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It is known that superpositions of ridge functions (single hidden-layer feedfor-
ward neural networks) may give good approximations to certain kinds of multi-
variate functions. It remains unclear, however, how to effectively obtain such
approximations. In this paper, we use ideas from harmonic analysis to attack this
question. We introduce a special admissibility condition for neural activation
functions. The new condition is not satisfied by the sigmoid activation in current
use by the neural networks community; instead, our condition requires that the
neural activation function be oscillatory. Using an admissible neuron we construct
linear transforms which represent quite general functionsf as a superposition of
ridge functions. We develop

● a continuous transform which satisfies a Parseval-like relation;
● a discrete transform which satisfies frame bounds.

Both transforms representf in a stable and effective way. The discrete transform is
more challenging to construct and involves an interesting new discretization of
time–frequency–direction space in order to obtain frame bounds for functions in
L2( A) whereA is a compact set ofRn. Ideas underlying these representations are
related to Littlewood–Paley theory, wavelet analysis, and group representation
theory. © 1999 Academic Press

1. INTRODUCTION

Let f( x): Rn 3 R be a function ofn variables. In this paper, we are interested in
constructing convenient approximations tof using systems calledneural networks.A
single hidden-layer feedforward neural network is the name given to a function of
n-variables constructed by the rule

fm~ x! 5 O
i51

m

a ir~^ki, x& 2 bi!,

where them terms in the sum are called neurons; thea i and bi, scalars; and theki,
n-vectors. Each neuron maps a multivariate inputx { Rn into a real-valued output by
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composing a simple linear projectionx3 ^ki, x& 2 bi with a scalar nonlinearityr, called
the activation function. Traditionally,r has been given a sigmoid shape,r(t) 5 et/(1 1
et), modeled after the activation mechanism of biological neurons. The vectorski specify
the “connection strengths” of then inputs to thei th neuron; thebi specify activation
thresholds. The use of this model for approximating functions in applied sciences,
engineering, and finance is large and growing; for examples, see journals such asIEEE
Trans. Neural Networks.

From a mathematical point of view, such approximations amount to taking finite linear
combinations of atoms from the dictionary$Ridge 5 { r(^k, x& 2 b); k { Rn, b { R}
of elementaryridge functions.As is known [6, 18], any function ofn variables can be
approximated arbitrarily well by such combinations. As far as constructing these combi-
nations, a frequently discussed approach is the greedy algorithm that, starting fromf0( x)
5 0, operates in a stepwise fashion running through stepsi 5 1, . . . m; at thei th stage
it augments the approximationfi21 by adding a term from the dictionary$Ridge which
results in the largest decrease in approximation error, i.e., minimizes\ f 2 ( fi21 1 a z

r(^k, x& 2 b))\L2 over all choices of (k, a, b). It is known that whenf { L2(D) with
D a compact set, the greedy algorithm converges [15]; it is also known that for a relaxed
variant of the greedy algorithm, the convergence rate can be controlled under certain
assumptions [1, 16]. There are, unfortunately, two problems with the conceptual basis of
such results.

First, they lack the constructive character which one ordinarily associates with the word
“algorithm.” In any assumed implementation of minimizing\ f 2 ( fi21 1 a z r(^k, x&
2 b))\L2 , one would need to search for a minimum within a discrete collection ofk and
b. What are the properties of procedures restricted to such collections? Or, more directly,
how finely discretized must the collection be so that a search over that collection gives
results similar to a minimization over the continuum? In some sense, the word “algorithm”
used to mean abstract minimization procedures in the absence of an understanding of this
issue is a misnomer.

Second, even if one is willing to forgive the lack of constructivity in such results, one
must still face the lack of stability of the resulting decomposition. An approximant

fN~x! 5 O
i51

N

air~^ki, x& 2 bi! has coefficients which in no way are continuous functionals

of f and do not necessarily reflect the size and organizations off [20].
Our goal in this paper is to apply the concepts and methods of modern harmonic

analysis to the problem of constructing neural networks. Using techniques developed in
group representations theory and wavelet analysis, we develop two concrete and stable
representations of functionsf as superpositions of ridge functions.

1.1. A Continuous Representation

First, we develop the concept ofadmissible neural activation functionc: R 3 R.
Unlike traditional sigmoidal neural activation functions which are positive and monotone
increasing, such an admissible activation function is oscillating, taking both positive and
negative values. In fact, our condition requires forc a number of vanishing moments
which is proportional to the dimensionn, so that an admissiblec has zero integral, zero
“average slope,” zero “average curvature,” etc., in high dimensions.
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We show that if one is willing to abandon the traditional sigmoidal neural activation
functionr, which typically has no vanishing moments and is not inL2, and replace it with
an admissible neural activation functionc, then any reasonable functionf may be
represented exactly as acontinuoussuperposition from the dictionary$Ridgelet5 { cg: g

{ G} of ridgeletscg~x! 5 a21/ 2cS^u, x& 2 b

a D, where the ridgelet parameterg 5 (a, u,

b) runs through the setG [ {(a , u, b); a, b { R, a . 0, u { Sn21} with Sn21 denoting
the unit sphere ofRn. In short, we establish a continuous reproducing formula

f 5 cc E ^ f, cg&cgm~dg!, (1)

for f { L1 ù L2(Rn), wherecc is a constant which depends only onc and m(dg) }
da/an11dudb is a kind of uniform measure onG; for details, see below. We also establish
a Parseval relation

\ f \2 5 cc E u^ f, cg&u2m~dg!. (2)

Integral representations like (1) have been independently discovered in Murata [22]. These
two formulas mean that we have a well-definedcontinuous Ridgelet transform5( f )(g)
5 ^ f, cg& taking functions onRn isometrically into functions of the ridgelet parameter
g 5 (a, u, b).

