
Approximation with Neural Networks
from a Theoretical and Practical Perspective

vorgelegt von

M. Sc.

Ingo Gühring

an der Fakultät IV – Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Benjamin Blankertz
Gutachter: Prof. Dr. Klaus-Robert Müller
Gutachter: Prof. Dr. Philipp Grohs
Gutachter: Prof. Dr. Helmut Bölcskei

Tag der wissenschaftlichen Aussprache: 21. November 2022

Berlin 2022

To Ngoc Dung Do

Abstract

Deep learning algorithms are currently revolutionizing the way computers are used to
assist in the solution of challenging problems that impact all aspects of daily life. This
shift from rule- or model-driven approaches to data-driven methodologies has just started
to unfold in scientific computing. In particular, deep neural networks have lately shown
promising results in classical mathematical areas, such as solving inverse problems or
partial differential equations (PDEs). Despite overwhelming success in applications, the
theoretical foundations of deep learning are from a mathematically rigorous point of
view not yet sufficiently apprehended. However, an even deeper theoretical understand-
ing of these techniques may be an essential factor for their acceptance in safety-critical
applications, such as medical diagnostics.

In the framework of statistical learning theory, the overall error of learning a function
from samples can be decomposed into a training, generalization, and approximation error.
Analyzing approximation properties of neural networks is, thus, crucial for extending
the understanding of deep learning. This dissertation studies approximation properties
of feedforward neural networks. It is divided into a theoretical analysis in classical
function spaces (Part A) and an empirical case study at the example of solving a computer
tomography inverse problem (Part B).

Function spaces are an essential tool in various mathematical fields, such as the theory
of inverse problems or PDEs. Fractional Sobolev spaces, for example, have been shown to
be a suitable image model for the theory of computed tomography. In Part A, we quantify
the optimal complexity of neural networks (measured in the number of weights and
layers) to approximate functions from classical function spaces. For sufficiently smooth ac-
tivation functions, we provide lower bounds for the number of weights for neural network
approximations in (fractional) Sobolev spaces, Besov spaces, and more. For our proofs
we make use of the concept of metric entropy and the Vapnik–Chervonenkis-dimension.
Furthermore, we develop a unifying framework for the construction of approximate parti-
tions of unity by neural networks with fairly general activation functions. Based on our
framework, we derive almost optimal upper bounds in higher-order Sobolev norms.

Part B is devoted to an empirical case study of the approximation properties of neural
networks. We investigate if deep-learning-based methods can solve noise-free inverse
problems to near-perfect accuracy. For this, we focus on a prototypical computed tomogra-
phy setup. Computed tomography allows, among other things, the non-invasive study of
the human body and is one of the most used medical imaging technologies for diagnostics.
A strategy to reduce radiation is to only sample a limited number of measurements which
turns the reconstruction task into a severely ill-posed inverse problem. We demonstrate
that an iterative end-to-end network scheme enables reconstructions close to numerical
precision, comparable to compressed sensing strategies. Apart from an in-depth analysis
of our methodology, we layout our conceptual findings. Our results confirm the reliability
of deep learning based methods for computed tomography and more broadly for solving
inverse problems.

v

Zusammenfassung in deutscher Sprache

Deep-Learning-basierte Algorithmen revolutionieren derzeit die Art und Weise, wie Com-
puter bei der Lösung anspruchsvoller Probleme, die alle Aspekte des täglichen Lebens
beeinflussen, eingesetzt werden. Dieser Wandel von regel- oder modellgetriebenen zu
datengetriebenen Herangehensweisen beginnt gerade erst seine Wirkung im wissenschaft-
lichen Rechnen zu entfalten. Immer häufiger werden Deep-Learning-basierte Algorithmen
beispielsweise erfolgreich zur Bewältigung klassisch mathematischer Probleme, wie etwa
dem Lösen inverser Probleme oder partieller Differentialgleichungen (PDGen), eingesetzt.
Trotz bahnbrechender empirischer Ergebnisse sind die theoretischen Grundlagen von
Deep Learning von einem mathematisch rigorosen Standpunkt aus noch nicht hinlänglich
verstanden. Eine noch tiefere Einsicht in die zugrunde liegenden Mechanismen könnte ein
weiterer Meilenstein zur Akzeptanz Deep-Learning-basierter Algorithmen in Anwendun-
gen mit geringer Fehlertoleranz, wie zum Beispiel in medizinischen Bildgebungsverfahren,
sein.

Statistische Lerntheorie untersucht das Lernen einer Funktion von Messungen und
beruht darauf, dass der Gesamtfehler in einen Trainings-, Generalisierungs- und Ap-
proximationsfehler zerlegt werden kann. Die Analyse der Approximationseigenschaften
von neuronalen Feedforward-Netzen ist daher entscheidend für ein tieferes Verständnis
Deep-Learning-basierter Algorithmen und Thema der vorliegenden Dissertation. Diese
Arbeit untergliedert sich in eine theoretische Analyse in klassischen Funktionenräumen
(Teil A) und eine empirische Untersuchung am Beispiel des inversen Problems der Com-
putertomographie (Teil B).

Funktionenräume stellen ein wichtiges Werkzeug in zahlreichen mathematischen For-
schungsgebieten, wie etwa der theoretischen Untersuchung inverser Probleme und PD-
Gen, dar. Bestimmte Sobolevräume reellwertiger Ordnung bieten sich beispielsweise für
die mathematische Analyse der Computertomographie an. In Teil A leiten wir die optima-
le Komplexität neuronaler Netze (gemessen in der Anzahl der Gewichte und Schichten)
für Approximationen in klassischen Funktionenräumen her. Für hinreichend glatte Akti-
vierungsfunktionen geben wir untere Komplexitätsschranken für Approximationen mit
neuronalen Netzen unter anderem in Besov- und Sobolevräumen an. Unsere Beweise
beruhen auf dem Konzept metrischer Entropie und der Vapnik–Chervonenkis-Dimension.
Des Weiteren entwickeln wir ein vereinheitlichendes Beweiskonstrukt für eine approxima-
tive Zerlegung der Eins mit neuronalen Netzen. Dieses erlaubt es nahezu optimale obere
Schranken für Approximation in Sobolevnormen verschiedenen Grades zu bestimmen.

Teil B widmet sich einer empirischen Fallstudie über die Approximationseigenschaften
neuronaler Netze. Wir untersuchen, ob Deep-Learning-basierte Methoden rauschfreie
inverse Probleme mit fast exakter Genauigkeit lösen können. Dazu betrachten wir ein
prototypisches Rekonstruktionsproblem der Computertomographie, welche unter ande-
rem die nicht-invasive Untersuchung des menschlichen Körpers ermöglicht und eine der
meistgenutzten medizinischen Bildgebungstechnologien für die Diagnostik ist. Eine Mög-
lichkeit zur Reduzierung der Strahlung ist es, nur eine begrenzte Anzahl an Messungen

vii

durchzuführen, welches die Rekonstruktionsaufgabe zu einem schlecht gestellten inver-
sen Problem macht. Wir zeigen, dass ein iteratives End-to-End Verfahren, basierend auf
neuronalen Netzen, Rekonstruktionen ermöglicht, deren numerische Genauigkeit nahe an
der Maschienengenauigkeit ist und daher vergleichbar mit Lösungen von Compressed
Sensing Methoden ist. Neben einer systematischen Analyse unserer Methodik legen wir
unsere konzeptionellen Einsichten dar. Unsere Ergebnisse bestätigen die Zuverlässigkeit
von Deep-Learning-basierten Methoden für die Computertomographie und allgemeiner
für das Lösen von inversen Problemen.

viii

Acknowledgments

This thesis and, more importantly, the beginning of my journey as a researcher up to this
milestone would not be the same without a number of people. Trying to recollect all the
acts of kindness, counseling, support, and friendship that I was allowed to experience
during the past four years fills my heart with thankfulness. How incredibly lucky was I!

I owe deep gratitude to Maximilian März, who shaped my scientific thinking with his
critical mind, filled the role of a mentor when I started this adventure, and helped me grow
from a mentee into a collaborator. As a friend, you never hesitated to provide counsel
with your clarity when I could not see clearly anymore.

In 2021, I had the pleasure to be welcomed by Klaus-Robert Müller into his group. I
would like to thank you dearly for providing help in a time of need and for agreeing to
become my “doctor father”. I always enjoyed our open conversations and hope that there
are many more to come.

Moreover, I am very grateful to Helmut Bölcskei and Philipp Grohs for kindly agreeing
to review this thesis. I feel very honored to have you as members of my doctoral committee.
Furthermore, I would like to thank Benjamin Blankertz for chairing the doctoral committee.

Collaborating with Mones Raslan was always a pleasure. Our different styles of working
complemented each other perfectly and resulted in a smoothness and efficiency that was
simply fun. Working together with such a friend brightens even the most intense workdays.
I thank you for that. I am also grateful to Martin Genzel, Jan Macdonald, and Maximilian
März for bringing me on board of the “near-exact recovery” project. Again, it was a
pleasure working together with friends. Kind regards go to Philipp Petersen, a co-author
of my very first paper, for fruitful discussions and suggestions. I also wish to express my
gratitude to Martin Eigel and Cosmas Heiß for the pleasant collaboration. Furthermore, I
would like to thank all members of the (former) Applied Functional Analysis Group at TU
Berlin, we were a great team.

During six instructive months at AWS, I was greeted with utmost hospitality and
helpfulness by my former team. Here, I would like to thank my colleagues Oliver Borchert,
Jan Gasthaus, Tim Januschowski, Shubham Kapoor, Richard Kurle, and Huibin Shen for
their support. I am especially indebted to Jan Gasthaus, who gave me a chance in industry,
when most of my publications were more of a theoretical nature.

Looking back, I realize that there were many great people who guided me during my
studies and inspired me with their love for science. I would like to call out a few of
them by name: My former mathematics teacher, Dr. Clemens Janz, encouraged me to
study mathematics; Friedrich Philipp brought me closer to research with a demanding but
manageable Bachelor thesis project; Benjamin Blankertz motivated me with his enthusiasm
and patience in the BCI project; Klaus-Robert Müller taught me the foundations of machine
learning.

Johannes Hugger (a.k.a., Hugo), thank you for initiating our great friendship by choos-
ing me as your Analysis 2 homework partner. Knowing that you were also working
late, made nightly CoMa programming sessions bearable. I was always inspired by our

ix

comradely and never seriously meant competition.
Finally, I am grateful to Martin Genzel, Mones Raslan, and, in particular, Maximilian

März for proofreading this thesis.
Furthermore, I acknowledge support from the Research Training Group “Differential

Equation- and Data-driven Models in Life Sciences and Fluid Dynamics: An Interdis-
ciplinary Research Training Group (DAEDALUS)” (GRK 2433) funded by the German
Research Foundation (DFG).

I am also thankful to a number of people who are not directly tied to my research but
whose contribution is surely not less important: Ronald Kakolewicz taught me how to
swim properly and still turns a blind eye on me coming too late to practice regularly.
Thank you for continually getting the best out of me in training. I would also like to thank
Jian Chen for being a great cycling buddy and friend. I am looking forward to our next
tour. A big shout-out goes to my dear friends Alvaro Elze, Raphael Muñoz, and Philipp
Thoma! I am happy to have you in my life. Additionally, I would like to thank all friends
of mine who were not yet specifically mentioned by name for being a part of my life.

I am profoundly grateful to my family for their unconditional love. My grandparents’
dedication and patience gave me the tools to pursue my goals. And with my father’s
continuous support and trust, I could make them real. I am thankful to my mother for
always believing in me. Moreover, I am grateful to have such a great brother at my side.
Most of all, I owe my dearest gratitude to Ngoc Dung: For your patience, your advice,
and your love. Everyday, I am deeply thankful for your shining presence in my life.

x

Contents

Preface v
Abstract . v
Zusammenfassung in deutscher Sprache . vii
Acknowledgments . ix

List of Tables xiii

List of Figures xiii

List of Abbreviations xv

1 Introduction 1

2 Part A: Approximation Theory for Deep Neural Networks 7
2.1 Neural Networks: Terminology . 11
2.2 Lower Bounds . 13

2.2.1 Encodable Weights and General Activation Functions 13
2.2.2 Unconstrained Weights, Fixed Architecture, and ReLU Activation

Function . 17
2.3 Upper Bounds for General Activation Functions in Sobolev Spaces 19

2.3.1 Ingredient I: (Approximate) Partition of Unity 20
2.3.2 Ingredient II: Approximation of Polynomials 23
2.3.3 Main Results Based on Ingredients I & II 26

2.4 Discussion . 31
2.5 Limitations and Future Work . 33

3 Part B: Near-Exact Recovery for Tomographic Inverse Problems via Deep
Learning 35
3.1 AAPM Challenge Setup . 37
3.2 Methodology . 38
3.3 Results and Analysis . 43
3.4 Discussion, Limitations, and Future Work 50

4 Conclusion and Outlook 53

A Proofs for Part A 57
A.1 Notation and Auxiliary Results . 57
A.2 Sobolev Spaces . 58

A.2.1 Averaged Taylor Polynomial . 59
A.2.2 Product and Composition Estimates 63

A.3 Proof of Theorem 2.10 (Lower Bounds Based on the VC-Dimension) 65

xi

A.4 Neural Network Calculus . 70
A.4.1 Concatenation and Parallelization 70
A.4.2 Approximate Monomials and Multiplication 71

A.5 Proof of Proposition 2.21 (Upper Bounds) 77
A.5.1 Approximate Partition of Unity . 78
A.5.2 Approximation by Localized Polynomials 82
A.5.3 Approximation of Localized Polynomials by Neural Networks . . 87
A.5.4 Putting Everything Together . 93

A.6 Proof of Theorem 2.22 (Encodability of the Weights) 95
A.7 PU-properties of the Activation Functions from Table 2.1 96

B Exact AAPM Challenge Setup 99

Bibliography 101

xii

List of Tables

2.1 Overview of upper bounds . 30
2.2 Overview of proofs . 31
2.3 Overview of results . 32

3.1 Average RMSE scores for further evaluation . 43

List of Figures

2.1 Overall error decomposition . 8
2.2 Smooth dichotomy . 18
2.3 Partitions of unity . 25

3.1 AAPM challenge data . 37
3.2 Fanbeam geometry . 39
3.3 UNet architecture . 41
3.4 Constructing an iterative scheme . 42
3.5 Reconstruction results . 44
3.6 Consistently accurate? . 44
3.7 Data consistency . 46
3.8 The deeper the better? . 47
3.9 A look inside . 47
3.10 Lambda training trajectory . 48
3.11 The power of pre-training . 49
3.12 Results for LoDoPaB CT . 49

B.1 Loss curves and network training . 100

xiii

List of Abbreviations

CT computed tomography

ELU exponential linear unit

FBP filtered backprojection

LoDoPaB low-dose parallel beam

LPD learned primal-dual

PDE partial differential equation

PU partition of unity

ReLU rectified linear unit

RePU rectified power unit

RMSE root-mean-square-error

TV total variation

WCRMSE worst-case RMSE

xv

1

Introduction

In recent years, deep learning methods have been successfully applied to many problems
of the natural sciences [Bal18; SB18; NTMC20; Kei+21; Unk+21a]. Prominent examples of
such scientific machine learning are the development of efficient solution strategies for inverse
problems [AMÖS19; Ong+20] and partial differential equations (PDEs) [BHJK20]. But de-
spite unprecedented empirical performance in numerous practical scenarios, reservations
remain about the reliability of these methods in safety-critical applications [ARPAH20;
Kno+20; Muc+21; SLBP21].

The study of the approximation power of deep neural networks in various function
spaces, typically coined expressivity, is one actively researched attempt in the mathematical
community to derive an improved understanding of the outstanding effectiveness of deep
neural networks. Function spaces characterized by different smoothness properties are
ubiquitous in modern mathematics and physics. Sobolev spaces for example, defined by
the existence of weak derivatives, build the foundation for the theory of PDEs [Ada75].
Naturally, they also play a major role for the mathematical analysis of inverse problems
that are often formulated via partial derivatives [Bel12] or integral equations [Asa11].

In this thesis, we aim at solidifying the understanding of the expressivity of neural
networks from a theoretical and empirical perspective. The contribution of this thesis is
two-fold:

A Derivation of complexity bounds for neural networks to approximate functions from
different smoothness spaces.

B Providing empirical evidence that deep-learning-based methods solve noise-free
computed tomography (CT) inverse problems to near-perfect accuracy.

Part A: Approximation Theory for Deep Neural Networks

In this part we relate the complexity of neural networks (measured in the number of
non-zero weights) to their approximation power in diverse classical functions spaces and
with respect to different distance measures. More formally, for a function space C and
denoting the number of nonzero weights of a neural network Φ by M(Φ), we tackle the
following task:

Let ε > 0 and f ∈ C. We denote by Φε, f a neural network with the minimal number
of weights such that ∥ f − Φε, f ∥ ≤ ε. Find the worst case complexity

WC(ε) := sup
f∈C

M(Φε, f).

1

2 Chapter 1 Introduction

We note that WC(ε) is the worst-case complexity in the sense that it characterizes the neces-
sary and sufficient complexity uniformly over C. In all considered settings WC(ε) → ∞ as
ε → 0 and the asymptotic speed typically depends on properties of the activation function
and the weights. For the weights we consider two scenarios: Firstly, weights representable
by a bit-string of moderate length – so called encodable weights [PV18; BGKP19; GPEB19]
and, secondly, the case of unconstrained weights. We approach this problem by providing
upper and lower bounds for WC(ε). Upper bounds are derived via explicit network
constructions (for each ε and f) and complemented by lower bounds based on information
theoretic concepts.

We make the following contributions:

(i) We transfer lower bounds for the ε-entropy Hε(C,D) from classical functional analy-
sis results to lower bounds on the number of encodable weights. These bounds hold with
minimal requirements on the activation function and cover for example (fractional)
Sobolev, Besov, Hölder, Triebel-Lizorkin, or Zygmund spaces [Tri78; ET96].

(ii) For the case of unconstrained weights, we provide lower bounds for approximations in
Sobolev spaces based on a VC-dimension argument for piecewise-linear activation
functions.

(iii) We derive almost optimal upper bounds in Sobolev spaces for neural networks with
a wide class of activation functions and encodable weights. For this, we build
an abstract, unifying framework which allows to approximate localized Taylor
polynomials by neural networks.

(iv) We observe in both, lower and upper bounds, a trade-off between the complexity
of the approximating neural networks and the order of the approximation norm:
Approximations in stronger norms require more weights.

However, the practical relevance of these results needs to be critically reflected. As a
motivation for the second part of this thesis, we mention two aspects that prohibit a direct
transfer of the above results to applications in the following.

In many real-world scenarios the exact mathematical description of the relevant signal
class is highly problem-dependent and notoriously hard to accomplish. Function spaces
provide a convenient mathematical construct, that allows a precise analysis, but often only
capture overly broad characteristics of the data distribution. Therefore, approximation
bounds are generally too pessimistic since the specific structure of the data is not exploited
in the analysis. Furthermore, generalization and optimization related components of the
function approximation problem are ignored in classical approximation analysis. Recent
results, however, point to strong ties between network size (complexity) and optimization
together with generalization [BMR21]. To address these issues we conduct an empirical
simulation based study for a specific inverse problem in Part B.

Parallel to our theoretical setup, there are many applications where neural networks are
used to approximate (discretized) functions from function spaces [EY18; SS18; UVL18].
In contrast, we focus in Part B on learning the solution operator of an inverse problem
that in the continuous setting maps one function space to another. Approximation results for
neural networks in the operator regime are an interesting and developing field of research
[CC95; Kov+21; LMK22].

Chapter 1 Introduction 3

Part B: Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning

CT, which allows the non-invasive study of internal structures of objects, is one of the
most frequently used medical imaging methods for diagnostics. While the mathematical
foundation has already been laid by Johann Radon in 1917 [Rad17], CT is a continuously
developing field of research at the intersection of mathematics, engineering and computer
science [Nat01; Buz11]. Spectacular successes in computer vision have lately moved deep
learning into the center of attention [Lit+17].

The continuous version of the tomographic measurement operator F is based on computing
line integrals:

Fx0(s, φ) =
∫

L(s,φ)
x0(x, y)d(x, y),

where x0 is the unknown image and L(s, φ) denotes a line, i.e., φ is the rotation angle
and s encodes the sensor position [Fes17]. The task is the inverse problem of reconstructing
the image x0 from the measurements Fx0. Natterer [Nat80; Nat01] argues that certain
fractional Sobolev functions (Hα with α close to 1/2), which allow (smoothed for α >= 1/2)
jumps along smooth curves, are a suitable model for the solution space of images and
shows that the operator F : Hα → Hα+1/2 has a bounded inverse.

Sparse-view CT aims at reducing radiation exposure for patients by sampling only a
limited number of measurements. This leads to a severely ill-posed inverse problem
causing conventional reconstruction methods like the widely used filtered backprojection
(FBP) to introduce serious artifacts. In contrast, sparse-regularization–based algorithms
like total variation (TV) minimization, where the solution is given by

arg minx∥∇x∥1 such that Fx = Fx0,

provide perfect recovery from incomplete, noiseless measurements.
The study of this desirable property was popularized by the field of compressed sensing

[CRT06; Don06; FR13]. Indeed, high precision in the noiseless, undersampled regime can
be used to benchmark reconstruction methods and is a driving factor for their acceptance
in practice. Therefore, an important open research question for the applicability of deep
learning, that we address in this part, is the following:

Can deep-learning-based schemes achieve such (near-)perfect solutions of noise-free
inverse problems, comparable to model-based algorithms like TV minimization?

In this regard, Sidky et al. [SLBP21] have recently demonstrated that post-processing of
FBP images with the prominent UNet-architecture may not yield satisfactory recovery
precision in sparse-view CT. This observation gave rise to the recent AAPM Grand Chal-
lenge “Deep Learning for Inverse Problems: Sparse-View Computed Tomography Image
Reconstruction”, with the goal “to identify the state-of-the-art in solving the CT inverse problem
with data-driven techniques” [Sid+21].

This thesis makes first progress in this direction, building on the winning submission to
the AAPM challenge. Our main contributions are as follows:

(i) We show that end-to-end neural networks can achieve near-perfect accuracy on the
prescribed CT reconstruction task. This underscores the reliability of deep-learning-
based solvers for inverse problems, in the sense that they can match the precision of
a widely-accepted benchmark (TV minimization) in the noiseless limit.

4 Chapter 1 Introduction

(ii) A distinctive feature of our approach is that only very few (five) forward operator
evaluations need to be incorporated to achieve near-perfect recovery. This stands in
stark contrast to model-based counterparts, which typically require hundreds or
thousands of iterations to converge (resulting in significantly increased computation
times).

(iii) We give a detailed analysis of the solution strategy, which has significantly outper-
formed the runner-up teams. Although the challenge amounts to a comparison with
24 competing methods, we also explicitly demonstrate the superiority over several
popular baselines in this work. In addition, we show the effectiveness of our learning
pipeline beyond synthetically generated image data: The proposed neural network
scheme produces state-of-the-art results on the LoDoPaB CT dataset [Leu+21], cur-
rently ranked first in the public leaderboard.

(iv) We distill several insights of broader interest and conceptual value. Most notably,
we found that simple building blocks (e.g., end-to-end training, alternation between
learned and model-based components, etc.) and a careful pre-training strategy already
allow for remarkable performance gains.

List of Publications

The results of this dissertation have been previously published by the author and his
collaborators. The author would like to thank all co-authors of the works included in this
thesis for agreeing to borrowing ideas, figures, and results. This dissertation is based on
the following four publications1:

[GKP20] I. Gühring, G. Kutyniok, and P. Petersen. Error bounds for approxima-
tions with deep ReLU neural networks in W s,p norms. Analysis and
Applications, 18.05 (2020), 803–859.

[GR21] I. Gühring and M. Raslan. Approximation rates for neural networks
with encodable weights in smoothness spaces. Neural Networks, 134
(2021), 107–130.

[GGMM22] M. Genzel, I. Gühring, J. Macdonald, and M. März. Near-Exact Recovery
for Tomographic Inverse Problems via Deep Learning. Proceedings of
the 39th International Conference on Machine Learning (ICML), Vol. 162,
2022, 7368–7381.

[GRK22] I. Gühring, M. Raslan, and G. Kutyniok. Expressivity of Deep Neural
Networks. Mathematical Aspects of Deep Learning. Ed. by P. Grohs and G.
Kutyniok. Cambridge: Cambridge University Press, 2022, 149-199.

Further publications by the author that are not directly included in this thesis are:

[HGE21] C. Heiß, I. Gühring, and M. Eigel. A neural multilevel method for high-
dimensional parametric PDEs. NeurIPS 2021 workshop on The Symbiosis
of Deep Learning and Differential Equations, 2021.

1[GGMM22]: A version of this article has also been published at the NeurIPS 2021 workshop on Deep Learning
and Inverse Problems. See [GGMM21].

Chapter 1 Introduction 5

Organization of this Thesis

Chapter 2 is based on [GKP20; GR21; GRK22] and presents and discusses the results
of Part A. We start by introducing the necessary terminology for neural networks in
Section 2.1 and continue by proving lower complexity bounds in Section 2.2. Lower
bounds for neural networks with encodable weights for very general function spaces and
norms can be found in Section 2.2.1. Our results for networks with arbitrary complex
weights are presented in Section 2.2.2. To complement the lower bounds, we derive almost
optimal upper approximation bounds for neural networks with fairly general activation
functions in Section 2.3. In more detail, we describe the necessary ingredients for these
results in Section 2.3.1 and 2.3.2 before outlining the main results as well as the underlying
proof strategy in Section 2.3.3. We discuss our results in Section 2.4 and point out some
limitations and future work in Section 2.5.

To not interrupt the flow of reading, the proofs of the two main results, Proposition 2.21
and Theorem 2.22, can be found in Appendix A.5 and Appendix A.6, respectively. Basic
facts about Sobolev spaces and basic operations one can perform with neural networks
have been deferred to Appendices A.1-A.4, respectively. Since our upper bounds depend
on abstract properties of the activation function, we provide an analysis of these properties
for many practically used activation functions in Appendix A.7.

Chapter 3 is based on [GGMM21] and devoted to Part B. Section 3.1 gives an overview
of the AAPM challenge setup and the training/test-data. Section 3.2 provides a conceptual
description of our learning pipeline, while more details on the implementation can be
found in Appendix B. Our results and several accompanying experiments are reported in
Section 3.3. A discussion of our findings and their limitations is provided in Section 3.4.

Chapter 4 provides a meta-level discussion focusing on connections between Part A and
Part B, limitations and future directions of research.

2

Part A: Approximation Theory for Deep
Neural Networks

This chapter is based on the three works [GKP20; GR21; GRK22] on approximation theory.
We start with embedding approximation theory in the greater context of statistical learning
theory and proceed by laying out the rich history of this active field of research. The main
results for lower and upper complexity bounds are presented in the associated sections.

While for many aspects of the success of deep learning a mathematically fully rigor-
ous theory is not yet available [BMR21; BGKP21; Nak21], approximation properties1 of
neural networks have been studied since around 1960 and are relatively well understood.
Statistical learning theory formalizes the problem of approximating - in this context also
called learning - a function from a finite set of samples. Next to statistical and algorithmic
considerations, approximation theory plays a major role for the analysis of statistical
learning problems. We will clarify this in the following by introducing some fundamental
notions.2

Assume that X is an input space and Y a target space, L : Y ×Y → [0, ∞] is a loss function
and P(X ,Y) a (usually unknown) probability distribution on some σ-algebra of X ×Y . We
then aim at finding a minimizer of the risk functional3

R : YX → [0, ∞], f 7→
∫
X×Y

L (f (x), y)dP(X ,Y)(x, y),

induced by L and P(X ,Y) (where YX denotes the set of all measurable functions from X
to Y). That means we are looking for a function f̂ with

f̂ ∈ argmin
{
R(f) : f ∈ YX

}
.

In the overwhelming majority of practical applications, however, this optimization prob-
lem turns out to be infeasible due to three reasons:

(i) The set YX is simply too large, such that one usually fixes a priori some hypothesis
class H ⊂ YX and instead searches for

f̂H ∈ argmin {R(f) : f ∈ H} .

In the context of deep learning, the set H consists of deep neural networks, which we

1Throughout the thesis, we will interchangeably use the term approximation theory and expressivity theory.
2[CZ07] provides a concise introduction to statistical learning theory from the point of view of approximation
theory.

3With the convention that R(f) = ∞ if the integral is not well-defined.

7

8 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

YX

H

f̂ ∗H,S
f̂H,S

f̂H

Training Error

(Optimization)

Estimation Error

(Generalization)

f̂

Approximation Error

(Expressivity)

Figure 2.1: Overall error decomposition. Decomposition of the overall error into training
error, estimation error and approximation error

will introduce in Section 2.1.

(ii) Since P(X ,Y) is unknown, one cannot compute the risk of a given function f . Instead,
we are given a training set S = ((xi, yi))

m
i=1, which consists of m ∈ N i.i.d. samples

drawn from X × Y with respect to P(X ,Y). Thus, we can only hope to find the
minimizer of the empirical risk RS (f) = 1

m ∑m
i=1 L(f (xi), yi)) given by

f̂H,S ∈ argmin {RS (f) : f ∈ H} .

(iii) In the case of deep learning one needs to solve a complicated non-convex optimiza-
tion problem to find f̂H,S , which is called training and can only be done approxi-
mately.

Denoting by f̂ ∗H,S ∈ H the approximative solution, the overall error can be decomposed
as follows (see Figure 2.1 for a visualization)∣∣R(f̂

)
−R

(
f̂ ∗H,S

)∣∣ ≤ ∣∣R(f̂ ∗H,S
)
−R

(
f̂H,S

)∣∣︸ ︷︷ ︸
training error

+
∣∣R(f̂H,S

)
−R

(
f̂H
)∣∣︸ ︷︷ ︸

estimation error

+
∣∣R(f̂H

)
−R

(
f̂
)∣∣︸ ︷︷ ︸

approximation error

.

The results discussed in this thesis deal with estimating the approximation error if the
set H consists of deep neural networks. However, practically all of the results presented
below ignore the dependence on the unknown probability distribution P(X ,Y). This can
be justified by different strategies (see also [CZ07]) from which we will depict one here.
Under suitable conditions it is possible to bound the approximation error by∣∣R(f̂H

)
−R

(
f̂
)∣∣ ≤ error

(
f̂H − f̂

)
,

where error(·) is an expression (e.g. the ∥ · ∥∞ norm) that is independent of P(X ,Y). As an
example, assume that Y ⊂ R, and the loss function L(·, y) is Lipschitz continuous for all

Chapter 2 Part A: Approximation Theory for Deep Neural Networks 9

y ∈ Y with uniform Lipschitz constant Lip(L). We then get∣∣R(f̂H
)
−R

(
f̂
)∣∣ ≤ Lip(L) ·

∥∥ f̂H − f̂
∥∥

∞, (2.1)

and hence an upper bound of ∥ f̂H − f̂ ∥∞ can be used to upper bound the approximation
error.

Expressivity of Neural Networks in Classical Norms

Many attempts at unraveling the extreme efficiency of deep neural networks have been
made in the context of approximation theory. The universal approximation theorem (see
[Cyb89; Fun89; HSW89; Hor91; LLPS93]), which is the starting point of approximation
theory of neural networks, states:

For every f̂ ∈ C(K) with K ⊂ Rd compact and every ε > 0 there exists (under the
assumption that the activation function is continuous and not a polynomial) a neural
network f̂H,ε such that ∥ f̂H,ε − f̂ ∥∞ ≤ ε.

Utilizing that neural networks are universal approximators, we can now see from Equa-
tion (2.1) that for H = C(K) the approximation error can be made arbitrarily small. In
practice, we are faced with a finite memory and computation budget, which shows the
importance of results similar to the theorem above that additionally quantify the complex-
ity of f̂H. The existence of an activation function such that restricted width and depth
networks are universal is shown in [MP99] and an explicit activation function based on the
countability of the rational numbers with that property is constructed in [GI18]. For ReLU
(rectified linear unit) networks with restricted width and unbounded depth universality is
established in [KL20].

The necessary and sufficient complexity of (higher-order) sigmoidal neural network
approximations for (piecewise) smooth functions has been studied in [Bar94; Mha96;
BGKP19]4. The results in [Mha96] for function approximation in Lp are derived by
approximating global (not localized) polynomials with degree increasing concurrently
with the approximation accuracy. Our results include these approximation rates as a
special case based on an alternative proof strategy. The ansatz in [Mha96] can be used for
C∞ activation functions with non-vanishing derivatives at some point to obtain network
approximations with constant depth and increasing width. Vanishing derivatives of the
activation function need to be compensated by increasing depth in order to construct
polynomials of increasing degree. This approach is utilized in [TLY19; LTY20], where
approximations of weighted L2-spaces by neural networks with the rectified power unit
(RePU) activation function are derived5. The function spaces considered therein can be
efficiently described by non-localized (Jacobi or Chebychev) polynomials. Complexity
bounds for ReLU neural networks based on localized polynomial approximation can be
found in [Yar17; PV18; OK19; Suz19; Sch20]. The upper bounds in [Yar17, Thm. 1]
are covered by our framework as a special case. In [PV18], localization is achieved by
approximating characteristic functions. Parts of our proof framework are general enough

4In [OK19] rates for locally quadratic activation functions are formulated. However, in the crucial [OK19,
Lemma A.3.(d)], there is, in its present form, a gap in the author’s reasoning.

5which are able to represent polynomials with zero error

10 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

to include this approach but we focus on different function classes. Localization by means
of wavelet approximations on manifolds is utilized in [SCC18] and by means of general
affine systems in [BGKP19; GPEB19]. The approximation error in all of these papers is
measured with respect to Lp-norms. Only the papers [PV18; BGKP19; GPEB19] consider
the restriction of encodable6 weights.

Neural Networks and Sobolev Spaces

Expressivity results have so far mainly focused on Lp-type function classes, for p ∈ [1, ∞].
However, recent advances in applications of deep neural networks for inverse problems
and PDEs have shown the pressing need to derive a comprehensive understanding of the
expressive power of deep neural networks with respect to Sobolev-regular functions. As a
motivation for our results, we described the connection of Sobolev spaces to the theory of
inverse problems, in particular to the CT inverse problem, in Chapter 1. Here, we will put
more emphasis on the connection to elliptic PDEs.

Spaces of functions that admit generalized derivatives fulfilling suitable integrability
properties, so-called Sobolev spaces, are a crucial concept in modern theory of PDEs (see
e.g. [Ada75; Eva99; Rou13]). Given some domain Ω ⊂ Rd, integrability order 1 ≤ p < ∞,
and regularity n ∈ N, the Sobolev space Wn,p(Ω) is defined as

Wn,p(Ω) :=
{

f : Ω → R :
∫

Ω
|Dα f |pdx < ∞ for all α ∈ Nd

0 with |α| ≤ n
}

,

and equipped with the norm

∥ f ∥Wn,p(Ω) :=

(
∑

0≤|α|≤n

∫
Ω
|Dα f |pdx

)1/p

.

To study properties of PDEs using functional analytic tools, the variational formulation of a
PDE is derived. For this, a differential equation is reformulated via a differential operator
mapping one function space to another. For a wide range of elliptic PDEs the appropriate
spaces in this formulation are Sobolev spaces.

Motivated by the performance of deep learning-based solutions in classical machine
learning tasks, neural networks are now also applied for the approximative solution
of PDEs. We refer to [BHJK20] for an introduction to the field of deep learning-based
methods for PDEs and mention [RTML12; Unk+21b; Sau+22; WMS22] as an incomplete
list of concrete applications. In the following, we describe one of these methods in greater
detail.

In [EY18] the authors present their meshfree Deep Ritz method for approximating so-
lutions of potentially high-dimensional PDEs where the solution u can be expressed as
the minimum u = arg minv∈V J(v) of a functional J : V → R encoding the differential
operator and external forces in the PDE. In this setting, V is typically a Sobolev space with
regularity n = 1. Classical approaches compute an approximation uh to the solution u by
solving the minimization problem over a finite dimensional hypothesis space Vh (instead
of V), where Vh is for example a finite element space with underlying mesh of fineness
h > 0. Standard results in the literature relate the approximation error ∥uh − u∥V to the

6i.e., representable by a bit-string of moderate length. See Section 2.1 for a formal definition.

2.1 Neural Networks: Terminology 11

fineness h of the mesh. In case of the Deep Ritz method, the hypothesis space is a set of
functions parameterized by the weights w of a neural network NPDE. This leads to the
following optimization problem

w∗ = arg minw J(NPDE(w)),

where NPDE(w∗) yields an approximation to the solution u. To derive error bounds relating
the network complexity to the approximation error ∥NPDE(w∗)− u∥V , similar as in the
classical setting, one needs to study the expressivity of neural networks with respect to
Sobolev-regular norms.

The theoretical foundation for approximating a function with a neural network in
Sobolev type norms was already given in a less known version of the universal approxima-
tion theorem by Hornik in [Hor91, Thm. 3]. In particular, it was shown that if the activation
function ϱ is k-times continuously differentiable, non-constant, and bounded, then any
k-times continuously differentiable function f and its derivatives up to order k can be
uniformly approximated by a shallow neural network on compact sets. In [COJSP17], it
was shown that the theorem also holds for shallow ReLU networks if k = 1. Theorem 3 in
[Hor91] was also used in [SS18] to show the existence of a shallow network approximating
solutions of the PDEs considered in that paper. Note though that in the above results
only shallow networks are considered and it is not clear how the number of weights and
neurons relates to the approximation error. In [OPS20] approximation rates were derived
by re-approximating finite elements. None of these papers examine neural networks with
encodable7 weights.

2.1 Neural Networks: Terminology

We start by formally introducing neural networks closely sticking to the notions introduced
in [PV18]. In the following, we will distinguish between a neural network as a structured set
of weights and the associated function implemented by the network, called its realization.
Towards this goal, let us fix numbers L, d = N0, N1, . . . , NL ∈ N.

• A family Φ =
(
(Aℓ, bℓ)

)L
ℓ=1 of matrix-vector tuples of the form Aℓ ∈ RNℓ,Nℓ−1 and

bℓ ∈ RNℓ is called neural network.

• We refer to the entries of Aℓ, bℓ as the weights of Φ and call

M(Φ) :=
L

∑
ℓ=1

(∥Aℓ∥0 + ∥bℓ∥0)

its number of nonzero weights, L = L(Φ) its number of layers and we call Nℓ the number
of neurons in layer ℓ.

• We denote by d := N0 the input dimension of Φ and by NL the output dimension.

• Moreover, we set

∥Φ∥max := max
ℓ=1,...,L

max
i=1,...,Nℓ

j=1,...,Nℓ−1

max{|(Aℓ)i,j|, |(bℓ)i|},

7See Footnote 6 and Section 2.1 for a formal definition.

12 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

which is the maximum absolute value of all weights.

