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1. INTRODUCTION 

The ability to, quite well, approximate various func- 
tions encountered in applications of sufficiently elab- 
orate hierarchies of perceptrons deserves a theoretical 
justification. Recently, universal approximation capa- 
bilities of three-layered perceptron type networks, with 
more or less general types of activation functions, were 
confirmed by several authors (Carroll & Dickinson, 
1989, Cybenko, 1989, Funahashi, 1989, Hecht-Nielsen, 
1989, Hornik, 199 l, Hornik, Stinchcombe, & White, 
1989, Stinchcombe and White, 1989), who have taken 
elegant advantage of various advanced theorems from 
functional analysis. However, all of these theorems have 
focused only on existence of an approximation, having 
supposed that the number of hidden units is not 
bounded. Important questions that remain to be an- 
swered deal with feasibility: what properties of the 
function being implemented play a role in determining 
the number of hidden units, and how quickly does this 
number grow with increasing accuracy? 

Several years ago, before the above mentioned results 
were known, Hecht-Nielsen ( 1987, 1990) called atten- 
tion to the significance and potential applicability to 
neurocomputing of Kolmogorov's remarkable theorem 
concerning representation of continuous functions de- 
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fined on an n-dimensional cube by sums and super- 
positions of continuous functions of one variable. 
However, as was pointed out by Girosi and Poggio 
(1989), the one-variable functions constructed by 
Kolmogorov (1957) as well as their later improvements 
by Lorentz (1966) and Sprecher ( 1965 ), are far from 
being any of the type of functions currently used in 
neurocomputing. In the present paper, we show that 
by sacrificing exactness of a representation, we can 
eliminate this difficulty. We give an approximation ver- 
sion of Kolmogorov's theorem, where all one-variable 
functions are finite linear combinations of affine 
transformations with an arbitrary sigmoidal function 
(i.e., a function a:~ --,- [0,1] with lima ( t ) =  0 

/ ~ - -OO 

and l i m a ( t ) =  1). We derive that any continuous 

function defined on an n-dimensional c u ~  can be im- 
plemented by means ofa perceptron type network with 
two hidden layers with any sigmoidal activation 
function. 

Although above mentioned approximation theorems 
require only one hidden layer, an advantage of our ap- 
proach is in the directness of our argument, requiring 
no use of advanced theorems from functional analysis, 
and so enabling to estimate numbers of hidden units 
as functions of the accuracy desired and the rate of 
increase of the function being approximated. Moreover, 
our construction provides a universal set of weights and 
biases for a network capable of approximating all func- 
tions from a certain set (characterized by a bounded 
norm and modulus of continuity) with a given accuracy 
so that only weights corresponding to the output units 
should be learned. This simplifies considerably a prob- 
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lem of learning by transforming it to a problem of linear 
regression. 

The organization of our paper is as follows: In Sec- 
tion 2, we deal with preliminaries, in Section 3, we 
explain the context of  the problem and present our 
main results, while all proofs are postponed to Sec- 
tion 4. 

2. P R E L I M I N A R I E S  

By a multilayer perceptron-type network we mean a 
multilayer network where units in each hidden layer 
sum up weighted inputs from the preceding layer, add 
to this sum a constant (bias) and then apply a common 
activation function, while units in the output  layer 
only sum weighted inputs. Since a mult ioutput  net- 
work can be composed of one-output networks, we 
shall restrict ourselves only to one-output networks. 
Since in application, values of  possible input vectors 
are bounded, we shall suppose that they are within a 
unit n-dimensional cube I n ( I  = [ 0,1 ] ). In this paper 
we shall consider only perceptron type networks with 
sigmoidal activation functions (i.e., functions a :~--~I  
with l ima (t) = 0 and l ima( t )  = 1 (where R denotes 

I ~ ~X~ t ~  aTJ 

the set of  real numbers) .  So functions used in per- 
ceptron type networks are finite linear combinations 
of  compositions of  affine transformations of  ~ with 
some sigmoidal function a (i.e., functions of  the form 
k 

a/a( bi x + ci )). We call them staircase-like functions 
i I 

of a type a and denote set of all such functions S (a ) .  
In the context of neural networks, we are interested 

only in approximate realizations of  functions. Ques- 
tions concerning only the existence of approximation 
can be formulated in topological terms, such as the 
closure of  a set and a dense subset. We recall their def- 
initions: A closure of a subset D of a topological space 
S, usually denoted b y / ) ,  is the set of  points in S with 
the property that every neighborhood of such a point 
has a nonempty intersection with D. A subset D of a 
topological space S is called dense i f / )  = S. By C(S)  
we denote the set of all continuous real-valued functions 
on S. 

