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It is known that superpositions of ridge functions (single hidden-layer feedfor-
ward neural networks) may give good approximations to certain kinds of multi-
variate functions. It remains unclear, however, how to effectively obtain such
approximations. In this paper, we use ideas from harmonic analysis to attack this
question. We introduce a special admissibility condition for neural activation
functions. The new condition is not satisfied by the sigmoid activation in current
use by the neural networks community; instead, our condition requires that the
neural activation function be oscillatory. Using an admissible neuron we construct
linear transforms which represent quite general functioas a superposition of
ridge functions. We develop

e a continuous transform which satisfies a Parseval-like relation;
e a discrete transform which satisfies frame bounds.

Both transforms represehin a stable and effective way. The discrete transform is
more challenging to construct and involves an interesting new discretization of
time—frequency—direction space in order to obtain frame bounds for functions in
L?(A) whereA is a compact set dR". Ideas underlying these representations are
related to Littlewood—Paley theory, wavelet analysis, and group representation
theory. © 1999 Academic Press

1. INTRODUCTION

Let f(x): R™ — R be a function ofn variables. In this paper, we are interested in
constructing convenient approximations ftausing systems calledeural networksA
single hidden-layer feedforward neural network is the name given to a function
n-variables constructed by the rule

m

fo(X) = E aip((ki, X) — by),

i=1

where them terms in the sum are called neurons; #eand b;, scalars; and thé;,
n-vectors. Each neuron maps a multivariate input R" into a real-valued output by
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composing a simple linear projectian— (k;, X) — b; with a scalar nonlinearity, called
the activation function. Traditionallyy has been given a sigmoid shapét) = e'/(1 +
'), modeled after the activation mechanism of biological neurons. The végtspecify
the “connection strengths” of the inputs to theith neuron; theb, specify activation
thresholds. The use of this model for approximating functions in applied scienc
engineering, and finance is large and growing; for examples, see journals sliEfBEas
Trans. Neural Networks.

From a mathematical point of view, such approximations amount to taking finite line
combinations of atoms from the dictionatyz;qqe = {p((k, X) — b); k € R", b € R}
of elementaryridge functions.As is known [6, 18], any function ofh variables can be
approximated arbitrarily well by such combinations. As far as constructing these com
nations, a frequently discussed approach is the greedy algorithm that, startinffsom
= 0, operates in a stepwise fashion running through stepsl, . . .m; at theith stage
it augments the approximatidp_, by adding a term from the dictionafy g;y4. Which
results in the largest decrease in approximation error, i.e., minirfiizes (f,_; + « -
p((k, X) — b))||_z over all choices ofK, «, b). It is known that wherf ¢ L(D) with
D a compact set, the greedy algorithm converges [15]; it is also known that for a rela:
variant of the greedy algorithm, the convergence rate can be controlled under cer
assumptions [1, 16]. There are, unfortunately, two problems with the conceptual basi
such results.

First, they lack the constructive character which one ordinarily associates with the wi
“algorithm.” In any assumed implementation of minimizifi§ — (f,_, + a - p((k, X)
— b))||_2, one would need to search for a minimum within a discrete collectidnarfd
b. What are the properties of procedures restricted to such collections? Or, more dires
how finely discretized must the collection be so that a search over that collection gi
results similar to a minimization over the continuum? In some sense, the word “algorith
used to mean abstract minimization procedures in the absence of an understanding o
issue is a misnomer.

Second, even if one is willing to forgive the lack of constructivity in such results, or

must still face the lack of stability of the resulting decomposition. An approxima
N

fn(x) = 2 ap(Ck, x) — b)) has coefficients which in no way are continuous functional:
i=1
of f and do not necessarily reflect the size and organizatiomq21].

Our goal in this paper is to apply the concepts and methods of modern harma
analysis to the problem of constructing neural networks. Using techniques develope:
group representations theory and wavelet analysis, we develop two concrete and s
representations of functiorfsas superpositions of ridge functions.

1.1. A Continuous Representation

First, we develop the concept admissible neural activation functiof. R — R.
Unlike traditional sigmoidal neural activation functions which are positive and monoto
increasing, such an admissible activation function is oscillating, taking both positive ¢
negative values. In fact, our condition requires {pia number of vanishing moments
which is proportional to the dimensian so that an admissiblé has zero integral, zero
“average slope,” zero “average curvature,” etc., in high dimensions.
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We show that if one is willing to abandon the traditional sigmoidal neural activatic
function p, which typically has no vanishing moments and is ndtfnand replace it with
an admissible neural activation functiofy then any reasonable functidhnmay be
represented exactly ascantinuoussuperposition from the dictionatyr;ggeiet= { ¥, v

u,xy—b
¢ T'} of ridgeletsy,(x) = a‘l’zlp(%)
b) runs through the sdt = {(a, u, b); a, b € R,a> 0, u € S"" '} with S""* denoting
the unit sphere oR". In short, we establish a continuous reproducing formula

, Where the ridgelet parametgr= (a, u,

f=%f<mwmmmx 1)

for f ¢ L* N L*(R"), wherec,, is a constant which depends only gnand u(dy) =
da/a"*tdudbis a kind of uniform measure dr; for details, see below. We also establish
a Parseval relation

HW=%JKt%WMMl @

Integral representations like (1) have been independently discovered in Murata [22]. Tt
two formulas mean that we have a well-defiremhtinuous Ridgelet transforéi( f)(vy)

= (f, ¢,) taking functions orR" isometrically into functions of the ridgelet parameter
v = (a, u, b).