1.2. Discrete Representation

We next develop somewhat stronger admissibility conditions onc (which we call
frameabilityconditions) and replace this continuous transform with a discrete transform.
Let D be a fixed compact set inRn. We construct a special countable setGd , G such
that everyf { L2(D) has a representation

f 5 O
g{Gd

agcg, (3)

with equality in theL2(D) sense. This representation is stable in the sense that the
coefficients change continuously under perturbations off which are small inL2(D) norm.
Underlying the construction of such a discrete transform is of course a quasi-Parseval
relation, which in this case takes the form

A\ f \L2~D!
2 # O

g{Gd

u^ f, cg&L2~D!u2 # B\ f \L2~D!
2 . (4)

Equation (3) follows by use of the standard machinery of frames [7, 10]. Frame machinery
also shows that the coefficientsag are realizable as bounded linear functionalsag( f )
having Riesz representersc̃g( x) { L2(D). These representers are not ridge functions
themselves; but by the convergence of Neumann series underlying the frame operator, we
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are entitled to think of them asmoleculesmade up of linear combinations of ridge atoms,
where the linear concentrate on atoms with parametersg9 “near” g.

1.3. Applications

As a result of this work, we are, roughly speaking, in a position to efficiently construct
finite approximations by ridgelets which give good approximations to a given functionf
{ L2(D). Although we do not attempt to go so far in this paper, one can see where these
tools are heading: from the exact series representation (3), one aims to extract a finite
linear combination which is a good approximation to the infinite series; once such a
representation is available, one has a stable, mathematically tractable method of con-
structing approximate representations of functionsf based on systems of neuron-like
elements. We hope to report on this program in a later paper.

1.4. Innovations

Underlying our methods is the inspiration of modern harmonic analysis—ideas like the
Calderón reproducing formula and the theory of frames. We shall briefly describe what is
new here—that which is not merely an “automatic” consequence of existing ideas.

First, there is, of course, a general machinery for obtaining continuous reproducing
formulas like (1), via the theory of square-integrable group representations [8, 11]. Such
a theory has been applied to develop wavelet-like representations over groups other than
the usualax 1 b group onRn; see [3]. However, the particular geometry of ridge
functions does not allow the identification of the action ofG on c with a linear group
representation (notice that the argument ofc is real, while the argument ofcg is a vector
in Rn). As a consequence, the possibility of a straightforward application of well-known
results is ruled out. As an example of the difference, our condition for admissibility of a
neural activation function for the continuous ridgelet transform is much stronger—
requiring aboutn/ 2 vanishing moments in dimensionn—than the usual condition for
admissibility of the mother wavelet for the continuous wavelet transform, which requires
only one vanishing moment in any dimension.

Second, in constructing frames of ridgelets, we have been guided by the theory of
wavelets, which holds that one can turn continuous transforms into discrete expansions by
adopting a strategy of discretizing frequency space into dyadic coronae [7, 8]; this goes
back to Littlewood–Paley [13]. Our approach indeed uses such a strategy for dealing with
the location and scale variables in theGd dictionary. However, in dealing with ridgelets
there is also an issue of discretizing the directional variableu that seems to be a new
element:u must be discretized more finely as the scale becomes finer. The existence of
frame bounds under our discretization shows that we have achieved, in some sense, the
“right” discretization, and we believe this to be new and of independent interest.

In a discussion section we describe limitations, possible improvements, and possible
directions for further work.

2. THE RIDGELET TRANSFORM

In this section we present results regarding the existence and the properties of the
continuous representation (1). The measurem(dg) on neuron parameter spaceG is defined
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by m(dg) 5 (da/an11)sndudb, wheresn is the surface area of the unit sphereSn21 in
dimension n and du the uniform probability measure onSn21. As usual, f̂(j) 5

* e2i ^x,j&f( x)dx denotes the Fourier transform off and^( f ) as well. To simplify notation
we will consider only the case of multivariatex { Rn with n $ 2. Finally, we will always
assume thatc: R 3 R belongs to the Schwartz space6(R). Most of what follows holds
under weaker conditions onc but we avoid study of various technicalities in this paper.

DEFINITION 1. Let c: R 3 R satisfy the condition

Kc 5 E uĉ~j!u2

ujun dj , `. (5)

Thenc is called anadmissible neural activation function.

THEOREM 1 (Reconstruction). Suppose that f and fˆ { L1(Rn). If c is admissible, then

f 5 cc E ^ f, cg&cgm~dg!, (6)

where cc 5 (2p)2(n21)Kc
21.

Remark 1. In fact, for c { 6(R), the admissibility condition (5) is essentially
equivalent to the requirement of vanishing moments:

E tkc~t!dt 5 0, k { H0, 1, . . . ,Fn 1 1

2 G 2 1J .

This clearly shows the similarity of (5) to the one-dimensional wavelet admissibility
condition [7, p. 24]; however, unlike wavelet theory, the number of necessary vanishing
moments grows linearly in the dimensionn.

Remark 2. If r(t) is the sigmoid functionet/(1 1 et), then r is not admissible.
Actually no formula like (6) can hold if one uses neurons of the type commonly employed
in the theory of neural networks. However,r(m)(t) is an admissible activation function for

m $ Fn

2G 1 1. Hence, sufficiently high derivatives of the functions used in neural

networks theory do lead to good reconstruction formulas.
We will call the ridge functioncg generated by an admissiblec a ridgelet.

Proof of Theorem 1. The proof uses the Radon transformPu defined byPu f(t) 5

* f(tu 1 U's)ds with s 5 (s1, . . . , sn21) { Rn21 and U' an n 3 (n 2 1) matrix
containing as columns an orthonormal basis foru'.

With a slight abuse of notation, letca~x! 5 a21/ 2cSx

aD and c̃( x) 5 c(2x). Put

wa,u(b) 5 c̃apPu f(b) and let I5 * ^ f, cg&cg( x)m(dg) 5 * ca(^u, x& 2 b)wa,u(b)(da/

an11)sndudb. RecallPu f̂ 5 f̂~ju! and, hence, iff̂ { L1~Rn!, Pu f̂ { L1~R!. Then, I 5
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* cap(c̃apPu f )(^u, x&)(da/an11)sndu. Noting thatcap(c̃apPu f ) { L1(R) and that its
one-dimensional Fourier transform is given byauĉ(aj)u2f̂(ju), we have

I 5
1

2p E exp$ij^u, x&% f̂~ju!auĉ~aj!u2
da

an11 sndudj.

