randomly chosen among the 4-tuples

(4, 0, 0, 0), (0, 4, 0, 0), (0, 0, 4, 0), (0, 0, 0, 4). The moment generating function of this uniform distribution

over 4 possibilities is just the sum of the 4 terms in the definition of the MGF; as usual, we center the MGF

of this portion of the distribution at its mean, which here is (1, 1, 1, 1):

Mj(t1, t2, t3, t4) =
1

4
e(4−1)t1+(0−1)t2+(0−1)t3+(0−1)t4 +

1

4
e(0−1)t1+(4−1)t2+(0−1)t3+(0−1)t4

+
1

4
e(0−1)t1+(0−1)t2+(4−1)t3+(0−1)t4 +

1

4
e(0−1)t1+(0−1)t2+(0−1)t3+(4−1)t4

We can loosely bound this by e6
∑4

i=1 t
2
i as follows. Each of the 4 exponential terms is the exponential

of the inner product of (t1, t2, t3, t4) with a vector v of length
√
12. Thus, for any unit 4-vector u, we

have that the exponential e〈(t1,t2,t3,t4),v〉 has second derivative in direction u that is at most 12 times the

value of the exponential e〈(t1 ,t2,t3,t4),v〉. Since this property—of having directional second derivative in

direction u that is at most 12 times the function value—is preserved under scaling a function by a positive

constant, and is preserved by function addition, we conclude that this property applies to the entire function

Mj(t1, t2, t3, t4). Namely, for any vector u, the second derivative of Mj(t1, t2, t3, t4) in the direction u is at

most 12Mj(t1, t2, t3, t4). Since Mj(t1, t2, t3, t4) has value 1 at the origin, and 0 gradient, we can bound its

value at any multiple xu by solving the differential equation f(0) = 1, f ′(0) = 0, f ′′(x) ≤ 12f(x), to yield

f(x) ≤ cosh(
√
12x) ≤ e(12/2)x

2
. Since this bounds M(t1, t2, t3, t4) when (t1, t2, t3, t4) = xu for any unit

vector u, we conclude that M(t1, t2, t3, t4) ≤ e6
∑4

i=1 t
2
i .

Moving on to the next case, if xj = 0, yj = 1 case, then the 4-tuple of pairs (xj+x′j, yj+y′j), (x
′
j , y
′
j), (xj+

x′j, y
′
j), (x

′
j , yj + y′j) contains 2 copies of (x′j , y

′
j) and 2 copies of (x′j , 1 + y′j). Thus the contribution to

the counts d1, d2, d3, d4 will be uniformly chosen among the 4-tuples (2, 2, 0, 0), (0, 0, 2, 2), where there

are only 2 possibilities in this case. The moment generating function of this uniform distribution over 2

possibilities is just the sum of the 2 terms in the definition of the MGF, which as usual we center at the

mean, (1, 1, 1, 1):

Mj(t1, t2, t3, t4) =
1

2
e(2−1)t1+(2−1)t2+(0−1)t3+(0−1)t4 +

1

2
e(0−1)t1+(0−1)t2+(2−1)t3+(2−1)t4

This equals cosh(〈(t1, t2, t3, t4), (1, 1,−1,−1)〉) ≤ e〈(t1 ,t2,t3,t4),(1,1,−1,−1)〉
2/2 ≤ e(||(1,1,−1,−1)||

2
2/2)

∑4
i=1 t

2
i ,

namely e2
∑4

i=1 t
2
i .

The next case, if xj = 1, yj = 0, is analogous to the previous case. Here the 4-tuple of pairs

(xj + x′j , yj + y′j), (x
′
j , y
′
j), (xj + x′j , y

′
j), (x

′
j , yj + y′j) contains 2 copies of (x′j , y

′
j) and 2 copies of

(1 + x′j , y
′
j). Thus the contribution to the counts d1, d2, d3, d4 will be uniformly chosen among the 4-tuples

(2, 0, 2, 0), (0, 2, 0, 2). The moment generating function of this uniform distribution over 2 possibilities is

just the sum of the 2 terms in the definition of the MGF, which as usual we center at the mean, (1, 1, 1, 1):

Mj(t1, t2, t3, t4) =
1

2
e(2−1)t1+(0−1)t2+(2−1)t3+(0−1)t4 +

1

2
e(0−1)t1+(2−1)t2+(0−1)t3+(2−1)t4

17

Analogously to the previous case, this is at most e2
∑4

i=1 t
2
i .

Finally, in the case xj = 1, yj = 1, then the 4-tuple of pairs (xj + x′j, yj + y′j), (x
′
j , y
′
j), (xj +

x′j, y
′
j), (x

′
j , yj + y′j) equals (1 + x′j , 1 + y′j), (x

′
j , y
′
j), (1 + x′j , y

′
j), (x

′
j , 1 + y′j) and thus always con-

tributes (1, 1, 1, 1) to the 4 counts. Thus the moment generating function centered at (1, 1, 1, 1) is, trivially,

Mj(t1, t2, t3, t4) = 1.