1.2. Discrete Representation

We next develop somewhat stronger admissibility conditionsfofwhich we call
frameability conditions) and replace this continuous transform with a discrete transfor
Let D be a fixed compact set iR". We construct a special countable $gtC I" such
that everyf ¢ L?(D) has a representation

f=2 a, @)

velg

with equality in theL?(D) sense. This representation is stable in the sense that t
coefficients change continuously under perturbatiorfswdiich are small ir.?(D) norm.
Underlying the construction of such a discrete transform is of course a quasi-Pars
relation, which in this case takes the form

Alfllze = 2 Kf, d)eol’ = Bl f o) (4)

y€ly

Equation (3) follows by use of the standard machinery of frames [7, 10]. Frame machin
also shows that the coefficients, are realizable as bounded linear functionalg f)

having Riesz representeﬁsy(x) € L%(D). These representers are not ridge function:
themselves; but by the convergence of Neumann series underlying the frame operatol
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are entitled to think of them asoleculesmade up of linear combinations of ridge atoms,
where the linear concentrate on atoms with paramegefsear” y.

1.3. Applications

As a result of this work, we are, roughly speaking, in a position to efficiently constru
finite approximations by ridgelets which give good approximations to a given funttior
€ L?(D). Although we do not attempt to go so far in this paper, one can see where th
tools are heading: from the exact series representation (3), one aims to extract a f
linear combination which is a good approximation to the infinite series; once suct
representation is available, one has a stable, mathematically tractable method of
structing approximate representations of functiénsased on systems of neuron-like
elements. We hope to report on this program in a later paper.

1.4. Innovations

Underlying our methods is the inspiration of modern harmonic analysis—ideas like 1
Calder6n reproducing formula and the theory of frames. We shall briefly describe whe
new here—that which is not merely an “automatic” consequence of existing ideas.

First, there is, of course, a general machinery for obtaining continuous reproduc
formulas like (1), via the theory of square-integrable group representations [8, 11]. S
a theory has been applied to develop wavelet-like representations over groups other
the usualax + b group onR"; see [3]. However, the particular geometry of ridge
functions does not allow the identification of the actionlobn ¢ with a linear group
representation (notice that the argumento$ real, while the argument aff, is a vector
in R"). As a consequence, the possibility of a straightforward application of well-knov
results is ruled out. As an example of the difference, our condition for admissibility of
neural activation function for the continuous ridgelet transform is much stronger
requiring aboutn/2 vanishing moments in dimensiar—than the usual condition for
admissibility of the mother wavelet for the continuous wavelet transform, which requir
only one vanishing moment in any dimension.

Second, in constructing frames of ridgelets, we have been guided by the theory
wavelets, which holds that one can turn continuous transforms into discrete expansion
adopting a strategy of discretizing frequency space into dyadic coronae [7, 8]; this g
back to Littlewood—Paley [13]. Our approach indeed uses such a strategy for dealing \
the location and scale variables in thg dictionary. However, in dealing with ridgelets
there is also an issue of discretizing the directional variabthat seems to be a new
element:u must be discretized more finely as the scale becomes finer. The existenct
frame bounds under our discretization shows that we have achieved, in some sense
“right” discretization, and we believe this to be new and of independent interest.

In a discussion section we describe limitations, possible improvements, and poss
directions for further work.

2. THE RIDGELET TRANSFORM

In this section we present results regarding the existence and the properties of
continuous representation (1). The meagufgy) on neuron parameter spalcés defined
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by u(dy) = (da/a""Y)o,dudb, wherar,, is the surface area of the unit sph&¥® * in
dimensionn and du the uniform probability measure 08" *. As usual,f(¢) =

[ e "™*9f(x)dx denotes the Fourier transformfodnd% ( f ) as well. To simplify notation
we will consider only the case of multivariatec R" with n = 2. Finally, we will always
assume thal: R — R belongs to the Schwartz spa@R). Most of what follows holds
under weaker conditions afi but we avoid study of various technicalities in this paper

Derinimion 1. Lety: R — R satisfy the condition

Gk
Ke= | g

dé < . (5)

Theny is called anadmissible neural activation function.

Theorem 1 (Reconstruction).  Suppose that f and EX(R). If ¢ is admissible, then

f=c, J (f, g )dru(dy), ()

where ¢, = (2m) " K, "

Remark 1. In fact, for ¢ ¢ $(R), the admissibility condition (5) is essentially
equivalent to the requirement of vanishing moments:

ftk¢(t)dt20, ke{o, 1,...,[”21] —1}.

This clearly shows the similarity of (5) to the one-dimensional wavelet admissibili
condition [7, p. 24]; however, unlike wavelet theory, the number of necessary vanish
moments grows linearly in the dimension

Remark 2. If p(t) is the sigmoid functione'/(1 + €Y), thenp is not admissible.
Actually no formula like (6) can hold if one uses neurons of the type commonly employ
in the theory of neural networks. Howevef™(t) is an admissible activation function for

n
m = [i] + 1. Hence, sufficiently high derivatives of the functions used in neur:

networks theory do lead to good reconstruction formulas.
We will call the ridge functions, generated by an admissiblea ridgelet.

Proof of Theorem 1. The proof uses the Radon transfoRy defined byP,f(t) =
[ f(tu + Uts)dswiths = (sy, ...,s,_1) € R"TandU* ann X (n — 1) matrix
containing as columns an orthonormal basisfor

X .
With a slight abuse of notation, le,(x) = a‘“%(a) and y(x) = P(—x). Put

W, y(b) = §#Py f(b) and let 1= J (£, ¥,)¥,(X)u(dy) = [ Ya((u, ) — b)w, ,(b)(da/
a"" Yo, dudb. RecallP,f = f(¢u) and, hence, iff € LXR"), P, f € LYR). Then, | =
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I (2P, £)(u, x))(da/a™ ) o, du. Noting that(j,xP,f) € LY(R) and that its
one-dimensional Fourier transform is given W(ag)ﬁ(gu), we have

_1 2 - , da
l=5x f expfi&(u, )H(¢wali(ad)|® v onduds.
If ¢ is real valuedi(—&) = (é); hence,
_1 2 - ) da
| = ;J expfi &u, x)if(éu)al(ad) 1{§>0}F(fndud§_
Then, by Fubini,
1 2 ) d
= f expli &u, X>}f(SU){ f |¢(a§)l2£}14§>o,dgandu
1 A~
T 2m f expfi&u, ) H(EW) K€" " qdéodu
1 ~
= 5. K Ln expfi(x, k}f(k)dk

1 n
= 5 K2m'f(x. =

Treorem 2 (Parseval Relation) Assume & L* N L%R™ and ¢ admissible. Then

115 = Cip'f |(f, w)|Pu(dy).