If c is real valued,ĉ~2j!# 5 ĉ~j!; hence,

I 5
1

p E exp$ij^u, x&% f̂~ju!auĉ~aj!u21$j.0%

da

an11 sndudj.

Then, by Fubini,

I 5
1

p E exp$ij^u, x&% f̂~ju!HE uĉ~aj!u2
da

anJ1$j.0%djsndu

5
1

2p E exp$ij^u, x&% f̂~ju! Kcujun211$j.0%djsndu

5
1

2p
Kc E

Rn

exp$i ^x, k&% f̂~k!dk

5
1

2p
Kc~2p!nf~ x!. ■

THEOREM 2 (Parseval Relation). Assume f{ L1 ù L2(Rn) and c admissible. Then

\ f \2
2 5 cc z E u^ f, cg&u2m~dg!.

Proof. With wa,u(b) defined as in the proof of Theorem 1, we then have

E u^ f, cg&u2m~dg! 5 E uwa,u~b!u2
da

an11 sndudb5 I,

say. Using Fubini’s theorem for positive functions,

E uwa,u~b!u2
da

an11 sndudb5 E \wa,u\2
2

da

an11 sndu. (7)

wa,u is integrable, being the convolution between two integrable functions, and belongs to
L2(R) since\wa,u\2 # \ f \1\ca\2; its Fourier transform is then well defined andŵa,u(j)
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5 c#̂ â(j) f̂(ju). By the usual Plancherel theorem,* uwa,u~b!u2db 5
1

2p
E uŵa,u~j!u2dj and,

hence,

I 5
1

2p E u f̂~ju!u2uĉa~j!u2
da

an11 sndudj 5
2

2p E
$j.0%

u f̂~ju!u2uĉ~aj!u2
da

an sndudj.

Since* uĉ~aj!u2
da

an 5 Kcujun21/2 (admissibility), we have

I 5
Kc

2p E u f̂~ju!u2jn21djdu 5 Kc~2p!n21\ f \2
2. ■

The assumptions onf in the above two theorems are somewhat restrictive, and the basic
formulas can be extended to an even wider class of objects. It is classical to define the
Fourier transform first forf { L1(Rn) and only later to extend it to all ofL2 using the fact
that L1 ù L2 is dense inL2. By a similar density argument, one obtains

PROPOSITION 1. There is a linear transform5: L2(Rn) 3 L2(G, m(dg)) which is an
L2-isometry and whose restriction to L1 ù L2 satisfies

5~ f !~g! 5 ^ f, cg&.

For this extension, a generalization of the Parseval relationship (2) holds.

PROPOSITION2 (Extended Parseval). For all f, g { L2(Rn),

^ f, g& 5 cc E 5~ f !~g!5~ g!~g!m~dg!. (8)

We will give the proof in the Appendix. Notice that one need only prove the property
for a dense subspace ofL2(Rn), i.e., L1 ù L2(Rn).

Relation (8) allows identification of the integralcc * ^ f, cg&cgm(dg) with f by duality.
In fact, taking the inner product ofcc * ^ f, cg&cgm(dg) with any g { L2(Rn) and
exchanging the order of inner product and integration overg, one obtains

Kcc FE ^ f, cg&cgm~dg!G , gL 5 cc E ^ f, cg&^g, cg&m~dg! 5 ^ f, g&,

which, by the Riesz theorem, leads tof [ cc * ^ f, cg&cgm(dg) in the prescribed weak
sense.

The theory of wavelets and Fourier analysis contain results of a similar flavor: for
example, the Fourier inversion theorem inL2(Rn) can be proven by duality. However,
there exists a more concrete proof of the Fourier inversion theorem. Recall, in fact, that
if f { L1 ù L2(Rn) and if we consider the truncated Fourier expansionf̂K(j) 5
f̂(j)1{ uju#K} , thenf̂K { L1(Rn) and\ #̂ ( f̂K) 2 (2p)nf \L23 0 asK 3 `. This argument
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provides an interpretation of the Fourier inversion formula that reassures us of its practical
relevance.

We now give a similar result for the convergence of truncated ridgelet expansions. For
each« . 0, defineG« :5 { g 5 (a, u, b) : « # a # «21, u { Sn21, b { R} , G.

PROPOSITION3. Let f { L1(Rn) and { ag} 5 {^ f, cg&} (g{G); then for every« . 0,

ag1G«
~g! { L1~G, m~dg!!.

Proof. Notice thatag 5 (c̃apPu f )(b); then

E
G«

uagum~dg! 5 E uwa,u~b!u
da

an11 sndudb# sn\ f \1 E
«

«21

\c\1

da

an11/ 2 , `,

where we have used\wa,u\1 # \c̃a\1\ f \1 5 a1/ 2\c\1\ f \1. ■

The above proposition shows that for anyf { L1(Rn), the expression

f« ; cc E
G«

^ f, cg&cgm~dg!

is meaningful, since {cg} g{G is uniformlyL` bounded overG«. The next theorem, whose
proof is given in the Appendix, makes more precise the meaning of the reproducing
formula.

THEOREM 3. Suppose f{ L1 ù L2(Rn) and c admissible.

(1) f« { L2(Rn), and
(2) \ f 2 f«\23 0 as « 3 0.

3. THE DISCRETE TRANSFORM: FRAMES OF RIDGELETS

The previous section described a class of neurons, the ridgelets {cg} g{G, such that

(i) any functionf can be reconstructed from the continuous collection of its coefficients
^ f, cg&, and

(ii) any function can be decomposed in a continuous superposition of neuronscg.

The purpose of this section is to achieve similar properties using only a discrete set of
neuronsGd , G.

