
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993 999

Hinging Hyperplanes for Regression, Classification,
and Function Approximation

Leo Breiman

Abstract-A hinge function y=h(z) consists of two hyperplanes
continuously joined together at a hinge. In regression (predic-
tion), classification (pattern recognition), and noiseless function
approximation, use of sums of hinge functions gives a powerful
and efficient alternative to neural networks with compute times
several orders of mdgdjtude less than fitting neural networks
with a comparable number of parameters. The core of the
methodology is a simple and effective method for finding good
hinges.

Index Terms-Nonlinear function approximation, classification,
prediction, regression, hyperplanes.

I. INTRODUCTION
N AN M-dimensional space (21, . ~ 1 , X M) , a hingefunction I y = h(z) consists of two hyperplanes continuously joined

together. Taking xo E 1 and using . to denote the inner product
of two vectors, if the two hyperplanes are given by

y = p + . z , y=p-.z,

they are joined together on {z: (,Of - p-) = 0} and we
refer to A = p+ - p-, or any multiple of A, as the hinge for
the function. The explicit form of the hinge function is either
max (p+ z, p- .z) or min (p+ . z, p- + z).

Most of the recently introduced methods for nonlinear
regression, classification, and function approximation use ex-
pansions into sums of basis functions. The basis functions
used are “data selected” from a large parametric class of
primitive functions. For instance, CART (Breiman et al. [5])
uses an expansion into indicator functions of multidimensional
rectangles with sides parallel to the coordinate axes. Neural
network methods use sigmoid functions of linear functions as
primitives. The MARS method (Friedman [SI) uses products
of univariate linear spline functions as its primitive class. In
this work, the hinge functions form the primitive class. There
are good reasons, as given below, for this approach.

Let P be any measure with compact support on E (M)
and f(z) any sufficiently smooth function. Then we show in
Section 111, using methods developed by Jones [111 and Barron
[l] that there is a constant C (f , P) such that for any K , there

Manuscript received November 18, 1991; revised July 27, 1992. This work
was presented in part at Neural Networks in Computing, Snowbird, UT, March
1992.

The author is with the Department of Statistics, University of California at
Berkeley, Berkeley, CA 94720.

IEEE Log Number 9208640.

are hinge functions hl , . . . , hK with

The property that makes the hinge functions effective is
that there is a simple and computationally efficient method for
locating hinges. Suppose we are told that y = h(z) is a hinge
function with unknown hinge A*; are given data (yn, zn),
n = 1, . . . , N ; and want to use this data to locate the hinge.
One approach is this: for any specified candidate hinge A, do
a least squares fit of a hinge function with hinge A to the data.
Let RSS(A) be the residual sum-of-squares. Now search over
A-space to find the minimizer of RSS(A). This procedure is
computationally intensive and global searches are not feasible
unless M and N are small.

Here is an alternative: start with an arbitrary hinge A(o).
Using least squares, fit the data on the side A(’) . z, 2 0 to
a hyperplane y = /?+ .z, and do a similar fit to the data such
that A(’) az, < 0 getting y = ,F z. Take the new estimate
for the hinge as

A(1) = p+ - p-,

and repeat the procedure, getting a sequence A(k) of estimates.
In Section 11, we give evidence that generally A(k) + A*

and that the convergence is rapid. The noisy case, y, =
h(z,)+~,, is also looked at and the accuracy of lim A(’) as an
estimate of A* examined. Simulations support the theoretical
accuracy results and show that the hinge finding algorithm is
computationally efficient and accurate even for large M , and
high noise.

In Section 111, we state the theorem regarding the approx-
imation of a smooth function by a sum of hinge functions.
Then, we look at the implementation that at the Kth stage adds
a new hinge function by using the hinge finding algorithm
on y = f (z) - x?-’hk(z) , and then readjusts the sum xf hk(z) . Simulations in dimensions ranging from M = 2
to M = 16 show good approximation properties and verify
the 1 f K decrease.

The most important applications of hinge functions are to
multivariate regression and classification. Section IV discusses
the use of hinge functions to produce a nonlinear prediction
function given noisy data { (yn, z,), n = 1, . . , N } . Exam-
ples are given to show how sums of hinge functions can be
used to construct accurate predictors. In particular, to cope
with high dimensional spaces, a variable selection method
in hinge finding is introduced. It took 2.8 minutes of CPU

0018-9448/93$03.00 0 1993 IEEE

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

1000 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

time to compute the prediction equation in a highly nonlinear
100-dimensional example with a training set of size 2000.

In Section V, we show how the hinge finding algorithm can
be extended so that hinge functions can be usefully employed
in classification (pattern recognition) problems. The approach
is to formulate the J-class problem in terms of J-linked
regression equations, and then to locate, at each stage, the
hinge that is optimum for a combination of the equations. This
leads to a JX J eigenvalue problem at each iteration. Examples
are given, with both real and simulated data to illustrate the
effectiveness of this method.

Our concluding remarks and summary appear in Section VI,
and the proofs of theorems are in Appendix A. Computational
aspects of the hinge procedures are discussed in Appendix
B. Appendix C gives some equations for computing cross-
validated error measure in regression and classification.

On current computing equipment, the procedures are quite
feasible for substantial sample sizes and dimensionality and we
give CPU times involved for various examples in the text. The
examples were run on a variety of machines. To provide uni-
form time benchmarks, the 16-dimensional example of Section
111 was run on all machines including an IBM RS6000/540.
The timings given in the text are scaled to the RS 6000, a
12.5 megaflop machine.

Another important application of hinge finding is in de-
termining splits for the construction of classification and
regression trees. This is the subject of a sequel paper.

For recent advances in constructing nonlinear prediction
functions, see (in the statistical literature) Freidman and Stuet-
zle [9], Breiman et al. [5], Brieman and Friedman [6], Fried-
man [8], Hastie and Tibshirani [lo], Breiman [2], Wahba
[15]. In classification, some recent statistical publications
are Breiman et al. [5] , Breiman and Ihaka [7], Hastie and
Tibshirani [101. In the engineering and computer science fields,
where recent attention has been focussed on neural networks,
see Lippmann [13] for a review and references.

11. FINDING THE HINGE

A. Analytic Results
Assume that y = h(x) is a hinge function with unknown

hinge, and that there is a distribution of points x E E(M+l)
governed by a probability measure P(dx). For a fixed vector
A('), denote

S+={Z: A(O).x>O}, S-={X: A(O).x<O)

(zy)+(m)=/ z&(x)dP, (z ~) - (m) = z&(x) dp.

The least-squares coefficients of a hyperplane fitted to the y-
values in S+ are /3+ = rl1(zy)+, and those in the S- fit are
p- = FI1(xy)-. The new hinge value A(') is p+ - p- and
the process is repeated starting from A(').

s+ L-

Since y = h(x) is a hinge function, there is a hinge A* such
that for 5': = {x: A* . x 2 0} and ST = {x: A* . x < 0},
if the fitted coefficients on the +, - sides are p t , PT, then
A* 1 ,f3; - /3:. Thus,

Denote

with the analogous definitions for I?+-, r-+, r-
some manipulations give

= AA*,

where

A = 1 - r+lr+_ - r:lr-+.
Hinge Convergence Theorem 1: Denote by s any linear

a) There is a c < cc such that for every s with Es2 5 1,

b) Let p(a) = supES2,,P(lsla). Then, p(a) = O(a) as

c) If S+ = (5; s 2 0) and P(S+) = c > 0, the inf over s

Then, there is a 6 > 0 such that if ((A(') - A*((5 6, then

function of 20, . . . , ZM. Assume that P satisfies

Es4 5 c.

a -+ 0.

of the minimum eigenvalue of I?+ is X*(c) > 0.