Proof. With w, ,(b) defined as in the proof of Theorem 1, we then have

) , da
|<f1 lpy>| M(d'}’) = |Wa,u(b)| aTHUndUdb: I,
say. Using Fubini’s theorem for positive functions,
, da , da
Wab)? s ondudb= | el s odu. @)

w, , is integrable, being the convolution between two integrable functions, and belong:
L2(R) sincellw, |l = [ fll1llidll,; its Fourier transform is then well defined awg (&)
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~ R 1
= P5(&)f(£u). By the usual Plancherel theorefnjw, ,(b)Pdb = er W, ,(€)|?d€ and,
hence,

— l f 215 2 da d _ 2 ? 25 Zda d
|_21-rf| (fU)| |‘!’a(§)| aTHO'n udg_zwf{ | (§U)| |‘1’(a§)| ?U” UdE.

£>0}

- da
Since [ |¢/;(a§)|2§ = K,|g""*2 (admissibility), we have

K n
=5 f [ f(6w %" "dédu = K(2m)" | f 2. =

The assumptions dinin the above two theorems are somewhat restrictive, and the ba
formulas can be extended to an even wider class of objects. It is classical to define
Fourier transform first fof ¢ L*(R"™) and only later to extend it to all df? using the fact
thatL® N L? is dense in_2. By a similar density argument, one obtains

ProposiTion1. There is a linear transforndi: L%R") — LT, w(dy)) which is an
L2-isometry and whose restriction td' 0 L? satisfies

R () = (1, .

For this extension, a generalization of the Parseval relationship (2) holds.

ProposiTion2 (Extended Parseval) For all f, g € L%(R"),

() =c, f R ()T Q) () (dy). ®)

We will give the proof in the Appendix. Notice that one need only prove the proper
for a dense subspace bf(R"), i.e.,L* N L%(R").

Relation (8) allows identification of the integmj [ ( f, ¢, u(dy) with f by duality.
In fact, taking the inner product af, | (f, ¥.)¢,u(dy) with any g ¢ L?(R" and
exchanging the order of inner product and integration oyesne obtains

(e[ [ twpwmian]. o) =<, [ (1o vonian = 1.0,

which, by the Riesz theorem, leadsfte= ¢, [ (f, ¢, )i, u(dy) in the prescribed weak
sense.

The theory of wavelets and Fourier analysis contain results of a similar flavor: 1
example, the Fourier inversion theoremliA(R™) can be proven by duality. However,
there exists a more concrete proof of the Fourier inversion theorem. Recall, in fact, 1
if f € L*N L%R") and if we consider the truncated Fourier expansip(¢) =
(9 1¢=k, thenf € LY(R") and||F(fy) — (2m)"f ]| .» — 0 asK — . This argument
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provides an interpretation of the Fourier inversion formula that reassures us of its pract
relevance.

We now give a similar result for the convergence of truncated ridgelet expansions.
eache > 0, definel’, ;= {y = (a,u,b):e=a=¢Yue S beR} CI.

ProposiTion3. Let f € LYR") and{a,} = {(f, ¥,)} (ycr); then for everys > 0,

a1, (y) € LT, p(dy)).
Proof. Notice thata, = (P, f)(b); then

1

da e da
f || (dy) =j [W, . (b)] g1 ondudb= crnllflllf llly g <
Te e

where we have useiiv, [l = Yol flly = a2yl fll,. =
The above proposition shows that for ahg L*(R"), the expression

f=c, f CF, o (dy)

is meaningful, sinceds.} . - is uniformly L™ bounded ovef,. The next theorem, whose
proof is given in the Appendix, makes more precise the meaning of the reproduc
formula.

TreoREM 3. Suppose £ L' N L%(R") and y admissible.

(1) f. € LAR"), and
) |f—fJ, —0ase —0.

3. THE DISCRETE TRANSFORM: FRAMES OF RIDGELETS

The previous section described a class of neurons, the ridgefels {-, such that

(i) any functionf can be reconstructed from the continuous collection of its coefficien
(f, ¥,), and
(i) any function can be decomposed in a continuous superposition of nedions

The purpose of this section is to achieve similar properties using only a discrete se
neuronsl’'y C T

3.1. Generalities about Frames

The theory of frames [7, 27] deals precisely with questions of this kind. In faif,ig
a Hilbert space andd,.} ,cn @ frame, an elemerit€ ¥ is completely characterized by
its coefficients {f, ¢.,)},cn @nd can be reconstructed from them via a simple an
numerically stable algorithm. In addition, the theory provides an algorithm to expasss
a linear combination of the frame elemeigis
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DeriniTion 2. Let# be a Hilbert space and let{} ,cn be a sequence of elements of
#. Then {¢,} ncn IS @ frame if there exist 6< A, B < o such that for any € %,

A5 = 2 IKF, ead®= BIFIZ, 9)

neN

in which caseA andB are calledframe bounds.