Putting together the pieces: since the moment generating function is simply the product of its contribu-

tion from each index j from 1 to d, and in all cases the we bounded this contribution by e6
∑4

i=1 t
2
i , we have

that the overall MGF of all d indices is bounded as

M(t1, t2, t3, t4) ≤ e6d
∑4

i=1 t
2
i

We now bound the desired quantity in this lemma via Eq. (4). We thus have

E
(t1,t2,t3,t4)←N (0,2s)

[M(t1, t2, t3, t4)] ≤ E
(t1,t2,t3,t4)←N (0,2s)

[e6d
∑4

i=1 t
2
i]

=

∫

R4

1
√
2π · 2s4

e−
1
4s

∑4
i=1 t

2
i e6d

∑4
i=1 t

2
i dt1 dt2 dt3 dt4

=

√

1
1/(4s)−6d

2 · 2s

4

=

(

1

1− 24ds

)2

as desired.

The following proposition establishes an L2 upper bound on the distribution induced by the randomiza-

tion process in our reduction.

Proposition A.3. For any dimension d and any vectors x,y ∈ {0, 1}d, let D = 100d. Pick random vectors

x′,y′ ← {0, 1}d; pick random vectors x′′,y′′ ← {0, 1}D such that there are an even number of indices

j ∈ {1, . . . ,D} where x′′j = y′′j = 1; and pick a random permutation τ of 4d +D elements. The claim is

that the pair of length 4d+D vectors

X := τ(x+ x′,x′,x+ x′,x′,x′′),

Y := τ(y + y′,y′,y′,y + y′,y′′),

considered as a distribution D over domain{0, 1}2(4d+D) , has L2 norm at most 8 · 2−(4d+D), which is 8
times the L2 norm of the uniform distribution over this domain.

Proof. Among the 4d entries of the pair A = (x + x′,x′,x + x′,x′), B = (y + y′,y′,y′,y + y′) let

d1 count the number of indices where Aj = Bj = 0; let d2 count the entries where Aj = 0, Bj = 1;

let d3 count the entries where Aj = 1, Bj = 0; and let d4 count the entries where Aj = Bj = 1. Thus

d1 + d2 + d3 + d4 = 4d.

Since D =
∑

d1,d2,d3,d4
PrD[d1, d2, d3, d4]D|d1,d2,d3,d4 , by the triangle inequality we have

||D||2 ≤
∑

d1,d2,d3,d4

Pr
D
[d1, d2, d3, d4]||D|d1,d2,d3,d4 ||2 (5)

For the random vectors x′′,y′′, let D1,D2,D3,D4 count the number of indices j ∈ {1, . . . ,D} respec-

tively where x′′j = 0, y′′j = 0; where x′′j = 0, y′′j = 1; where x′′j = 1, y′′j = 0; and where x′′j = 1, y′′j = 1.

Thus D1 +D2 +D3 +D4 = D.

18

Thus there will be D1 + d1 total indices where Xj = 0, Yj = 0, etc. Given these total counts D1 +
d1,D2 + d2,D3 + d3,D4 + d4, the total number of rearrangements of these columns is the multinomial
(D+4d
D1+d1,D2+d2,D3+d3,D4+d4

)

; and the random permutation τ will choose a uniformly random one of these

arrangements.

The probability of the random vectors x′′,y′′ having counts exactly D1,D2,D3,D4 would be exactly

4−D
(

D
D1,D2,D3,D4

)

if we were not conditioning on D4 being even. The probability of D4 being even is ≥ 1
2 ,

since the difference between the number of instantiations where D4 is even versus D4 is odd can be exactly

computed as
∑

(D1,D2,D3,D4):
∑

i Di=D

(D
D1,D2,D3,D4

)

(−1)D4 = (1 + 1 + 1− 1)D ≥ 0. Thus, by the law of

conditional probability, we have

4−D
(

D

D1,D2,D3,D4

)

= P [D1,D2,D3,D4]

=P [D1,D2,D3,D4|D4 is even]P [D4 is even] + P [D1,D2,D3,D4|D4 is odd]P [D4 is odd]

≥1

2
P [D1,D2,D3,D4|D4 is even] ,

therefore the probability of D1,D2,D3,D4 with even D4 is ≤ 2 · 4−D
(

D
D1,D2,D3,D4

)

.

