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We show that Kolmogorov‘s theorem on representations of continu- 
ous functions of n-variables by sums and superpositions of continuous 
functions of one variable is relevant in the context of neural networks. 
We give a version of this theorem with all of the one-variable functions 
approximated arbitrarily well by linear combinations of compositions 
of affine functions with some given sigmoidal function. We derive an 
upper estimate of the number of hidden units. 

Hecht-Nielsen (1987) suggested that a remarkable mathematical result of 
Kolmogorov (1957) could provide new insights and tools for understand- 
ing multilayer neural networks. There are several theorems in different 
branches of mathematics named after this great Russian mathematician. 
The one mentioned by Hecht-Nielsen was a theorem disproving Hilbert’s 
conjecture formulated as the thirteenth of the famous list of 23 open 
problems that Hilbert supposed to be of the greatest importance for the 
development of mathematics in this century. 

The thirteenth problem, although formulated as a concrete minor hy- 
pothesis, is connected with the basic problem of algebra - the solution 
of polynomial equations. Could roots of a general algebraic equation 
of higher degree be expressed, analogously to the solution by radicals, 
by sums and compositions of a one-variable function of some suitable 
type? Hilbert conjectured that some continuous functions of three vari- 
ables are not representable by sums and superpositions even of functions 
of two variables. This was refuted by Arnold (1956). Kolmogorov (1957) 
even proved a general representation theorem stating that any contin- 
uous function f defined on an n-dimensional cube is representable by 
sums and superpositions of continuous functions of only one variable. 
Kolmogorov’s formula 

readily brings to mind perceptron type networks with the qualification 
that the one-variable functions p4(q = 1,. . . ,2n + 1 )  and $ J ~ ~  (p = 1,. . . , n, 
q = 1, . . . ,2n + 1) are far from being any of the type of functions currently 
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used in neurocomputing. In fact, having even fractal graphs, they are 
highly nonsmooth. 

This was the reason for Girosi and Poggio’s (1989) criticism of Hecht- 
Nielsen‘s proposal. They formulated two main reservations: 

1. The functions $lPq are highly nonsmooth. 

2. The functions pq depend on the specific function f and hence are 
not representable in a parameterized form. 

We shall show that by replacing the equality in equation 1.1 by only an 
approximation, we can eliminate both of these difficulties. Highly non- 
smooth functions encountered in mathematics are mostly constructed as 
limits or sums of infinite series of smooth functions. This is the case, e.g., 
with the classical Weierstrass‘s function with no derivative at any point 
and many other famous examples of functions with fractal graphs. Since 
in the context of neural networks we are interested only in approxima- 
tions of functions, the only problem concerning the possible relevance 
of Kolmogorov’s theorem for neurocomputing is whether Kolmogorov’s 
construction can be modified in such a way that all of the one-variable 
functions are limits of sequences of smooth functions used in perceptron 
type networks. 

By a perceptron type network we mean a multilayer network where 
units in each hidden layer sum up weighted inputs from the preceding 
layer, add to this sum a constant (bias), and then apply a sigmoidal non- 
linearity, while units in the output layer sum only weighted inputs. So 
functions used in perceptron type networks are finite linear combinations 
of compositions of affine transformations of the real line El with some 
given sigmoidal function [a function ~7 : El -+ (0,1] with limt--oo o(t) = 0 
and limb+oo o(t) = 11. We call them staircase-like functions of a sigmoidal 
type (or of a type a).  

Kolmogorov’s construction of the functions pq and 1Lp4 and their later 
improvements by Lorentz (1962) and Sprecher (1965) are, in fact, per- 
fectly suited for staircase-like functions of any sigmoidal type. Being 
very complex, all of these arguments contain a lot of unnecessary as- 
sumptions. But the only really relevant property of the functions used in 
inductive construction of one-variable functions pq and $+q is that they 
have prescribed values on finitely many closed intervals; elsewhere they 
can be arbitrary, provided they are sufficiently bounded. However, such 
functions can be approximated arbitrarily well by staircase-like functions 
of any sigmoidal type (KurkovP 1991). 

To illustrate the idea of Kolmogorov’s construction of functions $ J ~ ,  re- 
call the classical Devil’s staircase (Fig. 1 ). Kolmogorov, probably inspired 
by this nineteenth-century construction, developed “the second genera- 
tion Devil’s staircase,” something Mandelbrot (1982) would appreciate, 
by replacing in each induction step the already constructed Devil’s stair- 
case’s steps (within a very small neighborhood of each) by smaller steps. 
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Figure 1: Devil's staircase. 

