
ar
X

iv
:1

91
2.

04
37

8v
1 

 [
cs

.L
G

] 
 9

 D
ec

 2
01

9

Depth-Width Trade-offs for ReLU Networks

via Sharkovsky’s Theorem

Vaggos Chatziafratis

Stanford University

vaggos@cs.stanford.edu

Sai Ganesh Nagarajan

SUTD∗

sganesh.22@gmail.com

Ioannis Panageas

SUTD∗

ioannis@sutd.edu.sg

Xiao Wang

SUTD∗

xiao wang@sutd.edu.sg

Abstract

Understanding the representational power of Deep Neural Networks (DNNs) and how their struc-

tural properties (e.g., depth, width, type of activation unit) affect the functions they can compute, has

been an important yet challenging question in deep learning and approximation theory. In a seminal

paper, Telgarsky highlighted the benefits of depth by presenting a family of functions (based on sim-

ple triangular waves) for which DNNs achieve zero classification error, whereas shallow networks with

fewer than exponentially many nodes incur constant error. Even though Telgarsky’s work reveals the

limitations of shallow neural networks, it doesn’t inform us on why these functions are difficult to repre-

sent and in fact he states it as a tantalizing open question to characterize those functions that cannot be

well-approximated by smaller depths.

In this work, we point to a new connection between DNNs expressivity and Sharkovsky’s Theorem

from dynamical systems, that enables us to characterize the depth-width trade-offs of ReLU networks

for representing functions based on the presence of a generalized notion of fixed points, called periodic

points (a fixed point is a point of period 1). Motivated by our observation that the triangle waves used in

Telgarsky’s work contain points of period 3 – a period that is special in that it implies chaotic behaviour

based on the celebrated result by Li-Yorke – we proceed to give general lower bounds for the width

needed to represent periodic functions as a function of the depth. Technically, the crux of our approach

is based on an eigenvalue analysis of the dynamical systems associated with such functions.

1 Introduction

In approximation theory, one typically tries to understand how to best approximate a complicated family of

functions using simpler functions as building blocks. For instance, [Wei85] proved a general result stating

that every continuous function can be uniformly approximated as closely as desired by a polynomial. It

wasn’t until later that [Vit59] gave quantitative bounds between the approximation error and the polynomial’s

degree. Drifting away from polynomials and given the recent breakthroughs of deep learning in a variety

of difficult tasks like image classification, natural language processing, game playing and self-driving cars,

researchers have tried to understand the approximation theory that governs neural networks. This question

of neural network expressivity, i.e. how architectural properties like the depth, width or the activation units

affect the functions it can compute, has been a fundamental ongoing challenge with a rich history. A classical

result by [Cyb89], [HSW89], [Fuk80] demonstrates the expressive power of neural networks: it states that

∗Singapore University of Technology and Design.

1

http://arxiv.org/abs/1912.04378v1


even two layered neural networks (using well known activation functions) can approximate any continuous

function on a bounded domain. The caveat is that the size of such networks may be exponential in the

dimension of the input, which makes them highly susceptible to overfitting as well as impractical, since

one can always add extra layers in their model aiming at increasing the representational power of the neural

network.

More recently, in a seminal paper by Telgarsky [Tel16], it was shown that there exist functions that can

be represented by DNNs, i.e, by some particular choice of weights on their edges (and for a wide variety of

standard activation units in their layers), yet cannot be approximated by shallow networks unless they are

exponentially large. More concretely, he showed that for any positive integer k, there exist neural networks

with Θ(k3) layers, Θ(1) nodes per layer, and Θ(1) distinct parameters which cannot be approximated by

networks with O(k) layers, unless they have Ω(2k) nodes. At a high level, he uses the number of oscilla-

tions present in certain functions as a notion of “complexity” that distinguishes between deep and shallow

networks’ representation capabilities via the following three facts: a) functions with few oscillations poorly

approximate functions with many oscillations, b) functions computed by networks with few layers must

have few oscillations and c) functions computed by networks with many layers can have many oscillations.

Our main contribution is a novel connection between the theory of dynamical systems and the represen-

tational power of DNNs via the well-studied notion of periodic points, a notion that captures the important

notion of fixed points of a continuous function.

Definition 1.1 (Period). We say that a (continuous) Lipschitz function f : [0, 1] → [0, 1] contains a point of

period n ≥ 1 if there exists a point x0 ∈ [0, 1] such that1:

fn(x0) = x0 and (point of period n)

fk(x0) 6= x0, ∀ 1 ≤ k ≤ n− 1.

In particular, all numbers in C = {x0, f(x0), f(f(x0)), . . . , fn−1(x0)} are distinct, each of which is a

point of period n and the set C is called a cycle (or orbit) of period n. Observe that since f : [0, 1] → [0, 1]
is continuous, it certainly has at least one point of period 1, which is called a fixed point.

For the rest of this paper, we focus on (continuous) Lipschitz functions f : [0, 1] → [0, 1], unless

otherwise stated. Note that the choice of interval [0, 1] is for simplicity of our presentation and that our

results will hold for any closed interval [a, b].
As we observe, points of period 3 are contained in both [Tel16] and [Sch00] constructions and this could

as well have been a coincidence, however we show that the existence of periodic points of certain periods

are actually one of the reasons explaining why depth is needed to represent functions that contain them

(otherwise exponential width is required). Towards this direction, we will make use of a deep result in the

literature of iterated dynamical systems called Sharkovsky’s Theorem [Sha64, Sha65].

1.1 Sharkovsky’s Theorem

Consider the set of positive natural numbers N∗ = {1, 2, . . . } and define the following (decreasing) ordering

⊲ called Sharkovsky’s ordering as follows:

3 ⊲ 5 ⊲ 7 ⊲ · · · ⊲ (odd numbers bigger than one)

⊲2 · 3 ⊲ 2 · 5 ⊲ 2 · 7 ⊲ · · · ⊲ (odd multiples of two but not two)

⊲22 · 3 ⊲ 22 · 5 ⊲ 22 · 7 ⊲ · · · ⊲ (odd multiples of four but not four)
...

⊲ · · · ⊲ 24 ⊲ 23 ⊲ 22 ⊲ 2 ⊲ 1 (powers of two in decreasing order).

1As usual, fn(x0) denotes the composition of f with itself n times, evaluated at point x0.