Topologies considered in this context are naturally 
defined by metrics, while several metrics can induce 
the same topology. The most often used metrics are the 
standard metrics from functional analysis defined by 
the supremum and the L p norms. The supremum 
norm, defined by Ilfll -- sup{ [ f (x ) l ,  x E X} with 
induced supremum metrics I l f -  gll -- sup{ I f ( x )  
- g(x)  I, x E X} and a derived topology called the to- 
pology of  uniform convergence, is suitable for appli- 
cations demanding the same quality of  performance 
for all input vectors from a set X. I f  some input envi- 
ronment  measure ~, expressing the importance or like- 
lihood of various input vectors, can be specified, then 

it is more convenient to use L p norms (p >_ 1 ), defined 
for a measure # on a set X of input vectors on the set 
L~(X)  of all the real functions f on X for which 
the Lebesgue integral f IflPdu is finite by Ilfllp~ 
= ( f  I f lPdu)  ~/p with the induced psedometrics 
pp,(f, g) = ( f I f -  glPdu) j/p 

In this paper, we shall formulate our results for sim- 
plicity only for the supremum norm. However, for rea- 
sonable measures on I n the space C(I  n) is dense in 
LP(I  ") with the topology induced by Ppu for every 
p _> 1, and moreover the topology of uniform conver- 
gence on the space LP( I ~) is finer (contains more open 
sets) than the topology induced by Opt. So approxi- 
mation capabilities with respect to supremum norm 
guarantee approximation capabilities also with respect 
to all reasonable input environment measures. 

A function o~y:(0,~) --* ~ is called a modulus of 
continuity of a function J': I n --~ ~ if 

wAS) = sup{ [f(x~, . . .  x , ) -  f(y~, . . .  Y,)I, 

( x ~ , . . .  x,), ( y ~ , . . .  y,)r:?_ l"with IXp-Ypl 

< 6 f o r e v e r y p =  1, . . .  n}. 

We call real numbers Wl, • • . w, integer independent 
k 

if 7, w~ z~ v ~ 0 for any integers z~, • • • zk. 

For a positive real ~ we call a set X ~_ ~ ~-distin- 
guishable if the distance between any two of its points 
exceeds ~. 

By ~q we denote the set of all natural numbers. 

3. M A I N  RESULTS 

First, let us briefly recall the history of Kolmogorov's  
representation theorem. Hilbert, in his famous lecture 
"Mathematische Probleme" at the 2nd International 
Congress of  Mathematics held in Paris in 1900, gave a 
list of 23 open problems, solutions of  which he supposed 
to be the most important  for further development of  
mathematics. The 13th problem, although formulated 
as a concrete minor  hypothesis, concerned solutions of  
polynomial equations (Kfirkovfi, 1991). Could roots 
of a general algebraic equation of higher degree be ex- 
pressed, analogously to the solution by radicals, by sums 
and compositions of one-variable functions of  some 
suitable type? Hilbert conjectured that the roots of the 
equation x 7 + ax  3 + bx 2 + cx + 1 = 0 as functions of 
the three coefficients a,  b, c are not representable by 
sums and superpositions even of functions of  two vari- 
ables. This was disproved by Arnold (1957). Kolmo- 
gorov (1957) even proved a general representation 
theorem stating that any real-valued continuous func- 
tion f defined on an n-dimensional cube I n (n >__ 2) 
can be represented as 

2n+ I n 

f ( x t ,  " ' '  x , )=  ~ ~pq(~ ~b~(xp)), 
q - I  p - I  
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where~bq(q= 1, . . . 2 n +  1) and ~k~ (p = 1, . . . n ,  
q = 1, • • • 2n + 1 ) are continuous functions of one 
variable. Moreover, the functions ~kpq are universal for 
the given dimension n; they are independent off .  Only 
the functions q~q are specific for the given function f .  
Several authors have improved on Kolmogorov's rep- 
resentation. Lorentz (1966) showed that the functions 
~q can be replaced by only one function ~ and Sprecher 
( 1965 ) replaced the functions ~kt~ by X~bq, where ~, is 
a constant and ~kq are monotonic increasing functions 
belonging to the class Lip[ ln2/ ln(2n + 2)]. 

