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Abstract

We study expressive power of shallow and deep neural networks with piece-wise
linear activation functions. We establish new rigorous upper and lower bounds for the
network complexity in the setting of approximations in Sobolev spaces. In particu-
lar, we prove that deep ReLU networks more efficiently approximate smooth functions
than shallow networks. In the case of approximations of 1D Lipschitz functions we de-
scribe adaptive depth-6 network architectures more efficient than the standard shallow
architecture.

1 Introduction

Recently, multiple successful applications of deep neural networks to pattern recognition
problems (Schmidhuber [2015], LeCun et al. [2015]) have revived active interest in theoretical
properties of such networks, in particular their expressive power. It has been argued that
deep networks may be more expressive than shallow ones of comparable size (see, e.g.,
Delalleau and Bengio [2011], Raghu et al. [2016], Montufar et al. [2014], Bianchini and
Scarselli [2014], Telgarsky [2015]). In contrast to a shallow network, a deep one can be
viewed as a long sequence of non-commutative transformations, which is a natural setting
for high expressiveness (cf. the well-known Solovay-Kitaev theorem on fast approximation
of arbitrary quantum operations by sequences of non-commutative gates, see Kitaev et al.
[2002], Dawson and Nielsen [2006]).

There are various ways to characterize expressive power of networks. Delalleau and
Bengio 2011 consider sum-product networks and prove for certain classes of polynomials that
they are much more easily represented by deep networks than by shallow networks. Montufar
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et al. 2014 estimate the number of linear regions in the network’s landscape. Bianchini and
Scarselli 2014 give bounds for Betti numbers characterizing topological properties of functions
represented by networks. Telgarsky 2015, 2016 provides specific examples of classification
problems where deep networks are provably more efficient than shallow ones.

In the context of classification problems, a general and standard approach to characteriz-
ing expressiveness is based on the notion of the Vapnik-Chervonenkis dimension (Vapnik and
Chervonenkis [2015]). There exist several bounds for VC-dimension of deep networks with
piece-wise polynomial activation functions that go back to geometric techniques of Goldberg
and Jerrum 1995 and earlier results of Warren 1968; see Bartlett et al. [1998], Sakurai [1999]
and the book Anthony and Bartlett [2009]. There is a related concept, the fat-shattering
dimension, for real-valued approximation problems (Kearns and Schapire [1990], Anthony
and Bartlett [2009]).

A very general approach to expressiveness in the context of approximation is the method
of nonlinear widths by DeVore et al. 1989 that concerns approximation of a family of
functions under assumption of a continuous dependence of the model on the approximated
function.

In this paper we examine the problem of shallow-vs-deep expressiveness from the per-
spective of approximation theory and general spaces of functions having derivatives up to
certain order (Sobolev-type spaces). In this framework, the problem of expressiveness is very
well studied in the case of shallow networks with a single hidden layer, where it is known,
in particular, that to approximate a Cn-function on a d-dimensional set with infinitesimal
error ε one needs a network of size about ε−d/n, assuming a smooth activation function (see,
e.g., Mhaskar [1996], Pinkus [1999] for a number of related rigorous upper and lower bounds
and further qualifications of this result). Much less seems to be known about deep networks
in this setting, though Mhaskar et al. 2016, 2016 have recently introduced functional spaces
constructed using deep dependency graphs and obtained expressiveness bounds for related
deep networks.

We will focus our attention on networks with the ReLU activation function σ(x) =
max(0, x), which, despite its utter simplicity, seems to be the most popular choice in practi-
cal applications LeCun et al. [2015]. We will consider L∞-error of approximation of functions
belonging to the Sobolev spacesWn,∞([0, 1]d) (without any assumptions of hierarchical struc-
ture). We will often consider families of approximations, as the approximated function runs
over the unit ball Fd,n in Wn,∞([0, 1]d). In such cases we will distinguish scenarios of fixed
and adaptive network architectures. Our goal is to obtain lower and upper bounds on the
expressiveness of deep and shallow networks in different scenarios. We measure complexity
of networks in a conventional way, by counting the number of their weights and computation
units (cf. Anthony and Bartlett [2009]).

The main body of the paper consists of Sections 2, 3 and 4.
In Section 2 we describe our ReLU network model and show that the ReLU function

is replaceable by any other continuous piece-wise linear activation function, up to constant
factors in complexity asymptotics (Proposition 1).

In Section 3 we establish several upper bounds on the complexity of approximating by
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ReLU networks, in particular showing that deep networks are quite efficient for approximat-
ing smooth functions. Specifically:

• In Subsection 3.1 we show that the function f(x) = x2 can be ε-approximated by
a network of depth and complexity O(ln(1/ε)) (Proposition 2). This also leads to
similar upper bounds on the depth and complexity that are sufficient to implement an
approximate multiplication in a ReLU network (Proposition 3).

• In Subsection 3.2 we describe a ReLU network architecture of depth O(ln(1/ε)) and
complexity O(ε−d/n ln(1/ε)) that is capable of approximating with error ε any function
from Fd,n (Theorem 1).

• In Subsection 3.3 we show that, even with fixed-depth networks, one can further de-
crease the approximation complexity if the network architecture is allowed to depend on
the approximated function. Specifically, we prove that one can ε-approximate a given
Lipschitz function on the segment [0, 1] by a depth-6 ReLU network with O( 1

ε ln(1/ε)
)

connections and activation units (Theorem 2). This upper bound is of interest since it
lies below the lower bound provided by the method of nonlinear widths under assump-
tion of continuous model selection (see Subsection 4.1).

In Section 4 we obtain several lower bounds on the complexity of approximation by deep
and shallow ReLU networks, using different approaches and assumptions.

• In Subsection 4.1 we recall the general lower bound provided by the method of continu-
ous nonlinear widths. This method assumes that parameters of the approximation con-
tinuously depend on the approximated function, but does not assume anything about
how the approximation depends on its parameters. In this setup, at least ∼ ε−d/n

connections and weights are required for an ε-approximation on Fd,n (Theorem 3). As
already mentioned, for d = n = 1 this lower bound is above the upper bound provided
by Theorem 2.

• In Subsection 4.2 we consider the setup where the same network architecture is used
to approximate all functions in Fd,n, but the weights are not assumed to continuously
depend on the function. In this case, application of existing results on VC-dimension of
deep piece-wise polynomial networks yields a ∼ εd/(2n) lower bound in general and a ∼
ε−d/n ln−2p−1(1/ε) lower bound if the network depth grows as O(lnp(1/ε)) (Theorem 4).

• In Subsection 4.3 we consider an individual approximation, without any assumptions
regarding it as an element of a family as in Subsections 4.1 and 4.2. We prove that for
any d, n there exists a function inWn,∞([0, 1]d) such that its approximation complexity
is not o(ε−d/(9n)) as ε→ 0 (Theorem 5).

• In Subsection 4.4 we prove that ε-approximation of any nonlinear C2-function by a
network of fixed depth L requires at least ∼ ε−1/(2(L−2)) computation units (Theorem
6). By comparison with Theorem 1, this shows that for sufficiently smooth functions

3



in out

Figure 1: A feedforward neural network having 3 input units (diamonds), 1 output unit
(square), and 7 computation units with nonlinear activation (circles). The network has 4
layers and 16 + 8 = 24 weights.

approximation by fixed-depth ReLU networks is less efficient than by unbounded-depth
networks.

In Section 5 we discuss the obtained bounds and summarize their implications, in particular
comparing deep vs. shallow networks and fixed vs. adaptive architectures.

The arXiv preprint of the first version of the present work appeared almost simultaneously
with the work of Liang and Srikant Liang and Srikant [2016] containing results partly over-
lapping with our results in Subsections 3.1,3.2 and 4.4. Liang and Srikant consider networks
equipped with both ReLU and threshold activation functions. They prove a logarithmic up-
per bound for the complexity of approximating the function f(x) = x2, which is analogous
to our Proposition 2. Then, they extend this upper bound to polynomials and smooth func-
tions. In contrast to our treatment of generic smooth functions based on standard Sobolev
spaces, they impose more complex assumptions on the function (including, in particular,
how many derivatives it has) that depend on the required approximation accuracy ε. As
a consequence, they obtain strong O(lnc(1/ε)) complexity bounds rather different from our
bound in Theorem 1 (in fact, our lower bound proved in Theorem 5 rules out, in general,
such strong upper bounds for functions having only finitely many derivatives). Also, Liang
and Srikant prove a lower bound for the complexity of approximating convex functions by
shallow networks. Our version of this result, given in Subsection 4.4, is different in that we
assume smoothness and nonlinearity instead of global convexity.

