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Abstract

Recent general-purpose audio representations show state-of-the-art performance on various
audio tasks. These representations are pre-trained by self-supervised learning methods
that create training signals from the input. For example, typical audio contrastive learning
uses temporal relationships among input sounds to create training signals, whereas some
methods use a difference among input views created by data augmentations. However, these
training signals do not provide information derived from the intact input sound, which we
think is suboptimal for learning representation that describes the input as it is.

In this paper, we seek to learn audio representations from the input itself as supervision
using a pretext task of auto-encoding of masked spectrogram patches, Masked Spectrogram
Modeling (MSM, a variant of Masked Image Modeling applied to audio spectrogram). To
implement MSM, we use Masked Autoencoders (MAE), an image self-supervised learning
method. MAE learns to efficiently encode the small number of visible patches into latent
representations to carry essential information for reconstructing a large number of masked
patches. While training, MAE minimizes the reconstruction error, which uses the input as
training signal, consequently achieving our goal.

We conducted experiments on our MSM using MAE (MSM-MAE) models under the
evaluation benchmark of the HEAR 2021 NeurIPS Challenge. Our MSM-MAE models
outperformed the HEAR 2021 Challenge results on seven out of 15 tasks (e.g., accuracies
of 73.4% on CREMA-D and 85.8% on LibriCount), while showing top performance on other
tasks where specialized models perform better. We also investigate how the design choices
of MSM-MAE impact the performance and conduct qualitative analysis of visualization
outcomes to gain an understanding of learned representations. We have made our code
available online for further improvements and applications of the MSM framework.1

Keywords: Self-supervised learning, General-purpose Audio Representation, Masked Au-
toencoders, Masked Spectrogram Modeling

1. Introduction

With the recent progress of audio representation learning, general-purpose audio represen-
tations have shown good performance in various audio tasks (Saeed et al., 2021; Niizumi
et al., 2021; Wang et al., 2022). While previous supervised learning methods (Hershey et al.,

1. https://github.com/nttcslab/msm-mae
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Figure 1: MAE (He et al., 2022) pre-training flow; we redraw Figure 1 in the MAE paper, in
which we replaced the input image with a spectrogram and added loss calculation
flow. MAE masks 75% of input patches, then the encoder processes the visible
25% of patches only, saving 75% of computation load. The lightweight decoder
takes as input the encoded 25% plus mask tokens that fill the masked 75% of
the input, then reconstructs spectrogram. The loss calculates the reconstruction
error of the masked patches, which is a mean squared error (MSE).

2017; Kong et al., 2020; Koutini et al., 2022) learn to discriminate labels, these general-
purpose audio representations are pre-trained by self-supervised learning methods that do
not rely on labels.

These methods utilize self-supervising signals such as the temporal relationship between
audio samples or differences in multiple audio samples generated by data augmentations.
For example, triplet loss or contrastive learning methods (Shor et al., 2020; Saeed et al.,
2021; Spijkervet and Burgoyne, 2021; Fonseca et al., 2021) learn to make representations
closer to temporally close audio segments while pushing away remote segments. Our pre-
vious study BYOL-A (Niizumi et al., 2021) learns representations invariant against the
difference in audio signals created by data augmentations.

However, training signals of these methods do not provide information about complete
details of the input. The temporal relationship among audios can be the information about
the difference between the audio signals that do not describe input details, and the data
augmentations can change the details in original input audio signals. Therefore, we think
these training signals are suboptimal for learning to represent audio input as it is.

We think that the input signal itself can be the best training signal to learn represen-
tations that describe the input in detail. Learning frameworks to achieve our goal include
Masked Language Modeling (MLM) in natural language processing (NLP) or Masked Image
Modeling (MIM) in the image domain. These methods learn representations by masking
a part of the input signal and using other parts to predict the masked signals. In partic-
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ular, MLM such as BERT (Devlin et al., 2019) have already proven highly effective and
have demonstrated strong performance. Inspired by BERT, speech self-supervised learning
methods that learn from masked input prediction (Baevski et al., 2020; Liu et al., 2020;
Chi et al., 2021; Hsu et al., 2021), have also shown solid results in the audio domain. In
the image domain, recent progress of MIM such as BEiT (Bao et al., 2022) and Masked
Autoencoders (MAE) (He et al., 2022) have shown promising performance such that “Self-
supervised learning in vision may now be embarking on a similar trajectory as in NLP” (He
et al., 2022).

In this study, we explore the learning of general-purpose audio representations through
the MIM applied to the audio spectrogram, which we call Masked Spectrogram Modeling
(MSM). MIM splits the input image into grid patches. Therefore, applying MIM to the
audio spectrogram splits the input along the time and frequency axes, allowing “the model
to learn both the temporal and frequency structure” (Gong et al., 2022), unlike previous
methods for speech (e.g., Mockingjay (Liu et al., 2020) and wav2vec 2.0 (Baevski et al.,
2020)) that split audio along time only.

To implement MSM, we use MAE as a training framework. MAE learns to efficiently
encode the small number of visible patches into latent representations to carry essential
information for reconstructing masked patches, a large portion of the input signal. It then
calculates the reconstruction error as a training loss, achieving our goal of using the input
itself as a training signal.

