
Acta Numerica (2021), pp. 327–444 Printed in the United Kingdom
doi:10.1017/S0962492921000052

Neural network approximation

Ronald DeVore
Department of Mathematics, Texas A&M University,

College Station, TX 77843, USA
E-mail: rdevore@math.tamu.edu

Boris Hanin
Department of Operations Research and Financial Engineering,

Princeton University, NJ 08544, USA
E-mail: bhanin@princeton.edu

Guergana Petrova
Department of Mathematics, Texas A&M University,

College Station, TX 77843, USA
E-mail: gpetrova@math.tamu.edu

Neural networks (NNs) are the method of choice for building learning algorithms.
They are now being investigated for other numerical tasks such as solving high-
dimensional partial differential equations. Their popularity stems from their empir-
ical success on several challenging learning problems (computer chess/Go, autonom-
ous navigation, face recognition). However, most scholars agree that a convincing
theoretical explanation for this success is still lacking. Since these applications re-
volve around approximating an unknown function from data observations, part of the
answer must involve the ability of NNs to produce accurate approximations.
This article surveys the known approximation properties of the outputs of NNs

with the aim of uncovering the properties that are not present in the more traditional
methods of approximation used in numerical analysis, such as approximations using
polynomials, wavelets, rational functions and splines. Comparisons are made with
traditional approximation methods from the viewpoint of rate distortion, i.e. error
versus the number of parameters used to create the approximant. Another major
component in the analysis of numerical approximation is the computational time
needed to construct the approximation, and this in turn is intimately connected
with the stability of the approximation algorithm. So the stability of numerical
approximation using NNs is a large part of the analysis put forward.
The survey, for the most part, is concerned with NNs using the popular ReLU ac-

tivation function. In this case the outputs of the NNs are piecewise linear functions on
rather complicated partitions of the domain of f into cells that are convex polytopes.

© The Author(s), 2021. Published by Cambridge University Press.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution,
and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

328 R. DeVore, B. Hanin and G. Petrova

When the architecture of the NN is fixed and the parameters are allowed to vary, the
set of output functions of the NN is a parametrized nonlinear manifold. It is shown
that this manifold has certain space-filling properties leading to an increased ability
to approximate (better rate distortion) but at the expense of numerical stability. The
space filling creates the challenge to the numerical method of finding best or good
parameter choices when trying to approximate.

CONTENTS
1 Introduction 328
2 What is a neural network? 330
3 ReLU networks 337
4 Classical model classes: smoothness spaces 369
5 Evaluation of nonlinear methods of approximation 374
6 Approximation using ReLU networks: overview 389
7 Approximation using single-layer ReLU networks 391
8 Approximation using deep ReLU networks 398
9 Stable approximation 423
10 Approximation from data 426
11 Using neural networks for data fitting 432
References 440

1. Introduction
Approximation using neural networks (NNs) is the method of choice for building
numerical algorithms in machine learning (ML) and artificial intelligence (AI). It
is now being looked at as a possible platform for computation in many other areas.
Although NNs have been around for over 70 years, starting with the work of Hebb
(1949) and Rosenblatt (1958), it is only recently that their popularity has surged
as they have achieved state-of-the-art performance in a striking variety of machine
learning domains. Examples of these are computer vision (Krizhevsky, Sutskever
and Hinton 2012), employed for instance in self-driving cars, natural language
processing (Wu et al. 2016), used in Google Translate, or reinforcement learning,
such as superhuman performance at Go (Silver et al. 2016, 2017), to name a few.
Nevertheless, it is generally agreed upon that there is still a lack of solid math-

ematical analysis to explain the reasons behind these empirical successes. For
a start, the understanding of the approximation properties of NNs is of vital im-
portance since approximation is one of the main components of any algorithmic
design. A rigorous analysis of what special properties NNs hold as a method of
approximation could lead to both significant practical improvements (Bronstein
et al. 2017, LeCun, Bengio and Hinton 2015) and a priori performance guarantees
for computational algorithms based on NNs.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 329

At the heart of providing such a rigorous theory is understanding the benefits
of using NNs as an approximation tool when compared with other more classical
methods of approximation such as polynomials, wavelets, splines and sparse ap-
proximation from bases, frames and dictionaries. Indeed, most applications of
NNs are built on some form of function approximation. This includes not only
learning theory and statistical estimation, but also the new forays of NNs into other
application domains such as numerical methods for solving partial differential
equations (PDEs).
An often cited theoretical feature of neural networks is that they produce universal

function approximants (Cybenko 1989, Hornik, Stinchcombe, White et al. 1989)
in the sense that, given any continuous target function f and a target accuracy
ε > 0, neural networks with enough judiciously chosen parameters produce an
approximation to f within an error of size ε . This universal approximation capacity
has been known since the 1980s. But surely this cannot be the main reason why
neural networks are so effective in practice. Indeed, all families of functions used
in numerical approximation such as polynomials, splines, wavelets, etc., produce
universal approximants. What we need to understand is in what way NNs are more
effective than other methods as an approximation tool.
The purpose of this article is to describe the approximation properties of NNs as

we presently understand them, and to compare their performance with other meth-
ods of approximation. To accomplish such a comparative analysis, we introduce,
starting in Section 5, the tools by which various methods of approximation are
evaluated. These include approximation rates on model classes, n-widths, metric
entropy and approximation classes. Since NN approximation is a form of nonlinear
manifold approximation, we make this particular form of approximation the focal
point of our exposition. The ensuing sections of the paper examine the specific
approximation properties of NNs. After making some remarks that apply to general
activation functions σ, we turn our attention to the performance of rectified linear
unit (ReLU) networks. These are the most heavily used in numerical settings and
fortunately also the NNs most amenable to analysis.
Since the output of a ReLU network is a continuous piecewise linear function

(CPwL), it is important to understand what the class of outputs of a ReLU network
depending on n parameters looks like in terms of their allowable partitions and the
correlation between the linear pieces. This topic is addressed in Section 3. This
structure increases in complexity with the depth of the network. It turns out that
deeper NNs give a richer set of outputs than shallow networks. Therefore much of
our analysis centres on deep ReLU networks.
The key takeaways from this paper are as follows. For a fixed value of n, the

outputs of ReLU networks depending on n parameters form a rich parametric family
of CPwL functions. This manifold exhibits certain space-filling properties (in the
Banach space where we measure performance error), which are both a boon and a
bottleneck. On one hand, space filling provides the possibility to approximate larger
classes of functions with relatively few parameters, compared with the classes that

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

330 R. DeVore, B. Hanin and G. Petrova

are currently approximated by classical methods. On the other hand, this flexibility
comes at the expense of both the stability of the algorithm by which one selects
the right parameters, and the a priori performance guarantees and uncertainty
quantifications of performance when using NNs in numerical algorithms. This
points to the need for a comprehensive study of the trade-offs between stability of
numerical algorithms based on NNs and their numerical efficiency.
This exposition is far from providing a satisfactory theory for approximation by

NNs, even when we restrict ourselves to ReLU networks. We highlight several
fundamental questions that remain unanswered. Their solution would not only lead
to a better understanding of NN approximation but would most likely guarantee
better performance in numerical algorithms. These issues include:

• matching upper and lower bounds for the rate of approximation of standard
model classes when using ReLU networks,
• how to precisely describe the types of function classes that benefit from NN
approximation,
• how to numerically impose stability in parameter selection,
• how the imposition of stability limits the performance of the network.

2. What is a neural network?
This section begins by introducing feed-forward neural networks and their element-
ary properties. We begin with a general setting and then specialize to the case of
fully connected networks. While the latter networks are generally not the archi-
tecture of choice in most targeted applications, their architecture provides the most
convenient way to understand the trade-offs between approximation efficiency and
the complexity of the network. They also allow for a clearer picture of the balance
between width and depth in the assignment of parameters.
In its most general formulation, a feed-forward neural network N is associated

with a directed acyclic graph (DAG),

G = (V, E),

called the architecture of N , determined by a finite set V of vertices and a finite
set of directed edges E , in which every vertex v ∈ V must belong to at least one
edge e ∈ E . The set V consists of three distinguished subsets. The first is the set
I of input vertices. These vertices have no incoming edges and are placeholders
for independent variables (i.e. network inputs). The second is the set O of output
vertices. These vertices have no outgoing edges and will store, for given inputs,
the corresponding value of the dependent variables (i.e. the network output). The
third is the set of hidden verticesH = V\{I,O}. For a given input, hidden vertices
store certain intermediate values used to compute the corresponding output. The
vertices and edges also have the following adornments:

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 331

(1) With every v ∈ V \ I, there is an associated function σv : R → R, called an
activation function, and a scalar bv ∈ R, called a bias.

(2) For every e ∈ E , there is a scalar we ∈ R, called a weight.
In going forward, we often refer to the vertices as nodes. The weights and biases
are referred to as the trainable parameters of N . For a fixed network architec-
ture, varying the values of these trainable parameters produces a family of output
functions. The key to describing how these functions are constructed is that, to
each vertex v ∈ V \ I, we associate a computational unit called a neuron. This
unit takes as inputs the scalar outputs xv′ from vertices v′ ∈ V \ O with an edge
e = (v′, v) ∈ E terminating at v, and outputs the scalar

xv := σv

(
bv +

∑
e=(v′,v)∈E

wexv′
)
. (2.1)

The word neuron comes from the fact that (2.1) can be viewed as a simple
computational model for a single biological neuron. A neuron associated to a
vertex v ∈ V \ I observes signals xv′ computed by upstream neurons associated
to v′, takes a superposition of these signals, mediated by synaptic weights we,
e = (v′, v), and outputs xv, which is then seen by the downstream neurons. For
all neurons associated to vertices v ∈ O, the activation function σv is the identity.
The neuron associated to the ith input vertex v ∈ I, i = 1, . . . , d, where d := |I |,
observes a scalar incoming (i.e. externally provided) signal xi and outputs xi, which
is then seen by the downstream neurons.
We view the network scalar inputs xi, i = 1, . . . , d, as an independent variable

x = (x1, . . . , xd) ∈ Ω ⊂ Rd, and define the output function SN : Ω → Rd′ of the
network N by

SN (x) := (xv, v ∈ O), d ′ := |O |. (2.2)

Thus SN is a function mapping Ω ⊂ Rd into Rd′, called the output of N . Note
that for a fixed network architecture G = (V, E), the outputs SN form a family of
functions, determined by the trainable parameters {we, bv}, e ∈ E , v ∈ V \ I.

2.1. Fully connected networks

The preceding is a very general definition of neural networks and encompasses
virtually all network architectures used in practice. In this article, however, we
restrict our study to rather special examples of such networks, the so-called fully
connected networks. The architecture of such a network is given by a directed
acyclic graph whose vertices are organized into layers.

Each vertex of every layer is connected via outgoing edges to all vertices from
the next layer and to no other vertices from any other layer; see Figure 2.1. The
zeroth layer, called the input layer, consists of all d := n0 input vertices I, called
inputs, where the ith input receives a scalar signal xi from outside the network. The
combined input x := (x1, . . . , xd) forms the independent variable of the function

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

332 R. DeVore, B. Hanin and G. Petrova

SN . The input layer is followed by the hidden vertices H, organized in L hidden
layers, with the jth layer consisting of nj hidden vertices, j = 1, . . . , L. The integer
nj is called the width of the jth layer. Finally, the (L + 1)th layer, called the output
layer, consists of all d ′ := nL+1 output vertices O, called outputs. The output
vector of such a fully connected network is the value SN (x) ∈ Rd′ of the function
SN for the input x.
As is customary, we specify that there is a single activation function σ that is

used at each hidden vertex v ∈ H, i.e. σv = σ for all v ∈ H. Recall that we always
take the activation σv at the output vertices v ∈ O to be the identity. In this way,
each coordinate of SN (x) is a linear combination of the xv’s at layer L plus a bias
term, which is a constant.
Thus, for a fully connected networkN , the output function SN can be succinctly

described by weight matrices and bias vectors

W (`) ∈ Rn`×n`−1, b(`) ∈ Rn` , ` = 1, . . . , L + 1,

associated to layer ` as follows. If X (`) ∈ Rn` is the vector of outputs xv corres-
ponding to nodes v in layer `, ` = 0, . . . , L + 1, then the output SN is given by

SN (x) = X (L+1) = W (L+1)X (L) + b(L+1), (2.3)

where the vectors X (`) satisfy the recursion

X (`) = σ(W (`)X (`−1) + b(`)), ` = 1, . . . L, X (0) = x. (2.4)

Here and throughout this paper, we use the convention that the activation function
σ : R → R is defined to act on any vector z = (z1, . . . , zn`) ∈ Rn` , n` ≥ 1
coordinate-wise, that is,

σ(z) = σ(z1, . . . , zn`) := (σ(z1), . . . , σ(zn`)).

2.2. The set ΥW,L(σ; d, d ′)

We will almost always consider only fully connected feed-forward NNs whose
hidden layer widths are all the same, namely n1 = · · · = nL = W . Note that we can
embed any fully connected feed-forward NN into a network with constant width
W := maxj=1,...,L nj by inserting (W − nj) additional zero bias vertices into layer
j and adding new edges with weights set to 0 between these vertices and those in
the next layer (if these vertices are in the first layer, we also add new edges with
weights set to 0 between them and the input vertices). We use this fact frequently
in what follows, sometimes without mentioning it.
We refer toW as thewidth of the network and to L as its depth. In such networks,

each vertex v from a hidden layer can be associated with a pair of indices (i, j),
where j is the layer index and i is the row index of the location of v. We commonly
refer to all vertices from a fixed row as a channel, and to those from a fixed column
as a layer. For every vertex v from the hidden layers, it is useful to introduce the

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 333

. . .

. . .

R2

∈

x(0)

input

R3

∈

x(1)

first
layer

R3

∈

x(2)

second
layer

R3

∈

x(L−1)

(L − 1)th
layer

R3

∈

x(L)

Lth
layer

R

∈

x(L+1)

output

Figure 2.1. The graph associated to the outputs Υ3,L(σ; 2, 1) of a fully connected
network with input dimension 2, width 3, L hidden layers and output dimension 1.

function zv := zi, j , which records how the value at this neuron depends on the
original input x = (x1, . . . , xd) before the activation σ is applied. It follows that

σ(zv(x1, . . . , xd)) := σ(zi, j(x)) := X (j)
i , i = 1, . . . ,W, j = 1, . . . , L, (2.5)

which is the value of the ith coordinate of the vector X (j) defined in (2.4).
For a fully connected feed-forward networkN with widthW , depth L, activation

function σ, input dimension d and output dimension d ′, we define the set

Υ
W,L := ΥW,L(σ; d, d ′)

as the collection of all output functions SN that we obtain by varying the choice of
the trainable parameters of N . Recall that SN is a mapping from Rd (or Ω ⊂ Rd)
to Rd′. For notational simplicity, we often omit the dependence of ΥW,L on σ, d
and d ′ when these are understood from the context. Figure 2.1 shows the graph
associated to a typical network that outputs functions from ΥW,L(σ; d, d ′) with
d = 2, W = 3, d ′ = 1.
Note thatΥW,L is closed under addition of weights and biases in the output layer.