• For defining the realization of a network Φ =
(
(Aℓ, bℓ)

)L
ℓ=1, we additionally fix

an activation function ϱ : R → R and a set Ω ⊂ Rd. The realization of the network
Φ =

(
(Aℓ, bℓ)

)L
ℓ=1 is the function

Rϱ (Φ) : Ω → RNL , x 7→ xL ,

where xL results from the following scheme:

x0 := x,
xℓ := ϱ(Aℓ xℓ−1 + bℓ), for ℓ = 1, . . . , L − 1,
xL := AL xL−1 + bL,

and where ϱ acts componentwise.

• We denote by NN d
ϱ the set of all ϱ-realizations of neural networks with input dimension

d and output dimension 1.8

• A neural network architecture9 A prescribes the number of layers, neurons per layer
and which weights in each layer may be nonzero. For a specific choice of weights w ∈
RM(A), we denote by A(w) the neural network with architecture A and weights w.

Encodability

This information-theoretic viewpoint has already been examined in [PV18; BGKP19;
GPEB19] and is motivated by the observation that on a computer only weights of limited
complexity (w.r.t. their bit-length) can be stored 10. We call weights that can be encoded
by bit-strings with length logarithmically growing in 1/ε, where ε is the approximation
accuracy, encodable.

To make the notion of encodability more precise, we first introduce coding schemes
(see [PV18]): A coding scheme (for real numbers) is a sequence B = (Bℓ)ℓ∈N of maps
Bℓ : {0, 1}ℓ → R. Now we define sets of neural networks with weights encodable by a
coding scheme. Given an arbitrary coding scheme B = (Bℓ)ℓ∈N, and d ∈ N, C0, ε, M > 0,
we denote the set of all neural networks Φ with d-dimensional input, one-dimensional
output and at most M nonzero weights such that each nonzero weight of Φ is contained in
Range(B⌈C0 log2(1/ε)⌉) by

NN B
M,⌈C0 log2(1/ε)⌉,d. (2.2)

Our Settings

Neural network approximation rates for a function space C can be studied in different
scenarios that generally require different proof strategies. In the following, we present

8In the following we will denote by (ϱ-)neural networks both neural networks and their corresponding
realizations as long it is clear from the context what is meant.

9A mathematically more precise definition is given in [GKP20, Definition 2.3].
10Encodable weights can still not be stored on a computer with a fixed finite bit-length (e.g. 64 bits), but for

each ε > 0 there exists a finite bit-length such that all weights can be stored.

2.2 Lower Bounds 13

some distinctions that are relevant for our study:

• Fixed vs. f -adaptive network architecture: For ε > 0, we call the network architecture
fixed, if the same network architecture is used for all approximating networks {Φε, f :
f ∈ C} and f -adaptive if the architecture is allowed to depend on the approximated
function f . Requiring a fixed architecture is more restrictive but closer to how neural
networks are used in practice since the architecture is generally chosen before the
training.

• Encodable vs. unconstrained weights: We study neural networks with encodable weights
and with weights of unlimited memory requirements (unconstrained weights). Encod-
able weights are more realistic since in practice neural networks weights need to be
stored on a computer with finite memory.

Combining the above categorizations results in four distinct scenarios which are inves-
tigated to different extents and for different classes of activation functions in this thesis.
However, in the next remark, we observe a (trivial) connection between the above settings
which allows to transfer bounds from one setting to the other.

Remark 2.1 Lower bounds for less restrictive assumptions (e.g. f -adaptive architectures
with unconstrained weights) directly yield (potentially suboptimal) lower bounds for
more restrictive assumptions (e.g. fixed architectures with unconstrained or encodable
weights). Conversely, upper bounds for more restrictive assumptions yield (potentially
suboptimal) upper bounds for less restrictive assumptions.

2.2 Lower Bounds

In this section, we investigate the necessary complexity of neural network approximations.
More mathematically, for a function space C and activation function ϱ : R → R, we
consider the following problem:

Let ε > 0 and f ∈ C. We denote by Φε, f a neural network with the minimal number
of weights such that ∥ f − Rϱ(Φε, f)∥ ≤ ε. Find Mε ∈ N (as large as possible) such
that sup f∈C M(Φε, f) ≥ Mε.

In Section 2.2.1, we derive results for neural networks with encodable weights, very
general activation functions, and fixed as well as f -adaptive architectures. In Section 2.2.2,
we study the case with unconstrained weights, the ReLU activation function and fixed
architecture.

2.2.1 Encodable Weights and General Activation Functions

In this section, we derive lower bounds on the necessary number of nonzero, encodable
weights of neural network with fixed and f -adaptive architectures. The considered
function spaces include a wide variety of classical smoothness spaces and the accuracy is
measured in different smoothness norms. Our result applies to every activation function
that is sufficiently smooth to be considered in these norms. We note that the proof of
our result is essentially an abstract version of the proof of [PV18, Theorem 4.2]. After
encouragement of one of the authors of [PV18] and after studying the paper more closely,

14 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

we noticed that it is possible to consider the proof strategy of [PV18, Theorem 4.2] in a
more abstract setting which we will outline below. Throughout this section (unless stated
otherwise) we fix some d ∈ N, some domain Ω ⊂ Rd and two normed spaces C,D of
(equivalence classes of) functions defined on Ω with values in R. Additionally, we assume
that C ⊂ D.

First of all, we need the notion of the minimax code length Lε(C,D) of C with respect to
D. The minimax code length describes the uniform description complexity of the set
{ f ∈ C : ∥ f ∥C ≤ 1} in terms of the number of nonzero bits necessary to encode every
f with distortion at most ε in D. It can be directly related to approximation capabilities
of arbitrary computing schemes and is defined as follows (see also [PV18, Definition
B.2]):

Definition 2.2 (Minimax Code Length) Let ℓ ∈ N. By Eℓ :=
{

E : C → {0, 1}ℓ
}

we
denote the set of binary encoders mapping elements of C to bit strings of length ℓ, and
by Dℓ := {D : {0, 1}ℓ → D} the set of binary decoders mapping bit-strings of length
ℓ into D. For ε > 0, we define the minimax code length by

Lε(C,D) := min

{
ℓ ∈ N : ∃(Eℓ, Dℓ) ∈ Eℓ ×Dℓ : sup

f∈C :∥ f ∥C≤1
∥Dℓ(Eℓ(f))− f ∥D ≤ ε

}
.

The next observation demonstrates in the context of neural networks how the minimax
code length can be employed to derive lower bounds for approximations with fixed
architectures.

Observation 2.3. Let ε > 0 and ϱ : R → R such that NN d
ϱ ⊂ D. If A is a neural network

architecture with M unspecified nonzero weights11 (but fixed number of layers, neurons and
position of nonzero weights) such that for each f ∈ C with ∥ f ∥C ≤ 1 there is a set of weights
w1, . . . , wM, where each weight can be encoded by at most b ∈ N bits and ∥Rϱ(A(w1, . . . , wM))−
f ∥D ≤ ε, then

M ≥ Lε(C,D)/b. (2.3)

Mapping f ∈ C to the bit representation of the M weights can be viewed as an encoder, and
mapping the encoded weights to Rϱ(A(w1, . . . , wM)) acts as a decoder with bit length ℓ = Mb,
which shows the claim. This in particular holds true, if b ≤ C log2(1/ε) which is the focus of this
thesis.

In the following, we exploit this strategy to show that the same bound actually holds
true, if we allow for the architecture to depend on the function to be approximated. That
means, for each f ∈ C the number of layers, neurons and position of M nonzero encodable
weights (and the weights themselves) may change but need to be encoded. The next
lemma (shown in [PV18, Lemma B.4] under the additional restriction12 that ϱ(0) = 0)
shows the number of bits needed to encode this information.
11Or any computation scheme that takes as input M parameters.
12The lemma is proven by first noting that a network with arbitrary number of neurons and layers, but M

non-zero weights, can be replaced by a network with the same number of non-zero weights, but number
of neurons and layers bounded by M + 1. This can be done by removing neurons that do not contribute
to the next layer. This strategy (see also [BGKP19, Proposition 3.6]) allows us to drop the assumption that
ϱ(0) = 0 from [PV18, Lemma B.4].

2.2 Lower Bounds 15

Lemma 2.4 Let M, K ∈ N, and let B be an encoding scheme for real numbers and ϱ : R →
R an activation function. There is a constant C = C(d), such that there is an injective map
Γ : {Rϱ(Φ) : Φ ∈ NN B

M,K,d} → {0, 1}CM(K+⌈log2 M⌉).

To make the main statement of this section mathematically more precise, we introduce
some further notation.

Definition 2.5 Let C0 > 0 be fixed. Additionally, let f ∈ C, and for some function
ϱ : R → R assume that NN d

ϱ ⊂ D. Finally, let ε > 0 and fix some coding scheme B.
Then, for C0 > 0, we define the quantities13

MB
ε (f) := MB,ϱ,C0,C,D

ε (f)

:= min
{

M ∈ N : ∃Φ ∈ NN B
M,⌈C0·log2

1
ε ⌉,d : ∥ f − Rϱ(Φ)∥D ≤ ε

}
,

and
MB

ε (C,D) := MB,ϱ,C0
ε (C,D) := sup

f∈C, ∥ f ∥C≤1
MB,ϱ,C0,C,D

ε (f).

In other words, the quantity MB
ε (f) denotes the required number of nonzero weights of a

neural network Φ to ε-approximate f with weights that can be encoded with ⌈C0 log2(1/ε)⌉
bits using the coding scheme B. MB

ε (C,D) gives a uniform bound of this quantity over
the unit ball in C.

Theorem 2.6 now states that if we can lower bound the minimax code length, then we
are also able to lower bound MB

ε (C,D). Lower bounds on the minimax code length (and
hence for the quantity MB

ε (C,D)) for specific, frequently used function spaces fulfilling
the assumptions of the theorem will be given in Corollary 2.9.

Theorem 2.6 Let ϱ : R → R such that NN d
ϱ ⊂ D. Additionally, assume that Lε(C,D) ≥

C1ε−γ for some γ = γ(C,D), C1 = C1(C,D) > 0 and all ε > 0. Then, for each C0 > 0
there exist constants C = C(γ, C,D, C0) > 0 and ε0 = ε0(γ, C,D, C0) > 0, such that for
each coding scheme of real numbers B, and for all ε ∈ (0, ε0) we have

MB,ϱ,C0
ε (C,D) ≥ C · ε−γ

/
log2

(
1
ε

)
.

The idea for the proof of this theorem is the same as for Observation 2.3. Here, the encoder
is E : C → {0, 1}ℓ, f 7→ Γ(Rϱ(Φε, f)), where Φε, f is the neural network ε-approximating f , Γ
is the network encoder from Lemma 2.4 and ℓ = CM(log2(1/ε) + log2(M)). The decoder
is given by D : {0, 1}ℓ → C, b 7→ Γ−1(b). The bound now follows from CM(log2(1/ε) +
log2(M)) ≥ C1ε−γ.

Remark 2.7 (Activation Functions) We only require sufficient smoothness of the activation
function for the spaces under consideration. Hence, we are in a position to conclude
suitable lower bounds for all practically used activation functions.

13we use the convention that min∅ = ∞.

16 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

Remark 2.8 (Bounds With Non-Encodable Weights) If one drops the restriction of encod-
able weights and considers the more general setting of arbitrary weights, a lesser number
of weights is required in general. We mention one example here and cover this setting in
more depth in the next section.

In [GI16] it is shown that there exists an activation function such that a neural network
with three parameters is able to uniformly approximate each function in C = C([0, 1])
arbitrary well. Observation 2.3 now shows that there is no finite encoding bit length for
the weights necessary to approximate all functions in the unit ball of C([0, 1]), since in this
case Lε(C, C) = ∞ for 0 < ε < 1.14

We proceed by listing a variety of lower bounds for a selection of specific examples for
frequently used function spaces. Here, we make use of the fact that, by [Gro15, Remark
5.10], the ε-entropy Hε(C,D) is bounded by the minimax code length, i.e., Lε(C,D) ≥
Hε(C,D). One can deduce similar lower bounds for other choices of C,D. Notable ex-
amples that are not covered below include Hölder spaces, Triebel-Lizorkin, or Zyg-
mund spaces (see for instance [Tri78; ET96] and the references therein for further ex-
amples).

Corollary 2.9 Assume that Ω fulfills some regularity conditions.15 Let ϱ : R → R be
chosen such that NN d

ϱ ⊂ D (where D is a function space on Ω specified below). Moreover,
let B be an arbitrary coding scheme. Then, the following statements hold:

(i) Besov spaces: Let s, t ∈ R with s < t as well as p1, p2, q1, q2 ∈ (0, ∞] such that

t − s − d max
{(

1
p1

− 1
p2

)
, 0
}

> 0.

Moreover, let C = Bt
p1,q1

(Ω), and D = Bs
p2,q2

(Ω). Then, for some C, ε0 > 0, we have

MB
ε (C,D) ≥ Cε−

d
t−s

/
log2

(
1
ε

)
, for all ε ∈ (0, ε0).

(ii) Sobolev Spaces: Let s, t ∈ N with t > s and let p ∈ (0, ∞]. Then, for C = Wt,p(Ω)
and for D = Ws,p(Ω) there exist some C, ε0 > 0 with

MB
ε (C,D) ≥ Cε−

d
t−s

/
log2

(
1
ε

)
, for all ε ∈ (0, ε0).

Proof . (i) follows immediately from Theorem 2.6 in combination with Theorem [ET96,
Section 3.5].

14Lε(C, C) = ∞ for 0 < ε < 1 follows from the fact that the unit ball in C = C([0, 1]) is not compact. The
same argument can also be used to directly deduce from the construction of the weights in [GI16] that their
encoding bit length is not finite.

15Many results estimating the ε-entropy are only formulated and proven for C∞-domains for simplicity
of exposition. However, as has been described in [Tri78, Section 4.10.3] and [ET96, Section 3.5], these
results remain valid for function spaces on more general domains including cubes.

2.2 Lower Bounds 17

(ii) follows from Theorem 2.6 together with [EE04, Section 1.3], where we use the
estimate on the approximation number (denoted by ak(id) in [EE04, page 9]) combined
with the relation of ak(id) and the entropy. ■

2.2.2 Unconstrained Weights, Fixed Architecture, and ReLU Activation Function

This section is devoted to the study of neural network approximations with fixed architec-
ture and unconstrained weights. From now on, we consider functions from the unit ball
of the Sobolev space Wn,p and introduce for this the notation

Fn,d,p :=
{

f ∈ Wn,p((0, 1)d) : ∥ f ∥Wn,p((0,1)d)
≤ 1

}
.

In Theorem 4 a) in [Yar17] Yarotsky proves that for piecewise linear activation functions a
network architecture capable of approximating any function f ∈ Fn,d,∞ up to a L∞-error ε
has at least c · ε−d/(2n) weights. We prove an extension of this result to approximations in
W1,∞ norm. This stronger norm requires a continuous piecewise linear activation function
(with finitely many break points). To simplify the exposition, we only formulate the
theorem for the ReLU activation function which is the most prominent representative of
this class.

For the sake of readability, we combine the result from [Yar17] with our result in the
following theorem.

Theorem 2.10 Let ϱ : R → R, x 7→ max(0, x) be the ReLU activation function. Further-
more, let d ∈ N, n ∈ N≥2 and k ∈ {0, 1}. Then, there is a constant c = c(d, n, k) > 0 with
the following property:

If ε ∈ (0, 1/2) and Aε = Aε(d, n, k, ε) is an architecture such that for any f ∈ Fn,d,∞ there
is a neural network Φ f

ε that has architecture Aε and∥∥∥Rϱ(Φ
f
ε)− f

∥∥∥
Wk,∞((0,1)d)

≤ ε,

then Aε has at least M(Aε) ≥ cε−d/2(n−k) weights.

In the rest of this section, we outline the strategy of the proof of Theorem 2.10. As
in [Yar17], we make use of a combinatorial quantity measuring the expressiveness of a set
of binary valued functions H defined on some set X, called VC-dimension (see e.g. [AB09,
Chap. 3.3]). We define

VCdim(H) := sup

m ∈ N :
there exist x1, . . . , xm ∈ X such that

for every y ∈ {0, 1}m there is a function

h ∈ H with h(xi) = yi for i = 1, . . . , m

 .

An upper bound of the VC-dimension of a set of functions that can be computed by
relatively simple operations is given by [AB09, Theorem 8.4]:

18 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

Theorem 2.11 Suppose h is a function from RM × Rd to {0, 1} and let

H = {x 7→ h(a, x) : a ∈ RM}

be the class determined by h. Suppose that h can be computed by an algorithm that takes as
input the pair (a, x) ∈ RM × Rd and returns h(a, x) after no more than t operations of the
following types:

• the arithmetic operations +,−,×, and / on real numbers and

• jumps conditioned on >,≥,<,≤,=, and ̸= comparisons of real numbers.

Then VCdim(H) ≤ 4M(t + 2).

For the proof of the main result of this section, we make use of the following consequence
of the above theorem:

Remark 2.12 If the number of operations t can be bounded by the dimension M of the
parametrizing vector a, then VCdim(H) ≲ M2.

The overall proof idea of Theorem 2.10 is to construct Hε based on neural networks with
architecture Aε and derive an estimate of the form

α(ε) ≤ VCdim(Hε) ≤ M(Aε)
2, (2.4)

which leads to α(ε)1/2 ≤ M(Aε), where α : R → R is a function to be determined
during the proof. For activation functions that can be computed by a finite number of
operations16, the number of operations t of a neural network with architecture Aε is linear
in the number of weights M(Aε). If the computation of the activation function additionally
satisfies the constraints of Theorem 2.10, we get the upper bound in Equation (2.4) from
Theorem 2.11 together with Remark 2.12. For the lower bound, we find a set of m := α(ε)
points x1, . . . , xm such that Hε can compute all possible dichotomies y ∈ {0, 1}m. For
this, we construct a smoothed version fy : R → R of the function xi 7→ yi in Fn,d,∞ (see
Figure 2.2), approximate it by a neural network with architecture Aε, and threshold it to
get the desired binary output.

Figure 2.2: Smooth dichotomy. The function fy in d = 2 dimensions.

16This is e.g. the case for the ReLU or any piecewise polynomial activation function. It holds not true for
activation functions that involve the exponential function.

2.3 Upper Bounds for General Activation Functions in Sobolev Spaces 19

The strategy for the last step differs for approximations in Wk,∞((0, 1)d) with k = 0
(shown in [Yar17]) and k = 1 (our result). For k = 0, suitably thresholding the neural
network approximation of fy directly leads to a correct binary classification of xi. Precisely,
we set α(ε) ≈ ε−d/n and

Hε :=
{

1(−∞,a] ◦ Rϱ(Aε(w)) : w ∈ RM(Aε)
}

,

for some (carefully chosen) threshold a ∈ R, and all together derive the chain of inequali-
ties

ε−d/n ≲ VCdim(Hε) ≲ M(Aε)
2.

For k = 1, we aim at a larger number m := α(ε) ≈ ε−d/(n−1) of points that can suc-
cessfully be separated (resulting in a larger lower bound for the number of weights in
Theorem 2.10 for k = 1). We use that for a W1,∞((0, 1)d) approximation, the derivatives of
fy and an approximating neural network are close to each other and that the derivatives of
fy are large in the surrounding of a bump and small in the absence of a bump. This more
efficient bump detection algorithm allows us to replace n by n − 1. Choosing Hε as the
thresholded derivatives of Rϱ(Aε(w)) would yield the desired classification. However, the
operation of differentiation does not obey the restrictions of Theorem 2.10. Instead, we use
that ReLU neural networks are piecewise affine-linear functions and compute the deriva-
tive with finite differences. We start by defining a function g : RM(Aε)+1 × [0, 1]d → R

by

g((w, δ), x) :=

 1
δ ·
(

Rϱ(Aε(w))(x̃ − δe1)− Rϱ(Aε(w))(x̃)
)

, if δ ̸= 0

0, if δ = 0

for w ∈ RM(Aε), δ ∈ R and x ∈ [0, 1]d, where x̃ are appropriate translations of x. Finally,
setting

Hε :=
{

1(−∞,a] ◦ g((w, δ), ·) : (w, δ) ∈ RM(Aε)+1
}

,

yields the inequality
ε−d/(n−1) ≲ VCdim(Hε) ≲ M(Aε)

2.

2.3 Upper Bounds for General Activation Functions in Sobolev Spaces

Complementary to the lower bounds from the previous section, we provide upper bounds
for approximations of Sobolev functions by neural networks with fixed architecture and
encodable weights in this section. Since this is the most restricted case, we can transfer the
derived bounds to all other scenarios (see also Remark 2.1 and Section 2.4).

In more detail, we show that for an arbitrary accuracy ε > 0, every function from the unit
ball of the Sobolev space Wn,p, denoted by Fn,d,p, can be ε-approximated in weaker Wk,p-
Sobolev norms (with n > k) by neural networks with fairly general activation function,
encodable weights, and fixed architecture. For this, we explicitly construct approximating
neural networks with constant depth (i.e., independent of ε) and give upper bounds for
the number of nonzero, encodable weights (depending on ε), which, in light of the results
of Section 2.2.1, are almost optimal. The main idea is based on the common strategy
(see e.g. [Yar17; Sch20]) of approximating f by localized polynomials which in turn are

20 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

approximated by neural networks. Our work differs from these other works in three major
aspects:

(1) Depending on the smoothness j of the activation function, our approximations include
Wk,p for k ≤ j (instead of maximally W1,p).

(2) Constructing a partition of unity (PU) by neural networks with general activation
function is tricky (contrary to ReLU networks) and can, in general, only be done approxi-
mately (see Section 2.3.1 and Figure 2.3).

(3) Our polynomial approximations and approximate PUs have depth independent of ε,
which results in constant-depth approximations of f .

We construct localizing bump functions that form an (approximate) partition of unity in
Section 2.3.1 and efficiently approximate polynomials by neural networks in Section 2.3.2.
Afterwards, the statements of the main results as well as a detailed overview of their
overall proof strategies are given in Section 2.3.3.

2.3.1 Ingredient I: (Approximate) Partition of Unity

In [Yar17] the ReLU activation function is used to construct continuous, piecewise linear
bump functions with compact support that form a PU. However, this approach heavily
relies on properties of the ReLU and is only suitable for approximations in Sobolev norms
up to order one. For general activation functions, there is, to the best of our knowledge, no
canonical way to build a PU by neural networks. As a remedy we introduce approximate
partitions of unity which are compatible with all practically used activation functions.
In detail, for a gridsize 1/N (with N ∈ N), we divide the domain (0, 1)d into (N + 1)d

equally large patches and construct, for each patch Ωm where m ∈ {0, . . . , N}d, a bump
function ϕm ∈ W j,∞. Deviating from usually used bump functions, ϕm is in general not
compactly supported on the corresponding patch and their sum only approximates 1

(0,1)d ,
i.e., ∑m ϕm ≈ 1

(0,1)d . Additionally, we introduce a scaling factor s ≥ 1, which regulates the
closeness of the approximate PU to an exact PU. For s → ∞, we have that ∥ϕs

m∥Ωc
m
→ 0 and

∑m ϕs
m → 1

(0,1)d . The overall approximation rates in our main result now also depend on
properties of the approximate PU. It will later turn out that the speed of the convergence
of the approximate PU is the decisive factor in showing efficient approximation rates. We
distinguish between exponential and polynomial speed. Besides the smoothness j and
the convergence speed there is another defining quantity τ which we call the order of the
PU. The order τ specifies at which derivative the scaling factor starts to show. In other
words, all derivatives up to order τ absorb the effect of the scaling. In Definition 2.13 we
formally introduce the notion of an approximate PU. Additionally to approximate PUs
with exponential and polynomial convergence properties we also include exact PUs in
this definition since these include (leaky) ReLUs and powers thereof.

Definition 2.13 Let d ∈ N, j, τ ∈ N0. We say that the collection of families of func-
tions (Ψ(j,τ,N,s))N∈N,s∈R≥1 , where each Ψ(j,τ,N,s) := {ϕs

m : m ∈ {0, . . . , N}d} consists
of (N + 1)d functions ϕs

m : Rd → R, is an exponential (respectively polynomial, exact)
partition of unity of order τ and smoothness j, or short exponential (polynomial, exact)

2.3 Upper Bounds for General Activation Functions in Sobolev Spaces 21

(j, τ)-PU, if the following conditions are met:
There exists some D > 0, C = C(k, d) > 0 and S > 0 such that for all N ∈ N, s ≥

S, k ∈ {0, . . . , j} the following properties hold:

(i) ∥ϕs
m∥Wk,∞(Rd) ≤ CNk · smax{0,k−τ} for every ϕs

m ∈ Ψ(j,τ,N,s);

(ii) for Ωc
m =

{
x ∈ Rd : ∥x − m

N∥∞ ≥ 1
N

}
, we have

∥ϕs
m∥Wk,∞(Ωc

m)
≤

CNksmax{0,k−τ}e−Ds, if exponential PU,
CNksmax{0,k−τ}s−D, if polynomial PU,
0, if exact PU,

for every ϕs
m ∈ Ψ(j,τ,N,s).

(iii) We have∥∥∥∥∥∥1
(0,1)d − ∑

m∈{0,...,N}d

ϕs
m

∥∥∥∥∥∥
Wk,∞((0,1)d)

≤

CNksmax{0,k−τ}e−Ds, if exponential PU,
CNksmax{0,k−τ}s−D, if polynomial PU,
0, if exact PU.

(iv) There exists a function ϱ : R → R such that for each ϕs
m ∈ Ψ there is a neural

network Φs
m with d-dimensional input and d-dimensional output, with two layers

and C nonzero weights, that satisfies

d

∏
l=1

[Rϱ(Φs
m)]l = ϕs

m,

and ∥Rϱ(Φs
m)∥Wk,∞((0,1)d)

≤ CNk · smax{0,k−τ}. Furthermore, for the weights of Φs
m it

holds that ∥Φs
m∥max ≤ CsN.

In the next definition, we state sufficient conditions for an activation function ϱ to admit
(in the sense of Definition 2.13 (iv)) an exponential (polynomial, exact) PU of order τ with
smoothness j for τ ∈ {0, 1} and afterwards we explicitly construct the corresponding
PUs. For τ = 0 the activation functions are approximately piecewise constant outside of a
neighborhood of zero (e.g., sigmoidal) and for τ = 1 approximately piecewise affine-linear
outside of a neighborhood of zero (e.g., exponential linear unit (ELU)). The speed they
approach their asymptotes with (see (d) in the next definition) defines the convergence
speed of the resulting PU. Furthermore, we require ϱ to be j-smooth.

Definition 2.14 Let j ∈ N0, τ ∈ {0, 1}. We say that a function ϱ : R → R is exponential
(polynomial, exact) (j, τ)-PU-admissible, if

(a) ϱ is

{
bounded, if τ = 0,
Lipschitz continuous, if τ = 1;

(b) There exists R > 0 such that ϱ ∈ Cj(R \ [−R, R]);

22 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

(c) ϱ′ ∈ W j−1,∞(R), if j ≥ 1 ;

(d) There exist A = A(ϱ), B = B(ϱ) ∈ R with A < B, some C = C(ϱ, j) > 0 and
some D = D(ϱ, j) > 0 such that

(d.1)
∣∣∣B − ϱ(τ)(x)

∣∣∣ ≤ Ce−Dx (Cx−D if polynomial, 0 if exact) for all x > R;

(d.2)
∣∣∣A − ϱ(τ)(x)

∣∣∣ ≤ CeDx (C′|x|−D if polynomial, 0 if exact) for all x < −R;

(d.3)
∣∣∣ϱ(k)(x)

∣∣∣ ≤ Ce−D|x| (C|x|−D if polynomial, 0 if exact) for all x ∈ R \ [−R, R]
and all k = τ + 1, . . . , j.

Remark 2.15 To give the reader a better intuition for the above definition we mention the
similarity to τ-degree sigmoidal functions (see [MM92]) defined as ϱ : R → R with

lim
x→−∞

ϱ(x)
xτ

= 0, lim
x→∞

ϱ(x)
xτ

= 1.

Roughly speaking, we require the same asymptotic behavior (with the exception that the
asymptotes do not need to be 0, 1) and additionally that the asymptotes are approached
with a certain speed.

In Table 2.1 (see Section 2.3.3), we list a large variety of commonly used activation
functions and their corresponding PU properties. The proofs of these properties can be
found in Appendix A.7.

In the next definition, we give (depending on τ) a recipe for the construction of a one-
dimensional approximate bump from which multi-dimensional bumps are derived via
a tensor approach. To give the reader a better impression of the definition below and
the role of the scaling factor, we present exponential, polynomial and exact bumps and
resulting PUs for different activation functions and scaling s in Figure 2.3.

Definition 2.16 Let j ∈ N0, τ ∈ {0, 1}. Assume that ϱ : R → R is exponential,
polynomial or exact (j, τ)-PU-admissible. We define, for a scaling factor s ≥ 1, the
one-dimensional bump functions

ψs : R → R,

ψs(x) :=

{
1

B−A (ϱ(s(x + 3/2))− ϱ(s(x − 3/2))) , if τ = 0,
1

s(B−A) (ϱ(s(x + 2))− ϱ(s(x + 1))− ϱ(s(x − 1)) + ϱ(s(x − 2))) , if τ = 1.

For N ∈ N, d ∈ N and m ∈ {0, . . . , N}d, we define multi-dimensional bumps
ϕs

m : Rd → R as a tensor product of scaled and shifted versions of ψs. Concretely, we
set

ϕs
m(x) :=

d

∏
l=1

ψs
(

3N
(

xl −
ml

N

))
.

Finally, for N ∈ N, s ≥ 1, the collection of bump functions is denoted by

Ψ(j,τ,N,s)(ϱ) := {ϕs
m : m ∈ {0, . . . , N}d}.

2.3 Upper Bounds for General Activation Functions in Sobolev Spaces 23

In the next lemma we show that the conditions from Definition 2.14 together with the
construction in Definition 2.16 are indeed sufficient to generate an (approximate) PU.

Lemma 2.17 Let j ∈ N0, τ ∈ {0, 1} and a function ϱ : R → R be exponential
(polynomial, exact) (j, τ)-PU-admissible. Then, the collection of families of functions
(Ψ(j,τ,N,s)(ϱ))N∈N,s∈R≥1 defined in Definition 2.16 is an exponential (polynomial, exact) PU
of order τ and smoothness j.

Proof . The proof of this statement is the subject of Appendix A.5.1. We only give the
proof for exponential PUs. The statement for the other two cases follows analogously. ■

We demonstrate in Appendix A.7 the admissibility for many practically-used activation
functions. In Table 2.1 below we have included the types of PUs these activation functions
induce.

Remark 2.18 Definition 2.14 can be generalized to higher τ ≥ 2, resulting in an increasing
amount of terms in the definition of a bump. Since most activation functions used in
practice are of order τ ∈ {0, 1}, we did not introduce this concept for simplicity of
exposition. An example of (τ ≥ 2)-functions are τ-order RePUs (see, e.g., [LTY20]), given
by ReLUτ. Due to its obvious connections to B-splines of order τ + 1 (see for instance [De
01, Chapter IX]), and their ability to form an exact PU ([De 01, p. 96]) as well as their
smoothness properties, it is clear that the resulting system

(
Ψ(τ,τ,N,s)(ReLUτ)

)
N∈N,s≥1

forms an exact (τ, τ)-PU.

We conclude this section by giving an overview of further works that introduce different
types of PUs. An approach which is similar to ours for functions of sigmoidal type
has been used in [CS13a; CS13b; CSG19]. There, approximate bumps are constructed
from differences of scaled and shifted sigmoidals. The key difference is that for a fixed
patch the contributions of the neighboring approximate bump functions do not decrease
with the number of patches N going to infinity which is an important factor in our
construction. In [Lin19], characteristic functions χp for each patch are L∞-approximated
in order to achieve localization. However, in this work, the Heaviside function is used as
an activation function in the first layer (followed by a different activation function in the
next layer), which is not transferable to our work, since it prevents higher-order Sobolev
approximations.

2.3.2 Ingredient II: Approximation of Polynomials

Later on, we approximate our target function by localized polynomials ∑ ϕm · polym,
where the ϕm are the localizing functions from Section 2.3.117. Afterwards, we emulate
these localized polynomials by neural networks18. For this, we need to approximate
polynomials in an efficient way. We start with approximating monomials x 7→ xr on
R by two-layered neural networks with activation functions that have a non-vanishing
Taylor coefficient of order r ∈ N. The construction is mainly based on a generalization of a
standard approach for approximating the function x 7→ x2 by using finite differences. This

17see Appendix A.5.2 for the precise statement and its proof
18see Lemma A.26 in Appendix A.5.3 for the final statement and its proof

24 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

− 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

sigm oidal, s= 1

bum ps

sum of bum ps

(a) Exponential PU implemented by
sigmoid-neural networks with scaling
s = 1.

− 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

sigm oidal, s= 4

bum ps

sum of bum ps

(b) Exponential PU implemented by
sigmoid-neural networks with scaling s =
4.

− 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

ELU_1, s= 1

bum ps

sum of bum ps

(c) Exponential PU implemented by ELU-
neural networks with scaling s = 1.

− 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

ELU_1, s= 4

bum ps

sum of bum ps

(d) Exponential PU implemented by ELU-
neural networks with scaling s = 4.

− 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

softsign, s= 1

bum ps

sum of bum ps

(e) Polynomial PU implemented by
softsign-neural networks with scaling
s = 1.

− 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

softsign, s= 4

bum ps

sum of bum ps

(f) Polynomial PU implemented by softsign-
neural networks with scaling s = 4.

− 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

ReLU, s= 1

bum ps

sum of bum ps

(g) Exact PU implemented by ReLU-neural
networks used in [Yar17] and Remark 2.23.

− 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

RePU, s= 1

bum ps

sum of bum ps

(h) Exact PU implemented by quadratic
RePU-neural networks (τ = 2).

2.3 Upper Bounds for General Activation Functions in Sobolev Spaces 25

Figure 2.3: (Previous page.) Partitions of unity. All displayed partitions of unity have 6
bumps (N = 5). The red curve shows the sum of the bump functions. A single bump function
can be seen in the small window in the upper right part of each plot. The first two rows depict
an exponential PU for τ = 0 (first row) and τ = 1 (second row). A polynomial PU of order
τ = 0 can be seen in the third row. The impact of increasing the scaling factor s can be seen in
the second column. In the last row two exact PUs are shown. Here, the sum is constant 1 on
(0, 1) and scaling has no impact.

has been studied in [RT18] and variations thereof have been considered, e.g., in [OK19;
SZ19].

Proposition 2.19 Let ϱ : R → R be a function. Assume, that for some n ∈ N there exists
x0 ∈ R such that ϱ is n + 1 times continuously differentiable in some open neighborhood U
around x0 and ϱ(r)(x0) ̸= 0 for some r ∈ {1, . . . , n}. Then, for every ε ∈ (0, 1), and every
B > 0 there exists a constant C = C(B, ϱ, r, n) > 0 as well as a neural network Φr

ε with
Rϱ(Φr

ε)|[−B,B] ∈ Cn+1([−B, B]) and the following properties:

(i)
∥∥Rϱ(Φr

ε)− xr
∥∥

Ck([−B,B]) ≤ ε for all k = 0, . . . , n;

(ii) |Rϱ(Φr
ε)|Wk,∞([−B,B]) ≤ C r!

(r−k)! B
r−k for k = 0, . . . , r and |Rϱ(Φr

ε)|Wk,∞([−B,B]) ≤ ε for
k = r + 1, . . . , n;

(iii) L (Φr
ε) = 2, as well as M (Φr

ε) ≤ 3(r + 1);

(iv) ∥Φr
ε∥max ≤ Cε−r.

Proof . The proof of this result can be found in Appendix A.4.2. ■

Proposition 2.19 comes handy for two other usages besides monomial approximation:

• We construct neural networks which implement an approximate multiplication (see
Corollary A.18) via the polarization identity

xy =
1
4
(
(x + y)2 − (x − y)2) for x, y ∈ R.

This can by now be considered a standard approach in neural network approxi-
mation theory (originally used in [Yar17]). For this, the assumptions from Proposi-
tion 2.19 need to be fulfilled for n = 2 and r = 2, which holds true for all activation
functions listed in Table 2.1 except for the (leaky) ReLU19. We use the approximate
multiplication to obtain approximations of the multi-dimensional bumps ϕm from
one-dimensional bumps which are in turn by construction neural networks. Fur-
thermore, we can now deal with the multiplication of and ϕm with polym (see
Corollary A.18 in Appendix A.4.2 and Lemma A.25 in Appendix A.5.3).

• It is often useful to pass output from a layer to a non neighboring layer deeper in the
network. Previous works have solved this issue for the ReLU activation function by
constructing an identity network (e.g., [PV18]). For general activation functions this
is not possible. With help of Proposition 2.19 (for n = 1 and r = 1) an approximate

19For these activation functions see Remark 2.23.

26 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

identity neural network can be constructed (see Proposition A.19). It is clear that all
activation functions listed in Table 2.1 fulfill the requirements.

2.3.3 Main Results Based on Ingredients I & II

The proof of the main statement of this section can be roughly divided into two steps: In
Proposition 2.21, the approximating neural networks are constructed with weights whose
absolute values are bounded polynomially in ε−1. In Theorem 2.22, the encodability of the
weights is enforced. Before we state the actual results we give an overview of the proof
of Proposition 2.21, in which we explain the different approximation rates that can be
obtained from different PUs. We hope that this excursus will make it easier for the reader
to keep track of the different approximation rates presented in the results of this section.

Overview of Our Proof Strategy. Let ε > 0. The proof of Proposition 2.21 is based on
approximating a sum of Nd = N(ε)d localized Taylor polynomials (which are close to f) by a
neural network ΦP,ε, such that we get∥∥∥∥ f − Rϱ(ΦP,ε)

∥∥∥∥
Wk,∞((0,1)d)

≤
∥∥∥∥ f − ∑

m
ϕs

mpolym

∥∥∥∥
Wk,∞((0,1)d)︸ ︷︷ ︸

Step 1

+

∥∥∥∥∑
m

ϕs
mpolym − Rϱ(ΦP,ε)

∥∥∥∥
Wk,∞((0,1)d)︸ ︷︷ ︸

Step 2

.

Step 1: We start by depicting how our PUs are used together with localized Taylor polynomials. In
the process the interplay between the convergence speed of the PUs and the approximation rates that
can be obtained becomes clear. When approximating a function f by localized Taylor polynomials
polym, where the localization is realized by a PU from Section 2.3.1, we estimate the error on a
fixed patch Ωm̃ by∥∥∥∥ f − ∑

m
ϕs

mpolym

∥∥∥∥
Wk,∞(Ωm̃)

≤
∥∥∥∥(1

(0,1)d − ∑
m

ϕs
m

)
f
∥∥∥∥

Wk,∞(Ωm̃)

+

∥∥∥∥∑
m

ϕs
m(f − polym)

∥∥∥∥
Wk,∞(Ωm̃)

.