2



This is a total ordering; we write l ⊲ r or r ⊳ l whenever l is to the left of r. Sharkovsky showed that this

ordering describes which numbers can be periods for a continuous map on an interval; allowed periods need

to be a suffix of the Sharkovsky ordering:

Theorem 1.2 (Sharkovsky “Forcing” Theorem [Sha64, Sha65]). Let I be a closed interval and f : I → I
be a continuous map. If n is a period for f and n ⊲ n′, then n′ is also a period for f .

Remark 1.3. Note that the number 3 is the maximum period according to Sharkovsky’s ordering, so an

important corollary is that a function having a point of period 3, must also have points of any period.

This special corollary is a weaker version of Sharkovsky’s theorem and was proved some years later2 in a

celebrated result by [LY75], who coined the term “chaos” as used in Mathematics.

We conclude the subsection with the definition of a prime period of a function f .

Definition 1.4 (Prime period). A function f has prime period n as long as it has a cycle of period n, but has

no cycles with period greater than n according to the Sharkovsky ordering.

For example, in the interval [0,1], the function f(x) = 1 − x has prime period 2, since f(f(x)) =
1− (1− x) = x so all points are periodic with period 2, except the fixed point at 1/2.

Before formally stating our main theorems, we present an illustrative example inspired from Telgar-

sky’s triangle wave construction and we connect it to DNNs’ sensitivity to weight perturbations and their

representational power.

1.2 Sensitivity Analysis - A Motivating Example

An important ingredient in Telgarsky’s proof, was the “triangular wave” function (sometimes referred to as

the tent map or sawtooth) depicted in Figure 1b and given by:

t(x; 2) =











2x, if 0 ≤ x ≤ 1
2

2(1− x), if 1
2 < x ≤ 1

0, otherwise

He shows that the composition of t(x; 2) with itself k times (denoted by tk(x; 2)), will create exponen-

tially (in k) many oscillations and as a result he is able to show a separation for the classification error when

using a shallow vs a deep neural network as a predictor.

Our starting point is the observation that the triangular wave function t(x; 2) contains points of period 3,

e.g. (29 → 4
9 → 8

9 → 2
9). It follows in particular, that t(x; 2) exhibits Li-Yorke Chaos ([LY75]) in the sense

that it contains all periods. The compositions of such functions will look highly complex (see Figure 2) and

in fact Telgarsky heavily relied on the highly oscillatory behavior of t(x; 2) to prove his depth separation

result.

However, his result doesn’t inform us on what would happen if one used a slightly modified version of

the triangle wave t(x; 2). Observe that since a simple neural network with one hidden layer can represent the

function t(x; 2), the question is basically equivalent to asking how modifying the weights on the edges of the

neural network can affect its representational power (see Figure 1), hence the title of the current subsection.

The main question is can we have a general theory that informs us on when will the function composition be

hard to represent and when not? Our paper’s main point is to provide an answer by checking if the function

at hand has a simple property, relating to the presence of chaotic behavior.

2Due to historical reasons during the late 20th century, the theory of dynamical systems saw a parallel development in the USA

and the USSR, hence Sharkovsky’s theorem (1964) remained unknown in the USA, until in 1975 a weaker version was rediscovered

by James Yorke and his graduate student Tien-Yien Li, in their celebrated paper called “Period Three Implies Chaos”.

3



To illustrate our point, consider the generalized triangle wave function t(x;µ) parameterized by µ:

t(x;µ) =











µx, if 0 ≤ x ≤ 1
2

µ(1− x), if 1
2 < x ≤ 1

0, otherwise

This function parameterized by µ ranges from [0, µ/2] and is closely related to the logistic map f(x) :=
rx(1− x) used in [Sch00] and exhibits a variety of limiting behaviors: for instance, it converges to a stable

fixed point when µ ≤ 1, it exhibits chaos when µ = 2 etc.3 Instead of µ = 2, if we set µ = 1, we get the

network depicted in Figure 1c, 1d.

Note that compositions of t(x; 1) (created by the same neural network architecture but with slightly

different weights), behave completely differently since in the µ = 1 case, we will not get a highly oscillatory

behavior. This can be seen in Figure 3. One difference between the two cases is the relative position

of the map with the line y = x and this seems to be pointing that fixed points and their generalizations

i.e. periodic orbits play an important role when dealing with function compositions. Indeed, despite the

wide range of possibilities one can expect by composing such functions, as we show, their behavior can be

characterized using tools from dynamical systems; the exponential growth in complexity (or lack thereof)

of these compositions can be explained by invoking a fundamental property of these continuous functions

on bounded intervals which is the existence (or not) of periodic points of certain periods.

Similarly, we can argue about changing the parameters of the logistic map which is given by f(x; r) :=
rx(1− x) used in [Sch00] for sigmoidal networks (where f(x; 4) was used). The properties of the logistic

map are well known and was first studied by Robert May and Mitchell Feigenbaum ([May76] and [Fei76]).

It is known that as one varies the parameter r, the logistic map gives rise to a plethora of different behaviors,

hence the same is true for when one slightly perturbs the weights of a neural net used to represent the map.

Please refer to Appendix B for some figures that illuminate these differences in the logistic map.

1.3 Informal Statements of Main Theorems

We demonstrate that a simple property of f governs the depth-width trade-offs in order to represent it and

we give quantitative bounds for them. This simple property has to do with the periods that the function f
contains. Informally, our first main theorem states that if a function f contains periodic points with certain

periods, then composing f with itself many times, will result in exponentially many oscillations, giving rise

to complicated behaviors and chaos:

Theorem 1.5. Let f : [0, 1] → [0, 1] be a continuous function. Assume that there exists a cycle of period n,

where n = m · p with p being an odd number greater than one and with m being a power of two (it might

be m = 1). Then, there exist x, y ∈ [0, 1] such that the function fmt (taking mt compositions of f with

itself) “oscillates” (also look Definition 2.3) at least ρt times between x and y for all t ∈ N
∗, where ρ is the

positive root greater than one of the polynomial equation λp−1 − λp−2 − 1 = 0.

Our second main theorem then draws the connection between the number of oscillations a function has

and the depth-width trade-offs needed:

Theorem 1.6. Let k be a positive integer and f be a function as above. We set ρ to be the positive root

greater than one of the polynomial equation λp−1 − λp−2 − 1 = 0. We can construct a sequence of

points (xi, yi)
2n
i=1 with n := ⌊ρk⌋

2 such that the classification error of the function fmk is zero, whereas the

classification error of any neural network with l layers and u nodes per layer, where u ≤ ρ
k
l

8 , necessarily

has classification error ≥ 1
4 .