This follows immediately from (2.3). However, it is not closed under addition of
functions because we can find two outputs S1, S2 from ΥW,L with S1 + S2 < Υ

W,L .
This will become apparent even in our discussion of one-layer ReLU networks; see
Section 3. Therefore ΥW,L is not a linear space. Each function SN ∈ ΥW,L is
determined by

n(W, L) := (d + 1)W +W(W + 1)(L − 1) + d ′(W + 1) (2.6)

parameters consisting of the entries of its weight matricesW (1), . . . ,W (L+1) and bias
vectors b(1), . . . , b(L+1). We note in passing that it is possible that distinct choices
of trainable parameters end up describing the same outputs.
We order the parameters of N and organize them into a vector θ, where θ =

θN ∈ Rn, n = n(W, L). In the case d ′ = 1, the output SN is then given by

SN = S(·, θN) =: M(θN), (2.7)

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

334 R. DeVore, B. Hanin and G. Petrova

where M : Rn → ΥW,L(σ; d, 1) is the map from network weights and biases to
output functions. In this way, we view ΥW,L as a parametric manifold. Here we
are using the term ‘manifold’ in a very loose sense because we are not attributing
any of the topological or differential properties usually associated with this term.
The mapping M is completely determined once we have fixed the architecture

and the activation function σ. Therefore, having made these choices, designing
approximation methods for a target function f boils down to choosing parameters
θ =: a(f) when f or information about f is given. In this way, any NN-based
approximationmethod consists of determining amapping a : f 7→ a(f) that assigns
to each potential target function f a sequence of parameters a(f) ∈ Rn. The
approximation to f is then given by

A(f) := M(a(f)). (2.8)

Our main focus in this paper is to understand the approximation power of NNs,
and thus we work under the assumption that we have full access to the target
function f . However, in the last two sections we do make forays into the more
realistic (numerical) settings where we are only provided (partial) information
about f in terms of data observations, or we are only allowed to query f to gain
information. This separation between the approximation setting and the numerical
setting is important since it may be that we could approximate f well if we had
unlimited access to f , but in reality we are limited by the information provided
to us.
Fully connected feed-forward NNs are an important approximation tool that is

amenable to theoretical analysis. In practice, the most common choice of activation
function σ is the so-called rectified linear unit

σ(t) = ReLU(t) := t+ := max{0, t}.
This will constitute the main example of activation function studied in this article.

2.3. Fundamental operations with neural networks

In this section we discuss some fundamental operations that one can implement
with NNs. Recall thatΥW,L = ΥW,L(σ; d, d ′) is the set of functions that are outputs
of an NN with the activation function σ, input dimension d, output dimension d ′

and L hidden layers, each of fixed width W .
Let us begin by pointing out that deep neural networks naturally allow for

two fundamental operations – parallelization and concatenation – which we will
often use.

Parallelization. If the NNsNj have width Wj , depth L, input dimension d, output
dimension d ′ and an activation functionσj , j = 1, . . . ,m, then the parallelization of
these networks is a new network PAR(N1, . . . ,Nm) with widthW = W1+ · · ·+Wm,
depth L, input dimension d and output dimension d ′. Its graph is obtained by
placing the hidden layers of Nj on top of each other. The parallelized network

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 335

can output any linear combination S =
∑m

j=1 αjSj , where Sj ∈ ΥWj,L(σj ; d, d ′),
j = 1, . . . ,m.

As described above, the network PAR(SN1, . . . , SNm) does not have full con-
nectivity since the nodes of Nj are not connected to the nodes of Ni, i , j.
However, we can view the resulting network as a fully connected network by
completing it, namely by adding the missing edges and assigning to them zero
weights.
To describe network concatenation, let us agree that givenm functions fj : Rd j →
Rd j+1 , we will define their composition fm ◦ · · · ◦ f1 : Rd1 → Rdm+1 by

(fm ◦ · · · ◦ f1)(x) := fm(fm−1(· · · f1(x))). (2.9)

If f : Rd → Rd, we also introduce the notation
f ◦m := f ◦ f ◦ · · · ◦ f , (2.10)

where the composition is performed m − 1 times.

Concatenation. If theNNsNj havewidthW0, depth Lj , input dimension dj , output
dimension dj+1 and activation functions σj , j = 1, . . . ,m, then the concatenation
of these networks is a network CONC(N1, . . . ,Nm) with width W0, depth L =∑m

j=1 Lj , input dimension d1 and output dimension dm+1. Its graph is obtained
by placing the hidden layers of these networks side by side with full connectivity
between the hidden layers of Nj and Nj+1. The concatenated NN can output any
composition S = Sm◦Sm−1◦· · ·◦S1, where the functions Sj ∈ ΥW0,L j (σj ; dj, dj+1),
j = 1, . . . ,m. It does this by assigning weights and biases, associated to edges
connecting the last hidden layer of an Nj to a node of the first hidden layer of the
neighbour Nj+1, using the output weights and biases of Nj and input weights and
biases of Nj+1.

Parallelization and concatenation of neural networks allow us to perform the
following operations between their outputs.

Addition by increasing width. It follows from Parallelization that for any L ≥ 1
and Sj ∈ ΥWj,L(σ; d, d ′), j = 1, . . . ,m, the linear combination satisfies

m∑
j=1

αjSj ∈ ΥW,L(σ; d, d ′), W := W1 + · · · +Wm.

Composition. It follows from Concatenation that for any W ≥ 1 and S ∈
ΥW,L1(σ; m, d ′), T ∈ ΥW,L2(σ; d,m), the composition satisfies

S ◦ T ∈ ΥW,L(σ; d, d ′), L := L1 + L2.

Remark 2.1. In particular, it follows from Parallelization and Concatenation
that given the outputs Tj ∈ ΥWj,L1(σ; d, 1), j = 1, . . . ,m, and S ∈ ΥW,L2(σ; m, d ′),

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

336 R. DeVore, B. Hanin and G. Petrova

with W =
∑m

j=1 Wj , then the function satisfies

S(T1, . . . ,Tm) ∈ ΥW,L(σ; d, d ′), L := L1 + L2.

Shifted dilates. If S ∈ ΥW,L(σ; d, d ′), then for any a ∈ R and c ∈ Rd, the shifted
dilate satisfies

T(x) := S(ax + c) ∈ ΥW,L(σ; d, d ′).

To prove this, let N be the NN which outputs the function S. To output the
function T , it is enough to alter the weights and biases of the first hidden layer of
N . Namely, if a neuron from this layer computes σ(w · x + b), w ∈ Rd, b ∈ R, we
replace it with σ(aw · x + w · c + b). Here x · x ′ denotes the inner product of two
vectors x, x ′ of the same dimension. The remaining layers stay the same.

2.4. One-layer neural networks

The function SN ∈ ΥW,1(σ; d, 1) produced by a single-hidden-layer fully connected
feed-forward neural networkN with activation function σ, d inputs and one output
has the representation

SN (x) = b0 +

W∑
j=1

ajσ(wj · x + bj), aj, bj ∈ R, wj ∈ Rd, (2.11)

where W is the width of the first (and only) hidden layer and b0 is the bias of the
output node. The above can equivalently be written as

SN (x) = b0 +

∫
Rd+1

σ(w · x + b) dµN (w, b), µN (w, b) :=
W∑
j=1

ajδ(wj,b j),

where δz denotes the mass-one atomic measure at the point z. The correspondence
between purely atomic Borel measures and ΥW,1(σ; d, 1) is useful in addressing
various structural properties of this set via functional analytic arguments. As
an example of this, we briefly discuss the density question of whether, for each
continuous function f , defined on a compact set Ω ⊂ Rd, we have

dist(f ,ΥW,1(σ; d, 1))C(Ω) → 0, W →∞, (2.12)

where for the current discussion the distance is measured in the uniform norm
‖ f ‖C(Ω) := supx∈Ω | f (x)|. This question is discussed in detail in Pinkus (1999);
see also Cybenko (1989) and Petersen (2020). Here we only point out some key
results.

Note that (2.12) does not hold for every activation function σ. For example, if
σ = P is a univariate polynomial of degree m, then σ(w · x + b) with w ∈ Rd,
b ∈ R is a multivariate polynomial in x = (x1, . . . , xd) of total degree m and hence
ΥW,1(σ; d, 1) ⊂ X , where X is a linear space of fixed finite dimension. Thus (2.12)
does not hold.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 337

Sufficient condition. If σ is a continuous function on R such that for each finite,
signed regular Borel measure µ , 0 on Ω, the function

Fµ(w, b) :=
∫
Ω

σ(w · x + b) dµ(x), w ∈ Rd, b ∈ R,

is not identically zero, then the density condition (2.12) holds. This condition can
be used to prove the following examples of activation functions for which (2.12)
holds:

• Sigmoidal activation function. A function σ, defined and continuous on R, is
called a sigmoidal function if

lim
t→∞σ(t) = 1 and lim

t→−∞σ(t) = 0.

For each such σ the density statement (2.12) holds; see Cybenko (1989) for
one of the first proofs in this case.
• ReLU activation function. If σ(t) = t+, t ∈ R, then the density condition
(2.12) holds.

3. ReLU networks
In this section we summarize what is known about the outputs of NNs with ReLU
activation (ReLU networks). We begin by making general remarks that hold for
any ReLU network and then turn to special cases, especially those that form our
main interest of study in this paper.
Perhaps the most important structural property of ReLU networks is that any

output of such a network is a continuous piecewise linear function. To describe
this precisely, we start with the following definitions.

Definition 3.1. A polytope partition of Rd is a finite collection P = {Pj} of con-
vex closed d-dimensional polytopes (not necessarily bounded)which are exhaustive
and have disjoint interiors Po

j , that is,⋃
j

Pj = R
d, P◦j ∩ P◦k = ∅ for all j , k .

Each such convex polytope is the intersection of a finite number of closed half-
spaces. We refer to the polytopes Pj of such a partition as cells.

Definition 3.2. A function S : Rd → R is a continuous piecewise linear function
(CPwL) if S is globally continuous and there is a polytope partition P = {Pj} on
which S is locally affine, that is,

S |Pj is affine for all j.

We then say that S is subordinate to the polytope partition P .

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

338 R. DeVore, B. Hanin and G. Petrova

We let
Σn,d := Σn,d(CPwL)

denote the collection of all CPwL functions S : Rd → R that are subordinate to
some polytope partition with at most n cells. This collection is a nonlinear set.
For example, if S1 and S2 are subordinate to different partitions of size n then the
sum S1 + S2 is typically not in Σn,d. Going forward in this paper, we do not study
Σn,d but only use it for comparison purposes. Note that if a CPwL function S is
subordinate to P then it is also subordinate to any refinement of P .
In the special case when d = 1, polytope partitions of R are simply decomposi-

tions of R into intervals with disjoint interiors, and thus Σn,1 is in fact the set of all
univariate continuous linear free-knot splines with at most n − 1 breakpoints.

Theorem 3.3. Let N be a ReLU network with d inputs, one output node and m
hidden neurons. Then the output SN of N is a CPwL function subordinate to a
partition PN with at most 3m cells, i.e. #PN ≤ 3m.

Proof. Let z1(x), . . . , zm(x) denote the pre-activations of the network’s neurons,
i.e. the values stored at the neurons for input x before ReLU is applied. For every
activation pattern

ν = (ν1, . . . , νm) ∈ {−1, 0, 1}m,
we define

Ων := {x ∈ Rd : sign(zj(x)) = νj, j = 1, . . . ,m}, (3.1)

where for the purpose of this formula sign(0) := 0. By construction, each Ων is
the (possibly empty) collection of all inputs x ∈ Rd at which the network neurons
have a given pattern of being on, off or zero, prescribed by ν. A simple inductive
argument (see Hanin and Rolnick 2019, Lemma 7) shows that Ων is a convex
polytope. Moreover, defining Pν to be the closure of Ων, we see that the collection

PN := {Pν | Po
ν , ∅}

is a polytope partition of Rd and that SN is a CPwL function subordinate to this
partition.

Having established that each output of a ReLU network is a CPwL function, it
is of interest to give bounds for the number of cells in such a partition. The above
theorem gives a bound 3m. However, many of the cells Ων, defined in (3.1), are
either empty or have dimension smaller than d. We shall see as we proceed in this
section that this bound can be improved in the cases of interest to us. At this stage
let us just mention the following almost trivial result.

Claim. Consider a fixed architecture for neural networks with m neurons as above.
Let S(·; θ) be the outputs of a ReLU network with parameters θ ∈ Rn. Then outside
a set of measure zero in Rn, any selection of parameters results in an S(·, θ) which
is subordinate to a partition with at most 2m cells.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 339

This claim is proved by showing that outside a set of measure zero in parameter
space Rn, all cells Ων defined in (3.1) are empty or have dimension < d whenever
one of the components νj of ν is zero.

Our purpose in the remainder of this section is to explore the properties of both
the polytope partitions created by ReLU networks and the complexity of the CPwL
functions that they output. We start in Section 3.1 by studying in detail ReLU
networks with input and output dimension 1, postponing a discussion of higher
input dimensions to Section 3.2.

3.1. Univariate ReLU networks

In this section we consider ReLU networks with input and output dimensions both
equal to one, i.e. d = d ′ = 1. In this case the polytope partitions of R are simply
decompositions of R into a finite collection of intervals with disjoint interiors, and
the CPwL functions subordinate to such partitions are customarily referred to as
continuous linear free-knot splines.

3.1.1. Single-layer univariate ReLU networks
For the setΥW,1 := ΥW,1(ReLU; 1, 1), we have the simple inclusion (seeDaubechies
et al. 2019)

ΣW,1 (Υ
W,1 (ΣW+1,1, (3.2)

where we recall our notation ΣW,1 := ΣW,1(CPwL) for the set of CPwL functions
subordinate to a partition of R into W intervals. This shows that ΥW,1 and the
set of linear free-knot splines, determined by comparable number of parameters,
essentially have the same approximation power. Recall that, according to (2.6),
ΥW,1 is determined by 3W + 1 parameters, while ΣW,1 is determined by 2W
parameters.
We point out a particularly important family of functions generated by ReLU

networks, namely the hat functions Hp, where p = (p1, p2, p3) ∈ R3, p1 < p2 < p3,
defined as

Hp(t) =

0 t < [p1, p3],
t − p1

p2 − p1
t ∈ [p1, p2],

− t − p3
p3 − p2

t ∈ [p2, p3].

(3.3)

Here Hp is a CPwL function that takes the value one at p2, zero at p1 and p3, is
linear on [p1, p2] and [p2, p3], and vanishes outside [p1, p3]. Note that since Hp ≡ 0
outside [p1, p3], we have

Hp(t) =
1

p2 − p1
(t − p1)+ − p3 − p1

(p3 − p2)(p2 − p1)
(t − p2)+ +

1
p3 − p2

(t − p3)+,

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

340 R. DeVore, B. Hanin and G. Petrova

and hence Hp ∈ Υ3,1(ReLU; 1, 1). In particular, the hat function H, defined as
H := H(0,1/2,1) and viewed as a function on [0, 1], has the representation

H(t) = 2(t − 0)+ − 4
(

t − 1
2

)
+

. (3.4)

Thus H ∈ Υ2,1(ReLU; 1, 1) when considered only on [0, 1].