Let % be a Hilbert space andg.} ,,c n & frame with bound# andB. Notice thatA| f |2,
= 3 (f, o2 implies that o} ,cn iS @ complete set ifit. A frame {¢,} ¢ iS Said to
be tight if we can také\ = B in Definition 2. Furthermore, if .} ,cn IS @ basis fof¥,
it is called a Riesz basis. Simple examples of frames include orthonormal basis, R
basis, concatenation of several Riesz bases, etc.

The following results are stated without proofs and can be found in Daubechies [7
56] and Young [27, p. 184]. Define the coefficient operdtori¢ — 1%(N) by F(f) =
((f, ®n))nen- Suppose thaF is a bounded operatofikf| = BJ f|). Let F* be the
adjoint of F and letG = F*F be theframe operatorithenA Ild = G =< B Id in the sense
of orders of positive definite operators. Hen@ds invertible and its invers€ ~* satisfies
B !ld = G = A ld. Defined, = G *¢,,; then {&,} ,cn is also a frame (with frame
boundsB~* and A1) and the following holds:

f = Z <f1 ¢n>?€(Pn = E <f, (Pn>?€¢n- (10)
neN neN
Moreover, if f = 3 a,@, is an another decomposition df then X [(f, @)
neN neN

= Y |a,% To rephrase Daubechies, the frame coefficients are the most economical ir
neN

A+B
L? sense. FinallyG = —5 (I = R), where|R| < 1, and soG ! can be computed

>R

k=0

asG?! =

A+B

3.2. Discretization of”

The special geometry of ridgelets imposes differences between the organizatior
ridgelet coefficients and the organization of traditional wavelet coefficients.

With a slight change of notation, we recall thaf = a'/?y(a((u, x) — b)). We are
looking for a countable sdfy and some conditions oty such that the quasi-Parseval
relation (4) holds. Let(f)(y) = (f, ¢,); thenR(f)(y) = (P,f, ap) With i, (1) =
a’2y(a(t — b)). Thus, the information provided by a ridgelet coefficigt(tf )(y) is the
one-dimensional wavelet coefficient &f,f, the Radon transform of. Applying
Plancherel (f)(y) may be expressed as

-1/2

1 A
%(f)()/) = E <Puf1 l1l/a,b> = 2

f Hew bela)explibelde, (1)

w

which corresponds to a one-dimensional integral in the frequency domain (see Fig. .
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In fact, this is the line integral cfff[/a,O, modulated by expp &}, along the line {tu :
t € R}. If, as in the Littlewood—Paley theory [13R = 2' and suppf) C [%, 2], it
emphasizes a certain dyadic segment @' = t = 21"}, In contrast, in the multidi-

)witha> 0 andb ¢

R", the analogous inner produ¢t, ¢, ) corresponds to the average faf,, over the
whole frequency domain, emphasizing the dyadic corcha @ = |¢| = 2071},

Now, the underlying objedt must certainly satisfy specific smoothness conditions i
order for its integrals on dyadic segments to make sense. Equivalently, in the origi
domainf must decay sufficiently rapidly ab. In this paper, we take for our decay
condition thatf be compactly supported so thais band limited. From now on, we will
only consider functions supported on the unit cue= {x € R", |x.. = 1} with
IXl. = max|x|. Thus# = L*(Q).

Guidedlby the Littlewood—Paley theory, we choose to discretize the scale paramet
as {a{)}jzj0 (ag > 1, jo being the coarsest scale) and the location paranietes
{kboag '} i j=j,- Our discretization of the sphere will also depend on the scale: the finer t
scale, the finer the sampling oveF~ 1. At scaleal, our discretization of the sphere,
denoteds;, is ane;-net of S " with &; = €53, 7' for somee, > 0. We assume that
for anyj = j,, the sets; satisfy the followingequidistribution propertytwo constants
k,, K, > 0 must exist s.t. for any ¢ S"* andr such thate; = r = 2,

, X
mensional wavelets case, where the wavelgt = a™" Zw(—

kn(;_)nls {BJr) NS} = K(;) " (12)

I

EZA

\\E, \Z//

’ >

" ‘. \ \ __l I2| Ig,u |2|02 g
1

TN

N \\

bl SN

FIG. 1. Diagram schematically illustrating the ridgelet discretization of the Frequency plane (tw
dimensional case). The circles represent the scdl¢we have chosem, = 2) and the different segments
essentially correspond to the support of different coefficient functionals. There are more segments at finer st
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On the other hand, if = ¢;, then fromB,(r) C B,(¢;) and the above display{ B,(r)
n—-1
N 3} = K,. Furthermore, the number of pointy; satisfies kn<8—> = N
i

2 n—-1
= Kn(g> . Essentially, our condition guarantees tRatis a collection ofN; almost

i o
equispaced points on the sphe88 ', N; being of orderal /9™~ The discrete
collection of ridgelets is then given by

P, (X) = 8 “(ap(u, x) — Kkp), v € Ty ={(@h, u, knap), j =jo, u € 3,k € Z}.  (13)

In our construction, the coarsest scale is determined by the dimension of theRspace

log 2 : _
Definingd as su;{Zk, KeN and zgn } we choosg, s.t.aly™ = d < a2
Finally, we will sete, = 5 o) thateJ = a, U 1/2,

3.3. Main Result

We now introduce a condition that allows us to construct frames.

Derinimion 3. The functionys is calledframeableif ¢ ¢ C*(R) and

o inf 3 |i(a 8Plag’e " > 0;
1=|é=a0 j=0

° |¢7/(§)| = Clg*(1 + |&) ", wherea > nT,'y > 2+ a

This type of condition bears a resemblance to conditions in the theory of wavelet frar
(compare, for example, [7, p. 55]). In addition, this condition looks like a discrete versi
of the admissible neural activation condition described in the previous section.