Hecht-Nielsen (1987) reformulated Sprecher's ver- 
sion of the representation theorem in the language of 
neural networks as follows: Any continuous function 
defined on an n-dimensional cube can be implemented 
exactly by a three-layered network having 2n + 1 units 
in the hidden layer with transfer functions ~ k q  (p = 1, 
• • • n, q = 1, • • • 2n + 1 ) from the input to the hidden 
layer and ¢ from all of the hidden units to the output 
one. As Hecht-Nielsen pointed out, the universality of 
the transfer functions ~bpq can be exploited for repre- 
sentations of functions with values in spaces of higher 
dimensions using Kolmogorov's theorem for compo- 
sitions of the function f w i t h  all of the projections ~r~ : 
~m- - -~R, i=  1, - - - m .  

However, possessing even fractal graphs, the func- 
tions ~kq and ¢ are highly nonsmooth (this explains the 
failure of Hilbert's intui t ion~functions with fractal 
graphs had been supposed to be pathological then). 
Nevertheless, staircase-like functions of any sigmoidal 
type have a pleasant property, that they can approxi- 
mate any continuous function on any closed interval 
with an arbitrary accuracy. Taking advantage of this 
fact, we can derive from Kolmogorov's representation 
theorem the following approximation theorem. 

THEOREM 1. Let n E N with n > 2, ~:~ --~ I be a 
sigmoidal function, f ~ c (  In), and ~ be a positive real 
number. Then there exist k E ~ and functions ¢ki, ~pi 

S( cr ) such that 

n 

If(xt, • • • x,) - ~i( Z ~ppjxp)l < 
i=1 p=l 

for every (Xl, • • • x,,) E I".  

The same argument was used by Funahashi (1989) 
for increasing continuous sigmoidal functions. Of 
course, such nondirect arguments do not provide any 
estimates of numbers of hidden units. Being compli- 
cated and tricky, Kolmogorov's construction of the 
functions ~q anf~k~ contains a lot of unnecessary as- 
sumptions. The only really relevant property of the 
functions used in the induction construction of the 
functions ~q anf~b~ is that they have prescribed values 
on finitely many closed intervals, elsewhere they can 
be arbitrary, provided they are sufficiently bounded. 

However, such functions can be approximated arbi- 
trarily well by staircase-like functions of any sigmoidal 
type. Moreover, if our goal is only approximation, we 
can even considerably simplify the induction construc- 
tion in such a way that the staircase-like functions in- 
volved have much less steps than in the case of the 
Kolmogorov's original construction. 

THEOREM 2. Let n ~ ~ with n >__ 2, ~:~ --~ I be a 
sigmoidal function, f E C( I ~) and ~ a positive real num- 
ber Then for every m E ~q such that m >__ 2n + 1 and 
n / ( m  - n) + v < ~/l[tll and oof(l/m) < v (m - n ) /  
(2m - 3n ) for some positive real v, f can be approxi- 
mated with an accuracy ~ by a perceptron type network 
with two hidden layers, containing nm( m + 1 ) units in 
the first hidden layer and mZ( m + 1 )n units in the second 
one, with an activation function a in such a way that 
all weights and biases, with the exception of  weights 
corresponding to the transfer from the second hidden 
layer to the output unit, are universal for all functions 
g with Ilgll--< I~1 and Wg < wf .  

It is not surprising that upper estimates of number 
of hidden units needed for good approximations of 
general continuous functions are very large. Perhaps, 
for special types of functions, better estimates could be 
obtained. The above theorem guarantees possibility of 
constructing perceptron type networks with two hidden 
layers with universal set of weights for approximations 
of functions within a certain class so that only weights 
corresponding to transfer from the second hidden layer 
to the output unit are specific for the function being 
approximated. Since these specific weights appear lin- 
early in the parametrized expression, the problem of 
learning is in such networks transformed to the problem 
of a linear regression. 

4 .  M A T H E M A T I C A L  P R O O F S  

LEMMA 1. Let a:R --* I be a sigmoidal function and 
[a, b] C R be a closed interval Then the set of  all 

k 

functions f ' [a,  b] --* • of  the form f (  x)  = Y~ witr(vix 
i = !  

+ ui), where wi, vi, ui (i = 1, • • • k) are any real 
numbers, is dense in C([a, b]) with the topology of 
uniform convergence. 