3.1.2. Deep univariate ReLU networks
According to the discussion at the start of Section 3, any function from the set
ΥW,L := ΥW,L(ReLU; 1, 1) is a CPwL function on R. It is of interest to understand
exactly which CPwL functions are in this set. We shall see that such a characteriz-
ation is rather straightforward when L = 1, but the situation gets more complicated
as L gets larger.
When L = 1, any selection of weights and biases produces as output a CPwL

function S with at most W breakpoints. Indeed, S can be expressed as S =
b0 +

∑W
j=1 ajηj(t), where the functions ηj(t) = (±t + bj)+. Obviously the bound W

cannot be improved. Although ΥW,1 does not contain all of ΣW+1,1, it does contain
all of ΣW,1; see (3.2).
When L > 1, the situation gets much more complicated. Even though there is

no precise characterization of the set of outputs, we can provide some important
insight. When L grows, two important things happen:

(i) the number of breakpoints of functions from ΥW,L can be exponential in L,
(ii) not every CPwL function with this large number of breakpoints is in ΥW,L ,

in fact, far from it.

We first address (i). Fix W and let S ∈ ΥW,L = ΥW,L(ReLU; 1, 1). We define m(L)
as the largest number of breakpoints that any S ∈ ΥW,L can have. We know that
m(1) = W . Moreover, once the parameters are chosen for the first layer, any output
S has breakpoints in a fixed setΛ of cardinality at most W . We can bound m(L +1)
in terms of m(L) as follows. Each S ∈ ΥW,L+1 can be expressed as

S =
W∑
k=1

ak[Sk]+ + b, ak, b ∈ R, Sk ∈ ΥW,L, k = 1, . . . ,W . (3.5)

There is a set Λ, #(Λ) ≤ m(L) such that each of the Sk have their breakpoints in
Λ. Fix k and consider the function [Sk]+. It has two types of breakpoints: those
inherited from Λ, and the set Λ′

k
of new breakpoints that arose after the application

of ReLU. We have #(Λ′
k
) ≤ #(Λ) + 1 ≤ m(L) + 1, k = 1, . . . ,W . Hence S has at

most m(L) +W(m(L) + 1) breakpoints. It follows that

m(L + 1) ≤ (W + 1)m(L) +W, L ≥ 1. (3.6)

This recursion with the starting value m(1) = W gives the bound

m(L) ≤ (W + 1)L, L = 1, 2, (3.7)

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 341

1 H

0 1
2 1

1 H◦2

0 1
4

1
2

3
4 1

1 H◦3

0 1
8

1
4

3
8

1
2

5
8

3
4

7
8 1

Figure 3.1. The sawtooth functions H◦L .

This bound can be improved somewhat at the expense of a more involved argument.
This potential exponential growth of the breakpoints as a function of the number

of neurons can in fact be attained. A simple example, first noted by Telgarsky
(2016), is to compose the hat function H(0,1/2,1) on [0, 1] (see (3.4)) with itself
(L − 1) times. The resulting function S := H◦L is the sawtooth function with 2L−1

teeth; see Figure 3.1. Since H ∈ Υ2,1(ReLU; 1, 1), it follows from Composition
that S ∈ Υ2,L(ReLU; 1, 1).

While a function in ΥW,L(ReLU; 1, 1) can have an exponential (in L) number
NL of breakpoints, one should not get disillusioned into thinking that this set of
functions is anywhere close to ΣNL+1,1, which was the point in (ii). The reason for
this is that there are linear dependencies between the linear pieces in the case of
a large number of breakpoints. There is not yet a good understanding of exactly
which CPwL functions are inΥW,L(ReLU; 1, 1)when L is large. A possible starting
point to unravel this is to consider special cases such as breakpoints in [0, 1] at the
dyadic integers j2−n, j = 0, 1, . . . , 2n, with n > 1.

Problem 3.4. For L > n, characterize the CPwL functions in ΥW,L(ReLU; d, 1)
which have breakpoints only at the dyadic integers j2−n, j = 0, . . . , 2n.

3.2. Multivariate ReLU networks

We now turn to studying the properties of ReLU networks with input dimension
d > 1, starting with those networks that have one hidden layer. Deeper multivariate
ReLU networks are discussed in Section 3.2.2.

3.2.1. Multivariate ReLU networks with one hidden layer
A ReLU network N with input dimension d > 1, output dimension 1 and one
hidden layer of width W outputs a function of the form

SN (x) = b0 +

W∑
j=1

ajηj(x), ηj(x) := (zj(x))+, x ∈ Rd, (3.8)

where b0, aj ∈ R, j = 1, . . . ,W , and zj , j = 1, . . . ,W , is the function computed by
the jth neuron before applying ReLU,

zj(x) = zj(x;wj, bj) = wj · x + bj, wj ∈ Rd, bj ∈ R.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

342 R. DeVore, B. Hanin and G. Petrova

Figure 3.2. A hyperplane arrangement inR2 with two of its cells shaded.

Let us record the following useful fact.

Observation 3.5. Any function S ∈ ΥW,1(ReLU; d, 1) has a representation (3.8)
with the wj , j = 1, . . . ,W , unit norm vectors.

This follows by removing the zero weight vectors and normalizing the remaining
wj’s by adjusting the constants bj and aj . We use this representation of functions in
ΥW,1(ReLU; d, 1) in going forward. Given the collection ofW unit vectorswj ∈ Rd
and biases bj ∈ R from (3.8), we define the hyperplanes

Hj := {x ∈ Rd : wj · x + bj = 0}, j = 1, . . . ,W,

and the collection H := {H1, . . . ,HW }, associated to the network N . This collec-
tion is an example of a hyperplane arrangement, a classical subject in combinatorics
(Stanley et al. 2004); see Figure 3.2, for example.
We now describe how the hyperplane arrangement H associated to N determ-

ines the polytope partition of Rd to which SN is subordinate in the sense of
Definition 3.2. Because of our assumption that each wj has unit norm, only activa-
tion patterns with entries νj ∈ {±1} lead to cells with non-empty interiors. For any
such activation pattern ν = (ν1, . . . , νW), we may write, in the notation of (3.1),

Ων =

W⋂
j=1

Hνj
j , Hνj

j = {x ∈ Rd : sign(zj(x)) = νj},

as an intersection of half-spaces. Thus, in the special case of ΥW,1, the cells in
partitions P of the output functions have a simple global description. The partition
P associated to H is the collection of the closures Pν := Ων for which Ων , ∅.
Each cell Pν is a convex closed polytope. By a special case of a classical result of

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 343

Zaslavsky (1975), the number of cells #P in P satisfies

#P ≤
d∑
j=0

(
W
j

)
. (3.9)

In fact, Zaslavsky’s theorem shows that away from a codimension 1 set of weights
and biases (i.e. when the hyperplanes are in general position), this upper bound is
attained.
In summary, any function S ∈ ΥW,1(ReLU; d, 1) is a CPwL function subordinate

to a partition P , generated by an arrangement of W hyperplanes determined by the
weights and biases of the network N . However, it is important to note that, unlike
the case of one hidden layer with input dimension 1, not every CPwL function
subordinate to a polytope partition arising from a hyperplane arrangement is the
output of a one-layer ReLU network. There are several ways to see this, as we now
discuss.
First of all, let us show that ΥW,1(ReLU; d, 1) does not contain any non-zero

compactly supported functions on Rd once d > 1. To see this, consider a function
S of the form (3.8) and suppose that S has compact support on Rd. For each
j = 1, . . . ,W , there is a ball Bj ⊂ Rd outside the support of S that intersects the
hyperplane Hj but none of the other hyperplanes Hi, i , j. We have

0 = S(x) = L(x) + ajηj(x), x ∈ Bj,

where L is an affine function. Since L and ηj are linearly independent on Bj , this
implies aj = 0. Hence all aj’s are zero and S is a constant. Since S was assumed
to have compact support, this constant is zero.
Another way to see that ΥW,1(ReLU; d, 1) does not contain all CPwL func-

tions subordinate to a given hyperplane arrangement is the following. Once
H = {H1, . . . ,HW } is chosen, thereby determining the partition P , the outputs
of ΥW,1 that are subordinate to P are all contained in a linear space of dimension
2W +1. This follows from the representation (3.8). Indeed, since we have assumed
that ‖wj ‖ = 1 for each j, there are only two choices of (wj, bj) for the functions
zj(x) = wj · x + bj , j = 1, . . . ,W , such that

Hj = {x ∈ Rd : zj(x) = 0}.
However, when d > 1, Zaslavsky’s theorem shows that the number of cells inP can
grow as fast asCWd whenW ≥ d. Hence, in general, the set of all CPwL functions
subordinate to P is a linear space with dimension much larger than 2W + 1.
The following lemma gives a simple way of checking when a CPwL function

subordinate to a partition generated by an arrangement of W hyperplanes is in
ΥW,1(ReLU; d, 1). Before formulating the lemma, let us note that if T is a CPwL
function subordinate to P , then on any cell Pν of P , the gradient ∇T is a constant
vector. It follows that∇T is a piecewise constant vector-valued function subordinate
to P .

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

344 R. DeVore, B. Hanin and G. Petrova

Lemma 3.6. Let P be a partition of Rd generated by a hyperplane arrangement
H = {H1, . . . ,HW }, where Hj := {x ∈ Rd : wj · x + bj = 0}, and wj is a unit
vector, j = 1, . . . ,W . Let T be a CPwL function that is subordinate to P . Then T
has the representation

T = S + L, S ∈ ΥW,1(ReLU; d, 1), L-globally affine,

if and only if the following condition holds:

(A) For each j = 1, . . . ,W , there is a real number aj such that for every x ∈ Rd
on the hyperplane Hj , and on no other hyperplane, the jump in ∇T across Hj

at x, equals ajwj .

Proof. First, let T = S + L with S and L as above. We know that the function
S ∈ ΥW,1(ReLU; d, 1) has the representation (3.8) with the wj’s being unit vectors.
Given x ∈ Rd that belongs to Hj and to no other hyperplane, the jump in ∇T at x
is the same as that of aj∇ηj at x, which is ajwj . This shows that T satisfies (A).

For the converse, suppose that T is any CPwL that is subordinate to P and that T
satisfies condition (A). We define S :=

∑W
j=1 ajηj ∈ ΥW,1(ReLU; d, 1), where the

aj’s are given by (A) and ηj(x) := (wj · x + bj)+. Consider the function (T − S)
which is piecewise linear subordinate to the partitionP . We claim that this function
is a globally affine function. Indeed, otherwise there would be two adjacent cells
which share a (d − 1)-dimensional boundary (which is part of some Hj) and the
jump of ∇(T − S) across this boundary is not zero. But both T and S have the
same jump ajwj of their gradient across this boundary. This is a contradiction and
proves the lemma.

3.2.2. Deep multivariate ReLU networks
The discussion at the beginning of Section 3 showed that any S ∈ ΥW,L(ReLU; d, 1)
is a CPwL function subordinate to a partition P of Rd into convex polytopes. The
partition we produced to show this was not determined by a hyperplane arrange-
ment. It turns out, as we shall see in Section 3.3.3, that S is always subordinate to
some partition given by a hyperplane arrangement. However, the latter partition is
not a minimal partition to which S is subordinate. In other words, unlike the case
of L = 1, the minimal polytope partition of Rd to which S is subordinate is not
simply given by the cells of a hyperplane arrangement.
Given S ∈ ΥW,L(ReLU; d, 1), we do not know the best bound for the number of

cells in a minimal convex polytope partition to which S is subordinate, but we can
give some bounds. Recall that from (3.1) we have the bound 3WL . We also stated
that in the generic case this bound can be improved to 2WL . Indeed, in the generic
case this partition consists of the closures of those convex sets

Ων = {x ∈ Rd : sign(zj(x)) = νj}, ν = (ν1, . . . , νWL) ∈ {±1}WL,

which have a non-empty interior. We continue to write zj(x) for the CPwL function

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 345

computed by the jth neuron in N before ReLU is applied, and we have assumed
for simplicity that for every neuron zj the sets

Hj = {x ∈ Rd : zj(x) = 0}
have codimension at least 1. It is important to note that the Hj’s are no longer
hyperplanes since the functions x 7→ zj(x) are not affine. Instead, Hj is the zero
level set of zj and, following the language in Hanin (2019), we refer to the Hj as
bent hyperplanes and

H =: {H1, . . . ,HWL}
as a bent hyperplane arrangement. We can now describe the cells in the partitionP ,

P = {Ων, ν ∈ {±1}WL, dim(Ων) = d},
or equivalently the cells that are the closures of the connected components ofRd\H.

To understand this setting more clearly, let us consider a neuron z in the second
hidden layer of N . Note that the function x 7→ z(x) is the output of an element
of ΥW,1. Hence it is CPwL subordinate to the partition defined by the hyperplane
arrangement

H(1) = {H1, . . . ,HW }
created by the neurons z1, . . . , zW in the first hidden layer of N . On each cell
C of the arrangement H(1), the function x 7→ z(x) is affine. Let Hz denote the
bent hyperplane associated with this neuron z from the second layer. We see that
Hz ∩ C is given by the (possibly empty) intersection of a single hyperplane with C.
However, because x 7→ z(x) is a different affine function on different cells, its zero
set Hz may ‘bend’ at the boundary between two cells and is not given globally by
a single hyperplane. More is true: while in every cell Hz coincides with a single
hyperplane, globally it may have several connected components.
Just as in the case of univariate ReLU networks considered in Section 3.1, the

number of cells in a deep ReLU network with any input dimension can grow
exponentially with depth. In fact (see Montufar, Pascanu, Cho and Bengio 2014,
Theorem 5) there are ReLU networks of depth L and width W ≥ d giving rise to
partitions with at least ⌊

W
d

⌋d(L−1) d∑
j=0

(
W
j

)
cells. Similarly to the univariate case, the exponential growth in the number of
pieces of the CPwL functions produced by deep networks is a consequence of
composition.
Let us summarize what we know about the sets ΥW,L(ReLU; d, 1). Each

S ∈ ΥW,L(ReLU; d, 1) is a CPwL function on a finite partition of Rd into convex
polytopes. The number of cells in the partition for S can be very large compared to

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

346 R. DeVore, B. Hanin and G. Petrova

the number of parameters n(W, L). For example, when L = 1 the number of cells
can be of orderWd, and as L grows the number of cells can grow exponentially with
respect to L. Although the number of cells is large, not every CPwL function sub-
ordinate to such a partition is in ΥW,L(ReLU; d, 1) since there is linear dependency
imposed on the affine pieces. However, every CPwL function subordinate to a par-
tition into convex polytopes is eventually in the ΥW,L(ReLU; d, 1) spaces, provided
we take L and W large enough; see CPwL1 and CPwL2 in Section 3.3.3. Let us
also repeat the fact that every convex polytope is the intersection of a finite number
of half-spaces given by a suitable hyperplane arrangement. Finally, by refining
partitions, we have that every S that is in one of the spaces ΥW,L(ReLU; d, 1) is a
CPwL function on a partition given by a hyperplane arrangement but the number
of these hyperplanes may be huge.