There are many frameabliz For example, sufficiently high derivatives (larger than
n/2 + 1) of the sigmoid are frameable.

THeorem 4 (Existence of Frames). Létbe frameable. Then there exist§ b 0 so
that for any i < bg, we can find two constants A, B 0 (depending on};, a,, b,, and
n) so that, for any f¢ L%Q) (where Q denotes the unit cube Rf),

AlflE= 2 Kf, y)l? =Bl I3 (14)

v€ly

The theorem is proved in several steps. We first show:

LEmmA 1.

S K- 5 [ 3 [ftew Fliag'e)ae|

y€ly R j=joues;

oy

| T(&u)|2|d(a'e)|%dg] \/ | F(eu) Py’ d(as'é) |2dé.

R J>JOU€§4 R J>Jou62,

(15)
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The argument is a simple application of the analytic principle of the large sieve [2
Note that it presents an alternative to Daubechies’ proof of one-dimensional dyadic af
frames [7]. We first recall an elementary lemma that we state without proof.

Lemma 2. Let f be a real-valued function in'(D, 8] for somes > 0: then,

‘f(8/2) —;J: f(x)dx s;J: £ ()|dx.

Again, let ;(x) be ab?y(abx). The ridgelet coefficient is therf, ¢.,) =
(P, fx4;) (kboag ). For simplicity we denot&; = [P, fxy;|. Applying the lemma gives

1 (wrvoms'
Fj(b)db‘ szf IF(b)|db.
(k—1/2)hay’

al [ k+12na!

‘ F(kbeag)) ~

(k—1/2)ag’

Now, we sum ovek:

S (Pt ksl | (Pt ) b
K 0JR

Sf |(PyFxy) (D] |(Py T () ) (D) db = [Py Fefsllall (P F (1))l
R
Applying Plancherel, we have

. 1 o "
= MLCUCE LY

Sh\/f | T(&w) (ay'¢)[’dé \/J | F(ew)|Yay ¢l ] i(as'e)|2dE.

Hence, if we sum the above expression aver 3,; andj and apply the Cauchy-Schwartz
inequality to the right-hand side, we get the desired resuit.
We then show that there exidt, B’ > 0 s.t. for anyf € L?(Q), we have

AfIE= X f " REwAdag) Pd = B FIZ (16)
=joucy; ¥ =
> f " e Flas A iag o) o = BY| T 17)
IEY i

Thus, if by is chosen small enough, Theorem 4 holds.



HARMONIC ANALYSIS OF NEURAL NETWORKS 209

3.4. Irregular Sampling Theorems

Relationship (16) is, in fact, a special case of a more abstract result which holds
general multivariate entire functions of exponential type. An excellent presentation
entire functions may be found in Boas [4]. In the present secB§(R") denotes the set
of square-integrable functions whose Fourier transform is supported-in [L]" and
Qu(d) = {x, [x — a|.. = d}, the cube of centem and volume (&)". Finally, let
{ Z+} mez» be the grid orR" defined byz,, = 2dm.

log 2 T
THEOREM 5. Suppose F B3(R™ and d < % with 2 an integer; thenva € R",
> min |[F(x)[?=c% >, max |F(x)% (18)
mezn Qa+z(d) mezn Qa+z(d)

where ¢ can be chosen equal @e " — 1.

In fact, a more general version of this result holds for any expgmen0. (In this case,
the constantsl andcy will depend onp.) The requirement that/ 2d must be an integer
simplifies the proof but this assumption may be dropped.

Proof of Theorem 5. First, note that by making use &f,(x) = F(x — a), we only
need to prove the result fa = 0. The proof is then based on the lemma stated belo
which is an extension to the multivariate case of a theorem of Paley and Wiener

nonharmonic Fourier series [27, p. 38]. Then wiB(\,,)| = min |F(x)| (resp.|F(A.,)]|
Qu(d)
= max|F(x)|), we have (using Lemma 3)
Qu(d)

1-pg\?
S FO = 112070 - poFIE= (11 2) 3 FOE,
mezZn Pd mezn

and (1— pg)/(1 + pg) = 2" — 1.
Lemma 3. Let F € B%R") and {A,}mcz» be a sequence oR" such that
log 2
Sup|iAg, — mal., < %; then

mezn

(1= p*m FIE= 2 [FOW*= (1 + po)®m FI5, (19)

mezn
forpy=€9—1<1.
Proof of Lemma 3. The Polya—Plancherel theorem (see [25, p. 116]) gives that

2 [F(mm)|> = =[5

mezn

Let k denote the usual multi-index{, . .., k,) and let|lk| = k; + - - + k,, k! = k!
-k andx = Xk - - - xk For anyk, 9%F is an entire function of typer. Moreover,
Bernstein’s inequality give$d“F|, = |F|l,; see [4, p. 211] for a proof. Sinde is an
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entire function of exponential typd; is equal to its absolutely convergent Taylor
expansion. Letting be a constant to be specified below, we have

ki
FOw) — Fmm) = 3 0™ (o e

k=1
9F(mm) s

=2 T()\m— m)k@-

k=1
Applying Cauchy—Schwarz and summing over we get

O"F(mm) |2 P i\k\SZIK\
S [F) - Fmmf= 3 3| k.(?\k\” 5! ;?”

mezn mezn [k|=1 ’ k=1
E 7n||F||2 E dz\klsz\k\
- k! s k!
k=1 k=1

— (e — 1)(e - 1),

1
We chooses® = g fra= e"d — 1 < 1, then

2 [FOw) = F(mm)” = pgm I3

mezn

and, by the triangle inequality, the expected result follows.