Thus, overall, the random process D|d1,d2,d3,d4 can be described as picking D1,D2,D3,D4 with proba-

bility≤ 2·4−D
(

D
D1,D2,D3,D4

)

, and then uniformly splitting this probability among the
(

D+4d
D1+d1,D2+d2,D3+d3,D4+d4

)

possible rearrangements of these columns. We point out that, for a distribution where, for different indices

j, we have pj probability mass uniformly divided among nj elements, its squared L2 norm is
∑

j nj(
pj
nj
)2 =

∑

j

p2j
nj

. Thus bound the L2 norm of our conditional distribution as

||D|d1,d2,d3,d4 ||2 ≤

√

√

√

√

√

∑

(D1,D2,D3,D4):
∑

i Di=D

(

2 · 4−D
(D
D1,D2,D3,D4

)

)2

(D+4d
D1+d1,D2+d2,D3+d3,D4+d4

)

This expression is exactly 2 · 4−D times the square root of the expression bounded in Lemma A.1, if in

Lemma A.1 we reparameterize d as 4d. Namely,

||D|d1,d2,d3,d4 ||2 ≤ 2 · e 2
D

∑4
i=1(di−d)

2 ·
(

1 +
4d

D

)3/4

· 2−(4d+D)

Combining this bound with Eq. (5) (the triangle inequality), we have

||D||2 ≤ E
d1,d2,d3,d4

[||D|d1,d2,d3,d4 ||2] ≤ 2

(

1 +
4d

D

)3/4

· 2−(4d+D)
E

d1,d2,d3,d4
[e

2
D

∑4
i=1(di−d)

2
]

The right hand side is exactly the form of Lemma A.2, applied with s = 2
D , thus yielding our overall

bound of

||D||2 ≤ 2

(

1 +
4d

D

)3/4

· 2−(4d+D)

(

1

1− 48 d
D

)2

For D ≥ 100d, we see that ||D||2 ≤ 8 · 2−(4d+D), as desired.

The following lemma guarantees that activation functions which satisfy Assumption 1, can be simulated

to arbitrary accuracy, using depth 2 threshold networks of polynomial width.

19

Lemma A.4. Let σ be an activation function that satisfies Assumption 1. Then for all δ > 0, there exists a

depth 2 threshold network N of width at most
poly(R)

δ and weights of magnitude at most
poly(R)

δ , such that

sup
x∈[−R,R]

|N (x)− σ(x)| ≤ δ.

Proof. We will first construct a piecewise constant function that approximates σ to an L∞ distance of δ, and

then we will compute this piecewise constant function precisely using a depth 2 threshold network.

Let x1 := −R and y1 := σ(x1). We define the set

A1 := {a ∈ [−R,R] : ∀x ≤ a, |σ(x)− y1| ≤ δ}.

Note that A1 6= ∅ since x1 ∈ A1, and define x′1 = x1 and x2 := supA1. We now split our analysis into

three cases, depending on the continuity properties of σ at x2.

1. Suppose that σ is continuous at x2 from the right. By the definition of A1 we have that x1 < x2,

since if x1 = x2 by contradiction, due to right continuity, we can find an interval [x1, b) for b > x1
close enough to x1, such that |σ(x) − y1| ≤ δ for all x ∈ [x1, b), which contradict the definition of

A1. We define y2 := σ(x2), and we have by the definition of A1 that supx∈[x1,x2) |σ(x) − y1| ≤ δ.

Moreover, if σ is continuous at x2 from both sides then this implies that |y2− y1| = δ, and if it is only

continuous from the right this implies that |y2 − y1| ≥ δ. This can be seen to hold true since if we

had |y2 − y1| < δ by contradiction, then from right continuity there exists an interval [x2, b) for some

b > x2 such that |σ(x) − y1| < δ for all x ∈ [x2, b), which contradicts the definition of A1. We can

now define the set

A2 := {a ∈ [x2, R] : ∀x ∈ [x2, a], |σ(x)− y2| ≤ δ},
and note that A2 6= ∅ since x2 ∈ A2. Define x′2 = x2, we can conclude that in this case, we have an

interval [x1, x2) such that |σ(x) − y1| ≤ δ for all x ∈ [x1, x2), that |σ(x2) − y2| = 0 ≤ δ, and that

|σ(x′1)− σ(x′2)| ≥ δ.

2. Suppose that σ is not continuous at x2 from the right, but it is either continuous at x2 from the left or

x1 = x2, which in both cases implies that |σ(x2) − y1| ≤ δ. It must also hold that |σ(x) − y1| ≤ δ
for all x ∈ [x1, x2]. Define y2 := limx→x2+

σ(x), note that by the definition of A1 and y2, we have

similarly to the previous case that |y2 − y1| ≥ δ, and let x′2 be close enough to x2 from the right so

that from right continuity we get |y2 − σ(x′2)| ≤ 0.25δ, and thus |σ(x′1) − σ(x′2)| ≥ 0.75δ. We can

now define the set

A2 := {a ∈ (x2, R] : ∀x ∈ (x2, a], |σ(x) − y2| ≤ δ},
which is not empty since (x2, x

′
2] ⊆ A2.

