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Expressiveness of Shallow Networks

This chapter is devoted to the approximation power of neural networks—their
expressive power, in Deep Learning parlance. The first focal point is the famed
universal approximation theorem, i.e., the fact that, for reasonable activation
functions, every multivariate real-valued continuous function can be uniformly
approximated on any compact set with arbitrary accuracy using functions that
are generated by shallow networks. Next, concentrating on ReLU activation,
the rate of approximation of Lipschitz functions by shallow networks is to be
analyzed, leading to upper and lower estimates that almost match.

25.1 Activation Functions and Universal Approximation

In the univariate setting and with ReLU activation, the functions generated
by shallow networks coincide with CPwL functions (see Theorem 24.1), so
they are dense in any C[a, b]. This denseness result is to be extended to the
multivariate setting and to other activation functions. In fact, the result below
characterizes the activation functions for which denseness holds.

Theorem 25.1 For a continuous activation function φ : R → R and for a
compact subset X of Rd, let

Nφ(X) :=
{
g ∈ F(X,R) : there are n ≥ 1, a1, . . . , an ∈ Rd, and b, c ∈ Rn

such that g(x) =
∑n

j=1
c jφ(〈a j, x〉 + b j) for all x ∈ X

}
(25.1)

denote the set of functions generated by shallow networks with the activation
function φ. The following properties are equivalent:

(i) the set Nφ(X) is dense in C(X);
(ii) the function φ is not a polynomial.
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25.1 Activation Functions and Universal Approximation 217

Proof of (i)⇒(ii) This implication is clear, because if φ was a polynomial,
then the set Nφ(X) would be contained in the space of polynomials of degree
at most deg(φ) and would therefore not be dense in C(X). �

The core of the argument is the implication (ii)⇒(i). A first step consists in
realizing that the problem can be reduced to the univariate case.

Proof of (ii)⇒(i), Step 1 Suppose that the denseness result holds in the case
d = 1. Now, for d > 1, it is easy to verify that the set

A = span
{
f ∈ F(X,R) : f = exp(〈v, ·〉) for some v ∈ Rd

}
is a subalgebra of C(X) that vanishes nowhere and separates points. Thus,
by the Stone–Weierstrass theorem (Theorem E.3), it is dense in C(X). There-
fore, given a function f ∈ C(X) and an accuracy ε > 0, one can find k ≥ 1,
γ1, . . . , γk ∈ R, and v1, . . . , vk ∈ Rd such that∣∣∣∣∣ f (x) −

k∑
i=1

γi exp(〈vi, x〉)
∣∣∣∣∣ < ε2 for all x ∈ X. (25.2)

For each i ∈ [1 : k], the set {exp(〈vi, x〉), x ∈ X} is a compact subset of R, so by
invoking the result for d = 1, one can find ni ≥ 1 and ai, bi, ci ∈ Rni such that,
for all t ∈ {exp(〈vi, x〉), x ∈ X},∣∣∣∣∣ exp(t) −

ni∑
j=1

ci, jφ(ai, jt + bi, j)
∣∣∣∣∣ < ε

2
∑k
�=1 |γ� |

. (25.3)

One deduces from (25.2) and (25.3) that, for all x ∈ X,∣∣∣∣∣ f (x) −
k∑

i=1

ni∑
j=1

γici, jφ(ai, j〈vi, x〉 + bi, j)
∣∣∣∣∣

≤
∣∣∣∣∣ f (x) −

k∑
i=1

γi exp(〈vi, x〉)
∣∣∣∣∣ + k∑

i=1

|γi|
∣∣∣∣∣ exp(〈vi, x〉) −

ni∑
j=1

ci, jφ(ai, j〈vi, x〉 + bi, j)
∣∣∣∣∣

<
ε

2
+

k∑
i=1

|γi|
ε

2
∑k
�=1 |γ� |

= ε.

This means that f can be uniformly approximated by elements from Nφ(X)
with error at most ε. Since f ∈ C(X) and ε > 0 were arbitrary, the denseness
of Nφ(X) in C(X) is proved. �

The argument for the second step of the implication (ii)⇒(i) involves an
identity known as the Peano representation of divided differences. Recall first
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218 Expressiveness of Shallow Networks

that the divided difference of a function f at points t0 < t1 < · · · < tk−1 < tk is
defined inductively by [t0] f = f (t0) and, for k ≥ 1, by

[t0, t1, . . . , tk−1, tk] f =
[t1, . . . , tk−1, tk] f − [t0, t1, . . . , tk−1] f

tk − t0
.