2 The ReLU network model

Throughout the paper, we consider feedforward neural networks with the ReLU (Rectified
Linear Unit) activation function

σ(x) = max(0, x).
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The network consists of several input units, one output unit, and a number of “hidden”
computation units. Each hidden unit performs an operation of the form

y = σ
( N∑

k=1

wkxk + b
)

(1)

with some weights (adjustable parameters) (wk)
N
k=1 and b depending on the unit. The

output unit is also a computation unit, but without the nonlinearity, i.e., it computes
y =

∑N
k=1 wkxk + b. The units are grouped in layers, and the inputs (xk)

N
k=1 of a com-

putation unit in a certain layer are outputs of some units belonging to any of the preceding
layers (see Fig. 1). Note that we allow connections between units in non-neighboring layers.
Occasionally, when this cannot cause confusion, we may denote the network and the function
it implements by the same symbol.

The depth of the network, the number of units and the total number of weights are
standard measures of network complexity (Anthony and Bartlett [2009]). We will use these
measures throughout the paper. The number of weights is, clearly, the sum of the total
number of connections and the number of computation units. We identify the depth with
the number of layers (in particular, the most common type of neural networks – shallow
networks having a single hidden layer – are depth-3 networks according to this convention).

We finish this subsection with a proposition showing that, given our complexity measures,
using the ReLU activation function is not much different from using any other piece-wise
linear activation function with finitely many breakpoints: one can replace one network by
an equivalent one but having another activation function while only increasing the number
of units and weights by constant factors. This justifies our restricted attention to the ReLU
networks (which could otherwise have been perceived as an excessively particular example
of networks).

Proposition 1. Let ρ : R→ R be any continuous piece-wise linear function with M break-
points, where 1 ≤M <∞.

a) Let ξ be a network with the activation function ρ, having depth L, W weights and U
computation units. Then there exists a ReLU network η that has depth L, not more
than (M + 1)2W weights and not more than (M + 1)U units, and that computes the
same function as ξ.

b) Conversely, let η be a ReLU network of depth L with W weights and U computation
units. Let D be a bounded subset of Rn, where n is the input dimension of η. Then
there exists a network with the activation function ρ that has depth L, 4W weights and
2U units, and that computes the same function as η on the set D.

Proof. a) Let a1 < . . . < aM be the breakpoints of ρ, i.e., the points where its derivative
is discontinuous: ρ′(ak+) 6= ρ′(ak−). We can then express ρ via the ReLU function σ, as a
linear combination

ρ(x) = c0σ(a1 − x) +
M∑

m=1

cmσ(x− am) + h

5



with appropriately chosen coefficients (cm)Mm=0 and h. It follows that computation performed
by a single ρ-unit,

x1, . . . , xN 7→ ρ
( N∑

k=1

wkxk + b
)
,

can be equivalently represented by a linear combination of a constant function and compu-
tations of M + 1 σ-units,

x1, . . . , xN 7→




σ
(∑N

k=1 wkxk + b− am
)
, m = 1, . . . ,M,

σ
(
a1 − b−

∑N
k=1wkxk), m = 0

(here m is the index of a ρ-unit). We can then replace one-by-one all the ρ-units in the
network ξ by σ-units, without changing the output of the network. Obviously, these replace-
ments do not change the network depth. Since each hidden unit gets replaced by M + 1
new units, the number of units in the new network is not greater than M + 1 times their
number in the original network. Note also that the number of connections in the network
is multiplied, at most, by (M + 1)2. Indeed, each unit replacement entails replacing each
of the incoming and outgoing connections of this unit by M + 1 new connections, and each
connection is replaced twice: as an incoming and as an outgoing one. These considerations
imply the claimed complexity bounds for the resulting σ-network η.

b) Let a be any breakpoint of ρ, so that ρ′(a+) 6= ρ′(a−). Let r0 be the distance separating
a from the nearest other breakpoint, so that ρ is linear on [a, a + r0] and on [a − r0, a] (if
ρ has only one node, any r0 > 0 will do). Then, for any r > 0, we can express the ReLU
function σ via ρ in the r-neighborhood of 0:

σ(x) =
ρ
(
a+ r0

2r
x
)
− ρ
(
a− r0

2
+ r0

2r
x
)
− ρ(a) + ρ

(
a− r0

2

)
(
ρ′(a+)− ρ′(a−)

)
r0
2r

, x ∈ [−r, r].

It follows that a computation performed by a single σ-unit,

x1, . . . , xN 7→ σ
( N∑

k=1

wkxk + b
)
,

can be equivalently represented by a linear combination of a constant function and two
ρ-units,

x1, . . . , xN 7→




ρ
(
a+ r0

2r
b+ r0

2r

∑N
k=1wkxk

)
,

ρ
(
a− r0

2
+ r0

2r
b+ r0

2r

∑N
k=1wkxk

)
,

provided the condition
N∑

k=1

wkxk + b ∈ [−r, r] (2)

holds. Since D is a bounded set, we can choose r at each unit of the initial network η
sufficiently large so as to satisfy condition (2) for all network inputs from D. Then, like in
a), we replace each σ-unit with two ρ-units, which produces the desired ρ-network.
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3 Upper bounds

Throughout the paper, we will be interested in approximating functions f : [0, 1]d → R
by ReLU networks. Given a function f : [0, 1]d → R and its approximation f̃ , by the
approximation error we will always mean the uniform maximum error

‖f − f̃‖∞ = max
x∈[0,1]d

|f(x)− f̃(x)|.

3.1 Fast deep approximation of squaring and multiplication

Our first key result shows that ReLU networks with unconstrained depth can very efficiently
approximate the function f(x) = x2 (more efficiently than any fixed-depth network, as we
will see in Section 4.4). Our construction uses the “sawtooth” function that has previously
appeared in the paper Telgarsky [2015].

Proposition 2. The function f(x) = x2 on the segment [0, 1] can be approximated with any
error ε > 0 by a ReLU network having the depth and the number of weights and computation
units O(ln(1/ε)).

Proof. Consider the “tooth” (or “mirror”) function g : [0, 1]→ [0, 1],

g(x) =

{
2x, x < 1

2
,

2(1− x), x ≥ 1
2
,

and the iterated functions
gs(x) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸

s

(x).

Telgarsky has shown (see Lemma 2.4 in Telgarsky [2015]) that gs is a “sawtooth” function
with 2s−1 uniformly distributed “teeth” (each application of g doubles the number of teeth):

gs(x) =

{
2s
(
x− 2k

2s

)
, x ∈

[
2k
2s
, 2k+1

2s
], k = 0, 1, . . . , 2s−1 − 1,

2s
(

2k
2s
− x
)
, x ∈

[
2k−1

2s
, 2k

2s
], k = 1, 2, . . . , 2s−1,

(see Fig. 2a). Our key observation now is that the function f(x) = x2 can be approxi-
mated by linear combinations of the functions gs. Namely, let fm be the piece-wise linear
interpolation of f with 2m + 1 uniformly distributed breakpoints k

2m
, k = 0, . . . , 2m:

fm

( k

2m

)
=
( k

2m

)2

, k = 0, . . . , 2m

(see Fig. 2b). The function fm approximates f with the error εm = 2−2m−2. Now note that
refining the interpolation from fm−1 to fm amounts to adjusting it by a function proportional
to a sawtooth function:

fm−1(x)− fm(x) =
gm(x)

22m
.
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Figure 2: Fast approximation of the function f(x) = x2 from Proposition 2: (a) the “tooth”
function g and the iterated “sawtooth” functions g2, g3; (b) the approximating functions fm;
(c) the network architecture for f4.

Hence

fm(x) = x−
m∑

s=1

gs(x)

22s
.

Since g can be implemented by a finite ReLU network (as g(x) = 2σ(x)−4σ
(
x− 1

2

)
+2σ(x−1))

and since construction of fm only involves O(m) linear operations and compositions of g,
we can implement fm by a ReLU network having depth and the number of weights and
computation units all being O(m) (see Fig. 2c). This implies the claim of the proposition.

Since

xy =
1

2
((x+ y)2 − x2 − y2), (3)

we can use Proposition 2 to efficiently implement accurate multiplication in a ReLU net-
work. The implementation will depend on the required accuracy and the magnitude of the
multiplied quantities.