The result was a strictly increasing function with, in contrast to the recti- 
fiable classical Devil's staircase, a fractal graph. Nevertheless, both first 
and second generation Devil's staircases are limits of uniformly converg- 
ing series of staircase-like functions of any sigmoidal type. 

In contrast to the functions (l'p4, being for the given dimension n uni- 
versal, the functions pq depend on f. However, they can be also con- 
structed as limits of staircase-like functions of any sigmoidal type. Con- 
sider for staircase-like functions (+, of any sigmoidal type, the function 
9 defined on the n-dimensional cube by 9 ( x l ,  . . . , x, )  = CF=, $ J ~ ( X ~ ) .  

defines on the cube a Rubik's cube-like structure with small boxes hav- 
ing edges corresponding to the steps of (+ and gaps corresponding to 
the slopes of gP. Suppose that the small boxes are mapped by 9 into 
closed mutually disjoint subintervals of the real line. Ascribing to these 
intervals values off at chosen points in the small boxes that 9 maps into 
these intervals, we define a finite family of steps that can be approxi- 
mated arbitrarily well by a staircase-like function p of a given sigmoidal 
type. This function p is representable in a parameterized form with the 
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values of parameters depending on f .  The function . \II approximates 
f on the subset of the cube formed by the union of all small boxes. The 
smaller the steps of $p, the better the approximation. However, f is not 
approximated on the gaps. Now, we come to the reason why there are 
2n + 1 terms under the summation in (1). By suitable shifts of the slopes 
of the staircase we can gain 2n + 1 Rubik's cube-like structures on the 
unit cube covering the n-dimensional cube sufficiently well in such a way 
that for each point there are more structures containing it in a box than 
structures containing it in a gap. We need 2n + 1 such structures, since 
at some point of the cube it may happen that each of its n coordinates is 
contained in the gaps of a different structure (at most n). 

These are, roughly speaking, the ideas behind the proofs of the fol- 
lowing theorems. 

Theorem 1. (Kurkovd 1991). Let n , m  be natural numbers with n 1 2, m 2 
2n + I, and u : El + [0, I] be any sigrnoidal function. Then there exist such real 
numbers w,,(p = 1,. , , n,q = 1,. . . , m) and functions qjq(q = 1,. . . , m) being 
limits of uniformly converging sequences of staircase-like functions of a type u 
that for every continuous function f : [0,1]" -+ El there exists a continuous 
function p : El --$ El being a limit of a uniformly converging sequence of 
staircase-like functions of a type a, suck that for every ( X I , .  . . , x,) E [ O , l ] "  

Theorem 2. (Kurkovd 1991). Let n 2 2 be a natural number, (T : El + [0,1] 
be a sigmoidal function, f : [0,1]" -+ El be a continuous function and f a 
positive real number. Then there exist a natural number k and sfaircase-like 
functions of a fype a $ p f ,  y i ( i  = 1.. . . , k , p  = 1.. . . , n)  such that for every 
( X I ,  .... xn)  E [0,1]" 

Theorem 2 implies that any continuous function can be approximated 
arbitrarily well by a four-layer perceptron type network. However, sev- 
eral recent results (Funahashi 1989; Hecht-Nielsen 1989; Hornik et al. 
1989; Cybenko 1989; Carroll and Dickinson 1989; Stinchcornbe and White 
1989, 1990; Hornik 1991) established that three layers are sufficient for 
approximations of general continuous functions. 

Nevertheless, the approach based on the technique developed by 
Kolmogorov is not without value. The above mentioned theorems are 
proved very elegantly using advanced theorems from functional analy- 
sis. However, nondirect proofs do not provide clear insight into con- 
structions of approximating functions. The directness of our proofs can 
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be exploited for estimating the number of hidden units and for explor- 
ing which properties of a function being approximated are relevant for 
the growth of this number. The first step in this direction was done in 
Kurkovii (1991), where the numbers of units in the second and the third 
layer are estimated by n m ( m  + 1) and m2(m + l )n3 respectively, where n 
is the dimension of the unit cube I” and rn depends on t/llfll as well as 
on the rate with which f increases distances. Hopefully, further analysis 
could bring finer estimates and more insight to the questions of what 
properties of the function being implemented play a role in determining 
the number of hidden units, and whether this number can be sufficiently 
reduced by using two instead of only one hidden layer. 
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