3For more, the interested reader can also check https://en.wikipedia.org/wiki/Logistic_map.

4

https://en.wikipedia.org/wiki/Logistic_map


0

−0.5

0

1

1 −4

2

x t(x; 2)

(a) Neural net with the appropriate weights and bi-

ases (the value indicated inside the hidden and output

neurons).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t(
x;

2)

(b) Tent map with µ = 2

0

−0.5

0

1

1 −2

1

x t(x; 1)

(c) Neural net with the appropriate weights and bi-

ases (the value indicated inside the hidden and output

neurons).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t(
x;

1)

(d) Tent map with µ = 1

Figure 1: The neural network instantiations that are used to create two different tent maps which vary only in the

maximum value. This is effected by a small change of weights in the output layer. All activation functions are

ReLU’s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
x)

(a) f(x) := 3.9 ∗ x(1 − x) on the interval [0, 1]

0.8 0.85 0.9 0.95 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f10
(x

)

(b) f10(x) of the map on the left (zoomed in)

Figure 2: Compositions of the logistic map f(x) = 3.9x(1−x) defined on the interval [0, 1]. This map is well known

to exhibit chaos and in the above figure has non-vanishing oscillations that grow with the number of compositions,

albeit irregularly.

5



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
t(

x;
)

=2
=1

(a) t(x;µ) for the tent map with µ = 2 (blue)

and µ = 1 (red)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t6
(x

;
)

=2
=1

(b) t6(x;µ) for the tent map with µ = 2 (blue)

and µ = 1 (red).

Figure 3: Compositions of t(x;µ) with different parameters µ = 2 and µ = 1 are shown. The compositions create

(exponential) non-vanishing oscillations when µ = 2, however the compositions remain unchanged when µ = 1.

Formal statements for the two theorems can be found in Section 3 and Section 4.

Using these theorems, we draw connections with previous results [Tel16], [Sch00] in a unified way,

thus identifying chaotic behavior as the main underlying thread for depth-width trade-offs. Technically, our

approach is based on an eigenvalue analysis of certain matrices associated with such periodic functions.

1.4 Other Related Work

Understanding the benefits of depths on the expressive power a specific computational model can have, is an

important area of research spanning different computational models and results come in the flavor of depth

separation arguments. Roughly speaking, many of the results in this area rely on a suitably defined notion of

“complexity” of a function we would like to represent, and then proceed by proving that under this notion,

deep models have significantly more power than shallower models. For example, if the computational

model of interest is the family of boolean or threshold circuits, depth lower bounds are given in [Has86,

RST15, Hås87, PGM94, KW16]. Furthermore, people have analyzed sum-product networks (summation

and product nodes) and studied trade-offs for depth ([DB11, MM14]).

Coming closer to neural networks computation where the activation units can be general real-valued

functions, important previous results include [ES16, Tel15, Tel16, Sch00, MPCB14, MSS19, PLR+16,

RPK+17, ABMM16, LS16, KTB19]. Regarding the aforementioned notions of “complexity” used in

depth separation arguments, examples include the notion of global curvature ([PLR+16]), trajectory length

([RPK+17]), number of oscillations ([Tel15, Tel16] and [Sch00]), number of linear regions ([MPCB14]),

fractals ([MSS19]) and more. Our work is more closely related to [Tel15, Tel16], and [Sch00] since it is

easy to see that their maps are chaotic, but we conjecture that many of the notions of complexity introduced

in this line of research to showcase benefits of depth actually arise due to chaotic behavior. In this sense,

we conjecture that chaotic behavior is the main culprit for the failure of neural networks to represent certain

functions, unless they are sufficiently deep (or have exponential width). Moreover, other works that have

exploited the powerful result by Li-Yorke (in online learning frameworks) are [PPP17, CFMP19].

2 Further Background: The Covering Lemma

The crux of the proof of Sharkovsky’s theorem provided by [BH11] contains a covering lemma that will be

our starting point to prove our main results. Before we proceed with the statement of the Covering Lemma,

6



J0 J1

f

f

f

(a) Covering Lemma 2.2 relations for cycle of

period three (r = 1).

J0

J1

J2

Jr

f

ff

f

f

(b) Covering Lemma 2.2 relations for cycle of

odd period at least three.

Figure 4: The covering relations of intervals J0, ..., Jr from Lemma 2.2. Observe that the graph is a directed cycle

with a self loop at interval J0. Note that there might be more relations (“edges”).

we provide one more important definition.

Definition 2.1 (Covering relation). Let f be a function and I1, I2 be two closed intervals. We say that I1

covers I2 under f , denoted by I1
f−→ I2 as long as I2 ⊆ f(I1).

For example, the triangle wave t(x; 2) that has the period 3 point 2
9 (recall 2

9 → 4
9 → 8

9 → 2
9 ) naturally

defines two intervals I1 = [29 ,
4
9 ] and I2 = [49 ,

8
9 ] with the covering relations: I1

f−→ I2, I2
f−→ I2 and

I2
f−→ I1.

Lemma 2.2 (Covering Lemma for odd periods). Let f : [0, 1] → [0, 1] be a continuous function and assume

f has a cycle C of period n, where n > 1 is an odd number. Denote β0, ..., βn−1 ∈ C the elements of the

cycle in increasing order and define the sequence of closed intervals I0, ..., In−2 where Ii = [βi, βi+1] (they

have pairwise disjoint interiors). Then, there exists a sub-collection of the aforementioned intervals (not

necessarily in the same ordering) J0, ...Jr with 1 ≤ r ≤ n − 2 such that the following covering relation

holds:

1. Ji
f−→ Ji+1, for 1 ≤ i ≤ r − 1,

2. Jr
f−→ J0 and J0

f−→ J0 ∪ J1.

For a pictorial illustration of the Covering Lemma, see Figure 4. In particular, observe that for n = 3
we get r = 1 so the covering relation is as in Figure 4. We conclude this section with the formal definition

of crossings (or oscillations) and we refer the reader to Figure 5 for some examples.

Definition 2.3 (Crossings). We say that a continuous function f : [0, 1] → [0, 1] crosses the interval [x, y]
with x, y ∈ [0, 1] if there exist a, b such that f(a) = x and f(b) = y. Moreover we denote Cx,y(f) the

number of times f crosses [x, y]. That is Cx,y(f) = t if there exist numbers a1, b1 < a2, b2 < · · · < at, bt
in [0, 1] so that f(ai) = x and f(bi) = y for all 1 ≤ i ≤ t. Observe that if If,x,y is used to denote4 the

number of intervals the function f̃x,y(z) := 1[f(z) ≥ x+y
2 ] is piecewise constant and partitions [0, 1], then

Cx,y(f) ≤ If,x,y.
4In Telgrasky’s paper, If is used to denote the number of intervals where 1[f(z) ≥ 1

2
] is piecewise constant and partitions

[0, 1].