3.3. Properties of deep ReLU networks

Deep ReLU networks have a variety of remarkable properties that make their
outputs a powerful approximation tool. We describe some of these properties in
the present section. We study the sets ΥW,L := ΥW,L(ReLU; d, 1), where W is
generally fixed and L is allowed to vary. We begin by introducing a special class of
ReLU networks that are effective in the construction of numerical approximation
methods.

3.3.1. Special networks and their set of outputs ΥW,L

We describe in this section a set of NNs that we call special networks, following
Daubechies et al. (2019), which designate certain channels for specific tasks. We
introduce the notation for the function x 7→ ηi, j(x) of the initial input x at the (i, j)th
node. Usually ηi, j = [zi, j]+, that is, ηi, j is the CPwL function computed by the
(i, j)th neuron after ReLU is applied, but in special networks we sometimes do not
apply the activation ReLU at certain nodes. However, as we shall see, the outputs of
a special network, when restricted to a bounded domain, are still functions inΥW,L .

In a special network, we reserve the top d channels to simply push forward the
input values of x. Namely, channel i ∈ {1, . . . , d} has

ηi, j(x) := xi, j = 1, . . . , L,

where x = (x1, . . . , xd) is the initial input. This allows us to use x as an input to the
computation performed at any later layer of the network. We refer to such channels
as source channels (SC).

In a special network, we also designate some channels, called collation channels
(CC), to simply aggregate the value of certain intermediate computations. In a
collation channel the ReLU activation may or may not be applied. The key point
here is that nodes from both collation and source channels may be ReLU-free.
Therefore such networks are not true ReLU networks.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 347

We let ΥW, L denote the set of functions S which are the outputs of a special
network of width W and depth L. A useful observation made in Daubechies et al.
(2019) is that the functions that are outputs of a special network, when restricted
to a bounded domain, are in ΥW,L , that is,

ΥW, L ⊂ ΥW,L, L ≥ 1. (3.10)

This is proved using the following observations:

• Given any configuration of weights and biases in any collation channel of
a special network and any fixed compact set K of inputs, we may choose a
sufficiently large value bi, j associated to the (i, j)th node so that zi, j(x)+bi, j >
0 for all x ∈ K . Then we construct the true ReLU network by assigning to this
node the function η′i, j , given by η

′
i, j(x) = [zi, j(x)+ bi, j]+ = zi, j(x)+ bi, j . The

effect of bi, j on any subsequent computation is then eliminated by adding an
extra bias (to the bias present from the special network) for any neuron from
the next layer to which the output η′i, j(x) is passed. We apply this procedure
to every ReLU-free node from the collation channels.
• A similar treatment to that above is used for all nodes in all source channels.
• The ReLU network that has been constructed has the same output as that of
the special network we started with.

This specific trick works only when K is compact. Alternatively, at the expense of
increasing thewidth, we can create a true ReLUnetwork of widthW = W0+2d+2k,
where W0 + d + k is the width of the special network with d source and k collation
channels by using the identity t = t+ − (−t)+. This approach works for arbitrary
inputs but at the expense of increasing the width of the network.
In what follows, we make extensive use of special networks to derive some

important properties of deep networks since they facilitate many constructions.

3.3.2. Some important properties of deep ReLU networks
As noted in Observation 3.5 in the case of one-layer networks, the vector w consist-
ing of all incoming weights into any hidden node of a ReLU network, if non-zero,
can be taken to be of Euclidean norm ‖w‖2 = 1. Indeed, this follows from the
equality

(w · x + b)+ = ‖w‖2
(

w

‖w‖2 · x +
b
‖w‖2

)
+

,

and the fact that the factor ‖w‖2 can be absorbed by the outgoing weights.
Next, we return to the addition property. Earlier we showed that we can add

functions inΥW,L(σ; d, d ′) by increasing thewidth of the network using themethod
of parallelization. Here we want to observe that addition can also be performed
by increasing depth and not significantly enlarging width. Here is a statement to
that effect.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

348 R. DeVore, B. Hanin and G. Petrova

Addition by increasing depth. If Sj ∈ ΥW,L j , j = 1, . . . ,m, then for any αj ∈ R
we have

S :=
m∑
j=1

αjSj ∈ ΥW+d+1,L,

where L := L1 + · · · + Lm. In this statement all Sj’s are viewed as functions on
[0, 1]d (or any bounded rectangleR ⊂ Rd).

Indeed, if N1, . . . ,Nm, are the ReLU networks that produce the Sj’s, then we
create from these the following special network. First we augment each of the
Nj’s by adding d source channels and one collation channel. We denote this new
augmented network by N ′j . Next we place the hidden layers of the augmented
networks side by side, connect the source channels of the N ′j ’s and place (with
appropriate weights) the outputs of N ′j , j = 1, . . . ,m − 1, in the collation channel.
Finally the desired sum is the output of the concatenated network (with appropriate
weights). As a result, we obtain a special network with width W + d + 1 and depth
L = L1 + · · · + Lm. The result follows from the containment (3.10).
Another operation on the output functions of ReLU networks that can be easily

performed with increasing depth is to take their minimum or maximum. To that
end, let us first observe that given t, t ′ ∈ R, we have

max{t, t ′} = (t − t ′)+ + (t ′)+ − (−t ′)+,
min{t, t ′} = (t ′)+ − (−t ′)+ − (t ′ − t)+.

(3.11)

Hence min{t, t ′}, max{t, t ′} ∈ Υ3,1(ReLU; 2, 1). We can extend the above minim-
ization to an arbitrary number of inputs.

Minimization/maximization 1 (MM1). Let

zj(x) := wj · x + bj, wj ∈ Rd, bj ∈ R, j = 1, . . . ,m, x ∈ Rd,
be m affine functions on Rd. Then, for W = 3 · 2 dlog2 me−1 and L = dlog2 me, we
have

min{z1(x), . . . , zm(x)},max{z1(x), . . . , zm(x)} ∈ ΥW,L(ReLU; d, 1). (3.12)

In particular, if xi ∈ R, i = 1, . . . ,m, we have

min{x1, . . . , xm},max{x1, . . . , xm} ∈ ΥW,L(ReLU; m, 1). (3.13)

Moreover, ReLU(min{z1(x), . . . , zm(x)}) and ReLU(max{z1(x), . . . , zm(x)}) are
elements of ΥW,L+1(ReLU; d, 1).

We discuss the case of the minimum only, since the case of the maximum is
almost the same. We start by proving (3.13). In our construction, we will use the
fact that

min{x1, . . . , x2k } = min
1≤ j<2k, j odd

min{xj, xj+1}.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 349

We first use Parallelization to construct for each k ≥ 1 a neural network Nk

with 2k inputs and 2k−1 outputs that creates a vector in R2k−1 with components
min{xj, xj+1}, j = 1, . . . , 2k − 1, j-odd, by stacking on top of each other the
networks that produce min{xj, xj+1}. Since each of the networks in the stack has
width 3, we end up with a network with width Wk = 3 · 2k−1 and depth Lk = 1.
We concatenate the networks Nk, . . . ,N1 in this order, by feeding the output of
Nj as input to Nj−1. It is easy to see that the concatenated network N k outputs
min{x1, . . . , x2k }, and has depth L = k and varying widths. We can augment the
network by adding extra nodes and edges to each layer so that we end up with a
network of width W = 3 · 2k−1.

For general m, we let k := dlog2 me and define x̂j = xj , 1 ≤ j ≤ m and x̂j := xm,
m < j ≤ 2k . Applying the above to this new sequence gives the result (3.13). To
show (3.12), we feed zj(x) into the first hidden layer ofNk by assigning appropriate
input weights and node biases.

At the end, if we want to output the ReLU of min/max, we just add another
hidden layer to perform the ReLU.

Another way to compute the above min/max is by increasing the depth and
keeping the width relatively small by means of a recursive formula, first used by
Hanin (2019).

Minimization/maximization 2 (MM2). Let

zj(x) := wj · x + bj, wj ∈ Rd, bj ∈ R, j = 1, . . . ,m, x ∈ Rd,
be m ≥ 2 affine functions on Rd. Then we have

min{z1(x), . . . , zm(x)},max{z1(x), . . . , zm(x)} ∈ Υd+1,m−1(ReLU; d, 1).

In addition, we have that both functions

ReLU(min{z1(x), . . . , zm(x)}), ReLU(max{z1(x), . . . , zm(x)})
are elements of Υd+1,m(ReLU; d, 1). In this statement all zj’s are viewed as func-
tions on [0, 1]d (or any bounded rectangleR ⊂ Rd).

We discuss the case of the maximum only (the case of the minimum is treated
likewise). Let µ1(x) := z1(x) and µk(x) := max{z1(x), . . . , zk(x)}, k ≥ 2. We use
the recursion formula

µk(x) = (µk−1(x) − zk(x))+ + zk(x), 2 ≤ k ≤ m,

and discuss the case R = [0, 1]d. For the case of a general rectangle R one needs
to add appropriate biases. Our construction is as follows:

• The first d channels of the network push forward the variables x1, . . . , xd.
Their nodes can be viewed as ReLU nodes since t+ = t for t ≥ 0.
• The (d + 1)th channel computes in its first node (z1(x) − z2(x))+. Note that
if we wanted to, we could stop and output µ2(x) at this stage. The jth node

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

350 R. DeVore, B. Hanin and G. Petrova

of this channel, j = 2, . . . ,m − 2, computes (µj(x) − zj+1(x))+, which is then
given as an input to the (j + 1)th node. The final layer L = m − 1 will hold
µm−1(x) and hence can output µm(x).

To show the last statement, we add a hidden layer after the last hidden layer of the
NN from the construction above to perform the ReLU of the max/min. Of course,
we could augment the resulting network by adding nodes and connections so that
we have a fully connected feed-forward NN.
Note that if we want to compute the min/max of m linear functions zj , j =

1, . . . ,m, viewed as functions on the wholeRd, we can do this if we takeW = 2d+1,
since any channel i, 1 ≤ i ≤ d, in the above construction doubles in order to be
able to forward the input t = t+ − (−t)+.

More general statements hold when instead of computing the min/max of affine
functions we have to find the min/max of outputs of neural networks.
Minimization/maximization 3 (MM3). Let m ≥ 2 and let the functions Sj be in
ΥWj,L0(ReLU; d, 1), j = 1, . . . ,m. Then

S := min{S1, . . . , Sm} ∈ ΥW,L(ReLU; d, 1), (3.14)

where

W := max{W1 +W2 + · · · +Wm, 3 · 2 dlog2 me−1}, L = L0 + dlog2 me .
If Wj ≥ 3, j = 1, . . . ,m, we have W = W1 +W2 + · · · +Wm. The same statement
holds for max{S1, . . . , Sm}.

We use Parallelization to construct the first L0 hidden layers of the network N
that outputs S. Then from the L0th layer we can output any of the Sj , j = 1, . . . ,m.
We concatenate this with the network in MM1 which has dlog2 me hidden layers to
complete the construction of N . Clearly the resulting network has varying width,
where the first L0 layers have widthW1+W2+· · ·+Wm while the last dlog2 me layers
havewidth 3·2 dlog2 me−1. We augment this network by adding extra nodes and edges.
At the end, our network haswidthW = max{W1+W2+· · ·+Wm, 3·2 dlog2 me−1}. In the
case ofWj ≥ 3,W1+ · · ·+Wm ≥ 3 ·2 dlog2 me−1, which gives thatW = W1+ · · ·+Wm.
It is also possible to do the minimization by increasing the depth of the network

while keeping the width relatively the same.
Minimization/maximization 4 (MM4). Let m ≥ 2 and let the functions Sj

be in ΥW0,L j (ReLU; d, 1), j = 1, . . . ,m. Then S := min{S1, . . . , Sm} belongs
to ΥW,L(ReLU; m, 1), where the width W := max{W0, 3} + d + 1 and the depth
L =

∑m
j=1 Lj + m − 1. The same statement holds for max{S1, . . . , Sm}. Here all

Sj’s are viewed as functions on [0, 1]d (or any bounded rectangleR ⊂ Rd).
In order to construct a neural networkN which shows that S ∈ ΥW,L , we utilize

Concatenation in place of Parallelization and we use special networks. Let Nj

be a network of width W0 and depth Lj which outputs Sj , j = 1, . . . ,m. To
each of the networks Nj we add d source channels to push forward the original

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 351

inputs x1, . . . , xd and one collation channel that we will use to update computations
towards outputting S. Let us denote these special networks byN ′j . We now explain
how to construct N . The first L1 hidden layers of N consist of those of N ′1 . The
collation channel simply pushes forward zero for these layers. We concatenate
N ′1 with N ′2 by placing S1 in the collation channel of N ′2 and then pushing it
forward, and by placing the outputs of the source channels of N ′1 , multiplied by
appropriate weights (those that enter the first layer of N2), into the first hidden
layer of N ′2 . If m = 2, we can complete the construction by placing a last hidden
layer which takes S1 from the collation channel and S2 as an output from N ′2 and
computes (S1 − S2)+, (S2)+ and (−S2)+. We augment the resulting network with
additional nodes, if necessary, so that we have a special network with width W .
This network outputs S and has depth L = L1 + L2 + 1 and width W . If m > 2,
we continue by concatenating with N ′3 . The collation channel is now occupied
by T2 := min{S1, S2}. If m = 3, then we complete as before by adding a layer
to compute (T2 − S3)+, (S3)+ and (−S3)+. Continuing in this way, we obtain the
desired network.

3.3.3. General CPwL functions
We observed earlier that if P is a partition into a finite number of cells obtained
from a hyperplane arrangement, then not every CPwL function subordinate to this
partition is in the set ΥW,1(ReLU; d, 1). In particular, the latter set does not include
CPwL functions with compact support. This can be remedied by slightly increasing
the depth of the network. More precisely, let ∆ be any simplex in Rd and let x∗ be
any point in its interior. Since ∆ is a convex polytope with d + 1 facets, there exist
d + 1 affine functions zj : Rd → R such that zj(x∗) = 1 and

∆ = {x ∈ Rd : zj(x) ≥ 0, j = 1, . . . , d + 1}.
Thus the tent function

T := T∆,x∗ := ReLU(min{z1, . . . , zd+1}) (3.15)

vanishes outside ∆ and satisfies T(x∗) = 1. For example, when d = 1 this is the hat
function on R. The construction MM1 ensures the following:

Tent functions. For each d-dimensional simplex ∆ and each x∗ in its interior,
the tent function T∆,x∗ is in ΥW,L(ReLU; d, 1) with W = 3 · 2 dlog2(d+1)e−1 and
L = 1 + dlog2(d + 1)e.
With these remarks in hand, let us now turn to the question of whether every

CPwL function is in one of the spaces ΥW,L(ReLU; d, 1). We make the following
observations.