The first term can be handled by Definition 2.13 (iii) of the PU. Here, we only focus in detail on the
second term. We have∥∥∥∥∑

m
ϕs

m(f − polym)

∥∥∥∥
Wk,∞(Ωm̃)

≤ C ∑
∥m−m̃∥∞>1

∥ϕs
m∥Wk,∞(Ωm̃)︸ ︷︷ ︸

(a)

+ ∑
∥m−m̃∥∞≤1

∥ϕs
m(f − polym̃)∥Wk,∞(Ωm̃)︸ ︷︷ ︸

(b)

.

In the cases of exponential/polynomial PUs, we will make use of the decay property of Defini-
tion 2.13 (ii). In general we get

∑
∥m−m̃∥∞>1

∥ϕs
m∥Wk,∞(Ωm̃)

≲ Nd ·

CNksmax{0,k−τ}e−Ds, if exponential PU,
CNksmax{0,k−τ}s−D, if polynomial PU,
0, if exact PU.

The closeness of the approximate bump to an exact bump is determined by the scaling factor s which

2.3 Upper Bounds for General Activation Functions in Sobolev Spaces 27

we now couple with N.

• For the exponential case we set s := Nµ for arbitrarily small µ > 0 and can now use that
the exponential term decays faster than any polynomial in N grows. In particular, we have

NdNksmax{0,k−τ}e−Ds = NdNkNµ(k=2)e−DNµ ≤ N−(n−k)

for N large enough.

• In the polynomial case an arbitrarily small exponent is not sufficient to get rid of Nd,
instead we must set s := N

d+k+(n−k)
D and get

NdNksmax{0,k−τ}s−D = NdNkN−d−k−(n−k) = N−(n−k) for k ≤ τ.

Here, we can only compensate the term Nd for k ≤ τ, since only the derivatives up to order
τ absorb the effect of the scaling.

• Finally, in case of an exact PU, term (a) is zero.

For term (b) we only consider m = m̃. For k ≥ τ + 1, we now pay the price for the scaling in
the exponential case, since there is no exponential decay for the derivative of ϕs

m̃ on the patch Ωm̃.
From Definition 2.13 (i) together with the Bramble-Hilbert Corollary A.11 we get the estimate

∥ϕs
m(f − polym̃)∥Wk,∞(Ωm̃)

≲

N−(n−k−µ(k=2)), if exponential PU,
N−(n−k), for k ≤ τ, if polynomial PU,
N−(n−k), if exact PU.

Combining the computations for (a) and (b) we get the total estimate in Step 1

∥∥∥∥∑
m

f − ϕs
mpolym

∥∥∥∥
Wk,∞(Ωm̃)

≲

N−(n−k−µ(k=2)), if exponential PU,
N−(n−k), for k ≤ τ, if polynomial PU,
N−(n−k), if exact PU.

By choosing N := ⌈ε−1/(n−k−µ(k=2))⌉ in the exponential case and N := ⌈ε−1/(n−k)⌉ in the other
two cases, we get that the term from Step 1 can be bounded by ε.
Step 2: To construct the neural network we use the results from Section 2.3.2 to

(i) approximate Taylor polynomials by neural networks;

(ii) approximate the multi-dimensional PU. Since only the d factors of its tensor structure can
be exactly represented by a neural network (see Definition 2.13 (iv)), their multiplication must be
approximated;

(iii) approximate the multiplication of (i) with (ii) by neural networks Φm,ε̃ with accuracy ε̃ (chosen
below);

(iv) build the sum of all approximations of localized Taylor polynomials by neural networks.

The network ΦP,ε thus consists of the subnetworks from step (iii). We get the estimate∥∥∥∥∑
m

ϕs
mpolym − Rϱ(ΦP,ε)

∥∥∥∥
Wk,∞((0,1)d)

≤ ∑
m
∥ϕs

mpolym − Φm,ε̃∥Wk,∞((0,1)d)
≲ Nd ε̃.

28 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

Consequently, we need to chose ε̃ := εN−d ≈ ε−d/(n−k−µ(k=2))+1 (some terms are suppressed here
for simplicity of exposition). We can only do this, since neither the number of weights of Φm,ε̃
nor its number of layers depends on ε̃ (only the values of the weights do). In other words, each
Φm,ε̃ has a constant number of weights and layers. Combining ∼ Nd of such networks to get ΦP,ε

yields a network with about Nd = ε−d/(n−k−µ(k=2)) weights and constant number of layers for the
exponential case (with obvious adaptations for the other two cases).

Conclusion: For activation functions ϱ with an exponential PU, we obtain optimal rates for
Sobolev norms k ≤ τ and almost optimal rates for k ≥ τ + 1; in the polynomial case, we get
optimal approximation rates only in Wk,p-norms if k ≤ τ; in the case of an exact PU, we get
optimal approximation rates for Sobolev norms up to order j (smoothness of ϱ).

Remark 2.20 (Fixed architecture) Note that the network ΦP,ε only depends on a specific f
via the weights in the last layer, which are the coefficients of the monomials that together
form the Taylor polynomials polym. Since the approximate PU and the monomials are
independent on f , it is easy to see that there exists a neural network architecture Aε such
that ΦP,ε has architecture Aε for every of choice of f .

We now give the statement of Proposition 2.21, which can be proven by using the
ideas and concepts presented so far in this section. The detailed proofs are executed in
Appendices A.5.1-A.5.4, mostly for the case of exponential (j, τ)-PUs. The statements for
the other two cases can be proven in an analogous way.

Proposition 2.21 We make the following assumptions:

• Let d ∈ N, j, τ ∈ N0, k ∈ {0, . . . , j}, n ∈ N≥k+1, 1 ≤ p ≤ ∞, and µ > 0;

• let ϱ : R → R such that
(

Ψ(j,τ,N,s)(ϱ)
)

N∈N,s≥1
is an exponential (polynomial, exact)

(j, τ)-PU;

• there exists x0 ∈ R such that ϱ is three times continuously differentiable in a neighbor-
hood of x0 and ϱ′′(x0) ̸= 0.

Then, there exist constants L, C, θ, ε̃ depending on d, n, p, k, µ with the following properties:
For every ε ∈ (0, ε̃) and every f ∈ Fn,d,p, there is a neural network Φε, f with d-dimensional

input and one-dimensional output, at most L layers and at most
Cε−d/(n−k−µ(k=2)), if exponential PU ,
Cε−d/(n−k), for k ≤ τ, if polynomial PU ,
Cε−d/(n−k), if exact PU ,

nonzero weights bounded in absolute value by Cε−θ such that

∥Rϱ(Φε, f)− f ∥Wk,p((0,1)d)
≤ ε.

The main theorem now states that Proposition 2.21 also holds with encodable weights,
i.e. for each ε > 0, every element of the set of weights Wε =

⋃
f Wε, f (where Wε, f denotes

the weights of Φε, f) can be uniquely encoded by ⌈C log2(1/ε)⌉ bits. To state this in a
formal way, we use the notation introduced in Equation (2.2).

2.3 Upper Bounds for General Activation Functions in Sobolev Spaces 29

Theorem 2.22 We make the following assumptions:

• Let d ∈ N, j, τ ∈ N0, k ∈ {0, . . . , j}, n ∈ N≥k+1, 1 ≤ p ≤ ∞, and µ > 0;

• let ϱ : R → R such that
(

Ψ(j,τ,N,s)(ϱ)
)

N∈N,s≥1
is an exponential (polynomial, exact)

(j, τ)-PU;

• there exists x0 ∈ R such that ϱ is three times continuously differentiable in a neighbor-
hood of x0 and ϱ′′(x0) ̸= 0.

Then, there exist constants L, C and ε̃, and a coding scheme B = (Bℓ)ℓ∈N depending on
d, n, p, k, µ with the following properties:

For every ε ∈ (0, ε̃) and every f ∈ Fn,d,p, there is a neural network

Φε, f ∈ NN B
Mε,⌈C log2(1/ε)⌉,d

with d-dimensional input, one-dimensional output, at most L layers and at most

Mε =

Cε−d/(n−k−µ(k=2)), if exponential PU ,
Cε−d/(n−k), for k ≤ τ, if polynomial PU ,
Cε−d/(n−k), if exact PU ,

nonzero weights, such that

∥Rϱ(Φε, f)− f ∥Wk,p((0,1)d)
≤ ε.

Furthermore, there exists a neural network architecture Aε (independent of f) such that Φε, f
has architecture Aε for each f ∈ Fn,d,p.

Proof . We give a short outline of the proof here, the details can be found in Appendix A.6.
Let Φε, f = ((A1, b1), . . . , (AL−1, bL−1), (AL, bL)) be the network from Proposition 2.21
(where the main work has already been done). From the proof of the proposition (see Equa-
tion (A.43)) it follows that that AL = A f ÃL and bL = A f b̃L where the entries of the block
diagonal matrix A f depend on f and the entries of A1, b1, . . . , AL−1, bL−1, ÃL, b̃L are in-
dependent from f (i.e., they only depend on ε, n, d, p, k, µ). We denote the collection of
nonzero entries of A1, b1, . . . , AL−1, bL−1, ÃL, b̃L by Wε.

• The number of independent weights |Wε| is bounded by C · ε−d/(n−k−µ(k=2)) since the
total number of nonzero weights is bounded by this quantity.

• We round the entries of A f , b f with a suitable precision ν to the mesh [−ε−θ , ε−θ] ∩
ενZ, where we also use the fact that the weights of Φε, f are bounded in absolute
value by Cε−θ .

• The nonzero entries of AL in the last layer of Φε, f are in the set Gmult := {x1x2 : x1 ∈
Wε, x2 ∈ [−ε−θ , ε−θ] ∩ ενZ} with cardinality bounded by ε−s̃ (similar for bL).

Hence, the weights of the approximating neural networks can be chosen from a set W̃ε

with less than ε−s real numbers, where s > 0 only depends on d, n, p, k, µ and not on f .

30 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

Consequently, there exists a surjective mapping Bε : {0, 1}⌈s log2(1/ε)⌉ → Wε. The collection
of these maps constitutes the coding scheme.

From Remark 2.20, it follows that the approximations can be done with fixed architecture.
■

Name Given by Smoothness
Boundedness

PU-Decay
(j, τ)

Approximation Rates
(k ≤ j)

(leaky) ReLU, a ∈ [0, 1) max{ax, x} C(R) ∩ W1,∞
loc (R)

Unbounded
exact
(1, 1) ε−d/(n−k) log2(1/ε)

exponential linear unit
(ELUa), a > 0, a ̸= 1

{
x, x ≥ 0
a(ex − 1), x < 0

C(R) ∩ W1,∞
loc (R)

Unbounded
exponential
(1, 1) ε−d/(n−k)

exponential linear unit
(ELU1)

{
x, x ≥ 0
ex − 1, x < 0

C1(R) ∩ W2,∞
loc (R)

Unbounded
exponential
(2,1)

ε−d/(n−k) for k ≤ 1,

ε−d/(n−2−µ) for k = 2

softsign
x

1 + |x|
C1(R) ∩ W2,∞(R)
Bounded

polynomial
(2, 0)

ε−d/(n−k)

for k = 0

inverse square root lin-
ear unit, a > 0

{
x, x ≥ 0

x√
1+ax2 , x < 0

C2(R) ∩ W3,∞
loc (R)

Unbounded
polynomial
(3, 1)

ε−d/(n−k)

for k ≤ 1

inverse square root unit,
a > 0

x√
1 + ax2

Analytic
Bounded

polynomial
(j, 0)
∀j ∈ N0

ε−d/(n−k)

for k = 0

sigmoid / logistic
1

1 + e−x
Analytic
Bounded

exponential
(j, 0)
∀j ∈ N0

ε−d/n for k = 0,

ε−d/(n−k−µ) for k ≥ 1

tanh
ex − e−x

ex + e−x
Analytic
Bounded

exponential
(j, 0)
∀j ∈ N0

ε−d/n for k = 0,

ε−d/(n−k−µ) for k ≥ 1

arctan arctan(x) Analytic
Bounded

polynomial
(j, 0)
∀j ∈ N0

ε−d/(n−k)

for k = 0

softplus ln(1 + ex)
Analytic
Unbounded

exponential
(j, 1)
∀j ∈ N0

ε−d/n for k ≤ 1,

ε−d/(n−k−µ) for k ≥ 2

swish
x

1 + e−x
Analytic
Unbounded

exponential
(j, 1)
∀j ∈ N0

ε−d/n for k ≤ 1,

ε−d/(n−k−µ) for k ≥ 2

rectified power unit
(RePU), a ∈ N≥2

max{0, x}a Ca−1(R) ∩ Wa,∞
loc (R)

Unbounded
exact
(a, a) ε−d/(n−k)

Table 2.1: Overview of upper bounds. Commonly-used activation functions, the type of PU
they admit and the approximation rates in Wk,p in terms of the number of nonzero weights.
The rates are provided by Theorem 2.22 and, for the (leaky) ReLU case, in combination with
Remark 2.23. The results for the (leaky) ReLU are consistent with those rates derived in [Yar17]
for k = 0. µ > 0 is arbitrary and, unless specified otherwise, k ∈ {0, . . . , j} and n ≥ k + 1. The
depth of the networks is independent of ε except for the (leaky) ReLU with number of layers
in O(log(1/ε)).

Remark 2.23 (Plug & Play) Some well-known activation functions, e.g., the (leaky) ReLU,
do not fulfill all assumptions stated in Proposition 2.21 and Theorem 2.22 (ϱ should be

2.4 Discussion 31

Table 2.2: Overview of proofs. For all four settings, we list whether we specifically prove a
result for this setting (col. “Proof”) or if a (possibly suboptimal) bound follows from another
setting (col. “Transferable”). Transferring results is possible from more restricted settings to
less restricted settings for upper bounds and from less restricted settings to more restricted
settings for lower bounds. Furthermore, we indicate if the resulting bounds are tight (col.
“Tight”). If the tightness depends on the activation function, different options are possible. For
unconstrained weights with f -adaptive architectures we neither prove results nor can they
be transferred from another setting. For all other settings lower and upper bounds are either
proven or can be transferred.

Setting Upper bounds Lower bounds

Weights Architecture Proof Transferable Proof Transferable Tight

Encodable Fixed Thm. 2.22 Obs. 2.3 Yes / Almost
f -adaptive Thm. 2.22 Thm. 2.6 Yes / Almost

Unconstrained Fixed Thm. 2.22 Thm. 2.10 No
f -adaptive Thm. 2.22

three times continuously differentiable in a neighborhood of some x0 ∈ R with ϱ′′(x0) ̸=
0). However, we note that our proof strategy only requires the approximation of the
square function and an identity function. In case of the (leaky) ReLU this can be done
with O(log2(1/ε)) weights and O(log(1/ε)) layers (see [Yar17, Proposition 2 and 3]
for L∞ norm and Proposition A.20 for W1,∞ norm). Generally speaking: As long as an
activation allows for

• the construction of an (approximate) PU along the lines of Definition 2.13,

• an efficient approximation of the square function and the identity function,

our proof strategy can be employed to yield efficient convergence rates. As such, our
framework is very general and unifies the previous approach in [Yar17] as well as extends
the previously known rates to a wide class of activation functions and rather general
smoothness norms. We list approximation rates that can be deduced from our proof
framework for some commonly-used activation in Table 2.1.

2.4 Discussion

This section is dedicated to a summary of our findings and sheds some light onto scenarios
that were not covered in the previous sections. Furthermore, we discuss the tightness of
the derived approximation bounds. Throughout this section, Table 2.2 serves as a reference
that connects each proof to the setting it has implications for and Table 2.3 summarizes
which function classes, approximation norms, and activation functions are covered by
each setting.

Encodable Weights

Encodable weights integrate the realistic assumption of restricted storage capacities for
neural network weights on a computer into approximation results. For two normed
function spaces C ⊂ D, the minimax code length framework allows to directly conclude
lower bounds in Observation 2.3 for approximations of functions from the unit ball of C

32 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

Table 2.3: Overview of results. For all four settings, we list for upper and lower bounds the
function classes, approximation norms, and activation functions we derived results for. “b.f.b.”
is short for “bounded from below”.

Setting Upper bounds Lower bounds

Weights Architecture Space / Norm Act. Funct. Space / Norm Act. Funct.

Encodable Fixed Wn,p/Wk,p Table 2.1 C/D s.th. Lε(C,D) b.f.b. ϱ s.th. NN d
ϱ ⊂ D

f -adaptive Wn,p/Wk,p Table 2.1 C/D s.th. Lε(C,D) b.f.b. ϱ s.th. NN d
ϱ ⊂ D

Unconstrained Fixed Wn,p/Wk,p Table 2.1 Wn,∞/W1,∞ ReLU
f -adaptive Wn,p/Wk,p Table 2.1

in norm D by neural networks with fixed architecture. Based on the efficient encoding
of adaptive architectures from Lemma 2.4, we are able to derive the same bounds in
Theorem 2.6 for the case of f -adaptive architectures. These bounds hold for all activation
functions sufficiently smooth such that NN d

ϱ ⊂ D. A concrete consequence of this result
for C and D being Sobolev spaces is formulated in Corollary 2.9 (ii).

Complementary to the above lower bounds, we derive upper bounds for fixed archi-
tectures (for Sobolev spaces) in Theorem 2.22. The case of f -adaptive architectures is not
specifically treated but can be inferred from the case of fixed architectures (see Table 2.2).

For both architecture choices, our bounds are tight up to a log factor for k ≤ τ, where k
is the smoothness of the approximation norm and τ the order of the PU. For k ≥ τ + 1,
they are (up to a log factor) tight in the case of exact PUs and we get arbitrarily close to
the optimal bound (again up to a log factor) in case of exponential PUs. Consequently,
there is no gain in allowing the architecture to depend on f in the case of encodable
weights. We conclude that our work holistically investigates approximations with encod-
able weights: We cover different architecture types, general function spaces and norms,
and all practically used activation functions.

Unconstrained Weights

We investigate the case of unconstrained weights in our results only to a limited extent
but include pointers on how to infer bounds from the case of encodable weights and
references to the relevant literature in our discussion.

Unconstrained weights in combination with certain activation functions allow to dras-
tically reduce the complexity in comparison to encodable weights. As an example, we
mention again the result in [GI16], where the existence of an activation function is shown,
such that a neural network architecture with three parameters only is able to uniformly
approximate each function in C = C([0, 1]) arbitrary well.

In Section 2.2.2, we focus on unconstrained weights together with the much more
restrictive ReLU activation function and fixed architectures. We show in Theorem 2.10
that for approximating Sobolev functions from Wn,∞ in W1,∞ norm at least ε−d/(2(n−1))

weights are necessary. As one might expect, these are fewer weights than compared to the
more restricted case of encodable weights (here we need at least ε−d/(n−1) weights).

No specific upper bounds for this case were shown but we remark that the upper
bounds from Theorem 2.22 together with Remark 2.23 yield the (potentially suboptimal)
upper bound of ε−d/(n−1) weights (see also Table 2.2) which is not tight. For the case of
approximations in the L∞ norm, Yarotsky [Yar18] and Yarotsky and Zhevnerchuk [YZ20]

2.5 Limitations and Future Work 33

find that the gap between the lower bound ε−d/(2n) and the upper bound of ε−d/n can be
closed by construction approximating neural networks of greater depth. To check whether
the same explanation also holds in the case of W1,∞ approximations is an interesting
avenue of further research.

The case of unconstrained weights and f -adaptive architectures is not covered in this
thesis. We refer to [Yar17] for results in L∞ norm.

2.5 Limitations and Future Work

We highlight limitations and elaborate on possible extensions of our work in this section.
For a more general discussion of shortcomings that are intrinsic to current approximation
theory for neural networks, we refer to Chapter 4.

Filling the Gaps

From the above discussion it becomes clear that not all possible cases of the considered
setup are covered equally by our results. To fill in the gaps, we believe it particularly
interesting to focus on proof frameworks that cover families of activation functions,
function spaces and norms (see e.g. our lower and upper bounds for encodable weights)
instead of isolated cases. In some instances, it might be only a matter of exploring the
limits of the presented proof frameworks even further: For example, can the proof of
our upper bounds for encodable weights be generalized to other function spaces and
approximation norms? Can the proof of the lower bounds for unconstrained weights
be extended to more general activation functions (currently only ReLU) or more general
norms (currently only Wk,∞ for k = 0, 1)?

Curse of Dimension

One of the main reasons for the current interest in deep neural networks is their outstand-
ing performance in solving high-dimensional problems.

Our asymptotic lower bounds for the number of weights depend exponentially on the
dimension d of the input space showing that one cannot expect to circumvent the curse of
dimension in the setting considered in this thesis. Moreover, the constants in the upper
bounds for the number of layers and weights also increase exponentially with increasing d.

Several ways have been proposed so far to tackle this common problem. One idea is
to think of the data as residing on or near a manifold M embedded in Rd with dimen-
sion dM ≪ d (see [BCV13]). Considering, for example, image classification problems
this idea seems to be rather intuitive since most of the elements in the high-dimensional
image space (e.g. R240×240×3) are not perceived as images. A similar approach is to narrow
down the approximated function space by incorporating invariances (see [Mal12]). If,
for example, the approximated function f maps images to labels, it may make sense to
assume that f is translation and rotation invariant. The additional structure of the function
space can then be exploited in the approximation (see [PV18, Section 5]). Assuming more
structure on the function spaces could be an interesting extension of our results, that might
mitigate the curse of dimension.

34 Chapter 2 Part A: Approximation Theory for Deep Neural Networks

The Role of Depth

For approximations of the unit ball in Wn,∞((0, 1)d) (with n > 2) in the L∞ norm by ReLU
neural networks, Yarotsky [Yar17] showed that unbounded depth approximations are
asymptotically more efficient in the number of weights than approximations with fixed
depth L if

d
n
<

1
2(L − 1)

.

As a consequence, to be more efficient than a shallow network, i.e. a network with
depth L = 2, one needs n > 2d regularity. Even if this result does not completely explain
the success of deep networks over shallow ones, since d is typically very large, it would
be interesting to obtain similar results for higher-order Sobolev norms.

We note that for activation functions that adhere to the assumptions of Theorem 2.22, no
such effect can be shown. For these activation functions the provided bounds are optimal
(at least for encodable weights), and the depth of the constructed networks is independent
of the approximation accuracy ε.

Balancing Bits and Weights

From Equation (2.3) in Observation 2.3, we can deduce a trade-off in the number of weights
M and the memory budget (in bits per weight) b, quantified by M · b ≥ Lε(C,D), for fixed
architectures. For the same level of approximation power, reducing the number of weights
needs to be compensated by an increase in storage capacity and the other way round. The
extreme cases are given by (a) a fixed number of bits, resulting in M ≳ Lε(C,D) and (b)
a fixed number of weights resulting in bit-length b ≳ Lε(C,D). In practice, reducing the
memory and computational cost is often a necessary requirement for the deployment of
deep learning solutions on low-power or low-memory devices [TL19]. Designing pruning
(see e.g. [Yeo+21]) and compression strategies is an active field of research [CWZZ18] that
could potentially benefit from a deeper mathematical analysis in the above framework.
From a mathematical perspective, it would be interesting to investigate a unified way
to prove upper bounds that cover the complete spectrum of bit-length and number-of-
weights configurations.

Practical Relevance

The derived results are of purely theoretical nature and it is unclear if the predicted
approximation rates can be observed in practice. Furthermore, our results provide no
information about how to find approximating neural networks (optimization), nor about
the sample complexity (generalization). To our knowledge there is only a small number of
works that empirically investigate approximation rates (see e.g. [AD21; GPRSK21]). We
believe that extensive empirical studies that compare theoretical findings with practically
observable outcomes are an important direction of future research and we discuss this
aspect in greater depth in Chapter 4.

3

Part B: Near-Exact Recovery for Tomographic
Inverse Problems via Deep Learning

In the previous chapter, we analyzed the expressivity of neural networks in classical
function spaces from a purely theoretical point of view. This chapter is based on the
work [GGMM22] and deals with a fundamental question in scientific machine learning:

Can deep-learning-based methods solve noise-free inverse problems to near-perfect
accuracy?

To provide a broader context, it is worth considering an inverse problem in its prototypical,
finite-dimensional form:

y = Fx + e, (3.1)

where x ∈ RN denotes the unknown (image) signal, F ∈ Rm×N the forward operator, and
e ∈ Rm models the noise. The goal is to reconstruct x from the noisy measurements y. In
medical applications, for example, magnetic resonance imaging (MRI) can be modeled
by choosing F as the Fourier transform, whereas in CT, F can be described by the Radon
transform [Eps07]. A typical solution approach to Equation (3.1) is to encode prior
knowledge on the signal class in a (convex) penalty functional Ψ : RN → R≥0, and
then search for a solution that balances a data fidelity and prior term, i.e., solving the
minimization problem

arg minx
1
2
∥Fx − y∥2 + λΨ(x).

Here, λ > 0 is a weight parameter, that is adapted to the noise level, degree of ill-posedness
and trust in the prior. Popular choices for Ψ are Tikhonov regularization with Ψ = ∥·∥2
or sparse-regularization based priors, such as TV-minimization Ψ = ∥∇·∥1. Numerically,
the above convex optimization problem can, for example, be solved by proximal splitting
methods [CP11], such as the alternating direction method of multipliers (ADMM) [GM75;
GM76]. Contrary to hand-crafted priors, data-driven approaches implicitly learn a prior
from a training data set {(yi, xi)i} [AMÖS19].

The error of any given reconstruction map R : Rm → RN can be decomposed as∥∥x −R(y)
∥∥

2 ≤
∥∥x −R(Fx)

∥∥
2︸ ︷︷ ︸

(a)

+
∥∥R(Fx)−R(y)

∥∥
2︸ ︷︷ ︸

(b)

. (3.2)

The first term (a) is associated with the accuracy (or precision) of R and measures how well
x can be estimated in the idealistic situation of noiseless measurements. The second term
(b) captures the robustness of R against perturbations e of the measurements. Adequate
control over both expressions forms the backbone of inverse problem theory and scientific
computing in general.

35

36 Chapter 3 Part B: Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning

This thesis is primarily concerned with the accuracy term (a), more specifically, the
root-mean-square-error (RMSE). We demonstrate that under suitable conditions it can
become sufficiently close to zero (on the image data distribution) when R corresponds
to a fully data-driven solver, trained on a dataset of noise-free measurements and signals
{(yi, xi)i}. The competitive setting of the AAPM Grand Challenge “Deep Learning for
Inverse Problems: Sparse-View Computed Tomography Image Reconstruction”, with
the goal “to identify the state-of-the-art in solving the CT inverse problem with data-driven
techniques” [Sid+21], has provided us with the right benchmark to conduct such a case
study.

An Approximation Theoretic Point of View

While our inquiry goes far beyond purely approximation theoretical aspects, sufficient
expressive power is a necessary ingredient for a positive answer of the above question. In
fact, we argue that particularly the noise-free setting (e = 0 in Equation (3.1)) provides
a suitable test ground for an empirical study of neural network expressivity. In the
considered setup, the interaction of the “data manifold”, forward operator, and zero noise,
allows regularization-based approaches, such as TV minimization, to perfectly recover
signals x from incomplete measurements y. In other words, the inverse of the forward
operator F on the “data manifold” exists, can be explicitly computed, and provides an
ideal target function to approximate by neural networks. Since overfitting turned out to
be a minor concern in our experiments1, we could exclusively focus on constructing an
architecture that is well trainable and expressive enough to compute the reconstruction map.

A Note on Robustness Regarding the robustness term (b) of Equation (3.2), we refer
to the recent work by Genzel, Macdonald, and März [GMM22] for an in-depth case
study. It was shown that even standard end-to-end networks can be surprisingly robust
against adversarial perturbations (i.e., worst-case noise), comparable to a provably stable
benchmark methods. Together with Genzel, Macdonald, and März [GMM22], the present
work provides further evidence for the reliability of deep-learning-based solutions to
inverse problems. Apart from the numerical perspective, robustness of deep learning
approaches is an important and actively researched topic. For example, so-called halluci-
nations (see e.g. [Mar+19]) could lead to misleading diagnostics in the context of medical
applications [Muc+21].

Our Conceptual Approach: The Role of the Forward Operator

Conceptually, our approach to solving Equation (3.1) stems from the following (debatable)
observation:

High reconstruction accuracy is only possible if the forward model is explicitly incor-
porated into the solution map, e.g., by an iterative promotion of data-consistency.

The vital role of the forward operator in data-driven solutions to inverse problems is
by no means a new insight. It is well in line with a central pillar of scientific machine
learning, namely that neural networks can be often enriched (or constrained) by physical

1For all tested architectures, a smaller training error always resulted in a smaller test error.

3.1 AAPM Challenge Setup 37

Figure 3.1: AAPM challenge data. Example of a 128-view sinogram, FBP reconstruction, and
ground-truth phantom image taken from the AAPM challenge training dataset.

modeling [Chm+17; CSMT18; Kei+21; Unk+21a]. Indeed, the seminal works on deep
learning techniques for inverse problems are inspired by unrolling classical algorithms, e.g.,
see Gregor and LeCun [GL10], Yang et al. [YSLX16], Adler and Öktem [AÖ18], Aggarwal,
Mani, and Jacob [AMJ18], Chen et al. [Che+18], Hammernik et al. [Ham+18], Schlemper
et al. [Sch+19], Chun et al. [CHLF20], Gilton, Ongie, and Willett [GOW21a], Hammernik
et al. [Ham+21], and Heaton et al. [HWGY21]. At the present time, most state-of-the-
art methods rely on iterative end-to-end networks and related schemes, e.g., see Knoll
et al. [Kno+20], Leuschner et al. [Leu+21], and Muckley et al. [Muc+21] for other recent
competition benchmarks.

The winning contribution2 to the AAPM challenge, is no exception in that respect.
We propose a conceptually simple, yet powerful deep learning pipeline, which turns a
post-processing UNet [RFB15] into an iterative reconstruction scheme. While many of its
individual components have been previously reported in the literature, the overall strategy
is novel. Our design differs from more common unrolled networks in several aspects, most
notably the following two: (a) we make use of a pre-trained UNet as the computational
backbone, and (b) data-consistency is inspired by an ℓ2-gradient step, but employs the
filtered backprojection (FBP) instead of the regular adjoint. In line with most previous
works, our unrolled network only involves very few (five) iteration steps3. However,
we are the first to show that this is sufficient to match the precision of model-based
solvers, which typically need hundreds or thousands of iterations before convergence
(and therefore require significantly more computation time).

3.1 AAPM Challenge Setup

Similar to the setting of Sidky et al. [SLBP21], the AAPM challenge data is based on
synthetic 2D grayscale images of size N = 512 × 512 simulating real-world mid-plane

2The method was designed and submitted to the challenge by M. Genzel, J. Macdonald and M. März. The
author of this thesis joined in the aftermath of the challenge and conducted a detailed analysis and further
investigations of the method.

3See Section 3.3 for more details on this aspect.

38 Chapter 3 Part B: Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning

breast CT device scans. Four different tissues were modeled: adipose, skin, fibroglandular
tissue, and microcalcifications. To obtain smooth transitions at tissue boundaries, Gaussian
smoothing was applied. A fanbeam geometry with 128 projections over 360 degrees (i.e.
m = 128 · 360 in Equation (3.1)) was used to create sinograms and FBPs, see Figure 3.1 for
an example. Notably, the exact fanbeam geometry was not revealed to the participants. No
noise was added to the data, neither to the phantom images nor to the measurements. In
more mathematical terms, for the fanbeam forward operator4 F ∈ Rm×N the relationship
between an image x ∈ RN and a sinogram y ∈ Rm follows from Equation (3.1) by setting
the noise term e to zero, i.e.,

y = Fx.

The provided training set consisted of 4000 tuples of phantom images, their corresponding
128-view sinograms, and FBP reconstructions. A test set of 100 pairs of sinograms and
FBPs (without publicly available ground-truth phantoms) was used for the final challenge
evaluation.

Initially, about 50 international teams have participated, out of which 25 have submitted
their method to the final evaluation. More details about the challenge setup and results
can be found in the official challenge report [SP21].

3.2 Methodology

This section gives an overview of our (three-step) methodology for the AAPM challenge
and motivates our design choices.5

Step 1: Data-Driven Geometry Identification

In the first step of our reconstruction pipeline, we estimate the unknown forward op-
erator from the provided training data. The continuous version of tomographic fanbeam
measurements is based on computing line integrals:

p(s, φ) =
∫

L(s,φ)
x0(x, y)d(x, y),

where x0 is the unknown image and L(s, φ) denotes a line in fanbeam coordinates, i.e., φ
is the fan rotation angle and s encodes the sensor position; see Fessler [Fes17] for more details.
In an idealized situation, the fanbeam model is specified by the following geometric
parameters6 (see Figure 3.2 for an illustration):

• dsource – distance of the X-ray source to the origin,
• ddetector – distance of the detector array to the origin,
• ndetector – number of detector elements,
• sdetector – spacing of detector elements along the array,
• nangle – number of fan rotation angles,

4See also Section 3.2 Step 1 for a thorough description of the forward model.
5Our code is available at https://github.com/jmaces/aapm-ct-challenge.
6We have found that this basic model was enough to accurately describe the AAPM challenge setup. If
needed, it would be possible to account for other factors such as non-flat detector arrays, offsets of the axis
of rotation from the origin, misalignments of the detector array, etc.

https://github.com/jmaces/aapm-ct-challenge

3.2 Methodology 39

detector arraysdetector
rotate

γ

ndetector

dsource

ddetector
21

X-ray source

2
3

nangle

Figure 3.2: Fanbeam geometry. Illustration of the parameters determining the geometry of
the fanbeam CT model.

• φ ∈ [0, 2π]nangle – discrete list of rotation angles.
Here, it is assumed that integrals are only measured along a finite number of lines,
determined by m := ndetector · nangle. In the sparse-view challenge setup, the resulting
forward operator is severely ill-posed, since only the measurements of a few fan rotation
angles nangle are acquired. Furthermore, the geometric setup is not disclosed to the
challenge participants—it is only known that fanbeam measurements are used.

We have addressed this lack of information by a data-driven estimation strategy that
fits the above set of parameters to the given training data. To this end, we first observe
that the previous parametrization is redundant, and without of loss of generality, we may
assume that sdetector = 1 (by rescaling ddetector appropriately). Further, if the field-of-view
angle γ is known, then the relation

ddetector =
ndetector · sdetector

2 tan γ
− dsource (3.3)

can be used to eliminate another parameter. Thus, the fanbeam geometry is effectively
determined by the reduced parameter set (dsource, ndetector, nangle, φ). The training data
provides pairs of discrete images x ∈ R512·512=:N and its simulated fanbeam measurements
y ∈ R128·1024=m, from which the dimensions nangle = 128 and ndetector = 1024 can be
derived. We determine the field of view as γ = arcsin(256/dsource), so that the maximum
inscribed circle in the discrete image is exactly contained within each fan of lines, which is
a common choice for fanbeam CT. Hence, (3.3) leads to

ddetector = 2 · sdetector ·
√

d2
source − 2562 − dsource .

The main difficulty of Step 1 lies in the estimation of the remaining parameters dsource
and φ). To that end, we have implemented a discrete fanbeam transform from scratch in
PyTorch (together with its corresponding FBP). A distinctive aspect of our implementa-
tion is the use of a vectorized numerical integration that enables the efficient computation
of derivatives with respect to the geometric parameters by means of automatic differentia-

40 Chapter 3 Part B: Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning

tion. This feature can be exploited for a data-driven parameter identification, for instance,
by a gradient descent. More precisely, we use a ray-driven numerical integration for the
forward model and a pixel-driven and sinogram-reweighting-based FBP (with a Hamming
filter), see Fessler [Fes17, Sec. 3.9.2]. In addition to the parameters (dsource, φ), we also
introduce learnable scaling factors sfwd and sfbp for the forward and inverse transform,
respectively. They account for ambiguities in choosing the discretization units of distance
compared to the actual physical units of distance.

As previously indicated, we estimate the free parameters θfan = (sfwd, dsource, φ) ∈ R130

of the implemented forward operator F[θfan] ∈ Rm×N in a deep-learning-like fashion:
The ability to compute derivatives dF

dθfan
allows us to make use of the M = 4000 sinogram-

image pairs {(yi, xi)}M
i=1 by solving

min
θfan

1
M

M

∑
i=1

∥∥F[θfan](xi)− yi∥∥2
2 (3.4)

with a variant of gradient descent (see Remark 3.1 below for details). Finally, we determine
sfbp by solving

min
sfbp

1
M

M

∑
i=1

∥∥xi − FBP[θfan, sfbp](yi)
∥∥2

2 ,

while keeping the already identified parameters fixed. We will use the short-hand notation
F and FBP for the estimated operators F[θfan] and FBP[θfan, sfbp] : Rm → RN , respectively.

Remark 3.1 (1) Clearly, the formulation (3.4) is non-convex and therefore it is not clear
whether gradient descent enables an accurate estimation of the underlying fanbeam
geometry. Indeed, standard gradient descent was found to be very sensitive to the
initialization of θfan and got stuck in bad local minima. To overcome this issue, we
solve (3.4) by a coordinate descent instead, which alternatingly optimizes over sfwd, dsource,
and φ with individual learning rates. This strategy was found to effectively account for
large deviations of gradient magnitudes of the different parameters. Indeed, we observed
a fast convergence and a reliable identification of θfan, independently of the initialization.

(2) Subsequent to the estimation of an accurate fanbeam geometry, we still recognized
a small systematic error in our forward model. We suspect that it is caused by subtle
differences in the numerical integration in comparison to the true forward model of the
AAPM challenge. In compensation, we compute the (pixelwise) mean error over the
training set, as an additive correction of the model bias.

Step 2: Pre-Training a UNet as Computational Backbone

The centerpiece of our reconstruction scheme is formed by a standard UNet-architecture
UNet[θ] : RN → RN [RFB15] (see Figure 3.3) which is employed as a residual network to
post-process sparse-view FBP images. The learnable parameters θ are trained from the col-
lection of M = 4000 sinogram-image pairs {(yi, xi)}M

i=1 provided by the AAPM challenge.
This is achieved by standard empirical risk minimization, i.e., by (approximately) solving

min
θ

1
M

M

∑
i=1

∥∥xi − [UNet[θ] ◦ FBP] (yi)
∥∥2

2 + µ · ∥θ∥2
2 , (3.5)

3.2 Methodology 41

Figure 3.3: UNet architecture. The UNet architecture consists of a multi-scale encoder-decoder
structure with skip-connections. In the encoder, the input image is successively downsampled
and then successively upsampled in the decoder. Levels of matching resolution in the encoder
and decoder are connected by skip-connections. Reprinted by permission from Springer
Nature Customer Service Centre GmbH: Springer Nature [RFB15], Copyright (2015).

where we choose µ = 10−3, and FBP : Rm → RN is obtained from Step 1. This minimiza-
tion problem is tackled by 400 epochs of mini-batch stochastic gradient descent and the
Adam optimizer [KB14] with initial learning rate 0.0002 and batch size 4.