Let w be a measure oR"; u will be calledd-uniformif there exista, 8 > 0 such that
a = u(Q, (d))/(2d)" = B. The following result is completely equivalent to the previous
theorem.

log 2 T
CoroLLARY 1. Fixd < % with 2gan integer. Let  BY{R") and u be a d-uniform

measure with bounds, 8. Then
2 2 B 2
acdlFIF= | |Fldu = ¢, IFlz (20)

3.5. Proof of the Main Result

We notice that the frameability condition implies that

@

o]

- Itlf(ao§)|

n—-1
1 % e
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and

(ii)

sup 2, [(abé)|* < =,

1=[¢=ao =0

and, respectively, (i') and (ii'), wheng(é) is replaced by&ii(&).
For any measurable sét let u,, be the measure defined as

py(A) = > f |¥(a5'€) [PLa(Eu) dE.

j=jou€s;

Similarly, we can defing.), by changingi«(¢) into &jx(&). Then,

> J | F(ew[Ain(agé) Pdé = f 17 2dp,

=joucy;

and likewise foru,,.

ProposiTion4.  If ¢ is frameable u,, and w,, are d-uniform and therefore there exist
A’, B > 0s.t.(16)—(17)hold.

We only give proof for the measuie,. The proof foru;, is exactly the same. Letu
be the standard polar form &f In this section, we will denote b, (r, 8) the sets defined
by A(r, 8) ={y=p'u,0=p" — p=r,|u — u| = 8} These sets are truncated
cones. The proof uses the technical Lemma 4.

Lemma 4. For  frameable,

d d
0 < inf (Ax(d, —)) =su (Ax<d,—)) <
wima 2Ix] et 2IK) ) =

[Ix|[=d

and respectively fop,, .

Proof. To simplify the notation, we will use for ||x| andu for x/|x||. Let j, be
defined byag Ux719 = d/ip < agay 719, Hence, ifj = j,, Ve € {—1, 1}, the
equidistribution property(12) implies that

aéjfjo) n-1 agj—jo)d n-1
kn< p ) s|{Bgu(d/2p)02,}|sKn< ) .
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We have

wy(AL(d, d/2p)) = > J |{L(aajf)|21Ax(d,d/2p)(§u)d§

j=jo=,u€z;

=2 kn(ag md)n 1 f |(a0')|"dé

=jx p p=lé=p+d
. n—-1 ] a_j/ —ix 2
> k,(agd)"* I¢l V@' )" o % | dé.
%0 ‘afja ]x§ n-1
p=|é=p+d p =o 190 0

Now, since by assumption} < p, we havev|¢| € [p, p + d], dagU°+1) = |ag )¢
= 2dag’e. We recall thatday Yo"V = 1. Therefore,

. _ (a7 &))?
my(Ax(d, d/2p)) = ky(ap"d)""2d inf > ||¢—JO§|§)Z|L

day, 1" <|g=2dg,” /=0

= k,(a"d)"2d inf 2 92" |

1s\§|sao | o' §|n v

Similarly, we have

Itlf(ao o
2 J’ |‘lf(ao §)|21Ax(dd/20)(§u)d§< K (aojod)n 20 12d sup E | §|n 1
J=ixues; da‘;”“”)s|g|szdao i'’=0 aO
2
= Kn(a,"d)"2""2d sup > "”(a‘) f)|1
1<‘f\<ao jez §|

We finally consider the case of this s.t.j, = j < j,. We recall that in this case, we have
{B.u(d/2p) N 3} = K, and thus

> f |9(80'€) [Py a2 (EU)DE = K, f > (el ag¢)|?

josj<jxUES; p=lé=p+d jo=j<ijx

=K2d sup X |#(@e)?

dg, 1" V'<[¢]=2dg, >0

=K.2d sup D, [(@d

1=|¢=ao >0

The lemma follows. =

Proof of Proposition 4. Now, we recall that &} .z is the grid onR" defined by
z,, = 2dmand we show that sup,(Q,.(d)) < <« and that infu,(Q,,(d)) > 0.
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Again, we shall use the polar coordinates, izg,= p, Uy FOrm # 0, letz; bep,u,
with pp,, = p,, — d/2. Then, we have that,, (d, d/2p;,) = {p'U’ s.t.[p’ — p,| = d/2,
[u" = uyl| = d/2p;} C B, (d) C Q, (d). To see the first inclusion, we can check that
lp'u" = polmll> = (0" — pm)? + p'pullu’ — U.I%. Then we use the fact that/p),, =
2 andp,/pin = 3 to prove the inclusion.

For m # 0, Iet {x(m)} 1=j=y, With ||x(m)|| = d st Q,(d) C Ujj—y Ay M4,
d/2||x(m>||) and T, ,, be the minimum number ofs such that the above |nclu3|on is
satisfied. By rescaling, we see that the numigrs, are independent af. Moreover, it
is easy to check that & is chosen small enough, then any &efd, d/ 2||x||) (where again
|Ix|| = d) contains a ball of radiu8. (Although we do not prove it heré,may be chosen
equal to d/2.) Therefore, the number§, , are bounded above and we Iaf,

= supT, . It follows that for allm # 0 (m ¢ Z"), we have
m#0

. d ,
0 < inf Mw( Ax<d, m)) = P«w(AzT’.(dv d/2p)) = Mw(QzT.(d))

X|I=d

d
= Tysupu 8a. 5g) ) <

Finally, we need to prove the result for the cuQg(d). In order to do so, we need to
establish two last estimates:

py(Bo(d) = X [3| |¥(ag'é)|?dé

i=io {lg/=d}

= kay 0" > li(agie)|2dé

{lél=d} j=jo

|¥(a0"a,"8)|”

=k, f ENEAEDY
{lg[=d}

i’=0

|ih(ag" ag ) [?
anf | *J0§|n 12 ﬁdg
{dleo=|él=d} % lag” @y "t

(@, a,¢)|?