- A*ll -+ 0.

and convergence is exponentially fast.
The proof is in Appendix A. Both theoretical and simulation

results suggest that convergence occurs even for A(') distant
from A*.

Theorem 2: If 20 = 0 and (21,. . . , ZM) have a joint
normal distribution, then A(k) -+ A* for any starting A(')
such that A(O) . A* # 0. The proof is given in Appendix A.

B. Simulations
The simulations were done as follows: the (A* (1) , . . . ,

A*(M)) were taken to be M independent and identically
distributed (i.i.d.) N(0 , l)'s, and A*(O) adjusted SO that
the proportion of data in {A* . z 2 0) was uniform on
[0.15, 0.851. Initial hinge values A(') were selected by tak-
ing (A(') (1), . . . , A(') (M)) to be another M-vector of i.i.d.
N(0 , 1)'s and A(')(O) taken so that #{x,: A(')z, 2 0) =
int(N/2) (here {.} denotes the cardinality of the set {.}).
Starting from A('), the hinge finding algorithm was run to

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

BREIMAN: HINGING HYPERPLANES FOR REGRESSION, CLASSIFICATION, AND FUNCTION APPROXIMATION 1001

convergence giving A. The run was counted as a hit if
[cos(A, A*) I 2 0.99, otherwise a miss. The whole procedure,
including the data generation, was repeated 100 times.

In the first run, N = 250, the dimension M = 6, and
(2 1 , - - . , ZM) were sampled from X I , e e , X M with X , =
2, - { 2 0 , . . . , Z M } independent unit exponentials.
To study the affect of dimensionality, the same structure was
used in the second run but with M = 12. Since this example
used long tailed distributions, in the next two runs we again
set X , = 2, - Zm-l but took the (2,) to be uniform
on [0, 11. The first run was at dimension 6 and the second at
dimension 12.

There were no misses in the 400 repetitions. But the
algorithm can be made to miss. For instance, at least 13
points are needed to define a hyperplane in 12 dimensions.
We set A*(O) in the 12-dimensional exponential case so that
#{zn; A*x, 2 0) = 20. Now 20 points to define a comer
hinge in 12 dimensions is sparse. In 100 trials, there were 13
misses.

C. The Effect of Noise

Suppose that the data is of the form {y,, z,}, n = 1 , . . . , N
with y, = h(z,) + E , , h(z,) a hinge function and { E , } noise.
Then,

= A* - BA* + r;l(EZ)+ - r?(E+
where B is I';'I?+- + IX1I'-+. The matrix B is a function
B(A(", A*). The proof of the hinge convergence theorem
indicates that B is small order of the noise. That is, if the
noise is small, and A(k) N A* + 2, where 2 is a linear
function of the noise, then B N o (2) . Thus, for small noise,
at convergence

A E A* + r;l(m)+ - I'I1(Ex)-.

From this,

U2

N Ella - A*1I2 = -(tr(I';l) + tr(I'1')). (2.3)

D. Simulations: Noisy Case
The {z,}, n = 1, . . . , N data was generated as in the first

example in Section 11-B. Then y, was set equal to h(z,) + E ,

with the { E , } i.i.d. N(0, 02) noise. The hinge A* was selected
as in Section 11-A.

The signalhoise ratio (s/n) is here (also see Table I) defined
by first fitting a least-squares hyperplane to {h(z,)}. Then,
the signal ~1 is defined as the square root of the mean residual
sum-of-squares (MRSS). The noise is defined by its standard
deviation U N . Then s / n = U ~ / U N . Another way to look at
this is that the expected MRSS on fitting h + E by the right
hyperplane is U; + U;. The expected MRSS on fitting by the
right hinge function is U;. The ratio of expected MRSS is

1 - MRSS(hinge) -
MRSS(1inear) 1 + (s/n)2 '

The s/n ratios used were 1, 1/2, 1/3, 1/4. The output of
each run consisted of the averages over the repetitions of

TABLE I
EFFECTS OF NOISE

1 0.99 0.01 0.92 0.38 1.00
112 0.93 0.07 1.11 0.58 1.00
113 0.81 0.20 1.31 0.67 1.00

114 0.68 0.24 1.49 0.71 0.99

Icos(A, A*)(and of IlA - A*ll/D where

D = /-,
with I?+, r- computed using A and

where f" is the estimated hinge function. The discussion
leading to (2.3) indicates that the expectation of [[A - A*ll/D
should be close to one in low noise situations. The standard
deviation of these two quantities over the repetitions in the
run is also given.

Another quantity of interest is 6'/(CY E ~ / N) . This is the
ratio of the MRSS using the estimated hinge function debiased
by the factor l / (N - 2 (M + l)) , to the MRSS using the known
ridge function. Denote this ratio by RSSRATIO. We report on
four runs of 100 repetitions each using N = 250, and the
six-dimensional exponential distribution specified previously.

Its surprising how well the algorithm does even with high
noise levels. When s/n = 0.25, only a 6% decrease in RSS is
gotten by fitting the underlying hinge instead of a hyperplane.
Yet the values of the RSSRATIO show that the minimum RSS
hinge is consistently being found.

111. NOISELESS FUNCTION MPROXIMATION
hk(z) is a con-

tionuous piecewise linear function. Results of Barron [l] on
sigmoid function and Jones [l l] on sinusoids can be extended
to show that sums of hinge functions are effective in function
approximation. Let f (w) be the Fourier transform of f(z).

Theorem 3: If the support of P is contained in the sphere
of radius R, and if

On E (M) a sum of hinge functions

/llwll2li~w)l duJ = c < 00,

then there are hinge functions hl , . . . , h K such that

The proof of this theorem is an extension of Barron's extension
of the Jones result and is given in Appendix A. In the
Jones and Barron results, a function $ on E(1) is specified,
and the approximating sums are of the form C l $ (p k . z).
In neural network approximation, the sum which minimizes
!If(.) - $(,& + z)II is gotten by using local gradient

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

1002 1EEE TRANSACTIONS ON I N F O R W I O N THEORY, VOL. 39, NO. 3, MAY 1993

searches to minimize over the {PI, . . . , PI(}. Not only is this
highly computationally intensive even for K, M of moderate
size, but only local minima are guaranteed.

Barron and Jones show that there is a "greedy" algorithm
which at each step enters the next function ~ (P K ' z) by
minimization over M + 2 parameters only, and still achieves
the upper bound of the existence proofs.

A similar "greedy" result can be proved for hinge functions
but the point may be moot. The hinge finding algorithm makes
the optimization over the entire sum computationally efficient.
Our simulations show that the decrease in squared norm is
inversely linear but that the constant is orders of magnitude
less than that given in Theorem 3.

A. The Approximation Algorithm

The basic algorithm is: given a function specified at the
points {zn}, n = 1, + , N run the hinge finding algorithm
on this data, resulting in a hinge function approximation h(z) .
Since the function to be fitted is not a hinge function, M
starting values of A(') are used, and the hinge adopted is
that with minimum RSS. The mth starting A(') is given by
A(')(j) = 0, j # m, A(')(m) = 1, and A(")(O) selected so
that the condition {A(') .