Remark 3.2 The post-processing strategy of Step 2 was pioneered by Chen et al. [Che+17b]
and Kang, Min, and Ye [KMY17] and popularized by Chen et al. [Che+17a] and Jin et al.
[JMFU17], among many others. Due to the multi-scale encoder-decoder structure with
skip-connections, the UNet-architecture is very efficient in handling image-to-image learn-
ing problems. Therefore, solving (3.5) typically works out-of-the-box without requiring
sophisticated initialization or optimization strategies (even in seemingly hopeless situ-
ations [HA20]). Making use of a more powerful or a more memory-efficient network
would be beneficial, e.g., see results for the Tiramisu network in Section 3.3. However, we
preferred to keep our workflow as simple as possible and therefore decided to stick to the
standard UNet as the main computational building block.

Step 3: Constructing an Iterative Scheme

Our main reconstruction method is called ItNet (short for iterative network). It incorporates
the estimated forward model F from Step 1 (and the associated inversion FBP) via the

42 Chapter 3 Part B: Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning

y FBP UNet[θ̃k] DCλk ,y x̂

iterate K times

initial
inversion

image
enhancement

data
consistency

Figure 3.4: Constructing an iterative scheme. Schematic reconstruction pipeline of ItNetK[θ]
defined in (3.6).

following iterative procedure:

ItNetK[θ] : Rm → RN ,

y 7→
[
⃝K

k=1
(
DCλk ,y ◦ UNet[θ̃k]

)
◦ FBP

]
(y),

(3.6)

for the learnable parameters θ = {θ̃k, λk}K
k=1, K ∈ N and the k-th data-consistency layer

DCλk ,y : RN → RN , x 7→ x − λk · FBP(Fx − y).

The ItNet-architecture7 is illustrated in Figure 3.4. We train it by empirical risk minimiza-
tion analogously to (3.5) with µ = 10−4. The UNet-parameters θ̃k are initialized by the
weights obtained in Step 2. More details on our precise training approach during the
challenge submission phase can be found in Appendix B.

We close this section by pointing out several important design choices in our ItNet-
architecture:

(i) The centerpiece of ItNet is the UNet-architecture. This stands in contrast to earlier gen-
erations of unrolled iterative schemes, which rely on basic convolutional blocks instead,
e.g., see Yang et al. [YSLX16] and Adler and Öktem [AÖ18]. We have found that it is ad-
vantageous to exploit the efficacy of UNet-like image-to-image networks as enhancement
blocks. This is in line with recent state-of-the-art models, which also make use of various
advanced sub-networks, e.g., see Knoll et al. [Kno+20], Ramzi, Ciuciu, and Starck [RCS20],
Sriram et al. [Sri+20], Hammernik et al. [Ham+21], and Muckley et al. [Muc+21].

(ii) The initialization of the UNet-parameters θ̃k with a pre-trained model from Step 2 has
led to significant performance gains, regarding both training speed and reconstruction
accuracy. We refer to Section 3.3 and especially Figure 3.11 for a more details.

(iii) Our data-consistency layer is inspired by a gradient step on the loss x 7→ λk
2 ∥Fx − y∥2

2,
which would result in the update x 7→ x − λk · FT(Fx − y). We depart from this scheme
by replacing the unfiltered backprojection FT by its filtered counterpart FBP; cf. Ding
et al. [Din+20] and Tirer and Giryes [TG21]. This modification leads to significantly
improved results (see also [GMM22, Section 4.1]) for two reasons: (a) it counteracts the
fact that the unfiltered backprojection is smoothing, and (b) it produces images with pixel
values at the right scale. Therefore, we interpret the ItNet as an industry-like iterative
CT-algorithm (e.g., see Willemink and Noël [WN19]), rather than a neurally-augmented
convex optimization scheme.
7We drop the subscript K in ItNetK whenever it is irrelevant.

3.3 Results and Analysis 43

Table 3.1: Average RMSE scores for further evaluation. “Challenge FBP” corresponds
to the FBP reconstructions included in the challenge dataset. The method “UNet ◦ FBP”
corresponds to a post-processing UNet as obtained from Step 2 of Section 3.2. For more details
on our winning-method “ItNet-post ens.” (and its pre-steps “ItNet4” and “ItNet-post”), see
Appendix B.

Baselines Our Network Variants Comparison Networks

Challenge FBP FBP UNet ◦ FBP ItNet4 ItNet-post ItNet-post ens. Tiramisu LPD

RMSE 5.72e-3 3.40e-3 3.50e-4 1.64e-5 1.05e-5 6.42e-6 2.24e-4 1.24e-4

3.3 Results and Analysis

This section presents the main findings of our case study. We begin with several challenge-
related experiments, followed by a more in-depth analysis of our method.

Winning the AAPM Challenge and Beyond

In terms of quantitative similarity measures, we restrict ourselves to reporting the average
RMSE, which was the main evaluation metric for the AAPM challenge [Sid+21; SP21].
With an ensembling of ten ItNet5 (more precisely a variant thereof referred to as ItNet-post,
see Appendix B), we were able to achieve near-exact recovery on the test set, thereby
winning the challenge with a margin of about an order of magnitude ahead of the runner-
up team. The RMSE scores of all participating teams were spread across more than two
orders of magnitude in a range between 6.37e-6 (ours) and 7.90e-4. Remarkably, four
out of the five top-performing teams have estimated the forward fanbeam operator and
made use of the sinogram data. Two of them computed an approximate TV minimization
solution that was further processed by a trained neural network. The resulting solution
maps involve much higher computational costs than our ItNet-post, due to a significantly
larger number of forward-model evaluations. Note that reaching the first place amounts
to a direct comparison with 24 competing methods, see the official AAPM challenge report
[SP21] for more details.

Nevertheless, for further analysis, we have benchmarked variants of the ItNet with
different in-house baselines and other state-of-the-art methods. More specifically, we
consider a post-processing of the FBP by the more powerful Tiramisu-architecture [JDVRB17;
Bub+19; GMM22] (in comparison to the UNet) as well as the iterative learned primal-dual
(LPD) algorithm [AÖ18] (modified by replacing the unfiltered backprojection with the
FBP). LPD has been recently reported as state-of-the-art in the literature, e.g., see Ramzi,
Ciuciu, and Starck [RCS20] and Leuschner et al. [Leu+21]. Table 3.1 shows the average
RMSE scores for all methods8 and Figure 3.5 visualizes reconstructions of an image from
the validation set.

After the competition period, the challenge organizer has provided us with 10000
additional test samples to increase the statistical significance of our evaluation. The
resulting error distribution is visualized in Figure 3.6. Although there are very few outliers
with respect to the performance of our method, even these reconstructions (highlighted in

8Note that we report the RMSE on a subset of 125 images from the training set used for validation. Hence,
values differ slightly from the actual results on the official test set. In the final challenge evaluation, ItNet-post
has achieved an RMSE of 6.37e-6.

44 Chapter 3 Part B: Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning

Figure 3.5: Reconstruction results. We display individual reconstructions for an image from
the validation set. The first row compares the FBP provided by the AAPM challenge with our
FBP (= FBP, see Step 1 of Section 3.2). The second row compares a post-processing Tiramisu
with the (ensemble) ItNet-post. The ground-truth image is omitted because it is visually
indistinguishable from the reconstruction of ItNet-post.

Figure 3.6: Consistently accurate? The plot on the left-hand side visualizes the reconstruction
errors of the (ensemble) ItNet-post with respect to the RMSE and the WCRMSE (worst-case
RMSE) over a set of 10000 test images. Note that the WCRMSE was used as secondary
challenge metric, computing the highest RMSE value over all 25 × 25 sub-patches of each
image. The error distribution indicates a low variance in the reconstruction performance
of our method. On the right-hand side, we show the worst-case 25 × 25 sub-patches of the
images corresponding to the red point (worst RMSE) and green point (worst WCRMSE). The
black point represents the average RMSE and WCRMSE.

3.3 Results and Analysis 45

red and green in Figure 3.6) are visually indistinguishable from the corresponding ground-
truth phantoms. This underscores that the ItNet-post solves the CT inverse problem on
the given data distribution satisfactorily.

Data-Consistency

A crucial feature of a proper solver for an inverse problem is its consistency with the
forward model. In our case, this means that the difference y − F · ItNet(y) should be
as small as possible. We analyze this aspect in Figure 3.7.9 We observe that the data-
consistency error is dominated by the error caused by the estimated forward model F
(according to Step 1 of Section 3.2). This indicates that the performance of the ItNet
could be further improved if the exact forward operator would be available. To test this
hypothesis, we have trained an ItNet on sinogram data that was simulated from the
ground-truth phantoms using our own estimated forward operator. As expected, the
resulting ItNetSim is more accurate (about factor 2), and according to Figure 3.7 bottom
right, implies a much smaller data-consistency error. It is also noteworthy that the loss
of data-consistency for the Tiramisu is about a factor 20 larger compared to the ItNet,10

which highlights a typical downside of simple post-processing approaches.

Forward Operator Needed? ... Yes! But How Often?

The previous considerations have particularly demonstrated that incorporating the for-
ward model is key to highly accurate and data-consistent reconstructions. However,
invoking the forward operator often forms the computational bottleneck of a given solu-
tion method. It is therefore important to analyze the effective number of forward/adjoint
operator calls required for satisfactory precision. We address this by training ItNetK for
different numbers of iterations.11 In a nutshell, Figure 3.8 confirms that only a few forward
operator calls are sufficient for near-exact recovery by the ItNet, which is a notable differ-
ence to classical model-based methods like TV-minimization. A closer look reveals that
(a) not sharing the UNet-weights consistently outperforms weight sharing12 by a small
margin independent of the number of iterations, and (b) there is a sweetspot at about
K = 5 after which the performance gain due to increasing K is negligible and only the
training time increases.

The Effect of Weight Sharing

General aspects of weight sharing for unrolled algorithms have been extensively discussed
in the literature, e.g., see [AMJ18; Ham+21]. Figure 3.9 gives some insights in the context
of our specific approach. It clearly indicates that weight sharing also changes the recon-
struction dynamic within the neural networks. We observe that (a) earlier iteration steps
of the weight-shared ItNets are on average more effective, while the non-weight-shared

9Here, we have considered an ensemble of five ItNet4.
10This refers to the ratio RMSE(y,F·Tiramisu(y))−RMSE(y,Fx)

RMSE(y,F·ItNet(y))−RMSE(y,Fx) .
11Due the significant computational effort required to conduct such an experiment, this was done on subsam-

pled 256 × 256 phantom images and simulated 64-view sinograms.
12This means that the UNet-parameters are shared between all iterations, i.e., enforcing θ̃1 = · · · = θ̃K at the

training stage.

46 Chapter 3 Part B: Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning

Figure 3.7: Data consistency. We analyze the accuracy of our estimated forward operator
by displaying the difference y − Fx for a sinogram-image pair (y, x) from the validation set
(top left); the corresponding error is the RMSE averaged over all differences. The difference
y − F · ItNet(y) is visually nearly indistinguishable (top right), showing that ItNet inherits
the inaccuracies from the forward model. Indeed, ItNetSim exhibits a much smaller data-
consistency error due to a perfectly matching forward model (bottom right). In contrast,
post-processing via Tiramisu (cf. Table 3.1) reveals a clear lack of data-consistency (bottom
left). All images are shown within the same dynamical range.

counterparts draw most of their performance from the later steps, and (b) a larger variance
in the early-layer performance without weight sharing hints at a more unstable training.
This suggests a trade-off between increasing the model capacity and the difficulty of
optimizing the resulting network, while weight sharing forms a simple remedy; cf. Ham-
mernik et al. [Ham+21]. However, we conjecture that an improved training strategy for
the non-weight-shared networks might unlock the potential of the early-step UNet-blocks.
A canonical possibility would be to include the reconstructions on the intermediate levels

3.3 Results and Analysis 47

Figure 3.8: The deeper the better? Accuracy of ItNetK for different K with (blue) and without
(orange) UNet weight sharing. The radii of the circles are proportional to the training time.
The mean RMSE (± std. dev.) on a hold-out evaluation data set is reported over 5 different
training/validation splits. The original AAPM challenge data was subsampled to the resolu-
tion 256 × 256 for this experiment.

in the loss term. This could lead to an even larger performance gap between the final
reconstruction accuracy of ItNets with and without weight sharing.

Figure 3.9: A look inside. Accuracy of ItNet4 and ItNet8 with (blue) and without (orange)
UNet weight sharing when using only the first k iteration steps and discarding the rest. The
mean RMSE (± std. dev.) on a hold-out evaluation data set is reported over 5 different train-
ing/validation splits. The original AAPM challenge data was subsampled to the resolution
256 × 256 for this experiment.

48 Chapter 3 Part B: Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning

Figure 3.10: Lambda training trajectory. Training evolution of λk over 500 epochs for ItNet4
with (left) and without (right) UNet weight sharing. All λk were initialized by 1. The mean
value per epoch (± standard deviation) is reported over five different training/validation
splits. The original AAPM challenge data was subsampled to the half resolution 256 × 256 for
this experiment.

Consistency Parameter λk.

The parameters λk control the data consistency update in each iteration. We noticed
that in the case of sharing the weights of the UNet-blocks a clear convergence pattern
emerges during training which we display in Figure 3.10 for K = 4. We have found that
λ = [λ1, λ2, λ3, λ4] typically converges to values of the form {λ1 < λ2 < λ3 ≫ λ4} after
sufficiently many training epochs of ItNet. Furthermore the final ItNet performance is in
our experience stable with respect to different (reasonable) initializations of λk.

Pre-Training Matters

When constructing the ItNet according to Step 3 of Section 3.2, we have observed that it
is crucial to initialize the UNet-parameters θ̃k by the weights from the post-processing
network in Step 2. This does not only increase the speed of convergence of training ItNet,
but it also significantly improves the final accuracy, see Figure 3.11 for corresponding
loss curves. Thus, our results show that the pre-initialization of the UNet-blocks allows
finding better local minima. While the benefits of pre-trained modules are well-known for
many standard machine learning tasks, to the best of our knowledge, this has not been
reported in the context of inverse problems yet.

Performance on Real-World Image Data

In order to assess the effectiveness of our method on real-world images and noisy (but
still simulated) measurements, we have applied it to the low-dose parallel beam (LoDoPaB)
CT dataset [Leu+21]. This dataset is part of a past challenge and was successfully used to
benchmark various deep-learning-based reconstruction schemes. It consists of 42895 two-
dimensional human chest CT slices and their low-intensity measurements, see Leuschner
et al. [Leu+21] for details on the low-dose setup. For our case study, we have applied
Step 2 and Step 3 of the methodology in Section 3.2.13 The resulting ItNet has reached the

13We have trained an ensemble of five ItNet3 with initial learning rate of 8 · 10−5 and batch size 2. As loss
function, a combination of the MSE and SSIM was used.

3.3 Results and Analysis 49

Figure 3.11: The power of pre-training. Loss curves when training the ItNet with and without
a pre-initialization from Step 2 of Section 3.2. Note that the above loss curve only corresponds
to a part of our full training pipeline, see Figure B.1 in Appendix B for the complete picture.

first place in the public leaderboard (still open for submissions),14 thereby outperforming
various other methods, such as the learned primal-dual algorithm [AÖ18] (cf. Table 3.1).
A brief analysis and visualization of our reconstructions results can be found in Fig-
ure 3.12. Overall, we conclude that our solution strategy can also achieve state-of-the-art
performance on natural image data.

Figure 3.12: Results for LoDoPaB CT. The plot on the left-hand side visualizes the recon-
struction performance of the ItNet with respect to the challenge metrics (SSIM and PSNR)
where each blue point corresponds to one image in the LoDoPaB CT validation set (3522
images). We also show individual reconstructions for the red point (worst SSIM) and black
point (closest to average SSIM and PNSR) on the right-hand side. Most notable is that the
poor SSIM value of the red point is rather due to a low-quality ground-truth image, than a
low-quality reconstruction.

14Team-name: RobustAndStable; public leaderboard on https://lodopab.grand-challenge.org
(accessed on June 7, 2022).

https://lodopab.grand-challenge.org

50 Chapter 3 Part B: Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning

3.4 Discussion, Limitations, and Future Work

We have demonstrated that deep-learning-based solvers can produce near-perfect recon-
structions for a noise-free CT inverse problem. While our approach provides evidence of
feasibility, several aspects are not studied in this dissertation, some of which are pointed
out in the following.

How Accurate Can/Should We Become?

The reconstruction error of ItNet-post reported in Table 3.1 is not exactly zero, yet compa-
rable to the precision of TV minimization, cf. Sidky et al. [SLBP21]. There is no evidence
why even more accurate results should not be achievable, for example, by increasing the
internal machine precision of PyTorch (which is ≈1.19e-7 for float32); but this tweak
would certainly also affect model-based algorithms. However, non-perfect recovery is not
a severe issue from an applied perspective, since it is typically not required for practical
solutions to inverse problems. We believe that our submission to the AAPM challenge has
obtained satisfactory results in that respect (i.e., reconstructions visually indistinguishable
from the ground-truth phantoms; see Figure 3.6). Having said this, the term “near-perfect
accuracy” should be used with some care when it comes to real-world scenarios. For
instance, realistic CT systems involve analog-to-digital conversion processes and mea-
surement noise, which inevitably leads to reconstruction errors. Therefore, the operating
regime of the present thesis is primarily a testing ground for exploring the potential
capabilities of learning-based methods.

Fully Data-Driven or Hybrid Method?

Although the ItNet-architecture is inspired by unrolling, it is not clear to us how well its
internal mechanisms match those of classical iterative algorithms. Indeed, a distinctive
feature of our approach is that only very few (five) iterations can achieve near-perfect re-
covery. This stands in stark contrast to model-based counterparts, which typically require
hundreds or thousands of iterations to converge (resulting in significantly increased com-
putation times). Therefore, we prefer viewing the ItNet as fully data-driven pipeline that
is model-aided by data-consistency terms, rather than a hybrid method; see also Shlezinger
et al. [SWED20]. More generally, we suspect that viewing unrolled networks as neurally-
enhanced iterative schemes only partially explains the success of deep learning in inverse
problems.

Model Distortions?

Since the purpose of data-driven methods is to adapt to a specific data distribution, the
generalization to out-of-distribution features and forward-model distortions cannot be
taken for granted [SKM07]. This aspect forms a field of active research, e.g., see Antun
et al. [ARPAH20], Darestani, Chaudhari, and Heckel [DCH21], and Gilton, Ongie, and
Willett [GOW21b] for initial results, but is not investigated in this thesis.

3.4 Discussion, Limitations, and Future Work 51

Generalization to Other (Inverse) Problems?

The scope of our empirical study is limited to the setup of the sparse-view CT inverse
problem as prescribed by the AAPM challenge, which has provided an ideal experimental
area to test our research hypothesis. Although this has enabled an insightful reliability
check, a foundational understanding of learned reconstruction methods is still in its infancy.
In particular, it remains speculative to what extent our findings would generalize beyond
the sparse-view, mono-energy CT setup. Therefore, similar case studies for different types
of inverse problems and real-world data are important steps for future research. Our
evaluation on the more realistic LoDoPaB CT dataset can be seen as a first effort in that
direction.

4

Conclusion and Outlook

Over the course of this thesis, we have studied approximations by neural networks
from a theoretical and an applied perspective. In this last chapter, we summarize our
achievements and provide a meta-level discussion. Finally, we outline possible future
research directions related to this work.

On Part A In Chapter 2, we theoretically analyzed the complexity of neural networks to
approximate functions from a wide variety of classical function spaces under different
assumptions on the network architecture and the memory requirement of weights. As
a complexity measure, the number of weights and layers was used. Our results allow
us to transfer bounds on the well-studied entropy of embeddings directly into lower
bounds for neural network approximations with encodable weights and, consequently,
cover (fractional) Sobolev spaces, Besov spaces, Hölder spaces, Triebel-Lizorkin, Zygmund
spaces and more. An analysis in these function spaces is essential for various mathematical
fields such as signal processing, the analysis of PDEs, and inverse problems. For our upper
bounds, we focus on Sobolev spaces and presented a framework for the construction of
approximate partitions of unity by neural networks with fairly general activation functions.
The derived proof framework stands out since it generalizes several previous approaches
for more restricted classes of activation functions and we believe that its usage in a Plug &
Play fashion (see also Remark 2.23) paves the way for further results in an even broader
class of functions spaces. We hope that our findings are general enough to facilitate further
insights for various deep learning applications as e.g. in [Pou22], where convergence
results of neural networks for the solution of second order elliptic PDEs are derived based
on our approximation bounds for Sobolev spaces.

We would like to turn to Allan Pinkus – a pioneer of approximation theory for neural
networks – to set the stage for a two-sided interpretation of our theoretical results. In the
survey paper [Pin99] in 1999 he gave the following characterization:

“Theoretical results ... do not usually have direct applications. In fact they are often
far removed from practical considerations. Rather they are meant to tell us what is
possible and, sometimes equally importantly, what is not.

They are also meant to explain why certain things can or cannot occur, by highlighting
their salient characteristics, and this can be very useful.”

In the spirit of the above quote, we summarize two high-level insights from our results in
the context of the existing literature:

• Neural networks provide a very flexible framework able to approximate functions
from most function spaces of interest where the error can be measured in a wide
variety of norms, arbitrarily well.

53

54 Chapter 4 Conclusion and Outlook

• Under realistic assumptions (e.g. encodable weights and practically used activation
functions) approximation theory with neural networks does not result in approxi-
mation theoretic breakthroughs for classical function spaces. The complexity of the
approximating neural networks is comparable to classical schemes.

While the first statement already follows from classical universality results and variations
thereof [Pin99], the second one, which does not join the usual praise of neural networks,
might be less obvious. As evidence in the case of approximations of Sobolev functions,
we would like to point to our results from Chapter 2. Here, we show that the optimal
complexity of approximating neural networks1 coincides with the expected power law
relation of classical schemes for domain dimension d, function space smoothness n, and
smoothness of the approximation norm k given by ε−d/(n−k). But even works that specifi-
cally advocate the efficacy of neural networks for certain tasks are often not able to identify
an advantage over established (efficient) algorithms [BGKP19; HGE21; KPRS22]. This is
no surprise, given that current proof strategies merely emulate standard results in the
language of neural networks (see also next section).

From Part A to Part B As a provocative and debatable conclusion, we would like to state
the following hypothesis:

Approximation theory for neural networks in classical function spaces has come to a
point of diminishing returns. Holistic and / or empirical investigations will lead to
further insights.

Inter alia, we see two possible reasons for this development: Firstly, we self-critically
observe that the starting point of many works in this field is the question: What results
are in reach based on existing mathematical frameworks? This mathematically convenient
approach results in a methodology that is detached from the very phenomena it tries
to explain [AD21]. Instead, over the course of this thesis, we came to the opinion that
theory that is closely tied to experimental observations provides more valuable insights
into the inner workings of deep learning. Since problems in deep learning are notoriously
hard to model, the price to pay might be less mathematical rigor or empirical studies
without theoretical guarantees [GMM22]. Secondly, recent works provide evidence that the
influence of the network size might be better explained with respect to optimization and
generalization properties [BMR21]. This indicates that an isolated study of network size
in the context of approximation theory might disregard key factors for the explanation of
the success of deep learning.

On a more concrete level, we believe that a systematic empirical investigation of theoret-
ical approximation settings should be the “gold standard” of future research in this area
and accompany theoretical studies. This would further the understanding of the practical
implications of these results without excluding generalization and optimization effects. In
particular, it would be interesting to underpin the following aspects by experiments:

• Theoretical results claim that for each accuracy ε > 0 an approximating neural
network Φε can be found (with complexity depending on the specific norm and
function space setup). Similar to the driving research question of Part B, we might

1The statement holds true for neural networks with encodable weights and depends on properties of the
activation function. See Chapter 2 for an in-depth discussion.

Chapter 4 Conclusion and Outlook 55

ask: Can neural networks reach the theoretically guaranteed near-perfect accuracy in
practical scenarios? As a starting point for Sobolev spaces, we mention [COJSP17],
where a Sobolev loss is used to promote convergence in the appropriate norm.

• In most works on approximation theory for neural networks the determining factors
of the approximation rates are identified. These factors depend on the object of
study. Approximation rates for parametric PDEs, for example, are determined by the
dimension of the solution manifold [KPRS22]. In our results, the driving factors for
the network complexity besides the accuracy ε are the domain dimension, function
space smoothness, and smoothness of the approximation norm. Generally, increasing
the function space smoothness facilitates the approximation task. However, these
theoretically predicted dependencies might not always carry over to practice. Indeed,
Adcock and Dexter [AD21] find in their experimental study that theoretically better
approximation rates cannot always be observed in experiments. Similarly, Grohs
and Voigtlaender [GV21] and Berner, Grohs, and Voigtlaender [BGV22] show that
approximation rates and sample complexity are not necessarily coupled. This
might prevent efficient approximations to be learned from a tractable number of
samples. We believe that future research should reveal these gaps, by systematically
experimenting with varying factors and quantify the empirically observed impact.

The above discussion also motivates the transition from the theoretical approach in
Part A (Chapter 2) to the empirical study of Part B (Chapter 3).

On Part B In Chapter 3, we investigated a deep-learning-based method for the solution
of a noise-free prototypical computed tomography setup. We demonstrate that an iterative
end-to-end network scheme enables reconstructions close to numerical precision, compa-
rable to compressed sensing strategies. A key feature of our approach is the incorporation
of a small number of forward model evaluations in a data consistency step together with a
well-trained but comparatively simple architecture. Apart from an in-depth analysis of our
methodology, we also demonstrated its state-of-the-art performance on the open-access
real-world dataset LoDoPaB CT. In a broader context, we see our work as an incremental
but important step towards the bold hypothesis:

Deep-learning-based methods can solve noise-free inverse problems (under suitable
conditions) to near-perfect accuracy.

The above statement includes the finding that neural networks are expressive enough
to approximate the solution mapping. However, the optimization aspect can not be
disregarded for practically meaningful results.

In the following, we mention some possibilities to further substantiate and explore the
limits of the above hypothesis:

• A reduction in the number of measurements can save time and costs in e.g. med-
ical applications but at the same time increases the degree of ill-posedness of the
reconstruction task. Consequently, it would be of practical importance and scientific
interest to explore how much further the number of measurements can be reduced
until the performance of neural solvers starts to break down. Particularly interesting
would be the comparison to regularization-based approaches, such as TV mini-
mization: Can deep-learning-based schemes reach near-perfect recovery in a regime where

56 Chapter 4 Conclusion and Outlook

regularization-based approaches cannot? There is certainly no general “yes” or “no”
answer to this fundamental question. Rather, we expect the answer to depend on
the interplay of the “data manifold”, the forward operator, and algorithmic choices.
We hypothesize that on intrinsically low-dimensional “image manifolds”, that can
not necessarily be fully described by simple priors, such as gradient sparsity, neural
networks might have an advantage due to greater adaptability2. Furthermore, we
expect that concurrently with increasing the degree of ill-posedness, the probability
of artifacts in the form of hallucinations grows. This might explain why hallucina-
tions were found in the fastMRI competition [Muc+21] but not in our study. Future
research should focus on extracting practical guidelines from systematic experiments
starting on simple and transitioning to more complicated real-world image distri-
butions. This could yield a characterization of the kind of inverse problems where
deep learning based methods have an edge on regularization-based approaches.

• The strength of the empirical approach is at the same time its weakness in safety-
critical applications. Arguing for the reliability of deep-learning-based approaches
by conducting experiments alone, is a Sisyphean task, that needs to be repeated
for each change in the setup of interest (e.g. a change in the forward operator,
architecture or training methodology). A theoretical framework that derives end-
to-end performance guarantees, based on tangible assumptions on the data, would
be a milestone for deep learning driven technologies to be accepted in medical
applications. Since such a compressed-sensing-style theory seems to be currently
out of reach [BMR21; BGKP21; Nak21], we advocate that future research focuses on
a more “practical theory” that yields criteria of inverse problems (such as “can be
solved by TV minimization”) under which certain neural network solvers (such as
“iterative with enforced data-consistency”) perform the reconstruction task up to a
satisfactory accuracy.

• Finally, we outline a way to connect Part B to Part A for the specific case study in
this thesis. Indeed, in the introduction, we mentioned that Natterer [Nat80; Nat01]
argues that fractional Sobolev spaces provide a suitable framework for the analysis
of the CT inverse problem. By lifting our function approximation results to the
operator regime, similar to [CC95; Kov+21; LMK22], it might be possible to derive
an approximation of the inverse radon transform by neural networks. As a possible
starting point, we mention Carroll and Dickinson [CD89], which makes use of
the inverse radon transform in their approximation results. Such a result suffers
of course from all the above mentioned shortcomings of approximation theoretic
result, but combined with empirical evaluations might be a step towards a more
comprehensive theory.

We would like to conclude with stating our optimism that future works are going to
continue to tackle the gap between theory and practice in deep learning. The only thing
left is to express our gratitude to be able to participate in these exciting times of scientific
advancements.

2We remark that the data from the AAPM challenge was synthetically generated from some low-dimensional
parameter space.

A

Proofs for Part A

A.1 Notation and Auxiliary Results

In this subsection, we depict the (mostly standard) notation used throughout this thesis.
We set N := {1, 2, . . .} and N0 := N ∪ {0}. For k ∈ N0 we define N≥k := {k, k + 1, . . .}.
For a set A we denote its cardinality by |A| ∈ N ∪ {∞} and by 1A its indicator function of
A. If x ∈ R, then we write ⌈x⌉ := min{k ∈ Z : k ≥ x} where Z is the set of integers and
⌊x⌋ := max{k ∈ Z : k ≤ x}.

If d ∈ N and ∥·∥ is a norm on Rd, then we denote for x ∈ Rd and r > 0 by Br,∥·∥(x)
the open ball around x in Rd with radius r, where the distance is measured in ∥·∥. By
|x| we denote the euclidean norm of x and by ∥x∥∞ the maximum norm. We endow
Rd with the standard topology and for A ⊂ Rd we denote by A the closure of A and
by ∂A the boundary of A. For the convex hull of A we write conv A. The diameter
of a non-empty set A ⊂ Rd is always taken with respect to the euclidean distance, i.e.
diam A := diam|·| A := supx,y∈A|x − y|. If A, B ⊂ Rd, then we write A ⊂⊂ B if A is
compact in B.

For d1, d2 ∈ N and a matrix A ∈ Rd1,d2 the number of nonzero entries of A is counted
by ∥·∥0, i.e.

∥A∥0 :=
∣∣{(i, j) : Ai,j ̸= 0}

∣∣.
If f : X → Y and g : Y → Z are two functions, then we write g ◦ f : X → Z for their
composition. If additionally U ⊂ X, then f |U : U → Y denotes the restriction of f onto
U. We use the usual multiindex notation, i.e. for α ∈ Nd

0 we write |α| := α1 + . . . + αd and
α! := α1! · . . . · αd!. Moreover, if x ∈ Rd, then we have

xα :=
d

∏
i=1

xαi
i .

Let from now on Ω ⊂ Rd be open. For a function f : Ω → R, we denote by

Dα f :=
∂|α| f

∂xα1
1 ∂xα2

2 · · · ∂xαd
d

.

its (weak or classical) derivative of order α. For n ∈ N0 ∪ {∞}, we denote by Cn(Ω) the
set of n times continuously differentiable functions on Ω. Additionally, if Ω is compact,
we set, for f ∈ Cn(Ω)

∥ f ∥Cn(Ω) := max
0≤|α|≤n

sup
x∈Ω

|Dα f (x)|.

57

58 Appendix A Proofs for Part A

We denote by Lp(Ω), 1 ≤ p ≤ ∞ the standard Lebesgue spaces.
In the following, we will also make use of the following well-known fact stating that

the exponential function decays faster than any polynomial.

Proposition A.1 Let α, β, c, c′ > 0. Then

lim
x→∞

c′xα

ec·xβ
= 0.

This implies that for all γ > 0 there exists some constant C = C(α, β, γ) > 0 such that for
all x > 0 there holds

c′xα

ec·xβ
≤ Cx−γ.

A.2 Sobolev Spaces

In this section, we introduce Sobolev spaces (see [Ada75]) which constitute a crucial
concept within the theory of PDEs (see e.g. [Eva99; Rou13]).

Definition A.2 Given some domain Ω ⊂ Rd, 1 ≤ p < ∞, and n ∈ N, the Sobolev
space Wn,p(Ω) is defined as

Wn,p(Ω) :=
{

f : Ω → R : ∥Dα f ∥p
Lp(Ω)

< ∞, for all α ∈ Nd
0 with |α| ≤ n

}
,

and is equipped with the norm

∥ f ∥Wn,p(Ω) :=

(
∑

0≤|α|≤n
∥Dα f ∥p

Lp(Ω)

)1/p

.

Additionally, we set

Wn,∞(Ω) :=
{

f : Ω → R : ∥Dα f ∥L∞(Ω) < ∞ for all α ∈ Nd
0 with |α| ≤ n

}
,

and we equip this space with the norm ∥ f ∥Wn,∞(Ω) := max|α|≤n∥Dα f ∥L∞(Ω). Moreover,
for 0 ≤ k ≤ n, on Wn,p(Ω) we introduce the family of semi-norms

| f |Wk,p(Ω) :=

(
∑
|α|=k

∥Dα f ∥p
Lp(Ω)

)1/p

, | f |Wk,∞(Ω) := max
|α|=k

∥Dα f ∥L∞(Ω),

respectively. Finally, let

Wn,p
loc (Ω) := { f : Ω → R : f |Ω̃ ∈ Wn,p(Ω̃) for all compact Ω̃ ⊂ Ω}.

Remark A.3 If Ω is bounded and fulfills a local Lipschitz condition, arguments from
[Ada75] show that W2,∞(Ω) can be continuously embedded into C1(Ω). This can be seen

A.2 Sobolev Spaces 59

as follows: [Ada75, Theorem 4.12] shows that W2,p(Ω) can be continuously embedded
into C1(Ω) for p > d. Since also W2,∞(Ω) can be continuously embedded into W2,p(Ω),
the claim follows.

Remark A.4 For purely technical reasons we sometimes make use of an extension op-
erator. For this, let E : Wn,p((0, 1)d) → Wn,p(Rd) be the extension operator from [Ste79,
Theorem VI.3.1.5] and set f̃ := E f . Note that for arbitrary Ω ⊂ Rd and 0 ≤ k ≤ n it holds∣∣ f̃ ∣∣Wk,p(Ω)

≤
∥∥ f̃
∥∥

Wn,p(Rd)
≤ C∥ f ∥Wn,p((0,1)d)

, (A.1)

where C = C(n, p, d) is the norm of the extension operator.

A.2.1 Averaged Taylor Polynomial

In this subsection, we develop a polynomial approximation in the spirit of Taylor polyno-
mials but appropriate for Sobolev spaces. A polynomial approximation Pf of a function
f ∈ Fn,d,p is the first step towards an approximation of f realized by a neural network in
the proof of Theorem 2.22.

A reference for this entire subsection is [BS08, Chap. 4.1].

Definition A.5 (averaged Taylor polynomial) Let n ∈ N, 1 ≤ p ≤ ∞ and f ∈
Wn−1,p(Ω), and let x0 ∈ Ω, r > 0 such that for the ball B := Br,|·|(x0) it holds that
B ⊂⊂ Ω. The corresponding Taylor polynomial of order n of f averaged over B is defined
for x ∈ Ω as

Qn f (x) :=
∫

B
Tn

y f (x)ϕ(y)dy, (A.2)

where
Tn

y f (x) := ∑
|α|≤n−1

1
α!

Dα f (y)(x − y)α (A.3)

and ϕ is an arbitrary cut-off function supported in B, i.e.

ϕ ∈ C∞
c (Rd) with ϕ(x) ≥ 0 for all x ∈ Rd, supp ϕ = B and

∫
Rn

ϕ(x)dx = 1.

A cut-off function as used in the previous definition always exists. A possible choice is

ψ(x) =

{
e−(1−(|x−x0|/r)2)

−1

, if |x − x0| < r
0, else

normalized by
∫

Rd ψ(x)dx. Next, we derive some properties of the averaged Taylor
polynomial.

Remark A.6 From the linearity of the weak derivative we can easily conclude that the
averaged Taylor polynomial is linear in f .

Recall that the averaged Taylor polynomial is defined via an integral and some cut-
off function (cf. (A.2)) that perform an averaging of a polynomial expression (cf. (A.3)).
Additionally, the following lemma shows that the averaged Taylor polynomial of order n
is indeed a polynomial of degree less than n in x.

60 Appendix A Proofs for Part A

Lemma A.7 Let n ∈ N, 1 ≤ p ≤ ∞ and f ∈ Wn−1,p(Ω), and let x0 ∈ Ω, r > 0, R ≥ 1
such that for the ball B := Br,|·|(x0) it holds that B ⊂⊂ Ω and B ⊂ BR,∥·∥ℓ∞ (0). Then the
Taylor polynomial of order n of f averaged over B can be written as

Qn f (x) = ∑
|α|≤n−1

cαxα

for x ∈ Ω.
Moreover, there exists a constant c = c(n, d, R) > 0 such that the coefficients cα are

bounded with |cα| ≤ cr−d/p∥ f ∥Wn−1,p(Ω) for all α with |α| ≤ n − 1.

Proof . The first part of the proof of this lemma follows closely the chain of arguments in
[BS08, Eq. (4.1.5) - (4.1.8)]. We write for α ∈ Nd

0

(x − y)α =
d

∏
i=1

(xi − yi)
αi = ∑

γ,β∈Nd
0 ,

γ+β=α

a(γ,β)x
γyβ,

where a(γ,β) ∈ R are suitable constants with

∣∣∣a(γ,β)

∣∣∣ ≤ (γ + β
γ

)
=

(γ + β)!
γ ! β !

(A.4)

in multi-index notation. Then, combining Equation (A.2) and (A.3) yields

Qn f (x) = ∑
|α|≤n−1

∑
γ+β=α

1
α!

a(γ,β)x
γ
∫

B
Dα f (y)yβϕ(y)dy

= ∑
|γ|≤n−1

xγ ∑
|γ+β|≤n−1

1
(γ + β)!

a(γ,β)

∫
B

Dγ+β f (y)yβϕ(y)dy︸ ︷︷ ︸
=:cγ

.

For the second part, note that∣∣∣∣∫B
Dγ+β f (y)yβϕ(y)dy

∣∣∣∣ ≤ ∫
B

∣∣∣Dγ+β f (y)
∣∣∣∣∣∣yβ

∣∣∣|ϕ(y)|dy

≤ R|β|∥ f ∥Wn−1,p(B)∥ϕ∥Lq(B), (A.6)

where we used B ⊂ BR,∥·∥ℓ∞ (0) and the Hölder’s inequality with 1/q = 1 − 1/p. Next,
since ϕ ∈ L1(B) ∩ L∞(B) and ∥ϕ∥L1 = 1 we have (see [AJ08, Chap. X.4 Exercise 4])

∥ϕ∥Lq ≤ ∥ϕ∥1/q
L1 ∥ϕ∥1−1/q

L∞ = ∥ϕ∥1/p
L∞ .