= and(l - 1/a0)(dag(j°+l))”‘1 inf E W
0

d66(10+l)i‘§‘5d86]u i'=0

Repeating the argument of Lemma 4 finally gives

2
py(Bo(d)) = k2d(1 — 1/ag)(dag ™)t inf > V(2o §)|
ls\§|saol>o ’aO é‘
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After similar calculations, we can prove that

el

wy(Bo(d)) = K,2d(da,™)"* sup > Tadg T

da&uwl)s‘glsda‘;in i’=0

Again let {x;} 1 =j—; with [[x|| = d s.t. Qp(d) C U;—;—3A,(d, d/2]xj{)) U By(d) andT?
be the minimum number gfs needed. We then have

d
0 < lB(@) = 1l Quld) = (Bl + T2 supy( A, 51| < =

IX|I=d

This completes the proof of Proposition 4m

Although we do not prove it here, we may replace the frameability condition &
one slightly weaker. For any traditional one-dimensional wavelewvhich satisfies
the sufficient conditions listed in Daubechies [7, pp. 68—69], defineia §(¢) =
sgnE)| &M 1'2(1 + &) (" D4%(&); then Theorem 4 holds for suchya

4. DISCUSSION

4.1. Quantitative Improvements

Our goal in this paper has been merely to provide a qualitative result concerning
existence of frames of ridgelets. However, quantitative refinements will undoubtedly
important for practical applications.

The coefficientsa,, in a frame expansion may be computed via a Neumann seri
expansion for the frame operator; see Daubechies [7]. For computational purposes
closer the ratio of the upper and lower frame bounds to 1, the fewer terms will be nee
in the Neumann series to compute a dual element within an accuraey Tdfus for
computational purposes, it may be desirable to have good control of the frames bo
ratio. Of course, the proof presented in Section 3 provides only crude estimates for
upper bound of the frame bound ratio. The interest of this method is that it uses gen
ideas, stated in Section 3.4, which may be applied in a variety of different settings. 1
author is confident that further detailed studies will allow proof of versions of Theoremn
with tighter bounds. Such refinements are beyond the scope of the present study.

The redundancy of the frame that one can construct by this strategy depends heavil
the quality of the underlying “quasi-uniform” sampling of the sphere at each gcalee
construction of quasi-uniform discrete point sets on spheres has received considel
attention in the literature; see Sloane and Conway [5] and additional references give
the bibliography. Quantitative improvements of our results would follow from applyin
some of the known results obtained in that field.

Another area for investigation has to do with rapid calculation of groups of coefficien
Note that if the set&,; for j = j, present some symmetries, it may not be necessary
computeys, for all y € I'y; many dual elements would simply be translations, rotation:
and rescalings of each other. This type of relationship would be important to pursue
practical applications.
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4.2. Finite Approximations

The frame dictionarg - = {4, ¥ € Iy} may be used for constructing approxima-
tions of certain kinds of multivariate functions. It would be interesting to know th
“approximation space” associated to this frame, that is, the collection of multivaric
functionsf obeying

[f—fulz=CN™, (21)

wherefy is an appropriately chosen superposition of dictionary elements

fu= > Aty (22)

i=1

Based on obvious analogies with the orthogonal basis case, one naturally expects
functionsf of this type can be characterized by their frame coefficients, saying (21)
possible if, and only if, the frame coefficientsc{} ., belong to the Lorentz weak
spacel, .., withr = (1/p — %)+. Work to establish those conditions under which the
above would hold is in progress.

It would also be interesting to establish results which state that (21) is equivalent t
weak IP condition on the frame coefficients even when the approximant (22) is n
restricted to using only € I'y. If one could establish that any continuous choigeg
€ T would still only lead tof with weak-P conditions on frame coefficients, then one
would know that the frame system is really an effective way of obtaining high-quali
nonlinear approximations.

APPENDIX

Proof of Proposition 2. Letf, g € L* N L? then we can write

~ . d
f RO (VR(Q) (y)p(dy) = f (Parf, Pax0Q) aT?landu= l.
Applying Plancherel,
1 = = da
= 27Tf <¢’a*fi l//a*g> FL odu
1 (. . A , da
— - | fewgewai@al o7 oduds

and, by Fubini, we obtain the desired resulm
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x|

1 n/2
Proof of Theorem 3. Step Letting ¢,(x) = <ﬁ) exp{— N

} and definingf 2
as

fg = Cll/ f <f*d)/\! lpy>l/jy“’(d'y);
e

we start proving that? € L%(R"). Notice thatP ( fx¢,) = P, fxP b, andP,,(t) =
1/(2mw\)Y 2exp{—t?/ 2A}. Now

—_ . A
FP,1PG)(E) = (T Pub)(§) = Tewexp| — 5 &

Repeating the argument in the proof of Theorem 1, we obtain

n=nf ] S esrfefisu o -5 o

el A da e-1g |~ dt . .
Note that foré # 0, we have] |¢/(a§)|2§ = |§|”’1fg‘§‘ 4 |4;(t)|2t—n (which we will

abbreviate a&,/2|£|""*c,(|£])) andc,(|&]) 1 1 ase — 0. After the change of variable
k = |&u, we obtain

AJKII? A
= sk, [ efite 0 e amptaoa,

which allows the interpretation of? as the “conjugate” Fourier transform of drf
element and therefore the conclusith € L%(R").

Step 2. We aim to prove thaf > — f_ pointwise and inL*(R"). The dominated
convergence theorem leads to

. A - .
c.(kDRexp{ — 5 IKF| ek in LR ask —o.