3. Suppose that x1 < x2 and that σ has a discontinuity at x2 from both sides, and note that together

with the previous two items, this covers all possibilities. Then, since σ is of bounded variation, we

have that both limits at the two sides exist and are finite. Next, if x2 ∈ A1, then this implies that

|σ(x2) − y1| ≤ δ. We can now define y2 := limx→x2+
σ(x) and proceed in the same manner as in

Item 2 to define A2 and x′2. Otherwise, we have that x2 /∈ A1, which implies that |σ(x2) − y1| > δ.

We define y2 := σ(x2) which trivially implies |σ(x2) − y2| = 0 ≤ δ, and proceed to define x′2 and

A2 as in Item 1.

Define x3 := supA2, we can continue in this manner and define sequences of target values y1, y2, . . . and

points x1, x2, . . ., x
′
1, x
′
2, . . . such that for all i, we have

20

• |σ(x) − yi| ≤ δ for all x ∈ (xi, xi+1).

• |σ(xi)− yi−1| ≤ δ or |σ(xi)− yi| ≤ δ.

• |σ(xi)− σ(xi+1)| ≥ δ and |σ(xi)− σ(x′i)| ≤ 0.25δ, which imply |σ(x′i)− σ(x′i+1)| ≥ 0.5δ.

We now bound the length n of the sequences required to get R ∈ An; namely, the number of piecewise

constant segments required to approximate σ to accuracy δ uniformly on [−R,R]. We have by Assumption 1

that σ has total variation at most Cσ(1 + 2R)ασ . On the other hand, we have from the above properties that

the partition x′1, x
′
2, . . . , x

′
n of [−R,R] has total variation at least

n−1
∑

i=1

∣

∣σ(x′i+1)− σ(x′i)
∣

∣ ≥ 0.5(n − 1)δ.

Combining these two inequalities, we obtain 0.5(n − 1)δ ≤ Cσ(1 + 2R)ασ , implying n = poly(R)
δ .

It now only remains to approximate a piecewise linear function, with
poly(R)

δ constant segments, us-

ing a threshold network with a similar number of neurons. Define y0 = 0, it is easy to verify that this

approximation is given by the expression

n
∑

i=1

ξi(yi − yi−1)σthresh(ξi(x− xi)− 0.5) − 0.5(ξi − 1)(yi − yi−1),

where ξi ∈ {−1, 1} is chosen according to the discontinuity of our piecewise constant function at the point

xi. Namely, by setting wi := ξi, bi := −ξixi − 0.5, vi := ξi(yi − yi−1) and b0 := −0.5∑n
i=1(ξi − 1)(yi −

yi−1), we obtain a width n threshold network

N (x) :=

n
∑

i=1

viσthresh(wix+ bi) + b0,

satisfying

sup
x∈[−R,R]

|σ(x)−N (x)| ≤ δ.

Lastly, by Assumption 1, we have that |yi| ≤ poly(R) for all i ∈ [n], implying that N has weights of

magnitude at most
poly(R)

δ .

The following proposition guarantees that functions on the Boolean hypercube, computed by depth

2 networks, which employ activation functions that satisfy Assumption 1, can be simulated to arbitrary

accuracy using depth 2 threshold networks of width polynomial in the size of the network.

Proposition A.5. Let δ > 0, suppose that σ satisfies Assumption 1, and let f : {0, 1}d → R be a function

computed by a depth 2, width m σ-network, with weights bounded by C . Then there exists a depth 2

threshold network N of width
m2 poly(d,C)

δ and weights bounded in magnitude by
poly(d,C)

δ , such that

max
x∈{0,1}d

|f(x)−N (x)| ≤ δ.

21

Proof. Let

f(x) :=

m
∑

i=1

viσ (〈wi,x〉+ bi) + b0

be the function computed by the network f . We first observe that by our weight boundedness assumption,

we have for all i ∈ [m] that |〈wi,x〉 + bi| ≤ ‖wi‖‖x‖ + C ≤ (d + 1)C . We now use Lemma A.4

to approximate each σ-neuron in f to accuracy δ
mC , and obtain m depth 2, width

mpoly(d,C)
δ threshold

networks N1,N2, . . . ,Nm, such that

|Ni(x)− σ (〈wi,x〉+ bi)| ≤
δ

mC

for all i ∈ [m]. Define the network N given by

N (x) :=
m
∑

i=1

viNi(x) + b0,

fix any x ∈ {0, 1}d and compute

|f(x)−N (x)| ≤
m
∑

i=1

vi |σ (〈wi,x〉+ bi)−Ni(x)| ≤
m
∑

i=1

C
δ

mC
= δ.

Lastly, since N is a linear combination of depth 2 neural networks, each of which is of width at most
mpoly(d,C)

δ and weights of magnitude
poly(d,C)

δ , we have that N is in itself a depth 2, width
m2 poly(d,C)

δ

threshold network, with weights bounded by
poly(d,C)

δ as required.