Combining the last estimate with Equation (A.6) yields∣∣∣∣∫B
Dγ+β f (y)yβϕ(y)dy

∣∣∣∣ ≤ Rn−1∥ f ∥Wn−1,p(Ω)∥ϕ∥1/p
L∞(B)

≤ cRn−1∥ f ∥Wn−1,p(Ω)r
−d/p, (A.7)

A.2 Sobolev Spaces 61

where the second step follows from ∥ϕ∥L∞ ≤ cr−d for some constant c = c(d) > 0
(see [BS08, Section 4.1]). To estimate the absolute value of the coefficients cγ (defined in
Equation A.5), we have

|cγ| ≤ ∑
|γ+β|≤n−1

1
(γ + β)!

∣∣∣a(γ,β)

∣∣∣∣∣∣∣∫B
Dγ+β f (y)yβϕ(y)dy

∣∣∣∣
≤ cRn−1∥ f ∥Wn−1,p(Ω)r

−d/p ∑
|γ+β|≤n−1

1
γ!β!

= c′∥ f ∥Wn−1,p(Ω)r
−d/p.

Here, the second step used Equation (A.7) together with Equation (A.4), and c′ =
c′(n, d, R) > 0 is a constant. ■

The next step is to derive approximation properties of the averaged Taylor polynomial.
To this end, recall that for the (standard) Taylor expansion of some function f defined on
a domain Ω in x0 to yield an approximation at some point x0 + h the whole path x0 + th
for 0 ≤ t ≤ 1 has to be contained in Ω (see [Mar74, Thm. 6.8.10]). In case of the averaged
Taylor polynomial the expansion point x0 is replaced by a ball B and we require that the
path between each x0 ∈ B and each x ∈ Ω is contained in Ω. This geometrical condition is
made precise in the following definition.

Definition A.8 Let Ω, B ⊂ Rd. Then Ω is called star-shaped with respect to B if,

conv ({x} ∪ B) ⊂ Ω for all x ∈ Ω.

The next definition introduces a geometric notion which becomes important when given
a family of subdivisions T h, 0 < h ≤ 1 of a domain Ω which becomes finer for smaller h.
One typically needs to control the nondegeneracy of (T h)h which can be done e.g. with a
uniformly bounded chunkiness parameter.

Definition A.9 Let Ω ⊂ Rd be bounded. We define the set

R :=

{
r > 0 :

there exists x0 ∈ Ω such that Ω is

star-shaped with respect to Br,|·|(x0)

}
.

If R ̸= ∅, then we define

r⋆max := supR and call γ :=
diam(Ω)

r⋆max

the chunkiness parameter of Ω.

To emphasize the dependence on the set Ω, we will occasionally write r⋆max(Ω) and
γ(Ω).

The next lemma shows approximation properties of the averaged Taylor polynomial. A
proof can be found in [BS08, Lem. 4.3.8].

62 Appendix A Proofs for Part A

Lemma A.10 (Bramble-Hilbert) Let Ω ⊂ Rd be open and bounded, x0 ∈ Ω and r > 0
such that Ω is star-shaped with respect to B := Br,|·|(x0), and r > (1/2)r⋆max. Moreover, let
n ∈ N, 1 ≤ p ≤ ∞ and denote by γ the chunkiness parameter of Ω. Then there exists a
constant C = C(n, d, γ) > 0 such that for all f ∈ Wn,p(Ω)

| f − Qn f |Wk,p(Ω) ≤ Chn−k| f |Wn,p(Ω) for k = 0, 1, . . . , n,

where Qn f denotes the Taylor polynomial of order n of f averaged over B and h = diam(Ω).

Finally, the following crucial corollary is a consequence of Lemma A.10 specifically
tailored to our needs.

Corollary A.11 (Bramble-Hilbert) Let d, n ∈ N and 1 ≤ p ≤ ∞. Furthermore, let N ∈ N

and set for m ∈ {0, . . . , N}d

Ωm,N := B 1
N ,∥·∥∞

(m
N

)
.

Then there exists a constant C = C(n, d) > 0 such that for all f ∈ Wn,p(Rd) and m ∈
{0, . . . , N}d there is a polynomial pm(x) = ∑|α|≤n−1 cαxα such that

∥∥ f − pm
∥∥

Wk,p(Ωm,N)
≤ C

(
1
N

)n−k

∥ f ∥Wn,p(Ωm,N), for k = 0, 1, . . . , n

and the coefficients cα are bounded by |cα| ≤ CNd/p∥ f ∥Wn,p(Ωm,N) for all α with |α| ≤ n − 1.

Proof . For each m ∈ {0, . . . , N}d we set

Bm,N := B 3
4N ,|·|

(m
N

)
,

and denote by pm = p f ,m the Taylor polynomial of order n of f averaged over Bm,N
(cf. Def. A.5). It follows from Proposition A.7 (for Ω = Ωm,N , B = Bm,N and R = 2) that
we can write pm = ∑|α|≤n−1 cm,αxα and that there is a constant c′ = c′(n, d) > 0 such that

|cm,α| ≤ c′
∥∥ f
∥∥

Wn,p(Ωm,N)

(
3

4N

)−d/p

≤ c′′∥ f ∥Wn,p(Ωm,N)N
d/p

for m ∈ {0, . . . , N}d, where c′′ = c′′(n, d, p) > 0 is a suitable constant. To check that the
conditions of the Bramble-Hilbert Lemma A.10 are fulfilled, note that Bm,N ⊂⊂ Ωm,N .
Furthermore, Bm,N is a ball in Ωm,N such that Ωm,N is star-shaped with respect to Bm,N . We
have diam|·|(Ωm,N) = (2

√
d)/N and r⋆max(Ωm,N) = 1/N and, thus,

r|·| (Bm,N) =
3

4N
>

1
2
· 1

N
=

1
2
· r⋆max(Ωm,N).

Finally, we have for the chunkiness parameter of Ωm,N

γ(Ωm,N) = diam(Ωm,N) ·
1

r⋆max(Ωm,N)
=

2
√

d
N

· N = 2
√

d. (A.8)

A.2 Sobolev Spaces 63

Applying the Bramble-Hilbert Lemma A.10 yields for each m ∈ {0, . . . , N}d the local
estimate

∥∥ f − pm
∥∥

Lp(Ωm,N)
≤ C1

(
2
√

d
N

)n ∣∣ f ∣∣Wn,p(Ωm,N)
≤ C2

(
1
N

)n

∥ f ∥Wn,p(Ωm,N).

Here, C1 = C1(n, d) > 0 is the constant from Lemma A.10 which only depends on
n and d, since the chunkiness parameter of Ωm,N is a constant depending only on d
(see Equation (A.8)) and C2 = C2(n, d) > 0. In the same way, we get

∣∣ f − pm
∣∣
W1,p(Ωm,N)

≤ C3

(
1
N

)n−1

∥ f ∥Wn,p(Ωm,N),

where C3 = C3(n, d) > 0 is a suitable constant.

■

A.2.2 Product and Composition Estimates

Now we turn our attention to a version of a product rule tailored to our needs.

Lemma A.12 Let k ∈ N, and assume that f ∈ Wk,∞(Ω) and g ∈ Wk,p(Ω) with 1 ≤ p ≤
∞. If k ≥ 3, additionally assume that f ∈ Ck(Ω) or g ∈ Ck(Ω). Then f g ∈ Wk,p(Ω) and
there exists a constant C = C(d, p, k) > 0 such that

∥ f g∥Wk,p(Ω) ≤ C
k

∑
i=0

∥ f ∥W i,∞(Ω)∥g∥Wk−i,p(Ω),

and, consequently
∥ f g∥Wk,p(Ω) ≤ C∥ f ∥Wk,∞(Ω)∥g∥Wk,p(Ω).

Proof . For k = 0 the statement is obvious.
The case k = 1 is proven similarly to k = 2 but easier, so we skip the proof here

(see [GKP20, Lemma B.6]).
For k = 2 it follows from [GT98, Chap. 7.3] that the usual product rule also holds for the

second order derivatives such that we have

| f g|W2,p(Ω)

≤ C ∑
i,j=1,...,d

∥∥∥∥ ∂2

∂xi∂xj
f g
∥∥∥∥

Lp(Ω)

+

∥∥∥∥ ∂

∂xi
f

∂

∂xj
g
∥∥∥∥

Lp(Ω)

+

∥∥∥∥ ∂

∂xj
f

∂

∂xi
g
∥∥∥∥

Lp(Ω)

+

∥∥∥∥ f
∂2

∂xi∂xj
g
∥∥∥∥

Lp(Ω)

≤ C
(
∥ f ∥W2,∞(Ω)∥g∥Lp(Ω) + ∥ f ∥W1,∞(Ω)∥g∥W1,p(Ω) + ∥ f ∥L∞(Ω)∥g∥W2,p(Ω)

)
.

Again the overall statement follows easily. The statement for k ∈ N≥3 can directly be
concluded from the Leibniz formula (see [Bre12, Lemma 8.18]), which, for a multi-index α

64 Appendix A Proofs for Part A

with |α| ≤ k yields

Dα(f g) = ∑
|β|≤|α|

(
α

β

)
Dβ f Dα−βg.

■

The following corollary establishes a chain rule estimate for Wk,∞.

Corollary A.13 Let d, m ∈ N, k ∈ N≥2 and Ω1 ⊂ Rd, Ω2 ⊂ Rm both be open, bounded,
and convex. Then, there is a constant C = C(d, m, k) > 0 with the following properties:

(i) If k = 2 and f ∈ W2,∞(Ω1; Rm) ∩ C1(Ω1; Rm) and g ∈ W2,∞(Ω2) ∩ C1(Ω2)
such that Range(f) ⊂ Ω2, then for the composition g ◦ f it holds that g ◦ f ∈
W2,∞(Ω1) ∩ C1(Ω1) and we have

|g ◦ f |W1,∞(Ω1)
≤ C|g|W1,∞(Ω2)| f |W1,∞(Ω1; Rm),

and

|g ◦ f |W2,∞(Ω1) ≤ C
(
|g|W2,∞(Ω2)| f |2W1,∞(Ω1; Rm) + |g|W1,∞(Ω2)| f |W2,∞(Ω1; Rm)

)
.

(ii) If k ≥ 3, f ∈ Ck(Ω1; Rm) and g ∈ Ck(Ω2) such that Range(f) ⊂ Ω2, then for the
composition g ◦ f it holds that g ◦ f ∈ Ck(Ω1) and

(a) if | f |W l,∞(Ω1; Rm) ≤ CNl for all l = 1, . . . , k, then

|g ◦ f |Wk,∞(Ω1)
≤ C

k

∑
l=1

|g|W l,∞(Ω2)
Nk; (A.10)

(b) if τ ∈ N0 and | f |W l,∞(Ω1; Rm) ≤ CNl+µ max{0,l−τ} for all l = 1, . . . , k, then

|g ◦ f |Wk,∞(Ω1)
≤ C

k

∑
l=1

|g|W l,∞(Ω2)
Nk+µ(k=2) . (A.11)

Proof . (i) can be shown by basic computations using the classical first derivative and
[GKP20, Corollary B.5, Lemma B.6]. For (ii), we make use of the multivariate Faa Di Bruno
formula (see [CS96, Theorem 2.1]) and get that

|g ◦ f |Wk,∞(Ω1)
≤ C max

|ν|=k

k

∑
l=1

|g|W l,∞(Ω2) ∑
|λ|=l

∑
p(ν,λ)

k

∏
j=1

| f ||rj|

W |lj |,∞(Ω1; Rm)
,

where

p(ν, λ) :=

(r1, . . . , rk; l1, . . . , lk) : for some 1 ≤ s ≤ k, ri = 0, li = 0 for 1 ≤ i ≤ k − s;

|ri| > 0 for k − s + 1 ≤ i ≤ k; and 0 ≤ lk−s+1 ≤ . . . ≤ lk are such that

∑k
i=1 ri = λ, ∑k

i=1|ri|li = ν.

 .

A.3 Proof of Theorem 2.10 (Lower Bounds Based on the VC-Dimension) 65

Equation (A.10) now follows from

k

∏
j=1

| f ||rj|

W |lj |,∞(Ω1; Rm)
≤ C

k

∏
j=1

N|lj||rj| = CN∑k
j=1|lj||rj| = CNk.

Equation (A.11) for τ = 0 follows from (a) with N = N1+µ. For τ ≥ 1, we have

k

∏
j=1

Nµ max{0,|lj|−τ}|rj| = Nµ ∑k
j=1 max{0,|lj|−τ}|rj|

and
k

∑
j=1

max{0, |lj| − τ}|rj| =
k

∑
j:|lj|≥τ

(|lj| − τ)|rj|.

If |lj| < τ for all j = 1, . . . , k, then ∑k
j:|lj|≥τ(|lj| − τ)|rj| = 0 ≤ µ max{0, k− τ}. If there exists

some j′ with |lj′ | ≥ τ and |rj| = 0 for all j with |lj| ≥ τ, then also ∑k
j:|lj|≥τ(|lj| − τ)|rj| =

0 ≤ µ max{0, k − τ}. Otherwise, there exists some j′ with |lj′ | ≥ τ and |rj′ | ≥ 1. We then
have

k

∑
j:|lj|≥τ

(|lj| − τ)|rj| ≤
k

∑
j:|lj|≥1

|lj||rj| − τ ∑
j:|lj|≥τ

|rj| = k − τ ∑
j:|lj|≥τ

|rj| ≤ k − τ|lj′ | |rj′ | ≤ k − τ

from which the statement in combination with (a) follows. ■

A.3 Proof of Theorem 2.10 (Lower Bounds Based on the VC-Dimension)

For this section, let ϱ : R → R, x 7→ max(0, x), be the ReLU activation function.
We start by showing an auxiliary result, that is used in the proof of Proposition A.15.

Lemma A.14 Let d ∈ N and Φ be a neural network with d-dimensional input and one-
dimensional output. Moreover, let x ∈ (0, 1)d and ν ∈ Rd. Then, there exists an open set
T = T(x, ν) ⊂ (0, 1)d and δ = δ(x, ν, T) > 0 with x + λδν ∈ T for 0 ≤ λ ≤ 1 and Rϱ(Φ)
is affine-linear on T.

Proof . We start by defining the set

U := {x ∈ Rd : Rϱ(Φ) is affine-linear on a neighborhood of x}.

Standard results on the number of pieces of ReLU neural networks [MPCB14] yield that U
has only finitely many polyhedral, connected components, (Vi)

k
i=1 for some k ∈ N, with

U =
⋃k

i=1 Vi and Rd =
⋃k

i=1 Vi. Note that if follows from the definition of U that Vi is open
for i = 1, . . . , k.

Now, set xn := x + (1/n)ν. By the pigeonhole principle, there exists q ∈ {1, . . . , k},
such that Vq contains infinitely many xn. It is not hard to see that if a closed polyhedron
contains a converging sequence on a line, then it also contains a small section of the line

66 Appendix A Proofs for Part A

including the limit point of the sequence. Thus, there exists δ > 0 such that {x + λδν : 0 ≤
λ ≤ 1} ⊂ Vq ∩ (0, 1)d ⊂ Vq ∩ (0, 1)d. Then, setting T := Vq ∩ (0, 1)d shows the claim. ■

The idea of the next proposition is to relate the approximation error ε with the number
of weights M(Aε) of an architecture Aε capable of realizing such an approximation. To
this end, we construct a set of functions H parameterized by elements of RM(Aε)+1.

If w ∈ RM(Aε) and δ > 0 is chosen appropriately, then a directional derivative of
the function realized by Aε(w) is computed for the evaluation of h((w, δ), ·) ∈ H. By
exploiting the approximation capacity of derivatives of functions realized by Aε(w) we
can find a lower bound for VCdim(H) depending on ε (Claim 1).

On the other hand, [AB09, Thm. 8.4] yields an upper bound of the VC-dimension of H
in terms of the number of computations and the dimension of the parametrization of H
which can be expressed as a function of M(Aε) (Claim 2). Together this gives the desired
relation.

Proposition A.15 Let d ∈ N and n ∈ N≥2. Then, there are constants c = c(n) > 0 and
C = C(d) with the following property:

Let N ∈ N, 0 < ε ≤ cN−(n−1) and Aε = Aε(d, n, ε) be a neural network architecture
with d-dimensional input and one-dimensional output such that for any f ∈ Fn,d,∞ there is a
neural network Φ f

ε that has architecture Aε and∥∥∥Rϱ(Φ
f
ε)− f

∥∥∥
W1,∞((0,1)d)

≤ ε, (A.12)

then
Nd ≤ C · M(Aε)

2.

Proof . We prove the proposition by showing that there exists a function h : RM(Aε)+1 ×
[0, 1]d → {0, 1} with

Nd ≤ VCdim
({

x 7→ h(w, x) : w ∈ RM(Aε)+1
})

≤ C · M(Aε)
2.

To simplify the notation, we set

H :=
{

x 7→ h(w, x) : w ∈ RM(Aε)+1
}

.

Step 1 (Construction of h): Let now 0 < ε < c1N−(n−1)/(3
√

d) for some constant
c1 = c1(n) > 0 to be chosen later, and Aε = Aε(d, n, ε) be a neural network architecture as
in the claim of the proposition.

For x ∈ [0, 1]d we define a direction ν(x) ∈ Rd that points from x into (0, 1)d if x ∈
[0, 1]d \ (0, 1)d and equals e1 if x ∈ (0, 1)d. We set

ν̃(x) :=

{
e1, if 0 < xk < 1 for k = 1, . . . , d[

χ{0}(xk)− χ{1}(xk) : k = 1, . . . , d
]

, else,

and define ν(x) := ν̃(x)/|ν̃(x)|. Moreover, we set x̃ := x + ν(x)/(4N) for x ∈ [0, 1]d.

A.3 Proof of Theorem 2.10 (Lower Bounds Based on the VC-Dimension) 67

To construct h we start be defining a function g : RM(Aε)+1 × [0, 1]d → R and then, to
get a binary valued function, define h by thresholding g. In detail, we set

g((w, δ), x) :=

 1
δ ·
(

Rϱ(Aε(w))(x̃ − δν(x))− Rϱ(Aε(w))(x̃)
)

, if δ ̸= 0

0, if δ = 0

for w ∈ RM(Aε), δ ∈ R and x ∈ [0, 1]d. Now, we define h : RM(Aε)+1 × [0, 1]d → {0, 1} by

h((w, δ), x) :=

{
1, if g((w, δ), x) > cN−(n−1)/2
0, else

for w ∈ RM(Aε), δ ∈ R and x ∈ [0, 1]d.
Claim 1 (Nd ≤ VCdim(H)): Let x1, . . . , xNd ∈ [0, 1]d such that |xm − xn| ≥ 1/N for all

m, n = 1, . . . , Nd with m ̸= n and such that x̃m ∈ (0, 1)d for m = 1, . . . , Nd. Moreover, let
y1, . . . , yNd ∈ {0, 1} be arbitrary. We aim to construct wy ∈ RM(Aε) and δy ∈ R with

h((wy, δy), xm) = ym for m = 1, . . . , Nd.

To this end, we first define a function fy ∈ Fn,d,∞ with fy(xm) = ym · a for some constant
a > 0, and then make use of a neural network Φ fy that approximates fy.

Step 2 (Construction of fy): We start by defining a bump function ψ ∈ C∞(Rd) by

ψ(x) :=

{
e−(1−4|x|2)

−1
+1, if |x| < 1/2,

0, else,

such that ψ(0) = 1 and supp ψ ⊂ B1/2,|·|(0). For the derivative Dψ of ψ it holds that there
exists a function ϕ : (−1/2, 1/2) → R>0 such that1

(Dψ)(x) = ϕ(|x|) · (−x) for all x with |x| < 1/2.

Thus, if x ∈ Rd with |x| < 1/2, then we have for the derivative of ψ in direction −x/|x| at
x that (D−x/|x|ψ)(x) = ϕ(|x|)|x| > 0 only depends on the norm of x.

Next, we define fy ∈ C∞(Rd) by

fy(x) :=
Nd

∑
m=1

ym
N−n

∥ψ∥Wn,∞((0,1)d)

ψ (N(x − xm))

for x ∈ Rd. We have | fy|Wk,∞((0,1)d)
≤ N−nNk ≤ 1 for 1 ≤ k ≤ n and, consequently,

fy ∈ Fn,d,∞. Furthermore, for x ∈ Rd with |x| < 1/(2N) it holds that

(D−x/|x| fy)(xm + x) = ym
N−n

∥ψ∥Wn,∞((0,1)d)

ϕ(|Nx|)N2|x|

1Precisely, ϕ(r) = e−(1−4r2)
−1
+1 · 8

(1−4r2)2 .

68 Appendix A Proofs for Part A

and, in particular, if |x| = 1/(4N), then

(D−x/|x| fy)(xm + x) = ymϕ(1/4) · N−(n−1)

4∥ψ∥Wn,∞((0,1)d)

= ymc1N−(n−1). (A.13)

Here, we defined the constant c1 = c1(n) > 0 which was left unspecified in the beginning
of the proof by c1 := ϕ(1/4)

4∥ψ∥
Wn,∞((0,1)d)

.

Step 3 (Existence of wy and δy): We can find a vector wy ∈ RM(Aε) such that for the

neural network Φ fy
ε := Aε(wy) Equation (A.12) holds (with fy instead of f). In particular,

we have
|Rϱ(Φ

fy
ε)− fy|W1,∞((0,1)d)

≤ ε. (A.14)

Next, for x ∈ (0, 1)d and ν ∈ Rd we get from Lemma A.14 that there exists an open
set Tx,ν ⊂ Rd and δ = δ(x, ν, Tx,ν) > 0 with x + λδν ∈ Tx,ν for 0 ≤ λ ≤ 1 and Rϱ(Φ

fy
ε) is

affine-linear on Tx,ν. We define

δy := min
m=1,...Nd

δ
(

x̃m,−ν(xm), Tx̃m,−ν(xm)

)
> 0.

Let m ∈ {1, . . . , Nd} and let Fm : Rd → R be an affine-linear function such that
Rϱ(Φ

fy
ε)(x) = Fm(x) for all x ∈ Tx̃m,−ν(xm). It then follows from the continuity of Rϱ(Φ

fy
ε)

that Rϱ(Φ
fy
ε)(x) = Fm(x) for all x ∈ T x̃m,−ν(xm). This, together with the choice of δy implies

that
g((wy, δy), xm) = D−ν(xm)Fm(x̃m) = D−ν(xm)Fm.

Recall that Tx̃m,−ν(xm) is open and fy and Rϱ(Φ
fy
ε) are continuously differentiable on

Tx̃m,−ν(xm). Thus, the weak and strong derivative agree and Equation (A.14) implies

|Di fy(x)− DiFm| = |Di fy(x)− DiRϱ(Φ
fy
ε)(x)| ≤ ε

for all x ∈ Tx̃m,−ν(xm) and i = 1, . . . , d. Using the continuity of Di fy we get that |Di fy(x̃m)−
DiFm| ≤ ε for i = 1, . . . , d and hence

|Dν fy(x̃m)− DνFm| ≤
√

dε|ν| for ν ∈ Rd. (A.15)

An addition of zero yields

g((wy, δy), xm) = D−ν(xm)Fm = D−ν(xm) fy(x̃m) + D−ν(xm)Fm − D−ν(xm) fy(x̃m). (A.16)

We get for the case ym = 1 that

g((wy, δy), xm) ≥ D−ν(xm) fy(x̃m)−
√

dε ≥ c1N−(n−1) − c1N−(n−1)/3, (A.17)

where we used Equation (A.16) together with Equation (A.15) and |ν(xm)| = 1 for the first
step and Equation (A.13) together with the upper bound for ε for the second step.

A.3 Proof of Theorem 2.10 (Lower Bounds Based on the VC-Dimension) 69

In a similar way, we get for the case ym = 0 that

g((wy, δy), xm) ≤
√

dε ≤ c1N−(n−1)/3, (A.18)

where we used that D−ν(xm) fy(x̃m) = 0.
Finally, combining Equation (A.17) and Equation (A.18) reads as

g((wy, δy), xm)

{
> c1N−(n−1)/2, if ym = 1,
< c1N−(n−1)/2, if ym = 0,

which proves Claim 1.
Claim 2 (VCdim(H) ≤ C · M(Aε)2): We start by showing that there exists a constant

C′ = C′(d) such that h((w, δ), x) can be computed using C′ · M(Aε) operations of the
following types

• the arithmetic operations +,−,×, and / on real numbers,

• jumps conditioned on >,≥,<,≤,=, and ̸= comparisons of real numbers

for all w ∈ RM(Aε)+1 and x ∈ [0, 1]d.
There exists an absolute constant C1 > 0 such that at most C1 · d operations of the

specified type are needed to compute ν(x). Hence, the same holds true for x̃ and x̃ − δν(x).
Note that the number of neurons that are needed for the computation of Rϱ(Aε(w))

can be bounded by M(Aε). Thus, Rϱ(Aε(w)) can be computed using at most C2 · M(Aε)
operations where C2 > 0 is an absolute constant. Hence, there exists a constant C3 = C3(d)
such that for the number of operations of the specified type t needed for the computation
of h(x) where x ∈ [0, 1]d it holds that t ≤ C3M(Aε).

Finally, [AB09, Thm. 8.4] implies

VCdim
({

x 7→ h(w, x) : w ∈ RM(Aε)+1
})

≤ 4(M(Aε) + 1)(C3 · M(Aε) + 2)

≤ C4M(Aε)
2,

where C4 = C4(d) > 0 is a suitable constant. ■

The proof of the lower complexity bounds is now a simple consequence of Proposi-
tion A.15.

Proof of Theorem 2.10 . The case k = 0 corresponds to [Yar17, Thm. 4 a)].
For the case k = 1, let c = c(n, B) and C = C(d) be the constants from Proposition A.15

and set

N :=
⌊(c

ε

)1/(n−1)
⌋

.

Then, N ≤ (c/ε)1/(n−1) and, thus, 0 < ε ≤ cN−(n−1). Now, Proposition A.15 implies that

Nd ≤ CM(Aε)
2.

We also have (c/ε)1/(n−1) ≤ 2N and hence c1ε−d/(n−1) ≤ Nd for a suitable constant

70 Appendix A Proofs for Part A

c1 = c1(n) > 0. Combining this estimate with Equation A.3 yields

c1ε−d/(n−1) ≤ Nd ≤ CM(Aε)
2,

which finally results in
C′ε

−d/2(n−1) ≤ M(Aε)

for a constant C′ = C′(d, n) > 0. ■

A.4 Neural Network Calculus

In this section, we introduce several operations one can perform with neural networks,
namely the concatenation and the parallelization of neural networks (Section A.4.1). More-
over, Section A.4.2 is devoted to approximations of polynomials. We give the proof of
Proposition 2.19 (approximation of monomials by neural networks) and show how to
derive approximations of the identity function as well as of approximate multiplications.

A.4.1 Concatenation and Parallelization

We first consider the concatenation of two neural networks as given in [PV18].

Definition A.16 Let Φ1 =
(
(A1

1, b1
1), . . . , (A1

L1
, b1

L1

)
and Φ2=

(
(A1

1, b1
1), . . . , (A1

L1
, b1

L1

)
be two neural networks such that the input dimension of Φ1 is equal to the output
dimension of Φ2. Then the concatenation of Φ1, Φ2 is defined as the L1 + L2 − 1-layer
neural network

Φ1 Φ2 :=
(
(A2

1, b2
1), . . . , (A2

L2−1, b2
L2−1), (A1

1A2
L2

, A1
1b2

L2
+ b1

1), (A1
2, b1

2), . . . , (A1
L1

, b1
L1
)
)

.

It is easy to see that Rϱ(Φ1 Φ2) = Rϱ(Φ1) ◦ Rϱ(Φ2).
Now, we introduce the parallelization of neural networks with the same number of layers,

inspired by the construction in [PV18].

Lemma A.17 Let ϱ : R → R. Additionally, let Φ1, . . . Φn be neural networks with d-
dimensional input and L ∈ N layers, respectively. Then, there exists a neural network
P(Φ1, . . . , Φn) with d-dimensional input and

(i) There holds Rϱ

(
P(Φ1, . . . , Φn)

)
(x) =

(
Rϱ(Φ1)(x), . . . , Rϱ(Φn)(x)

)
for all x ∈ Rd. ;

(ii) L layers;

(iii) M
(
P(Φ1, . . . , Φn)

)
= ∑n

i=1 M(Φi);

(iv)
∥∥P
(
Φ1, . . . , Φn)∥∥

max = max
{∥∥Φ1

∥∥
max , . . . , ∥Φn∥max

}
.

Proof . The neural network

P(Φ1, . . . , Φn) :=
(
(Ã1, b̃1), . . . , (ÃL, b̃L)

)
,

A.4 Neural Network Calculus 71

with

Ã1 :=

A1
1

...
An

1

 , b̃1 :=

b1
1
...

bn
1

 and Ãℓ :=

A1
ℓ

A2
ℓ

. . .
An

L

 , b̃ℓ :=

b1
ℓ
...

bn
ℓ

 ,

for 1 < ℓ ≤ L, fulfills all the desired properties. ■

A.4.2 Approximate Monomials and Multiplication

We first give the proof of Proposition 2.19:

Proof of Proposition 2.19 . Choose C0 > 1 so that [x0 − nB
C0

, x0 +
nB
C0
] ⊂ U. Moreover, let

δ ≥ C0 be arbitrary. Define the function

ϱr
δ : R → R, x 7→ δr

ϱ(m)(x0)

r

∑
j=0

(−1)j
(

r
j

)
· ϱ
(

x0 − j
x
δ

)
.

Then ϱr
δ|[−B,B] ∈ Cn+1([−B, B]). Using the Taylor expansion and the following identity

from [Kat09]
r

∑
j=1

(−1)j
(

r
j

)
jk =

{
0, if 1 ≤ k < r,
(−1)rr!, if k = r,

(A.19)

it can easily be shown that ϱr
δ(x) ≈ xr for δ > 0 sufficiently large. In detail, we have by

Taylor’s Theorem (where ξ j is between x0 and x0 − j x
δ for j = 1, . . . , r) that

r

∑
j=0

(−1)j
(

r
j

)
· ϱ
(

x0 − j
x
δ

)
= ϱ(x0) +

r

∑
j=1

(−1)j
(

r
j

)
·
(

r

∑
k=0

ϱ(k)(x0)

k!

(
−jx

δ

)k

+
ϱ(r+1)(ξ j)

(r + 1)!

(
−(r + 1)x

δ

)r+1
)

= ϱ(x0) +
r

∑
k=0

(
−x
δ

)k ϱ(k)(x0)

k!

r

∑
j=1

(−1)j
(

r
j

)
jk +

r

∑
j=1

(−1)j
(

r
j

)
ϱ(r+1)(ξ j)

(r + 1)!

(
−(r + 1)x

δ

)r+1

︸ ︷︷ ︸
=:rr

δ(x)

= ϱ(x0)
r

∑
j=0

(−1)j
(

r
j

)
︸ ︷︷ ︸

=0

+
r

∑
k=1

(
−x
δ

)k ϱ(k)(x0)

k!

r

∑
j=1

(−1)j
(

r
j

)
jk

︸ ︷︷ ︸
use Eq. (A.19)

+rr
δ(x)

=
(x

δ

)r
ϱ(r)(x0) + rr

δ(x).

Hence, for every k = 0, . . . , n and every x ∈ [−B, B], we have∣∣∣(ϱr
δ)

(k)(x)− (xr)(k)
∣∣∣ = ∣∣∣∣ δr

ϱ(r)(x0)
(rr

δ)
(k)(x)

∣∣∣∣

72 Appendix A Proofs for Part A

≤
r

∑
j=1

(
r
j

)
·
∣∣∣∣∣ϱ(r+1)(ξ j)

(r + 1)!

∣∣∣∣∣︸ ︷︷ ︸
≤2n∥ϱ∥Cn+1(U)

·
∣∣∣∣∣ δr

ϱ(r)(x0)

(
−(r + 1)

δ

)r+1
∣∣∣∣∣︸ ︷︷ ︸

≤ (n+1)n+1

δ mini=0,...,n |ϱ(i)(x0)|

·
∣∣∣(xr+1)(k)

∣∣∣︸ ︷︷ ︸
≤n! max{B,1}n+1

≤ 2n · (n + 1)n+1n! ·
∥ϱ∥Cn+1(U)

mini=0,...,n |ϱ(i)(x0)|
max{B, 1}n+1 · 1

δ

=:
C′(B, n, ϱ)

δ
.

This implies, that there exists some C ≥ max{C0, C′(B, n, ϱ)} such that for every ε ∈ (0, 1)
and the neural network Φr

ε := ((A1, b1), (A2, b2)) with

A1 :=
(

0,− ε

C
, . . . ,− rε

C

)T
∈ Rr+1,1,

b1 := (x0, . . . , x0)
T ∈ Rr+1,

A2 :=
Cr

εrϱ(r)(x0)

(
(−1)0

(
r
0

)
, (−1)1

(
r
1

)
, . . . , (−1)r

(
r
r

))
∈ R1,r+1,

b2 := 0 ∈ R,

fulfills ∥∥Rϱ(Φr
ε)− xr∥∥

Cn([−B,B] ≤ ε.

Moreover, L (Φr
ε) = 2 and M (Φr

ε) ≤ 3(r + 1).
Additionally, for every k = 0, . . . , r and for every x ∈ [−B, B] we have∣∣∣(Rϱ(Φr

ε)
)(k)

(x)
∣∣∣ ≤ ∥∥∥(Rϱ(Φr

ε)
)(k) − (xr)(k)

∥∥∥
Cn([−B,B])

+
∣∣∣(xr)(k)

∣∣∣
≤ ε +

n!
(n − k)!

|max{1, B}|r−k.

Finally, for all k = r + 1, . . . , n we have that∣∣∣(Rϱ(Φr
ε)
)(k)

(x)
∣∣∣ ≤ ∥∥∥(Rϱ(Φr

ε)
)(k) − (xr)(k)

∥∥∥
Cn([−B,B])

+
∣∣∣(xr)(k)

∣∣∣ ≤ ε + 0 = ε.

This completes the proof. ■

Based on Proposition 2.19, we are now in a position to introduce neural networks that
approximate the map which multiplies two real inputs.

Corollary A.18 Let ϱ ∈ W j,∞
loc (R) for some j ∈ N0 and x0 ∈ R such that ϱ is three times

continuously differentiable in a neighborhood of some x0 ∈ R and ϱ′′(x0) ̸= 0. Let B > 0,
then there exists a constant C = C(B, ϱ) > 0 such that for every ε ∈ (0, 1/2), there is a
neural network ×̃ with two-dimensional input and one-dimensional output that satisfies the
following properties:

A.4 Neural Network Calculus 73

(i) ∥Rϱ(×̃)(x, y)− xy∥W j,∞((−B,B)2;dxdy) ≤ ε;

(ii) ∥Rϱ(×̃ε)∥W j,∞((−B,B)2) ≤ C;

(iii) L(×̃) = 2 and M(×̃) ≤ C;

(iv) ∥×̃∥max ≤ Cε−2.

Proof . Let C be the constant from Corollary A.13 and set ε̃ := ε/2C. Proposition 2.19 yields
that there exists a neural network Φ2

ε̃ with 2 layers and at most 9 nonzero weights such
that for all k ∈ {0, . . . , j} we have∣∣Rϱ(Φ2

ε̃)− x2∣∣
Wk,∞([−2B,2B];dx) ≤ ε̃.

As in [Yar17], we make use of the polarization identity

xy =
1
4
(
(x + y)2 − (x − y)2) for x, y ∈ R.

In detail, we define the neural network

×̃ε :=
((

1
4

,
−1
4

)
, 0
)
 P
(
Φ2

ε̃ , Φ2
ε̃

)

((
1 1
1 −1

)
, 0
)

,

which fulfills for all (x, y) ∈ R2 that

Rϱ(×̃ε)(x, y) =
1
4
(

Rϱ

(
Φ2

ε̃

)
(x + y)− Rϱ

(
Φ2

ε̃

)
(x − y)

)
.

Now, setting f : [−2B, 2B] → R, x 7→ x2 as well as

u : [−B, B]2 → [−2B, 2B], (x, y) 7→ x + y and v : [−B, B]2 → [−2B, 2B], (x, y) 7→ x − y,

we see that for all (x, y) ∈ [−B, B]2 there holds xy = 1/4 (f ◦ u(x, y)− f ◦ v(x, y)) . We
estimate∥∥Rϱ(×̃ε)(x, y)− xy

∥∥
Wk,∞([−B,B]2;dxdy)

=
1
4

∥∥Rϱ

(
Φ2

ε̃

)
◦ u − Rϱ

(
Φ2

ε̃

)
◦ v − (f ◦ u − f ◦ v)

∥∥
Wk,∞([−B,B]2)

≤ 1
4

∥∥Rϱ

(
Φ2

ε̃

)
◦ u − f ◦ u

∥∥
Wk,∞([−B,B]2) +

1
4

∥∥Rϱ

(
Φ2

ε̃

)
◦ v − f ◦ v

∥∥
Wk,∞([−B,B]2) ,

and directly see for k = 0 that

∣∣Rϱ(×̃ε)(x, y)− xy
∣∣
W0,∞([−B,B]2;dxdy) ≤

2
4
∥Rϱ

(
Φ2

ε̃

)
− x2∥L∞([−B,B]2;dx) ≤

1
2

ε̃ ≤ ε.

Now, we proceed with the case k ∈ {1, . . . , j}. We first note that

|u|W0,∞([−B,B]2) = |v|W0,∞([−B,B]2) = 2B,

|u|W1,∞([−B,B]2) = |v|W1,∞([−B,B]2) = 1,

|u|Wk,∞([−B,B]2) = |v|Wk,∞([−B,B]2) = 0, for all k ≥ 2.

74 Appendix A Proofs for Part A

The composition rule from Corollary A.13 then yields that

∣∣Rϱ(×̃ε)(x, y)− xy
∣∣
Wk,∞([−B,B]2;dxdy) ≤ 2C

k

∑
i=1

∣∣Rϱ

(
Φ2

ε̃

)
− x2∣∣

W i,∞([−2B,2B];dx) |u|
i
W1,∞([−B,B]2)

≤ 2Cε̃ = ε.

and, thus, claim (i) is shown. Finally, we have for k ∈ {0, . . . , j}∣∣Rϱ(×̃ε)
∣∣
Wk,∞([−B,B]2) ≤

∣∣Rϱ(×̃ε)− xy
∣∣
Wk,∞([−B,B]2;dxdy) + |xy|Wk,∞([−B,B]2;dxdy) ≤ C1,

for a constant C1 = C1(B) > 0, yielding (ii). Claim (iii),(iv) immediately follow from the
construction of ×̃ in combination with Proposition 2.19 and Lemma A.21.(i). ■

Another statement that can be deduced from Proposition 2.19 is connected to the
construction of neural networks which approximate the identity on Rd.