Proposition 3. Given M > 0 and ε ∈ (0, 1), there is a ReLU network η with two input
units that implements a function ×̃ : R2 → R so that

a) for any inputs x, y, if |x| ≤M and |y| ≤M, then |×̃(x, y)− xy| ≤ ε;

b) if x = 0 or y = 0, then ×̃(x, y) = 0;

c) the depth and the number of weights and computation units in η is not greater than
c1 ln(1/ε) + c2 with an absolute constant c1 and a constant c2 = c2(M).
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Proof. Let f̃sq,δ be the approximate squaring function from Proposition 2 such that f̃sq,δ(0) =

0 and |f̃sq,δ(x) − x2| < δ for x ∈ [0, 1]. Assume without loss of generality that M ≥ 1 and
set

×̃(x, y) =
M2

8

(
f̃sq,δ

( |x+ y|
2M

)
− f̃sq,δ

( |x|
2M

)
− f̃sq,δ

( |y|
2M

))
, (4)

where δ = 8ε
3M2 . Then property b) is immediate and a) follows easily using expansion (3).

To conclude c), observe that computation (4) consists of three instances of f̃sq,δ and finitely
many linear and ReLU operations, so, using Proposition 2, we can implement ×̃ by a ReLU
network such that its depth and the number of computation units and weights are O(ln(1/δ)),
i.e. are O(ln(1/ε) + lnM).

3.2 Fast deep approximation of general smooth functions

In order to formulate our general result, Theorem 1, we consider the Sobolev spaces
Wn,∞([0, 1]d) with n = 1, 2, . . . Recall that Wn,∞([0, 1]d) is defined as the space of func-
tions on [0, 1]d lying in L∞ along with their weak derivatives up to order n. The norm in
Wn,∞([0, 1]d) can be defined by

‖f‖Wn,∞([0,1]d) = max
n:|n|≤n

ess sup
x∈[0,1]d

|Dnf(x)|,

where n = (n1, . . . , nd) ∈ {0, 1, . . .}d, |n| = n1 + . . . + nd, and Dnf is the respective weak
derivative. Here and in the sequel we denote vectors by boldface characters. The space
Wn,∞([0, 1]d) can be equivalently described as consisting of the functions from Cn−1([0, 1]d)
such that all their derivatives of order n− 1 are Lipschitz continuous.

Throughout the paper, we denote by Fn,d the unit ball in Wn,∞([0, 1]d):

Fn,d = {f ∈ Wn,∞([0, 1]d) : ‖f‖Wn,∞([0,1]d) ≤ 1}.

Also, it will now be convenient to make a distinction between networks and network
architectures : we define the latter as the former with unspecified weights. We say that a
network architecture is capable of expressing any function from Fd,n with error ε meaning
that this can be achieved by some weight assignment.

Theorem 1. For any d, n and ε ∈ (0, 1), there is a ReLU network architecture that

1. is capable of expressing any function from Fd,n with error ε;

2. has the depth at most c(ln(1/ε) + 1) and at most cε−d/n(ln(1/ε) + 1) weights and com-
putation units, with some constant c = c(d, n).

Proof. The proof will consist of two steps. We start with approximating f by a sum-product
combination f1 of local Taylor polynomials and one-dimensional piecewise-linear functions.
After that, we will use results of the previous section to approximate f1 by a neural network.

9



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Functions (φm)5
m=0 forming a partition of unity for d = 1, N = 5 in the proof of

Theorem 1.

Let N be a positive integer. Consider a partition of unity formed by a grid of (N + 1)d

functions φm on the domain [0, 1]d:
∑

m

φm(x) ≡ 1, x ∈ [0, 1]d.

Here m = (m1, . . . ,md) ∈ {0, 1, . . . , N}d, and the function φm is defined as the product

φm(x) =
d∏

k=1

ψ
(

3N
(
xk −

mk

N

))
, (5)

where

ψ(x) =





1, |x| < 1,

0, 2 < |x|,
2− |x|, 1 ≤ |x| ≤ 2

(see Fig. 3). Note that
‖ψ‖∞ = 1 and ‖φm‖∞ = 1 ∀m (6)

and

suppφm ⊂
{
x :
∣∣∣xk −

mk

N

∣∣∣ < 1

N
∀k
}
. (7)

For any m ∈ {0, . . . , N}d, consider the degree-(n− 1) Taylor polynomial for the function f
at x = m

N
:

Pm(x) =
∑

n:|n|<n

Dnf

n!

∣∣∣∣
x=m

N

(
x− m

N

)n
, (8)

with the usual conventions n! =
∏d

k=1 nk! and (x− m
N

)n =
∏d

k=1(xk − mk
N

)nk . Now define an
approximation to f by

f1 =
∑

m∈{0,...,N}d
φmPm. (9)
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We bound the approximation error using the Taylor expansion of f :

|f(x)− f1(x)| =
∣∣∣
∑

m

φm(x)(f(x)− Pm(x))
∣∣∣

≤
∑

m:|xk−
mk
N
|< 1

N
∀k

|f(x)− Pm(x)|

≤ 2d max
m:|xk−

mk
N
|< 1

N
∀k
|f(x)− Pm(x)|

≤ 2ddn

n!

( 1

N

)n
max
n:|n|=n

ess sup
x∈[0,1]d

|Dnf(x)|

≤ 2ddn

n!

( 1

N

)n
.

Here in the second step we used the support property (7) and the bound (6), in the third
the observation that any x ∈ [0, 1]d belongs to the support of at most 2d functions φm,
in the fourth a standard bound for the Taylor remainder, and in the fifth the property
‖f‖Wn,∞([0,1]d) ≤ 1.

It follows that if we choose

N =
⌈( n!

2ddn
ε

2

)−1/n
⌉

(10)

(where d·e is the ceiling function), then

‖f − f1‖∞ ≤
ε

2
. (11)

Note that, by (8) the coefficients of the polynomials Pm are uniformly bounded for all
f ∈ Fd,n:

Pm(x) =
∑

n:|n|<n

am,n

(
x− m

N

)n
, |am,n| ≤ 1. (12)

We have therefore reduced our task to the following: construct a network architecture
capable of approximating with uniform error ε

2
any function of the form (9), assuming that

N is given by (10) and the polynomials Pm are of the form (12).
Expand f1 as

f1(x) =
∑

m∈{0,...,N}d

∑

n:|n|<n

am,nφm(x)
(
x− m

N

)n
. (13)

The expansion is a linear combination of not more than dn(N + 1)d terms φm(x)(x− m
N

)n.
Each of these terms is a product of at most d+ n− 1 piece-wise linear univariate factors: d
functions ψ(3Nxk − 3mk) (see (5)) and at most n − 1 linear expressions xk − mk

N
. We can

implement an approximation of this product by a neural network with the help of Proposition
3. Specifically, let ×̃ be the approximate multiplication from Proposition 3 for M = d + n

11



and some accuracy δ to be chosen later, and consider the approximation of the product
φm(x)(x− m

N
)n obtained by the chained application of ×̃:

f̃m,n(x) = ×̃
(
ψ(3Nx1 − 3m1), ×̃

(
ψ(3Nx2 − 3m2), . . . , ×̃

(
xk − mk

N
, . . .

)
. . .
))
. (14)

that Using statement c) of Proposition 3, we see f̃m,n can be implemented by a ReLU
network with the depth and the number of weights and computation units not larger than
(d+ n)c1 ln(1/δ), for some constant c1 = c1(d, n).

Now we estimate the error of this approximation. Note that we have |ψ(3Nxk−3mk)| ≤ 1
and |xk − mk

N
| ≤ 1 for all k and all x ∈ [0, 1]d. By statement a) of Proposition 3, if

|a| ≤ 1 and |b| ≤ M , then |×̃(a, b)| ≤ |b| + δ. Repeatedly applying this observation to all
approximate multiplications in (14) while assuming δ < 1, we see that the arguments of
all these multiplications are bounded by our M (equal to d + n) and the statement a) of
Proposition 3 holds for each of them. We then have

∣∣f̃m,n(x)−φm(x)
(
x− m

N

)n∣∣
=
∣∣×̃
(
ψ(3Nx1 − 3m1), ×̃

(
ψ(3Nx2 − 3m2), ×̃

(
ψ(3Nx3 − 3m3), . . .