To compute the approximation to f(z) using K hinge func-
tions, at the Kth stage find the hinge function approximation
h ~ (z) to f(z) - x (- ' h k (z) . Then refit: update h l by
refitting the difference f - E," hk. Using this updated hl,
update h2 by refitting f - hl - hk. After h~ is refitted,
start the cycle again with fl. These cycles are continued until
there is no further appreciable decrease in RSS. The procedure
is made more efficient by using, as the single starting A(') for
each refit, the current hinge of the function to be refitted.

Another algorithm was also tested. Each hinge function
is the sum of a linear function and a function h+(A . z)
where h+(x) = x, x 2 0, and 0, 2 < 0. Let h+(& . z),
k = 1, + , K - 1 be the nonlinear parts of the hinge functions
entered at steps 1, 2 , . . . , K - 1. Do a linear regression
of f(z) on the M + K variables 1, Z I , . . . , X M , h+(Al .
z) , . . . , h+(AK- l .z), getting

2 0} cuts the data in half.

Use the hinge finding algorithm on f - f1c-1 to find h K and
suppose the nonlinear part of h K is ~ ' (A K . z). Do a linear
regression of f(z) on the M + K + 1 variables

1, Xl," ' ,xM, h+(Al'z),...,h+(hK 'z)

getting new coefficients PO, . . . , PM and 71, ' . . , Y K . Take f~
to be the linear combination using the new coefficients.

Although refitting is computationally fairly efficient, the CPU

time to fit, say, 50 hinge functions in 16 dimensions to 1000
data points is considerably larger than the regression type
algorithm described in the above paragraph. The trade off in
CPU time and accuracy is explored in the simulations reported
on in the next section.

B. Simulations: Function Approximation

The first example is chosen for visual inspection. There are
1000 {zn} values uniformly distributed on the square [0, 112.
Let e = (1, l), then

Fig. l(a) gives the surface plot of f . Hinge functions are fitted
and refitted. The surface plots of h k (~) , K = 4, 8, 16, 32
are given in Fig. l(bHe).

We are not advocating the use of hinge functions to fit
smooth surfaces in low dimensions. Other methods are avail-
able which give smoother and more accurate fits in two or
three dimensions (see, for instance, Breiman [l], Friedman
[SI, Wahba [15]). This two-dimensional example is given only
because visual inspection is possible.

The second series of examples are similar except for di-
mension. The function is

f(z) = e-IIzI12/2.

The points {zn} are distributed on the sphere 1 1 ~ 1 1 5 3 using
a spherically symmetric distribution such that ((z((is uniform
on [O, 31. For this function,

= /ll.ill'lf(w)l dw,

so that the upper bound of theorem 3.1 is 1296M2/K.
For M = 4, the refit and regression algorithm were run up

to K = 50. Fig. 2 gives the plots of l/llf - hk1I2 vs.
K for both the refit and regression algorithms for K = 1 to
50. Fitting the l/llf - x ; h ~ 1 1 ~ data by K/b using least
squares gives b = 0.022(refit) and b = O.O6l(regression).
Either one is orders of magnitude smaller than the constant
given by Theorem 3.

There is a third set of points plotted in Fig. 2. The sus-
picion arises that if one put down a series A,, . . . , AK of
hinges chosen at random and regressed f(z) on the variables
1, x ~ , . . . , x ~ , h+(Al . z) , . . . , h + (A ~ . z) one might do
almost as well as using the hinge finding algorithm. To
check this, random hinges A,, . . . , AK were generated with
(A K (~) , . . . , AK(M)) being i.i.d. N(0 , 1) and A K (~) taken
such that the proportion of data satisfying {A, .z, 3 0) is
uniform on [0.1, 0.91. The values [I f - hkl l -2 generated
this way form the third graph on Fig. 2.

To explore the effect of dimensionality, we ran the refit
algorithm using dimensions 4, 8, 16 and going up to K = 50.
The data was generated as previously described with sample
size 1000. Fig. 3 gives the graphs of l/llf - hkJI2 vs. K
for K = 1, . . ,50, including the results for dimension four.
The MRSS for dimension 16 decreases rapidly when more
than 20 hinge functions are fitted. This is probably due to
the fact that 1000 data points are sparse in 16 dimensions.
Fitting 20 hinge functions involves optimizing over almost
400 parameters, and 50 hinge functions, over almost 900. As
the number of parameters approach the number of data points,
the error of the fit at these points drops rapidly to zero.

A more interesting comparison of the effect of dimension-
ality is when the number of parameters is constrained to be

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

BREIMAN: HINGING HYPERPLANES FOR REGRESSION, CLASSIFICATION, AND FUNCTION APPROXIMATION 1003

Fig. 1. Surface plots of hinge approximations. (a) Original function. (b) 4 hinges. (c) 8 hinges. (d) 16 hinges. (e) 32 hinges.

small compared with the number of data points. Fig. 4 graphs
the same data as Fig. 3 but only up to 20 hinge functions.
There is very little effect due to dimensionality.

The run doing fitting and refitting of the 50 hinge functions
in 16 dimensions took 11.4 CPU minutes (RS 6000), pretty
fast for a highly nonlinear optimization involving almost
900 parameters. The regression type algorithm took 2.3 CPU

minutes.

Iv. USING HINGE FUNCTIONS IN REGRESSION
Hinge functions give a potentially powerful new approach to

nonlinear regression. Given data of the form { (gn 2,) n =
1, ' , N } the problem is to use this data to construct a func-

tion f (z) that will give accurate predictions of future unknown
y-valyes when the corresponding x-values are known.

Iff($) is restricted to be linear, then squared-error loss leads
to classical least squares regression. If the number of variables
is nominal, say 5 20, then the methods proposed by Friedman
[8] and Breiman [2] give continuous predictors f (z) restricted
to be the sum of nonlinear functions each depending on only
a few variables, say one, two, or at most three. But with some
data, predicting y by sums of functions of a small number of
the 2-variables may not give accurate results. Consider, for
instance, the function e-11z112 in M-dimensions.

Methods for fitting continuous functions to high interaction,
high-dimensional data are rare. One early and remarkable
result due to Meisel and Collins [14] derives a piecewise

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

1004 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

0 Refit Using Hmge Algonthm
? Regression Usmg Hinge Algonrhm
0 Regression using Random Hinges

n
0 S 10 I S 20 25 30 35 40 45 5 0

No of Hinge Funclions

Fig. 2. Comparison of methods in four dimensions.

0 Dimension 4
T Dunension 8
0 Dunension 16

I O 15 20 25 30 35 40 45 50

800.

100. . ODlmension 4
? Dunensum 8
0 Dunension 16 ; -.

% sal.
?!
g

3w.
2w.

IIM.

0.
0 2 4 6 8 10 I2 I 4 16 I 8 20

No. of Hinge Functions

Fig. 4. Inverse MRSS using refitting.

A. A High Interaction Example

dimensional space, take
As an example of a high interaction problem in 10-

g(z) = logit(ul(z)) + logit(uz(z)) + logit(va(z)),

where logit(z) = ez/(l + e.). The v1(z), vz(z), u3(2) are
linear in (XI, ,210) defined by letting

I1 = 10x1 + 9x2 + 3x3 + 7x4 - 6x5
- 5x6 - 9x7 - 3x8 - 2x9 - 210

No. of Hinge Functions

Fig. 3. Inverse MRSS using refitting. 13 = -21 - 2x2 - 3x3 + 4x4 + 5x5

continuous hyperplane estimate using a method much different
from hinging. Friedman and Stuetzle [9] originated "projection
pursuit" regression which uses a sum of estimated smooth
functions of linear functions. The tree-structured approach
(Breiman et al. [5]) fits a discontinuous histogram-like func-
tions.