With the above lemmas and propositions at hand, we are finally ready to prove the theorem.

Proof of Thm. 3.1. First, for any natural d and real C > 0, define w(d,C) to be the minimal width required

for a depth 2 σ-network with weights bounded in magnitude by C to approximate fd to accuracy at most
1

400 . Our goal is therefore to derive a lower bound on w(d,C).
Let D := 100d, we first assume that we are given a depth 2, width w(D + 4d,C) σ-network N , with

weights bounded by C , that satisfies

E
x,y∼U(AD+4d)

[

(N (x,y) − fD+4d(x,y))
2
]

≤ 1

400
,

and we will show that this implies the existence of a σ-network of a similar size and with a similar magnitude

of the weights, which gives a similar accuracy when approximating IPD+4d uniformly over the Boolean

hypercube.

Using the law of total expectation, we can break the above expectation into two iterated expectations as

follows

E
c∼U([0,0.25]2D+8d)

[

E
z∼U({0,0.75}2D+8d)

[

(N (z+ c)− fD+4d(z+ c))2
]

]

≤ 1

400
.

For c ∼ U
(

[0, 0.25]2D+8d
)

, we can define the non-negative random variable

Xc := E
z∼U({0,0.75}2D+8d)

[

(N (z+ c)− fD+4d(z+ c))2
]

.

22

This allows us to rewrite the former inequality more compactly as

E
c∼U([0,0.25]2D+8d)

[Xc] ≤
1

400
. (6)

Using Markov’s inequality on Xc, and by virtue of Eq. (6), we have

P
c∼U([0,0.25]2D+8d)

[

Xc <
400

399
E

c∼U([0,0.25]2D+8d)
[Xc] ≤

1

399

]

≥ 1− 399

400
> 0.

Namely, there must exist some c ∈ [0, 0.25]2D+8d such that

E
z∼U({0,0.75}2D+8d)

[

(N (z+ c)− fD+4d(z+ c))2
]

= Xc ≤
1

399
. (7)

Next, we have by the definition of f that fD+4d(z+ c) = fD+4d(z) = fD+4d

(

4
3z
)

= IPD+4d

(

4
3z
)

for all

c ∈ [0, 0.25]2D+8d and all z ∈ {0, 0.75}2D+8d . Moreover, there exists a σ-network N ′ of the same depth

and width asN , such thatN (z+ c) = N ′
(

4
3z
)

for all c ∈ [0, 0.25]2D+8d and all z ∈ {0, 0.75}2D+8d . This

holds true since shifting the input by a constant vector c merely shifts the biases in the first hidden layer

by the same vector, and scaling the inputs by a multiplicative constant 4
3 is equivalent to multiplying the

weights of the hidden neurons by 0.75. Since both operations are linear, they can be absorbed in the hidden

layer without changing the architecture of N ′, and where the magnitude of the weights is now at most 2C .

The above observations, the definition of Xc, and Eq. (7), imply the existence of some c ∈ [0, 0.25]2D+8d

that satisfies

E
x,y∼U({0,1}D+4d)

[

(

N ′(x,y) − IPD+4d(x,y)
)2
]

= E
z∼U({0,0.75}2D+8d)

[

(

N ′
(

4

3
z

)

− IPD+4d

(

4

3
z

))2
]

= E
z∼U({0,0.75}2D+8d)

[

(N (z+ c)− fD+4d(z+ c))2
]

≤ 1

399
. (8)

Let n ∈ N to be determined later, we now construct a neural networkN ′′ : RD+4d → R that will achieve

a small margin on all the inputs x,y ∈ {0, 1}d simultaneously. The network will consist of n blocks, where

each of which has the architecture ofN ′, and is re-randomized using the following process for every j ∈ [n]:

• We sample two binary vectors x′j ,y
′
j ∈ {0, 1}d uniformly at random.

• We sample two binary vectors x′′j ,y
′′
j ∈ {0, 1}D uniformly at random, until the number of pairs

(xj,i, yj,i) that are both one is an even number for every j ∈ [n].

• We concatenate our sample into two binary vectors (x+x′,x′,x+x′,x′,x′′) and (y+y′,y′,y′,y+
y′,y′′).

• We sample a permutation τj : R
D+4d → R uniformly at random, and use this permutation to permute

the previous two binary vectors, denoting the results as x̂j and ŷj , respectively.

23

• We modify each N ′j to simulate their computation on the inputs x̂j , ŷj . For the coordinates receiving

x + x′ or y + y′ as input, this can be done by keeping the weights in the hidden layer unchanged in

the case where their corresponding coordinate in x′ was drawn as 0, and by composing the weights

with the transformation xi 7→ 1 − xi whenever x′i = 1. Since this is a linear transformation of the

input, it can be absorbed into the weights of the first hidden layer without changing the architecture

of N ′j . Lastly, multiplying the weights of the hidden layer with the permutation matrix which corre-

sponds to the sampled permutation τj , which is also a linear transformation, also allows us to keep

the architecture of N ′j unchanged.