Proof of  Theorem 1. By Kolmogorov's theorem 

2n+ 1 

f ( x l ,  " '"  xn)= ~ C~q(~ ~b~(xv) ). 
q=l p= l  

Take [a, b] C ~ such that for every p = 1, • • • n, q 
= 1, • • • 2n + 1 ~brv(I") ~_ [a, b]. By Lemma 1 for 
every q = 1, • • • 2n + 1 there exists gq E S (a )  such 
that Igq(x) - ~bq(X)l < ¢/(2n(2n + 1))for everyx E 
[a, b]. Since gq are uniformly continuous, there exists 

such that Igq(x) - gq(Y)l < ~/(2n(2n + 1)) for 
every x, y E [ a, b] with [ x - Yl < & For every p = 1, 
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• • • n, q = 1, • • • 2n + 1 there exists h ~  E S ( a )  such 
that for every x E I I h ~ ( x )  - ~ q ( x )  I < ~. Hence for 
every (x~, • • • x , )  ~ I ~ 

2n+l  n 

I ~ g o ( ~  h m ( x ~ ) ) - f ( x , ,  . . .  x , ) l  <~. 
q=l p = l  

The following lemma, however simple, is essential 
for our  p roof  o f  Theorem 2. It states that  any finite 
family o f  steps can be approximated arbitrarily well by 
a function belonging to S(tr) .  

LEMMA 2. Le t  a:R --* I be  a s igmoida l  funct ion,  ~ be 

a posi t ive real number,  k ~ N and  Xl < Yt < x2 < Ye 

< • • • < Xk < Yk be real n u m b e r s  andg:  { 1, • • • k } --* 
R be any  mapping.  Then  there exis ts  49 ~ S ( a )  o f  the 

k 

f o r m  49(x) = ~, a i a ( b i x  + ci) such that  149(x) 
i - I  

- g ( J ) l  < e f o r  every x ~  [x~, y~] and  f o r  e v e r y j  = 1, 
• • • k ,  and  

I1~11 -< m a x { I g ( j ) l , j  = 1, . . .  k}  + e. 

P r o o f  Choose some real number  Y0 with Y0 < x~ and 
set g (0 )  = 0. Denote  M = max{ I g ( x ~ ) l , j  = 1, • • • 

k }. Since a is a sigmoidal function, there exists such 
a real number  z that 0 < a(x)  < e / 4 M k  for every 
x < z and 1 - e / 4 M k  < a(x)  < 1 for every x > z. For 
each i = 1, • • • k, let b~x + c, be the unique affine 
transformation of  R mapping  the interval (y~ ~, xi ) 

onto ( - z ,  z ) ,  and let ai = g ( i )  - g ( i  - 1 ). Then for 
every x ~ [x;, yj] and for eve ry j  = 1, • • • k, we have 

k j 

f~, aia(bix + ci) - g(J)l < I ~  aia(b~x + ci) 
i - I  i - I  

k 

- g ( J ) l  + I ~ a i a ( b , x + c , ) l  
i -J+ I 

-< ~ Ig(i)l I~(b~x + c~) - ~r(bi+~x+ ci+~)l 
i=1 

+ I g ( j ) l l ~ ( b j x + c ~ ) -  II 
k 

+ ~ la~ll g(bix + ¢i)l <- M j e / 2 M k  
i - j +  i 

+ M ( k - j ) e / 2 M k  < ~. 

Consider staircase-like functions ffp ~ S ( a )  (p -- 1, 
• • • n) and a derived function xlt defined on I "  by 

ql(Xl ,  • • • X , )  = ~ ~/p(Xp). The function • divides 
p = |  

the cube I n into small boxes, resembling Rubik 's  cube, 
with the edges corresponding to the steps o f  ~b, and the 
gaps between them to the slopes o f  ~. I f  we guarantee 
that ~- images o f  these boxes are contained within 
closed mutual ly disjoint intervals, we can use L e m m a  
1 to obtain a function 49 ~ S ( a )  approximat ing values 
o f  any function f ~ C ( I " )  in some chosen points o f  
those boxes that are ~-pre images  o f  these intervals. 
The smaller the steps of  ffp, the smaller the little boxes 

and hence the better approximat ion  of  f .  The only 
problem is with the points within the gaps. However, 
this can be overcome by taking sufficiently m a n y  stair- 
cases with slopes over different intervals. This is, roughly 
speaking, the main  idea o f  the following proof. 

P r o o f  o f  Theorem 2. First, using L e m m a  2 we shall 
construct  m sequences { × I ,  i ~ N }, 1, • • • m of  stair- 
case-like functions belonging to S ( a ) .  For every i ~ N 
and q = l, • • • m define the family ~1 q o f  those sub- 
intervals o f  I on which the prescribed values will be 
approximated by functions X ~ by 

~/~ = { [ ( j -  l ) lmi  + q l m i + J , j / m  ' 

+ ( q -  1)/mi+~ 1 f ' l I ,  j = O, • • • mi}). 