For a k-times differentiable function f , the divided difference [t0, t1, . . . , tk] f
provides a numerical approximation to f (k)(x) when t0, t1, . . . , tk−1, tk are all
close to x. In fact, the divided difference can be represented as

[t0, t1, . . . , tk−1, tk] f =
1
k!

∫ tk

t0
Mt0,...,tk (t) f (k)(t)dt (25.4)

for some function Mt0,...,tk known as the L1-normalized B-spline relative to
t0, . . . , tk. It is a piecewise polynomial of degree < k with breakpoints t0, . . . , tk,
globally (k − 2)-times continuously differentiable, nonnegative on its support
[t0, tk], and integrating to one. The identity (25.4) can be verified (readers are
invited to do so in Exercise 25.1) by relying on the inductive definition of
B-splines, which is given by Mt0,t1 (t) = �[t0,t1](t)/(t1 − t0) and, for k ≥ 2,

Mt0,...,tk (t) =
k

k − 1

( t − t0
tk − t0

Mt0,...,tk−1 (t) +
tk − t
tk − t0

Mt1,...,tk (t)
)
. (25.5)

Proof of (ii)⇒(i), Step 2 The objective is to establish the univariate result
in the case φ ∈ C∞(R). Let a nonnegative integer k and a real number b be
fixed for now. Given x ∈ X, the Peano representation (25.4) for the divided
differences at the points 0, h, . . . , kh of the function fx : t ∈ R �→ φ(tx + b) ∈ R

is written as

[0, h, . . . , kh] fx =
1
k!

∫ kh

0
M0,h,...,kh(t)xkφ(k)(tx + b)dt.

Setting γ := max{|u|, u ∈ X} and εh := max{|φ(k)(v + b) − φ(k)(b)|, |v| ≤ khγ}, it
follows that∣∣∣∣∣[0, h, . . . , kh] fx −

φ(k)(b)
k!

xk
∣∣∣∣∣ = ∣∣∣∣∣ xk

k!

∫ kh

0
M0,h,...,kh(t)

(
φ(k)(tx + b) − φ(k)(b)

)
dt
∣∣∣∣∣

≤
γk

k!

∫ kh

0
M0,h,...,kh(t)εhdt =

γk

k!
εh.

Observing that the function x ∈ X �→ [0, h, . . . , kh] fx belongs to Nφ(X) and
that the bound (γk/k!)εh tends to zero as h → 0 independently of x ∈ X, one
deduces that the map x ∈ X �→ (φ(k)(b)/k!)xk belongs to the closure cl(Nφ(X))
of Nφ(X). Since there exists some b ∈ R such that φ(k)(b) � 0—otherwise
φ would be a polynomial—one derives that the map x ∈ X �→ xk itself
belongs to cl(Nφ(X)). This being true for any integer k ≥ 0, one concludes that
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25.2 Approximation Rate with ReLU: Upper Bound 219

cl(Nφ(X)) contains all polynomials, and in turn, by the Weierstrass theorem
(Theorem E.1), that cl(Nφ(X)) equals C(X). �

The argument for the implication (ii)⇒(i) now requires a final step to remove
the assumption that φ ∈ C∞(R). It consists in selecting a compactly supported
function ψ ∈ C∞(R) and in considering its convolution product with a merely
continuous function φ : R → R. This convolution product is defined for any
x ∈ R by

(φ ∗ ψ)(x) =
∫ ∞

−∞
φ(x − y)ψ(y)dy. (25.6)

It can be verified that the function φ ∗ ψ belongs to C∞(R). The same holds
when convolving with ψε : x ∈ R �→ ψ(x/ε)/ε for any ε > 0. By choosing e.g.
ψ to be the bump function x ∈ R �→ �[−1,1](x) × exp(−1/(1 − x2)) normalized
so that

∫
R
ψ = 1, there is the added bonus that φ ∗ ψε converges uniformly to φ

on any compact subset of R when ε→ 0; see Exercise 25.2.