7



3 Periods Determine the Number of Crossings

3.1 Period that is not a power of two implies exponential crossings

In this section, we prove our main theorem, the statement of which is given below. Technically, we make

use of Lemma 2.2 (Covering Lemma) to show the exponential growth of the number of crossings.

Theorem 3.1. Let f : [0, 1] → [0, 1] be a continuous function. Assume that there exists a cycle of period n
where n = m · p, p is an odd number greater than one and m being a power of two (it might be m = 1). It

holds that there exist x, y ∈ [0, 1] so that Cx,y(f
mt) is ct for all t ∈ N

∗, where c is the positive root greater

than one of the polynomial equation λp−1 − λp−2 − 1 = 0.

Counting the number of oscillations. For a given continuous function f : [0, 1] → [0, 1], let J0, . . . , Jr ,

where 1 ≤ r ≤ n − 2, be the intervals as promised from Lemma 2.2. We define a sequence of vectors

δt ∈ N
r+1 such that δti is defined as the number of times the function f t crosses the interval Ji for all

0 ≤ i ≤ r. In particular we define f0 to be the identity function and hence δ0 = (1, . . . , 1) (all ones vector).

For what follows, we will try to express recursively δt in terms of δt−1 and in the end we will show that δk0
is Ω(ck) where c is some constant that depends on r. To build some intuition, we first analyze the case of

period three and then we prove the general case.

3.1.1 Warm up: The case of period 3 and the Fibonacci sequence

Assume that f has a cycle of period 3, that is the numbers {x0, f(x0), f2(x0)} are distinct and f3(x0) = x0
for some x0 ∈ [0, 1]. Let β0 < β1 < β2 be the numbers x0, f(x0), f

2(x0) in increasing order. We define

I0 = [β0, β1] and I1 = [β1, β2]. From Lemma 2.2, when n = 3, we can see that r = 1 and thus we have the

following possibilities for the covering relations:

• Either I0
f−→ I0 ∪ I1,

• or I1
f−→ I0 ∪ I1.

We define J0 to be the interval among I0, I1 that involves the self-loop covering and J1 to be the remaining

interval. Define δt ∈ N
2 as above, and so we get that:

(

δt+1
0

δt+1
1

)

≥
(

1 1
1 0

)(

δt0
δt1

)

, (3.1)

where δ00 = 1 and δ01 = 1. The matrix A :=

(

1 1
1 0

)

can be interpreted as the adjacency matrix that

corresponds to the covering relations between J0, J1 (which consists of a directed cycle with a self-loop at

vertex J0). The reason we have an inequality instead of an equality is because the Covering Lemma only

guarantees that the number of times J0 “covers” J0 and J1 is at least one and not necessarily exactly one.

We set α0 = δ0 and we define αt+1 = Aαt. It is clear that δt ≥ αt (entry-wise) for all t ∈ N. Moreover,

αt
0 is the well-known Fibonacci sequence Ft+1 (with F0 = F1 = 1), therefore αt

0 =

(

1+
√

5

2

)t+2

−
(

1−
√

5

2

)t+2

√
5

.

We conclude that δt0 ≥
(

1+
√
5

2

)t

. See also Figure 5 for a pictorial illustration about the proof for t =

1, 2, 3, 4.

8



0 1 2 3 4 5
x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f(
x)

(a) This figure captures one composition of function f .

Observe that f crosses the interval [2, 3] two times (once

for x ∈ [1, 2] and once for x ∈ [2, 3]) and it crosses the

interval [1, 2] once. In particular, δ1 = (2, 1).

0 1 2 3 4 5
x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f2 (x
)

(b) This figure captures two compositions of function

f . Observe that f crosses the interval [2, 3] three times

(two times for x ∈ [2, 3] and once for x ∈ [1, 2]) and it

crosses the interval [1, 2] two times (once for x ∈ [1, 2]
and once for x ∈ [2, 3]). In particular, δ2 = (3, 2).

0 1 2 3 4 5
x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f3 (x
)

(c) This figure captures three compositions of function

f . Observe that f crosses the interval [2, 3] five times

(three times for x ∈ [2, 3] and twice for x ∈ [1, 2]) and it

crosses the interval [1, 2] three times (once for x ∈ [1, 2]
and twice for x ∈ [2, 3]). In particular, δ3 = (5, 3).

0 1 2 3 4 5
x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f4 (x
)

(d) This figure captures four compositions of function f .

Observe that f crosses the interval [2, 3] eight times (five

times for x ∈ [2, 3] and three times for x ∈ [1, 2]) and it

crosses the interval [1, 2] five times (twice for x ∈ [1, 2]
and three times for x ∈ [2, 3]). In particular, δ4 = (8, 5).

Figure 5: Compositions of a piecewise linear function that has a point of period 3.

9



0 1 2 3 4 5 6

x

0

1

2

3

4

5

6

f(
x)

(a) δ1 = (1, 1, 2, 2).

0 1 2 3 4 5 6

x

0

1

2

3

4

5

6

f2
(x

)

(b) δ2 = (2, 2, 3, 2).

0 1 2 3 4 5 6

x

0

1

2

3

4

5

6

f3
(x

)

(c) δ3 = (2, 3, 5, 4).

0 1 2 3 4 5 6

x

0

1

2

3

4

5

6

f4
(x

)

(d) δ4 = (4, 5, 7, 5).

Figure 6: Compositions of a piecewise linear function that has a point of period 5. We start with the all ones vector

for δ0 and each composition arises from the covering relation between the sets.

3.1.2 Every period greater than 3 but not power of two

In the beginning we showed that the triangle function used by Telgarsky [Tel15] exhibited the property of

period 3 and then one may ask if there are functions that can be constructed that have a higher odd period

but not a lower odd period. Below we show an example function that has period 5 but not period 3 and then

we generalize our results to such higher odd periods. The example function appeared in [LY75], and has

a point of period 5, but not period 3, thereby respecting the Sharkovsky ordering. Our proof approach for

general odd periods is similar to the case of period 3, by using the induced covering graph and counting the

crossings over each interval. This is illustrated in Figure 6.