3.1. Generalities about Frames

The theory of frames [7, 27] deals precisely with questions of this kind. In fact, if* is
a Hilbert space and {wn} n{N a frame, an elementf { * is completely characterized by
its coefficients {̂ f, wn&} n{N and can be reconstructed from them via a simple and
numerically stable algorithm. In addition, the theory provides an algorithm to expressf as
a linear combination of the frame elementswn.
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DEFINITION 2. Let * be a Hilbert space and let {wn} n{N be a sequence of elements of
*. Then {wn} n{N is a frame if there exist 0, A, B , ` such that for anyf { *,

A\ f \*
2 # O

n{N

u^ f, wn&*u2 # B\ f \*
2 , (9)

in which caseA andB are calledframe bounds.
Let * be a Hilbert space and {wn} n{N a frame with boundsA andB. Notice thatA\ f \*

2

# ¥ u^ f, wn&u2 implies that {wn} n{N is a complete set in*. A frame {wn} n{N is said to
be tight if we can takeA 5 B in Definition 2. Furthermore, if {wn} n{N is a basis for*,
it is called a Riesz basis. Simple examples of frames include orthonormal basis, Riesz
basis, concatenation of several Riesz bases, etc.

The following results are stated without proofs and can be found in Daubechies [7, p.
56] and Young [27, p. 184]. Define the coefficient operatorF: * 3 l2(N) by F( f ) 5
(^ f, wn&)n{N. Suppose thatF is a bounded operator (\Ff \ # B\ f \*). Let F* be the
adjoint ofF and letG 5 F* F be theframe operator;thenA Id # G # B Id in the sense
of orders of positive definite operators. Hence,G is invertible and its inverseG21 satisfies
B21Id # G21 # A21Id. Definew̃n 5 G21wn; then {w̃n} n{N is also a frame (with frame
boundsB21 andA21) and the following holds:

f 5 O
n{N

^ f, w̃n&*wn 5 O
n{N

^ f, wn&*w̃n. (10)

Moreover, if f 5 O
n{N

anwn is an another decomposition off, then O
n{N

u^ f, w̃n&u2

# O
n{N

uanu2. To rephrase Daubechies, the frame coefficients are the most economical in an

L2 sense. Finally,G 5
A 1 B

2
~I 2 R!, where\R\ , 1, and soG21 can be computed

asG21 5
2

A 1 B
O

k50

`

Rk.

3.2. Discretization ofG

The special geometry of ridgelets imposes differences between the organization of
ridgelet coefficients and the organization of traditional wavelet coefficients.

With a slight change of notation, we recall thatcg 5 a1/ 2c(a(^u, x& 2 b)). We are
looking for a countable setGd and some conditions onc such that the quasi-Parseval
relation (4) holds. Let5( f )(g) 5 ^ f, cg&; then5( f )(g) 5 ^Pu f, ca,b& with ca,b(t) 5
a1/ 2c(a(t 2 b)). Thus, the information provided by a ridgelet coefficient5( f )(g) is the
one-dimensional wavelet coefficient ofPuf, the Radon transform off. Applying
Plancherel,5( f )(g) may be expressed as

5~ f !~g! 5
1

2p
^Pu f̂, ĉa,b& 5

a21/ 2

2p E f̂~ju!ĉ~j/a!exp$ibj%dj, (11)

which corresponds to a one-dimensional integral in the frequency domain (see Fig. 1).
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In fact, this is the line integral off̂ĉa,0, modulated by exp{ibj}, along the line {tu :
t { R}. If, as in the Littlewood–Paley theory [13],a 5 2j and supp(c) , [1

2
, 2] , it

emphasizes a certain dyadic segment {t : 2j # t # 2j11}. In contrast, in the multidi-

mensional wavelets case, where the waveletca,b 5 a2n/ 2cSx 2 b

a D with a . 0 andb {

Rn, the analogous inner product^ f, ca,b& corresponds to the average off̂ĉa over the
whole frequency domain, emphasizing the dyadic corona {j : 2j # uju # 2j11}.

Now, the underlying objectf̂ must certainly satisfy specific smoothness conditions in
order for its integrals on dyadic segments to make sense. Equivalently, in the original
domain f must decay sufficiently rapidly at̀ . In this paper, we take for our decay
condition thatf be compactly supported so thatf̂ is band limited. From now on, we will
only consider functions supported on the unit cubeQ 5 { x { Rn, \x\` # 1} with
\x\̀ 5 max

i

uxiu. Thus* 5 L2(Q).

Guided by the Littlewood–Paley theory, we choose to discretize the scale parametera
as {a0

j } j$j0
(a0 . 1, j0 being the coarsest scale) and the location parameterb as

{ kb0a0
2j} k, j$j0

. Our discretization of the sphere will also depend on the scale: the finer the
scale, the finer the sampling overSn21. At scalea0

j , our discretization of the sphere,
denotedSj, is an«j-net ofSn21 with « j 5 e0a0

2( j2j0) for somee0 . 0. We assume that
for any j $ j0, the setsS j satisfy the followingequidistribution property:two constants
kn, Kn . 0 must exist s.t. for anyu { Sn21 and r such thate j # r # 2,

knS r

« j
D n21

# u$Bu~r ! ù S j%u # KnS r

« j
D n21

. (12)

FIG. 1. Diagram schematically illustrating the ridgelet discretization of the Frequency plane (two-
dimensional case). The circles represent the scales 2j (we have chosena0 5 2) and the different segments
essentially correspond to the support of different coefficient functionals. There are more segments at finer scales.
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On the other hand, ifr # ej, then fromBu(r ) , Bu(e j) and the above display,u{ Bu(r )

ù S j} u # Kn. Furthermore, the number of pointsNj satisfies knS2

«j
Dn21

# Nj

# KnS2

«j
Dn21

. Essentially, our condition guarantees thatS j is a collection ofNj almost

equispaced points on the sphereSn21, Nj being of ordera0
( j2j0)(n21). The discrete

collection of ridgelets is then given by

cg~x! 5 a0
j / 2c~a0

j ^u, x& 2 kb0!, g { Gd 5 $~a0
j , u, kb0a0

j !, j $ j0, u { Sj, k { Z%. ~13!