Proof of (ii)⇒(i), Step 3 For ε > 0, with the compactly supported function
ψε ∈ C∞(R) chosen as above, one first observes that, for any a, b ∈ R, the map

x ∈ X �→ (φ ∗ ψε)(ax + b) =
∫ ∞

−∞
φ(ax + b − y)ψε(y)dy

belongs to cl(Nφ(X)). It follows that cl(Nφ∗ψε (X)) ⊆ cl(Nφ(X)). Assume now
that cl(Nφ(X)) is a proper subset of C(X). Invoking the Weierstrass theorem
again, there exists an integer k ≥ 0 such that the map x ∈ X �→ xk does
not belong to cl(Nφ(X)), and hence does not belong to cl(Nφ∗ψε (X)) either.
However, according to Step 2, the map x ∈ X �→ ((φ ∗ ψε)(k)(b)/k!)xk belongs
to cl(Nφ∗ψε (X)) for any b ∈ R. This implies that (φ∗ψε)(k)(b) = 0 for any b ∈ R,
i.e., that φ ∗ ψε is a polynomial of degree < k. It follows that φ, as the limit of
φ ∗ ψε when ε → 0, is also a polynomial of degree < k, which is not the case.
This contradiction finishes the proof that Nφ(X) is dense in C(X). �

25.2 Approximation Rate with ReLU: Upper Bound

The universal approximation theorem (Theorem 25.1) is not quantitative: it
says only that the error of best approximation to a given continuous function
using shallow networks converges to zero as the width n goes to infinity, but it
does not provide any information about the convergence speed. Concentrating
on ReLU activation, one shall now target results about the approximation rate
in terms of the number (d + 2)n  dn of parameters describing the set of
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220 Expressiveness of Shallow Networks

d-variate functions generated by shallow ReLU networks of width n. In the
same spirit as in Theorem 25.1, this set is written as

Nn
ReLU :=

{∑n

j=1
c j ReLU(〈a j, ·〉 + b j) : a1, . . . , an ∈ Rd and b, c ∈ Rn

}
without including a final bias, since it can be obtained by choosing one of the
ai to be zero. The worst-case considerations below involve Lipschitz functions.
Precisely, one defines a model set (already encountered in Chapter 11) by

KLip :=
{

f ∈ C([0, 1]d) : | f |Lip := sup
x�x′∈[0,1]d

| f (x) − f (x′)|
‖x − x′‖∞

≤ 1
}
.

The main result of this section consists of a nearly tight upper bound for the
approximation rate of Lipschitz functions using shallow ReLU networks. The
complete proof is omitted1 and only the simple case of univariate functions is
treated here.

Theorem 25.2 There is a positive constant Cd such that, for any n ≥ 2,

sup
f∈KLip

inf
g∈Nn

ReLU

‖ f − g‖C([0,1]d) ≤ Cd ln(n)
1

n1/d . (25.7)

Sketch of proof when d = 1 Let a function f ∈ C([0, 1]) satisfy | f |Lip ≤ 1.
For n ≥ 2, consider the continuous piecewise linear function g with break-
points at x0 = 0, . . . , xi = i/(n − 1), . . . , xn−1 = 1 that interpolates the values
f (x0), . . . , f (xi), . . . , f (xn−1) there. As outlined in the proof of Theorem 24.1,
this function can be generated by a shallow ReLU network of width n, i.e.,
g ∈ Nn

ReLU. Moreover, it also satisfies |g|Lip ≤ 1, from where the inequality
‖ f − g‖C([0,1]) ≤ 1/(n − 1) can be easily obtained (an improved inequality is
provided in Lemma 26.5). Indeed, for any x ∈ [0, 1], choosing i ∈ [0 : n − 1]
such that |x − xi| ≤ 1/(2(n − 1)) leads to

| f (x) − g(x)| ≤ | f (x) − f (xi)| + |g(xi) − g(x)| ≤ (| f |Lip + |g|Lip)|x − xi|

≤
1

n − 1
.

In view of n − 1 ≥ n/2, the bound inf
{
‖ f − g‖C([0,1]) : g ∈ Nn

ReLU
}
≤ 2/n holds

for any f ∈ KLip, meaning that the estimate (25.7) is valid when d = 1 even
without the logarithmic factor. �

1 The arguments are given in Bach (2017), with the result being stated in Subsection 4.7 there.
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25.3 Approximation Rate with ReLU: Lower Bound

To justify the near-tightness of Theorem 25.2, this section provides a lower
bound for the approximation rate of Lipschitz functions using shallow ReLU
networks. Disregarding logarithmic factors, it matches the upper bound of the
previous section.

Theorem 25.3 There is a positive constant cd such that, for any n ≥ 1,

sup
f∈KLip

inf
g∈Nn

ReLU

‖ f − g‖C([0,1]d) ≥
cd

ln(2n)1/d

1
n1/d .

The result is a direct consequence of the following two observations, both
of them being interesting in their own right.