The approach using hinge functions in prediction is the same
as in the noiseless case-find the best fit to y of hk(z) .
One important issue is how many hinge functions to fit. If
K is too large, overfitting occurs and the fit loses accuracy
on future data. Two methods are useful for selecting K . The
simplest uses the PEGCV criterion:

Let MRSS (K) be the mean residual sum-of-squares. The
PEGCV estimate for the test set prediction error is given by

PEGcv(K) = MRSS(K)/(l - c(K + 1)(M + l)/N)',

where N is the sample size, and M the dimension and c
a parameter in the [1, 31 range. Now take K to minimize
PEGcv(K). The most accurate estimate of test set error is
given by cross-validation, which requires much more comput-
ing. For derivations see Appendix C.

The {z,} are selected from a uniform distribution on [0, l]lO.
Normalize the 11, 1 2 , 13 to have upper 97.5% point = 2.0, and
then put ui equal to 2(1; - 2).

Sample size was 400 and the {y,} generated as

Yn = a . g (z n) + E n ,

where the { E , } are unit normal noise. The constant a was
defined so that for f(s,) = a . g(z,), the standard deviation
of the {f(zn)} was 4.0, giving a s/n ratio of 4.0.

A 4000 member test set was generated and used to estimate
the prediction error (PETS) as successive hinge functions were
added. The PEGCV for c = 1.5 was also computed. The initial
value of the sample variance of the {y,} was 17.4. A linear
regression fitted to the data resulted in a mean residual-sum-
of-squares of 10.3.

The number of hinge functions fitted was increased from
1 up to 7 with the results summarized in Table 11. The
coefficients of the hinges in the 3-hinge fit are given in Table
111. The action of these three hinges is clear from inspection.
The first hinge is fitting logit(v2) on one side and the other two
logits on the other side. The second hinge is fitting logit(v1) on
one side and the other two logits on the other side. Similarly,

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

BREIMAN: HINGING HYPERPLANES FOR REGRESSION, CLASSIFICATION, AND FUNCTION APPROXIMATION 1005

TABLE I1
SUMMARY OF FIT BY HINGE FUNCTIONS

MRSS PEGCV PETS
Hinge

Functions

1 5.22 6.20 5.69
2 2.07 2.69 2.49
3 1.09 1.56 1.52
4 1.00 1.58 1.52
5 0.96 1.59 1.53
6 0.82 1.62 1.54
7 0.78 1.75 1.59

TABLE 111
COEFFICIENTS OF HINGES IN 3-HINGE FIT

Variable First Hinge Second Hinge Third Hinge

1 -2.2 9.8 0.4
2 -6.0 10.6 0.5
3 -8.1 8.2 1.4
4 10.9 6.8 3.5
5 13.4 -5.7 5.9
6 10.9 -5.2 6.3
7 -9.0 -5.0 -6.6
8 -6.5 -3.1 -7.4
9 -3.1 -2.6 -6.8
10 0.7 -2.5 -8.2

the third hinge fits logit(v3) on one side and the others on
the other side.

The minimum P E G ~ v selection criterion picks the same
3-hinge fit as the minimum PETS criterion, (although PETS
ties between the 3- and 4-hinge fits). In fact, the PEGCV is a
minimum at the 3-hinge fit for every value of the parameter

. c in [l], [3].
The running time for this example is 7.4 CPU seconds.

B. Stepwise Forward Selection of Variables and
a Higher Dimensional Examples

If the data set has, say, 1000 cases and 100 variables,
then fitting 4 hinge functions involves the estimation of 500
parameters. This is only 2 cases per parameter estimated and
will probably result in a noisy estimate. If possible, one would
want to keep a tighter control on the number of parameters
estimated. In addition, with larger dimensionality, fitting hinge
functions becomes slower.

To deal with these two issues, a stepwise forward variable
selection method for entering hinge functions is used. Here
is the idea: start with a search through all A4 variables to
find the single variable hinge that gives minimum RSS. Call
the variable used $1. Now search among all xm, m 2 2 to
find the lowest RSS hinge based on the pairs of variables
($1, xm). Keep adding variables until a minimum is found in
the generalized cross-validation (GCV) estimate of prediction
error. Then start this process over to find the next hinge: refit
and keep adding hinges until the PEGCV hits a minimum.

To illustrate, the following 100-dimensional example was
run: the sample size was 2000 and the {zn} were sampled

TABLE IV
SUMMARY OF RESULTS FOR THE 100-DIMENSIONAL EXAMPLE

of
Hinge variables* MRSS pEGcv**

1 21 11.01 11.78 12.70
2 20 6.71 7.67 8.20
3 25 2.83 3.52 3.57
4 13 2.16 2.82 2.69
5 4 2.13 2.83 2.71
6 5 2.09 2.84 2.73
7 3 2.08 2.86 2.75
8 3 2.06 2.88 2.79
9 3 2.04 2.90 2.83
10 4 2.02 2.90 2.85

'The minimum number of variables in a hinge was set at 3.
c = 1.5. **

from the uniform distribution on (0, 1}lo0. Define

where the {(vi(z)} are linear functions of X I , . . . , X ~ O O . The
yn are given by

where the {en} are unit normals and a is taken to make the
sln rate 4.0.

The {VI} are defined as follows: For 5 = 20, 40, 60, 80, let

c (k , m) = exp(-0.7lm - kl),

define

and

Normalize the li to have unit variance and take vi = li - 1.
The sample variance of the {y,} was 17.1. A linear regres-

sion on all 100 variables gives a mean residual-sum-of-squares
of 16.3, so the regression surface was predominantly nonlinear.
The time needed to run this example was 2.8 CPU minutes (RS
6000). Table IV summarizes the results.

The structure of both of these examples was devised so
that an optimum fit could be gotten using a neural network.
It would be interesting to see what accuracies and compute
times are produced by running these examples on a neural
network program.

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

1006 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

v. USING HINGES IN CLASSIFICATION

To use hinges in classification, the problem needs to be
reformulated into a regression context. Suppose there are J
classes numbered 1, . . . , J with the probability P(j lz) of
being in class 2 assumed known. Then the Bayes optimal
classification rule is: classify z into that class j for which
P (j (z) is maximum.

Let the random variable Y be one in class j , other-
wise zero. Then the function d of the vector X that min-
imizes E(Y - d (X)) z is P(j1z). With classification type
data { (j n , zn) , n = l , . . . , N } and j , E { 1,. . . , J } , these
remarks suggest the following approach: define

3n = 3 ,
Yjn = { otherwise.

Find J functions f?j(z) such that RSSj = llyj - 8j1I2 is small.
Classify a future object with observed z as class j if

d j (z) = max;d;(z).

The problem is now to estimate the functions d j (z) from the
data. If linear d j are used, the result is similar to discriminant
analysis, and performance can be poor in situations where the
P(j lz) are not well approximated by linear functions. The
neural network methodology uses Oj (z) estimated through the
use of sums of sigmoid functions of linear functions.

One approach is-for each j approximate the {yjn} by a
sum of hinge functions h j k (2 ,) . This uses up parame-
ters at an alarming rate. A different approach, employed in
classification trees, for instance, is to use a common basis of
functions, h l , . + + , h ~ , to approximate each set of {yj,}, with
the approximations differing from class to class through the
coefficients of the { h k } , i.e., the approximations

k

are used. Then the problem becomes to find those hinge
functions that make

K

RSS = C m i q a j k ~ I l y j - Cajkhk11’
j K=l

as small as possible.
Suppose hl , . . . , hK-1 have been selected and residuals

K-1

k=l

computed. What is wanted is a hinge function f K , and
coefficients {yj} to minimize

j, n

Start with a hinge A(’), and denote by (+), that data for
which A(O)z 2 0 and (-) for the other data. Consider fitting
a hyperplane /3+ .z to the (+) data, and a hyperplane p- to
the (-) data and selecting {yj}, p+, p- to minimize

x,)? (5.3)

After this minimization has been carried out, the next hinge
is A(’) = p+ - p-, and the process is repeated until
convergence.