Our main contributions are the proposal and implementation of MSM using MAE
(MSM-MAE) to learn general-purpose audio representations and results showing that our
variants of MAE outperform other methods on some tasks in the HEAR 2021 NeurIPS Chal-
lenge (Turian et al., 2022). In addition, we investigate how the design choices of MSM-MAE
impact the performance and present qualitative analyses of learned representations using
visualizations. Our code is available online at https://github.com/nttcslab/msm-mae.

2. Related Work

Audio representation learning closely related to our work. SSAST (Gong et al.,
2022) is a self-supervised learning method that pre-trains ViT (Dosovitskiy et al., 2021)
using a pretext task of Joint Discriminative and Generative Masked Spectrogram Patch
Modeling (MSPM), which combines contrastive learning and masked patch reconstruction.
While the patch reconstruction task is the same as that with MAE, it uses a two-layer MLP
to reconstruct masked patches, unlike MAE, which uses a sufficiently deep transformer.

Mockingjay (Liu et al., 2020) proposedMasked Acoustic Model (MAM), a pretext task of
reconstructing the masked time frames; the subsequent studies TERA (Liu et al., 2021) and
Audio ALBERT (Chi et al., 2021) also use MAM. Unlike MIM, MAM slices the spectrogram
along time as natural handling of time-series data, samely as the methods that accept raw
audio as input, such as wav2vec 2.0 (Baevski et al., 2020) and HuBERT (Hsu et al., 2021).

PaSST (Koutini et al., 2022) is a supervised learning method that pre-trains ViT with
the proposed Patchout, taking a similar approach to MAE. The Patchout reduces the num-
ber of patches to encode, thus, saving computation resources.

Audio self-supervised learning. Methods based on triplet (Shor et al., 2020) or con-
trastive loss (Saeed et al., 2021; Fonseca et al., 2021; Spijkervet and Burgoyne, 2021; Wang
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et al., 2022) learn from the temporal relationship between audios; they learn to make fea-
ture embeddings of audios closer for the audios temporally closer, or push them away for
the ones temporally remote. Then, these methods do not model the representation of the
input audio as it is.

On the other hand, our previous study BYOL-A (Niizumi et al., 2021) and SERAB
BYOL-S (Scheidwasser-Clow et al., 2022) use data augmentations to produce multiple au-
dios with a small degree of difference from the same audio input; they learn to make invariant
representations for these augmented audios. Therefore, these methods may not learn part
of the audio in which data augmentations make changes.

Masked Image Modeling. ViT (Dosovitskiy et al., 2021) conducts a self-supervised
learning of predicting average 3bit color of masked patch as a preliminary exploration,
resulted in 4% behind supervised pre-training version of the ViT. BEiT (Bao et al., 2022)
proposes a masked image modeling task that learns to predict discrete visual tokens of
masked patches. BEiT outperforms supervised pre-trained ViT; however, it pre-trains the
model to encode the input image into discrete tokens rather than representing the input as
it is, and requires pre-trained discrete VAE (Ramesh et al., 2021), which is not available for
audio.

2.1. Masked Autoencoders (MAE)

MAE (He et al., 2022) reconstructs the original signal given its partial observation. Figure
1 illustrates the pre-training flow with a spectrogram as input. First, MAE splits the input
into patches, adds positional encodings, and randomly masks a large part of the patches.
Then an encoder (a ViT) processes the visible patches only to latent representations. Next,
a decoder (a smaller transformer) reconstructs input from the latent representations of
visible patches and mask tokens representing masked patches. Then the loss is calculated
as the mean squared error (MSE) for all the masked patches between the reconstruction
and target, which is the normalized input. After pre-training, only the encoder is applied,
and it encodes whole patches of input images to produce representations for downstream
tasks.

MAE masks a very large portion (e.g., 75%) of patches with a notion that information
density is different from that in languages and images; images are natural signals with
spatial redundancy compared to languages, which are highly semantic and information-
dense. The MAE paper shows that the optimal mask ratio is 75%, much higher than the
15% of BERT (Devlin et al., 2019) in the NLP domain.

Unlike classical autoencoders, MAE has an asymmetric encoder-decoder design; an en-
coder operates on the partial visible signal only, whereas a lightweight decoder reconstructs
the full signal. These design choices save computation load and enable us to scale MAE to
train large models efficiently.

A sufficiently deep decoder is essential for linear evaluation performance without fine-
tuning. The last several layers in an autoencoder can be more specialized for reconstruction,
thus becoming less relevant for other tasks. A reasonably deep decoder can help make latent
representations from the encoder output more abstract (He et al., 2022; Cao et al., 2022).
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Concurrent works that apply MAE to audio include MAE-AST (Baade et al., 2022),
MaskSpec (Chong et al., 2022), and Audio-MAE (Huang et al., 2022). MAE-AST is based
on SSAST (Gong et al., 2022) architecture and uses a shallow two-layer transformer as the
decoder, similar to ours. MaskSpec uses the same encoder as PaSST (Koutini et al., 2022),
and Audio-MAE uses the local attention mechanism with its decoder. These models are
evaluated by fine-tuning, making the experimental results incompatible with the HEAR
benchmark results that evaluate the frozen pre-trained models. Unlike these methods, our
MSM-MAE is based on vanilla MAE with a smaller four-layer decoder and evaluated on
the HEAR benchmark.