Define g,q: {0, • • • m i} ~ g? by g q ( j )  = j / m  i. It re- 
mains to set accuracies vi ,  within which will be values 
ascribed to intervals A q q 0 ~ s¢ i by g~ ( j ) ,  approximated 
by functions from S(a ) .  To do this, choose some integer 
independent numbers  Wpq, p = 1, • • • n, q = 1, • • • 

m, and by means o f  them define mappings (q : I"  --* R 
by 

~q(x~, . . .  x , ) =  ~ %qxp. 
p 1 

For every i ~ N put  Di = { j / m  i, j = 0, • • • m i }. Since 
for every q -- 1, • • • m and for every i E N ( n ( D  i ) is 
finite, for every i E N there exists a positive real number  
~, with (q(Di)  being 2hi-distinguishable for every q = 1, 
• • • m.  Since all of  the functions ~ q  a r e  uniformly 

continuous,  there exists such a positive real number  vi 
that  whenever ( x l ,  • • • xn) ,  ( y l ,  • • • Yn) E I"  with 
Ixp - Ypl < vi for every p = 1, • • • n, then [(q(Xl, 
• • ° X n )  - -  ~ q ( Y l ,  ° ° ° Y n ) l  < O i "  By L e m m a  2, for 

every q = 1, • • • m there exists a function X~ E S ( a )  
with Ixq (x )  - j / m i l  < vi for every x E A q for all 
j =  0,  " ' "  m i. 

Construct  m sequences o f  functions { (q: I n --* R, 
/7 

i E N} by setting (~(x~, • • • x~) = ~ WpqX~(xp) for 
p 1 

every (xi, • • • xn) ~ I" .  Denote  by ;8 q the family of  
all those n-dimensional  boxes contained in I ~ having 
all of  their edges in ~4 q. For a member  o f  ~8~ call i its 
order and q its type. It is easy to verify that  for every 
i E iN, for every q = 1, • • • m and for every B E Nq, 
B fq D~ is a one-point set. Denote this point/3(B). Then 

~ (8)  ~_ [~ (~(B) )  - n,, ~(f l (B))  + ~1. 

Since n u m b e r s w ~ , p =  1, . . -  n , q =  1, . . .  m a r e  
integer independent,  images (~ (B) and (~ (B ' )  of  any 
two different members  B, B '  o f  381 are disjoint. More- 
over, even for boxes B and B '  o f  different types q and 
q', but  o f  the same order i, (~ (B)  and (~ (B ' )  are dis- 
joint  with the only exception being those boxes B of  
any type q which have N B )  = (0, • • • 0).  For each 
order i E N and for each type q = 2, • • • m,  there is 
exactly one such box. 



Kolmogorov 's  Theorem 505 

Let  f ~ c ( I n ) .  Since m > 2n + 1, there exists ~ > 0 
with n / ( m  - n )  + ~(  1 + n / 2 ( n  - m ) )  < 1. P u t  

a = n / ( m  - n )  + ~(1 + n / 2 ( n -  m ) ) .  

We shall construct  by inducton  using L e m m a  2 a se- 
quence o f  funct ions { 4~i, i ~ N} belonging to S ( a )  and 
an increasing sequence of  na tura l  number s  { ki, i 
N} such that  for every i ~ 

I1~,11 -< od-' l l f l l  ( i )  

and 

I I f -  ~; ~7 <~" ~<,11-< <~illfll. (2) 
q=i j= l  

Put  ~b0 = const 0 and k0 = 0. Suppose tha t  for every 
m 

j < i ~b~ and k~ are already defined. Put  hi = f -  
q=l 

i--I 

j=l 

Since in is compact ,  hi is un i formly  cont inuous  and 
hence there exists ki ~ ~ with k; > k,_ ~ such that  the 
diameters  of  ~ : i m a g e s  of  all boxes o f  the order  k~ and 
of  any type q = 1 ,  • • • m are smaller  than  ~ l l h i i l / 2 .  

By L e m m a  2 there exists such 4~i ~ S ( a )  that  for 
every q = 1, • • • m ,  for every B ~ ~ and for every 

x ~ [17,f,,(~l(B)) - ,~k,, ~<,(t~(B)) + ,~k,] 

we have 

I~i(x) - -  hi ( f l ( n ) ) l ( m  - n)l < ~ l l h i l l l 2 ( m  - n )  

and 

I1~,11 < IIh, t l l ( m  - n)  + ~llh, l l l 2 ( m  - n ) .  