We now turn to bound the approximation error in absolute value of the network N ′ when approximating

IPD+4d. Fix some x,y ∈ {0, 1}d, and let D denote the distribution over the set {0, 1}2(D+4d) which is

induced by the randomness in picking x′j ,y
′
j ∈ {0, 1}d, x′′j ,y

′′
j ∈ {0, 1}D and a uniformly chosen permuta-

tion τj of [D+ 4d], as described in the above random construction of N ′j . Cauchy-Schwarz, combined with

Eq. (8) and Proposition A.3’s bound on ‖D‖2 yields

E(x̂,ŷ)∼D

[∣

∣N ′(x̂, ŷ)− IPD+4d(x̂, ŷ)
∣

∣

]

=
∑

x̂,ŷ∈{0,1}D+4d

P
D
[X = x̂, Y = ŷ] ·

∣

∣N ′(x̂, ŷ)− IPD+4d(x̂, ŷ)
∣

∣

≤ ||D||2
√

∑

x̂,ŷ∈{0,1}D+4d

(N ′(x̂, ŷ)− IPD+4d(x̂, ŷ))
2

≤ 8

√

1

399
< 0.41. (9)

Next, we formally define N ′′ as the network

N ′′(x,y) := 1

n

n
∑

j=1

N ′j(x̂j , ŷj).

Note that since N ′′ is a linear combination of depth 2 networks, it is in itself a depth 2 network. Moreover,

we remark that this random process always preserves the value of the inner product. To see this, fix any

x′,y′,x′′,y′′, τ chosen according to the above random process. Then by taking equalities that are mod 2,

we have

IPD+4d(τ(x̂), τ(ŷ)) = IPD+4d(x̂, ŷ)

= IPd(x+ x′,y + y′) + IPd(x
′,y′) + IPd(x+ x′,y′) + IPd(x

′,y + y′) + IPD(x
′′,y′′)

= IPd(x+ x′,y + y′) + IPd(x
′,y′) + IPd(x+ x′,y′) + IPd(x

′,y + y′)

= IPd(x,y + y′) + IPd(x,y
′) = IPd(x,y).

where the first equality follows from the fact that permutations preserve sums, the second equality is by the

definition of our construction of x̂, ŷ, the third equality is due to x′′ and y′′ always having an even number

of pairs xi = 1, yi = 1 which implies IPD(x
′′,y′′) = 0, and the last two equalities follow from basic

properties of the inner product mod 2. Thus, we have

IPd(x,y) = IPD+4d(x̂j , ŷj)

for all x,y ∈ {0, 1}d and all j ∈ [n]. Having definedN ′′, we now bound the approximation error in absolute

value which it achieves on an arbitrary input x,y ∈ {0, 1}d, over the randomness induced by the previously

24

described process. Compute

∣

∣N ′′(x,y) − IPd(x,y)
∣

∣ =

∣

∣

∣

∣

∣

∣

1

n

n
∑

j=1

N ′j(x̂j , ŷj)− E
[

N ′1(x̂1, ŷ1)
]

+ E
[

N ′1(x̂1, ŷ1)
]

− IPD+4d(x̂1, ŷ1)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

n

n
∑

j=1

N ′j(x̂j , ŷj)− E
[

N ′1(x̂1, ŷ1)
]

∣

∣

∣

∣

∣

∣

+ E
[∣

∣N ′1(x̂1, ŷ1)− IPD+4d(x̂1, ŷ1)
∣

∣

]

,

where the expectation is taken over the randomness in sampling (x̂j , ŷj) from D. Using Eq. (9), we can

upper bound the above by
∣

∣

∣

∣

∣

∣

1

n

n
∑

j=1

N ′j(x̂j , ŷj)− E
[

N ′1(x̂1, ŷ1)
]

∣

∣

∣

∣

∣

∣

+ 0.41. (10)

Next, we will use Hoeffding’s inequality to upper bound the absolute value term above, but first we

will derive an upper bound on the magnitude of the output of the network N ′j . We have that each neuron

in N ′j has weights of magnitude at most 2C , therefore, from Assumption 1 we get that the output of each

hidden neuron is upper bounded by poly(d,C) over the domain {0, 1}D+4d. This implies that the output

of the output neuron is at most B := poly(d,C)w(D + 4d,C), since the width of N ′j is w(D + 4d,C)
and its output neuron has weights bounded by C . We now use this bound, and the fact that N ′j(x̂j , ŷj),
j = 1, . . . , n are independent with respect to the randomness in sampling x′j ,x

′′
j ,y
′
j ,y
′′
j , τj , to invoke

Hoeffding’s inequality, yielding

P

∣

∣

∣

∣

∣

∣

1

n

n
∑

j=1

N ′j(x̂j , ŷj)− E
[

N ′1(x̂1, ŷ1)
]

∣

∣

∣

∣

∣

∣

> 0.04

 ≤ 2 exp

(

−0.5n0.04
2

B2

)

.