)))

− ψ(3Nx1 − 3m1)ψ(3Nx2 − 3m2)ψ(3Nx3 − 3m3) . . .
∣∣

≤
∣∣×̃
(
ψ(3Nx1 − 3m1), ×̃

(
ψ(3Nx2 − 3m2), ×̃

(
ψ(3Nx3 − 3m3), . . .

)))

− ψ(3Nx1 − 3m1) · ×̃
(
ψ(3Nx2 − 3m2), ×̃

(
ψ(3Nx3 − 3m3), . . .

))∣∣
+ |ψ(3Nx1 − 3m1)| ·

∣∣×̃
(
ψ(3Nx2 − 3m2), ×̃

(
ψ(3Nx3 − 3m3), . . .

))

− ψ(3Nx2 − 3m2) · ×̃
(
ψ(3Nx3 − 3m3), . . .

)∣∣
+ . . .

≤(d+ n)δ.

(15)

Moreover, by statement b) of Proposition 3,

f̃m,n(x) = φm(x)
(
x− m

N

)n
, x /∈ suppφm. (16)

Now we define the full approximation by

f̃ =
∑

m∈{0,...,N}d

∑

n:|n|<n

am,nf̃m,n. (17)

We estimate the approximation error of f̃ :

|f̃(x)− f1(x)| =
∣∣∣∣

∑

m∈{0,...,N}d

∑

n:|n|<n

am,n

(
f̃m,n(x)− φm(x)

(
x− m

N

)n)
∣∣∣∣

=

∣∣∣∣
∑

m:x∈suppφm

∑

n:|n|<n

am,n

(
f̃m,n(x)− φm(x)

(
x− m

N

)n)
∣∣∣∣

≤ 2d max
m:x∈suppφm

∑

n:|n|<n

∣∣∣f̃m,n(x)− φm(x)
(
x− m

N

)n∣∣∣

≤ 2ddn(d+ n)δ,
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where in the first step we use expansion (13), in the second the identity (16), in the third
the bound |am,n| ≤ 1 and the fact that x ∈ suppφm for at most 2d functions φm, and in the
fourth the bound (15). It follows that if we choose

δ =
ε

2d+1dn(d+ n)
, (18)

then ‖f̃ − f1‖∞ ≤ ε
2

and hence, by (11),

‖f̃ − f‖∞ ≤ ‖f̃ − f1‖∞ + ‖f1 − f‖∞ ≤
ε

2
+
ε

2
≤ ε.

On the other hand, note that by (17), f̃ can be implemented by a network consisting of

parallel subnetworks that compute each of f̃m,n; the final output is obtained by weighting the
outputs of the subnetworks with the weights am,n. The architecture of the full network does
not depend on f ; only the weights am,n do. As already shown, each of these subnetworks
has not more than c1 ln(1/δ) layers, weights and computation units, with some constant
c1 = c1(d, n). There are not more than dn(N + 1)d such subnetworks. Therefore, the full

network for f̃ has not more than c1 ln(1/δ) + 1 layers and dn(N + 1)d(c1 ln(1/δ) + 1) weights
and computation units. With δ given by (18) and N given by (10), we obtain the claimed
complexity bounds.

3.3 Faster approximations using adaptive network architectures

Theorem 1 provides an upper bound for the approximation complexity in the case when the
same network architecture is used to approximate all functions in Fd,n. We can consider
an alternative, “adaptive architecture” scenario where not only the weights, but also the
architecture is adjusted to the approximated function. We expect, of course, that this would
decrease the complexity of the resulting architectures, in general (at the price of needing to
find the appropriate architecture). In this section we show that we can indeed obtain better
upper bounds in this scenario.

For simplicity, we will only consider the case d = n = 1. Then, Wn,∞([0, 1]d) is the
space of Lipschitz functions on the segment [0, 1]. The set F1,1 consists of functions f having
both ‖f‖∞ and the Lipschitz constant bounded by 1. Theorem 1 provides an upper bound

O( ln(1/ε)
ε

) for the number of weights and computation units, but in this special case there is
in fact a better bound O(1

ε
) obtained simply by piece-wise interpolation.

Namely, given f ∈ F1,1 and ε > 0, set T = d1
ε
e and let f̃ be the piece-wise interpolation

of f with T + 1 uniformly spaced breakpoints ( t
T

)Tt=0 (i.e., f̃( t
T

) = f( t
T

), t = 0, . . . , T ). The

function f̃ is also Lipschitz with constant 1 and hence ‖f − f̃‖∞ ≤ 1
T
≤ ε (since for any

x ∈ [0, 1] we can find t such that |x − t
T
| ≤ 1

2T
and then |f(x) − f̃(x)| ≤ |f(x) − f( t

T
)| +

|f̃( t
T

)− f̃(x)| ≤ 2 · 1
2T

= 1
T

). At the same time, the function f̃ can be expressed in terms of
the ReLU function σ by

f̃(x) = b+
T−1∑

t=0

wtσ
(
x− t

T

)

13



with some coefficients b and (wt)
T−1
t=0 . This expression can be viewed as a special case of the

depth-3 ReLU network with O(1
ε
) weights and computation units.

We show now how the bound O(1
ε
) can be improved by using adaptive architectures.

Theorem 2. For any f ∈ F1,1 and ε ∈ (0, 1
2
), there exists a depth-6 ReLU network η (with

architecture depending on f) that provides an ε-approximation of f while having not more
than c

ε ln(1/ε)
weights, connections and computation units. Here c is an absolute constant.

Proof. We first explain the idea of the proof. We start with interpolating f by a piece-wise
linear function, but not on the length scale ε – instead, we do it on a coarser length scale
mε, with some m = m(ε) > 1. We then create a “cache” of auxiliary subnetworks that we
use to fill in the details and go down to the scale ε, in each of the mε-subintervals. This
allows us to reduce the amount of computations for small ε because the complexity of the
cache only depends on m. The assignment of cached subnetworks to the subintervals is
encoded in the network architecture and depends on the function f . We optimize m by
balancing the complexity of the cache with that of the initial coarse approximation. This
leads to m ∼ ln(1/ε) and hence to the reduction of the total complexity of the network by
a factor ∼ ln(1/ε) compared to the simple piece-wise linear approximation on the scale ε.
This construction is inspired by a similar argument used to prove the O(2n/n) upper bound
for the complexity of Boolean circuits implementing n-ary functions Shannon [1949].

The proof becomes simpler if, in addition to the ReLU function σ, we are allowed to use
the activation function

ρ(x) =

{
x, x ∈ [0, 1),

0, x /∈ [0, 1)
(19)

in our neural network. Since ρ is discontinuous, we cannot just use Proposition 1 to replace
ρ-units by σ-units. We will first prove the analog of the claimed result for the model including
ρ-units, and then we will show how to construct a purely ReLU nework.

Lemma 1. For any f ∈ F1,1 and ε ∈ (0, 1
2
), there exists a depth-5 network including σ-

units and ρ-units, that provides an ε-approximation of f while having not more than c
ε ln(1/ε)

weights, where c is an absolute constant.

Proof. Given f ∈ F1,1, we will construct an approximation f̃ to f in the form

f̃ = f̃1 + f̃2.

Here, f̃1 is the piece-wise linear interpolation of f with the breakpoints { t
T
}Tt=0, for some

positive integer T to be chosen later. Since f is Lipschitz with constant 1, f̃1 is also Lipschitz
with constant 1. We will denote by It the intervals between the breakpoints:

It =
[ t
T
,
t+ 1

T

)
, t = 0, . . . , T − 1.

We will now construct f̃2 as an approximation to the difference

f2 = f − f̃1. (20)

14



Note that f2 vanishes at the endpoints of the intervals It:

f2

( t
T

)
= 0, t = 0, . . . , T, (21)

and f2 is Lipschitz with constant 2:

|f2(x1)− f2(x2)| ≤ 2|x1 − x2|, (22)

since f and f̃1 are Lipschitz with constant 1.
To define f̃2, we first construct a set Γ of cached functions. Let m be a positive integer

to be chosen later. Let Γ be the set of piecewise linear functions γ : [0, 1] → R with the
breakpoints { r

m
}mr=0 and the properties

γ(0) = γ(1) = 0

and

γ
( r
m

)
− γ
(r − 1

m

)
∈
{
− 2

m
, 0,

2

m

}
, r = 1, . . . ,m.

Note that the size |Γ| of Γ is not larger than 3m.
If g : [0, 1] → R is any Lipschitz function with constant 2 and g(0) = g(1) = 0, then g

can be approximated by some γ ∈ Γ with error not larger than 2
m

: namely, take γ( r
m

) =
2
m
bg( r

m
)/ 2

m
c.