Minimization of (5.3) leads to either a J x J or M x M
eigenvalue problem. We derive the J x J problem. To begin
note that there is an indeterminancy in the scales of y, p+, p-.
This is resolved by taking I/y))* = 1. Partial derivatives of (5.2)
with respect to PA, p;;L leads to the equations

s+p+ = z+y,
s-p- = 2-7,

where S+ is the M x M matrix, S;,, = E+ x,,x,~,, Z+
is the M x J matrix Z 2 j = C+x,,rj,; similarly for S-
and 2-. Substituting these expressions for p+, p- into (5.3)
gives the expression

where

To minimize the RSS we want to maximize Y ~ H Y under the
constraint llyll = 1. This solution is the eigenvector of H
corresponding to its largest eigenvalue. Once y is known,
then Z+y, 2-7 are computed, ,b’+ = (S+)-lZ+y, p- =
(S-)-lZ-ly and A(’) = p+ -p-. After h~ is entered, then
refitting cycles are carried out refitting both the { h k } and the
{ a j k } . The decision on how many hinge functions to use in
the fit can be based on a test set or cross-validation.

A. Two Examples

The first data set used as an example was provided to us
by Richard Lippmann. To quote him “The database consists
of the first two formants frequencies (F1 and F2) of vowels
(Peterson and Barney, “Control methods used in a study of
vowels,” The Journal of the Acoustical Society of America,
vol. 24, no. 2, pp. 175-184, Mar. 1952) in Hz. The actual
data was gathered by digitizing a figure from Rabiner and
Schafer, Digital Processing of Speech (Prentice-Hall, 1978).
The digitized data was arbitrarily divided into 338 training
samples and 333 testing samples.”

There are ten vowel classes having roughly equal represen-
tations in both the training and test set. This two dimensional
data was used as a benchmark for various classifiers by Lee
and Lippman [ll]. Table V in an excerpt of their results.

Fitting 22 hinge functions gave a test set error of 18.6% and
training set error of‘20.4%. The compute time was 41.9 CPU

seconds. This translates into 517.5 CPU seconds scaled to the
machine used by Lee and Lippman. Although we conceived
of the hinge function methodology as primarily useful in high
dimensions, it is competitive in this two-dimensional example.

B. Simulated Wave Form Data

The second example consists of simulated data with struc-
ture given in pp. 49-55 of the book by Breiman et al. [5] . It

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

BREIMAN: HINGING HYPERPLANES FOR REGRESSION, CLASSIFICATION, AND FUNCTION APPROXIMATION 1007

TABLE V
CLASSIFIER PERFORMANCE

~~

% Error
Test Set Training Times Classifier ~ P t (CPU seconds)

Unimodal Gaussian 20.4 22.5 31.4
Back-Prop. 21.0 21.0 2458.4
Hypersphere (RCE) 23.1 17.3 144.9

LVQ 18.0 13.5 425.9
Feature Map 19.5 22.2 113.1
CART Tree 21.9 16.0 8.2

K” 17.4 20.4 .5

(4
Fig. 5. Waveforms. (a) q (t) . (b) w2(t) . (c) w3(t) .

is a 3-class, 21-dimensional problem based on the waveforms
wl(t), w2(t), w3(t) graphied in Fig. 5.

Each class consists of a random convex combination of
two of these waveforms sampled at the integers with noise
added. More specifically, the measurement vectors are 21
dimensional: z = ($1,. . ,221). To generate a class 1 vector
2, independently generate a uniform random number U and 21
random numbers € 1 , . . , €21 normally distributed with mean
zero and variance 1. Then, set

2, = vw1(m) + (1 - u)wz(m) + E, , m = 1,. . . ,21.

Three hundred measurement vectors were generated using
prior probabilities of (5 , i, i), so there were approximately
100 per class.

In one set of data generated as above, the CART tree
classifier had a test set error rate of 28%. Using linear
combinations in the tree construction lowers the test set error
rate to 20%. Linear discriminant analysis with stepwise entry
of variables gave a test set error rate of 26%.

Ten data sets were generated using the above mechanism,
together with ten test sets of size 3000. When each training
set hinges were added and refitted. The model selected (i.e.¶
number of hinges fitted) was that with minimum test set error.

For the stochastic structure of this data, the Bayes rule can
be computed and applied to the test sets. The averages over
the 10 repetitions are:

number of hinges 3.6
training set misclassification rate (%) 9.5
test set misclassification rate (%) 18.1
Bayes rule misclassification rate (%) 13.6
CPU seconds (RS 6000) 39.7.

The hinges procedure improves on the tree classifier using
linear combination splits. But the error rate is still somewhat
above the Bayes rate. We revisit this example in the next
section.

C. Stepwise Addition of Variables and More Examples
For high-dimensional problems a variable selection method

is imperative. The method used in classification is an exten-
sion of the regression method. Suppose that hinge functions
hl , . . . , h ~ - l have been selected and residuals { r j n } com-
puted. What is wanted is a hinge h K and { ~ j } to minimize
(5.2).

The stepwise procedure first finds the single variable hinge
(say on 21) and coefficients {yJ} that minimize (5.2). Then
it finds the two variable hinge based on (2 1 , x,), m # 1,
and coefficients {yJ} that minimize (5.2). Variables are added
until the PEG^^ criterion derived in Appendix 111 becomes
minimum. Then refitting is carried out among all K hinge
functions. The number of hinge functions fitted is determined
by test set or cross validation.

D. The Wave Form Example Revisited
The simulated data of section 5.2 was rerun using the step-

wise procedure. The results (averaged over the 10 repetitions)
were:

number of hinges 3.7
number of variables per hinge 9.3

10.5
17.3
13.6

training set misclassification rate (%)
test set misclassification rate (%)
Bayes rule misclassification rate (%)
CPU seconds 7.3.

To generate a class 2 vector, repeat the preceding and set Note that the accuracy increases by 0.8% while the compute
time has been cut from 40 CPU seconds to 7 CPU seconds. The
decrease of 0.8% seems insignificant, but another way to look
at it is that the all variable procedure is 4.5% above the Bayes
rate while the stepwise procedure is 3.7% above.

2, = uw1(m) + (1 - u)w3(m) + E , , m z 1, . . ,21.

Class 3 vectors are generated by

2, = uwz(m) + (1 - u)w3(m) + E, , m = 1,. . . ,21.

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

1008 IEEE TRANSACTIONS ON I N F O R M O N THEORY, VOL. 39, NO. 3, MAY 1993

E. High-Dimensional Simulated Data

To test the stepwise entry method on a larger problem, we
generated 10 class, 61 dimensional data with 1000 cases. In
structure, it is an extension of the 3 class wave form data.