In our construction, the coarsest scale is determined by the dimension of the spaceRn.

Defining d as supHp

2k
, k { N and

p

2k
,

log 2

2n J , we choosej0 s.t. a0
j011 # d , a0

j012.

Finally, we will sete0 5 1
2

so thatej 5 a0
2( j2j0)/ 2.

3.3. Main Result

We now introduce a condition that allows us to construct frames.

DEFINITION 3. The functionc is calledframeableif c { C1(R) and

● inf
1#uju#a0

O
j$0

uĉ~a0
2jj!u2ua0

2jju2~n21! . 0;

● uĉ~j!u # Cujua~1 1 uju!2g, wherea .
n 2 1

2
, g . 2 1 a.

This type of condition bears a resemblance to conditions in the theory of wavelet frames
(compare, for example, [7, p. 55]). In addition, this condition looks like a discrete version
of the admissible neural activation condition described in the previous section.

There are many frameablec. For example, sufficiently high derivatives (larger than
n/ 2 1 1) of the sigmoid are frameable.

THEOREM 4 (Existence of Frames). Letc be frameable. Then there exists b*0 . 0 so
that for any b0 , b*0, we can find two constants A, B. 0 (depending onc, a0, b0, and
n) so that, for any f{ L2(Q) (where Q denotes the unit cube ofRn),

A\ f \2
2 # O

g{Gd

u^ f, cg&u2 # B\ f \2
2. (14)

The theorem is proved in several steps. We first show:

LEMMA 1.

U O
g{Gd

u^ f, cg&u2 2
1

2pb0
E

R

O
j$j0,u{Sj

u f̂~ju!u2uĉ~a0
2jj!u2djU

#
1

2p
ÎE

R

O
j$j0,u{Sj

u f̂~ju!u2uĉ~a0
2jj!u2dju ÎE

R

O
j$j0,u{Sj

u f̂~ju!u2ua0
2jju2uĉ~a0

2jj!u2dj.

(15)

207HARMONIC ANALYSIS OF NEURAL NETWORKS



The argument is a simple application of the analytic principle of the large sieve [21].
Note that it presents an alternative to Daubechies’ proof of one-dimensional dyadic affine
frames [7]. We first recall an elementary lemma that we state without proof.

LEMMA 2. Let f be a real-valued function in C1[0, d] for somed . 0: then,

U f~d/ 2! 2
1

d E
0

d

f~ x!dxU #
1

2 E
0

d

u f9~ x!udx.

Again, let c j( x) be a0
j / 2c(a0

j x). The ridgelet coefficient is then̂ f, cg& 5
(Pu fpc j)(kb0a0

2j). For simplicity we denoteFj 5 uPu fpc j u
2. Applying the lemma gives

UFj~kb0a0
2j! 2

a0
j

b0
E

~k21/ 2!b0a0
2j

~k11/ 2!b0a0
2j

Fj~b!dbU #
1

2 E
~k21/ 2!b0a0

2j

~k11/ 2!b0a0
2j

uF9j~b!udb.

Now, we sum overk:

U O
k

u~Pu fpc j!~kb0a0
2j!u2 2

a0
j

b0
E

R

u~Pu fpc j!~b!u2 dbU
# E

R

u~Pu fpc j!~b!u u~Pu fp~c j!9!~b!udb # \Pu fpc j\2\~Pu fp~c j!9!\2.

Applying Plancherel, we have

UO
k

u~Pu fpc j!~kb0a0
2j!u2 2

1

2pb0
E

R

u f̂~ju!u2uĉ~a0
2jj!u2djU

#
1

2p
ÎE

R

u f̂~ju!u2uĉ~a0
2jj!u2dj ÎE

R

u f̂~ju!u2ua0
2jju2uĉ~a0

2jj!u2dj.

Hence, if we sum the above expression overu { S j andj and apply the Cauchy–Schwartz
inequality to the right-hand side, we get the desired result.■

We then show that there existA9, B9 . 0 s.t. for anyf { L2(Q), we have

A9\ f̂ \2
2 # O

j$j0,u{Sj

E
2`

`

u f̂~ju!u2uĉ~a0
2jj!u2dj # B9\ f̂ \2

2; (16)

O
j$j0,u{Sj

E
2`

`

u f̂~ju!u2ua0
2jju2uĉ~a0

2jj!u2dj # B9\ f̂ \2
2. (17)

Thus, if b0 is chosen small enough, Theorem 4 holds.
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3.4. Irregular Sampling Theorems

Relationship (16) is, in fact, a special case of a more abstract result which holds for
general multivariate entire functions of exponential type. An excellent presentation of
entire functions may be found in Boas [4]. In the present section,B1

2(Rn) denotes the set
of square-integrable functions whose Fourier transform is supported in [21, 1]n and
Qa(d) 5 { x, \x 2 a\` # d}, the cube of centera and volume (2d)n. Finally, let
{ zm} m{Zn be the grid onRn defined byzm 5 2dm.

THEOREM 5. Suppose F{ B1
2(Rn) and d ,

log 2

n
with

p

2d
an integer; then@a { Rn,

O
m{Zn

min
Qa1zm~d!

uF~ x!u2 $ cd
2 O

m{Zn

max
Qa1zm~d!

uF~ x!u2, (18)

where cd can be chosen equal to2e2nd 2 1.

In fact, a more general version of this result holds for any exponentp . 0. (In this case,
the constantsd andcd will depend onp.) The requirement thatp/ 2d must be an integer
simplifies the proof but this assumption may be dropped.

Proof of Theorem 5. First, note that by making use ofFa( x) 5 F( x 2 a), we only
need to prove the result fora 5 0. The proof is then based on the lemma stated below
which is an extension to the multivariate case of a theorem of Paley and Wiener on
nonharmonic Fourier series [27, p. 38]. Then withuF~lm

2!u 5 min
Qzm~d!

uF(x)u (resp.uF~lm
1!u

5 max
Qzm~d!

uF~x!u!, we have (using Lemma 3)

O
m{Zn

uF~lm
2!u2 $ ~1/ 2d!n~1 2 rd!