Now to analyze the general setting, assume that f has a cycle of period n > 3 with n odd, that is

the numbers {x0, f(x0), f2(x0), ..., f
n−1(x0)} are distinct and fn(x0) = x0 for some x0 ∈ [0, 1]. Let

β0 < β1 < β2 < ... < βn−1 be the numbers x0, f(x0), f
2(x0), ..., f

n−1(x0) in increasing order. We define

Ii = [βi, βi+1] for 0 ≤ i ≤ n − 2. From Lemma 2.2 it follows that there is a subcollection of the intervals

I0, ..., In−2 (with not necessarily the same ordering) J0, ..., Jr (1 ≤ r ≤ n− 2) such that

1. Ji
f−→ Ji+1, for 1 ≤ i ≤ r − 1,

10



2. Jr
f−→ J0 and J0

f−→ J0 ∪ J1.

The interval J0 is the one that involves the self-loop covering. As in the case for n = 3, we define δt which

is in N
r+1, with δti capturing the number of times f t crosses the interval Ji. We get that:











δt+1
0

δt+1
1
...

δt+1
r











≥ A











δt0
δt1
...

δtr











, (3.2)

where δ0 = (1, . . . , 1) (all ones vector) and A ∈ R
(r+1)×(r+1) is defined to be:























Aji = 1, if i = 0, j = 0

Aji = 1, if j = i+ 1 and 0 ≤ i ≤ r − 1

Aji = 1, if i = r, j = 0

Aji = 0, otherwise

(3.3)

In words, A is the adjacency matrix of a graph with r + 1 nodes that is a directed cycle that involves a self-

loop at vertex J0. We define αt in a similar way as in the case for period three, i.e., αt+1 = Aαt and α0 = δ0

so that δt ≥ αt (entry-wise) for all t ∈ N. We can easily observe that the following holds: αt+1 = At+1α0.

Our next plan is to compute a lower bound on the spectral radius of the matrix A⊤ (denoted by sp(A⊤))
with the following claim (proof in Appendix A).

Claim 3.2. The characteristic polynomial of A⊤ is:

π(λ) = λr+1 − λr − 1. (3.4)

Let us call ρr the largest root in absolute value of the polynomial π(λ) in A.1. Since A is a non-negative

matrix, the largest root in absolute value is actually a positive real number (by the Perron-Frobenius theorem).

It is easy to see that the polynomial in A.1 has always a root greater than one and less than two (by Bolzano’s

theorem, see π(1) = −1 < 0 and π(2) = 2r+1 − 2r − 1 = 2r − 1 > 0).

Hence we have sp(A) = ρr > 1. Furthermore, it is easy to see that since A is a non-negative matrix

(and powers of A are also non-negative), it holds that

∥

∥At
∥

∥

∞ =

r
∑

j=0

At
0j

for all t ≥ 1, that is the row with the largest sum of its entries is the first row (row for i = 0). Using the fact

that
∥

∥At
∥

∥

∞ ≥ sp(At) = ρtr,

that is the spectral radius of a matrix is always at most any matrix norm, we conclude that
∑r

j=0A
t
0j ≥ ρtr.

The case of odd period greater than three follows by noting that
∑r

j=0A
t
0j = αt

0, thus δt0 ≥ αt
0 ≥ ρtr.

Observe that for period three, we have that r = 1 and also ρ1 =
1+

√
5

2 (the largest root of λ2 − λ− 1 = 0).

We would like to make the following two remarks:

Remark 3.3. The spectral radius ρr is strictly decreasing in r: this is easy to see since ρr > 1 and is

satisfying the equation xr+1 − xr = 1 (note that xr+1 − xr is increasing in r for x > 1). This implies that

smaller odd periods can potentially have a number of crossings that grows at faster rates than larger odd

periods, hence giving rise to more complex behaviors. See also Remark 4.2.

11



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f(
x)

Figure 7: A piecewise linear function f : [1, 4] → [1, 4] that has prime period four.

Remark 3.4 (The case of even period but not power of two). Our result above is applied for cycles of period

n = m ·n′ where m is a power of two and n′ is an odd number greater than one. The trick is to observe that

if a function has cycle of period n, then fm has a cycle of period n′ (which is an odd number greater than

one). Therefore, the number of oscillations Cx,y(f
mt) with x, y being the endpoints of J0, is at least ρtn′−2

for t ∈ N.

Proof of Theorem 3.1. The proof now follows from the case analysis carried out in Sections 3.1.1, 3.1.2 and

Remark 3.4.

3.2 Period that is a power of two may have polynomial crossings

Lemma 3.5 (Period power of two). There exist continuous functions f with prime period n that is a power

of two so that the number of crossings Cx,y(f
t) scales at most polynomially with t for any x, y ∈ [0, 1].

Proof. The easiest example one can construct is the function f : [0, 1] → [0, 1] that is defined f(x) = 1−x.
Observe that for any a ∈ [0, 1] one has f(f(a)) = a and moreover if a 6= 1

2 then f(a) 6= a. Hence f is a

function of prime period two. It is also clear that f t(x) = x if t is even and f t(x) = 1− x if t is odd, so the

number of crossings is always one for all t ∈ N
∗.

One other less trivial example is the following function (see also Figure 7):

f(x) =











−x+ 5, 1 ≤ x ≤ 2

−2x+ 7, 2 ≤ x ≤ 3

x− 2, 3 ≤ x ≤ 4.

It is not hard to see that this function has prime period four (f(1) = 4, f(4) = 2, f(2) = 3, f(3) = 1). Let

J0 = [1, 2], J1 = [2, 3], J2 = [3, 4]. It is clear that

• f(J0) = J2, f(J1) = J0 ∪ J1 and f(J2) = J0.

By letting δti be the number of crossings of the function f for the interval Ji (i ∈ {0, 1, 2}), one has

recursively




δt+1
0

δt+1
1

δt+1
2



 =





0 1 1
0 1 0
1 0 0









δt0
δt1
δt2



 (3.5)

12



where δ0 = (1, 1, 1) (all ones vector). It is easy to observe that the matrix A =





0 1 1
0 1 0
1 0 0



 has

spectral radius one (as opposed to the case of odd period greater than one) and moreover it holds that
∑2

i=0

∑2
j=0A

t
ij = t+ 3 for all t ∈ N

∗. We conclude that αt
0 + αt

1 + αt
2 = t+ 3, therefore the number of

crossings for J0, J1, J2 of the function f t grows linearly with t (and not exponentially). Since the function

we defined is of prime period four and is piecewise monotone (and so is any composition with itself) in each

interval J0, J1, J2, we conclude that the number of crossings of f t for any possible pairs of values is at most

linear in t.