Setting n = 2500B2d = poly(d,C,w(D + 4d,C)), we can upper bound the above by 2 exp(−2d), which

is strictly less than 2−2d for all d ≥ 2. Taking a union bound over all 22d possibilities for the inputs

(x,y) ∈ {0, 1}2d, we have by substituting our Hoeffding bound in Eq. (10), that with positive probability,

N ′′ satisfies |N ′′(x,y) − IPd(x,y)| ≤ 0.41 + 0.04 = 0.45 for all inputs (x,y) ∈ {0, 1}2d. By the

probabilistic method, this implies the existence of particular realizations of the random variables

x′1, . . . ,x
′
n,x

′′
1 , . . . ,x

′′
n,y

′
1, . . . ,y

′
n,y

′′
1 , . . . ,y

′′
n, τ
′
1, . . . , τ

′
n

with this property. Define the neural network N ′′′ as the network obtained from substituting these variables

with the above realizations, and note that doing so merely decreases the input dimension of the network,

while keeping the computation in the hidden layer linear, which thus does not change the architecture of

N ′′′ and maintains its width.

To conclude the derivation so far, we have shown the existence of a depth 2 σ-network N ′′′, which has

width poly(d,C,w(D + 4d,C)), and satisfies

max
(x,y)∈{0,1}2d

∣

∣N ′′′(x,y) − IPd(x,y)
∣

∣ < 0.45.

We now use Proposition A.5 with δ = 0.04 to obtain a threshold network N̄ from N ′′′, having width

poly(d,C,w(D + 4d,C)) and weights of magnitude at most poly(d,C), such that for all x,y ∈ {0, 1}d
∣

∣N̄ (x,y) − IPd(x,y)
∣

∣ ≤
∣

∣N̄ (x,y) −N ′′′(x,y)
∣

∣ +
∣

∣N ′′′(x,y) − IPd(x,y)
∣

∣ ≤ 0.45 + 0.04 = 0.49.

25

Constructing a threshold circuit from N̄ , which employs a threshold activation on its output neuron, we

obtain a threshold circuit which computes IPd(·, ·). We lower bound the width of the circuit by using the

following fact adapted from Hajnal et al. [4] which appears in Martens et al. [13], and is stated here in a

slightly modified manner for the sake of completeness.

Fact A.6. For a depth 2 threshold network N of width m and weights bounded in magnitude by C , that

satisfies

max
(x,y)∈{0,1}2d

|N (x,y) − IPd(x,y)| ≤ 0.5− δ

for some δ ∈ (0, 0.5), we have

m ≥ Ω

(

δ2d/3

C

)

.

Substituting δ = 0.01, the above fact and our expression for the width of N̄ imply the inequality

poly(d,C,w(D + 4d,C)) ≥ Ω

(

2d/3

poly(d,C)

)

.

Simplifying the above by using more asymptotic notation and absorbing terms that are polynomial in d into

the exponent, we have

w(D + 4d,C) ≥ Ω

(

2Ω(d)

poly(C)

)

.

Recall that D = 100d. Letting d′ := 104d which implies d = Ω(d′) and performing a change of variables,

the theorem follows.

A.2 Proof of Thm. 4.1

Let ε > 0. First, if ε > 1
2 , then we have

sup
x,y∈Ad

∣

∣

∣

∣

1

2
− fd(x,y)

∣

∣

∣

∣

=
1

2
.

Namely, a network which computes a constant function satisfies our requirements. We can thus assume

from now on that ε ≤ 1
2 .

Next, we define a few auxiliary functions that will be used in the construction of our approximation. Let

g1(z) :=

0, z ∈ (−∞, 5],

z − 5, z ∈ (5, 6),

1, z ∈ [6,∞),

and Let

g2(z) :=

{

z mod 1, ⌊z⌋ even,

1− (z mod 1), ⌊z⌋ odd.

Let δ1 :=
ε
2d , we have from Assumption 2 and the fact that g1(·) is 1-Lipschitz, that there exists some depth

2 σ-network h1, of width O
(

d
ε

)

and weights bounded by O
(

1
ε

)

, which satisfies

|g1(z)− h1(z)| ≤
ε

2d
, ∀z ∈ [0, 8]. (11)

26

Likewise, there exists some depth 2 σ-network h2, of width O
(

d
ε

)

and weights bounded by O
(

1
ε

)

, which

satisfies

|g2(z)− h2(z)| ≤
ε

2
, ∀z ∈ [−2d− 1, 2d + 1]. (12)

Now, it is easy to verify that

g1(4x+ 4y) = AND(round(x), round(y)) ∀x, y ∈ A1,

implying
d
∑

i=1

g1(4xi + 4yi) = 〈round(x), round(y)〉 ∀x,y ∈ Ad,

and thus

g2

(

d
∑

i=1

g1(4xi + 4yi)

)

= IPd (round(x), round(y)) = fd(x,y) ∀x,y ∈ Ad.