2\F\2
2 $ S1 2 rd

1 1 rd
D 2 O

m{Zn

uF~lm
1!u2,

and (1 2 rd)/(1 1 rd) 5 2e2nd 2 1.

LEMMA 3. Let F { B1
2(Rn) and { lm} m{Zn be a sequence ofRn such that

sup
m{Zn

\lm 2 mp\` ,
log 2

n
; then

~1 2 rd!
2p2n\F\2

2 # O
m{Zn

uF~lm!u2 # ~1 1 rd!
2p2n\F\2

2, (19)

for rd 5 end 2 1 , 1.

Proof of Lemma 3. The Polya–Plancherel theorem (see [25, p. 116]) gives that

O
m{Zn

uF~mp!u2 5 p2n\F\2
2.

Let k denote the usual multi-index (k1, . . . , kn) and letuku 5 k1 1 . . . 1 kn, k! 5 k1!
. . . kn! and xk 5 x1

k1 . . . xn
kn. For anyk, kF is an entire function of typep. Moreover,

Bernstein’s inequality gives\kF\2 # \F\2; see [4, p. 211] for a proof. SinceF is an
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entire function of exponential type,F is equal to its absolutely convergent Taylor
expansion. Lettings be a constant to be specified below, we have

F~lm! 2 F~mp! 5 O
uku$1

kF~mp!

k!
~lm 2 m!k

5 O
uku$1

kF~mp!

k!
~lm 2 m!k

suku

suku .

Applying Cauchy–Schwarz and summing overm, we get

O
m{Zn

uF~lm! 2 F~mp!u2 # O
m{Zn

O
uku$1

ukF~mp!u2

k!s2uku O
uku$1

\lm 2 m\`
2ukus2uku

k!

# O
uku$1

p2n\F\2
2

k!s2uku O
uku$1

d2ukus2uku

k!

5 p2n\F\2
2~en~1/s2! 2 1!~end2s2

2 1!.

We chooses2 5
1

d
. If rd 5 end 2 1 , 1, then

O
m{Zn

uF~lm! 2 F~mp!u2 # rd
2p2n\F\2

2

and, by the triangle inequality, the expected result follows.
Let m be a measure onRn; m will be calledd-uniform if there exista, b . 0 such that

a # m(Qzm
(d))/(2d)n # b. The following result is completely equivalent to the previous

theorem.

COROLLARY 1. Fix d ,
log 2

n
with

p

2d
an integer. Let F{ B1

2(Rn) andm be a d-uniform

measure with boundsa, b. Then

acd\F\2
2 # E uFu2dm #

b

cd
\F\2

2. (20)

3.5. Proof of the Main Result

We notice that the frameability condition implies that

(i)

sup
1#uju#a0

O
j{Z

uĉ~a0
j j!u2

ua0
j jun21 , `
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and

(ii)

sup
1#uju#a0

O
j$0

uĉ~a0
j j!u2 , `,

and, respectively, (i9) and (ii9), whereĉ(j) is replaced byjĉ(j).
For any measurable setA, let mc be the measure defined as

mc~ A! 5 O
j$j0,u{Sj

E uĉ~a0
2jj!u21A~ju!dj.

Similarly, we can definem9c by changingĉ(j) into jĉ(j). Then,

O
j$j0,u{Sj

E u f̂~ju!u2uĉ~a0
2jj!u2dj 5 E u f̂ u2dmc

and likewise form9c.

PROPOSITION4. If c is frameable,mc and m9c are d-uniform and therefore there exist
A9, B9 . 0 s.t. (16)–(17)hold.

We only give proof for the measuremc. The proof form9c is exactly the same. Letru
be the standard polar form ofx. In this section, we will denote byDx(r , d) the sets defined
by Dx(r , d) 5 { y 5 r9u9, 0 # r9 2 r # r , \u9 2 u\ # d}. These sets are truncated
cones. The proof uses the technical Lemma 4.

LEMMA 4. For c frameable,

0 , inf
\x\$d

mcSDxSd,
d

2\x\
DD # sup

\x\$d

mcSDxSd,
d

2\x\
DD , `

and respectively form9c .

Proof. To simplify the notation, we will user for \x\ and u for x/\x\. Let j x be
defined bya0

2( j x2j0) # d/r , a0a0
2( j x2j0). Hence, if j $ j x, @e { { 21, 1}, the

equidistribution property(12) implies that

knSa0
~ j2j0!d

r
D n21

# u$B«u~d/ 2r! ù S j%u # KnSa0
~ j2j0!d

r
D n21

.
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We have

mc~Dx~d, d/ 2r!! 5 O
j$j0#,u{Sj

E uĉ~a0
2jj!u21Dx~d,d/ 2r!~ju!dj

$ O
j$j x

knSa0
~ j2j0!d

r
D n21 E

r#uju#r1d

uĉ~a0
2jj!u2dj

$ kn~a0
2j0d!n21 E

r#uju#r1d

S uju
r
D n21 O

j9$0

uĉ~a0
2j9a0

2jxj!u2

ua0
2j9a0

2jxjun21 dj.

Now, since by assumption,d # r, we have@uju { [r, r 1 d], da0
2( j011) # ua0

2j xju
# 2da0

2j0. We recall thatda0
2( j011) $ 1. Therefore,

mc~Dx~d, d/ 2r!! $ kn~a0
2j0d!n212d inf

da0
2~ j011!

#uju#2da0
2j0

O
j9$0

uĉ~a0
2j9j!u2

ua0
2j9jun21

$ kn~a0
2j0d!n212d inf

1#uju#a0

O
j9$0

uĉ~a0
2j9j!u2

ua0
2j9jun21 .

Similarly, we have

O
j$j x,u{Sj

E uĉ~a0
2jj!u21Dx~d,d/ 2r!~ju!dj # Kn~a0

2j0d!n212n212d sup
da0

2~ j011!
#uju#2da0

2j0

O
j9$0

uĉ~a0
2j9j!u2

ua0
2j9jun21

# Kn~a0
2j0d!n212n212d sup

1#uju#a0

O
j9{Z

uĉ~a0
2j9j!u2

ua0
2j9jun21 .