Corollary A.19 Let ϱ : R → R be such that ϱ is twice times continuously differentiable in a
neighborhood of some x0 ∈ R and ϱ′(x0) ̸= 0. fulfill the assumptions of Proposition 2.19 for
some n = 2, for r = 1 and assume that for some k ≤ n we have that ϱ ∈ Wk,∞

loc (R). Then,
for every B > 0, d ∈ N, for every L ∈ N≥2 and for every ε ∈ (0, 1) there exists a constant
C = C(B, ϱ) > 0 and a neural network ΦL,B,d

ε with d-dimensional input, d-dimensional
output and the following properties:

(i)
∥∥∥Rϱ(ΦL,B,d

ε)− x
∥∥∥

Wk,∞([−B,B]d;Rd)
≤ ε;

(ii) ∥Rϱ(ΦL,B,d
ε)∥Wk,∞([−B,B]d;Rd) ≤ C max{1, B};

(iii) L
(

ΦL,B,d
ε

)
= L, as well as M

(
ΦL,B,d

ε

)
≤ 4dL − 3d;

(iv)
∥∥∥ΦL,B,d

ε

∥∥∥
max

≤ CLε−1.

Proof . W.l.o.g., we assume that d = 1. The other cases follow from a minor modifi-
cation of the parallelization of neural networks with the same number of layers. Let
Φ1

ε/L be the neural network from Proposition 2.19 for B = B + 1. We define ΦL,B,d
ε :=

Φ1
ε/L

 . . . Φ1
ε/L, where we perform L − 2 concatenations. It is easy to see that ΦL,B,d

ε =
((A1, b1), (A2, b2), . . . , (AL, bL)) , where

A1 =
(

0,− ε

LC

)T
∈ R2,1,

b1 = (x0, x0)
T ∈ R2,

Aℓ =

(
0 0

− 1
ϱ′(x0)

1
ϱ′(x0)

)
∈ R2,2, for ℓ = 2, . . . , L − 1,

bℓ = (x0, x0)
T ∈ R2, for ℓ = 2, . . . , L − 1,

AL =
LC

εϱ′(x0)
(1,−1) ∈ R1,2,

bL = 0 ∈ R,

A.4 Neural Network Calculus 75

and where C > 0 is a suitable constant provided by Proposition 2.19. By Proposition 2.19
we also have that Rϱ(Φ1

ε/L)(x) ∈ [−B − ε/L, B + ε/L] for all x ∈ [−B, B] as well as∥∥∥Rϱ(Φ1
ε/L)− x

∥∥∥
Wk,∞([−B,B])

≤ ε

L
.

Iterating this argument shows that Rϱ(ΦL,B
ε)(x) ∈ [−B − ε, B + ε] for all x ∈ [−B, B] and

that ∥∥∥Rϱ(ΦL,B,d
ε)− x

∥∥∥
Wk,∞([−B,B])

≤ ε.

The other properties follow immediately from (i) in combination with the definition
of ΦL,B,d

ε . ■

Some well-known activation functions, e.g., the (leaky) ReLU, do not fulfill the assump-
tions stated in Corollary A.18 (ϱ should be three times continuously differentiable in a
neighborhood of some x0 ∈ R with ϱ′′(x0) ̸= 0) where an approximative multiplication
is derived. However, we note that the proof strategy only requires the approximation
of the square function. In the following, we show that in case of the (leaky) ReLU this
can be done with O(log2(1/ε)) weights and O(log(1/ε)) layers. The same arguments as
in Corollary A.18, then lead to an approximative multiplication with different complexity
bounds. The results presented in the following proposition can be found in a similar way
in [SZ19, Prop. 3.1]. However, since our results contain some minor extensions we decided
to give the proof here for the sake of completeness.

In [Yar17, Prop. 2], a ReLU neural network is constructed that approximates the square
function x → x2 on the interval (0, 1) in the L∞ norm. Interestingly, the same construction
can be used when measuring the approximation error in the W1,∞ norm. In particular, the
depth and the number of weights of the network do not grow asymptotically faster to
satisfy the approximation accuracy with respect to this stronger norm.

Proposition A.20 Let ϱ : R → R, x 7→ max{0, x} be the ReLU. There exists a constant
C > 0, such that for all ε ∈ (0, 1/2) there is a neural network Φsq

ε with at most C · log2
2(1/ε)

nonzero weights, at most C · log2(1/ε) layers, and with one-dimensional input and output
such that

∥Rϱ(Φ
sq
ε)(x)− x2∥W1,∞((0,1);dx) ≤ ε (A.20)

and Rϱ(Φ
sq
ε)(0) = 0. Furthermore, it holds that

|Rϱ(Φ
sq
ε)|W1,∞((0,1)) ≤ C. (A.21)

Proof . In the proof of [Yar17, Prop. 2] it is shown that there exists a constant C > 0, such
that for each m ∈ N there is a neural network Φm with at most C · m nonzero weights and
at most C ·m layers the realization of which is a piecewise linear interpolation of x 7→ x2 on
(0, 1). In detail, it is shown there, that the network Φm satisfies for all k ∈ {0, . . . , 2m − 1}

76 Appendix A Proofs for Part A

and all x ∈
[

k
2m , k+1

2m

]
Rϱ(Φm)(x) =

(
(k + 1)2

2m − k2

2m

)(
x − k

2m

)
+

(
k

2m

)2

. (A.22)

Thus, Rϱ(Φm) is a piecewise linear interpolant of f with 2m + 1 uniformly distributed
breakpoints k

2m , k = 0, . . . , 2m. In particular, Rϱ(Φm)(0) = 0. Furthermore, it is shown in
the proof of [Yar17, Prop. 2] that

∥Rϱ(Φm)(x)− x2∥L∞((0,1);dx) ≤ 2−2−2m. (A.23)

Since in [Yar17] neural networks with skip connections are considered, we need to adapt
the construction to our setting. This can easily be done by replacing skip connections with
identity layers. The resulting network has the same depth and the number of weights can
be bounded by Cm2.

We will now show that the approximation error of the derivative can be bounded in a
similar way. In particular, we show the estimate

|Rϱ(Φm)− x2|W1,∞((0,1);dx) ≤ 2−m. (A.24)

From Equation (A.22) we get for all k = 0, . . . , 2m − 1

|Rϱ(Φm)(x)− x2|W1,∞((k/2m,(k+1)/2m);dx) =

∥∥∥∥∥ (k + 1)2

2m − k2

2m − 2x

∥∥∥∥∥
L∞((k/2m,(k+1)/2m);dx)

=

∥∥∥∥2k + 1
2m − 2x

∥∥∥∥
L∞((k/2m,(k+1)/2m);dx)

= max
{∣∣∣∣2k + 1

2m − 2
k

2m

∣∣∣∣ ,
∣∣∣∣2k + 1

2m − 2
k + 1

2m

∣∣∣∣}
= 2−m.

Combining Equation (A.23) and (A.24) yields

∥Rϱ(Φm)(x)− x2∥W1,∞((0,1);dx) ≤ max
{

2−2m−2, 2−m} = 2−m.

Clearly, the weak derivative of Φm is a piecewise constant function, which assumes its
maximum on the last piece. Hence,

|Rϱ(Φm)|W1,∞((0,1)) ≤
(2m)2 − (2m − 1)2

2m = 2 − 1
2m ≤ 2. (A.25)

Let now ε ∈ (0, 1/2) and choose m = ⌈log2(1/ε)⌉. Now, Φsq
ε := Φm satisfies the approxi-

mation bound in Equation (A.20) and Rϱ(Φ
sq
ε)(0) = 0. The estimate (A.21) holds because

of Equation (A.25). The number of weights can be bounded by

M(Φsq
ε) ≤ C · m2 ≤ C · (log2(1/ε) + 1)2 ≤ C′ · log2(1/ε),

for some suitable constant C′ > 0. In a similar way, the number layers can be bounded.

A.5 Proof of Proposition 2.21 (Upper Bounds) 77

This concludes the proof.
■

Before we continue, let us have a closer look at the properties of the concatenation of
two neural networks in the following special cases.

Lemma A.21 Let Φ be a neural network with m-dimensional output.

(i) If a ∈ R1×m, then,

M(((a, 0)) Φ) ≤ M(Φ) and ∥((a, 0)) Φ)∥max ≤ m∥Φ∥max max
i=1,...,m

ai.

(ii) Let ΦL,B,m
ε be the approximate identity network from Corollary A.19. Then, for some

constant C = C(B, ϱ) there holds

M(ΦL,B,m
ε

 Φ) ≤ M(Φ) + M(ΦL,B,m
ε) and ∥(ΦL,B,m

ε
 Φ)∥max ≤ C max{∥Φ∥max, ε−1}.

(iii) Let ×̃ be the approximate multiplication network from Corollary A.18. If m = 2, then,
for some constant C = C(B, ϱ) there holds

M(×̃ Φ) ≤ CM(Φ) and ∥×̃ Φ∥max ≤ C max{∥Φ∥max, ε−2}.

Proof . For the first part of the proof of (i), see [KPRS22]. The second part is clear.
From now on, let Φ = ((A1, b1), . . . , (AL(Φ), bL(Φ))).

For the proof of (ii), let ΦL,B,m
ε = ((Aid

1 , bid
1), . . . , (Aid

L , bid
L)) and recall that

ΦL,B,m
ε

 Φ =

((A1, b1), . . . , (AL(Φ)−1, bL(Φ)−1), (Aid
1 AL(Φ), Aid

1 bL(Φ) + bid
1), (Aid

2 , bid
2), . . . , (Aid

L , bid
L)).

Hence, in order to proof (ii), we only need to examine (Aid
1 AL(Φ), Aid

1 bL(Φ) + bid
1). From the

construction of ΦL,B,m
ε we have that ∥Aid

1 ∥0 = m and that Aid
1 has block diagonal structure.

Additionally, all entries of Aid
1 are bounded in absolute value by ε

LC̃
≤ 1 for some C̃ ≥ 1.

From this, the claim follows.
The proof of (iii) can be done in a similar manner as the proof of (ii). ■

A.5 Proof of Proposition 2.21 (Upper Bounds)

In this section we provide the proofs of those statements of Section 2.3 as well as additional
auxiliary statements which together lead to the proof of Proposition 2.21. Appendix A.5.1
is concerned with the proof of Lemma 2.17 which establishes the conditions of the PU.
Appendix A.5.2, which contains the proof of Lemma A.22, shows that we are in a position
to efficiently approximate f ∈ Fn,d,p by sums of polynomials multiplied with the functions
from the PU. Appendix A.5.3 in turn shows that these sums of localized polynomials can
be approximated by neural networks. Appendix A.5.4 concludes the proof of Proposition
2.21.

78 Appendix A Proofs for Part A

A.5.1 Approximate Partition of Unity

We start with the proof of Lemma 2.17 which establishes the properties of the exponential
(polynomial, exact) (j, τ)-PU.

Proof of Lemma 2.17 . For the proof of the properties ((i)) and ((ii)), we will always assume
w.l.o.g. that m = 0 unless stated otherwise. Moreover, we only give the proof for the
case of an exponential PU. The other cases follow in essentially the same way with some
simplifications.

ad ((i)): First of all, assume that d = 1. For τ = 0 and j = 0 this follows directly from the
boundedness of ϱ. For τ = 1 and j = 0, we have that ϱ is Lipschitz continuous, and, thus,

|ϕs
0(x)| ≤ 1

s(B − A)
(|ϱ(3sNx + 2s)− ϱ(3sNx + s)|+ |ϱ(3sNx − s)− ϱ(3sNx − 2s)|)

≤ 2
Lip(ϱ) · s
s(B − A)

= 2
Lip(ϱ)
(B − A)

.

For τ ∈ {0, 1} and j ≥ 1 this follows from the case j = 0 together with ϱ′ ∈ W j−1,∞(R)
and the chain rule.

Now, let d ∈ N be arbitrary. Since we will need it in the proof of ((ii)), we prove the
following more general statement (Statement ((i)) follows by considering I = {1, . . . , d}).
Moreover, we will prove this statement only for k ≤ min{j, 2}, since the rest of the proof
can be done in exactly the same way by exploiting the tensor structure of ϕs

m.

Let I ⊂ {1, . . . , d} be arbitrary. Moreover, for m ∈ {0, . . . , N}|I| we define
ϕs

m,I : R|I| → R, x 7→ ∏1≤l≤|I| ψs (3N
(
xl − ml

N

))
as well as ϕs

m := ϕs
m,I , if

I = {1, . . . , d}. Then for k ∈ {0, . . . , j} it holds that∣∣ϕs
m,I
∣∣
Wk,∞(R|I|)

≤ C|I| · Nk · smax{0,k−τ}.

It is clear that by the definition of ϕs
m,I and what we have shown for d = 1 that for k = 0

there holds ∣∣ϕs
m,I
∣∣
W0,∞(R|I|)

≤ C|I|. (A.26)

Now, let i ∈ I be arbitrary. Then, by using the tensor product structure of ϕs
m,I in com-

bination with what we have shown before for d = 1, for the case k = 1 and (A.26) for
I′ := I \ {i} we obtain for a.e. x ∈ R|I|∣∣∣∣ ∂

∂xi
ϕs

m,I(x)
∣∣∣∣ = ∣∣ϕs

m,I′(x1, . . . , xi−1, xi+1, . . . , x|I|)
∣∣ · ∣∣(ψs (3N (· − mi/N)))′ (xi)

∣∣
≤ C|I|−1 · CN = C|I|Nsmax{0,k−τ}

which implies that |ϕs
m,I |W1,∞(R|I|) ≤ C|I|N.

Finally, let additionally be r ∈ I be arbitrary. If i = r then we have that (by using (A.26)

A.5 Proof of Proposition 2.21 (Upper Bounds) 79

in combination with what we have shown for d = 1) that∣∣∣∣ ∂2

∂x2
i

ϕs
m,I(x)

∣∣∣∣ = ∣∣ϕs
m,I′(x1, . . . , xi−1, xi+1, . . . , x|I|)

∣∣ · ∣∣(ψs (3N (· − mi/N)))′′ (xi)
∣∣

≤ C|I|−1 · CN2smax{0,k−τ} = C|I|N2smax{0,k−τ}.

Moreover, if i ̸= r, then, if we set I′′ := I \ {i, r} we obtain with similar arguments as
before that ∣∣∣∣ ∂2

∂xi∂xr
ϕs

m,I(x)
∣∣∣∣

=
∣∣ϕs

m,I′′(x1, . . . , xi−1, xi+1, . . . , xr−1, xr+1, . . . , x|I|)
∣∣

·
∣∣(ψs (3N (· − mi/N)))′ (xi)

∣∣ · ∣∣(ψs (3N (· − mr/N)))′ (xr)
∣∣

≤ C|I|−2 · CN · CNsmax{0,k−τ} = C|I|N2smax{0,k−τ},

where we assumed w.l.o.g. that i < r. This implies |ϕs
m,I |W2,∞(R|I|) ≤ C|I|N2smax{0,k−τ}.

ad ((ii)): First of all, assume that d = 1. Let τ = 0 and let x ≤ −1/N. Then, since s > R,
we have that 3Nsx + 3/2s, 3Nsx − 3/2 ≤ −R. We then have by the triangle inequality
and the assumption on ϱ that

|ϕs
0(x)| =

∣∣∣∣ϱ(3Nsx + 3/2s)− ϱ(3Nsx − 3/2s)
B − A

∣∣∣∣
≤
∣∣∣∣ϱ(3Nsx + 3/2s)− A

B − A

∣∣∣∣+ ∣∣∣∣ϱ(3Nsx − 3/2s)− A
B − A

∣∣∣∣
≤ C′eD(3Nsx+3/2s) + C′eD(3Nsx−3/2s)

B − A
≤ C′eD(−3s+3/2s) + C′eD(−3s−3/2s)

B − A

≤ 2C′ e−Ds

B − A
.

Now, let k ∈ {1, . . . , j}. Then, by the assumption on ϱ, we have

∣∣∣(ϕs
0)

(k)(x)
∣∣∣ = (3Ns)k

∣∣∣∣∣ϱ(k)(3Nsx + 3/2s)− ϱ(k)(3Nsx − 3/2s)
B − A

∣∣∣∣∣
≤ (3Ns)k

∣∣∣∣∣ϱ(k)(3Nsx + 3/2s)
B − A

∣∣∣∣∣+
∣∣∣∣∣ϱ(k)(3Nsx − 3/2s)

B − A

∣∣∣∣∣
≤

C′(3Ns)k
(

eD(3Nsx+3/2s) + eD(3Nsx−3/2s)
)

B − A

≤
C′(3Ns)k

(
eD(−3s+3/2s) + eD(−3s−3/2s)

)
B − A

≤ 2C′

B − A
(3Ns)ke−Ds.

The case x ≥ 1/N can be proven in the same way.
Now let τ = 1 and let again x ≤ −1/N. Then 3Nsx + 2s, 3Nsx + s, 3Nsx − 2s, 3Nsx −

80 Appendix A Proofs for Part A

s ≤ −s < −R. By the mean value theorem there exist ξ1 ∈ (3Nsx + s, 3Nsx + 2s) and
ξ2 ∈ (3Nsx − 2s, 3Nsx − s) such that

ϕs
0(x) =

1
s(B − A)

(
ϱ′(ξx

1)− ϱ′(ξx
2)
)

.

The remainder of the proof follows in exactly the same way as the proof of the analogous
statement for τ = 0. The statement for x ≥ 1/N can be done in exactly the same manner.
Now, let d ∈ N and let x ∈ Ωc

m. Then there exists some l ∈ {1, . . . d} with |xl − ml
N | ≥ 1/N.

This implies for I′ = {1, . . . , d} \ {l} by employing Equation (A.26) that

|ϕs
m(x)| =

∣∣ϕs
m,I′(x1, . . . , xl−1, xl+1, . . . , xd)

∣∣ · |ψs (3N (xl − ml/N))| ≤ Cd−1 · Ce−Ds.

This shows that |ϕs
m|W0,∞(Ωc

m)
≤ Cde−Ds. By proceeding in a similar manner and with the

same techniques as in the proof of ((i)), one can show the remaining Sobolev semi-norm
estimates for the higher-order derivatives.

ad ((iii)): First of all, assume that d = 1. Let τ = 0. It is not hard to see that

N

∑
m=0

ϕs
m(x) =

1
B − A

(ϱ(3Nsx + 3/2s)− ϱ(3Ns(x − 1)− 3/2s)) .

We now have for all x ∈ (0, 1) and using the properties of ϱ that∣∣∣∣∣1 − N

∑
m=0

ϕs
m(x)

∣∣∣∣∣ =
∣∣∣∣B − A − (ϱ(3Nsx + 3/2s)− ϱ(3Ns(x − 1)− 3/2s))

B − A

∣∣∣∣
≤
∣∣∣∣B − ϱ(3Nsx + 3/2s)

B − A

∣∣∣∣+ ∣∣∣∣A − ϱ(3Nsx − 3Ns − 3/2s)
B − A

∣∣∣∣ =: I + II.

We continue by estimating I. Since 3Nsx + 3/2s ≥ 3/2s > 3/2R, we obtain that

I ≤ C′e−D(3Nsx+3/2s)

B − A
≤ C′e−3/2·Ds

B − A

On the other hand, since 3Nsx − 3Ns − 3/2s ≤ −3/2s ≤ 0 we obtain that

II ≤ C′eD(3Nsx−3Ns−3/2s)

B − A
≤ C′e−3/2·Ds

B − A
.

For the multidimensional case we have∣∣∣∣∣∣1 − ∑
m∈{0,...,N}d

ϕs
m(x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣1 − ∑

m∈{0,...,N}d

d

∏
l=1

ψs
(

3N
(

xl −
ml

N

))∣∣∣∣∣∣
=

∣∣∣∣∣1 − d

∏
l=1

N

∑
m=0

ψs
(

3N
(

xl −
m
N

))∣∣∣∣∣

A.5 Proof of Proposition 2.21 (Upper Bounds) 81

=

∣∣∣∣∣∣∣∣1 −
d

∏
l=1

 1
B − A

(ϱ(3Nsxl + 3/2s)− ϱ(3Ns(xl − 1)− 3/2s))︸ ︷︷ ︸
:=πl , and π0:=1

∣∣∣∣∣∣∣∣

≤
d

∑
l=1

|π0 · . . . · πl(1 − πl+1)| ≤ C · e−3/2Ds,

which follows from the one-dimensional case. Now, let k ∈ {1, . . . , j} and we consider
only the case d = 1. The multi-dimensional case follows in exactly the same manner as the
analogous considerations in ((i)) and ((ii)). We have that∣∣∣∣∣∣

(
N

∑
m=0

ϕs
m

)(k)

(x)

∣∣∣∣∣∣ ≤ (3Ns)k

B − A

(∣∣∣ϱ(k)(3Nsx + 3/2s)
∣∣∣+ ∣∣∣ϱ(k)(3Nsx − 3Ns − 3/2s)

∣∣∣)
Since x > 0, we have that 3Nsx + 3/2s ≥ 3/2s > R. Since x < 1, 3Nsx − 3Ns − 3/2s ≤
−3/2R < −R. Hence, by the assumptions on ϱ we obtain that∣∣∣∣∣∣

(
N

∑
m=0

ϕs
m

)(k)

(x)

∣∣∣∣∣∣ ≤ C′(3Ns)k

B − A

(
e−D(3Nsx+3/2s) + eD(3Nsx−3Ns−3/2s)

)
≤ 2C′(3Ns)k

B − A
e−3/2Ds.

The multidimensional case for k ∈ {0, . . . , j} follows in a similar manner as above from
the tensor structure. Now, let τ = 1. It is not hard to see that for all x ∈ R there holds

N

∑
m=0

ϕs
m(x) =

ϱ(3Nsx + 2s)− ϱ(3Nsx + s)− ϱ(3Nsx − 3Ns − s) + ϱ(3Nsx − 3Ns − 2s)
s(B − A)

.

Now, let x ∈ (0, 1). We have that 3Nsx + 2s, 3Nsx + s ≥ s > R and 3Nsx − 3Ns −
s, 3Nsx − 3Ns − 2s ≤ −s < −R. Hence, by the mean value theorem, for every x ∈ R there
exist ξ1 ∈ (3Nxs + s, 3Nxs + 2s) and ξ2 ∈ (3Nxs − 3Ns − 2s, 3Nxs − 3Ns − s) such that

N

∑
m=0

ϕs
m(x) =

1
B − A

(
ϱ′(ξ1)− ϱ′(ξ2)

)
.

Now we have that ∣∣∣∣∣1 − N

∑
m=0

ϕs
m(x)

∣∣∣∣∣ ≤
∣∣∣∣B − ϱ′(ξ1)

B − A

∣∣∣∣+ ∣∣∣∣A − ϱ′(ξ2)

B − A

∣∣∣∣ .

The remainder of the statement can be proven in exactly the same way as the analogous
statement for τ = 0. ad ((iv)): This immediately follows from the definition of the functions
ϕs

m. ■

82 Appendix A Proofs for Part A

A.5.2 Approximation by Localized Polynomials

In this section, we demonstrate how to approximate a function f ∈ Fn,d,p by localized
polynomials based on the exponential (polynomial, exact) (j, τ)-PU. We only give the
proof for the case of an exponential PU. The other cases follow in essentially the same way
with some simplifications.

Lemma A.22 We make the following assumption:

• Let d ∈ N, j, τ ∈ N0, k ∈ {0, . . . , j}, n ∈ N≥k+1 and 1 ≤ p ≤ ∞.

• Assume that (Ψ(j,τ,N,s))N∈N,s≥1 is an exponential (polynomial, exact) (j, τ)-PU from
Definition 2.13. Let µ ∈ (0, 1). For N ∈ N, set

s :=

Nµ, if exponential PU,

N
2d/p+d+n

D , if polynomial PU,
1, if exact PU,

Then there is a constant C = C(d, n, p, k) > 0 and Ñ = Ñ(d, p, µ, k, τ) ∈ N such
that for every f ∈ Wn,p((0, 1)d) and every m ∈ {0, . . . , N}d, there exist polynomials
p f ,m(x) = ∑|α|≤n−1 c f ,m,αxα for m ∈ {0, . . . , N}d with the following properties:

Set fN := ∑m∈{0,...,N}d ϕs
m p f ,m. Then, the operator Tk : Wn,p((0, 1)d) → Wk,p((0, 1)d)

with Tk f = f − fN is linear and bounded with

∥Tk f ∥Wk,p((0,1)d)
≤ C∥ f ∥Wn,p((0,1)d)

·

(1

N

)n−k−µ(k=2) , if exponential PU,(1
N

)n−k
, for k ≤ τ, if polynomial PU,(1

N

)n−k
, if exact PU,

for all N ∈ N with N ≥ Ñ.

Before the proof of this statement, we need some preparation. We start with the follow-
ing observation.

Remark A.23 Since the polynomials utilized in Lemma A.22 are the averaged Taylor
polynomials from the Bramble-Hilbert Corollary A.11, we get that there is a constant
C = C(d, n, k) > 0 such that for any f ∈ Wn,p((0, 1)d) the coefficients of the polynomials
p f ,m satisfy

|c f ,m,α| ≤ C∥ f̃ ∥Wn,p(Ωm,N)N
d/p,

for all α ∈ Nd
0 with |α| ≤ n − 1, and for all m ∈ {0, . . . , N}d, where Ωm,N := B 1

N ,∥·∥∞

(m
N

)
and f̃ ∈ Wn,p(Rd) is an extension of f .

We now state and prove an auxiliary result. The estimation will be very rough and can
for sure be improved. This is, however, not necessary for our purpose.

A.5 Proof of Proposition 2.21 (Upper Bounds) 83

Lemma A.24 Under the conditions of Lemma A.22 and with the notation from Remark A.23
we have for all m, m̃ ∈ {0, . . . , N}d the estimate

∥ f̃ − p f ,m∥Wk,p(Ωm̃,N)
≤ CNd/p∥ f ∥Wn,p((0,1)d)

,

for a constant C = C(n, d, p, k).

Proof . We start with bounding the norm of the polynomial by using the triangle inequality.
There holds

∥p f ,m∥Wk,p(Ωm̃,N)
=

∥∥∥∥∥ ∑
|α|≤n−1

c f ,m,αxα

∥∥∥∥∥
Wk,p(Ωm̃,N ;dx)

≤ ∑
|α|≤n−1

|c f ,m,α| · ∥xα∥Wk,p(Ωm̃,N ;dx).

Using that Ωm̃,N ⊂ B2,∥·∥∞
we get

∥xα∥Wk,p(Ωm̃,N ;dx) ≤ (n − 1)k2|α| ≤ (n − 1)k2n−1. (A.27)

If we now combine Remark A.23 with Equation (A.27), we get

∑
|α|≤n−1

|c f ,m,α|∥xα∥Wk,p(Ωm̃,N ;dx) ≤ C(n − 1)k2n−1 ∑
|α|≤n−1

Nd/p∥ f̃ ∥Wn,p(Ωm,N)

≤ CNd/p∥ f ∥Wn,p((0,1)d)
,

where we have additionally used Remark A.4 in the last step. Finally, we can estimate, by
the triangle inequality

∥ f̃ − p f ,m∥Wk,p(Ωm̃,N)
≤ C∥ f ∥Wk,p((0,1)d)

+ CNd/p∥ f ∥Wn,p((0,1)d)
≤ CNd/p∥ f ∥Wn,p((0,1)d)

,

where we again used the extension property from Equation (A.1) for the first step. ■

Now we are in a position to prove Lemma A.22.

Proof of Lemma A.22 . We use approximation properties of the polynomials from the
Bramble-Hilbert Corollary A.11 to derive local estimates and then combine them using
an exponential PU to obtain a global estimate. In order to use this strategy also near the
boundary, we make use of an extension operator (see Remark A.4).

Step 1 (Local estimates based on Bramble-Hilbert): For each m ∈ {0, . . . , N}d we set

Ωm,N := B 1
N ,∥·∥∞

(m
N

)
and denote by pm = p f ,m the polynomial from Corollary A.11 so that we can directly state
the estimate ∥∥ f̃ − pm

∥∥
Wk,p(Ωm,N)

≤ C
(

1
N

)n−k

∥ f̃ ∥Wn,p(Ωm,N). (A.28)

84 Appendix A Proofs for Part A

Furthermore, similarly to [GKP20, Lemma C.4], we obtain the estimate

∥∥ϕs
m(f̃ − pm)

∥∥
Wk,p(Ωm,N)

≤ C
k

∑
κ=0

∥ϕs
m∥Wκ,∞(Ωm,N)∥ f̃ − pm∥Wk−κ,p(Ωm,N)

≤ C
k

∑
κ=0

Nκ+µ(κ=2)

(
1
N

)n−k+κ

∥ f̃ ∥Wn,p(Ωm,N)

≤ C
(

1
N

)n−k−µ(k=2)

∥ f̃ ∥Wn,p(Ωm,N),

where we used the product rule from Lemma A.12 for the first step and the estimate of
the derivative of ϕs

m from Lemma 2.17 ((i)) together with the Bramble-Hilbert estimate in
Equation (A.28) for the second step.

Step 2 (Local estimates based on exponential decay): Since our localizing bump
functions ϕs

m do not necessarily have compact support on Ωm,N we also need to bound
the influence of ϕs

m(f̃ − pm) on patches Ωm̃,N with m̃ ̸= m where we can not use the
Bramble-Hilbert lemma. Here, we will make use of the exponential decay of the bump
functions ϕs

m outside a certain ball centered at m/N (see Lemma 2.17 ((ii))).

This is possible for the case where Ωm̃,N is not a neighboring patch of Ωm,N , i.e. ∥m̃ −
m∥∞ > 1. Then Ωm̃,N ⊂ Ωc

m and we have (by using Lemma A.12 in the first step), that∥∥ϕs
m(f̃ − pm)

∥∥
Wk,p(Ωm̃,N)

≤ C∥ϕs
m∥Wk,∞(Ωm̃,N)

∥ f̃ − pm∥Wk,p(Ωm̃,N)

(Lemma 2.17 ((ii))) with Ωm̃,N ⊂ Ωc
m) ≤ CNk+µ(k=2)e−DNµ∥ f̃ − pm∥Wk,p(Ωm̃,N)

(Lemma A.24) ≤ C Nk+µ(k=2) Nd/p︸ ︷︷ ︸
:=γ(N)

e−DNµ∥ f ∥Wn,p((0,1)d)
.

Then, by Proposition A.1, there exists N1 = N1(µ, d, p) ∈ N such that e−DNµ ≤ Cγ(N)−1 ·
(N + 1)−d−d/p · N−(n−k−µ(k=2)) for all N ≥ N1. Consequently, we have∥∥ϕs

m(f̃ − pm)
∥∥

Wk,p(Ωm̃,N)
≤ C(N + 1)−d−d/pN−(n−k−µ(k=2))∥ f ∥Wn,p((0,1)d)

,

for all N ≥ N1.

Step 3 (Mixed local estimates): If Ωm̃,N is a neighboring patch of Ωm,N , i.e. ∥m̃ − m∥∞ =
1, then we have to split the patch in a region Ωm̃,N ∩ Ωc

m where we have exponential decay
of the bump function and a region Ωm̃,N \ Ωc

m ⊂ Ωm,N where we can make use of the
Bramble-Hilbert Lemma. In detail, we have∥∥ϕs

m(f̃ − pm)
∥∥

Wk,p(Ωm̃,N)
≤
∥∥ϕs

m(f̃ − pm)
∥∥

Wk,p(Ωm̃,N\Ωc
m)

+
∥∥ϕs

m(f̃ − pm)
∥∥

Wk,p(Ωm̃,N∩Ωc
m)

≤ CN−(n−k−µ(k=2))
(
∥ f̃ ∥Wn,p(Ωm,N) + (N + 1)−d−d/p∥ f ∥Wn,p((0,1)d)

)
,

for all N ≥ N1. Here we used Step 1 to bound the first term of the sum and Step 2 for the
second.

A.5 Proof of Proposition 2.21 (Upper Bounds) 85

Step 4 (Global estimate): Using that f̃ is an extension of f on (0, 1)d we can write∥∥∥∥∥∥ f − ∑
m∈{0,...,N}d

ϕs
m pm

∥∥∥∥∥∥
Wk,p((0,1)d)

≤

∥∥∥∥∥∥ f̃ − ∑
m∈{0,...,N}d

ϕs
m f̃

∥∥∥∥∥∥
Wk,p((0,1)d)

+

∥∥∥∥∥∥ ∑
m∈{0,...,N}d

ϕs
m(f̃ − pm)

∥∥∥∥∥∥
Wk,p((0,1)d)

≤

∥∥∥∥∥∥ f̃
(

1
(0,1)d − ∑

m∈{0,...,N}d

ϕs
m

)∥∥∥∥∥∥
Wk,p((0,1)d)︸ ︷︷ ︸

Step 4a

+

 ∑
m̃∈{0,...,N}d

∥∥∥∥∥∥ ∑
m∈{0,...,N}d

ϕs
m(f̃ − pm)

∥∥∥∥∥∥
p

Wk,p(Ωm̃,N)︸ ︷︷ ︸
Step 4b

1/p

, (A.29)

where the last step follows from (0, 1)d ⊂ ⋃
m̃∈{0,...,N}d Ωm̃,N .

Step 4a (Partition of Unity): For the first term in Equation (A.29), we get by the product
rule from Lemma A.12∥∥∥∥∥∥ f̃
(

1
(0,1)d − ∑

m∈{0,...,N}d

ϕs
m

)∥∥∥∥∥∥
Wk,p((0,1)d)

C ≤ ∥ f ∥Wk,p((0,1)d)

∥∥∥∥∥∥1
(0,1)d − ∑

m∈{0,...,N}d

ϕs
m

∥∥∥∥∥∥
Wk,∞((0,1)d)

(Property ((iii)) from Lemma 2.17) ≤ C∥ f ∥Wk,p((0,1)d)
· N−(n−k−µ(k=2)), (A.30)

for all N ≥ N2 = N2(µ, k, τ). For the second inequality we used the same trick as in Step 2
which is based on Proposition A.1.

Step 4b (Patches): Considering the second term from Equation (A.29), we obtain for
each m̃ ∈ {0, . . . , N}d∥∥∥∥∥∥ ∑

m∈{0,...,N}d

ϕs
m(f̃ − pm)

∥∥∥∥∥∥
Wk,p(Ωm̃,N)

≤ ∥ϕs
m̃(f̃ − pm̃)∥Wk,p(Ωm̃,N)

︸ ︷︷ ︸
(⋆)

+ ∑
m∈{0,...,N}d,

∥m−m̃∥∞=1

∥ϕs
m(f̃ − pm)∥Wk,p(Ωm̃,N)

︸ ︷︷ ︸
(⋆⋆)

+ ∑
m∈{0,...,N}d,

∥m−m̃∥∞>1

∥ϕs
m(f̃ − pm)∥Wk,p(Ωm̃,N)

︸ ︷︷ ︸
(⋆⋆⋆)

. (A.31)

86 Appendix A Proofs for Part A

The term (⋆) can be handled with Step 1, the term (⋆⋆) with Step 3 and the third one
(⋆ ⋆ ⋆) with Step 2. Since (⋆⋆) and (⋆ ⋆ ⋆) require a similar strategy we only demonstrate
it for the third term. We get from Step 2

∑
m∈{0,...,N}d,

∥m−m̃∥∞>1

∥ϕs
m(f̃ − pm)∥Wk,p(Ωm̃,N)

≤ CN−(n−k−µ(k=2))(N + 1)−d−d/p ∑
m∈{0,...,N}d,

∥m−m̃∥∞>1

∥ f ∥Wn,p((0,1)d)

≤ CN−(n−k−µ(k=2))(N + 1)−d/p∥ f ∥Wn,p((0,1)d)
.

We can now bound the sum from Equation (A.31) for each m̃ ∈ {0, . . . , N}d by∥∥∥∥∥∥ ∑
m∈{0,...,N}d

ϕs
m(f̃ − pm)

∥∥∥∥∥∥
Wk,p(Ωm̃,N)

≤ CN−(n−k−µ(k=2))

2(N + 1)−d/p∥ f ∥Wn,p((0,1)d)
+ ∑

m∈{0,...,N}d,

∥m−m̃∥∞≤1

∥ f̃ ∥Wn,p(Ωm,N)

 . (A.32)

Consequently, we get

∑
m̃∈{0,...,N}d

∥∥∥∥∥∥ ∑
m∈{0,...,N}d

ϕs
m(f̃ − pm)

∥∥∥∥∥∥
p

Wk,p(Ωm̃,N)

≤ CN−(n−k−µ(k=2))p ∑
m̃∈{0,...,N}d

2(N + 1)−d/p∥ f ∥Wn,p((0,1)d)
+ ∑

m∈{0,...,N}d,

∥m−m̃∥∞≤1

∥ f̃ ∥Wn,p(Ωm,N)

p

≤ CN−(n−k−µ(k=2))p(3d + 1)p/q

·

 ∑
m̃∈{0,...,N}d

2p(N + 1)−d∥ f ∥p
Wn,p((0,1)d)

+ ∑
m̃∈{0,...,N}d

∑
m∈{0,...,N}d,
∥m−m̃∥∞≤1

∥ f̃ ∥p
Wn,p(Ωm,N)

≤ CN−(n−k−µ(k=2))p

∥ f ∥p
Wn,p((0,1)d)

+ 3d ∑
m̃∈{0,...,N}d

∥ f̃ ∥p
Wn,p(Ωm̃,N)

 , (A.33)

where the first step follows from plugging in Equation (A.32), the second step follows
from Hölder’s inequality (with q := 1 − 1/p) and the last step follows from the definition
of Ωm̃,N . Moreover, we use in the second and the last step the fact that the number of
neighbors of a particular patch is bounded by 3d − 1. To conclude Step 4b we note that
from the definition of Ωm̃,N it follows that there exist 2d disjoint subsets Mi ⊂ {0, . . . , N}d

such that
⋃

i=1,...,2d Mi = {0, . . . , N}d and Ωm1,N ∩ Ωm2,N = ∅ for all m1, m2 ∈ Mi with

A.5 Proof of Proposition 2.21 (Upper Bounds) 87

m1 ̸= m2 and all i = 1, . . . , 2d. From this we get

∑
m̃∈{0,...,N}d

∥ f̃ ∥p
Wn,p(Ωm̃,N)

= ∑
i=1,...,2d

∑
m̃∈Mi

∥ f̃ ∥p
Wn,p(Ωm̃,N)

≤ 2d∥ f̃ ∥p
Wn,p(

⋃
m̃∈{0,...,N}d Ωm̃,N)

(A.34)

and, finally, together with Remark A.4

∑
m̃∈{0,...,N}d

∥ f̃ ∥p
Wn,p(Ωm̃,N)

≤ 2d∥ f̃ ∥p
Wn,p(

⋃
m̃∈{0,...,N}d Ωm̃,N)

≤ C∥ f ∥p
Wn,p((0,1)d)

. (A.35)

Step 4c (Wrap it all up): Combining Equation (A.33) with Equation (A.35) from Step 4b
and inserting it into Equation (A.29) together with the estimate in Equation (A.30) from
Step 4a finally yields

∥ f − fN∥Wk,p((0,1)d)
≤ CN−(n−k−µ(k=2))∥ f ∥Wn,p((0,1)d)

,

for all N ≥ Ñ := max{N1, N2} and a constant C = C(n, d, p, k) > 0. The linearity of
Tk, k ∈ {0, . . . , j} is a consequence of the linearity of the averaged Taylor polynomial
(cf. Remark A.6). ■

A.5.3 Approximation of Localized Polynomials by Neural Networks

The goal of this subsection is to demonstrate how to approximate sums of localized
polynomials ∑p ϕppolyp by neural networks. Corollary A.18 is the foundation for the
following result which implements a neural network that approximates the multiplication
of multiple inputs:

Lemma A.25 Let d, m, K ∈ N, j ∈ N0 and N ≥ 1, µ ≥ 0, c > 0 be arbitrary, and let
ϱ ∈ W j,∞

loc (R) fulfill the assumptions of Proposition 2.19 for n = 3, r = 2. Then there are
constants C(d, m, c, k) > 0 such that the following holds:

For any ε ∈ (0, 1/2), and any neural network Φ with d-dimensional input and m-
dimensional output and with number of layers and nonzero weights all bounded by K, such
that

∥[Rϱ(Φ)]l∥Wk,∞((0,1)d)
≤ cNk+µ(k=2) ,

for k ∈ {0, . . . , j}, l = 1, . . . , m there exists a neural network Ψε,Φ with d-dimensional input
and one-dimensional output, and with

(i) number of layers and nonzero weights all bounded by CK;

(ii)
∥∥Rϱ(Ψε,Φ)− ∏n

l=1[Rϱ(Φ)]l
∥∥

Wk,∞((0,1)d)
≤ CNk+µ(k=2)ε;

(iii) |Rϱ(Ψε,Φ)|Wk,∞((0,1)d)
≤ CNk+µ(k=2) ;

(iv) ∥Ψε,Φ∥max ≤ C max{∥Φ∥max, ε−2}.