CPwL1. If S is a CPwL function on Rd, then

S ∈ ΥW ′,L(ReLU; d, 1), with L = dlog2(d + 1)e, for W ′ sufficiently large.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

352 R. DeVore, B. Hanin and G. Petrova

This is proved in Arora, Basu, Mianjy and Mukherjee (2018a) by using the fact
that any CPwL function S can be written as a linear combination of piecewise linear
convex functions, each with at most (d + 1) affine pieces, that is,

S =
p∑
j=1

εj

(
max
i∈S j

zi
)
, εj ∈ {−1, 1}, Sj ⊂ {1, 2, . . . , k}, (3.16)

with sj := #(Sj) ≤ d + 1, for some affine functions z1, . . . , zk .
To show that S ∈ ΥW ′,L(ReLU; d, 1), we use MM1 to show that for every

j = 1, . . . , p, the function maxi∈S j zi is in ΥW,L(ReLU; d, 1) with

W = 3 · 2 dlog2 sj e−1, L = dlog2 sje .
For the proof, we can assume that sj = d + 1 for all j by artificially writing an
index already in Sj several times, so that we end up with networks with the same
depth L = dlog2(d + 1)e. Using Parallelization, we then stack these networks to
produce S ∈ ΥW ′,L(ReLU; d, 1) with L = dlog2(d + 1)e and W ′ = 3p2 dlog2(d+1)e−1.

At the other extreme, one may wish to keep the width W of the ReLU network
as small as possible at the expense of letting the depth of the network grow. In this
direction, we have the following result.

CPwL2. If S : R → R is a CPwL function defined on a rectangle R ⊂ Rd, then
S ∈ Υd+2,L(ReLU; d, 1) for L suitably large.

To show this, we use the representation (3.16) for S and utilize MM2 to view
each of the functions maxi∈S j zi as an output of a network Nj that produces
Υd+1,sj−1(ReLU; d, 1). We concatenate the networks Nj , j = 1, . . . , p, by placing
them next to each other and connecting their source channels. We add a collation
channel where we store the consecutive outputs εj(maxi∈S j zi) from Nj . The
resulting network computes S and has width W = d + 2 and depth at most L = pd.

A result along these lines was proved by Hanin (2019), who showed that the
output of any ReLU network can be generated by a sufficiently deep ReLU network
with fixed width W = d + 3.

3.3.4. Finite element spaces
One of the most popular methods of approximation used in numerical analysis
is the finite element method (FEM). This method employs certain linear spaces
of piecewise polynomials. In its simplest case, one partitions a given polyhedral
domain Ω ⊂ Rd into simplicial cells with some requirements on the cells to
avoid hanging nodes and small angles. The linear space X(P) of CPwL functions
subordinate to such a partition P is used for the approximation. A natural question
is if and how we can use ReLU NNs in place of X(P).
Rather than address this question in its full generality, we consider only a very

special setting that will be sufficient for our discussion of NN approximation given
in later sections of this paper. The reader can consult He, Li, Xu and Zheng (2020)

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 353

and Opschoor, Petersen and Schwab (2019a) for a more far-reaching exposition of
the relation between FEM and NNs.
For our special example, we begin with Ω = [0, 1]d, and given n ≥ 1, we

consider the uniform partition Qn of Ω into nd cubes with side length 1/n. We let
Vn denote the set of vertices of the cubes in Qn. There are (n + 1)d such vertices.
Each cube Q ∈ Qn can in turn be partitioned into d! simplices using the so-called
Kuhn triangulation with northwest diagonal. This gives a partition K of Ω into
ndd! simplices. Let X(K) be the space of all CPwL functions defined on Ω and
subordinate to K. This is a linear space of dimension N = (n + 1)d. A basis for
X(K) is given by the nodal functions {φv, v ∈ Vn}, which are the CPwL functions
defined on Ω, subordinate to K, and satisfy

φv(v′) = δ(v, v′), v, v′ ∈ Vn, (3.17)

where δ is the usualKronecker delta function. Each S ∈ X(K) has the representation

S =
∑
v∈Vn

S(v)φv . (3.18)

FEM spaces. Let X(K) be the finite element space in d dimensions described
above, and let d∗ := (d + 1)!. Then the following holds:

X(K) ⊂ ΥW,L(ReLU; d, 1), W = 3(n + 1)d2 dlog2 d
∗ e−1, L := 1 + dlog2 d∗e,

X(K) ⊂ Υd+2,L′(ReLU; d, 1), L ′ = (n + 1)dd∗.

To prove these statements, we first observe that each nodal basis function φv can
be expressed as

φv = ReLU(min{z∆ : ∆ ∈ Dv}), (3.19)

where Dv is the set of simplices in K that have v as one of their vertices. There are
(d + 1)! such simplices when v is an internal vertex and less than that for vertices
on the boundary of Ω. The function z∆ is the linear function which is one at v and
vanishes on the facet of ∆ opposite to v. If |Dν | < (d + 1)!, we add artificially
some of the functions z∆ that are already in Dν so that we end up with (d + 1)! not
necessarily different functions, since later we will do parallelization that requires
the depth of certain networks to be the same.
It follows from MM1 that φv ∈ ΥW̃,L(ReLU; d, 1), W̃ := 3 · 2 dlog2 d

∗ e−1, L =
1 + dlog2 d∗e. Using Parallelization, we stack the networks Nv that output the
φv’s to obtain a network with width W = (n + 1)dW̃ that can output any linear
combination of the φv’s. Hence X(K) is contained in ΥW,L(ReLU; d, 1) for the
advertised values of W and L. Note that since X(K) is generated by parallelization
of (n + 1)d networks of width W̃ , the number of parameters used in the resulting
network is O((n + 1)d).
To prove the second containment, we first observe from MM2 that each of the

nodal basis functions φv ∈ Υd+1, |Dv |(ReLU; d, 1). We then utilize Concatenation

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

354 R. DeVore, B. Hanin and G. Petrova

of the networks Nv used to produce φv and add a collation channel for the com-
putation of S; see (3.18) (as is done for the CPwL2 construction). The resulting
network has width W = d + 2 and depth at most (n + 1)dd∗.
Several remarks are in order concerning this result. First, note that the number of

parameters used in both NNs is comparable (up to a factor depending on d) to the
dimension (n+ 1)d of X(K). The most important point to stress is that when using
the set ΥW,L in place of a piecewise linear FEM space, we are using a much larger
nonlinear family as an approximation tool. Indeed, the set ΥW,L not only contains
the FEM space X(K) based on the initial choice of partitioning but also contains
an infinite number of such FEM spaces corresponding to an infinite number of
possible ways to partition Ω. In fact the NN approach is rather more than a simple
generalization of the adaptive finite element method (AFEM), where one is allowed
to adaptively choose partitions (from a restricted family of partitions). It will be
shown in Section 8.7 that these NNs provide a provably better approximation rate
to various Sobolev and Besov classes than that provided by the FEM spaces. While
this seems like a tremendous advantage for NNs over FEMs, one must address (in
the specific problem setting) how one (near-) optimally chooses the parameters of
these NNs.
In the case when FEMs are used to numerically solve linear elliptic PDEs,

one can employ the Galerkin method, which finds a (near-) best approximation to
the solution to the PDE by projecting onto X(K). This is well understood and
quantified in both theory and practice via theorems that bound error and establish
stable numerical implementation.
When we eventually discuss quantitative theorems for NN approximation, we

shall see that the known results point to a tremendous potential increase in approx-
imation efficiency (error versus number of parameters needed) when using NNs
for the numerical solution of elliptic problems. Whether this advantage can be
maintained in concrete stable numerical implementation is less clear.

3.4. Width versus depth

An underlying issue when choosing an NN architecture to be used in a numerical
setting is whether to increase the width or the depth of the NN when one is willing
to allocate more parameters to improve accuracy. Suppose we fix a bound n on the
number of parameters to be used and ask which of the sets ΥW,L depending on at
most n parameters we should employ in designing a numerical algorithm. All other
issues being the same, the general consensus is that in practice deeper networks are
preferable. We make some comments to explain this preference from the point of
view of the enhanced approximation capacities of deeper networks.
First, we have shown that addition of the output functions of an NN can be

implemented by increasing either width (parallelization) or depth (concatenation)
with a controlled increase in the number of parameters. However, certain operations
such as composition and forming minima can only be implemented by increasing

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 355

depth. So, for example, if we fix a widthW = W0 sufficiently large to accommodate
d source channels and a couple of collation channels, then we can seemingly
implement as outputs from ΥW0,L all functions that occur as outputs of shallower
networks with a comparable number of parameters. The only rigorous statement
given to this effect was for ReLU networks with d = 1. In this case Daubechies
et al. (2019) proved that for any fixed W0 ≥ 4 we have

Υ
n,1(ReLU; 1, 1) ⊂ ΥW0,L(ReLU; 1, 1), (3.20)

provided the elements in these sets are viewed as functions on [0, 1] (or any finite
interval [r, e]), and L � n/W2

0 , where the constants in� are absolute constants. Note
that the number of parameters n(W0, L) determining the set ΥW0,L is n(W0, L) �
W2

0 L � n, and therefore comparable to the number of parameters inΥn,1. However,
ΥW0,L is richer, since it contains compositions, for example. So in this special case
depth beats width. This leads us to formulate the following general question.

Problem 3.7. Are shallow networks always contained in deep networks of fixed
width W0 with the same number of parameters? More precisely, is it true that if
we fix the depth L and the width W0, we have the inclusion ΥW,L(ReLU; d, 1) ⊂
ΥW0,L0(ReLU; d, 1) whenever L0 and W satisfy n(W0, L0) � n(W, L), where the
constants in � depend at most on d?

The results given above show that Problem 3.7 has a positive answer if we
are not concerned about the number of parameters. Indeed, each function in
ΥW,L(ReLU; d, 1) is a CPwL function, and therefore, according to CPwL2, is in
Υd+2,L(ReLU; d, 1) for L suitably large. So the key issue in Problem 3.7 is the
control on the number of parameters.

3.5. Interpolation by neural network outputs

A common strategy for approximating a given target function f is to interpolate
some of its point values. Although this is often not a good method for approxima-
tion, it is important to understand when we can interpolate a given set of data, and
how stable the process is. A satisfactory understanding of interpolation using NNs
is far from complete. The purpose of this section is to frame the interpolation prob-
lem and point out what is known. We begin by considering interpolation by NNs
with an arbitrary activation function σ and later specialize to ReLU activations.
Let ΥW,L(σ) = ΥW,L(σ; d, 1) be the set of outputs of NNs with activation σ,

input dimension d, output dimension 1, width W and depth L. Given a finite set
of data points (x(i), yi), with x(i) ∈ Rd, yi ∈ R, i = 1, . . . ,D, a natural question is
whether there is an S ∈ ΥW,L(σ) which interpolates the given data in the sense
that

S(x(i)) = yi, i = 1, . . . ,D. (3.21)

This is the existence question for data interpolation. In the case that interpolants

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

356 R. DeVore, B. Hanin and G. Petrova

exist, let SI := SI (W, L;σ, d) denote the set of functions S ∈ ΥW,L(σ; d, 1) which
satisfy the interpolation conditions (3.21).
Given that we are going to use the set ΥW,L(σ; d, 1) for interpolation, the first

question to ask is as follows.

Question. Determine the largest value D∗ := D∗(W, L;σ, d) such that the inter-
polation problem has a solution from ΥW,L(σ; d, 1) for all data sets of size D∗.

One expects that D∗ should be closely related to the number of parameters used
to describe ΥW,L(σ; d, 1).
There seems to be only one general theorem addressing the interpolation problem

for general activation functions σ. It applies to the case of single-hidden-layer
networks, i.e. L = 1, and is discussed in detail in the survey article by Pinkus
(1999); see Theorem 5.1 in that paper.

Interpolation from ΥW,1(σ; d, 1). If σ ∈ C(R) is not a polynomial, then

D∗(W, 1;σ, d) ≥ W, W ≥ 1. (3.22)

The following sections discuss the interpolation problem for ReLU activation
where more results are known.

3.5.1. Interpolation for ΥW,1(ReLU; 1, 1)
The interpolation question is easiest to answer for ReLU networks with d = L = 1.
In this case we know that the set ΥW,1(ReLU; 1, 1) is almost the same as the space
ΣW,1 = ΣW,1(CPwL) of CPwL functions subordinate to a partition of R into W
intervals (W − 1 breakpoints); see (3.2). Interpolation by functions in ΣW,1 is well
understood; see de Boor (1978). In the case of ΥW,1(ReLU; 1, 1), we claim that

D∗(W, 1; ReLU, 1) = W + 1. (3.23)

To show this, we will use the representation (3.8) for functions S from this set.
Consider data points {(t(i), yi)}, i = 1, . . . ,D, with t(1) < · · · < t(D). We first show
that when D = W + 1, interpolation is not only possible, but there are infinitely
many S ∈ ΥW,1(ReLU; 1, 1) for which

S(t(i)) = yi, i = 1, . . . ,W + 1.

We take any points ξj that satisfy the interlacing property

t(1) < ξ1 < t(2) < · · · < ξW < t(W+1),

and consider the function

S(t) := c +
W∑
j=1

aj(t − ξj)+ ∈ ΥW,1(ReLU; 1, 1). (3.24)

We establish that interpolation is possible by induction on W . When W = 1, we
choose c := y1 and a1 so that c + a1(t(2) − ξ1) = y2. For the induction step, let

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 357

S0(t) := c+
∑W−1

j=1 aj(t−ξj)+ satisfy the firstW interpolation conditions. We define
aW so that we have

aW (t(W+1) − ξW) + S0(t(W+1)) = yW+1.

Then
S(t) := S0(t) + aW (t − ξW)+ ∈ ΥW,1(ReLU; 1, 1)

satisfies all of the interpolation conditions. This shows that the interpolation
conditions can always be satisfied and that the set SI is infinite since we have
infinitely many choices for the ξi’s.
Finally, we want to see that interpolation atW+2 points is generally not possible.

To that end we use the following proposition, which will also be useful when we
discuss the Vapnik–Chervonenkis (VC) dimension of NNs.

Proposition 3.8. Let n ≥ 3 and let t(1) < t(2) · · · < t(n) be n distinct arbitrary
points. Let y1, . . . , yn be such that yj yj+1 < 0, j = 1, . . . , n − 1. Then there is no
S ∈ Υn−2,1(ReLU; 1, 1) such that S(t(j)) = yj , j = 1, . . . , n.