We finally consider the case of thej ’s s.t. j0 # j , j x. We recall that in this case, we have
u{ B«u(d/ 2r) ù S j} u # Kn, and thus

O
j0#j,j x,u{Sj

E uĉ~a0
2jj!u21Dx~d,d/ 2r!~ju!dj # Kn E

r#uju#r1d

O
j0#j,j x

uĉ~a0
jx2ja0

2jxj!u2

# Kn2d sup
da0

2~ j011!
#uju#2da0

2j0

O
j9.0

uĉ~a0
j9j!u2

# Kn2d sup
1#uju#a0

O
j9.0

uĉ~a0
j9j!u2.

The lemma follows. ■

Proof of Proposition 4. Now, we recall that {zm} m{Zn is the grid onRn defined by
zm 5 2dm and we show that sup

m

mc~Qzm
~d!! , ` and that inf

m

mc~Qzm
~d!! . 0.
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Again, we shall use the polar coordinates, i.e.,zm 5 rmum. Form Þ 0, letz9m ber9mum

with r9m 5 rm 2 d/ 2. Then, we have thatDz9m
(d, d/ 2r9m) 5 { r9u9 s.t. ur9 2 rmu # d/ 2,

\u9 2 um\ # d/ 2r9m} , Bzm
(d) , Qzm

(d). To see the first inclusion, we can check that
\r9u9 2 rmum\2 5 (r9 2 rm)2 1 r9rm\u9 2 um\2. Then we use the fact thatr9/r9m #
5
3

and rm/r9m #
4
3

to prove the inclusion.
For m Þ 0, let { xj

(m)} 1#j#Jm
with \xj

(m)\ $ d s.t. Qzm
(d) , ø1#j#Jm

Dxj

(m)(d,
d/ 2\xj

(m)\) and Tn,m be the minimum number ofj ’s such that the above inclusion is
satisfied. By rescaling, we see that the numbersTn,m are independent ofd. Moreover, it
is easy to check that ifd is chosen small enough, then any setDx(d, d/ 2\x\) (where again
\x\ $ d) contains a ball of radiusd. (Although we do not prove it here,d may be chosen
equal to d/ 2.) Therefore, the numbersTn,m are bounded above and we letTn

5 sup
mÞ0

Tn,m. It follows that for all m Þ 0 (m { Zn), we have

0 , inf
\x\$d

mcSDxSd,
d

2\x\
DD # mc~Dz9m~d, d/ 2r9m!! # mc~Qzm

~d!!

# Tn sup
\x\$d

mcSDxSd,
d

2\x\
DD , `.

Finally, we need to prove the result for the cubeQ0(d). In order to do so, we need to
establish two last estimates:

mc~B0~d!! 5 O
j$j0

uS ju E
$uju#d%

uĉ~a0
2jj!u2dj

$ kna0
~ j2j0!~n21! E

$uju#d%

O
j$j0

uĉ~a0
2jj!u2dj

5 kn E
$uju#d%

ua0
2j0jun21 O

j9$0

uĉ~a0
2j9a0

2j0j!u2

ua0
2j9a0

2j0jun21 dj

$ kn E
$d/a0#uju#d%

ua0
2j0jun21 O

j9$0

uĉ~a0
2j9a0

2j0j!u2

ua0
2j9a0

2j0jun21 dj

$ kn2d~1 2 1/a0!~da0
2~ j011!!n21 inf

da0
2~ j011!

#uju#da0
2j0

O
j9$0

uĉ~a0
2j9a0

2j0j!u2

ua0
2j9a0

2j0jun21 .

Repeating the argument of Lemma 4 finally gives

mc~B0~d!! $ kn2d~1 2 1/a0!~da0
2~ j011!!n21 inf

1#uju#a0

O
j9$0

uĉ~a0
2j9j!u2

ua0
2j9jun21 .
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After similar calculations, we can prove that

mc~B0~d!! # Kn2d~da0
2j0!n21 sup

da0
2~ j011!

#uju#da0
2j0

O
j9$0

uĉ~a0
2j9j!u2

ua0
2j9jun21 .

Again let { xj} 1#j#J with \xj\ $ d s.t.Q0(d) , ø1#j#JDxj
(d, d/ 2\xj\) ø B0(d) andTn

0

be the minimum number ofj ’s needed. We then have

0 , mc~B0~d!! # mc~Q0~d!! # mc~B0~d!! 1 Tn
0 sup

\x\$d

mcSDxSd,
d

2\x\
DD , `.

This completes the proof of Proposition 4.■
Although we do not prove it here, we may replace the frameability condition by

one slightly weaker. For any traditional one-dimensional waveletw which satisfies
the sufficient conditions listed in Daubechies [7, pp. 68–69], definec via ĉ(j) [
sgn(j)uju(n21)/ 2(1 1 j2)2(n21)/4ŵ(j); then Theorem 4 holds for such ac.

4. DISCUSSION

4.1. Quantitative Improvements

Our goal in this paper has been merely to provide a qualitative result concerning the
existence of frames of ridgelets. However, quantitative refinements will undoubtedly be
important for practical applications.

The coefficientsag in a frame expansion may be computed via a Neumann series
expansion for the frame operator; see Daubechies [7]. For computational purposes, the
closer the ratio of the upper and lower frame bounds to 1, the fewer terms will be needed
in the Neumann series to compute a dual element within an accuracy ofe. Thus for
computational purposes, it may be desirable to have good control of the frames bound
ratio. Of course, the proof presented in Section 3 provides only crude estimates for the
upper bound of the frame bound ratio. The interest of this method is that it uses general
ideas, stated in Section 3.4, which may be applied in a variety of different settings. The
author is confident that further detailed studies will allow proof of versions of Theorem 4
with tighter bounds. Such refinements are beyond the scope of the present study.