3. Masked Spectrogram Modeling using Masked Autoencoders

We apply Masked Image Modeling to the audio spectrogram, which we call Masked Spectro-
gram Modeling (MSM). MSM splits the input along the time and frequency axes, allowing it
to learn both the temporal and frequency structure, unlike the previous methods for speech
that split along time only. To implement MSM, we use Masked Autoencoders (MSM-MAE).
In preliminary experiments, we found that MSM-MAE can follow the basic design choices
of the original MAE, except the half decoder depth. While the same mask ratio of 75%
suggests that information density is close to that of the image, the half decoder depth might
suggest lower complexity of the context of the spectrogram than that of the image.

Besides the original designs, taking spectrogram as input introduces new choices, namely,
input and patch size, because spectrogram has different axes of frequency and time, unlike
an image. For the input size, which consists of the number of frequency bins and time frames
(denoted F and T ), we handle a constant F and focus on exploring the optimal T . We
confirmed that both T as input audio duration and patch size choices positively influence
downstream task performance in preliminary experiments, unlike many other parameters
that degrade performance with change. Therefore, we investigate these two design choices
in this paper.

In addition, to better use learned features in the downstream tasks, we also introduce a
feature calculation specialized to the spectrogram input.

3.1. Input Audio Duration

During the pre-training, the longer duration, the model gains more chance to learn the
relationships among the contents. Therefore, the longer duration could result in better
representations. Meanwhile, the duration of samples in the downstream tasks ranges from
1-s to tens of seconds, or even longer. In addition, it may be fixed or vary from sample to
sample. The optimal duration can depend on the task.

From the perspective of complexity, the shorter duration reduces the computation load
of the two transformers on MAE because the length of the input sequence requires quadratic
computational and memory complexity on the transformers; thus, the shorter duration is
beneficial for scaling the system. For these reasons, we study various input audio durations.
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3.2. Patch Size

While both the input and patch sizes are square with the image, we handle rectangle input
with the spectrogram. Thus, the same goes for the patch sizes.

The patch size also affects task performance because it sets the frequency/time resolution
of encoded representations. There are various task demands; for example, pitch detection
requires sufficient frequency resolution, whereas short event detection requires fine time
resolution. To meet these demands, we can make the patch smaller to make the resolution
finer.

However, the available choice of resolution is limited due to computational complexity;
for example, making the patch size half on both frequency and time will quadruple the
sequence length. We explore various patch sizes based on the default resolution of 16× 16.

3.3. Feature Calculation for Downstream Tasks

The encoder of the learned MAE encodes whole patches of the audio samples in the task,
yielding embeddings of all patches for each audio sample; thereby, the embeddings for a
single time frame consist of that of multiple patches of frequencies.

While typically, the patch embeddings for a time frame can be averaged to get a single
embedding, we think it impairs available information by averaging embeddings among fre-
quency bins. Therefore, we calculate features by concatenating all the patch embeddings of
the same time frame, preserving all available features as the following python pseudo code:

z′ =z.reshape(B,NF , NT , D)

.transpose(1, 2)

.reshape(B,NT , NFD)

(1)

where z ∈ RB×NFNT×D is the encoder output, B is batch size, NF is the number of patches
along frequency, NT is the number of patches along time, D is a feature dimension, and
z′ ∈ RB×NT×NFD is the calculation result. This calculation summarizes encoded features
of a time frame for all frequencies into a single vector. For example, the feature dimension
of z′ will be 3840 when D = 768 and NF = 5, which is used in our experiments.

4. Experiments

We evaluate our MSM-MAE models on a benchmark suite from the HEAR (Holistic Evalu-
ation of Audio Representations) 2021 NeurIPS Challenge (Turian et al., 2022), which spans
multiple audio domains, including speech, environmental sound, and music.

We describe the details of experiments in Section 4.1, and the downstream tasks in
Section 4.2. Next, we evaluate our models with results on the HEAR 2021 Challenge in
Section 4.3, and investigate how design choices impact the performance in Section 4.4.
Then, we analyze learned representations qualitatively using visualizations in Section 4.5.
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4.1. Experimental Details

4.1.1. Pre-training

We used ViT-base (Dosovitskiy et al., 2021) as an encoder model and a smaller decoder with
a width of 384-d, depth of 4, and 6 heads. Then, we pre-trained on MAEs with the original
parameters except for the pre-training epoch of 100, warmup epoch of 10, batch size of 512,
and learning rate of 6e-4. While we normalized batch inputs with dataset statistics, we did
not normalize the target when calculating reconstruction loss due to early observation of
better performances. We followed the original mask ratio of 0.75.

The pre-training dataset consisted of 1, 963, 807 samples from balanced train segments
and unbalanced train segments data splits of the AudioSet (Gemmeke et al., 2017). We
preprocessed samples to a log-scaled mel spectrogram with a sampling frequency of 16,000
Hz, window size of 25 ms, hop size of 10 ms, and mel-spaced frequency bins F = 80 in the
range 50–8,000 Hz.