Proof. Without loss of generality we can assume that y1 > 0. We prove the pro-
position by induction on n. Wefirst consider the case n = 3. If S ∈ Υ1,1(ReLU; 1, 1),
then we have the representation S(t) = c + a(t − ξ)+ or S(t) = c + a(ξ − t)+. We
assume the first representation since the second one is treated in a similar way. In
this case we note the following:

• If ξ ≤ t(1), then S is linear on [t(1),∞) and therefore cannot satisfy the three
interpolation conditions.
• If ξ ∈ (t(1), t(2)), then in order for S to satisfy the first two interpolation
conditions we would need c > 0 and a < 0. So the function S is then a
non-increasing function of t and thus S(t(3)) ≤ S(t(2)), which shows that S
cannot satisfy the third interpolation condition.
• If ξ ≥ t(2), then S cannot satisfy the first two interpolation conditions, since

S is constant on (−∞, ξ].
Now we consider the induction step. Suppose that we have proved the proposition
for a value of n ≥ 3 and consider n + 1 interpolation points. If S is any function in
Υn−1,1(ReLU; 1, 1), then

S(t) = S0(t) + a(t − ξn−1)+ or S(t) = S0(t) + a(ξn−1 − t)+,

where S0 ∈ Υn−2,1(ReLU; 1, 1), and has breakpoints ξ1 < . . . < ξn−2, with ξn−2 <
ξn−1. We again consider only the first possibility, since the other one is handled
similarly. We show that S cannot satisfy the interpolation conditions by considering
the following two cases:

• If t(n) < ξn−1, then S0(t(j)) = S(t(j)) = yj , j = 1, . . . , n, and S0 would
contradict the induction hypothesis. Hence this case is not possible.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

358 R. DeVore, B. Hanin and G. Petrova

• If ξn−1 < t(n) < t(n+1), then S is a linear function on [ξn−1,∞). Note that y∗ :=
S0(ξn−1) = S(ξn−1) and because of ynyn+1 < 0, sign(S(ξn−1)) = sign(yn).
Note that S cannot satisfy the last three interpolation conditions corresponding
to t(n−1), t(n), t(n+1) unless we have t(n−1) < ξn−1. Thus S0(t(j)) = S(t(j)) = yj ,
for j = 1, . . . , n−1, and S0(ξn−1) = y∗, where the sign of y∗ is the same as the
sign of yn. Therefore, according to the induction hypothesis, such S0 cannot
be an output of Υn−2,1(ReLU; 1, 1).

This completes the proof of the proposition.

3.5.2. Interpolation for ΥW0,L(ReLU; 1, 1)
It is also possible to produce an interpolant to given data by using deep networks
with a fixed width. This of course follows from (3.20) together with what we have
just proved. However, we wish to give a direct construction because it will be used
later in this paper.

Proposition 3.9. Given D points 0 ≤ t(1) < t(2) < · · · < t(D) ≤ 1 and values
yj ∈ R, j = 1, . . . ,D, there is an S ∈ Υ3,D−1(ReLU; 1, 1) which interpolates these
data, namely

S(t(j)) = yj, j = 1, . . . ,D. (3.25)

Therefore D∗(3, L; ReLU, 1) ≥ L + 1, where L ≥ 1.

Proof. We have shown above that there is an S of the form (3.24) withW := D−1,
that satisfies the interpolation conditions (3.25). We view S as a function on [0, 1]
and construct a special network that outputs any such S. The first channel of this
special network is a source channel that pushes forward the input t and the last
channel is a collation channel. This last channel is initialized with 0 at layer 1
and then successively collects the sums

∑j−1
i=1 ai(t − ξi)+ at layers 2, . . . ,D − 1,

respectively, while the middle channel successively produces the terms aj(t − ξj)+,
at layers j = 1, . . . ,D − 1, using the inputs t from the source channel. We can then
output S from layer D − 1.

3.5.3. Interpolation from ΥW,L(ReLU; d, 1)
We now turn to results that hold for general d ≥ 1. There is a simple way to derive
interpolation results for arbitrary d > 1 from those for d = 1. Let

X := {x(j), j = 1, . . . ,D} ⊆ Rd

be any finite collection of data sites. A simple measure-theoretic argument shows
that there exists a unit vector v ∈ Rd for which the points t(j) ∈ R, given by
t(j) := v · x(j), j = 1, . . . ,D, are all distinct. If g is any univariate function which
satisfies

g(t(j)) = yj, j = 1, . . . , d,

then the ridge function f (x) := g(v · x) satisfies f (x(j)) = y j , j = 1, . . . ,D. We
utilize this observation to prove the following.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 359

Proposition 3.10. For any W, L ≥ 1, we have

D∗(W, L; ReLU, d) ≥ D∗(W, L; ReLU, 1).

Proof. Given a data set X ⊂ Rd of size D, we choose v as above to arrive at
the points t(j) ∈ R, j = 1, . . . ,D. If D ≤ D∗(W, L; ReLU, 1), then there is an
S ∈ ΥW,L(ReLU; 1, 1) which satisfies S(t(j)) = yj , j = 1, . . . ,D. Then the function
T(x) := S(v · x) ∈ ΥW,L(ReLU; d, 1) interpolates the multidimensional data set X .

While the above proposition is of theoretical interest, it is not used in practice
because the ridge function interpolant does not reflect the local flavour of the data.
A more common scenario is to construct via ReLU networks a dual basis {φ j},
j = 1, . . . ,D, for the data sites, i.e. a basis that satisfies the conditions

φi(x(j)) = δi, j, 1 ≤ i, j ≤ D.

The goal is to construct a locally supported dual basis. In that case the interpolation
operator

PX (f) :=
D∑
j=1

f (x(j))φ j

is a bounded projection onto span{φ j} whenever the data sites are in Ω. The norm
of this projector,

‖PX ‖C(Ω)→C(Ω) = max
x∈Ω

D∑
j=1
|φ j(x)|,

to a large extent determines the approximation properties of interpolation at these
sites.
We have already discussed such dual bases in the context of FEM, where for the

Kuhn simplicial decomposition K of Ω = [0, 1]d we showed that the space X(K)
spanned by the nodal basis {φv} (see (3.17)) is contained in ΥW,L(ReLU; d, 1) for
certain choices of W and L with the number of parameters n(W, L) comparable
to the dimension of X(K). In this case the nodal basis forms a partition of unity∑

v φv ≡ 1 onΩ and the projection operator PX is of norm one. It thus follows that

dist(f ,ΥW,L(ReLU; d, 1))C(Ω) ≤ ‖ f − PX f ‖C(Ω)

≤ ‖ f − S‖C(Ω) + ‖PX (f − S)‖C(Ω)

≤ 2 dist(f , X(K))C(Ω),

where we insert the best approximation S to f from X(K) to obtain the last inequal-
ity. This allows us to deduce estimates for NN approximation from those known in
FEM and also to exhibit simple linear operators that achieve these bounds.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

360 R. DeVore, B. Hanin and G. Petrova

3.6. VC dimension of ReLU outputs

An important ingredient in understanding the approximation power of ReLU net-
works is the Vapnik–Chervonenkis (VC) dimension of the sets of their outputs
ΥW,L(ReLU; d, 1). This topic is by now well studied; see Bartlett, Harvey, Liaw
and Mehrabian (2019) for a summary of the most recent results. Here we shall
only discuss the results on the VC dimension that are important for approximation.

Let F be a collection of real-valued functions defined on Ω ⊂ Rd. We say that
a set {x(1), . . . , x(n)} ⊂ Ω is shattered by F if, for each subset Λ ⊂ {1, . . . , n} there
is a function f = fΛ ∈ F such that

f (x(i)) > 0 if and only if i ∈ Λ.
The maximum value of n for which there exists such a collection of n points that
are shattered by F is called the Vapnik–Chervonenkis (VC) dimension of F and is
denoted by VC(F); see Vapnik (1989).
In the case that F is one of the sets ΥW,L(ReLU; d, 1), the VC dimension of F

is the largest value of n for which there exist n points such that for any assignment
of signs εi ∈ {−1,+1}, there is an S ∈ F such that

εiS(x(i)) > 0, i = 1, . . . , n. (3.26)

This follows from the fact that whenever S ∈ F , then S + c, c ∈ R, is also in F .
We sometimes use property (3.26) instead of the original definition of shattering
for the output of NNs in going forward.
Let us note that the definition of the VC dimension of F only requires the exist-

ence of one set of points where shattering takes place. When proving upper bounds
on the error of approximation, it is useful to know precisely which collections of
points can be shattered. The reader will see how this issue arises when we use the
VC dimension in proving approximation results.
We are interested in describing the VC dimension of the set F of outputs of

ReLU networks in terms of the number n(W, L) of their parameters. Let us now
consider what is known in the special cases of interest to us.

3.6.1. VC dimension of ΥW,1(ReLU; d, 1)
We first consider the space ΥW,1 of function of d variables which is described by
n(W, 1) = (d + 2)W + 1 parameters.

Lemma 3.11. We have the following upper and lower bounds for the VC dimen-
sion of ΥW,1(ReLU; d, 1), W ≥ 1:

(i) If d = 1, then VC(ΥW,1(ReLU; 1, 1)) = W + 1.
(ii) If d ≥ 2, then VC(ΥW,1(ReLU; d, 1)) ≤ C0W log2 W , where C0 depends only

on d.
(iii) If d ≥ 4, then VC(ΥW,1(ReLU; d, 1)) ≥ c0W log2 W , where c0 depends only

on d.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 361

(iv) If d = 2, 3, then VC(ΥW,1(ReLU; d, 1)) ≥ W + 1.

Proof. (i) The VC dimension in this case is at least W + 1 because we can
interpolate any W + 1 data by an element from ΥW,1(ReLU; 1, 1); see (3.23). On
the other hand, the VC dimension is at most W + 1 because of Proposition 3.8.

(ii) This upper bound can be found in Bartlett et al. (2019).

(iii) The lower bounds in the case d ≥ 4 can be derived from known lower bounds
for the VC dimension of the collection C = {R} of sets R which are the union of
W closed half-spaces. Indeed, whenever points P1, . . . , Pm are shattered by C, then
they are shattered byΥW,1. To see this, suppose thatΛ is any subset of these points.
We can construct S ∈ ΥW,1 that is positive on this set and zero on the remaining
points as follows. Let Rj , j = 1, . . . ,W , be the closed half-spaces whose union
contains only the points from Λ and none of the rest of the Pj’s, j = 1, . . . ,m.
Each of these half-spaces can be represented as wj · x + bj ≥ 0 for some wj ∈ Rd,
bj ∈ R. Then, if ε > 0, the function

S :=
W∑
j=1

(wj · x + bj + ε)+ ∈ ΥW,1(ReLU; d, 1)

will be positive on the points in Λ and zero on the rest of the points Pj , provided
we take ε small enough. It follows that

VC(ΥW,1(ReLU; d, 1)) ≥ VC(C),

and hence the lower bounds stated in (iii), follow from the lower bounds on the VC
dimension of C given in Csiskos, Kupavskii and Mustafa (2019).

(iv) The lower bounds in this case follow from the fact that we can interpolate any
data at any (W + 1) data sites; see Proposition 3.10 and (3.23).

It appears that the VC dimension of ΥW,1(ReLU; d, 1) when d = 2, 3 is not
completely determined because of the discrepancy between the upper and lower
bounds in the above lemma.

3.6.2. VC dimension of ΥW0,L(ReLU; d, 1)
Next we consider the case where W0 is fixed but sufficiently large, depending only
on d, and L is allowed to vary. Note that in this case the number of parameters
of the network n(W0, L) � W2

0 L. The following theorem gives bounds on the VC
dimension of such networks.

Theorem 3.12. LetW0 be fixed and sufficiently large depending only on d. There
are fixed constants c1,C1, depending only on d, such that

c1L2 ≤ VC(ΥW0,L(ReLU; d, 1)) ≤ C1L2. (3.27)

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

362 R. DeVore, B. Hanin and G. Petrova

The upper bound in this theorem follows from Theorem 8 of Bartlett et al.
(2019). The remainder of this section will provide a proof of the lower bound in a
form which will be used later in this paper to prove certain approximation results.
Related lower bounds are stated in Theorem 3 of Bartlett et al. (2019).

3.6.3. Bit extraction using ReLU networks
We discuss in detail a very specific way to prove the lower bound in Theorem 3.12.
This particular construction, called bit extraction, is useful in proving upper bounds
for approximation using deep neural networks. For a fixed W0 and C, depending
only on d, the set ΥW0,Cn(ReLU; d, 1) not only shatters N = n2 equally spaced
points x(1), . . . , x(N) ∈ Ω := [0, 1]d, but for certain bit data yj , it contains an S such
that S(x(j)) = yj , j = 1, . . . , N .
In order to avoid certain technicalities, we present this result only in the case

d = 1. The full implementation for d ≥ 2 can be found in Yarotsky (2018) and
Shen, Yang and Zhang (2019).

Theorem 3.13. Let N := n2 with n ≥ 4 be an even integer. Define ti := i/N ,
i = 0, 1, . . . , N , and consider any data yi, i = 0, . . . , N , with the properties:

(i) yjn = 0, j = 0, . . . , n,
(ii) yi+1 = yi + εi, with εi ∈ {−1, 1} for all i = 0, . . . , N − 1.

Then there is an S ∈ Υ11,15n+2(ReLU; 1, 1), such that

S(ti) = yi, i = 0, . . . , N .

Moreover, we have

|S(t) − S(ti)| ≤ 1, t ∈ [ti, ti+1], i = 0, 1, . . . , N − 1. (3.28)

The novelty in this theorem is that while the number of parameters in the NN is
Cn, the number of data points is N + 1 = n2 + 1. The theorem provides the lower
bound in (3.27) for the VC dimension. Indeed, at any point t2i not of the form tjn,
we can assign any data y2i ∈ {0, 2} because of property (ii). Thus we can shatter
these points using the set Υ11,15n+2(ReLU; 1, 1). Since there are at least cn2 such
points, with c an absolute constant, we have the lower bound in (3.27) in the case
d = 1 with W0 = 11. The general case of d > 1 also easily follows from this by
using the method of proof used in Proposition 3.10.
Before we present the proof of Theorem 3.13, which is a bit laborious, we

introduce some notation, make several observations, and present the general idea
of the proof.
First, note that for each i = 0, 1, . . . , N − 1, there is a unique representation

ti =
i
N
=

j(i)
n
+

k(i)
N
, j(i), k(i) ∈ {0, 1, . . . , n − 1}.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 363

Next, recall that any t ∈ [−1, 1] can be represented as

t =
∞∑
k=1

Bk(t)2−k,

where the bits Bk(t) ∈ {−1, 1} of t are found using the familiar quantizer function

Q := −χ[−1,0] + χ(0,1],

with χI denoting the characteristic function of a set I. The first bit of t satisfies
B1(t) = Q(t) and has the residual R1(t) := 2t − B1(t) ∈ [−1, 1]. We find the later
bits and residuals recursively as

Bj(t) = Q(Rj−1(t)), Rj(t) := 2Rj−1(t) − Bj(t), j = 2, 3, (3.29)

Given our assigned bit sequence {εi}, i = 0, . . . , N − 1, available to us from the
values yi, i = 0, 1, . . . , N , we define the numbers

Yj :=
n−1∑
k=0

εjn+k2−k−1, j = 0, . . . , n − 1. (3.30)

Note that
Yj ∈ [−1 + 2−n,−2−n] ∪ [2−n, 1 − 2−n] ⊂ [−1, 1],

and the bits Bν(Yj) = εjn+ν−1, ν = 1, . . . , n.
The idea of proving Theorem 3.13 is to produce a function S from the set
Υ11,15n+2(ReLU; 1, 1), such that for each i = 1, . . . N , i = j(i)n + k(i),

S(ti) = yi =

k(i)∑
ν=1

εj(i)n+ν−1 =

k(i)∑
ν=1

Bν(Yj(i)), k(i) = 1, . . . , n − 1,

S(tjn) = yjn = 0, j = 0, . . . , n,

(3.31)

that in addition satisfies (3.28). We construct S by showing that each of the functions

ti =
i
N
=

j(i)
n
+

k(i)
N
7→ j(i), k(i),Yj(i), χ{ν : ν≤k(i)}, Yj 7→ Bν(Yj),

are outputs of ReLU networks of an appropriate size.
To do this, let δ = 2−N and define the following:

• The CPwL function J = JN which has breakpoints at each of the points

ξj := j/n, ξ ′j := (j + 1)/n − δ, j = 0, . . . , n − 1, (3.32)

and no other breakpoints, and takes the value j on the interval [ξj, ξ ′j]. We
also require J(1) = n. Note that J has the property

J(ti) = j(i), i = 0, 1, . . . , N − 1.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

364 R. DeVore, B. Hanin and G. Petrova

• The CPwL function K(t) = KN (t) := J(nt − J(t)). Observe that the key
property of K is

K(ti) = k(i), i = 0, 1, . . . , N − 1. (3.33)

Next we would like to implement quantization by a neural network. However, the
function Q is not continuous, so we cannot exactly reproduce Q. Instead, we use a
surrogate

Q̂(t) = −1 +
(

1
δ

t + 1
)
+

−
(

1
δ

t − 1
)
+

, (3.34)

where δ := 2−N . The surrogate Q̂ is in Υ2,1(ReLU; 1, 1) and coincides with Q on
[−1, 1] \ [−δ, δ].