The redundancy of the frame that one can construct by this strategy depends heavily on
the quality of the underlying “quasi-uniform” sampling of the sphere at each scalej . The
construction of quasi-uniform discrete point sets on spheres has received considerable
attention in the literature; see Sloane and Conway [5] and additional references given in
the bibliography. Quantitative improvements of our results would follow from applying
some of the known results obtained in that field.

Another area for investigation has to do with rapid calculation of groups of coefficients.
Note that if the setsS j for j $ j0 present some symmetries, it may not be necessary to
computec̃g for all g { Gd; many dual elements would simply be translations, rotations,
and rescalings of each other. This type of relationship would be important to pursue for
practical applications.
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4.2. Finite Approximations

The frame dictionary$Gd
5 { cg, g { Gd} may be used for constructing approxima-

tions of certain kinds of multivariate functions. It would be interesting to know the
“approximation space” associated to this frame, that is, the collection of multivariate
functionsf obeying

\ f 2 fN\2 # CN2r, (21)

wherefN is an appropriately chosen superposition of dictionary elements

fN 5 O
i51

N

l i,Ncgi,N. (22)

Based on obvious analogies with the orthogonal basis case, one naturally expects that
functions f of this type can be characterized by their frame coefficients, saying (21) is
possible if, and only if, the frame coefficients {ag} g{Gd

belong to the Lorentz weakl p

spacel p,`, with r 5 (1/p 2 1
2
)1. Work to establish those conditions under which the

above would hold is in progress.
It would also be interesting to establish results which state that (21) is equivalent to a

weak l p condition on the frame coefficients even when the approximant (22) is not
restricted to using onlyg { Gd. If one could establish that any continuous choicesg i ,N

{ G would still only lead tof with weak-lp conditions on frame coefficients, then one
would know that the frame system is really an effective way of obtaining high-quality
nonlinear approximations.

APPENDIX

Proof of Proposition 2. Let f, g { L1 ù L2; then we can write

E 5~ f !~g!5~ g!~g!m~dg! 5 E ^c̃apf, c̃apg&
da

an11 sndu 5 I.

Applying Plancherel,

I 5
1

2p E ^c̃ap f̂, c̃apĝ&
da

an11 sndu

5
1

2p E f̂~ju! ĝ~ju!auĉ~aj!u2
da

an11 sndudj,

and, by Fubini, we obtain the desired result.■
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Proof of Theorem 3. Step 1.Letting fl~x! 5 S 1

2pl
Dn/ 2

expH2
\x\2

2l J and definingf «
l

as

f «
l 5 cc E

G«

^ fpfl, cg&cgm~dg!,

we start proving thatf «
l { L2(Rn). Notice thatPu( fpfl) 5 Pu fpPufl andPufl(t) 5

1/(2pl)1/ 2exp{2t2/ 2l}. Now

^~Pu fpPufl!~j! 5 ~Pu f̂ z Pufl
ˆ!~j! 5 f̂~ju!expH2

l

2
j2J .

Repeating the argument in the proof of Theorem 1, we obtain

f «
l 5

c

p E
$j.0%,Sn21

HE
«#a#«21

da

an uĉ~aj!u2JexpH ij^u, x& 2
l

2
j2J f̂~ju!sndjdu.

Note that forj Þ 0, we haveE
«

«21

uĉ~aj!u2
da

an 5 ujun21 E
«uju

«21uju
uĉ~t!u2

dt

tn
(which we will

abbreviate asKc / 2ujun21c«(uju)) andc«(uju) 1 1 as«3 0. After the change of variable
k 5 ujuu, we obtain

f «
l 5

cc

2p
Kc E expH i ^k, x& 2

l\k\2

2 Jc«~\k\! f̂~k!dk,

which allows the interpretation off «
l as the “conjugate” Fourier transform of anL2

element and therefore the conclusionf «
l { L2(Rn).

Step 2. We aim to prove thatf «
l 3 f« pointwise and inL2(Rn). The dominated

convergence theorem leads to

c«~\k\! f̂~k!expH2
l

2
\k\2J 3 c«~\k\! f̂~k! in L2~Rn! asl3 0.

Then by the Fourier transform isometry, we havef e
l3 ~2p!2nF# ~ce f̂ ! in L2(Rn).

It remains to be proved that this limit, which we will abbreviate withg«, is
indeedfe:
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u f «
l~ x! 2 f«~ x!u 5 cc E

G«

~^ fpfl, cg& 2 ^ f, cg&!cgm~dg!

# cc sup
g{G«

ucg~ x!u E
«

«21 E
Sn21

\c̃ap~Pu fpPufl 2 Pu f !\1

da

an11 sndu

# cc«21/ 2\c\` E
«

«21 E
Sn21

\c̃a\1\Pu fpPufl 2 Pu f \1

da

an11 sndu

5 cc«21/ 2\c\` E
«

«21 da

an11/ 2 \c\1 E
Sn21

\Pu f pPufl 2 Pu f \1sndu.

Then for a fixedu, \Pu fpPufl 2 Pu f \1 3 0 asl 3 0 and

\Pu fpPufl 2 Pu f \1 # \Pu f \1 1 \Pu fpPufl\1

# 2\Pu f \1 # 2\ f \1.

Thus by the dominated convergence theorem,*Sn21\Pu fpPufl 2 Pu f \1sndu3 0.
From u f «

l( x) 2 f«( x)u # d(«)\c\`c\1 *Sn21\Pu f pPufl 2 Pu f \1sndu, we obtain
\ f «

l 2 f«\` 3 0 asl 3 0. Note that the convergence is inC(Rn) as the functions are
continuous.

Finally, we getf« 5 g« and, therefore,f« is in L2(Rn) by completeness.
To show that\ f« 2 f \23 0 as« 3 0, it is necessary and sufficient to show that\ f̂«

2 f̂ \2 3 0,

\ f̂« 2 f̂ \2
2 5 E u f̂~k!u2~1 2 c«~\k\!2dk.

Recalling that 0# c« # 1 and thatc« 1 1 as« 3 0, the convergence follows.■
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