4.1.2. Evaluation

We evaluated models with input audio duration T ∈ {96, 208, 304, 400, 512}, corresponding
to 960 ms to 5.12 seconds. We also evaluated models with patch sizes (F ×T ) of 16× 16 by
default, 16× 8 or 16× 4 for double or quadruple time resolutions, and 8× 16 for a double
frequency resolution. In addition, we evaluated a model with a patch size of 80× 4, which
cuts the input along time, making spectrogram strips; note that we use the fixed number
of frequency bins F = 80. The model configurations are listed in Table 1.

Table 1: Model configuration details.

# of Patches Patch Size

Model Total Freq. Time Freq. Time

MSM-MAE-96 30 5 6 16 16
MSM-MAE-208 65 5 13 16 16
MSM-MAE-304 95 5 19 16 16
MSM-MAE-400 125 5 25 16 16
MSM-MAE-512 160 5 32 16 16
MSM-MAE-200 (16× 8) 125 5 25 16 8
MSM-MAE-200 (16× 4) 250 5 50 16 4
MSM-MAE-208 (8× 16) 130 10 13 8 16
MSM-MAE-304 (80× 4) 76 1 76 80 4

We used the hear-eval-kit2 from the HEAR 2021 Challenge. The hear-eval-kit evaluates
the performance of the models on the downstream tasks without fine-tuning. First, it
encodes all the task samples into embeddings using the model as a feature extractor. Then,
it trains a shallow downstream model to solve the task, taking the embeddings as input. It
reports the test performance of the downstream model as the model performance.

The hear-eval-kit requires two types of embeddings from models. One is timestamp
embeddings, for which we used the z′, features calculated for the downstream task described
in Section 3.3; the other is scene embeddings, for which we calculated the temporal average

2. https://github.com/neuralaudio/hear-eval-kit
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of z′. Since the ViT model accepts the fixed input duration T , we convert the variable-
length inputs into feature vectors in two steps: encode all the divided segments of length
T of input, and then concatenate the encoded features along time. All other details of
downstream task evaluation follow the defaults of the hear-eval-kit, including the network
design of the shallow downstream models for each task.

4.2. Downstream Tasks

We used 15 downstream tasks3 from the HEAR 2021 (Turian et al., 2022), consisting of
four environmental sound tasks, five speech tasks, and six music tasks.
Speech tasks. These tasks are for non-semantic speeches, which do not include automatic
speech recognition: Speech Commands (Warden, 2018) (SPC, speech command word classi-
fication), CREMA-D (Cao et al., 2014) (CRM-D, speech emotion recognition), LibriCount
(Stöter et al., 2019) (LbCount, speaker count estimation), Vocal Imitations (Kim et al.,
2018a) (VoImit, matching a vocal imitation with an original sound as a classification), and
Vox Lingua Top 10 (Valk and Alumäe, 2021) (Lingua10, language identification).
Environmental sound tasks. ESC-50 (Piczak, 2015) (environmental sound classifica-
tion), FSD50K (Fonseca et al., 2022) (multilabel sound event classification), Gunshot Tri-
angulation (Cooper and Shaw, 2020) (Gunshot, recording location classification), Beehive
States (Nolasco et al., 2019) (Beehive, normal or queen-less binary classification).
Music tasks. GTZAN (Tzanetakis and Cook, 2002) (music genre recognition), GTZAN
Music Speech (GTZ-M/S, music or speech binary classification), NSynth (Engel et al., 2017)
Pitch (NSPitch, pitch classification), Mridingham Stroke and Tonic (Anantapadmanabhan
et al., 2013) (Mrd-Stk for stroke, or Mrd-Ton for tonic, pitched percussion stroke or tonic
classification), and Beijing Opera Percussion (Tian et al., 2014) (Beijing, percussion instru-
ment classification).

For these tasks, the FSD50K and VoImit results are mAP, the Beehive results are
AUCROC, and all other results are accuracies.

Table 2: Environmental sound task results.

Model Gunshot FSD50K ESC-50 Beehive

CREPE (Kim et al., 2018b) 86.3 15.9 30.0 59.3
wav2vec2 (Baevski et al., 2020) 84.8 11.6 56.1 N/A
KW-MLP (Morshed and Ahsan, 2021) 93.2 18.7 36.7 76.0
SERAB BYOL-S (Scheidwasser-Clow et al., 2022) 85.7 50.9 80.5 54.9
OpenL3 (Cramer et al., 2019) 94.9 44.7 75.1 60.4
Wav2CLIP (Wu et al., 2022) 92.9 36.2 75.9 77.0
PANNs CNN14 (Kong et al., 2020) 79.8 N/A 90.9 44.6
PaSST base (Koutini et al., 2022) 94.0 64.0 94.7 N/A

MSM-MAE-200 (16× 4) (ours) 95.2 50.9 84.3 60.4
MSM-MAE-512 (ours) 96.4 52.2 85.6 69.4

4.3. Experimental Results: Comparison with the HEAR 2021 Results

We compare the results of our two best performing models with the results from the HEAR
2021 Challenge in Tables 2, 3 and 4. We used the HEAR 2021 Challenge results for which

3. We excluded other tasks, such as MAESTRO, because we could not obtain results using the hear-eval-kit.
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Table 3: Speech task results.