We now define the network N which approximates fd(x,y) well on the set Ad. For all x,y ∈ Ad,

define

N (x,y) := h2

(

d
∑

i=1

h1(4xi + 4yi)

)

.

We construct a depth 3 neural network that computes the above function as follows:

• The first hidden layer will consist of d copies h1,i, i = 1, . . . , d, of the depth 2, width O
(

d
ε

)

network

h1. Each h1,i will receive (xi, yi) as input; thus, the weight assigned to the coordinates xi, yi is set to

4, and the weight assigned to the remaining coordinates is set to zero. Note that the width of the first

layer is therefore O
(

d2

ε

)

, and the magnitude of its weights is bounded by O
(

1
ε

)

.

• The second hidden layer will consist of a single copy of the network computing the function h2. This

implies that the width of this layer is O
(

d
ε

)

. Each neuron in this layer will assign the same set of

weights for each incoming output from the output neurons of the components h1,i, i = 1, . . . , d.

Since this sum is a linear operation performed on these output neurons, we can effectively absorb

the output neurons into the hidden neurons in the second layer, and thus avoid adding a third hidden

layer. Note that by absorbing weights of magnitude at most O
(

1
ε

)

in a layer with weights bounded

by O
(

d
ε

)

, we get that the weights in the second hidden layer are of magnitude at most O
(

d
ε2

)

.

Concluding our construction of N , we have that its width is O
(

d2

ε

)

, due to the first hidden layer; and its

magnitude of the weights is O
(

d
ε2

)

, due to the second hidden layer.

It is therefore only left, given arbitrary x,y ∈ Ad, to upper bound the expression

|N (x,y) − fd(x,y)| =
∣

∣

∣

∣

∣

h2

(

d
∑

i=1

h1(4xi + 4yi)

)

− g2

(

d
∑

i=1

g1(4xi + 4yi)

)∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

h2

(

d
∑

i=1

h1(4xi + 4yi)

)

− g2

(

d
∑

i=1

h1(4xi + 4yi)

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

g2

(

d
∑

i=1

h1(4xi + 4yi)

)

− g2

(

d
∑

i=1

g1(4xi + 4yi)

)∣

∣

∣

∣

∣

. (13)

27

We begin with upper bounding the first absolute value term. By virtue of Eq. (11), we have

∣

∣

∣

∣

∣

d
∑

i=1

h1(4xi + 4yi)−
d
∑

i=1

g1(4xi + 4yi)

∣

∣

∣

∣

∣

≤
d
∑

i=1

|h1(4xi + 4yi)− g1(4xi + 4yi)| ≤
ε

2
, (14)

implying

∣

∣

∣

∣

∣

d
∑

i=1

h1(4xi + 4yi)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

d
∑

i=1

g1(4xi + 4yi)

∣

∣

∣

∣

∣

+
ε

2
≤

d
∑

i=1

|g1(4xi + 4yi)|+
1

4
≤ d+

1

4
,

for all x,y ∈ A. The above and Eq. (12) imply

∣

∣

∣

∣

∣

h2

(

d
∑

i=1

h1(4xi + 4yi)

)

− g2

(

d
∑

i=1

h1(4xi + 4yi)

)∣

∣

∣

∣

∣

≤ ε

2
. (15)

Moving on to bound the second absolute value term in Eq. (13), we have by the fact that g2(·) is 1-Lipschitz

that

∣

∣

∣

∣

∣

g2

(

d
∑

i=1

h1(4xi + 4yi)

)

− g2

(

d
∑

i=1

g1(4xi + 4yi)

)∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

d
∑

i=1

h1(4xi + 4yi)−
d
∑

i=1

g1(4xi + 4yi)

∣

∣

∣

∣

∣

≤ ε

2
,

where in the second inequality we used Eq. (14). Plugging the above and Eq. (15) back in Eq. (13), we get

|N (x,y) − fd(x,y)| ≤ ε,

for all x,y ∈ Ad, as desired.

28

	Introduction
	Setting and Main Result
	Preliminaries and notation
	Formal construction
	Assumptions
	Main result

	Lower Bound
	Techniques, and proof sketch of Thm. 3.1
	Step 1: From a continuous to a discrete distribution
	Step 2: From average- to worst-case using randomization
	Step 3: Constructing a threshold circuit computing `3́9`42`"̇613A``45`47`"603AIPd

	Upper Bound
	Proofs
	Proof of Thm. 3.1
	Proof of Thm. 4.1