Proposition 25.4 Given any subset G of C([0, 1]d), one has

sup
f∈KLip

inf
g∈G

‖ f − g‖C([0,1]d) ≥
1

2 vc(�(0,+∞) ◦ G)1/d ,

where �(0,+∞) ◦G denotes the family of boolean functions of the form �(0,+∞) ◦g
for some g ∈ G.

Proposition 25.5 The set of shallow ReLU networks of width n ≥ 1 yields a
VC-dimension satisfying

vc(�(0,+∞) ◦ Nn
ReLU) ≤ Cdn ln(2n)

for some absolute constant C that can be taken as C = 40/ ln(2).

It now remains to justify these two propositions.

Proof of Proposition 25.4 The result is clear if δ ≥ 1/2, where

δ := sup
f∈KLip

inf
g∈G

‖ f − g‖C([0,1]d).

Thus, one assumes that δ < 1/2 and considers the integer n ≥ 1 such that
1/(2(n + 1)) ≤ δ < 1/(2n). Let X = {x(i) = [i1/n; . . . ; id/n] : i ∈ [0 : n]d}
be the set of (n + 1)d nodes of the d-tensorized regular grid with spacing 1/n.
For each i ∈ [0 : n]d, let Ci denote the cell associated with x(i) in the Voronoi
tessellation of [0, 1]d relative to the �∞-norm; see Figure 25.1. For any binary
vector ε ∈ {0, 1}[0 : n]d

, the function f defined for x ∈ [0, 1]d by

f (x) =
∑

i∈[0 : n]d

ε̃i dist�∞ (x, [0, 1]d \Ci), ε̃i := 2εi − 1 ∈ {−1,+1}, (25.8)
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Figure 25.1 The cells Ci and their centers x(i) when d = 2 and n = 4.

can be verified to satisfy

| f |Lip ≤ 1 and f (x(i)) =
ε̃i

2n
for all i ∈ [0 : nd].

Since there exists g ∈ G such that | f (x) − g(x)| ≤ δ < 1/(2n) for all x ∈ [0, 1]d,
one deduces that sgn(g(x(i))) = ε̃i, i.e., that (�(0,+∞) ◦ g)(x(i)) = εi, for all
i ∈ [0 : n]d. This fact means that the set X is shattered by �(0,+∞) ◦G. Therefore,

vc(�(0,+∞) ◦ G) ≥ |X| = (n + 1)d ≥ (1/(2δ))d,

which is a rearrangement of the announced result. �

Proof of Proposition 25.5 The main objective is to bound the shatter function
(see Definition 2.1) of the family �(0,+∞) ◦ Nn

ReLU as follows: for m ≥ (d + 1)n,

τ(m) := max
x(1),...,x(m)∈Rd

∣∣∣{[�(0,+∞)(h(x(1))); . . . ;�(0,+∞)(h(x(m)))], h ∈ Nn
ReLU

}∣∣∣
≤
( 4m
d
√

n

)4dn
. (25.9)
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From here, with m denoting the VC-dimension of �(0,+∞) ◦ Nn
ReLU, one recalls

that τ(m) = 2m. If m < (d+1)n, then the result is immediately clear. If otherwise
m ≥ (d + 1)n, then the estimate (25.9) gives 2m ≤ (4m/(d

√
n))4dn. Taking the

logarithm yields

m ln(2) ≤ 4dn ln
( 4m
d
√

n

)
, i.e.,

4m
d
√

n
≤

16
ln(2)

√
n ln

( 4m
d
√

n

)
. (25.10)

Since ln(t) <
√

t for any t > 0, this inequality implies

4m
d
√

n
≤

16
ln(2)

√
n

√
4m

d
√

n
, and hence

4m
d
√

n
≤

162

ln(2)2 n ≤ (2n)10.

Substituting the latter into (25.10), one obtains the required estimate

m ≤
40

ln(2)
dn ln(2n).