Moreover, if f2 is defined by (20), then, using (21), (22), on each interval It the function
f2 can be approximated with error not larger than 2

Tm
by a properly rescaled function γ ∈ Γ.

Namely, for each t = 0, . . . , T − 1 we can define the function g by g(y) = Tf2( t+y
T

). Then it
is Lipschitz with constant 2 and g(0) = g(1) = 0, so we can find γt ∈ Γ such that

sup
y∈[0,1)

∣∣∣Tf2

(t+ y

T

)
− γt(y)

∣∣∣ ≤ 2

m
.

This can be equivalently written as

sup
x∈It

∣∣∣f2(x)− 1

T
γt(Tx− t)

∣∣∣ ≤ 2

Tm
.

Note that the obtained assignment t 7→ γt is not injective, in general (T will be much larger
than |Γ|).

We can then define f̃2 on the whole [0, 1) by

f̃2(x) =
1

T
γt(Tx− t), x ∈ It, t = 0, . . . , T − 1. (23)

This f̃2 approximates f2 with error 2
Tm

on [0, 1):

sup
x∈[0,1)

|f2(x)− f̃2(x)| ≤ 2

Tm
, (24)
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and hence, by (20), for the full approximation f̃ = f̃1 + f̃2 we will also have

sup
x∈[0,1)

|f(x)− f̃(x)| ≤ 2

Tm
. (25)

Note that the approximation f̃2 has properties analogous to (21), (22):

f̃2

( t
T

)
= 0, t = 0, . . . , T, (26)

|f̃2(x1)− f̃2(x2)| ≤ 2|x1 − x2|, (27)

in particular, f̃2 is continuous on [0, 1).

We will now rewrite f̃2 in a different form interpretable as a computation by a neural
network. Specifically, using our additional activation function ρ given by (19), we can express

f̃2 as

f̃2(x) =
1

T

∑

γ∈Γ

γ
( ∑

t:γt=γ

ρ(Tx− t)
)
. (28)

Indeed, given x ∈ [0, 1), observe that all the terms in the inner sum vanish except for the
one corresponding to the t determined by the condition x ∈ It. For this particular t we have
ρ(Tx− t) = Tx− t. Since γ(0) = 0, we conclude that (28) agrees with (23).

Let us also expand γ ∈ Γ over the basis of shifted ReLU functions:

γ(x) =
m−1∑

r=0

cγ,rσ
(
x− r

m

)
, x ∈ [0, 1].

Substituting this expansion in (28), we finally obtain

f̃2(x) =
1

T

∑

γ∈Γ

m−1∑

r=0

cγ,rσ
( ∑

t:γt=γ

ρ(Tx− t)− r

m

)
. (29)

Now consider the implementation of f̃ by a neural nework. The term f̃1 can clearly be
implemented by a depth-3 ReLU network using O(T ) connections and computation units.

The term f̃2 can be implemented by a depth-5 network with ρ- and σ-units as follows
(we denote a computation unit by Q with a superscript indexing the layer and a subscript
indexing the unit within the layer).

1. The first layer contains the single input unit Q(1).

2. The second layer contains T units (Q
(2)
t )Tt=1 computing Q

(2)
t = ρ(TQ(1) − t).

3. The third layer contains |Γ| units (Q
(3)
γ )γ∈Γ computing Q

(3)
γ = σ(

∑
t:γt=γ

Q
(2)
t ). This is

equivalent to Q
(3)
γ =

∑
t:γt=γ

Q
(2)
t , because Q

(2)
t ≥ 0.
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Q(1)

Q
(2)
t = ρ(TQ(1) − t)

Q
(3)
γ = σ(

∑
t:γt=γ Q

(2)
t )

Q
(4)
γ,r = σ(Q

(3)
γ − r

m)

b+
∑T−1

t=0 wtR
(2)
t +

∑
γ∈Γ

∑m−1
r=0

cγ,r
T Q

(4)
γ,r

R
(2)
t = σ(Q(1) − t

T )

f̃1 f̃2

Figure 4: Architecture of the network implementing the function f̃ = f̃1 + f̃2 from Lemma 1.

4. The fourth layer contains m|Γ| units (Q
(4)
γ,r) γ∈Γ

r=0,...,m−1
computing Q

(4)
γ,r = σ(Q

(3)
γ − r

m
).

5. The final layer consists of a single output unit Q(5) =
∑

γ∈Γ

∑m−1
r=0

cγ,r
T
Q

(4)
γ,r.

Examining this network, we see that the total number of connections and units in it is
O(T + m|Γ|) and hence is O(T + m3m). This also holds for the full network implementing

f̃ = f̃1 + f̃2, since the term f̃1 requires even fewer layers, connections and units. The output
units of the subnetworks for f̃1 and f̃2 can be merged into the output unit for f̃1 + f̃2, so
the depth of the full network is the maximum of the depths of the networks implementing
f̃1 and f̃2, i.e., is 5 (see Fig. 4).

Now, given ε ∈ (0, 1
2
), take m = d1

2
log3(1/ε)e and T = d 2

mε
e. Then, by (25), the approxi-

mation error maxx∈[0,1] |f(x)− f̃(x)| ≤ 2
Tm
≤ ε, while T + m3m = O( 1

ε ln(1/ε)
), which implies

the claimed complexity bound.

We show now how to modify the constructed network so as to remove ρ-units. We only
need to modify the f̃2 part of the network. We will show that for any δ > 0 we can replace
f̃2 with a function f̃3,δ (defined below) that

a) obeys the following analog of approximation bound (24):

sup
x∈[0,1]

|f2(x)− f̃3,δ(x)| ≤ 8δ

T
+

2

Tm
, (30)

b) and is implementable by a depth-6 ReLU network having complexity c(T +m3m) with
an absolute constant c independent of δ.

Since δ can be taken arbitrarily small, the Theorem then follows by arguing as in Lemma 1,
only with f̃2 replaced by f̃3,δ.
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As a first step, we approximate ρ by a continuous piece-wise linear function ρδ, with a
small δ > 0:

ρ(y) =





y, y ∈ [0, 1− δ),
1−δ
δ

(1− y), y ∈ [1− δ, 1),

0, y /∈ [0, 1).

Let f̃2,δ be defined as f̃2 in (29), but with ρ replaced by ρδ:

f̃2,δ(x) =
1

T

∑

γ∈Γ

m−1∑

r=0

cγ,rσ
( ∑

t:γt=γ

ρδ(Tx− t)−
r

m

)
.

Since ρδ is a continuous piece-wise linear function with three breakpoints, we can express it
via the ReLU function, and hence implement f̃2,δ by a purely ReLU network, as in Proposition
1, and the complexity of the implementation does not depend on δ. However, replacing ρ with
ρδ affects the function f̃2 on the intervals ( t−δ

T
, t
T

], t = 1, . . . , T , introducing there a large error

(of magnitude O( 1
T

)). But recall that both f2 and f̃2 vanish at the points t
T
, t = 0, . . . , T, by

(21), (26). We can then largely remove this newly introduced error by simply suppressing

f̃2,δ near the points t
T

.
Precisely, consider the continuous piece-wise linear function

φδ(y) =





0, y /∈ [0, 1− δ),
y
δ
, y ∈ [0, δ),

1, y ∈ [δ, 1− 2δ),
1−δ−y
δ

, y ∈ [1− 2δ, 1− δ)

and the full comb-like filtering function

Φδ(x) =
T−1∑

t=0

φδ(Tx− t).

Note that Φδ is continuous piece-wise linear with 4T breakpoints, and 0 ≤ Φδ(x) ≤ 1. We

then define our final modification of f̃2 as

f̃3,δ(x) = σ
(
f̃2,δ(x) + 2Φδ(x)− 1

)
− σ

(
2Φδ(x)− 1

)
. (31)

Lemma 2. The function f̃3,δ obeys the bound (30).

Proof. Given x ∈ [0, 1), let t ∈ {0, . . . , T − 1} and y ∈ [0, 1) be determined from the
representation x = t+y

T
(i.e., y is the relative position of x in the respective interval It).