Proof . We show by induction over m ∈ N that the statement holds. To make the induction
argument easier we will additionally show that the network Ψε,Φ can be chosen such that
the first L(Φ)− 1 layers of Ψε,Φ and Φ coincide.

If m = 1, then we can choose Ψε,Φ = Φ for any ε ∈ (0, 1/2) and the claim holds.

88 Appendix A Proofs for Part A

Now, assume that the claim holds for an arbitrary, but fixed m ∈ N. We show that it
also holds for m + 1. For this, let ε ∈ (0, 1/2) and let Φ = ((A1, b1), (A2, b2), . . . , (AL, bL))
be a neural network with d-dimensional input and (m + 1)-dimensional output and with
number of layers, and nonzero weights all bounded by K, where each Al is an Nl × Nl−1
matrix, and bl ∈ RNl for l = 1, . . . L.

Step 1 (Invoking induction hypothesis): We denote by Φm the neural network with
d-dimensional input and m-dimensional output which results from Φ by removing the
last output neuron and corresponding weights. In detail, we write

AL =

 A(1,m)
L

a(m+1)
L

 and bL =

 b(1,m)
L

b(m+1)
L

 ,

where A(1,m)
L is a m × NL−1 matrix and a(m+1)

L is a 1 × NL−1 vector, and b(1,m)
L ∈ Rm and

b(m+1)
L ∈ R1. Now we set

Φm :=
(
(A1, b1), (A2, b2), . . . , (AL−1, bL−1),

(
A(1,m)

L , b(1,m)
L

))
.

Using the induction hypothesis we get that there is a neural network

Ψε,Φm = ((A′
1, b′1), (A′

2, b′2), . . . , (A′
L′ , b′L′))

with d-dimensional input and one-dimensional output, and at most KC layers and nonzero
weights such that ∥∥∥∥∥Rϱ(Ψε,Φm)−

m

∏
l=1

[Rϱ(Φm)]l

∥∥∥∥∥
Wk,∞((0,1)d)

≤ CNk+µ(k=2)ε,

and |Rϱ(Ψε,Φm)|Wk,∞((0,1)d)
≤ CNk+µ(k=2) . Moreover, we have that ∥Φm∥max ≤ ∥Φ∥max,

so that there we can estimate ∥Ψε,Φm∥max ≤ C max{∥Φ∥max, ε−2}. Furthermore, we can
assume that the first L − 1 layers of Ψε,Φm and Φm coincide and, thus, also the first L − 1
layers of Ψε,Φm and Φ, i.e. Al = A′

l for l = 1, . . . , L − 1.

Step 2 (Combining Ψε,Φm and
[
Rϱ

(
Φ
)]

m+1): Now, we construct a network Ψ̃ε,Φ where

the first L − 1 layers of Ψ̃ε,Φ and Ψε,Φm (and, thus, also of Φ) coincide (by definition),
and Ψ̃ε,Φ has two-dimensional output with

[
Rϱ

(
Ψ̃ε,Φ

)]
1 = Rϱ

(
Ψε,Φm

)
and

[
Rϱ

(
Ψ̃ε,Φ

)]
2 ≈[

Rϱ

(
Φ
)]

m+1. For this, we add the formerly removed neuron with corresponding weights
back to the L-th layer of Ψε,Φm and approximately pass the output through to the last layer.
Let ΦL′−L+1,c,1

ε = ((Aid
1 , bid

1), . . . , (Aid
L′−L+1, bid

L′−L+1)) be the network from Corollary A.19.
We define

Ψ̃ε,Φ :=(A′
i, b′i)

L−1
i=1 ,

 A′
L

Aid
1 a(m+1)

L

 ,

 b′L

Aid
1 b(m+1)

L + b(m+1)
1

 ,

 A′
L+1

Aid
2

 ,

 b′L+1

bid
2

 , . . .

A.5 Proof of Proposition 2.21 (Upper Bounds) 89

. . .

 A′
L′

Aid
L′−L+1

 ,

 b′L′

bid
L′−L+1

 .

Counting the number of nonzero weights of Ψ̃ε,Φ we get with Lemma A.21 ((ii)) that

M(Ψ̃ε,Φ) ≤ M(Ψε,Φm) + M(Φ)︸ ︷︷ ︸
from a(m+1)

L ,b(m+1)
L

+ 4(L′ − L + 1)︸ ︷︷ ︸
from approximative identity

≤ CK + K + CK ≤ CK, (A.36)

where we used in the second step the induction hypothesis twice together with the
assumption on Φ. Similarly, we get the statement for L(Ψ̃ε,Φ). Furthermore, ∥Ψ̃ε,Φ∥max ≤
C max{∥Φ∥max, ε−2}.

Next, we want to apply the approximate multiplication network from Corollary A.18 to
the output of Ψ̃ε,Φ. For this, we need to find a bounding box for the range of Rϱ

(
Ψ̃ε,Φ

)
. We

have

∥Rϱ(Ψε,Φm)∥L∞((0,1)d)
≤ C and ∥[Rϱ(Ψ̃ε,Φ)]2∥L∞((0,1)d)

≤ c + ε ≤ c + 1,

and get for B := max{C, c + 1} that Range Rϱ(Ψ̃ε,Φ) ⊂ [−B, B]2. Now, we denote by ×̃ the
network from Corollary A.18 with B = B and accuracy ε and define

Ψε,Φ := ×̃ Ψ̃ε,Φ.

Step 3 (Ψε,Φ fulfills induction hypothesis for m + 1): ad (i): Clearly, Ψε,Φ has d-
dimensional input, one-dimensional output and, combining Equation (A.36) with ((iii)) of
Corollary A.18 as well as Lemma A.21 (iii), at most CK nonzero weights.

ad (ii): The first L− 1 layers of Ψε,Φ and Φ coincide and for the approximation properties
it holds that∥∥∥∥∥Rϱ(Ψε,Φ)−

m+1

∏
l=1

[Rϱ(Φ)]l

∥∥∥∥∥
Wk,∞((0,1)d)

=

∥∥∥∥∥Rϱ(×̃) ◦ Rϱ

(
Ψ̃ε,Φ

)
− [Rϱ(Φ)]m+1 ·

m

∏
l=1

[Rϱ(Φ)]l

∥∥∥∥∥
Wk,∞((0,1)d)

≤
∥∥∥Rϱ(×̃) ◦ (Rϱ(Ψε,Φm), [Rϱ

(
Ψ̃ε,Φ

)
]2)− Rϱ(Ψε,Φm) · [Rϱ

(
Ψ̃ε,Φ

)
]2

∥∥∥
Wk,∞((0,1)d)

+
∥∥∥Rϱ(Ψε,Φm)

(
[Rϱ

(
Ψ̃ε,Φ

)
]2 − [Rϱ(Φ)]m+1

)∥∥∥
Wk,∞((0,1)d)

+

∥∥∥∥∥[Rϱ(Φ)]m+1 ·
(

Rϱ(Ψε,Φm)−
m

∏
l=1

[Rϱ(Φ)]l
)∥∥∥∥∥

Wk,∞((0,1)d)

. (A.37)

We continue by considering the first term of the Inequality (A.37) and bound the k-semi-
norm of this term. We apply the chain rule from Corollary A.13 for g : R2 → R with

90 Appendix A Proofs for Part A

g(x, y) = Rϱ(×̃)(x, y)− x · y and f : Rd → R2 with f = Rϱ(Ψ̃ε,Φ). We get∣∣∣Rϱ(×̃) ◦ (Rϱ(Ψε,Φm), [Rϱ

(
Ψ̃ε,Φ

)
]2)− Rϱ(Ψε,Φm) · [Rϱ

(
Ψ̃ε,Φ

)
]2

∣∣∣
Wk,∞((0,1)d)

≤ C
k

∑
i=1

|Rϱ(×̃)(x, y)− x · y|W i,∞((−B,B)2;dxdy)N
k+µ(k=2)

≤ Ck · ∥Rϱ(×̃)(x, y)− x · y∥W j,∞((−B,B)2;dxdy)N
k+µ(k=2)

≤ CεNk+µ(k=2) , (A.38)

where we used the induction hypothesis together with |[Rϱ

(
Ψ̃ε,Φ

)
]2|Wk,∞((0,1)d)

≤ cNk+µ(k=2)

(which follows from the properties of the approximate identity network from Corol-
lary A.19 together with the chain rule) in the third step and assumed that c ≤ C. Combin-
ing the statements of the semi-norms then yields the required bound for the norm. For the
second term we have by the product rule and the chain rule∥∥∥Rϱ(Ψε,Φm)

(
[Rϱ

(
Ψ̃ε,Φ

)
]2 − [Rϱ(Φ)]m+1

)∥∥∥
Wk,∞((0,1)d)

≤
k

∑
i=0

∥Rϱ(Ψε,Φm)∥W i,∞((0,1)d)
·
∥∥∥[Rϱ

(
Ψ̃ε,Φ

)
]2 − [Rϱ(Φ)]m+1

∥∥∥
Wk−i,∞((0,1)d)

≤
k

∑
i=0

cNi+µ(i=2) · CεNk−i+µ(k−i=2) ≤ kcCNk+µ(k=2)ε. (A.39)

To estimate the last term of (A.37) we apply the product rule from Lemma A.12 and get∥∥∥∥∥[Rϱ(Φ)]m+1 ·
(

Rϱ(Ψε,Φm)−
m

∏
l=1

[Rϱ(Φ)]l
)∥∥∥∥∥

Wk,∞((0,1)d)

≤
k

∑
i=0

∥[Rϱ(Φ)]m+1∥W i,∞((0,1)d)
·
∥∥∥∥∥Rϱ(Ψε,Φm)−

m

∏
l=1

[Rϱ(Φ)]l

∥∥∥∥∥
Wk−i,∞((0,1)d)

≤
k

∑
i=0

cNi+µ(i=2) · CNk−i+µ(k−i=2)ε ≤ kcCNk+µ(k=2)ε. (A.40)

For the second step, we used again the induction hypothesis together with

|[Rϱ(Φ)]m+1|Wk,∞((0,1)d)
≤ cNk+µ(k=2) .

Combining (A.37) with (A.38), (A.39) and (A.40) yields∥∥∥∥∥Rϱ(Ψε,Φ)−
m+1

∏
l=1

[Rϱ(Φ)]l

∥∥∥∥∥
Wk,∞((0,1)d)

≤ CNk+µ(k=2)ε.

ad (iii): The estimate

|Rϱ(Ψε,Φ)|Wk,∞((0,1)d)
≤ CNk+µ(k=2) .

A.5 Proof of Proposition 2.21 (Upper Bounds) 91

can be shown similarly as above.
ad (iv): Finally, we need to derive a bound for the absolute values of the weights. From

the definition of Ψε,Φ together with Lemma A.21 (iii) we get

∥Ψε,Φ∥max = ∥×̃ Ψ̃ε,Φ∥max ≤ C · max{ε−2, ∥Ψ̃ε,Φ∥max}.

From ∥Ψ̃ε,Φ∥max ≤ C max{∥Φ∥max, ε−2} (see Step 2) it follows that

∥Ψε,Φ∥max ≤ C max{∥Φ∥max, ε−2}.

This concludes the proof. ■

In the last part of this subsection, we are finally in a position to construct neural networks
which approximate sums of localized polynomials.

Lemma A.26 Let j, τ ∈ N0,, d, N ∈ N, k ∈ {0, . . . , j}, Additionally, let ϱ be such that it
fulfills the assumptions of Proposition 2.19 (for n = 3, r = 2). Let n ∈ N≥k+1, 1 ≤ p ≤ ∞,
and µ > 0. Assume that

(
Ψ(j,τ,N,s)

)
N∈N,s≥1

be the exponential (polynomial, exact) (j, τ)-PU

from Definition 2.13. For N ∈ N, set

s :=

Nµ, if exponential PU,

N
2d/p+d+n

D , if polynomial PU,
1, if exact PU,

Then, there is a constant C = C(n, d, p, k) > 0 with the following properties:
Let ε ∈ (0, 1/2), f ∈ Wn,p((0, 1)d) and pm(x) := p f ,m(x) = ∑|α|≤n−1 c f ,m,αxα for

m ∈ {0, . . . , N}d be the polynomials from Lemma A.22. Then there is a neural network
ΦP,ε = ΦP,ε(f , d, n, N, µ, ε) with d-dimensional input and one-dimensional output, with at
most C layers and C(N + 1)d nonzero weights, such that∥∥∥∥∥∥ ∑

m∈{0,...,N}d

ϕs
m pm − Rϱ(ΦP,ε)

∥∥∥∥∥∥
Wk,p((0,1)d)

≤ C∥ f ∥Wn,p((0,1)d)
ε,

and ∥ΦP,ε∥max ≤ C∥ f ∥Wn,p((0,1)d)
ε−2s2N2(d/p+d+k)+d/p+d.

Proof . As before, we only provide the proof only for the case of an exponential (j, τ)-PU.
Step 1 (Approximating localized monomials ϕs

m(x)xα): Let |α| ≤ n − 1 and m ∈
{0, . . . , N}d and set ε̃ := εN−(d/p+d+k+µ(k=2)). By Corollary A.19 and inductively using
the trick that |xy − uz| ≤ |x(y − z)| + |z(x − u)|, there is a neural network Φα with d-
dimensional input and |α|-dimensional output, with two layers, at most 4(n − 1) nonzero
weights bounded in absolute value by Cε̃−1 such that

∥∥xα −
|α|

∏
l=1

[Rϱ(Φα)]l(x)
∥∥

Wk,∞((0,1)d;dx) ≤ Cε̃ (A.41)

92 Appendix A Proofs for Part A

and
∥[Rϱ(Φα)]l∥Wk,∞((0,1)d)

≤ ε̃ + 1 ≤ 2, for all l = 1, . . . , |α|. (A.42)

Let now Φm be the neural network from Lemma 2.17 ((iv)) (for s = Nµ) and define the
network

Φm,α := P(Φm, Φα, Φn−1−|α|,2),

where the parallelization is provided by Lemma A.17 and

Φn−1−|α|,2 =
(
(0d,d, 0d), (0n−1−|α|,d, 1n−1−|α|)

)
.

Consequently, Φm,α has 2 ≤ K0 layers and C + 4(n − 1) ≤ K0 nonzero weights for a
suitable constant K0 = K0(n, d) ∈ N, ∥Φm,α∥max ≤ C max{ε̃−1, N1+µ} and

∥
n−1+d

∏
l=1

[Rϱ(Φm,α)(x)]l − ϕs
m(x)xα∥Wk,∞((0,1)d);dx ≤ Cε̃.

Moreover, as a consequence of Lemma 2.17 ((iv)) together with Equation (A.42) we have

∥[Rϱ(Φm,α)]l∥Wk,∞((0,1)d)
≤ CNk+µ(k=2) , for all l = 1, . . . , n − 1 + d.

To construct an approximation of the localized monomials ϕs
m(x)xα, let Ψε̃,(m,α) be the

neural network provided by Lemma A.25 (with Φm,α instead of Φ, m = |α| + d ∈ N,
K = K0 ∈ N) for m ∈ {0, . . . , N}d and α ∈ Nd

0, |α| ≤ n − 1. Then Ψε̃,(m,α) has at
most C layers (independently of m, α), number of nonzero weights and ∥Ψε̃,(m,α)∥max ≤
C max{N1+µ, ε−2N2(d/p+d+k+µ(k=2))}. Moreover,∥∥∥ϕs

m(x)xα − Rϱ

(
Ψε̃,(m,α)

)
(x)
∥∥∥

Wk,∞((0,1)d;dx)

≤
∥∥ϕs

m(x)xα −
n−1+d

∏
l=1

[Rϱ(Φm,α)(x)]l
∥∥

Wk,∞((0,1)d;dx)

+
∥∥n−1+d

∏
l=1

[Rϱ(Φm,α)]l − Rϱ

(
Ψε̃,(m,α)

)∥∥
Wk,∞((0,1)d)

≤ CNk+µ(k=2) ε̃ ≤ CεN−d/p−d,

where we used Equation (A.41) together with the product rule for the last step.

Step 2 (Constructing ΦP,ε): We set

T := |{(m, α) : m ∈ {0, . . . , N}d, α ∈ Nd
0, |α| ≤ n − 1}|.

We note that every network Ψε̃,(m,α) has the same number of layers. By using Lemma A.17,
we parallelize the localized polynomial approximations

P
(
Ψε̃,(m,α) : m ∈ {0, . . . , N}d, α ∈ Nd

0, |α| ≤ n − 1
)

and note that the resulting network has at most C layers and CT nonzero weights bounded
in absolute value by C max{N1+µ, ε−2N2(d/p+d+k+µ(k=2))} ≤ Cε−2N2(d/p+d+k+µ(k=2)). Next,
we define the matrix Asum ∈ R1,T by Asum := [c f ,m,α : m ∈ {0, . . . , N}d, α ∈ Nd

0, |α| ≤

A.5 Proof of Proposition 2.21 (Upper Bounds) 93

n − 1] and the neural network Φsum := ((Asum, 0)). Finally, we set

ΦP,ε := Φsum P
(
Ψε̃,(m,α) : m ∈ {0, . . . , N}d, α ∈ Nd

0, |α| ≤ n − 1
)
. (A.43)

From Lemma A.21((i)) we get ΦP,ε is a neural network with d-dimensional input and
one-dimensional output, with at most C layers and, by Lemma A.21, CT ≤ C(N + 1)d

nonzero weights. For the absolute values of the weights it holds that

∥ΦP,ε∥max ≤ (N + 1)dC∥ f ∥Wn,p((0,1)d)
Nd/pε−2N2(d/p+d+k+µ(k=2))

≤ C∥ f ∥Wn,p((0,1)d)
ε−2N2(d/p+d+k+µ(k=2))+d/p+d

where we used the bound for the coefficients c f ,m,α from Remark A.23. Moreover, we have

Rϱ(ΦP,ε) = ∑
m∈{0,...,N}d

∑
|α|≤n−1

c f ,m,αRϱ(Ψε̃,(m,α)).

Note that the network ΦP,ε only depends on p f ,m (and thus on f) via the coefficients c f ,m,α.
Step 3 (Estimating the approximation error in ∥·∥Wk,p): We get∥∥∥∥∥∥ ∑

m∈{0,...,N}d

ϕs
m(x)pm(x)− Rϱ(ΦP,ε)(x)

∥∥∥∥∥∥
Wk,p((0,1)d;dx)

=

∥∥∥∥∥∥ ∑
m∈{0,...,N}d

∑
|α|≤n−1

c f ,m,α

(
ϕs

m(x)xα − Rϱ

(
Ψε̃,(m,α)

)
(x)
)∥∥∥∥∥∥

Wk,p((0,1)d;dx)

≤ ∑
m∈{0,...,N}d

∑
|α|≤n−1

|c f ,m,α|
∥∥∥ϕs

m(x)xα − Rϱ

(
Ψε̃,(m,α)

)
(x)
∥∥∥

Wk,p((0,1)d;dx)

≤ ∑
m∈{0,...,N}d

∑
|α|≤n−1

∥ f̃ ∥Wn−1,p(Ωm,N)
Nd/pCεN−d/p−d,

where we used again the bound for the coefficients c f ,m,α together with ∥·∥Wk,p((0,1)d)
≤

C∥·∥Wk,∞((0,1)d)
in the last step. Similar as in Equation (A.34) we finally have∥∥∥∥∥∥ ∑

m∈{0,...,N}d

ϕs
m(x)pm(x)− Rϱ(ΦP,ε)(x)

∥∥∥∥∥∥
Wk,p((0,1)d;dx)

≤ CεN−d ∑
m∈{0,...,N}d

∥ f̃ ∥Wn,p((0,1)d)

≤ Cε∥ f ∥Wn,p((0,1)d)
.

This concludes the proof. ■

A.5.4 Putting Everything Together

Now we conclude the proof of Proposition 2.21. Again, we only provide the proof for
exponential (j, τ)-PUs. The rest follows in a similar manner by adapting the calculations
to come accordingly.

94 Appendix A Proofs for Part A

Proof of Proposition 2.21 . We divide the proof into two steps: First, we approximate the
function f by a sum of localized polynomials. Afterwards, we proceed by approximating
this sum by a neural network.

For the first step, we set

N :=

⌈(
ε

2C̃

)−1/(n−k−µ(k=2))
⌉

and s := Nµ, (A.44)

where C̃ = C̃(n, d, p, k) > 0 is the constant from Lemma A.22. Without loss of generality
we may assume that C̃ ≥ 1. The same lemma yields that if Ψ(j,τ) = Ψ(j,τ)(d, N, µ) ={

ϕs
m : m ∈ {0, . . . , N}d} is the PU from Lemma 2.17 and Ñ = Ñ(d, p, µ, k) is the con-

stant from Lemma A.22, then there exist polynomials pm(x) = ∑|α|≤n−1 c f ,m,αxα for
m ∈ {0, . . . , N}d such that∥∥∥∥∥∥ f − ∑

m∈{0,...,N}d

ϕs
m pm

∥∥∥∥∥∥
Wk,p((0,1)d)

≤ C̃
(

1
N

)n−k−µ(k=2)

≤ C̃
ε

2C̃
=

ε

2
, (A.45)

for all ε ∈ (0, ε̃), where ε̃ = ε̃(d, p, µ, k) > 0 is chosen such that N ≥ Ñ.
For the second step, let C̃′ = C̃′(n, d, p, k) be the constant from Lemma A.26 and ΦP,ε be

the neural network provided by Lemma A.26 with ε/(2C̃′) instead of ε. Then ΦP,ε has at
most C̃′ layers and at most

C̃′
((

ε

2C̃′

)−1/(n−k−µ(k=2))

+ 2

)d

≤ C̃′3d
(

ε

2C̃′

)−d/(n−k−µ(k=2))

≤ Cε−d/(n−k−µ(k=2))

nonzero weights. In the first step we have used (2C̃′)/ε ≥ 1. The weights are bounded in
absolute value by

∥ΦP,ε∥max ≤ C̃′ε−2N2(d/p+dk+µ(k=2))+d/p+d

≤ Cε−2−(2(d/p+d+k+µ(k=2))+d/p+d)/(n−k−µ(k=2)) = Cε−θ ,

for a suitable θ = θ(d, p, k, n, µ) > 0. Additionally, there holds∥∥∥∥∥∥ ∑
m∈{0,...,N}d

ϕs
m pm − Rϱ(ΦP,ε)

∥∥∥∥∥∥
Wk,p((0,1)d)

≤ C̃′ ε

2C̃′
≤ ε

2
. (A.46)

By applying the triangle inequality as well as Equations (A.45) and (A.46) we arrive at∥∥ f − Rϱ(ΦP,ε)
∥∥

Wk,p((0,1)d)

≤

∥∥∥∥∥∥ f − ∑
m∈{0,...,N}d

ϕs
m pm

∥∥∥∥∥∥
Wk,p((0,1)d)

+

∥∥∥∥∥∥ ∑
m∈{0,...,N}d

ϕs
m pm − Rϱ(ΦP,ε)

∥∥∥∥∥∥
Wk,p((0,1)d)

≤ ε

2
+

ε

2
= ε,

A.6 Proof of Theorem 2.22 (Encodability of the Weights) 95

thereby concluding the proof. ■

A.6 Proof of Theorem 2.22 (Encodability of the Weights)

We now proceed with the proof of Theorem 2.22.

Proof of Theorem 2.22 . Let C = C(d, n, p, µ, k) > 0, θ = θ(d, n, p, k, µ) > 0 and ε̃ =
ε̃(d, p, µ, k) > 0 be the constants from Proposition 2.21 and let ε ∈ (0, min{1/3, ε̃}). More-
over, for f ∈ Fn,d,p, let

Φε, f := ((Asum, 0)) P
(
Ψi : i = 1, . . . , T

)
be the neural network from Proposition 2.21 (defined in Equation (A.43)) with at most L
layers and M(Φε, f) ≤ C · ε−d/(n−k−µ(k=2)) nonzero weights bounded in absolute value by
Cε−θ , such that

∥Rϱ(Φε, f)− f ∥Wk,p((0,1)d)
≤ ε

3
.

We will make use of the following additional properties of Φε, f :

(i) Only the entries of Asum depend on the function f . In other words, the entries of
Ψ1, . . . , ΨT are independent from f . They only depend on ε, n, d, p, k, µ.

(ii) There exists s = s(k, n, d, p) > 0 (we assume w.l.o.g. that the same s can be used) such
that

(a)
∥∥Rϱ(Ψi)

∥∥
Wk,∞((0,1)d)

≤ ε−s for i = 1, . . . , T. This follows from Lemma A.25 ((iii))
in combination with Step 1 and 2 of the proof of Lemma A.26 and choice of N
in Equation (A.44).

(b) T ≤ ε−s. This follows from the definition of T (see Step 2 of the proof of Lemma A.26);

(c) M(Φε, f) ≤ ε−s.

(iii) Asum = (am)T
m=1 ∈ R1,T.

(iv) The last layer (Alast, blast) of P
(
Ψi : i = 1, . . . , T

)
has a block diagonal structure, where

each block is a vector (see also Lemma A.17). Thus, in every column of Alast there is at
most one nonzero entry.

We replace the weights in the last layer of Φε, f by elements from an appropriate set
of weights with cardinality bounded polynomially in ε−1 and show that the resulting
network is still close enough to f . Afterwards, we construct a coding scheme for the entire
set of weights.

Step 1 (Rounding the weights in Asum): We now show that with rounding preci-
sion ν := 2s + 2 we have for the neural network

Φ̃(1)
ε, f := ((Ãsum, 0)) P

(
Ψi : i = 1, . . . , T

)
where Ãsum ∈ ([−ε−θ , ε−θ] ∩ ενZ)1,T is the rounded weight matrix Asum ∈ R1,T that

∥Rϱ(Φε, f)− Rϱ(Φ̃
(1)
ε, f)∥Wk,p((0,1)d) ≤ ε/3.

96 Appendix A Proofs for Part A

Clearly,∥∥∥Rϱ

(
(Asum, 0) P

(
Ψi : i = 1, . . . , T

))
− Rϱ

(
(Ãsum, 0) P

(
Ψi : i = 1, . . . , T

))∥∥∥
Wk,p((0,1)d)

≤
∥∥∥∥∥ T

∑
i=1

aiRϱ(Ψi)−
T

∑
i=1

ãiRϱ(Ψi)

∥∥∥∥∥
Wk,∞((0,1)d)

≤
T

∑
i=1

|ai − ãi|
∥∥Rϱ(Ψi)

∥∥
Wk,∞((0,1)d)

≤
T

∑
i=1

εν
∥∥Rϱ(Ψi)

∥∥
Wk,∞((0,1)d)

≤ ενε−sε−s ≤ ε2 ≤ ε/3,

where we use in the third step that the rounding precision is εν and in the fourth the
properties (ii) and (iii) from above. To get our final network, we replace the bias term
Ãsumblast (which is also bounded in absolute value by ε−θ) in the last layer of Φ̃(1)

ε, f by the

nearest element in [−ε−θ , ε−θ] ∩ ενZ and denote the resulting network by Φ̃ε, f . It now
easily follows that

∥Rϱ(Φ̃
(1)
ε, f)− Rϱ(Φ̃ε, f)∥Wk,∞((0,1)d)

≤ ε/3

which implies by the triangle inequality that

∥ f − Rϱ(Φ̃ε, f)∥Wk,p((0,1)d) ≤ ε.

Step 2 (Construction of coding scheme): We will now show that there is a constant
C2 = C2(d, n, p, k, µ) > 0 and a coding scheme B = (Bℓ)ℓ∈N such that for each ε > 0 and
each f ∈ Fn,d,p the nonzero weights of Φ̃ε, f are in Range B⌈C2 log(1/ε)⌉.

If we denote by Wε the collection of nonzero weights of (Ψm)T
m=1 (which are independent

of f), then we have |Wε| ≤ M(Φε, f) ≤ ε−s. Furthermore, we have |[−ε−θ , ε−θ] ∩ ενZ| =
2⌊ε−θ−ν⌋+ 1 ≤ ε−s2 with s2 := θ + ν + 2.

• The matrix weights in the last layer of Φ̃ε, f are in the set Gmult := {x1x2 : x1 ∈
Wε, x2 ∈ [−ε−θ , ε−θ] ∩ ενZ} with cardinality bounded by ε−(s+s2).

• The bias in the last layer is an element of [−ε−θ , ε−θ] ∩ ενZ.

• The weights of Φ̃ε, f in the layers 1, . . . , L − 1 are in the set Wε.

Setting C2 := 2(s + s2) it follows that there exists a surjective mapping

B⌈C2 log2(1/ε)⌉ : {0, 1}⌈C2 log2(1/ε)⌉ → Gmult ∪ Wε ∪
(
[−ε−θ , ε−θ] ∩ ενZ

)
,

which shows the claim. ■

A.7 PU-properties of the Activation Functions from Table 2.1

In this section, we examine the PU-properties of the activation functions listed in Table 2.1.
The smoothness properties of all functions in Table 2.1 are clear. In particular, all functions

A.7 PU-properties of the Activation Functions from Table 2.1 97

are in C∞(R \ {0}). In order to show that the activation functions to follow allow for ex-
ponential (polynomial) PUs, we consider the exponential (polynomial) (j, τ) admissibility
conditions of Definition 2.14.
Exact PUs.

(leaky) ReLU and RePUs: These functions admit exact PUs. For the ReLU case, see for
instance [Yar17; GKP20]. For RePUs, this follows from the properties of B-splines (see [De
01, Chapter IX]).

Exponential PUs.

ELUa for a > 0, a ̸= 1: Here, j = 1, τ = 1, A = 0 and B = 1. Moreover, R > 0 can be
chosen arbitrarily. Then, for D = 1, we have, for all x > R, that |1 − ϱ′(x)| = |1 − 1| = 0
and, for all x < −R that |ϱ′(x)| = |aex| = aeDx.

ELU1: Here, j = 2, τ = 1, A = 0 and B = 1. Moreover, R > 0 can be chosen arbitrarily.
Then, for D = 1, we have, for all x > R, that |1 − ϱ′(x)| = |1 − 1| = 0 and, for all x < −R
that |ϱ′(x)| = |ex| = eDx. Moreover, we have for all |x| > R that |ϱ′′(x)| ≤ e−|x| = e−D|x|.

sigmoid: Here, j ∈ N0 is arbitrary, τ = 0, A = 0 and B = 1. Moreover, R > 0 can be
chosen arbitrarily. Then we have, for all x > R, that |1 − ϱ(x)| ≤ e−x and, for all x < −R
that |ϱ(x)| ≤ ex. The other statements follow from the fact that, for the sigmoid activation
function, the k-th derivative is a finite linear combination of the powers ϱ, . . . , ϱk of ϱ (see,
e.g., [MW93]). Choosing D suitably then shows the claim.

tanh: Since tanh(x) = 2 · sigmoid(2x)− 1, the proof of this statement follows from the
proof of the statement for the sigmoid activation function for A = −1, B = 1.

softplus: Here, j ∈ N0 is arbitrary, τ = 1, A = 0 and B = 1. Moreover, R > 0 can be
chosen arbitrarily. Then, for all x > R, there holds |1 − ϱ′(x)| = |1 − sigmoid(x)| ≤ e−x

and, for all x < −R that |ϱ′(x)| = |sigmoid(x)| ≤ ex. The proof of (d.3) for the higher-
order derivatives follows from the properties of the higher derivatives of the sigmoid
function.

swish: Here, j ∈ N0 is arbitrary, τ = 1, A = 0, and B = 1. It is not hard to see that for all
k ∈ N there holds

swish(k)(x) = x · sigmoid(k)(x) + k · sigmoid(k−1)(x).

Now, the statement follows from the analogous observations for the sigmoid function
combined with the fact that for r, u > 0 with r > u there holds

lim
x→∞

xe−rx

e−ux = 0, lim
x→−∞

xerx

eux = 0.

Polynomial PUs.

softsign: Here, j ∈ N0 is arbitrary, τ = 0, A = −1, B = 1. The polynomial convergence
properties (d.1)-(d.3) follow immediately from the definition of the softsign function.

98 Appendix A Proofs for Part A

inverse square root linear unit: Here, j = 3, τ = 1, A = 0 and B = 1. The polynomial
convergence properties (d.1)-(d.3) follow immediately from the definition of the inverse
square root linear unit.

inverse square root unit: Here, j ∈ N0 is arbitrary, τ = 0, A = −1 and B = 1. The
polynomial convergence properties (d.1)-(d.3) follow immediately from the definition of
the inverse square root unit.

arctan: Here, j ∈ N0 is arbitrary, τ = 0, A = −π/2 and B = π/2. The polynomial
convergence properties (d.1)-(d.3) follow immediately from the fact that ϱ′(x) = 1/(1+ x2)
which in particular implies polynomial convergence behavior for arctan itself.

B

Exact AAPM Challenge Setup

To ensure reproducability, we give an exact account of how we trained our winning submis-
sion to the AAPM challenge (team-name: robust-and-stable). Since the systematic
investigation of the ItNet-architecture was conducted after the challenge submission phase,
it became clear that not all of the substeps outlined below have a notable impact on the
performance (see also Section 3.3).

The following details are related to Step 3 of Section 3.2 (“Constructing an Iterative
Scheme”). We start by training an ItNet4 (with weight sharing) for 500 epochs of mini-
batch stochastic gradient descent and Adam with an initial learning rate of 8 · 10−5 and a
batch size of 2 (restarting Adam after 250 epochs). Then, we improve the accuracy by the
following post-training strategy: First, the ItNet4 is extended by one more iteration:

ItNet-post[θ] : Rm → RN ,

y 7→
[
⃝5

k=1
(
DCλk ,y ◦ UNet[θ̃k]

)
◦ FBP

]
(y),

where θ̃k is initialized with the optimized weights from ItNet4 for k = 1, . . . , 4, and we set
θ̃5 := θ̃4. Next, ItNet-post is fine-tuned by keeping the weights θ̃1 = θ̃2 = θ̃3 of the first
three UNet-blocks fixed and optimizing only over the weights of the last two iterations
(without weight sharing).

Aiming at an additional training speed-up, we use the initialization λ=[1.1, 1.3, 1.4, 0.08]
for the data-consistency parameters of ItNet4, which was found by pre-training. Similarly,
ItNet-post is initialized with the optimized values from ItNet4 for k = 1, 2, 3, together with
λ4 = 1.0 and λ5 = 0.1.

To improve the overall performance of our networks, we have additionally applied the
following “tricks” for fine tuning, which are ordered by their importance:

(i) Due to statistical fluctuations, the networks typically exhibit slightly different recon-
struction errors, despite using the same training pipeline. The final reconstructions are
therefore computed by an ensemble of ten networks, each trained on a different split of the
training set.

(ii) Due to the training with small batch sizes, we replace batch normalization of the
UNet-architecture by group normalization [WH18].

(iii) We equip the UNet-blocks with a few memory channels, i.e., one actually has that
UNet[θ] : RN × (RN)cmem → RN × (RN)cmem ; cf. Putzky and Welling [PW17] and Adler
and Öktem [AÖ18]. While the original image-enhancement channel is not altered, the
output of the additional channels is propagated through the ItNet, playing the role of a
hidden state (in the spirit of recurrent neural networks). For our experiments, we use
cmem = 5.

99

100 Appendix B Exact AAPM Challenge Setup

Figure B.1: Loss curves and network training. The first two plots demonstrate that ItNet4 im-
proves the RMSE by approximately an order of magnitude in comparison to a post-processing
by UNet. Furthermore, the gain of our UNet-initialization strategy can be seen in the second
graph. The last two plots illustrate the advantages of restarting and of the post-training
strategy, respectively. Note that we display the RMSE on the training and validation sets
instead of the actual ℓ2-losses, which behave similarly.

(iv) It was beneficial to restart occasionally the training of the networks (see also Fig. B.1).

The following modifications did not lead to a gain in performance and were omitted:

(i) Improving FBP in Step 1 of Section 3.2 by making some of it components learnable
(e.g., the filter), cf. Würfl et al. [WGCM16]. Although this is advantageous for the recon-
struction quality of FBP itself, it leads to worse results for the ItNet. This suggests that a
combination of model- and data-based methods benefits most from precise and unaltered
physical models.

(ii) Adding additional convolutional-blocks in the measurement domain of ItNet.

(iii) Modifying the standard ℓ2-loss by incorporating the RMSE or the ℓ1-norm.

(iv) Utilizing different optimizers such as SGD, RAdam [Liu+20], or AdamW [LH19].

In Fig. B.1, we visualize the RMSE loss curves of our training pipeline, i.e.,

UNet ◦ FBP → ItNet4(+restart) → ItNet-post(+2 × restart).

Bibliography

[Ada75] R. Adams. Sobolev Spaces. New York: Academic Press, 1975 (cit. on pp. 1, 10,
58, 59).

[AD21] B. Adcock and N. Dexter. „The Gap between Theory and Practice in Func-
tion Approximation with Deep Neural Networks“. SIAM J. Math. Data Sci.
3.2 (2021), 624–655 (cit. on pp. 34, 54, 55).

[AÖ18] J. Adler and O. Öktem. „Learned Primal-Dual Reconstruction“. IEEE Trans.
Med. Imag. 37.6 (2018), 1322–1332 (cit. on pp. 37, 42, 43, 49, 99).

[AMJ18] H. K. Aggarwal, M. P. Mani, and M. Jacob. „MoDL: Model-Based Deep
Learning Architecture for Inverse Problems“. IEEE Trans. Med. Imag. 38.2
(2018), 394–405 (cit. on pp. 37, 45).