Model Lingua10 VoImit CRM-D SPC LbCount

CREPE (Kim et al., 2018b) 14.2 5.1 38.3 21.1 49.9
Wav2CLIP (Wu et al., 2022) 19.2 8.3 51.2 34.7 52.8
KW-MLP (Morshed and Ahsan, 2021) 18.1 5.6 42.4 97.8 45.1
PANNs CNN14 (Kong et al., 2020) 24.4 12.7 55.5 61.8 65.2
PaSST base (Koutini et al., 2022) 25.9 18.2 61.0 63.9 66.0
OpenL3 (Cramer et al., 2019) 33.1 7.8 55.0 76.3 64.1
wav2vec2 (Baevski et al., 2020) 49.3 8.0 65.6 87.9 69.2
SERAB BYOL-S (Scheidwasser-Clow et al., 2022) 45.8 16.0 65.7 94.8 78.5

MSM-MAE-200 (16× 4) (ours) 52.9 12.8 73.3 87.3 85.8
MSM-MAE-512 (ours) 50.0 18.3 73.4 86.4 77.8

Table 4: Music task results.

Model GTZ-M/S GTZAN NSPitch Mrd-Ton Mrd-Stk Beijing

PANNs CNN14 (Kong et al., 2020) 99.2 86.0 30.1 82.4 93.9 91.1
Wav2CLIP (Wu et al., 2022) 94.6 74.8 43.9 82.9 94.7 93.6
KW-MLP (Morshed and Ahsan, 2021) 88.9 55.4 60.5 94.2 96.9 91.1
wav2vec2 (Baevski et al., 2020) 94.6 78.0 65.3 82.8 94.3 90.7
CREPE (Kim et al., 2018b) 92.9 64.5 90.0 82.4 89.8 92.8
PaSST base (Koutini et al., 2022) 97.7 88.3 54.1 81.9 96.5 96.6
SERAB BYOL-S (Scheidwasser-Clow et al., 2022) 93.8 83.7 71.2 92.8 97.3 95.3
OpenL3 (Cramer et al., 2019) 96.9 87.9 73.1 93.7 96.7 97.5

MSM-MAE-200 (16× 4) (ours) 97.7 86.3 84.0 98.6 97.5 95.3
MSM-MAE-512 (ours) 99.2 86.1 81.2 98.3 97.5 94.9

a single model is used—an ensemble of models is out of the scope of this study—and whose
details are available in their papers.

These tables show that our models outperform others in seven tasks: Gunshot Trian-
gulation, Vox Lingua Top 10, Vocal Imitation, CREMA-D, LibriCount, and Mridingham
Tonic and Stroke. Conversely, models specialized in the task outperform our models on
other tasks. On environmental sound tasks, FSD50K and ESC-50, the PANNs and PaSST-
base outperform ours. These models are supervised learning pre-trained on the AudioSet
using its labels. KW-MLP, wav2vec2, and SERAB-BYOLS outperform ours on the Speech
Commands task. These models are pre-trained on a speech corpus for specialization in
speech. CREPE, specializing in pitch estimation, outperforms ours on the NSynth Pitch
task. Except for these specialized models and OpenL3 on the Beijing task, our MSM-MAE
models show the top results in most tasks. These results show that MSM-MAE learns audio
representation effectively for general tasks without specializing in domains.

4.4. Experimental Results: Impact of Design Choices on Performance

We explore the impact of the design choices of input audio duration and patch size, for
which we found positive effects in preliminary experiments. In addition, we also evaluate
the performance difference between designs for splitting the input.
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4.4.1. Impact of Input Audio Duration

Table 5 shows the results of MSM-MAE with various input audio durations. The number
at the tail of the model name shows the duration, which is 10× in ms in actual time (e.g.,
96 and 512 are 960 ms and 5.12 seconds, respectively).

These results show that the longer durations yield better results among HEAR 2021
tasks. We see an exceptional behavior with speech tasks (Lingua10, SPC, and LbCount),
Gunshot, and GTZ-M/S. However, we think that a long input duration is more beneficial in
general-purpose use, because most tasks show the best result with the longer input duration
of 400 or 512.

Table 5: Task results for various input audio durations.

(a) Environmental sound tasks

Model Gunshot FSD50K ESC-50 Beehive

MSM-MAE-96 98.8 48.7 79.9 54.8
MSM-MAE-208 89.9 50.8 84.9 52.0
MSM-MAE-304 90.5 51.7 85.3 65.3
MSM-MAE-400 90.5 51.8 85.6 62.6
MSM-MAE-512 96.4 52.2 85.6 69.4

(b) Speech tasks

Model Lingua10 VoImit CRM-D SPC LbCount

MSM-MAE-96 39.0 12.6 68.0 86.6 78.7
MSM-MAE-208 48.2 15.7 70.4 87.5 80.3
MSM-MAE-304 50.6 17.2 72.0 87.3 80.6
MSM-MAE-400 45.9 16.9 72.8 85.8 80.1
MSM-MAE-512 50.0 18.3 73.4 86.4 77.8

(c) Music tasks

Model GTZ-M/S GTZAN NSPitch Mrd-Ton Mrd-Stk Beijing

MSM-MAE-96 96.9 84.4 81.0 98.2 97.3 89.8
MSM-MAE-208 100.0 84.9 81.3 98.3 97.5 92.8
MSM-MAE-304 98.4 85.6 81.2 98.1 97.5 94.9
MSM-MAE-400 98.5 86.0 81.6 98.5 97.7 94.5
MSM-MAE-512 99.2 86.1 81.2 98.3 97.5 94.9

4.4.2. Impact of Patch Size

Table 6 shows the results of MSM-MAE with various patch sizes for the models that accept
2-s input audio durations: MSM-MAE-208 (16×16), MSM-MAE-200 (16×8), MSM-MAE-
200 (16 × 4), and MSM-MAE-208 (8 × 16). The 16 × 16, 16 × 8, 16 × 4, and 8 × 16 show
the patch size of F by T .