Consider several possibilities for y:
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1. y ∈ [1− δ, 1]. In this case Φδ(x) = 0. Note that

sup
x∈[0,1]

|f̃2,δ(x)| ≤ 1, (32)

because, by construction, supx∈[0,1] |f̃2,δ(x)| ≤ supx∈[0,1] |f̃2(x)|, and supx∈[0,1] |f̃2(x)| ≤ 1

by (26), (27). It follows that both terms in (31) vanish, i.e., f̃3,δ(x) = 0. But, since f2 is
Lipschitz with constant 2 by (22) and f2( t+1

T
) = 0, we have |f2(x)| ≤ |f2(x)−f2( t+1

T
)| ≤

2|y−1|
T
≤ 2δ

T
. This implies |f2(x)− f̃3,δ(x)| ≤ 2δ

T
.

2. y ∈ [δ, 1 − 2δ]. In this case Φδ(x) = 1 and f̃2,δ(x) = f̃2(x). Using (32), we find that

f̃3,δ(x) = f̃2,δ(x) = f̃2(x). It follows that |f2(x)− f̃3,δ(x)| = |f2(x)− f̃2(x)| ≤ 2
Tm

.

3. y ∈ [0, δ]∪ [1−2δ, 1−δ]. In this case f̃2,δ(x) = f̃2(x). Since σ is Lipschitz with constant

1, |f̃3,δ(x)| ≤ |f̃2,δ(x)| = |f̃2(x)|. Both f2 and f̃2 are Lipschitz with constant 2 (by (22),
(27)) and vanish at t

T
and t+1

T
(by (21), (26)). It follows that

|f2(x)− f̃3,δ(x)| ≤ |f2(x)|+ |f̃2(x)| ≤ 2

{
2|x− t

T
|, y ∈ [0, δ]

2|x− t+1
T
|, y ∈ [1− 2δ, 1− δ] ≤

8δ

T
.

It remains to verify the complexity property b) of the function f̃3,δ. As already mentioned,

f̃2,δ can be implemented by a depth-5 purely ReLU network with not more than c(T +m3m)
weights, connections and computation units, where c is an absolute constant independent
of δ. The function Φδ can be implemented by a shallow, depth-3 network with O(T ) units

and connection. Then, computation of f̃3,δ can be implemented by a network including two

subnetworks for computing f̃2,δ and Ψδ, and an additional layer containing two σ-units as
written in (31). We thus obtain 6 layers in the resulting full network and, choosing T and m
in the same way as in Lemma 1, obtain the bound c

ε ln(1/ε)
for the number of its connections,

weights, and computation units.

4 Lower bounds

4.1 Continuous nonlinear widths

The method of continuous nonlinear widths (DeVore et al. [1989]) is a very general approach
to the analysis of parameterized nonlinear approximations, based on the assumption of con-
tinuous selection of their parameters. We are interested in the following lower bound for the
complexity of approximations in Wn,∞([0, 1]d).

19

Matthew Buchholz



Theorem 3 (DeVore et al. [1989], Theorem 4.2). Fix d, n. Let W be a positive integer and
η : RW → C([0, 1]d) be any mapping between the space RW and the space C([0, 1]d). Suppose
that there is a continuous map M : Fd,n → RW such that ‖f − η(M(f))‖∞ ≤ ε for all
f ∈ Fd,n. Then W ≥ cε−d/n, with some constant c depending only on n.

We apply this theorem by taking η to be some ReLU network architecture, and RW the
corresponding weight space. It follows that if a ReLU network architecture is capable of
expressing any function from Fd,n with error ε, then, under the hypothesis of continuous
weight selection, the network must have at least cε−d/n weights. The number of connections
is then lower bounded by c

2
ε−d/n (since the number of weights is not larger than the sum of

the number of computation units and the number of connections, and there are at least as
many connections as units).

The hypothesis of continuous weight selection is crucial in Theorem 3. By examining
our proof of the counterpart upper bound O(ε−d/n ln(1/ε)) in Theorem 1, the weights are
selected there in a continuous manner, so this upper bound asymptotically lies above cε−d/n

in agreement with Theorem 3. We remark, however, that the optimal choice of the network
weights (minimizing the error) is known to be discontinuous in general, even for shallow
networks (Kainen et al. [1999]).

We also compare the bounds of Theorems 3 and 2. In the case d = n = 1, Theorem 3
provides a lower bound c

ε
for the number of weights and connections. On the other hand,

in the adaptive architecture scenario, Theorem 2 provides the upper bound c
ε ln(1/ε)

for the
number of weights, connections and computation units. The fact that this latter bound is
asymptotically below the bound of Theorem 3 reflects the extra expressiveness associated
with variable network architecture.

4.2 Bounds based on VC-dimension

In this section we consider the setup where the same network architecture is used to ap-
proximate all functions f ∈ Fd,n, but the dependence of the weights on f is not assumed
to be necessarily continuous. In this setup, some lower bounds on the network complexity
can be obtained as a consequence of existing upper bounds on VC-dimension of networks
with piece-wise polynomial activation functions and Boolean outputs (Anthony and Bartlett
[2009]). In the next theorem, part a) is a more general but weaker bound, while part b) is a
stronger bound assuming a constrained growth of the network depth.

Theorem 4. Fix d, n.

a) For any ε ∈ (0, 1), a ReLU network architecture capable of approximating any function
f ∈ Fd,n with error ε must have at least cε−d/(2n) weights, with some constant c =
c(d, n) > 0.

b) Let p ≥ 0, c1 > 0 be some constants. For any ε ∈ (0, 1
2
), if a ReLU network architecture

of depth L ≤ c1 lnp(1/ε) is capable of approximating any function f ∈ Fd,n with error
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ε, then the network must have at least c2ε
−d/n ln−2p−1(1/ε) weights, with some constant

c2 = c2(d, n, p, c1) > 0.1

Proof. Recall that given a class H of Boolean functions on [0, 1]d, the VC-dimension of H is
defined as the size of the largest shattered subset S ⊂ [0, 1]d, i.e. the largest subset on which
H can compute any dichotomy (see, e.g., Anthony and Bartlett [2009], Section 3.3). We
are interested in the case when H is the family of functions obtained by applying thresholds
1(x > a) to a ReLU network with fixed architecture but variable weights. In this case
Theorem 8.7 of Anthony and Bartlett [2009] implies that

VCdim(H) ≤ c3W
2, (33)

and Theorem 8.8 implies that

VCdim(H) ≤ c3L
2W lnW, (34)

where W is the number of weights, L is the network depth, and c3 is an absolute constant.
Given a positive integer N to be chosen later, choose S as a set of Nd points x1, . . . ,xNd

in the cube [0, 1]d such that the distance between any two of them is not less than 1
N

. Given
any assignment of values y1, . . . , yNd ∈ R, we can construct a smooth function f satisfying
f(xm) = ym for all m by setting

f(x) =
Nd∑

m=1

ymφ(N(x− xm)), (35)

with some C∞ function φ : Rd → R such that φ(0) = 1 and φ(x) = 0 if |x| > 1
2
.

Let us obtain a condition ensuring that such f ∈ Fd,n. For any multi-index n,

max
x
|Dnf(x)| = N |n|max

m
|ym|max

x
|Dnφ(x)|,

so if
max
m
|ym| ≤ c4N

−n, (36)

with the constant c4 = (maxn:|n|≤n maxx |Dnφ(x)|)−1, then f ∈ Fd,n.
Now set

ε =
c4

3
N−n. (37)

Suppose that there is a ReLU network architecture η that can approximate, by adjusting its
weights, any f ∈ Fd,n with error less than ε. Denote by η(x,w) the output of the network
for the input vector x and the vector of weights w.

Consider any assignment z of Boolean values z1, . . . , zNd ∈ {0, 1}. Set

ym = zmc4N
−n, m = 1, . . . , Nd,

and let f be given by (35) (see Fig. 5); then (36) holds and hence f ∈ Fd,n. By assumption,

1The author thanks Matus Telgarsky for suggesting this part of the theorem.
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Figure 5: A function f considered in the proof of Theorem 2 (for d = 2).

there is then a vector of weights, w = wz, such that for all m we have |η(xm,wz)− ym| ≤ ε,
and in particular

η(xm,wz)

{
≥ c4N

−n − ε > c4N
−n/2, if zm = 1,

≤ ε < c4N
−n/2, if zm = 0,

so the thresholded network η1 = 1(η > c4N
−n/2) has outputs

η1(xm,wz) = zm, m = 1, . . . , Nd.

Since the Boolean values zm were arbitrary, we conclude that the subset S is shattered and
hence

VCdim(η1) ≥ Nd.