4 Period-Dependent Lower Bounds for DNNs

Building on [Tel15, Tel16], the representation power of different networks will be measured via the classifi-

cation error. For a given collection of n points (xi, yi)
n
i=1 with yi ∈ {0, 1}, one can define the classification

error of a function g to be:

R(g) =
1

n

n
∑

i=1

1[g̃(xi) 6= yi]

In this section, we argue that functions with cycles of period not a power of two, will have compositions

for which any shallow neural network will have classification error a positive constant.

Assume we are given a continuous function f : [0, 1] → [0, 1] so that f has a cycle of period m×p where

p is an odd number greater than one and m is a power of two. From Theorem 3.1, there exist x, y ∈ [0, 1] so

that Cx,y(f
tm) is at least

ρtp−2

2 , where ρr is defined to be the root that is greater than one of the polynomial

equation λr+1 − λr − 1 = 0. We set ρ := ρp−2, h := fk·m and assume that g : [0, 1] → [0, 1] is a neural

network with l layers and u nodes (ReLU activations) per layer. In Lemma 2.1 of [Tel15], it is proved that a

neural network with u ReLU units per layer and with l layers is piecewise affine with at most (2m)l pieces.

We define as h̃(z) = 1[h(z) ≥ x+y
2 ] and g̃(z) = 1[g(z) ≥ x+y

2 ] (note that we changed the threshold to

be x+y
2 instead of 1

2 that was used in [Tel15]).

Since Cx,y(h) is at least ρk, it holds that there exist points (xi, yi)
2n
i=1 with n := ⌊ρk⌋

2 such that h(xj) = x,

yj = 0 for j odd and h(xj) = y, yj = 1 for j even. It is clear that for this collection of points the

classification error of the function h is zero, whereas the classification error for function g is bounded from

below by

R(g) ≥ n− 4(2u)l

2n
=

1

2
− (2u)l

n
.

The above inequality is an application of Lemma 2.2 of [Tel15] (with careful counting it has been slightly

improved). By choosing u to be at most ρ
k
l

8 it holds that the classification error R(g) ≥ 1
4 for any neural

network g with u ReLUs and l layers.

The above discussion implies the following theorem:

Theorem 4.1 (Classification Error Theorem). Let k be a positive integer and f be a function of period

m × p with p an odd number greater than one and m being a power of two (it might hold m = 1). We

set ρ to be the positive root greater than one of the polynomial equation λp−1 − λp−2 − 1 = 0. We can

construct a sequence of points (xi, yi)
2n
i=1 with n := ⌊ρk⌋

2 so that the classification error of function fmk is

zero, whereas the classification error of any neural network of l layers and u nodes per layer with u ≤ ρ
k
l

8
satisfies R(g) ≥ 1

4 .

13



0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a) The numerical solutions to f3(x) = x are shown

here.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(b) The numerical solutions to g3(x) = x are shown

here.

Figure 8: We see that f3(x) = x has solutions other than just the fixed point, since it has intersections in 3 other

places, other than the fixed point. However, g3(x) = x does not have any solutions other than the fixed point, as there

are no other intersections.

Remark 4.2. Observe that if the number of units u per layer is constant and the number of layers l is o(k),
then the classification error is always a positive constant for any neural network (whereas for fmk is zero).

Moreover, observe that since ρ is decreasing in p (recall p is the odd factor of the period), it holds that

the classification error decreases as p increases (with fixed number of layers and nodes per layer). This

indicates that the composition of functions with large odd period is simpler than of functions with small odd

period (period greater than one) following the intuition we have from the Sharkovsky’s ordering.

5 Further discussions

In this section, we provide some additional theoretical and experimental remarks on our characterization.

5.1 Incorporating Bias terms

If we add a bias term in the ReLU activation unit, e.g., use max(v, ǫ) instead of max(v, 0) for the activation

gates, where ǫ is a small number (positive or negative), then our results do not change; in particular our trade-

off in Theorem 4.1 still holds (since the Lemma 2.2 from [Tel15] is for general sawtooth functions). But, if

one adds the bias term to the function f itself, then things get more interesting indeed: Suppose f has some

period p where p is not a power of two; due to bifurcation phenomena (i.e., phenomena arising because we

are at critical regimes of parameters such as the parameter µ in our generalized triangle wave function), then

the compositions of the function (f+bias term) with itself may give rise to qualitatively different behaviors

compared to f . In particular, the function (f+bias term) might not have period p anymore. Intuitively, one

can think that the small bias term is amplified after many compositions and is not negligible anymore.

One such example is the triangle function f(x) = φx for 0 ≤ x ≤ 0.5 and φ(1 − x) for 1/2 ≤ x ≤ 1,

where φ = (1 +
√
5)/2 is the golden ratio. This function has period 3, see Figure 8a. However, if we

consider the function g(x) = (φ − ǫ)x for 0 ≤ x ≤ 0.5 and (φ − ǫ)(1 − x) for 0.5 ≤ x ≤ 1 with ǫ > 0
(arbitrarily small positive) then g does not have period 3, see Figure 8b. In this sense, period as a property

can be brittle to numerical changes if we are at the critical point.

14



Figure 9: We see that depth does reduce the classification error for this particular task and when depth is 5, the

classification error is close to 0. The saturation in between may be attributed to the general uncertainties in the

training/optimization.

5.2 Some Experimental Evidence

In this section, we provide experimental evidence for our depth separation results by training a neural net-

work of constant width, but with increasing depth on a classification task that closely resembles the n-

alternating points problem that appeared in [Tel15] and is the foundation of our separation results as well.

As mentioned before, this is a specific instance of a function that has a point of period 3. For simplicity, we

do not consider this original problem exactly but rather a “smoothed” variant of it, in order to make it more

amenable to the training procedure. Our goal is to create a diagram showing how the classification error

drops as a function of the depth of the network for a fixed value of the width.