The results show that the finer time resolutions (16 × 8 and 16 × 4) improve perfor-
mance on 11 out of 15 tasks (Gunshot, FSD50K, Beehive, Lingua10, CRM-D, LbCount,
GTZAN, NSPitch, Mrd-Ton, Mrd-Stk, and Beijing). In contrast, the finer frequency resolu-
tion (8×16) improves eight tasks (Gunshot, FSD50K, Beehive, CRM-D, LbCount, GTZAN,
NSPitch, and Mrd-Ton), and the degree of improvements are smaller than for the finer time
resolutions.
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Table 6: Task results for various patch sizes. N is the total number of patches.

(a) Environmental sound tasks
Model Gunshot FSD50K ESC-50 Beehive

MSM-MAE-208 (16× 16, N = 65) 89.9 50.8 84.9 52.0
MSM-MAE-200 (16× 8, N = 125) 94.0 51.1 83.9 62.0
MSM-MAE-200 (16× 4, N = 250) 95.2 50.9 84.3 60.4
MSM-MAE-208 (8× 16, N = 130) 96.4 51.2 84.6 62.0

(b) Speech tasks

Model Lingua10 VoImit CRM-D SPC LbCount

MSM-MAE-208 (16× 16, N = 65) 48.2 15.7 70.4 87.5 80.3
MSM-MAE-200 (16× 8, N = 125) 52.4 14.7 73.1 87.7 84.5
MSM-MAE-200 (16× 4, N = 250) 52.9 12.8 73.3 87.3 85.8
MSM-MAE-208 (8× 16, N = 130) 48.4 14.1 71.4 87.0 82.8

(c) Music tasks

Model GTZ-M/S GTZAN NSPitch Mrd-Ton Mrd-Stk Beijing

MSM-MAE-208 (16× 16, N = 65) 100.0 84.9 81.3 98.3 97.5 92.8
MSM-MAE-200 (16× 8, N = 125) 99.2 85.7 81.7 98.6 97.6 93.6
MSM-MAE-200 (16× 4, N = 250) 97.7 86.3 84.0 98.6 97.5 95.3
MSM-MAE-208 (8× 16, N = 130) 98.5 86.4 83.2 98.4 97.5 92.8

We can also find the different trends in improvements among models. If we focus on
the best results (bold numbers), the finer time resolutions (16 × 8 and 16 × 4) excel on
speech and music tasks, whereas the finer frequency resolution (8× 16) performs better on
environmental sound tasks.

In summary, we can improve task performance with finer resolutions using smaller patch
sizes, especially with finer time resolutions. However, 16× 4 shows that it is not always the
case compared to 16× 8; the finer 16× 4 does not clearly show performance improvements
superior to that for 16× 8, even though the 16× 4 costs quadratically more computational
complexity than 16× 8.

4.4.3. Impact of Input Splitting: Patches vs. Strips

Table 7 shows the results of MSM-MAE for different designs of splitting the input spec-
trogram into patches or strips. MSM-MAE-304 (16 × 16) cuts the input spectrogram into
patches along both frequency and time. In contrast, MSM-MAE-304 (80×4) cuts the input
into strips along time, simulating the previous methods such as Mockingjay (Liu et al., 2020)
that handle the input as a sequence of spectrogram strips. We compare the performance
difference between these two ways.

The results show that the patch input model (16 × 16) outperforms strip input model
(80× 4) on most tasks. It could indicate that the MIM framework, which takes patches as
input and learns both frequency and time structure, is more suitable for learning general-
purpose audio representations than the training framework that takes sequential strips as
input. By contrast, the strip input model outperforms the patch input model on CREMA-D
and SPC tasks, which could also indicate that the strip input is effective for speech tasks, as
used in the previous speech self-supervised learning studies that take sequential spectrogram
strips as input.
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Table 7: Task results for comparing patches vs. strips.

(a) Environmental sound tasks
Model Gunshot FSD50K ESC-50 Beehive

MSM-MAE-304 (16× 16, Patches) 90.5 51.7 85.3 65.3
MSM-MAE-304 (80× 4, Strips) 85.7 49.1 81.5 66.0
difference 4.8 2.6 3.8 -0.7

(b) Speech tasks

Model Lingua10 VoImit CRM-D SPC LbCount

MSM-MAE-304 (16× 16, Patches) 50.6 17.2 72.0 87.3 80.6
MSM-MAE-304 (80× 4, Strips) 50.0 16.8 73.8 88.1 79.7
difference 0.6 0.3 -1.9 -0.8 0.9

(c) Music tasks
Model GTZ-M/S GTZAN NSPitch Mrd-Ton Mrd-Stk Beijing

MSM-MAE-304 (16× 16, Patches) 98.4 85.6 81.2 98.1 97.5 94.9
MSM-MAE-304 (80× 4, Strips) 96.9 85.5 81.0 98.1 97.6 94.5
difference 1.5 0.1 0.1 0.1 -0.1 0.4

4.5. Qualitative Analysis with Visualizations

This section presents analyses based on visualizations to gain an understanding of the
representations learned by MSM-MAE. Sections 4.5.1, 4.5.2 and 4.5.3 present visualization
of reconstruction results, and Section 4.5.4 shows visualizations of attention maps. We
present more visualizations in Appendix A.