[AJ08] H. Amann and E. Joachim. Analysis III. second. Grundstudium Mathematik.
Basel: Birkhäuser, 2008 (cit. on p. 60).

[AB09] M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foundations.
first. Cambridge: Cambridge University Press, 2009 (cit. on pp. 17, 66, 69).

[ARPAH20] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen. „On instabilities
of deep learning in image reconstruction and the potential costs of AI“. Proc.
Natl. Acad. Sci. 117.48 (2020), 30088–30095 (cit. on pp. 1, 50).

[AMÖS19] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb. „Solving inverse prob-
lems using data-driven models“. Acta Numer. 28 (2019), 1–174 (cit. on pp. 1,
35).

[Asa11] A. Asanov. Regularization, Uniqueness and Existence of Solutions of Volterra
Equations of the First Kind. Berlin: De Gruyter, 2011 (cit. on p. 1).

[Bal18] P. Baldi. „Deep Learning in Biomedical Data Science“. Annu. Rev. Biomed.
Data Sci. 1.1 (2018), 181–205 (cit. on p. 1).

[Bar94] A. Barron. „Approximation and Estimation Bounds for Artificial Neural
Networks“. Mach. Learn. 14.1 (1994), 115–133 (cit. on p. 9).

[BMR21] P. L. Bartlett, A. Montanari, and A. Rakhlin. „Deep learning: a statistical
viewpoint“. Acta Numer. 30 (2021), 87–201 (cit. on pp. 2, 7, 54, 56).

[BHJK20] C. Beck, M. Hutzenthaler, A. Jentzen, and B. Kuckuck. „An overview on
deep learning-based approximation methods for partial differential equa-
tions“. arXiv preprint arXiv:2012.12348 (2020) (cit. on pp. 1, 10).

[Bel12] Y. Y. Belov. Inverse Problems for Partial Differential Equations. Berlin: De
Gruyter, 2012 (cit. on p. 1).

[BCV13] Y. Bengio, A. Courville, and P. Vincent. „Representation Learning: A Review
and New Perspectives“. IEEE Trans. Pattern Anal. Mach. Intell. 35.8 (2013),
1798–1828 (cit. on p. 33).

101

102 Bibliography

[BGKP21] J. Berner, P. Grohs, G. Kutyniok, and P. Petersen. „The modern mathematics
of deep learning“. arXiv preprint arXiv:2105.04026 (2021) (cit. on pp. 7, 56).

[BGV22] J. Berner, P. Grohs, and F. Voigtlaender. „Training ReLU networks to high
uniform accuracy is intractable“. arXiv preprint arXiv:2205.13531 (2022) (cit.
on p. 55).

[BGKP19] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen. „Optimal approximation
with sparsely connected deep neural networks“. SIAM J. Math. Data Sci. 1.1
(2019), 8–45 (cit. on pp. 2, 9, 10, 12, 14, 54).

[BS08] S. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods. 3rd.
Vol. 15. Texts in Applied Mathematics. New York: Springer Science+Business
Media, 2008 (cit. on pp. 59–61).

[Bre12] A. Bressan. Lecture Notes on Functional Analysis: With Applications to Linear
Partial Differential Equations. Vol. 143. Graduate Studies in Mathematics 143.
Providence: American Mathematical Society, 2012 (cit. on p. 63).

[Bub+19] T. A. Bubba, G. Kutyniok, M. Lassas, M. März, W. Samek, S. Siltanen, and
V. Srinivasan. „Learning the invisible: A hybrid deep learning-shearlet
framework for limited angle computed tomography“. Inverse Probl. 35.6
(2019), 064002 (cit. on p. 43).

[Buz11] T. M. Buzug. „Computed Tomography“. Springer handbook of medical technol-
ogy. Berlin: Springer, 2011, 311–342 (cit. on p. 3).

[CRT06] E. J. Candès, J. K. Romberg, and T. Tao. „Robust Uncertainty Principles: Ex-
act Signal Reconstruction From Highly Incomplete Frequency Information“.
IEEE Trans. Inf. Theory 52.2 (2006), 489–509 (cit. on p. 3).

[CD89] Carroll and Dickinson. „Construction of neural nets using the radon trans-
form“. International 1989 Joint Conference on Neural Networks. Vol. 1. 1989,
607–611 (cit. on p. 56).

[Che+18] H. Chen, Y. Zhang, Y. Chen, J. Zhang, W. Zhang, H. Sun, Y. Lv, P. Liao, J.
Zhou, and G. Wang. „LEARN: Learned Experts’ Assessment-Based Recon-
struction Network for Sparse-Data CT“. IEEE Trans. Med. Imag. 37.6 (2018),
1333–1347 (cit. on p. 37).

[Che+17a] H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang.
„Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural
Network“. IEEE Trans. Med. Imag. 36.12 (2017), 2524–2535 (cit. on p. 41).

[Che+17b] H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li, J. Zhou, and G. Wang. „Low-
dose CT via convolutional neural network“. Biomed. Opt. Express 8.2 (2017),
679–694 (cit. on p. 41).

[CC95] T. Chen and H. Chen. „Universal approximation to nonlinear operators by
neural networks with arbitrary activation functions and its application to
dynamical systems“. IEEE Trans. Neural Netw. 6.4 (1995), 911–917 (cit. on
pp. 2, 56).

[CWZZ18] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. „Model compression and accel-
eration for deep neural networks: The principles, progress, and challenges“.
IEEE Signal Process. Mag. 35.1 (2018), 126–136 (cit. on p. 34).

Bibliography 103

[CSMT18] S. Chmiela, H. E. Sauceda, K.-R. Müller, and A. Tkatchenko. „Towards exact
molecular dynamics simulations with machine-learned force fields“. Nat.
Commun. 9.1 (2018), 1–10 (cit. on p. 37).

[Chm+17] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and
K.-R. Müller. „Machine learning of accurate energy-conserving molecular
force fields“. Sci. Adv. 3.5 (2017), e1603015 (cit. on p. 37).

[CHLF20] I. Y. Chun, Z. Huang, H. Lim, and J. Fessler. „Momentum-Net: Fast and
convergent iterative neural network for inverse problems“. IEEE Trans.
Pattern Anal. Mach. Intell. available online: https://doi.org/10.1109/
TPAMI.2020.3012955 (2020) (cit. on p. 37).

[CP11] P. L. Combettes and J.-C. Pesquet. „Proximal splitting methods in signal pro-
cessing“. Fixed-point algorithms for inverse problems in science and engineering.
Springer, 2011, 185–212 (cit. on p. 35).

[CS96] G. M. Constantine and T. H. Savits. „A Multivariate Faa Di Bruno Formula
With Applications“. T. Am. Math. Soc. 348.2 (1996), 503–520 (cit. on p. 64).

[CSG19] D. Costarelli, A. Sambucini, and G.Vinti. „Convergence in Orlicz spaces by
means of the multivariate max-product neural network operators of the
Kantorovich type and applications“. Neural Comput. & Applic. 31 (2019),
5069–5078 (cit. on p. 23).

[CS13a] D. Costarelli and R. Spigler. „Approximation results for neural network
operators activated by sigmoidal functions“. Neural Netw. 44 (2013), 101–106
(cit. on p. 23).

[CS13b] D. Costarelli and R. Spigler. „Multivariate neural network operators with
sigmoidal activation functions“. Neural Netw. 48 (2013), 72–77 (cit. on p. 23).

[CZ07] F. Cucker and D. Zhou. Learning Theory: An Approximation Theory Viewpoint.
Vol. 24. Cambridge Monographs on Applied and Computational Mathemat-
ics. Cambridge: Cambridge University Press, 2007 (cit. on pp. 7, 8).

[Cyb89] G. Cybenko. „Approximation by superpositions of a sigmoidal function“.
Math. Control Signals Syst. 2.4 (1989), 303–314 (cit. on p. 9).

[COJSP17] W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz, and R. Pascanu.
„Sobolev Training for Neural Networks“. Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by I. Guyon,
U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan,
and R. Garnett. 2017, 4278–4287 (cit. on pp. 11, 55).

[DCH21] M. Z. Darestani, A. S. Chaudhari, and R. Heckel. „Measuring Robustness in
Deep Learning Based Compressive Sensing“. Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event. Ed. by M. Meila and T. Zhang. Vol. 139. Proceedings of Machine
Learning Research. PMLR, 2021, 2433–2444 (cit. on p. 50).

[De 01] C. De Boor. A Practical Guide to Splines. Applied mathematical sciences.
Berlin: Springer, 2001 (cit. on pp. 23, 97).

https://doi.org/10.1109/TPAMI.2020.3012955
https://doi.org/10.1109/TPAMI.2020.3012955

104 Bibliography

[Din+20] Q. Ding, G. Chen, X. Zhang, Q. Huang, H. Ji, and H. Gao. „Low-dose CT
with deep learning regularization via proximal forward–backward split-
ting“. Phys. Med. Biol. 65.12 (2020), 125009 (cit. on p. 42).

[Don06] D. L. Donoho. „Compressed Sensing“. IEEE Trans. Inf. Theory 52.4 (2006),
1289–1306 (cit. on p. 3).

[EY18] W. E and B. Yu. „The Deep Ritz Method: A Deep Learning-Based Numerical
Algorithm for Solving Variational Problems“. Commun. Math. Stat. 6.1 (2018),
1–12 (cit. on pp. 2, 10).

[EE04] D. E. Edmunds and W. D. Evans. Hardy Operators, Function Spaces and
Embeddings. Springer Monographs in Mathematics. Berlin: Springer, 2004
(cit. on p. 17).

[ET96] D. E. Edmunds and H. Triebel. Function Spaces, Entropy Numbers, Differen-
tial Operators. Cambridge Tracts in Mathematics. Cambridge: Cambridge
University Press, 1996 (cit. on pp. 2, 16).

[Eps07] C. L. Epstein. Introduction to the mathematics of medical imaging. second.
Philadelphia: SIAM, 2007 (cit. on p. 35).

[Eva99] L. Evans. Partial Differential Equations. Vol. 19. Graduate Studies in Math-
ematics. Providence: American Mathematical Society, 1999 (cit. on pp. 10,
58).

[Fes17] J. A. Fessler. Analytical Tomographic Image Reconstruction Methods (Chapter 3 of
book draft). URL: https://web.eecs.umich.edu/~fessler/book/c-
tomo.pdf. 2017 (cit. on pp. 3, 38, 40).

[FR13] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing.
Applied and Numerical Harmonic Analysis. Basel: Birkhäuser, 2013 (cit. on
p. 3).

[Fun89] K. Funahashi. „On the approximate realization of continuous mappings by
neural networks“. Neural Netw. 2.3 (1989), 183–192 (cit. on p. 9).

[GM76] D. Gabay and B. Mercier. „A dual algorithm for the solution of nonlinear
variational problems via finite element approximation“. Comput. Math. Appl.
2.1 (1976), 17–40 (cit. on p. 35).

[GPRSK21] M. Geist, P. Petersen, M. Raslan, R. Schneider, and G. Kutyniok. „Numerical
solution of the parametric diffusion equation by deep neural networks“. J.
Sci. Comput. 88.1 (2021), 1–37 (cit. on p. 34).

[GGMM21] M. Genzel, I. Gühring, J. Macdonald, and M. März. „Near-Exact Recovery
for Sparse-View CT via Data-Driven Methods“. NeurIPS 2021 workshop on
Deep Learning and Inverse Problems. 2021 (cit. on pp. 4, 5).

[GGMM22] M. Genzel, I. Gühring, J. MacDonald, and M. März. „Near-Exact Recovery
for Tomographic Inverse Problems via Deep Learning“. International Confer-
ence on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA. Ed. by K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu, and
S. Sabato. Vol. 162. Proceedings of Machine Learning Research. PMLR, 2022,
7368–7381 (cit. on pp. 4, 35).

https://web.eecs.umich.edu/~fessler/book/c-tomo.pdf
https://web.eecs.umich.edu/~fessler/book/c-tomo.pdf

Bibliography 105

[GMM22] M. Genzel, J. Macdonald, and M. März. „Solving Inverse Problems With
Deep Neural Networks - Robustness Included“. IEEE Trans. Pattern Anal.
Mach. Intell. (2022). DOI: 10.1109/TPAMI.2022.3148324 (cit. on pp. 36,
42, 43, 54).

[GT98] D. Gilbarg and N. Trudinger. Elliptic Partial Differential Equations of Second
Order. second. Vol. 224. A Series of Comprehensive Studies in Mathematics.
Berlin: Springer, 1998 (cit. on p. 63).

[GOW21a] D. Gilton, G. Ongie, and R. Willett. „Deep Equilibrium Architectures for
Inverse Problems in Imaging“. IEEE Trans. Comput. Imaging 7 (2021), 1123–
1133 (cit. on p. 37).

[GOW21b] D. Gilton, G. Ongie, and R. Willett. „Model Adaptation for Inverse Problems
in Imaging“. IEEE Trans. Comput. Imag. 7 (2021), 661–674 (cit. on p. 50).

[GM75] R. Glowinski and A. Marroco. „Sur l’approximation, par éléments finis
d’ordre un, et la résolution, par pénalisation-dualité d’une classe de prob-
lèmes de Dirichlet non linéaires“. RAIRO Anal. Numer. 9.R2 (1975), 41–76
(cit. on p. 35).

[GL10] K. Gregor and Y. LeCun. „Learning Fast Approximations of Sparse Coding“.
Proceedings of the 27th International Conference on Machine Learning (ICML-
10), June 21-24, 2010, Haifa, Israel. Ed. by J. Fürnkranz and T. Joachims.
Omnipress, 2010, 399–406 (cit. on p. 37).

[Gro15] P. Grohs. Optimally Sparse Data Representations. Harmonic and Applied
Analysis. Basel: Birkhaeuser, 2015, 199–248 (cit. on p. 16).

[GPEB19] P. Grohs, D. Perekrestenko, D. Elbrächter, and H. Bölcskei. „Deep Neural
Network Approximation Theory“. arXiv preprint arXiv:1901.02220 (2019)
(cit. on pp. 2, 10, 12).

[GV21] P. Grohs and F. Voigtlaender. „Proof of the Theory-to-Practice Gap in Deep
Learning via Sampling Complexity bounds for Neural Network Approxi-
mation Spaces“. arXiv preprint arXiv:2104.02746 (2021) (cit. on p. 55).

[GR21] I. Gühring and M. Raslan. „Approximation rates for neural networks with
encodable weights in smoothness spaces“. Neural Netw. 134 (2021), 107–130
(cit. on pp. 4, 5, 7).

[GKP20] I. Gühring, G. Kutyniok, and P. Petersen. „Error bounds for approximations
with deep ReLU neural networks in Ws,p norms“. Anal. Appl. (Singap.) 18.05
(2020), 803–859 (cit. on pp. 4, 5, 7, 12, 63, 64, 84, 97).

[GRK22] I. Gühring, M. Raslan, and G. Kutyniok. „Expressivity of Deep Neural
Networks“. Mathematical Aspects of Deep Learning. Ed. by P. Grohs and G.
Kutyniok. Cambridge: Cambridge University Press, 2022, 149–199 (cit. on
pp. 4, 5, 7).

[GI18] N. J. Guliyev and V. E. Ismailov. „Approximation capability of two hidden
layer feedforward neural networks with fixed weights“. Neurocomputing
316 (2018), 262–269 (cit. on p. 9).

https://doi.org/10.1109/TPAMI.2022.3148324

106 Bibliography

[GI16] N. J. Guliyev and V. E. Ismailov. „A Single Hidden Layer Feedforward
Network with Only One Neuron in the Hidden Layer Can Approximate
Any Univariate Function“. Neural Comput. 28.7 (2016), 1289–1304 (cit. on
pp. 16, 32).

[Ham+18] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock,
and F. Knoll. „Learning a Variational Network for Reconstruction of Accel-
erated MRI Data“. Magn. Reson. Med. 79.6 (2018), 3055–3071 (cit. on p. 37).

[Ham+21] K. Hammernik, J. Schlemper, C. Qin, J. Duan, R. M. Summers, and D.
Rueckert. „Systematic evaluation of iterative deep neural networks for fast
parallel MRI reconstruction with sensitivity-weighted coil combination“.
Magn. Reson. Med. 86.4 (2021), 1859–1872 (cit. on pp. 37, 42, 45, 46).

[HA20] A. Hauptmann and J. Adler. „On the unreasonable effectiveness of CNNs“.
Preprint arXiv:2007.14745. 2020 (cit. on p. 41).

[HWGY21] H. Heaton, S. Wu Fung, A. Gibali, and W. Yin. „Feasibility-based fixed point
networks“. J. Fixed Point Theory Appl. 2021.1 (2021), 1–19 (cit. on p. 37).

[HGE21] C. Heiß, I. Gühring, and M. Eigel. „A neural multilevel method for high-
dimensional parametric PDEs“. NeurIPS 2021 workshop on The Symbiosis of
Deep Learning and Differential Equations. 2021 (cit. on pp. 4, 54).

[Hor91] K. Hornik. „Approximation capabilities of multilayer feedforward net-
works“. Neural Netw. 4.2 (1991), 251–257 (cit. on pp. 9, 11).

[HSW89] K. Hornik, M. Stinchcombe, and H. White. „Multilayer feedforward net-
works are universal approximators“. Neural Netw. 2.5 (1989), 359–366 (cit. on
p. 9).

[JDVRB17] S. Jégou, M. Drozdzal, D. Vázquez, A. Romero, and Y. Bengio. „The One
Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic
Segmentation“. 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, CVPR Workshops 2017, Honolulu, HI, USA, July 21-26, 2017.
IEEE Computer Society, 2017, 1175–1183 (cit. on p. 43).

[JMFU17] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. „Deep Convolutional
Neural Network for Inverse Problems in Imaging“. IEEE Trans. Image Process.
26.9 (2017), 4509–4522 (cit. on p. 41).

[KMY17] E. Kang, J. Min, and J. C. Ye. „A deep convolutional neural network using
directional wavelets for low-dose X-ray CT reconstruction“. Med. Phys. 44.10
(2017), e360–e375 (cit. on p. 41).

[Kat09] H. Katsuura. „Summations Involving Binomial Coefficients“. Coll. Math. J.
40.4 (2009), 275–278 (cit. on p. 71).

[Kei+21] J. A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M. Gastegger, K.-R.
Müller, and A. Tkatchenko. „Combining machine learning and computa-
tional chemistry for predictive insights into chemical systems“. Chem. Rev.
121.16 (2021), 9816–9872 (cit. on pp. 1, 37).

Bibliography 107

[KL20] P. Kidger and T. J. Lyons. „Universal Approximation with Deep Narrow
Networks“. Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual
Event [Graz, Austria]. Ed. by J. D. Abernethy and S. Agarwal. Vol. 125.
Proceedings of Machine Learning Research. PMLR, 2020, 2306–2327 (cit. on
p. 9).

[KB14] D. P. Kingma and J. Ba. „Adam: A Method for Stochastic Optimization“.
Preprint arXiv:1412.6980. 2014 (cit. on p. 41).

[Kno+20] F. Knoll, T. Murrell, A. Sriram, N. Yakubova, J. Zbontar, M. Rabbat, A.
Defazio, M. J. Muckley, D. K. Sodickson, C. L. Zitnick, and M. P. Recht.
„Advancing machine learning for MR image reconstruction with an open
competition: Overview of the 2019 fastMRI challenge“. Magn. Reson. Med.
84.6 (2020), 3054–3070 (cit. on pp. 1, 37, 42).

[Kov+21] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart,
and A. Anandkumar. „Neural Operator: Learning Maps Between Function
Spaces“. arXiv preprint arXiv:2108.08481 (2021) (cit. on pp. 2, 56).

[KPRS22] G. Kutyniok, P. Petersen, M. Raslan, and R. Schneider. „A theoretical anal-
ysis of deep neural networks and parametric PDEs“. Constr. Approx. 55.1
(2022), 73–125 (cit. on pp. 54, 55, 77).

[LMK22] S. Lanthaler, S. Mishra, and G. E. Karniadakis. „Error estimates for Deep-
ONets: a deep learning framework in infinite dimensions“. Trans. Math.
Appl. 6.1 (2022) (cit. on pp. 2, 56).

[LLPS93] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. „Multilayer feedforward
networks with a nonpolynomial activation function can approximate any
function“. Neural Netw. 6.6 (1993), 861–867 (cit. on p. 9).

[Leu+21] J. Leuschner, M. Schmidt, P. S. Ganguly, V. Andriiashen, S. B. Coban, A.
Denker, D. Bauer, A. Hadjifaradji, K. J. Batenburg, P. Maass, and M. van
Eijnatten. „Quantitative Comparison of Deep Learning-Based Image Re-
construction Methods for Low-Dose and Sparse-Angle CT Applications“. J.
Imaging 7.3 (2021) (cit. on pp. 4, 37, 43, 48).

[LTY20] B. Li, S. Tang, and H. Yu. „Better Approximations of High Dimensional
Smooth Functions by Deep Neural Networks with Rectified Power Units“.
Commun. in Comp. Phys. 27 (2020), 379–411 (cit. on pp. 9, 23).

[Lin19] S.-B. Lin. „Generalization and Expressivity for Deep Nets “. IEEE T. Neur.
Net. Lear. 30.5 (2019), 1392–1406 (cit. on p. 23).

[Lit+17] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian,
J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez. „A survey on deep
learning in medical image analysis“. Med. Image Anal. 42 (2017), 60–88 (cit.
on p. 3).

[Liu+20] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. „On the Variance
of the Adaptive Learning Rate and Beyond“. 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020 (cit. on p. 100).

108 Bibliography

[LH19] I. Loshchilov and F. Hutter. „Decoupled Weight Decay Regularization“. 7th
International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019 (cit. on p. 100).

[MP99] V. Maiorov and A. Pinkus. „Lower bounds for approximation by MLP
neural networks“. Neurocomputing 25.1-3 (1999), 81–91 (cit. on p. 9).

[Mal12] S. Mallat. „Group Invariant Scattering“. Commun. Pure Appl. Math. 65.10
(2012), 1331–1398 (cit. on p. 33).

[Mar+19] M. Mardani, E. Gong, J. Y. Cheng, S. S. Vasanawala, G. Zaharchuk, L. Xing,
and J. M. Pauly. „Deep Generative Adversarial Neural Networks for Com-
pressive Sensing MRI“. IEEE Transactions on Medical Imaging 38.1 (2019),
167–179 (cit. on p. 36).

[Mar74] J. Marsden. Elementary Classical Analysis. San Francisco: W. H. Freeman and
Company, 1974 (cit. on p. 61).

[Mha96] H. Mhaskar. „Neural Networks for Optimal Approximation of Smooth and
Analytic Functions“. Neural Comput. 8.1 (1996), 164–177 (cit. on p. 9).

[MM92] H. Mhaskar and C. A. Micchelli. „Approximation by Superposition of Sig-
moidal and Radial Basis Functions“. Adv. Appl. Math. 13.3 (1992), 350–373
(cit. on p. 22).

[MW93] A. A. Minai and R. D. Williams. „On the derivatives of the sigmoid“. Neural
Netw. 6.6 (1993), 845–853 (cit. on p. 97).

[MPCB14] G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio. „On the Number of Linear
Regions of Deep Neural Networks“. Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada. Ed. by Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger. 2014, 2924–
2932 (cit. on p. 65).

[Muc+21] M. J. Muckley, B. Riemenschneider, A. Radmanesh, S. Kim, G. Jeong, J. Ko,
Y. Jun, H. Shin, D. Hwang, M. Mostapha, S. Arberet, D. Nickel, Z. Ramzi,
P. Ciuciu, J.-L. Starck, J. Teuwen, D. Karkalousos, C. Zhang, A. Sriram, Z.
Huang, N. Yakubova, Y. W. Lui, and F. Knoll. „Results of the 2020 fastMRI
Challenge for Machine Learning MR Image Reconstruction“. IEEE Trans.
Med. Imaging 40.9 (2021), 2306–2317 (cit. on pp. 1, 36, 37, 42, 56).

[Nak21] P. Nakkiran. „Towards an Empirical Theory of Deep Learning“. Doctoral
dissertation. Harvard University Graduate School of Arts and Sciences,
2021. URL: https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:
37370110 (cit. on pp. 7, 56).

[Nat80] F. Natterer. „A Sobolev space analysis of picture reconstruction“. SIAM J.
Appl. Math. 39.3 (1980), 402–411 (cit. on pp. 3, 56).

[Nat01] F. Natterer. The Mathematics of Computerized Tomography. Classics in Applied
Mathematics. Philadelphia: Society for Industrial and Applied Mathematics
(SIAM), 2001 (cit. on pp. 3, 56).

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37370110
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37370110

Bibliography 109

[NTMC20] F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi. „Machine Learning
for Molecular Simulation“. Annu. Rev. Phys. Chem. 71.1 (2020), 361–390 (cit.
on p. 1).

[OK19] I. Ohn and Y. Kim. „Smooth function approximation by deep neural net-
works with general activation functions“. Entropy 21.7 (2019), 627 (cit. on
pp. 9, 25).

[Ong+20] G. Ongie, A. Jalal, R. G. Baraniuk, C. A. Metzler, A. G. Dimakis, and R.
Willett. „Deep Learning Techniques for Inverse Problems in Imaging“. IEEE
J. Sel. Areas Inf. Theory 1.1 (2020), 39–56 (cit. on p. 1).

[OPS20] J. A. Opschoor, P. C. Petersen, and C. Schwab. „Deep ReLU networks and
high-order finite element methods“. Anal. Appl. 18.05 (2020), 715–770 (cit. on
p. 11).

[PV18] P. Petersen and F. Voigtländer. „Optimal approximation of piecewise smooth
functions using deep ReLU neural networks“. Neural Netw. 108 (2018), 296–
330 (cit. on pp. 2, 9–14, 25, 33, 70).

[Pin99] A. Pinkus. „Approximation theory of the MLP model in neural networks“.
Acta Numer. 8 (1999), 143–195 (cit. on pp. 53, 54).

[Pou22] J. Pousin. „Least squares formulations for some elliptic second order prob-
lems, feedforward neural network solutions and convergence results“. J.
Comput. Math. Data Sci. 2 (2022), 100023 (cit. on p. 53).

[PW17] P. Putzky and M. Welling. „Recurrent Inference Machines for Solving In-
verse Problems“. Preprint arXiv:1706.04008. 2017 (cit. on p. 99).

[Rad17] J. Radon. „Über die Bestimmung von Funktionen längs gewisser Mannig-
faltigkeiten. Sächsische Gesellschaft der Wissenschaften Math“. Phys. Klasse,
Leipzig 69 (1917), 262–277 (cit. on p. 3).

[RCS20] Z. Ramzi, P. Ciuciu, and J.-L. Starck. „XPDNet for MRI Reconstruction: an
application to the fastMRI 2020 brain challenge“. Preprint arXiv:2010.07290.
2020 (cit. on pp. 42, 43).

[RT18] D. Rolnick and M. Tegmark. „The power of deeper networks for expressing
natural functions“. 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018 (cit. on p. 25).

[RFB15] O. Ronneberger, P. Fischer, and T. Brox. „U-Net: Convolutional Networks for
Biomedical Image Segmentation“. Medical Image Computing and Computer-
Assisted Intervention - MICCAI 2015 - 18th International Conference Munich,
Germany, October 5 - 9, 2015, Proceedings, Part III. Ed. by N. Navab, J. Horneg-
ger, W. M. W. III, and A. F. Frangi. Vol. 9351. Lecture Notes in Computer
Science. Springer, 2015, 234–241 (cit. on pp. 37, 40, 41).

[Rou13] T. Roubíček. Nonlinear Partial Differential Equations with Applications. second.
Vol. 153. International Series of Numerical Mathematics. Basel: Springer
Science+Business Media, 2013 (cit. on pp. 10, 58).

110 Bibliography

[RTML12] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld. „Fast
and Accurate Modeling of Molecular Atomization Energies with Machine
Learning“. Phys. Rev. Lett. 108 (5 2012), 058301 (cit. on p. 10).

[SB18] P. Sadowski and P. Baldi. „Deep Learning in the Natural Sciences: Appli-
cations to Physics“. Braverman Readings in Machine Learning. Key Ideas from
Inception to Current State: International Conference Commemorating the 40th
Anniversary of Emmanuil Braverman’s Decease, Boston, MA, USA, April 28-30,
2017, Invited Talks. Ed. by L. Rozonoer, B. Mirkin, and I. Muchnik. Cham:
Springer International Publishing, 2018, 269–297 (cit. on p. 1).

[Sau+22] H. E. Sauceda, L. E. Gálvez-González, S. Chmiela, L. O. Paz-Borbón, K.-R.
Müller, and A. Tkatchenko. „BIGDML—Towards accurate quantum ma-
chine learning force fields for materials“. Nat. Commun. 13.1 (2022), 3733
(cit. on p. 10).

[Sch+19] J. Schlemper, I. Oksuz, J. R. Clough, J. Duan, A. P. King, J. A. Schnabel,
J. V. Hajnal, and D. Rueckert. „dAUTOMAP: decomposing AUTOMAP to
achieve scalability and enhance performance“. Preprint arXiv:1909.10995.
2019 (cit. on p. 37).

[Sch20] J. Schmidt-Hieber. „Nonparametric regression using deep neural networks
with ReLU activation function“. Ann. Stat. 48.4 (2020), 1875–1897 (cit. on
pp. 9, 19).

[SZ19] C. Schwab and J. Zech. „Deep learning in high dimension: Neural network
expression rates for generalized polynomial chaos expansions in UQ“. Anal.
Appl. 17.1 (2019), 19–55 (cit. on pp. 25, 75).

[SCC18] U. Shaham, A. Cloninger, and R. Coifman. „Provable approximation prop-
erties for deep neural networks“. Appl. Comput. Harmon. Anal. 44.3 (2018),
537–557 (cit. on p. 10).

[SWED20] N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis. „Model-based deep
learning“. Preprint arXiv:2012.08405. 2020 (cit. on p. 50).

[SLBP21] E. Sidky, I. Lorente, J. G. Brankov, and X. Pan. „Do CNNs solve the CT
inverse problem?“ IEEE Trans. Biomed. Eng. 68.6 (2021), 1799–1810 (cit. on
pp. 1, 3, 37, 50).

[Sid+21] E. Sidky, X. Pan, J. Brankov, I. Lorente, S. Armato, K. Drukker, L. Had-
jiyski, N. Petrick, K. Farahani, R. Munbodh, K. Cha, J. Kalpathy-Cramer, B.
Bearce, and AAPM Working Group on Grand challenges. Deep Learning for
Inverse Problems: Sparse-View Computed Tomography Image Reconstruction (DL-
sparse-view CT). URL: https://www.aapm.org/GrandChallenge/DL-
sparse-view-CT/. 2021 (cit. on pp. 3, 36, 43).

[SP21] E. Y. Sidky and X. Pan. „Report on the AAPM deep-learning sparse-view
CT (DL-sparse-view CT) Grand Challenge“. Med. Phys. accepted, preprint
arXiv:2109.09640 (2021) (cit. on pp. 38, 43).

[SS18] J. Sirignano and K. Spiliopoulos. „DGM: A deep learning algorithm for
solving partial differential equations“. J. Comput. Phys. 375 (2018), 1339–1364
(cit. on pp. 2, 11).

https://www.aapm.org/GrandChallenge/DL-sparse-view-CT/
https://www.aapm.org/GrandChallenge/DL-sparse-view-CT/

Bibliography 111

[Sri+20] A. Sriram, J. Zbontar, T. Murrell, A. Defazio, C. L. Zitnick, N. Yakubova,
F. Knoll, and P. M. Johnson. „End-to-End Variational Networks for Acceler-
ated MRI Reconstruction“. Medical Image Computing and Computer Assisted
Intervention - MICCAI 2020 - 23rd International Conference, Lima, Peru, Oc-
tober 4-8, 2020, Proceedings, Part II. Ed. by A. L. Martel, P. Abolmaesumi,
D. Stoyanov, D. Mateus, M. A. Zuluaga, S. K. Zhou, D. Racoceanu, and L.
Joskowicz. Vol. 12262. Lecture Notes in Computer Science. Springer, 2020,
64–73 (cit. on p. 42).

[Ste79] E. Stein. Singular Integrals and Differentiability Properties of Functions. 3rd.
Princeton: Princeton University Press, 1979 (cit. on p. 59).

[SKM07] M. Sugiyama, M. Krauledat, and K.-R. Müller. „Covariate Shift Adaptation
by Importance Weighted Cross Validation“. J. Mach. Learn. Res. 8.35 (2007),
985–1005 (cit. on p. 50).

[Suz19] T. Suzuki. „Adaptivity of deep ReLU network for learning in Besov and
mixed smooth Besov spaces: optimal rate and curse of dimensionality“. 7th
International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019 (cit. on p. 9).

[TLY19] S. Tang, B. Li, and H. Yu. „ChebNet: Efficient and Stable Constructions
of Deep Neural Networks with Rectified Power Units using Chebyshev
Approximations“. arXiv preprint arXiv:1911.05467 (2019) (cit. on p. 9).

[TG21] T. Tirer and R. Giryes. „On the Convergence Rate of Projected Gradient
Descent for a Back-Projection Based Objective“. SIAM J. Imag. Sci. 14.4 (2021),
1504–1531 (cit. on p. 42).

[Tri78] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. Ams-
terdam: North-Holland Publishing Company, 1978 (cit. on pp. 2, 16).

[TL19] Y. Tu and Y. Lin. „Deep neural network compression technique towards
efficient digital signal modulation recognition in edge device“. IEEE Access
7 (2019), 58113–58119 (cit. on p. 34).

[UVL18] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. „Deep Image Prior“. 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE
Computer Society, 2018, 9446–9454 (cit. on p. 2).

[Unk+21a] O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T.
Schütt, A. Tkatchenko, and K.-R. Müller. „Machine learning force fields“.
Chem. Rev. 121.16 (2021), 10142–10186 (cit. on pp. 1, 37).

[Unk+21b] O. T. Unke, M. Bogojeski, M. Gastegger, M. Geiger, T. Smidt, and K.-R.
Müller. „SE(3)-equivariant prediction of molecular wavefunctions and elec-
tronic densities“. Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual. Ed. by M. Ranzato, A. Beygelzimer, Y. N. Dauphin,
P. Liang, and J. W. Vaughan. 2021, 14434–14447 (cit. on p. 10).

[WN19] M. J. Willemink and P. B. Noël. „The evolution of image reconstruction for
CT – from filtered back projection to artificial intelligence“. Eur. Radiol. 29.5
(2019), 2185–2195 (cit. on p. 42).

112 Bibliography

[WMS22] L. Winkler, K.-R. Müller, and H. E. Sauceda. „High-fidelity molecular dy-
namics trajectory reconstruction with bi-directional neural networks“. Mach.
Learn.: Sci. Technol. (2022) (cit. on p. 10).

[WH18] Y. Wu and K. He. „Group Normalization“. Computer Vision - ECCV 2018
- 15th European Conference, Munich, Germany, September 8-14, 2018, Proceed-
ings, Part XIII. Ed. by V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss.
Vol. 11217. Lecture Notes in Computer Science. Springer, 2018, 3–19 (cit. on
p. 99).

[WGCM16] T. Würfl, F. C. Ghesu, V. Christlein, and A. K. Maier. „Deep Learning Com-
puted Tomography“. Medical Image Computing and Computer-Assisted Inter-
vention - MICCAI 2016 - 19th International Conference, Athens, Greece, October
17-21, 2016, Proceedings, Part III. Ed. by S. Ourselin, L. Joskowicz, M. R.
Sabuncu, G. B. Ünal, and W. M. W. III. Vol. 9902. Lecture Notes in Computer
Science. 2016, 432–440 (cit. on p. 100).

[YSLX16] Y. Yang, J. Sun, H. Li, and Z. Xu. „Deep ADMM-Net for Compressive
Sensing MRI“. Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain. Ed. by D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon,
and R. Garnett. 2016, 10–18 (cit. on pp. 37, 42).

[Yar17] D. Yarotsky. „Error bounds for approximations with deep ReLU networks“.
Neural Netw. 94 (2017), 103–114 (cit. on pp. 9, 17, 19, 20, 24, 25, 30, 31, 33, 34,
69, 73, 75, 76, 97).

[Yar18] D. Yarotsky. „Optimal approximation of continuous functions by very deep
ReLU networks“. Conference On Learning Theory, COLT 2018, Stockholm,
Sweden, 6-9 July 2018. Ed. by S. Bubeck, V. Perchet, and P. Rigollet. Vol. 75.
Proceedings of Machine Learning Research. PMLR, 2018, 639–649 (cit. on
p. 32).

[YZ20] D. Yarotsky and A. Zhevnerchuk. „The phase diagram of approximation
rates for deep neural networks“. Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual. Ed. by H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin. 2020 (cit. on p. 32).

[Yeo+21] S.-K. Yeom, P. Seegerer, S. Lapuschkin, A. Binder, S. Wiedemann, K.-R.
Müller, and W. Samek. „Pruning by explaining: A novel criterion for deep
neural network pruning“. Pattern Recognit. 115 (2021), 107899 (cit. on p. 34).

	Title Page
	Preface
	Abstract
	Zusammenfassung in deutscher Sprache
	Acknowledgments

	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	2 Part A: Approximation Theory for Deep Neural Networks
	2.1 Neural Networks: Terminology
	2.2 Lower Bounds
	2.2.1 Encodable Weights and General Activation Functions
	2.2.2 Unconstrained Weights, Fixed Architecture, and ReLU Activation Function

	2.3 Upper Bounds for General Activation Functions in Sobolev Spaces
	2.3.1 Ingredient I: (Approximate) Partition of Unity
	2.3.2 Ingredient II: Approximation of Polynomials
	2.3.3 Main Results Based on Ingredients I & II

	2.4 Discussion
	2.5 Limitations and Future Work

	3 Part B: Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning
	3.1 AAPM Challenge Setup
	3.2 Methodology
	3.3 Results and Analysis
	3.4 Discussion, Limitations, and Future Work

	4 Conclusion and Outlook
	A Proofs for Part A
	A.1 Notation and Auxiliary Results
	A.2 Sobolev Spaces
	A.2.1 Averaged Taylor Polynomial
	A.2.2 Product and Composition Estimates

	A.3 Proof of Theorem 2.10 (Lower Bounds Based on the VC-Dimension)
	A.4 Neural Network Calculus
	A.4.1 Concatenation and Parallelization
	A.4.2 Approximate Monomials and Multiplication

	A.5 Proof of Proposition 2.21 (Upper Bounds)
	A.5.1 Approximate Partition of Unity
	A.5.2 Approximation by Localized Polynomials
	A.5.3 Approximation of Localized Polynomials by Neural Networks
	A.5.4 Putting Everything Together

	A.6 Proof of Theorem 2.22 (Encodability of the Weights)
	A.7 PU-properties of the Activation Functions from Table 2.1

	B Exact AAPM Challenge Setup
	Bibliography