Then by the Fourier transform isometry, we hate— (2m) "F(c.f) in L%(RM).
It remains to be proved that this limit, which we will abbreviate wigh, is
indeedf:
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1£300 — £.00] = ¢ f (Fedon, 1) — (F, ) pa(cy)

et ~ da
= cysupli ] [ | PP, — Pl g
& -1

yel's

I\

~1/2 o ~ da
ce Al el Py FiPudy = Puflls gaes ondu
e S

~u2 -+ da
=ce e | el | lIPuf#Puby = Puflhondu.

g1
Then for a fixedu, ||P,f+P,b, — P,f|; — 0 asA — 0 and

Hpuf*Pu(b)\ - Puf Hl = Hpuf ”1 + ”Pu f*Pu¢A||l

= 2|Pyf{ly= 2| fl..

Thus by the dominated convergence theorém,4|P, f+P,p, — P, f|,o0,du — 0.

From [f2(x) — f.(9)] = 8(&)llyl..¥lly Se-illPuf*Pydy — Pyflio.du, we obtain
|f2 — f,|l. — 0 asA — 0. Note that the convergence is @(R") as the functions are
continuous.

Finally, we getf_ = g, and, thereforef, is in L%(R") by completeness.

To show that|f, — f|l, — 0 ase — 0, it is necessary and sufficient to show thﬁ‘g
= il =0,

I, = f1I5= f | F0OP(L — c.(IkI)’dk.
Recalling that 0= ¢, = 1 and thatc, 7 1 ase — 0, the convergence follows.m

ACKNOWLEDGMENTS

| thank David Donoho for serving as my adviser and suggesting this topic. It is a pleasure to acknowle
conversations with Ytzhak Katznelson and lain Johnstone. Thanks to the referees, whose helpful sugge:
have very much improved the clarity of the argument. This work was partially supported by NSF DMS-¢
05151, AFOSR MURI-F49620-96-1-0028, and a fellowship from the D.R.E.T. (French Authority). These rest
were briefly described at the Montreal meeting on Spline Functions and the Theory of Wavelets, March 1

REFERENCES

1. A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal funtiEiBf, Trans.
Inform. Theory39 (1993), 930-945.

2. A. Benveniste and Q. Zhang, Wavelet netwolEEE Trans. Neural Network3 (1992), 889—-898.



218 EMMANUEL J. CANDES

3

. D. Bernier and K. F. Taylor, Wavelets from square-integrable representaBbhis| J. Math. Anal27

(1996), 594—608.

4. R. P. Boas, Jr., “Entire Functions,” Academic Press, New York, 1952.

. J. H. Conway and N. J. A. Sloane, “Sphere Packings, Lattices and Groups,” Springer-Verlag, New Y

1988.

. G. Cybenko, Approximation by superpositions of a sigmoidal functidath. Control Signals Systen2s

(1989), 303-314.

7. 1. Daubechies, “Ten Lectures on Wavelets,” SIAM, Philadelphia, 1992.
8. |. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expadsias). Phys27 (1986),

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.
22.

23.

24.

25.

26.

27

1271-1283.

. D. L. Donoho, Unconditional bases are optimal bases for data compression and for statistical estima

Appl. Comput. Harmon. Anall (1993), 100-115.

R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier S@nass. Amer. Math. So@2 (1952),
341-366.

M. Duflo and C. C. Moore, On the regular representation of a nonunimodular locally compact $roup
Funct. Anal.21 (1976), 209-243.

H. G. Feichtinger and K. Gréchenig, A unified approach to atomic decompositions via integrable gr
representationsn “Function Spaces and Applications (Lund, 1986),” Lecture Notes in Mathematics, Vo
1302, Springer, Berlin/New York, 1988.

M. Frazier, B. Jawerth, and G. Weiss, Littlewood theory and the study of function spatid§F-CBMS
Regional Conf. Ser. in Mathematics,” Vol. 79, Amer. Math. Soc., Providence, RI, 1991.

M. Holschneider, Inverse Radon transforms through inverse wavelet transfioverse Problem3 (1991),
853-861.

L. K. Jones, On a conjecture of Huber concerning the convergence of projection pursuit reglassion.
Statist.15 (1987), 880—-882.

L. K. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for proje
pursuit regression and neural network trainiAgn. Statist20 (1992), 608—-613.

Y. Katznelson, “An Introduction to Harmonic Analysis,” Wiley, New York, 1968.

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, Multilayer feedforward networks with a nonpolynomi
activation function can approximate any functiddgeural Networks (1993), 861—-867.

S. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionafi#s: Trans. Signal Process.
41 (1993), 3397-3415.

Y. Meyer, “Wavelets and Operators,” Cambridge Univ. Press, Cambridge, UK, 1992.
H. L. Montgomery, The analytic principle of the large sieBell. Amer. Math. Soc84 (1978), 547-567.

N. Murata, An integral representation of functions using three-layered networks and their approxima
bounds,Neural Networks® (1996), 947-956.

Y. C. Pati and P. S. Krishnaprasad, Analysis and synthesis of feedforward neural networks using dis
affine wavelet transformationt£EE Trans. Neural Network4 (1993), 73—85.

F. Peyrin, M. Zaim, and R. Goutte, Construction of wavelet decompositions for tomographic ifhages
Math. Imaging Visior8 (1993), 105-122.

M. Plancherel and G. Pdlya, Fonctions entieres et intégrales de Fourier muGipfesyent. Math. Hel10
(1938), 110-163.

G. Wagner, On a new method for constructing good point sets on spb&egte Comput. Geor.(1993),
111-129.

. R. M. Young, “An Introduction to Nonharmonic Fourier Series,” Academic Press, New York, 1980.



	1. INTRODUCTION
	2. THE RIDGELET TRANSFORM
	3. THE DISCRETE TRANSFORM: FRAMES OF RIDGELETS
	FIG. 1

	4. DISCUSSION
	APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