4.5.1. Reconstructions with Random Masks

The reconstructions of three sounds in Figure 2 show results similar to those in the MAE
paper (He et al., 2022), which reconstruct inputs well but with blurry details, indicating
that our models were successfully trained in the experiments. In Figure 2, we observe that
the frequency structures, especially the harmonic structures, are reconstructed, and the
stationary sounds are easy to reconstruct compared to the short sound events.

Frequency structure reconstructions can be observed by focusing on reconstruction along
the frequency axis (vertical axis). Frequency bins are reconstructed even where a few visible
patches (white squares) are available in a time frame. Furthermore, we can find clear
patterns of the harmonic structures in the reconstruction of sound 1 with trumpet notes.
These observations show that the latent representation is encoded effectively to reconstruct
frequency bins in a time frame using limited information of a few patches.

We find that stationary sound can be easily reconstructed from sound 2, which is the
sound of roaring low-pitch wind. The error of sound 2 shows a lighter color compared to the
sound 1 or 3, indicating that the reconstructing of the 2 made a smaller error. In addition,
frequency structures are recovered entirely, even without an available visible patch in a
time frame, contrary to the sound 1 and 3, where some sound events are not recovered.
These observations suggest that the learned representations carry the information related
to temporal structure for each sound, such as stationary or short events.
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Input
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#3

#1
Recon.

Recon.
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Error
(RMS)

Error
(RMS)

Error
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Figure 2: Reconstructions for the pre-trained MSM-MAE-304 with a mask ratio of 0.75,
obtained from three attempts of reconstruction of three sounds. Each example
shows the input, the reconstruction result, and the difference between them, the
error (RMS); the darker the color, the higher the reconstruction error. The white
squares in the reconstruction results show the visible patch.
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A. Vertical mask

B. Horizontal mask

C. Chessboard mask

Input

Recon.

Input

Recon.

Error
(RMS)

Error
(RMS)

Error
(RMS)

Input

Recon.

Figure 3: Reconstructions with three patterns of masks, showing the difference in the error
under different availability of visible information along axes. The mask ratio is
0.5, i.e., half of the patches are masked for all examples.
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4.5.2. Reconstructions with Patterned Masks

We compare the difference in reconstruction under the different availability of visible in-
formation made by the three mask patterns in Figure 3. In A, vertical mask, visible and
mask patches alternate along the time axis; models are to recover masked patches using
visible patches adjoining on the time axis. In B, horizontal mask, they alternate along
the frequency axis; visible patches adjoining in the frequency axis are available. In C, the
chessboard mask is for making visible patches available around the masked patches. All
cases have the same mask ratio of 0.5.

In Figure 3, we observe that the more adjoining visible patches available, the easier the
reconstruction becomes. For all the sounds, the errors show lighter color on the chessboard
mask results than that on the other vertical and horizontal mask results, showing the
smaller reconstruction error for the chessboard mask, where more adjoining visible patches
are available.

If we focus on the horizontal mask in B, we can observe that harmonic structures are
reconstructed more easily than noises. Sound 1, a rich harmonic structure of trumpet
notes, shows less reconstruction error than sound 3, with less structured frequency patterns
of noises in laughing voices. This observation suggests that the learned representation
encodes the information of the harmonic structure more effectively than that of the noise.

4.5.3. Reconstructions with Various Mask Ratios

We varied the mask ratio to observe how the reconstruction changes according to it. We
used the 3-s model (MSM-MAE-304) to reconstruct the input spectrograms with varied
mask ratios from 0.40 to 0.99, focusing on cases with extremely small numbers of visible
patches (e.g., 1, 2, 5, and 10 visible patches, corresponding to mask ratios of 0.99, 0.98,
0.95, and 0.90, respectively).

Figure 4 shows the example reconstruction results. The results show that reconstruction
succeeds entirely up to the default ratio of 0.75, whereas it degrades noticeably at higher
ratios. As the mask ratio increases, only the patches around the visible patch are recon-
structed relatively accurately, while the rest become blurry copies of the pattern around
the nearest visible patch.

Focusing on the mask ratio of 0.99, which encodes only one visible patch, we can observe
the reconstruction of both local and global patterns. Locally, the frequency pattern of the
time frames around the visible patch is reconstructed relatively clearly. Globally, a frequency
pattern similar to the average of the original spectrogram is reconstructed stationary over
the entire spectrogram. This observation suggests that even though only one patch was
encoded, information related to both local and global patterns learned from the training
dataset is embedded in the representation.

4.5.4. Self-Attention Map Visualizations

We visualize the self-attention of the encoder of pre-trained MSM-MAE-304 for six sounds
in Figures 5 and 6. We picked two reference points each to show self-attention maps. These
self-attention maps average from all heads in the last layer.