Expressing N through ε with (37), we obtain

VCdim(η1) ≥
(3ε

c4

)−d/n
. (38)

To establish part a) of the Theorem, we apply bound (33) to the network η1:

VCdim(η1) ≤ c3W
2, (39)

where W is the number of weights in η1, which is the same as in η if we do not count
the threshold parameter. Combining (38) with (39), we obtain the desired lower bound

W ≥ cε−d/(2n) with c = (c4/3)d/(2n)c
−1/2
3 .

To establish part b) of the Theorem, we use bound (34) and the hypothesis L ≤
c1 lnp(1/ε):

VCdim(η1) ≤ c3c
2
1 ln2p(1/ε)W lnW. (40)

Combining (38) with (40), we obtain

W lnW ≥ 1

c3c2
1

(3ε

c4

)−d/n
ln−2p(1/ε). (41)
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Trying a W of the form Wc2 = c2ε
−d/n ln−2p−1(1/ε) with a constant c2, we get

Wc2 lnWc2 = c2ε
−d/n ln−2p−1(1/ε)

(d
n

ln(1/ε) + ln c2 − (2p+ 1) ln ln(1/ε)
)

=
(
c2
d

n
+ o(1)

)
ε−d/n ln−2p(1/ε).

Comparing this with (41), we see that if we choose c2 < (c4/3)d/nn/(dc3c
2
1), then for suf-

ficiently small ε we have W lnW ≥ Wc2 lnWc2 and hence W ≥ Wc2 , as claimed. We can
ensure that W ≥ Wc2 for all ε ∈ (0, 1

2
) by further decreasing c2.

We remark that the constrained depth hypothesis of part b) is satisfied, with p = 1, by
the architecture used for the upper bound in Theorem 1. The bound stated in part b) of
Theorem 4 matches the upper bound of Theorem 1 and the lower bound of Theorem 3 up
to a power of ln(1/ε).

4.3 Adaptive network architectures

Our goal in this section is to obtain a lower bound for the approximation complexity in the
scenario where the network architecture may depend on the approximated function. This
lower bound is thus a counterpart to the upper bound of Section 3.3.

To state this result we define the complexity N (f, ε) of approximating the function f
with error ε as the minimal number of hidden computation units in a ReLU network that
provides such an approximation.

Theorem 5. For any d, n, there exists f ∈ Wn,∞([0, 1]d) such that N (f, ε) is not o(ε−d/(9n))
as ε→ 0.

The proof relies on the following lemma.

Lemma 3. Fix d, n. For any sufficiently small ε > 0 there exists fε ∈ Fd,n such that
N (fε, ε) ≥ c1ε

−d/(8n), with some constant c1 = c1(d, n) > 0.

Proof. Observe that all the networks with not more than m hidden computation units can
be embedded in the single “enveloping” network that has m hidden layers, each consisting
of m units, and that includes all the connections between units not in the same layer (see
Fig. 6a). The number of weights in this enveloping network is O(m4). On the other hand,
Theorem 4a) states that at least cε−d/(2n) weights are needed for an architecture capable of
ε-approximating any function in Fd,n. It follows that there is a function fε ∈ Fd,n that cannot
be ε-approximated by networks with fewer than c1ε

−d/(8n) computation units.

Before proceeding to the proof of Theorem 5, note that N (f, ε) is a monotone decreasing
function of ε with a few obvious properties:

N (af, |a|ε) = N (f, ε), for any a ∈ R \ {0} (42)
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(a) (b)

Figure 6: (a) Embedding a network with m = 4 hidden units into an “enveloping” network
(see Lemma 3). (b) Putting sub-networks in parallel to form an approximation for the sum
or difference of two functions, see Eq. (44).

(follows by multiplying the weights of the output unit of the approximating network by a
constant);

N (f ± g, ε+ ‖g‖∞) ≤ N (f, ε) (43)

(follows by approximating f ± g by an approximation of f);

N (f1 ± f2, ε1 + ε2) ≤ N (f1, ε1) +N (f2, ε2) (44)

(follows by combining approximating networks for f1 and f2 as in Fig. 6b).

Proof of Theorem 5. The claim of Theorem 5 is similar to the claim of Lemma 3, but is
about a single function f satisfying a slightly weaker complexity bound at multiple values
of ε→ 0. We will assume that Theorem 5 is false, i.e.,

N (f, ε) = o(ε−d/(9n)) (45)

for all f ∈ Wn,∞([0, 1]d), and we will reach contradiction by presenting f violating this
assumption. Specifically, we construct this f as

f =
∞∑

k=1

akfk, (46)

with some ak ∈ R, fk ∈ Fd,n, and we will make sure that

N (f, εk) ≥ ε
−d/(9n)
k (47)

for a sequence of εk → 0.
We determine ak, fk, εk sequentially. Suppose we have already found {as, fs, εs}k−1

s=1 ; let
us describe how we define ak, fk, εk.
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First, we set

ak = min
s=1,...,k−1

εs
2k−s

. (48)

In particular, this ensures that
ak ≤ ε121−k,

so that the function f defined by the series (46) will be in Wn,∞([0, 1]d), because
‖fk‖Wn,∞([0,1]d) ≤ 1.

Next, using Lemma 3 and Eq. (42), observe that if εk is sufficiently small, then we can
find fk ∈ Fd,n such that

N
(
akfk, 3εk

)
= N

(
fk,

3εk
ak

)
≥ c1

(3εk
ak

)−d/(8n)

≥ 2ε
−d/(9n)
k . (49)

In addition, by assumption (45), if εk is small enough then

N
( k−1∑

s=1

asfs, εk

)
≤ ε

−d/(9n)
k . (50)

Let us choose εk and fk so that both (49) and (50) hold. Obviously, we can also make sure
that εk → 0 as k →∞.

Let us check that the above choice of {ak, fk, εk}∞k=1 ensures that inequality (47) holds
for all k:

N
( ∞∑

s=1

asfs, εk

)
≥ N

( k∑

s=1

asfs, εk +
∥∥∥

∞∑

s=k+1

asfs

∥∥∥
∞

)

≥ N
( k∑

s=1

asfs, εk +
∞∑

s=k+1

as

)

≥ N
( k∑

s=1

asfs, 2εk

)

≥ N (akfk, 3εk)−N
( k−1∑

s=1

asfs, εk

)

≥ ε−d/(9n).

Here in the first step we use inequality (43), in the second the monotonicity of N (f, ε), in
the third the monotonicity of N (f, ε) and the setting (48), in the fourth the inequality (44),
and in the fifth the conditions (49) and (50).

4.4 Slow approximation of smooth functions by shallow networks

In this section we show that, in contrast to deep ReLU networks, shallow ReLU networks
relatively inefficiently approximate sufficiently smooth (C2) nonlinear functions. We remark
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that Liang and Srikant 2016 prove a similar result assuming global convexity instead of
smoothness and nonlinearity.

Theorem 6. Let f ∈ C2([0, 1]d) be a nonlinear function (i.e., not of the form f(x1, . . . , xd) ≡
a0 +

∑d
k=1 akxk on the whole [0, 1]d). Then, for any fixed L, a depth-L ReLU network

approximating f with error ε ∈ (0, 1) must have at least cε−1/(2(L−2)) weights and computation
units, with some constant c = c(f, L) > 0.

Proof. Since f ∈ C2([0, 1]d and f is nonlinear, we can find x0 ∈ [0, 1]d and v ∈ Rd such that
x0 + xv ∈ [0, 1]d for all x ∈ [−1, 1] and the function f1 : x 7→ f(x0 + xv) is strictly convex
or concave on [−1, 1]. Suppose without loss of generality that it is strictly convex:

min
x∈[−1,1]

f ′′1 (x) = c1 > 0. (51)

Suppose that f̃ is an ε-approximation of function f , and let f̃ be implemented by a ReLU
network η of depth L. Let f̃1 : x 7→ f̃(x0 +xv). Then f̃1 also approximates f1 with error not

larger than ε. Moreover, since f̃1 is obtained from f̃ by a linear substitution x = x0 + xv,
f̃1 can be implemented by a ReLU network η1 of the same depth L and with the number
of units and weights not larger than in η (we can obtain η1 from η by replacing the input
layer in η with a single unit, accordingly modifying the input connections, and adjusting
the weights associated with these connections). It is thus sufficient to establish the claimed
bounds for η1.

By construction, f̃1 is a continuous piece-wise linear function of x. Denote by M the
number of linear pieces in f̃1. We will use the following counting lemma.