The wave form function w (x) = 10 - min(l0, I x ~) , has a
peak at zero of height 10, qnd is zero outside of [-lo, 101.
Consider five functions

wk(m) = w (m - 10k - l) , k = 1, . . . , 5 ,

where m = l , . . . ,61. These functions are centered at the
points 11, 21, 31, 41, 51. Let S I , .. . , Slo consist of all sub-
sets of size three of { 1, . . . , 5 } , i.e., SI = (3 , 4, 5) S 2 =

The data is generated as follows: For n = 1 to 1000,
the class j E 1, . .., 10 is selected with probability 0.1 of
each choice. Three uniform random numbers 211, 212, u3 are
generated. For the lowest index kl in S,, q(k1) is defined
as u1/(u1 + U:! + 213); for the second lowest index k 2 in
S,, q (k 2) = u2 / (211 + 212 + 213) and for the third index
q(k3) = u 3 / (U 1 + 212 + 213). For k S,, q (k) = 0. Then,
for m = 1 to 61,

{2, 4, 5 } , . * * , SlO = (1, 2, 3) .

x (w .) = C q (k) w (m , k.) + f,,
k

where the { E , } are independent unit normals.
Two areas were investigated with this data. First was

the question of how accurately could classification be done
using linear methods only. The second was how accuracy
was effected by changing the constant in the criterion which
governs the number of variables entered into a hinge.

To explore the accuracy of linear methods, a stepwise
entry of variables into a linear classifier was employed. Let
S C (0, . + . ,61} be the subset of variables already entered,
with Is1 = K. Then the (K + 1)st variable entered is that x k ,

k $2 S that minimizes

m i n { c 3 m , c J , k) x Y n , j - z C j , m x m n -Cj,kXkn .
J > n (mES) 2

For each K a 3000 case test set was used to estimate the
classification error. The minimum test set misclassification rate
was 37.3% occurring wben 12 variables were entered.

The second question is this: the PEGCV criterion given in
appendix I1 keeps adding variables to a hinge as long as the
P E G c ~ value is decreasing. Using c = 1.5, the decreases are
quite small for a long string of entries. In this case, is the
program using up degrees of freedom for small gain, and could
more accuracy be accomplished by going on the next hinge?
To investigate this, we ran the program using c = 1.5, 2.0, 3.0,
6.0. Table VI gives the results for the number of hinges giving
the minimum test set error. The accuracy results are reasonably
insensitive to the number of variables per hinge--equivalently,
to the value of c between 1.5 and 6.0. The evidence of this
example argues for a value of c between 2.0 and 3.0. But in
the smaller waveform example increasing c from 1.5 to 2.0
increases the test set error to 17.7%.

The nonlinear hinge procedure improves considerably on
the linear error rate. Unfortunately, the Bayes procedure is

TABLE VI
SUMMARY OF RUNS ON EXTENDED WAVEFORM DATA

~ ~ _ _ _ _ ~ ~

Value of constant
1.5 2.0 3.0 6.0

Number of Hinges 4 4 4 4
Average No. Variablesminge 25.5 16.8 11.5 6.5
Training Set Error (%) 14.0 13.9 15.5 17.3
Test Set Error (%) 19.2 18.6 18.6 19.8
CPU seconds 135.4 84.0 70.1 40.4

difficult to calculate, so there is no way of telling how much
better can be done.

VI. CONCLUSION

Fitting hinge functions to data can give good predictive
results in regression, classification and noiseless function ap-
proximation. Using stepwise entry of variables into the hinges,
accurate predictors in fairly large problems can be derived in
short compute times. These preliminary results are encour-
aging, but there are important questions that need further
work.

1) Choice of a good initial starting hinge is important. The
current strategy uses A4 different starting hinges in M
dimensions and takes the best result. Is it possible to
find a single starting hinge that will provide uniformly
good results?

2) The stepwise entry method used is crude. A more refined
procedure, for example, is to enter two variables at a time
and then delete from the set of entered variables that
single variable whose deletion causes the least rise in
RSS. Can more sophisticated stepwise entry procedures
significantly improve accuracy?

3) In stepwise entry, the variables in the first hinge some-
times appear to be selected almost by happenstance, as
the algorithm is hunting around to get some purchase.
Is there a way to improve the variable selection in the
first hinge?

4) The hinge algorithm is not guaranteed to find the global
minimum at [I f - c f h k l] over h l , . . . , h ~ . If f(z)
is badly behaved, the hinge algorithm may converge to
a poor fit. Is there a way to consistently get near the
global minimum?

This methodology will be explored in the binary tree
context, and using a related iterative approach, research into
fitting by sums and products of ramp functions is being carried
out in collaboration with Jerome Friedman. (A ramp function
is a continuous function y = ~(z) formed by the intersection
of a hyperplane with two planes of constant height).

APPENDIX A
PROOFS

Proof of Theorem 1: Without loss of generality (w.l.o.g.),
we can assume that I? = I and IlA*ll = 1. For any A('), let
S+ = {z; A(O).z 2 0}, S- the complement space, and define
r+, I?- as previously. Using an orthogonal transformation
on 50, X I , . . . , x, we can reduce I?+, I?- to diagonal form

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

BREIMAN: HINGING HYPERPLANES FOR REGRESSION, CLASSIFICATION, AND FUNCTION APPROXIMATION 1009

where w+ = e+ . x, v- = e- . x. Assume that < 1, then
a > 0. S-+ is the set s 2 0, as + ht < 0, which combines
into 0 5 s < -(h/a)t. S+- is the set 0 > s 2 -(&/a)t.
Letting y = lh/al,

Define

then 8(y) 5 1, and B(y) = O(y2l5) as y + 0. To verify these
statements, note that

L lv t l dP 5 = 1,

and

Llvtl dP 5 (P(T))1/2(Ev4Et4)1/4.

Now max(P(S+-), P(S-+)) 5 P(ls1 L yltl), and the latter
is dominated by p(yb) + c/b4. Taking b = y-1/5 makes this
bound equal to

q(y) = p(y4l5) + cy4'5.

Now,

P (A (O) . Z 2 0) = P(A* . Z 2. (A* - A(')) . z)
2 P(A* . Z 2 0)
- P(lA* 5 / (A* - A(')) '21).

The last term is bounded by

With a = (6(0))4/5,

Let c* = P(A* x > 0) , then,

1 [A (C * - q (S (0))
+

A(1 - c* l l - q(6@))

Noting that y 5 S(')/d- gives the result that

where $(6(')) = O((6(0))2/5). 0
Proof of Theorem 2: W.l.o.g., we can take X I , - , X M

i.i.d. N(0 , 1) such that (A* . x) = 21. For any A('), let
s = (A(') x) . Then,

and

A(')(m) = A*(m) - 2{E(zmx1; 2 1 2 0, s < 0)
+ E(xmzl; 21 < 0, s > 0)).

where

B (t) = 1 - 4 Lm x2@(-tx) f (x) dx

2 1 X (t) = - . -
7r 1 + t 2 '

f(2) is the standard normal density and @(x) = sf, f(y) dy.
Therefore,

Now, 8 ' (t) = (4/n)(l + t2)-2, so for t > 0,

In consequence, $(t) > t , all t > 0, and t@) -+ 00 unless
do) = 0, so A("(1) + 1 and A@)(m) + 0, m 2 1. 0

Proof of Theorem 3: The key is a lemma which we re-
produce from Barron [l].

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

1010 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Lemma: If f is in the closure of the convex hull of a set
G in a Hilbert space, with 11g11 5 b, all g E G, then for every
K 2 1 and every c' > b2 - l l f 1 I 2 there is an fK iy the convex
hull of K points in G such that [I f - f ~ 1 1 ~ I c / K .