We see that the self-attention map reflects the repetition or continuation in the input
sounds. Sound 1 of pop music has a clear repetition of notes in the input, which we can
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Input

Mask ratio = 0.40
Recon. MSE = 0.0412

Mask ratio = 0.60
Recon. MSE = 0.0464

Mask ratio = 0.75
Recon. MSE = 0.0662

Mask ratio = 0.85
Recon. MSE = 0.0843

Mask ratio = 0.90
Recon. MSE = 0.105

Mask ratio = 0.95
Recon. MSE = 0.252

Mask ratio = 0.98
Recon. MSE = 0.287

Mask ratio = 0.99
Recon. MSE = 0.417

Figure 4: Reconstructions with various mask ratios, focusing on cases of extremely small
numbers of visible patches. We show white squares, the visible patches, on the
results only with mask ratios higher than 0.75 to improve visibility that avoid the
figure becoming too crowded with white boxes to tell which was reconstructed or
not. MSE is the mean squared error of reconstruction averaged over the entire
spectrogram.
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Input
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x Input

Attention

Attention
x Input

Attention

(Roaring low-pitch wind) (Laughter)
Ha Ha Ha ...

Figure 5: MSM-MAE encoder self-attention map for reference points (2, 7) and (1, 12)
depicted as red boxes, showing the strength of attention from a token of interest
(reference point) to all other tokens.

Input

Attention
x Input

Attention

Attention
x Input

Attention

(Heartbeat) (Heartbeat) (Heartbeat) (Voice) (Knock) x 5(An adult female sings solo)
Do Re MiDo Re Mi Fa So La

(Chirdren sing)

Figure 6: MSM-MAE encoder self-attention map for reference points (0, 1) and (1, 7) de-
picted as red boxes.
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also find in the self-attention map. On the other hand, sound 2 is a stationary sound of
blowing wind, and the attention continues along time similarly. Interestingly, we find in the
first reference point in sound 1 that the self-attentions are strong at the same position in
the beat, even though there are two similar notes per beat.

We also observe coarse segmentation of similar sounds for the reference points. For
example, sound 4 shows that heartbeats are segmented in the self-attention maps of both
reference points, less attending to the following voice; sound 5 shows that the first half of
children’s singing voices are segmented in the first reference point, whereas the latter half
of an adult female voice is coarsely segmented in the second reference point.

5. Conclusion

In this paper, we sought to learn audio representation from the input itself as supervision
by using a pretext task of modeling masked spectrogram patches, which we call Masked
Spectrogram Modeling (MSM). To implement MSM, we employed Masked Autoencoders
(MAE) with audio spectrogram as input.

We conducted evaluations on the HEAR 2021 NeurIPS Challenge using its benchmark
suite across a variety of domains, including speech, environmental sound, and music. Our
models outperformed the HEAR 2021 Challenge results on seven out of 15 tasks (e.g., accu-
racies of 73.4% on CREMA-D and 85.8% on LibriCount) while showing top performances
on other tasks where specialized models perform better. In addition, we investigated design
choices of input audio duration and patch size and confirmed that longer duration and finer
time resolution with a smaller patch size improve performance.

We also conducted qualitative analyses on various visualizations of outputs from both
the MAE encoder and decoder. We observed frequential and temporal structures in the re-
construction results and the self-attention maps, suggesting that the learned representations
hold information related to these structures.

While this study does not provide an exhaustive exploration, the quantitative results
proved the effectiveness of MSM using MAE, and the qualitative observations suggested
useful information in the learned representations. We believe that the MSM framework
holds promising further improvements and applications in the future. Future directions
may include exploring ViT model settings, which we fixed in this study, suitable for an
audio spectrogram, and exploring other MAE variants and extensions potentially ideal for
learning audio representations.
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Luyu Wang, Pauline Luc, Yan Wu, Adrià Recasens, Lucas Smaira, Andrew Brock, Andrew
Jaegle, Jean-Baptiste Alayrac, Sander Dieleman, Joao Carreira, and Aäron van den Oord.
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Appendix A. Reconstruction Examples of Various MSM-MAE Models

Figures 7 and 8 visualize the reconstruction examples of various MSM-MAE models.

Input
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Error
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(a) Examples of the MSM-MAE-96 (input duration: 960 ms).

Input
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Error
(RMS)

Error
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Input
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(b) Examples of the MSM-MAE-512 (input duration: 5.12 seconds).

Figure 7: Reconstructions of the models for short and long input audio duration.
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(a) Examples of the MSM-MAE-200 (patch size: 16× 8).
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(b) Examples of the MSM-MAE-200 (patch size: 16× 4).
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(c) Examples of the MSM-MAE-208 (patch size: 8× 16).

Figure 8: Reconstruction examples of the models with various patch sizes.
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Appendix B. Reconstruction Examples of Vocal Imitation Task

We visualize the reconstruction examples of the Vocal Imitations (Kim et al., 2018a) task,
on which experimental results show much lower performance than on other tasks.

As shown in Figure 9, we can confirm that the Vocal Imitation samples can be recon-
structed similarly well to the AudioSet samples in Figure 2. Nevertheless, Table 3 shows that
Vocal Imitation results are very low compared to the other tasks for all models, suggesting
that the poor performance is due to task-specific difficulty.

Figure 9: Reconstructions of the Vocal Imitations samples with the MSM-MAE-512.
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