So ( 1 ) is fulfilled, since according to our  induct ion 
assumption II h; II - <  a i - l  I[ f I1. 

To verify (2)  it is sufficient to show that  

since 

t l h , -  ~ e~,.f~,ll < o, llh, ll, 
q=l 

q=l j=l q=l 

and our  induct ion assumpt ion  guarantees  that  [[hil[ 
_< ~ i -~ l l f l  I 

For every (xi, ' ' '  x~) ~ I ~ there exist at least 
m - n different values of  q for which there exists a box 
B q  ~- ~qki with (xi, • • • x ~ )  ~ B q (since in the worst 
case there is for each c o m p o n e n t  Xp of  (x~, • • • x~) a 
different value qp with Xp being conta ined  in no interval  
f rom q O4k). Suppose that  for q = 1, . . .  m - n 
(Xl, . .  x , ~ B  q f o r s o m e B  ~ q  • ki, and so [~bi" ~ ,  
(x~, • • • x ~ ) -  h i ( f l ( B ~ ) ) / ( m  - n)l  < ~llh, ll/2(m - n )  

and I h i ( x i ,  • • • x n )  -- h i ( f l ( B ¢ ) ) l  < 6l lh i l l /2 .  Hence  

m--n 

Ih~(x , ,  . . .  x , ) -  ~ ¢~.~,(x~, . . .  x.)l 
q=l 

m - n  

= I ~, ( ( h ~ ( x , ,  • • • x~) - h ( B ( B q ) ) / ( m  - n)l 
q=l 

allh, ll. 

For q = m - n + 1, • • • m we only know tha t  

q X I ~ , ' ~ , (  ,, " "  x~)l ~ I1~,11 

<-- IIh, l l / ( m  - n )  + ~Uh~ll /2(m - n) .  

So 

Ih(xl,  " ' "  x , ) -  ~ ~bi~Z,(xl, - - "  x,)l 
q=l 

m - n  

< - I [ h , -  Z 4~,•~<,[I + II ,~,.tTZ, II 
i~l q=m-n+l 

<_ ( 5 + n / ( m  - n)  + 5 n / 2 ( m  - n))l lh,  ll = ~llh, ll, 

For a given ~ > 0 take i E N with aillfll < ~. For 
every j = 1, • • • i pu t  ~bpqj = w ~ .  ×~j. Since x q ki ~ 

S ( a ) ,  ~bpq~ E S ( ~ ) ,  too. So we have 

q=l j=l p=l 

for every (xl . . . .  x , )  E I ". 
After a suitable change of  indexes, we obtain  an ap- 

p rox imat ion  of  f i n  the fo rm stated in T h e o r e m  1. 
Analyzing construct ions used in this proof,  we shall 

derive upper  est imates of  the n u m b e r  o f  hidden units. 
Take functions ×~ and families of  boxes ~ ,  q = 1, 
• • • m,  defined above. Each of  these functions has 

m + l  

m + 1 steps and hence X~ is o f  the form ~ aq:(bqix 
i = l  

+ Cqi). Like above construct  a funct ion ~bl with pre- 
scribed values on intervals containing ~ - i m a g e s  of  
boxes of  all families ~q .  Since there is m families, and 
each family contains ( m  + 1 )~ boxes, ~bl is o f  the fo rm 

m ( m + l )  n 

4~(  vj y + ub. 
j = l  

Because of  our  assumpt ions  on m,  f i s  app rox ima ted  
within the desired accuracy  ~ by 

4,,( ~ WeqX~(xp)) 
q=l p = l  

m(  m+ l ) n n m + l  

q=l j = l  p = l  i=l 

v:w~aqi~r( bqixp + Cqi) ) 

+ u j)). 
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NOMENCLATURE 

R real line 
~m m-dimensional euclidean space 
I interval [ 0,1 ] 
I n n-dimensional unit cube 
7i- i projection mapping R '~ --~ R 

natural numbers 
lima(t) limit of a(t) 
t - - - ~  
S(a )  set of all functions of the form 

k 

Z a i a ( b i x  + ci) 
i = 1  

C(X) set of all continuous functions on a to- 
pological space X 

/5 the closure of a set D 
II f II supremum norm 
ffd~ Lebesgue integral 
LP(X) set of all real functions on X for which 

f IflPdu is finite 
[If Ilp~ L p norm 
~f modulus of continuity o f f  
Lip [ a] class of functions 