Denote by hs(x) , the x+ function (i.e., h+(x) = x, x 2 0,
else = 0). Every hinge function is of the form

$(y) is in the closure of the convex hull of the set of functions
{h+(r (y -~))} with IyI 5 2cR and T E [-R, RI. This implies
that g(z) is in the closure of the convex hull of the set of
functions {h+(r(a .z - T)) } with llall = 1. Since

/ [h + (r (a . x - .))I2 d P

po + p .z + h + p o + A . 5 y 2 / (n .z - T) ~ d P I (2R)2y2,
The idea of the proof is to show that using the lemma completes the proof.

f (z) - 3;. Of(0) - f (0)
0

is in the closure of the convex hull of a set of functions
{h+(Ao + A . z)} with such that each function in the set
has norm bounded by c (~ R) ~ .

Begin by noting that

d z) = f(.) - 2. - f (0)

- R1 (eiw'" - iw .z - l) j (w) dw - 1

- cosO(w)]- Q(dW)
llW1l2

and g(z) is in the closure of the convex hull of the functions

c[cos(w . x + O(w)) + 'UI .z sin O - cos O]
llW1l2

sw(x) =

Let w = IIwIIa, b = O(w), y = a .z, and

c[cos(llwlly + b) - llwllysinb - cosb]
llw1I2

4(Y) = ,

", s w (z) = 4(YL llall = 1, Y E [-R, RI, 4(0) = 0, and
4 (y) is continuous on [-R, RI. Consider fitting $(y) at the
points j / J , j = 0, . . . , in t (RJ) with a function of the form

int (R J)

0

Then, E;-' ai = J [4 (j / J) - $(j - 1 /41 , and a; is J times
the second difference of the sequence $ (j / J) evaluated at
j = i . Thus, as J ---t CO,

A similar argument holds for approximating 4(y) on [-R, 01,
with sums of functions of the form h+(-y - i / J) . Thus, with

APPENDIX B
COMPUTATIONAL ASPECTS OF HINGE FITl7NG

There are devices used in the hinge programs both to
improve accuracy and improve computing speed. We mention
these to assist other researchers in building their own hinge
programs.

The basic building block is the hinge finding algorithm. In
this, two devices are noted: 1) if, in the iterations, the hinge
gets too close to the edge of the data, then it is pushed back
into the data. More precisely, if the number of points on one
side of the hinge (say Ax 5 0) falls a threshold value N H ,
then A(0) is readjusted so that #{z,; A .z, 5 0} = N H .

The major computational burden in the algorithm is usually
in the recomputation of S+ = (X t X) + , S- after a new hinge
has been selected. To reduce this, the sign of the new hinge is
taken so that the number of points in S+ is 5 int(N/2), S+
is updated only for those points that have changed sides, and
S- set equal to S - S+.

In the refitting algorithm, the last hinge Ak used in a hinge
function hk is stored. Any refitting of hk starts from A , and
the new hinge is then stored in place of A,. In the refitting
algorithm, the best performance has been gotten by using one
iteration of the hinge finding algorithm per hinge function per
cycle. Often, there are many cycles until the reduction in RSS
levels off.

In stepwise variable selection the problem was to construct
a computationally feasible procedure when dimensionality is
high-say over 50 variables. The device used is this: suppose
variables 21, . . . , XL have been entered into the current hinge.
What is stored is an indicator vector id(n), which tells which
side of the current hinge each z, is on, the matrices S;', SI',
and the values of xl . x, for all 1 I: L and m > L. For
a variable x,, m > L, the indicator vector id is used to
compute (21 . x,)+ for all 1 I L, (5 , . x,)+, (2, . y)+ and
the corresponding (.)- values. Then, a fast update formula
uses these values to produce the inverses Si ' , SI', where
the tilde indicates that the mth variable values are included in
the S+, S- matrices.

Then, hyperplanes based on (21, ... , E L , 2,) are fitted
on either side of the current hinge, the new hinge function
computed along with the new residual-sum-of squares RSS,.
The variable added is that with minimum RSS,. In actuality,
computing RSS, requires only a partial update of ST', SI1
and after m is selected, then the full update to ST', SI'
is done. The final step is to run the hinge finding algorithm
to convergence using (X I , . . . , ZL, 2,) and store as starting
values for the next round the final SI1, 3:' and i2.

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

BREIMAN: HINGING HYPERPLANES FOR REGRESSION, CLASSIFICATION, AND FUNCTION APPROXIMATION 1011

The stepwise forward procedufe in- classific_ation adds an
extra step. After the update to St, S- and 2, = (xi)+,
2- = (x$)-, form the updated H matrix (selection V-B),
and solve the J x J eigenvalue problem to find the new hinge
and RSS value. In the L variable case, either a J x J or L x L
eigenvalue provides the new hinge. If J is large, it will be
faster to solve the sequence of L x L problems.

APPENDIX C
CROSS-VALIDATION MEASURES

An important question in the use of hinges is: how many
hinges to use? If stepwise entry of variables is used, another
question is how many variables to enter into the current hinge.
If large test sets are available, they can be used to answer
these questions. If not, then we use cross-validation measures
as our basic tool.

Number of Hinges Used in Regression

One approach is to use 10-fold cross-validation (see Breiman
et al. [5]) . However, this increases the computations by a factor
of ten. Another approach is to use cross-validation measures
based on the leave-one-out method. That is, the case X , is
left out of the fitting, coefficients derived and then 5, used
as a single case test set. This is repeated for each case in the
data and then the mean taken of the sums-of-squares of test
set errors. The resulting measure is called the cross-validated
prediction error, or PEcv. In ordinary regression, it is not
difficult to show that

l N

N l
PECV = - X (r , / 1 - h d 2 ,

where T, is the usual residual and h, is the nth diagonal
element of the matrix H,,! = o ~ S - ~ X , ~ where S-' is
the inverse of the matrix ~,x,,x,r,. The trace of H
is the number of variables M in the equation. If h, is
replaced by its average E, h,/N in the PEcv expression,
the resulting approximation is called the generalized cross-
validation estimation of the prediction error and is given by

PEGCV = MRSS/(l - M / N) 2 .

In fitting hinge functions, recall that the fit is the sum of a
linear function and a function of the type h S (A e 5). That is,
RSS is the minimum of

(A.3.1)

Denote by ,6, & the minimizers of (A.3.1), and {r,} the
residuals. In the neighborhood of ,6, Ak, say ,d = ,8 + E ,

A; = Ak + Sk, (A.3.1) is approximated by

) 2

K

(?/n - p ' % - E h + (A k ' Z n) .
k = l

where I (.) is the indicator function.
Define the (M + 1)(K + 1) dimensional variable 5 by

= (2, z I (A 1 * x 2 O) , . * * , S I (A K . x 2 0).

Then, letting a = (E , 6 1 , . . . , S K) , (A.3.2) has the form

E(., - a . 5 J 2 . (A.3.3)

If the case numbered n' is deleted and the dyleted sum-of-
squares in (A.3.1) minimized, the resulting p , A, will be
close to ,B, Ak. Therefore, the deletion and cross-validation
measures for the nonlinear (A.3.1) can be approximated by
the same measures for the linearized (A.3.3). Thus, to first
order, the PEGCV for the hinge fitting is given by

n

PEGCV = MRSS/(l - N p / N) 2 , (A.3.4)

where Np = (K + 1)(M + 1).
Because of the replacement of h, by h, the expression for

PEGCV given by (A.3.4) is usually biased low. The simplest
way to correct this bias is to put

PEGCV = MRSS(1- c N , / N) ~ ,

where c E [l, 31. We have used c = 1.5 throughout with fairly
accurate results, although the choice of the number of hinges
selected is fairly insensitive to the choice of c.