We define the surrogate bits B̂ν(t) for t ∈ [−1, 1] by using Q̂ in place of Q in the
recursive definition of Bν, described in (3.29). Because of the choice of δ, B̂ν can
be used in place of Bν to compute the bits of t whenever t has the representation

t =
k∑
ν=1

Bν(t)2−ν, with k ≤ N − 1. (3.35)

For such a t, we have B̂ν(t) = Bν(t), ν = 1, . . . , N − 1.
Finally, we introduce the following:

• The CPwL function Y , which has exactly the same breakpoints as J (see
(3.32)) and satisfies

Y (ξj) = Y (ξ ′j) = Yj, j = 0, 1, . . . , n − 1, (3.36)

with Yj defined in (3.30) and Y (1) = 0.

The function S will be the output of a special neural network of width W = 11
and depth L = 15n + 2, which is a concatenation of five special networks that we
describe below. The top channel of each of these networks is a source channel
which simply passes forward the input t. Some of the other channels are collation
channels and are occupied by zeros in their first layers so that they can be used later
for passing forward certain function values.
We want to point out that our construction is probably not optimal in the sense

that it does not provide an NN with the best possible minimal width and depth
that outputs S. In addition, some of the channels in our NN are ReLU-free. We
discussed earlier how we can construct a true ReLU network with the same outputs
as a network that has ReLU-free nodes: see (3.10).

In going further, we note that any CPwL function T with k breakpoints is in
Υ3,k(ReLU; 1, 1), where the network used to output T has one source channel, one
computational channel and one collation channel that collects the successive terms
we have computed; see the construction in Proposition 3.9.

Proof of Theorem 3.13. We can now give the proof of Theorem 3.13. The network
N which outputs the function S of the theorem is a concatenation of five special

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 365

networksN1,N2,N3,N4,N5. Each of them has a source channel as its first channel.
It pushes forward the input t ∈ [0, 1]. The first of these networks outputs K(t), the
second outputs Y (t) and the third takes input K(t) and Y (t) and outputs a CPwL
function S̃ which almost satisfies the theorem. Namely, it satisfies the interpolation
conditions and it also satisfies (3.28) except for a small set of t values. The last two
networks make a technical correction to S̃ to obtain the desired S which satisfies
(3.28) for all t ∈ [0, 1]. We now describe these five networks. All of them have
width at most 11 and we make the width exactly 11 by adding zero channels.
The depth of each network is also controlled so that the final network has depth
L = 15n + 2.

First NN. This network, which we denote by N1, has depth 4n − 2 and for any
input t ∈ [0, 1] outputs the function value K(t). From our remarks on interpolation
(see Proposition 3.9), we know that J(t) is the output of a special ReLU network
N0 of width W = 3 and depth 2n − 1, where channel 3 is a collation channel. The
CPwL function K is the output of a ReLU network N1 of width W = 3 and depth
4n − 2, which is obtained by concatenating the network N0 for J with itself and
using nt− J(t) as the input to the second of these networks. Channel 3 is a collation
channel, used first to build J(t). Once J(t) is computed, it sends this value as an
input to the (2n)th layer. Then it is zeroed out by assigning a weight 0, and is
subsequently used as a collation channel to build K(t). It follows from (3.33) that
the output of this network is k(i) when the input is ti. We add eight other channels
with zero parameters. These channels will be used later.

Second NN. The second network N2 takes the input t from channel 1 and outputs
the CPwL function Y (t) which belongs to Υ3,2n−1(ReLU; 1, 1). This network has
depth 2n − 1 and only needs three channels, but we augment it with eight more
channels. After a concatenation with the existing network N1, it uses channel 2
to compute the terms involved in Y (t), while channels 3 and 4 push forward the
values K(t) and the terms involved in Y (t), respectively. Channels 5–11 have all
parameters zero. Note that after this concatenation, we have available to us as
outputs t, coming from the source channel, K(t), kept in channel 3, and Y (t) kept
in channel 4.

Third NN. This network takes as inputs K(t),Y (t) and outputs a function S̃ which
satisfies the interpolation conditions and coincides with the desired S except for a
small subset of [0, 1]. To describe this network, we shall use the CPwL function T
with breakpoints −1, 1, 2, defined as

T(t) =

−1 t ≤ −1,
t −1 ≤ t ≤ 1,
2 − t 1 ≤ t ≤ 2,
0 t ≥ 2.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

366 R. DeVore, B. Hanin and G. Petrova

Since T(t) = −1 + (t + 1)+ − 2(t − 1)+ + (t − 2)+, it belongs to Υ3,1(ReLU; 1, 1).
Note that T is the identity on the interval [−1, 1] and has the important property
that for t ∈ [−1, 1] and for each 1 ≤ k < n we have

T(Bν(t) + 3(ν − k)+) = Bν(t), 1 ≤ ν ≤ k, (3.37)

and is zero otherwise, since 3(ν − k)+ = 0 when ν ≤ k and 3(ν − k)+ ≥ 3 when
ν > k. It follows from (3.37) that

n∑
ν=1

T(Bν(t) + 3(ν − k)+) =
k∑
ν=1

Bν(t).

Now, for i = 0, . . . , N − 1, consider one of our points ti which is not a multiple of
n, i.e. k(i) , 0. Then Y (ti) = Yj(i), K(ti) = k(i), and

n∑
ν=1

T(Bν(Y (ti)) + 3(ν − K(ti))+) =
k(i)∑
ν=1

Bν(Yj(i)) =
k(i)∑
ν=1

εj(i)n+ν−1 = yi .

Since we cannot produce Bν with a ReLU network, we use the surrogate B̂ν in its
place. This leads us to define the following function:

S̃(t) :=
n∑
ν=1

T(B̂ν(Y (t)) + 3(ν − K(t))+), t ∈ [0, 1]. (3.38)

This function satisfies the interpolation conditions (3.31) since B̂ν(Y (t)) = Bν(Y (t)),
ν = 1, . . . , n, whenever t is one of the points ti, i = 0, . . . , N , where interpolation is
to take place. In addition, since for j = 0, . . . , n−1, K(tjn) = 0 andK(1) = J(0) = 0,
we have

S̃(tjn) =
n∑
ν=1

T(B̂ν(Y (tjn)) + 3ν) = 0, j = 0, . . . , n,

because of the definition of T .
Next we describe how S̃ is an output of a ReLU networkN3 with inputsY (t),K(t).

The network N3 is organized as follows. Channel 1 is left to be a source channel
that forwards the value of t. Channels 2 and 3 are occupied with the values of
K(t) and Y (t), forwarded to the next layers. Channel 4 computes (ν − K(t))+ in
layer ν, for ν = 1, . . . , n. Channel 5 computes the residual Rν−1(Y (t)) in layer ν,
ν = 1, . . . , n (this is a ReLU-free channel), where R0(Y (t)) = Y (t), and Rν(Y (t)) =
2Rν−1(Y (t))− B̂ν(Y (t)), ν = 1, . . . , n. Channels 6 and 7 implement the network for Q̂
and compute consecutively B̂1(Y (t)) = Q̂(Y (t)), B̂ν = Q̂(2Rν−2(Y (t))− B̂ν−1(Y (t))),
for ν = 2, . . . , n. Channels 8, 9 and 10 implement T . Channel 11 successively
adds the T values in the sum (3.38), and thereforeN3 outputs S̃. In total, the entire
network N3 has (n + 1) layers and width 11.
We have already observed that S̃(ti) = yi and so the interpolation conditions are

satisfied. The reader can imagine that we can take a max and min with an upper

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 367

and lower CPwL to obtain the control (3.28). The network N4 will do precisely
that. So the remainder of the proof is to give one such construction.
We claim that the output S̃ of N3 already satisfies the inequalities

|S̃(t) − S̃(ti)| ≤ 1, t ∈ [ti, ti+1) ∩ΩN, i = 0, 1, . . . , N − 1, (3.39)

where

ΩN := [0, 1] \
n⋃
j=1

(tjn − δ, tjn), δ := 2−N .

We verify this property when t ∈ [0, 1/n)∩ΩN = [0, 1/n− δ] since the verification
on the intervals [j/n, (j + 1)/n) ∩ ΩN , j = 1, . . . , n − 1, is the same. For t ∈
[0, 1/n−δ] = [0, tn−δ]wehaveY (t) = Y0 (see (3.36)), and therefore for ν = 1, . . . , n,
B̂ν(Y (t)) = B̂ν(Y0) = Bν(Y0) = εν−1. Thus (see (3.38)) we have

S̃(t) =
n∑
ν=1

T(εν−1 + 3(ν − K(t))+), t ∈ [0, tn − δ].

We consider the following cases:
• If t ∈ [0, t1 − δ], then K(t) = 0 and

S̃(t) =
n∑
ν=1

T(εν−1 + 3ν) = 0, (3.40)

and thus (3.39) is satisfied for these t.
• If t ∈ [tk, tk+1 − δ] ⊂ [0, tn − δ], with 1 ≤ k < n, then K(t) = k and

S̃(t) =
k∑
ν=1

εν−1 = yk, (3.41)

and thus (3.39) is satisfied again.
• If t ∈ (tk − δ, tk), 1 ≤ k ≤ n − 1, then k − 1 ≤ K(t) < k and

3(ν − K(t))+ is

= 0 ν ≤ k − 1,
≤ 3 ν = k,
> 3 ν ≥ k + 1.

It follows from the definition of T that

S̃(t) =
n∑
ν=1

T(εν−1 + 3(ν − K(t))+)

=

k−1∑
ν=1

T(εν−1) + T(εk−1 + 3(k − K(t))+)

= yk−1 + η,

with |η | ≤ 1, and therefore (3.39) is satisfied in this case as well.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

368 R. DeVore, B. Hanin and G. Petrova

In summary, the function S̃ satisfies the properties we want except for control on
the small intervals that make up the complement of ΩN . We do not have a bound
for S̃ on these small intervals. Our last construction will be to take care of these
intervals while leaving S̃ unchanged elsewhere.
To see how to do this, we concentrate on the interval [t(j−1)n, tjn], for j = 1, . . . , n,

and let Ij := (tjn − δ, tjn]. We know from our analysis that S̃(t) = yjn−1 = ηj for
t ∈ [tjn−1, tjn − δ], where ηj = ±1. Assume for now that ηj = 1. Also, recall that
S̃(t) = 0 for t ∈ [t(j−1)n, t(j−1)n+1−δ]. If M := ‖S̃‖C(ΩN) ≥ 1, we consider the CPwL
function Uj whose graph passes through the points (t(j−1)n, 0), (t(j−1)n+1 − δ, M),
(tjn−1, M), (tjn − δ, 1) and (tjn, 0), and is otherwise linear between these points.
Then Uj(t) ≥ S̃(t) on [t(j−1)n, tjn − δ], and thus on [t(j−1)n, tjn] \ Ij the function
min{S̃,Uj} = S̃ . In addition, min{S̃,Uj} will have values between 0 and 1 on Ij .
This is the correction we want on Ij . We then define U :=

∑
j∈Λ+ Uj χ[t(j−1)n,tjn],

where Λ+ is the set of j’s for which ηj = +1. In a similar way we define a lower
envelope Û for the j’s such that ηj = −1. We can then take

S := max{min{S̃,U}, Û}.
The function S satisfies the conclusions of the theorem and we only have to see
how it is output by a suitable neural network. Each of the functions U, Û have at
most 4n + 1 breakpoints and hence are in Υ3,4n+1(ReLU; 1, 1).

Fourth and fifth NNs. These are the networks N4 and N5 outputting U and Û.
We augment them with collation channels so that they have width 11. Since they
already have a source channel (channel 1), there is no need to add such a channel.

The network N . We use a construction similar to the one in MM4 to output S by
concatenating the networks for S̃, U and Û. Following the construction in MM4,
we end up with a network with width W = 11 (the same as the one for S̃) and depth
L = 15n + 2 where we added the depth 7n − 2 of the network for S̃, the depths of
the network for U and Û, each of which is 4n + 1, and two more layers to perform
the min and max. This completes the proof of the theorem.

Remark 3.1. We make some final remarks on the above construction. We have
used the fact that the ti’s are N = n2 + 1 equally spaced points. It would be
interesting and useful to clarify for which other patterns of univariate points the
construction can be done. We know that we cannot increase the number of points
significantly because of the upper bound in (3.27). Note that in the case d > 1, we
can construct a similar interpolant for points x(i) ∈ Rd if there is a v ∈ Rd such that
v · x(i) = ti, i = 1, . . . , N . Again, it would be useful to know exactly when we can
interpolate certain patterns of values like the yi’s with Cn2 points from Rd. The
constructions in Yarotsky (2018) and Shen et al. (2019) show that this is possible
on equally spaced tensor product grids.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 369

4. Classical model classes: smoothness spaces
In order to prove anything quantitative about the rate of approximation of a given
target function f , one obviously needs to assume something about f . Such as-
sumptions are referred to as model class assumptions. We say that a set K in a
Banach space X is a model class of X if K is compact in X . The classical model
classes for multivariate functions are the unit balls of smoothness spaces such as
Lipschitz, Hölder, Sobolev and Besov spaces. We give a brief (mostly heuristic)
review of these spaces in this section. A detailed development of these spaces can
be found in the standard references; see e.g. Adams and Fournier (2003), Peetre
(1976), Stein (1970), DeVore and Sharpley (1993) and DeVore (1998).
We consider these spaces on the domain Ω := [0, 1]d. All definitions and

properties extend to more general domains such as Lipschitz domains in Rd. We
use standard multivariate notation.

4.1. Lp spaces

As a starting point, we recall that the Lp(Ω) spaces consist of all Lebesgue meas-
urable functions f for which | f |p is integrable. We define

‖ f ‖Lp (Ω) :=
(∫
Ω

| f (x)|p dx
)1/p

, 0 < p < ∞.