Lemma 4. M ≤ (2U)L−2, where U is the number of computation units in η1.

Proof. This bound, up to minor details, is proved in Lemma 2.1 of Telgarsky [2015]. Precisely,
Telgarsky’s lemma states that if a network has a single input, connections only between
neighboring layers, at most m units in a layer, and a piece-wise linear activation function
with t pieces, then the number of linear pieces in the output of the network is not greater
than (tm)L. By examining the proof of the lemma we see that it will remain valid for
networks with connections not necessarily between neighboring layers, if we replace m by
U in the expression (tm)L. Moreover, we can slightly strengthen the bound by noting that
in the present paper the input and output units are counted as separate layers, only units
of layers 3 to L have multiple incoming connections, and the activation function is applied
only in layers 2 to L − 1. By following Telgarsky’s arguments, this gives the slightly more
accurate bound (tU)L−2 (i.e., with the power L − 2 instead of L). It remains to note that
the ReLU activation function corresponds to t = 2.

Lemma 4 implies that there is an interval [a, b] ⊂ [−1, 1] of length not less than

2(2U)−(L−2) on which the function f̃1 is linear. Let g = f1 − f̃1. Then, by the approxi-

mation accuracy assumption, supx∈[a,b] |g(x)| ≤ ε, while by (51) and by the linearity of f̃1
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on [a, b], maxx∈[a,b] g
′′(x) ≥ c1 > 0. It follows that max(g(a), g(b)) ≥ g(a+b

2
) + c1

2
( b−a

2
)2 and

hence

ε ≥ 1

2

(
max(g(a), g(b))− g(a+b

2
)
)
≥ c1

4

(b− a
2

)2

≥ c1

4
(2U)−2(L−2),

which implies the claimed bound U ≥ 1
2
( 4ε
c1

)−1/(2(L−2)). Since there are at least as many
weights as computation units in a network, a similar bound holds for the number of weights.

5 Discussion

We discuss some implications of the obtained bounds.

Deep vs. shallow ReLU approximations of smooth functions. Our results clearly
show that deep ReLU networks more efficiently express smooth functions than shallow
ReLU networks. By Theorem 1, functions from the Sobolev space Wn,∞([0, 1]d) can be
ε-approximated by ReLU networks with depth O(ln(1/ε)) and the number of computation
units O(ε−d/n ln(1/ε)). In contrast, by Theorem 6, a nonlinear function from C2([0, 1]d) can-
not be ε-approximated by a ReLU network of fixed depth L with the number of units less than
cε−1/(2(L−2)). In particular, it follows that in terms of the required number of computation
units, unbounded-depth approximations of functions from Wn,∞([0, 1]d) are asymptotically
strictly more efficient than approximations with a fixed depth L at least when

d

n
<

1

2(L− 2)

(assuming also n > 2, so that Wn,∞([0, 1]d) ⊂ C2([0, 1]d)). The efficiency of depth is even
more pronounced for very smooth functions such as polynomials, which can be implemented
by deep networks using only O(ln(1/ε)) units (cf. Propositions 2 and 3 and the proof of
Theorem 1). Liang and Srikant describe in Liang and Srikant [2016] some conditions on the
approximated function (resembling conditions of local analyticity) under which complexity
of deep ε-approximation is O(lnc(1/ε)) with a constant power c.

Continuous model selection vs. function-dependent network architectures.
When approximating a function by a neural network, one can either view the network archi-
tecture as fixed and only tune the weights, or optimize the architecture as well. Moreover,
when tuning the weights, one can either require them to continuously depend on the ap-
proximated function or not. We naturally expect that more freedom in the choice of the
approximation should lead to higher expressiveness.

Our bounds confirm this expectation to a certain extent. Specifically, the complexity of
ε-approximation of functions from the unit ball F1,1 in W1,∞([0, 1]) is lower bounded by c

ε
in

the scenario with a fixed architecture and continuously selected weights (see Theorem 3). On
the other hand, we show in Theorem 2 that this complexity is upper bounded by O( 1

ε ln(1/ε)
)
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if we are allowed to adjust the network architecture. This bound is achieved by finite-depth
(depth-6) ReLU networks using the idea of reused subnetworks familiar from the theory of
Boolean circuits Shannon [1949].

In the case of fixed architecture, we have not established any evidence of complexity
improvement for unconstrained weight selection compared to continuous weight selection.
We remark however that, already for approximations with depth-3 networks, the optimal
weights are known to discontinuously depend, in general, on the approximated function
(Kainen et al. [1999]). On the other hand, part b) of Theorem 4 shows that if the network
depth scales as O(lnp(1/ε)), discontinuous weight selection cannot improve the continuous-
case complexity more than by a factor being some power of ln(1/ε).

Upper vs. lower complexity bounds. We indicate the gaps between respective upper
and lower bounds in the three scenarios mentioned above: fixed architectures with continuous
selection of weights, fixed architectures with unconstrained selection of weights, or adaptive
architectures.

For fixed architectures with continuous selection the lower bound cε−d/n is provided by
Proposition 3, and the upper bound O(ε−d/n ln(1/ε)) by Theorem 1, so these bounds are
tight up to a factor O(ln(1/ε)).

In the case of fixed architecture but unconstrained selection, part b) of Theorem 4
gives a lower bound cε−d/n ln−2p−1(1/ε) under assumption that the depth is constrained
by O(lnp(1/ε)). This is only different by a factor of O(ln2p+2(1/ε)) from the upper bound
of Theorem 1. Without this depth constraint we only have the significantly weaker bound
cε−d/(2n) (part a) of Theorem 4).

In the case of adaptive architectures, there is a big gap between our upper and lower
bounds. The upper bound O( 1

ε ln(1/ε)
) is given by Theorem 2 for d = n = 1. The lower

bound, proved for general d, n in Theorem 5, only states that there are f ∈ Wn,∞([0, 1]d) for
which the complexity is not o(ε−d/(9n)).

ReLU vs. smooth activation functions. A popular general-purpose method of ap-
proximation is shallow (depth-3) networks with smooth activation functions (e.g., logistic
sigmoid). Upper and lower approximation complexity bounds for these networks (Mhaskar
[1996], Maiorov and Meir [2000]) show that complexity scales as ∼ ε−d/n up to some ln(1/ε)
factors. Comparing this with our bounds in Theorems 1,2,4, it appears that deep ReLU
networks are roughly (up to ln(1/ε) factors) as expressive as shallow networks with smooth
activation functions.

Conclusion. We have established several upper and lower bounds for the expressive power
of deep ReLU networks in the context of approximation in Sobolev spaces. We should note,
however, that this setting may not quite reflect typical real world applications, which usually
possess symmetries and hierarchical and other structural properties substantially narrowing
the actually interesting classes of approximated functions (LeCun et al. [2015]). Some recent
publications introduce and study expressive power of deep networks in frameworks bridging
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this gap, in particular, graph-based hierarchical approximations are studied in Mhaskar et al.
[2016], Mhaskar and Poggio [2016] and convolutional arithmetic circuits in Cohen et al. [2015].
Theoretical analysis of expressiveness of deep networks taking into account such properties
of real data seems to be an important and promising direction of future research.

Acknowledgments

The author thanks Matus Telgarsky and the anonymous referees for multiple helpful com-
ments on the preliminary versions of the paper. The research was funded by Skolkovo
Institute of Science and Technology.

References

Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations.
Cambridge university press, 2009.

Peter L Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear VC-dimension bounds for
piecewise polynomial networks. Neural computation, 10(8):2159–2173, 1998.

Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers: A
comparison between shallow and deep architectures. IEEE transactions on neural networks
and learning systems, 25(8):1553–1565, 2014.

Nadav Cohen, Or Sharir, and Amnon Shashua. Why deep neural networks? arXiv preprint
arXiv:1509.05009, 2015.

CM Dawson and MA Nielsen. The Solovay-Kitaev algorithm. Quantum Information and
Computation, 6(1):81–95, 2006.

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks. In Advances
in Neural Information Processing Systems, pages 666–674, 2011.

Ronald A DeVore, Ralph Howard, and Charles Micchelli. Optimal nonlinear approximation.
Manuscripta mathematica, 63(4):469–478, 1989.

Paul W Goldberg and Mark R Jerrum. Bounding the Vapnik-Chervonenkis dimension of
concept classes parameterized by real numbers. Machine Learning, 18(2-3):131–148, 1995.
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