Turning to the justification of the bound (25.9), let x(1), . . . , x(m) ∈ Rd be
fixed from now on. By the positive homogeneity of ReLU, any h ∈ Nn

ReLU
can be written as h =

∑n
j=1 γ j ReLU(〈a j, ·〉 + b j) where a1, . . . , an ∈ Rd,

b1, . . . , bn ∈ R, and importantly, γ1, . . . , γn ∈ {−1,+1}. Thus, the goal is to
bound the cardinality of the set S ∈ {0, 1}m given by

S :=
⋃

γ1,...,γn∈{−1,+1}

{[
· · · ;�(0,+∞)

( n∑
j=1

γ j ReLU(〈a j, x(i)〉 + b j)
)
; · · ·

]
:

a1, . . . , an ∈ Rd, b1, . . . , bn ∈ R

}
. (25.11)

For a ∈ Rd and b ∈ R, notice that ReLU(〈a, x(i)〉+ b) reduces to εi(〈a, x(i)〉+ b)
with εi := �(0,+∞)(〈a, x(i)〉 + b) for i ∈ [1 : m]. The binary vector ε ∈ {0, 1}m
does not visit all 2m possible configurations, though: it is restricted to a strict
subset E of {0, 1}m. Indeed, since each ε ∈ E corresponds to an intersection-of-
half-spaces region {[a; b] ∈ Rd+1 : sgn(〈a, x(i)〉 + b) = 2εi − 1, i ∈ [1 : m]} and
since it is known (see Exercise 25.4 for the arguments) that the number of such
intersection-of-half-spaces regions of Rk created by m hyperplanes is at most

Rk,m = 2
[(

m − 1
0

)
+

(
m − 1

1

)
+ · · · +

(
m − 1
k − 1

)]
,

one obtains |E| ≤ Rd+1,m. Thus, for a particular choice of γ1, . . . , γn ∈ {−1,+1},
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224 Expressiveness of Shallow Networks

the set appearing in the union (25.11) is included in

⋃
ε(1),...,ε(n)∈E

{[
· · · ;�(0,+∞)

( n∑
j=1

γ jε
( j)
i (〈a j, x(i)〉 + b j)

)
; · · ·

]
:

a1, . . . , an ∈ Rd, b1, . . . , bn ∈ R

}
. (25.12)

For a particular choice of ε(1), . . . , ε(n) ∈ E, the latter binary vectors correspond
again to intersection-of-half-spaces regions created by m hyperplanes, but this
time in the space R(d+1)n. Therefore, each set of binary vectors appearing in the
union (25.12) has cardinality at most R(d+1)n,m. All in all, the cardinality of the
set (25.11) is bounded by |S| ≤ 2n× (Rd+1,m)n×R(d+1)n,m. Invoking the estimate
established in Lemma 2.6, it follows that

|S| ≤ 2n × 2n
(e(m − 1)

d

)dn
× 2
( e(m − 1)
(d + 1)n − 1

)(d+1)n−1

≤ 2n × 2n
(em

d

)dn
× 2e−1

(em
dn

)(d+1)n
≤ 22n

(em
d

)2dn(em
dn

)2dn
≤
( 4m
d
√

n

)4dn
.

Since this is true for any choice of x(1), . . . , x(m) ∈ Rd, the bound announced
in (25.9) is now justified. �

Exercises

25.1 Verify that the function Mt0,...,tk given by the inductive definition (25.5)
is a piecewise polynomial of degree < k with breakpoints t0, . . . , tk, is
globally (k − 2)-times continuously differentiable, is nonnegative on its
support [t0, tk], and integrates to one. Verify also the validity of Peano
representation (25.4) of divided differences.

25.2 Show that the convolution product (25.6) of a compactly supported and
infinitely differentiable function ψ ∈ C∞(R) with a merely continuous
function φ ∈ C(R) is infinitely differentiable, i.e., that φ ∗ ψ ∈ C∞(R).
Furthermore, if ψ is nonnegative, is supported on [−1, 1], and integrates
to one, show that |φ(x) − (φ ∗ ψε)(x)| ≤ max{|φ(x) − φ(x′)|, |x − x′| ≤ ε}
for any x ∈ R, where one defined ψε := ψ(·/ε)/ε for ε > 0.

25.3 Fill in the details needed for a careful proof that the Lipschitz constant
of the function f defined in (25.8) is at most one.

25.4 Let Rk,m, respectively Raff
k,m, denote the number of regions in Rk created

by m hyperplanes, respectively affine hyperplanes, in general position.
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Prove by induction on m ≥ 1 that

Rk,m = 2
[(

m − 1
0

)
+

(
m − 1

1

)
+ · · · +

(
m − 1
k − 1

)]
,

Raff
k,m =

(
m
0

)
+

(
m
1

)
+ · · · +

(
m
k

)
.

To do so, assume without loss of generality that the (m + 1)st (affine)
hyperplane has equation xk = 0 and count the number of regions added
to the ones already created by the first m (affine) hyperplanes in order to
obtain the recurrence relation

R(aff)
k,m+1 = R(aff)

k,m + R(aff)
k−1,m.
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