We create 8000 equally spaced points from [0,1] (in increasing order), where the first 1000 points are

of label 0, the second 1000 are label 1 and this label alternates every 1000 points. This is what we call

a “smoothed” alternating point problem. Although, the theory would have used the classical 8-alternating

points to argue about the lower bounds, in practice, performing training of deep (4 and above layers) and

narrow networks (hidden layers with less than 4 neurons) with very few data points is a major challenge, see

for instance [LSK18]. Apart from the separation results that we show in theory, we show empirically that

deep networks generally do improve the accuracy in this task compared to the shallow network and in fact

a deep network with 5 layers can reach an accuracy of 99.04%. Any additional uncertainties in the error is

generally attributed to the training procedure.

To perform the experiments, we vary the depth of the neural network (excluding the input and the output

layer) as d = 1, 2, 3, 4, 5. In addition, we fix the neurons for each layer to be 6. All activations are ReLU’s,

while the last layer is the classifier that uses a sigmoid to output probabilities. Each model adds one extra

hidden layer and we make use of the same hyper-parameters to train all networks. Moreover, we require the

training error or the classification error to tend to 0 during the training procedure, i.e, we will try and overfit

the data (as we try to demonstrate a representation result, rather than a statistical/generalization result).

Thus, for the actual training we use the same parameters to train all the different models using the “ADAM”

optimizer [KB14] and make the epochs to be 200 in order to enable overfitting. To record the training error,

we verify that the training saturates by seeing the performance over the epochs and report by default the

error in the last epoch. The results are shown in Figure 9.

15



5.3 Period as a Natural Characterization

In a nutshell, our paper provides a “natural” property of a function (periodic points of certain periods)

and then derive depth-width trade-offs based on it. This addresses some questions raised not only in

[Tel16, Tel15]’s works, but also in the paper [PLR+16] that seeks to provide a natural, general measure

of functional complexity helping us understand the benefits of depth. On the contrary, many of the previous

depth separation results take a worst case approach for the representation question (showing that there exist

functions implemented by deep networks that are hard to approximate with a shallow net). However, it is

not clear whether such analysis applies to the typical instances arising in practice of neural-networks. We

believe that our work together with [Tel16, Tel15] and the paper [ES16] show a depth separation argument

for very natural functions, such as the triangle waves or the indicator function of the unit ball.

Given a specific prediction task in practice, how could one assess the period? We believe that this would

be extremely useful yet a very difficult question that seems to be outside the reach of current techniques

in the literature. Previous works and our work so far are able to present depth separation for representing

certain functions.

We point out that, intuitively, our characterization result consists of a certificate informing us qualita-

tively and quantitatively about which functions have complicated compositions and which not. Similar to

computational problems in class NP, if one is given the certificate (the points (x1, . . . , xp), then one can

easily verify (if we have oracle access to evaluate the function f ), if the given function has a p-periodic cycle

with points (x1, . . . , xp). Nevertheless, we believe that finding the certificate for arbitrary continuous func-

tions is not a straightforward problem, except maybe for particular restricted classes of functions. Having

said that, we want to emphasize that in many prediction problems that are inspired by physics, one may a

priori expect to have complicated dynamics behavior and hence require deeper networks for better perfor-

mance. Such examples include efforts to solve the notorious 3-body problem or turbulent flows showing

empirical evidence that complex physical processes require deep networks (see for instance, [LKT16] and

[BFBZ19] that uses a 10 layered neural network).

Acknowledgements Vaggos Chatziafratis is partially supported by an Onassis Foundation Scholarship.

Sai Ganesh Nagarajan would like to acknowledge SUTD President’s Graduate Fellowship (SUTD-PGF).

Ioannis Panageas would like to acknowledge SRG ISTD 2018 136, NRF for AI Fellowship and NRF2019-

NRF-ANR095. Part of this project happened while the authors were visiting the Simons program “Founda-

tions of Deep Learning” and would like to thank the organizers for their hospitality.

References

[ABMM16] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep

neural networks with rectified linear units. arXiv preprint arXiv:1611.01491, 2016.

[BFBZ19] Philip G Breen, Christopher N Foley, Tjarda Boekholt, and Simon Portegies Zwart. Newton

vs the machine: solving the chaotic three-body problem using deep neural networks. arXiv

preprint arXiv:1910.07291, 2019.

[BH11] Keith Burns and Boris Hasselblatt. The sharkovsky theorem: A natural direct proof. The

American Mathematical Monthly, 118(3):229–244, 2011.

[CFMP19] Thiparat Chotibut, Fryderyk Falniowski, Michal Misiurewicz, and Georgios Piliouras. The

route to chaos in routing games: Population increase drives period-doubling instability, chaos

& inefficiency with price of anarchy equal to one. CoRR, abs/1906.02486, 2019.

16



[Cyb89] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

control, signals and systems, 2(4):303–314, 1989.

[DB11] Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks. In Advances

in Neural Information Processing Systems, pages 666–674, 2011.

[ES16] Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In

Conference on learning theory, pages 907–940, 2016.

[Fei76] MJ Feigenbaum. Universality in complex discrete dynamics. Technical report, LA-6816-PR,

LASL Theoretical Division Annual Report July 1975—September, 1976.

[Fuk80] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202,

1980.

[Has86] John Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings of the

eighteenth annual ACM symposium on Theory of computing, pages 6–20. Citeseer, 1986.

[Hås87] Johan Håstad. Computational limitations of small-depth circuits. 1987.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are

universal approximators. Neural networks, 2(5):359–366, 1989.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[KTB19] Joe Kileel, Matthew Trager, and Joan Bruna. On the expressive power of deep polynomial

neural networks. arXiv preprint arXiv:1905.12207, 2019.

[KW16] Daniel M Kane and Ryan Williams. Super-linear gate and super-quadratic wire lower bounds

for depth-two and depth-three threshold circuits. In Proceedings of the forty-eighth annual

ACM symposium on Theory of Computing, pages 633–643. ACM, 2016.

[LKT16] Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged turbulence mod-

elling using deep neural networks with embedded invariance. Journal of Fluid Mechanics,

807:155–166, 2016.

[LS16] Shiyu Liang and Rayadurgam Srikant. Why deep neural networks for function approximation?

arXiv preprint arXiv:1610.04161, 2016.

[LSK18] Lu Lu, Yanhui Su, and George Em Karniadakis. Collapse of deep and narrow neural nets.

arXiv preprint arXiv:1808.04947, 2018.

[LY75] Tien-Yien Li and James A Yorke. Period three implies chaos. The American Mathematical

Monthly, 82(10):985–992, 1975.

[May76] Robert M May. Simple mathematical models with very complicated dynamics. Nature,

261(5560):459, 1976.