Number of Variables Used in a Hinge (Regression)

Suppose that some hinges have already been fitted, the
current residuals are {T,} and stepwise entry of variables into
the next hinge function is being carried out to fit the {r,}.
Consider fitting with a single hinge function of MO variables.
Then, from the previous derivation leading to (A.3.4), we get

PEGCV = MRSS/(l - N p / N) 2 ,

where Np = ~ (M o + 1).
In the stepwise selection of variables context, there is

an additional reason why this expression is biased low. In
brief, the cross-validation measure previously used does not
cross-validate the variable selection process (see Breiman [3],
Breiman and Spector [4]). Again, the estimate

PEGCV = MRSS/(l - c N , / N) ~

is used (c = 1.5 throughout), and variables are added until
this expression starts to increase.

Number of Hinges Used in ClassiJication

An expression can be developed for the leave-one-out miss-
classification rate, but it is complex and difficult to evaluate.
For K hinges and M variables it requires the inversion of a
matrix of order K (M + 1) x K (M + 1). For 99 variables
with 5 hinges, this is a 500 x 500 matrix. If forward stepwise
entry of variables is used, the matrix is sparse, and efficient
methods may be found to invert it. In large problems a test set
provides a rapid.method for determining how many hinges to
use. If the sample size is not large enough for a test set, we
recommend 10-fold cross-validation.

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

1012 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Number of Variables Used in a Hinge (Classification)

Unless the test set is large, using it to both determine
the number of hinges and the number of variables in each
hinge may be overfitting the test set. The procedure outlined
below has proven a satisfactory alternative in the examples we
have run. It assumes that the “true misclassification rate” is
decreasing as long as the “true regression error” is decreasing.

Suppose there are currently MO variables entered into the
Kth hinge, and denote the residuals after the (K - 1)st hinge
was fitted by {rjn}. The PEGCV when MO variables are used
will be computed and variables added until the PEGCV stops
decreasing.

Let the coefficients {e3} and hinge function h(x) = ,D. 5 +
h + (A - x) based on MO variables minimize

(A.3.5)
3 , n

Denote zJn = r jn - c jh (xn) . Then z3 I h, = 1 , . . . , J ;
and if p = E, c jz3 , then p I xm, m = 0 , . . . ,MO. Further,
p I It,, m = O,... ,Mo where t , = x , l (A . x > 0).
Let p = ,D + E , A’ = A + 6, and e; = cj + u j . Then, the
linearized version of (A.3.5) is

C(zJn - u j h (x n) - c3(c ’ 2 , + 6. t,))’. (A.3.6)
3 , n

Define the 2(Mo + 1) dimensional variable tn = (xn, t,,), and
s = (E , 6) so that A.3.6 becomes

C (z 3 n - ujh(xn) - cjs * t n l 2 . (A.3.7)
3, n

If the n’ case is deleted, then the RSS is

C(zjn - U j h (X n) - c j s E,)’
3, n

- C (Z ~ ~ ~ - u j h (x n /) - C ~ S . E n /) 2 . (A.3.8)
3

Because of the orthogonality relations, the first term is

If the second term in (A.3.8) is expanded only to first-
order terms in uj , s, and we assume c: = 1, then partial
derivatives with respect to uj and s give the equations

(A) ~jl)hl l ’ + c j s (t , h) = -zjnrhn/
(B) (Cj UjCj)(t, h) + ss = -%,Jn’

where U,! = C j . c j z j n / , and S,,‘ = (tm, tmt).

first order) is as follows: define a matrix A by
Equation (A) gives uj in terms of s. The solution for s (to

and a vector U, by

Then,

n’ s = -U ,A-’v

and

PEcv 2 C(zjn - ujnh(zn) - cjsn . t,)’, (A.3.9)
j, n

where the subscripts n on uj,, s, indicate that these are the
values of uj, s gotten by minimizing the RSS with the nth case
deleted. Let RSS = Cj(zj, z j) . To terms of order RSS/N,
A.3.9 equals

n

To approximate the second term, we replace U: by Ti’. Noting
that Envkvn = A, the approximation equals 2(Mo + 1)Ti’.
Therefore,

PEGCV 2 MRSS + 2(Mo + l)E’/N.

Analysis of second-order terms shows that a slightly more
accurate value is

PEGCV MRSS - G2 + G2/(1 - Np/N)2

with Np = 2(Mo + 1). As previously, we correct this for
downward bias by using

PEGCV = MRSS - E’ + E’/(l - cN,/N)’.

In two examples, the evidence indicates that the more selection
is going on (i.e., the higher the dimensionality) the larger c
should be. In 21 dimensions, c = 1.5 was better than c = 2.
In 61 dimensions, the best value of c is between 2.0 and 3.0.
But in both cases, the test set error changes only slightly over
a wide range of c.

REFERENCES

A. R. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function,” Tech. Rep. #58, Dept. of Statist., Univ. of Illinois
at Urbana-Champaign, 1991.
L. Breiman, “The 7i method for estimating multivariate functions from
noisy data,” (with discussion), Technometrics, vol. 33, no. 2, pp.
125-160, 1991.
~, “The little bootstrap and other methods for dimensionality
selection in regression: S-fixed prediction error,” Tech. Rep. No. 169,
Statist. Dept. Univ. of California, Berkeley, CA, 1990.
L. Breiman and P. Spector, “Submodel selection and evaluation in
regression: The X-random case,” Tech. Rep. No. 197, Statist. Dept.
Univ. of California, Berkeley, CA, 1990.
L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees, Wadsworth Inc, 1984.
L. Breiman and J. Friedman, “Estimating optimal transformations in
regression and correlation,” (with discussion), J. Amer. Statist. Assoc.,
vol. 80, pp. 580-619, 1985.
L. Breiman and R. Ihaka, “Nonlinear discriminant analysis via scaling
and ACE,” Tech. Rep. #40, Statist. Dept., Univ. of Califomia, Berkeley,
1987.
J. Friedman, “Multivariate adaptive regression splines,” (with discus-
sion), Ann. Statist., vol. 19, no. 1, pp. 1-141, 1991.
J. Friedman and W. Stuetzle, “Projection pursuit regression,” J. Amer.
Statist. Assoc., vol. 76, pp. 817-823, 1981.
T. Hastie and R. Tibshirani, Generalized Additive Models. London:
Chapman and Hall.
L. Jones, “A simple lemma on greedy approximation in Hilbert space
and convergence rates for projection pursuit regression and neural
network training,” Tech. Rep. No. 16, Dept. of Math., Univ. of Lowell,
Lowell, MA, 1990.

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

BREIMAN: HINGING HYPERPLANES FOR REGRESSION, CLASSIFICATION, AND FUNCTION APPROXIMATION 1013

[12] C. Lee and R. Lippmann, “Practical characteristics of neural network
and conventional pattern classifiers on artificial and speech problems,”

[13] R. Lippmann, “Pattern classification using neural networks,” IEEE

[14] W. Meisel and C. Collins, “Repro-modeling: An approach to efficient
model utilization and interpretation,” IEEE Trans. Syst. Man Cybern.,

[15] G . Wahba, “Spline functions for observational data,” presented at S W ,
NIPS 89, Denver, CO, Nov. 1989. vol. 3, pp. 349-358, July-AUg. 1973.

Commun. Mag., vol. 11, pp. 47-64, 1989. Philadelphia, PA, 1990.

Authorized licensed use limited to: New York University. Downloaded on February 24,2024 at 22:29:50 UTC from IEEE Xplore. Restrictions apply.