[MM14] James Martens and Venkatesh Medabalimi. On the expressive efficiency of sum product net-

works. arXiv preprint arXiv:1411.7717, 2014.

17



[MPCB14] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of

linear regions of deep neural networks. In Advances in neural information processing systems,

pages 2924–2932, 2014.

[MSS19] Eran Malach and Shai Shalev-Shwartz. Is deeper better only when shallow is good? arXiv

preprint arXiv:1903.03488, 2019.

[PGM94] Ian Parberry, Michael R Garey, and Albert Meyer. Circuit complexity and neural networks.

MIT press, 1994.

[PLR+16] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Ex-

ponential expressivity in deep neural networks through transient chaos. In Advances in neural

information processing systems, pages 3360–3368, 2016.

[PPP17] Gerasimos Palaiopanos, Ioannis Panageas, and Georgios Piliouras. Multiplicative weights up-

date with constant step-size in congestion games: Convergence, limit cycles and chaos. In

Advances in Neural Information Processing Systems 30: Annual Conference on Neural Infor-

mation Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 5872–

5882, 2017.

[RPK+17] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein. On the

expressive power of deep neural networks. In Proceedings of the 34th International Conference

on Machine Learning-Volume 70, pages 2847–2854. JMLR. org, 2017.

[RST15] Benjamin Rossman, Rocco A Servedio, and Li-Yang Tan. An average-case depth hierarchy the-

orem for boolean circuits. In 2015 IEEE 56th Annual Symposium on Foundations of Computer

Science, pages 1030–1048. IEEE, 2015.

[Sch00] Michael Schmitt. Lower bounds on the complexity of approximating continuous functions

by sigmoidal neural networks. In Advances in neural information processing systems, pages

328–334, 2000.

[Sha64] OM Sharkovsky. Coexistence of the cycles of a continuous mapping of the line into itself.

Ukrainskij matematicheskij zhurnal, 16(01):61–71, 1964.

[Sha65] OM Sharkovsky. On cycles and structure of continuous mapping. Ukrainskij matematicheskij

zhurnal, 17(03):104–111, 1965.

[Tel15] Matus Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint

arXiv:1509.08101, 2015.

[Tel16] Matus Telgarsky. benefits of depth in neural networks. In Conference on Learning Theory,

pages 1517–1539, 2016.

[Vit59] AG Vitushkin. Estimation of the complexity of the tabulation problem, 1959.

[Wei85] Karl Weierstrass. Über die analytische darstellbarkeit sogenannter willkürlicher functionen

einer reellen veränderlichen. Sitzungsberichte der Königlich Preußischen Akademie der Wis-

senschaften zu Berlin, 2:633–639, 1885.

18



A Appendix

Claim A.1. The characteristic polynomial of A⊤ is:

π(λ) = λr+1 − λr − 1. (A.1)

Proof. Let I denote the identity matrix of size (r + 1)× (r + 1). We consider the matrix:

A⊤ − λI =



















1− λ 1 0 0 0 . . . 0
0 −λ 1 0 0 . . . 0
0 0 −λ 1 0 . . . 0
...

...
...

...
...

...
...

0 0 0 . . . 0 −λ 1
1 0 0 0 . . . 0 −λ



















.

Observe that λ = 0, 1 are not eigenvalues of the matrix A⊤., hence we can multiply the first row by 1
λ−1 ,

the second row by 1
λ(λ−1) , the third row by 1

λ2(λ−1)
,. . . , the i-th row by 1

λi−1(λ−1)
(and so on) and add them

to the last row. Let B be the resulting matrix:

B =



















1− λ 1 0 0 0 . . . 0
0 −λ 1 0 0 . . . 0
0 0 −λ 1 0 . . . 0
...

...
...

...
...

...
...

0 0 0 . . . 0 −λ 1
0 0 0 0 . . . 0 −λ+ 1

λr−1(λ−1)



















.

It is clear that det(B) = 0 as an equation has the same roots as det(A⊤ − λI) = 0. Since B is an upper

triangular matrix, it follows that

det(B) = (−λ)r−1(1− λ)

(

−λ+
1

λr−1(λ− 1)

)

.

We conclude that the eigenvalues of A⊤ (and hence of A) must be roots of (λr − λr−1)λ− 1 and the claim

follows.

B The Heterogeneity of the Logistic Map

In this section, we illustrate how the compositions of the logistic map f(x; r) := rx(1 − x) behaves as r
varies slightly. We give certain examples in the form of Figure 10. It is known that the map when r = 3.9,

has a point of period 3. In contrast when r is reduced to 3.5 the map has a point of period 4 and further

bringing r down to 3.2 will ensure that the map has a point of period 2. The figures below illustrate how the

oscillations grow under these scenarios.

19



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
f(

x)

(a) Here f(x; 3.9) := 3.9x(1− x) is shown.

0 0.2 0.4 0.6 0.8 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f6 (x
)

(b) Here f6(x; 3.9) is shown.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
x)

(c) Here f(x; 3.5) := 3.5x(1− x) is shown.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f6
(x

)

(d) Here f6(x; 3.5) is shown.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
x)

(e) Here f(x; 3.2) := 3.2x(1− x) is shown.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f6
(x

)

(f) Here f6(x; 3.2) is shown.

Figure 10: The compositions of the logistic map f(x; r) := rx(1 − x) with different parameter values are shown

here. The left column has the functions themselves while the right column shows the corresponding compositions. We

can see that oscillations in these family of functions vary vastly with changes in r and these changes are made in the

weights of an appropriate neural network (see [Tel16],[Sch00]).

20



This figure "classerrvsdepth.png" is available in "png"
 format from:

http://arxiv.org/ps/1912.04378v1

http://arxiv.org/ps/1912.04378v1

	1 Introduction
	1.1 Sharkovsky's Theorem
	1.2 Sensitivity Analysis - A Motivating Example
	1.3 Informal Statements of Main Theorems
	1.4 Other Related Work

	2 Further Background: The Covering Lemma
	3 Periods Determine the Number of Crossings
	3.1 Period that is not a power of two implies exponential crossings
	3.1.1 Warm up: The case of period 3 and the Fibonacci sequence
	3.1.2 Every period greater than 3 but not power of two

	3.2 Period that is a power of two may have polynomial crossings

	4 Period-Dependent Lower Bounds for DNNs
	5 Further discussions
	5.1 Incorporating Bias terms
	5.2 Some Experimental Evidence
	5.3 Period as a Natural Characterization

	A Appendix
	B The Heterogeneity of the Logistic Map