This is a norm when 1 ≤ p < ∞ and a quasi-norm when 0 < p < 1. When
p = ∞, one usually takes X = C(Ω), the space of continuous functions on Ω with
the uniform norm

‖ f ‖C(Ω) := sup
x∈Ω
| f (x)|.

However, on occasion we need the space L∞(Ω) consisting of all functions that are
essentially bounded on Ω with

‖ f ‖L∞(Ω) := ess sup
x∈Ω
| f (x)|.

We assume throughout that the reader is familiar with the standard properties of
these spaces.

4.2. Sobolev spaces

We begin by defining smoothness spaces of continuous functions. If r is a positive
integer then Cr := Cr (Ω), Ω = [0, 1]d, is the set of all continuous functions f
defined on Ω, which have classical derivatives Dα f for all α with |α | = r , where
|α | := ∑d

j=1 |αj | = r . We equip this space with the semi-norm

| f |Cr := | f |Cr (Ω) := max
|α |=r
‖Dα f ‖C(Ω).

A norm on this space is given by ‖ f ‖Cr (Ω) := | f |Cr (Ω) + ‖ f ‖C(Ω).

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

370 R. DeVore, B. Hanin and G. Petrova

The Sobolev spaces (of integer order) generalize the spaces Cr by imposing
weaker assumptions on the derivatives Dα f . First the notion of weak (or distribu-
tional) derivatives Dα f is introduced in place of classical derivatives. Then, for
any 1 ≤ p ≤ ∞, the Sobolev spaceWr (Lp(Ω)) is defined as the set of all f ∈ Lp(Ω)
such that Dα f ∈ Lp(Ω) for all |α | = r . We equip this space with the semi-norm

| f |W r (Lp (Ω)) := max
|α |=r
‖Dα f ‖Lp (Ω),

and obtain a norm on this space by ‖ f ‖W r (Lp (Ω)) := | f |W r (Lp (Ω)) + ‖ f ‖Lp (Ω).

4.3. Besov spaces

The Sobolev spaces above are not sufficient because they only classify smoothness
for integer values r . There is a long history of introducing smoothness spaces for
any order s > 0. This began with Lipschitz and Hölder spaces and culminated with
the Besov spaces that we define in this section.
Given a function f ∈ Lp(Ω), 0 < p ≤ ∞, and any integer r , we define its

modulus of smoothness of order r as

ωr (f , t)p := sup
0< |h | ≤t

‖∆rh(f , ·)‖Lp (Ω), t > 0,

where h ∈ Rd and |h| is its Euclidean norm. Here ∆r
h
is the rth difference operator,

defined by

∆
r
h(f , x) :=

r∑
k=0

(−1)r−k
(

r
k

)
f (x + kh), x ∈ Ω ⊂ Rd,

where this difference is set to zero whenever one of the points x + kh is not in Ω.
It is easy to see that for any f ∈ Lp(Ω) we have ωr (f , t)p → 0 when t → 0. How
fast this modulus tends to zero with t measures the Lp smoothness of f .
For example, the Lipschitz space Lip(α, p) for 0 < α ≤ 1 and 0 < p ≤ ∞ consist

of those functions f ∈ Lp(Ω) for which

ω1(f , t)p ≤ Mtα, t > 0,

and the smallest M for which this holds is the semi-norm | f |Lip(α,p). Again, we
obtain a norm on this space by simply adding ‖ f ‖Lp (Ω) to the semi-norm.
The Besov spaces generalize the measure of smoothness in two ways. They

allow for r to be replaced by any s > 0 and they introduce a finer way to measure
decay of the modulus as t tends to zero. This finer decay is controlled by a new
parameter 0 < q ≤ ∞.
If f ∈ Lp(Ω), 0 < p, q ≤ ∞ and s > 0, the space Bs

q(Lp(Ω)) is defined as the set
of functions f for which

| f |Bs
q (Lp (Ω)) := ‖t−sωr (f , t)p ‖Lq ((0,∞), dt/t) < ∞, where r := bsc + 1. (4.1)

Note here that the Lq norm is taken with respect to the Haar measure dt/t. The

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 371

case q = ∞ is simply the supremum norm over t > 0. The norm on this space is

‖ f ‖Bs
q (Lp (Ω)) := | f |Bs

q (Lp (Ω)) + ‖ f ‖Lp (Ω).

The Besov spaces are now a standard way of measuring smoothness. Functions
in this space are said to have smoothness of order s in Lp with q giving a finer
gradation of this smoothness. We mention without a proof a few of the properties
of these spaces that are frequently used in analysis.
First, note that when s ∈ (0, 1) and q = ∞, these spaces are the Lip(s, p) spaces.

However, the space B1∞(Lp(Ω)) is not Lip(1, p) since ω2 is used in place of ω1 in
the definition (4.1), thereby resulting in a slightly larger space. A second useful
remark is that in (4.1) we could have used any r > s and obtained the same space
and an equivalent norm. When we insert q into the picture, the requirement for f
to be in the space Bs

q(Lp(Ω)) gets stronger as q gets smaller, namely, we have the
following embeddings.

BE1. Let 0 < p ≤ ∞. If s > s′ and 0 < q, q′ ≤ ∞ or s = s′ and q ≤ q′, we have
| f |Bs′

q′ (Lp (Ω)) ≤ C | f |Bs
q (Lp (Ω)) with the constant C independent of f .

BE2. If 0 < p < p′ ≤ ∞ and 0 < q′ ≤ q ≤ ∞ then | f |Bs
q (Lp (Ω)) ≤ | f |Bs

q′ (Lp′ (Ω)).

We also have the well-known Sobolev embeddings for Besov spaces.

BE3. Let 0 < p ≤ ∞. For any s > 0 and 0 < q ≤ ∞, we have that the unit ball
U(Bs

q(Lτ(Ω))), 0 < q ≤ ∞, is a compact subset of Lp(Ω)whenever s > d/τ−d/p.
There is a simple graphical way to describe these embeddings that we shall

refer to in this paper. We use the upper right quadrant of R2 to graphically
represent smoothness spaces. We can write any point in this quadrant as (1/p, s)
with 0 < p ≤ ∞ and s ≥ 0. We think of any such point as corresponding to a
smoothness space with smoothness of order s measured in Lp. For example, the
space Lip(α, Lp) can be thought of as corresponding to the point (1/p, α), and all
Besov spaces Bs

q(Lp(Ω)), 0 < q ≤ ∞, are identified with the same point (1/p, s). In
terms of this graphical description, given an Lp(Ω) space, the smoothness spaces
embedded into Lp(Ω) are the ones that correspond to points (1/τ, s) that lie on or
above the line with equation s = d(1/τ − 1/p). Those corresponding to points
strictly above this line are compactly embedded. These embedding results are
summarized in Figure 4.1.

4.3.1. Atomic decompositions
An often used fact about Besov spaces is that functions in these spaces can be
described by certain so-called atomic decompositions. Historically, this began with
the Littlewood–Paley decompositions; see Frazier, Jawerth and Weiss (1991). In
the case of approximation byReLUnetworks, the twomost relevant decompositions
are those using splines or wavelets. We discuss the case of spline decompositions.
Details and proofs can be found, for example, in DeVore and Popov (1988).

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

372 R. DeVore, B. Hanin and G. Petrova

s
(1
τ , s

)←→ Ws(Lτ)

Sobolev embedding line

(1
p , 0

) 1
τ

Lp

Figure 4.1. TheSobolev embedding theorem.

Let r ≥ 1 be a positive integer and consider the univariate cardinal B-spline Nr

of order r (degree r − 1), which is defined by

N(t) := Nr (t) :=
r
r!

r∑
k=0

(−1)r−k
(

r
k

)
(k − t)r−1

+ , t ∈ R. (4.2)

The function Nr is a piecewise polynomial of degree r − 1, is in Cr−2(R), and is
supported on [0, r]. With this normalization of the B-spline we have ‖Nr ‖C(R) ≤ 1.

The multivariate cardinal B-splines are defined as tensor products

N(x) := Nr (x1, . . . , xd) := Nr (x1) · · · Nr (xd), x = (x1, . . . , xd) ∈ Rd . (4.3)

We do not indicate the dependence on r when it is known from context. Let D
denote the collection of dyadic cubes in Rd and let Dk denote the dyadic cubes of
side length 2−k . We also use the notation D+ :=

⋃
k≥0 Dk . If I ∈ Dk has smallest

vertex 2−k j with j ∈ Zd, we let
NI (x) := NI,r (x) := N(2k x − j), x ∈ Rd . (4.4)

The splines NI provide an atomic decomposition for many function spaces and,
in particular, the Lp, Sobolev and Besov spaces. Consider, for example,Ω = [0, 1]d

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 373

and let Dk(Ω) denote the set of those I ∈ Dk for which the support of NI non-
trivially intersects Ω. Then each f ∈ L1(Ω) has a representation

f =
∑

I ∈D+(Ω)
cI (f)NI, (4.5)

where the cI ’s are linear functionals on L1, and D+(Ω) =
⋃

k≥0 Dk(Ω). The
representation (4.5) is not unique since the NI ’s are not linearly independent.
However, we can fix the cI ’s so that all properties stated below in this section are
valid.
We can characterize membership of f in a Besov space Bs

q(Lp(Ω)) in terms of
the decomposition (4.5); see Corollary 5.3 in DeVore and Popov (1988). Namely,
f ∈ Bs

q(Lp(Ω)), 0 < s < min{r, r − 1 + 1/p}, and 0 < q, p ≤ ∞ if and only if f
has the representation (4.5) with coefficients cI (f) satisfying

‖ f ‖ ′Bs
q (Lp (Ω)) :=

{ ∞∑
k=0

2skq
(∑

I ∈Dk (Ω)
|cI (f)|p |I |

)q/p}1/q
< ∞, (4.6)

for 0 < q, p < ∞, with the obvious modifications when either p or q is infinity.
Moreover, ‖ · ‖ ′ is equivalent to the usual Besov norm. This fact is the starting
point for proving many approximation theorems for functions in Besov spaces.

4.4. Interpolation of operators

Next we mention how, from known upper bounds for the approximation error on a
model class, we can derive new upper bounds on a spectrum of new model classes
by using results from the theory of interpolation of operators. We assume the
reader is familiar with the rudiments of the theory of interpolation spaces via the
real method of interpolation; see either Bergh and Lofstrom (1976) or Bennett and
Sharpley (1990).
Given two Banach spaces X,Y with (for convenience)Y continuously embedded

in X , the real method of interpolation generates a family of new Banach spaces
(X,Y)θ,q, 0 < θ < 1, 0 < q ≤ ∞, which interpolate between them. These spaces
are defined via what is called the K functional for the pair

K(f , t) := K(f , t; X,Y) := inf
g∈Y
‖ f − g‖X + t |g |Y, t > 0,

where ‖ · ‖X is the norm on X and | · |Y is a semi-norm on Y .1 The space (X,Y)θ,q,
0 < θ < 1, 0 < q ≤ ∞, then consists of all f ∈ X such that

‖ f ‖(X,Y)θ,q := ‖t−θK(f , t)‖Lq ((0,∞), dt/t) < ∞, (4.7)

where the Lq norm is taken with respect to the Haar measure dt/t. The important
fact for us is that for classical pairs (X,Y) of spaces such as Lp and Besov/Sobolev
spaces, the interpolation spaces are known and can be used to easily extend known

1 When Y is not continuously embedded in X , we use ‖ · ‖Y in the definition of K .

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

374 R. DeVore, B. Hanin and G. Petrova

error estimates for approximation. We mention two typical approximation results.
By U(Y) we mean the unit ball of the space Y . In the following two statements,
we let Σn ⊂ X be any set with the property that if s ∈ Σn, then cs ∈ Σn for every
c ∈ R.
Extend 1. If Σn ⊂ X is a set that provides the approximation error

inf
S∈Σn

sup
f ∈U(Y)

‖ f − S‖X =: E(U(Y), Σn)X = εn,

then for the space Z = (X,Y)θ,q, 0 < θ < 1 and 0 < q ≤ ∞ we have

E(U(Z), Σn)X ≤ εθn .
Extend 2. If, for the Banach spaces Y0,Y1 continuously embedded in X and the
set Σn ⊂ X , we know that

E(U(Y0), Σn)X ≤ εn, E(U(Y1), Σn)X ≤ ε̃n,
then it follows that for Z := (Y0,Y1)θ,q, 0 < θ < 1 and 0 < q ≤ ∞, we have

E(U(Z), Σ̄n)X ≤ Cε1−θ
n ε̃θn,

where
Σ̄n := {aS + bT : a, b ∈ R; S,T ∈ Σn},

and C depends only on θ.

We prove only Extend 1 since the proof of Extend 2 is similar. We can take
q = ∞ because this is the largest space Z for the given θ. If f ∈ U(Z), for t = εn,
there is a g ∈ Y (if the infimum is not achieved, the proof follows from some
limiting arguments) that satisfies

‖ f − g‖X + εn‖g‖Y ≤ K(f , εn; X,Y) ≤ εθn . (4.8)

We know that there is an S ∈ Σn which approximates g to accuracy εn‖g‖Y . For
this S, we have

‖ f − S‖X ≤ ‖ f − g‖X + ‖g − S‖X ≤ K(f , εn; X,Y) ≤ εθn . (4.9)

Here is a simple but typical example of Extend 1. If we establish a bound εn
for approximation of functions in U(Lip 1) with error measured in X = C(Ω), then
we automatically get the bound εαn for approximating functions from U(Lipα),
0 < α < 1, because Lipα = (C(Ω),Lip 1)α,∞, where Lip 1 = Lip(1,C(Ω)), and
Lipα = Lip(α,C(Ω)).

5. Evaluation of nonlinear methods of approximation
Before embarking on an analysis of the approximation performance of ReLU net-
works, we wish to place this type of approximation into the usual setting of ap-
proximation theory, and thereby draw out the type of questions that should be

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 375

answered. As we have noted, approximation using the outputs of neural networks
with a fixed architecture is a form of nonlinear approximation known as manifold
approximation. Given a target function f in a Banach space X , the approximation
is given by An(f) := Mn(an(f)), where the two maps

a = an : X → Rn, M = Mn : Rn → X,

select the n parameters of the network and output the approximation, respectively.
Of course, there aremanymethods of approximation. The question we address in

this section is howwe could possibly determine if approximation by NNs is in some
quantifiable sense superior to other more traditional methods of approximation.
Also, what are the inherent limits on the capacity of NNs to approximate, once
the number n of parameters allocated to the approximation is fixed? To answer
such questions, we introduce various traditional ways to compare approximation
methods and saywith certainty whether an approximationmethod is optimal among
all methods of approximation, or perhaps among all approximation methods with
a specified structure. How NNs do under such methods of comparison is not the
subject of this section. That topic is dealt with in later sections of this paper.
To begin the discussion, we take the view that an approximation method is a

sequence
{0} =: Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σn ⊂ · · · ⊂ X

of nested sets to be used in approximating functions f from the Banach space X
in the norm ‖ · ‖X . Here n, in some sense, measures the complexity of Σn. The
typical spaces X used in practice are the spaces Lp(Ω). However, at this point we
let X be any Banach space of functions on Ω with a norm ‖ · ‖X .
The various methods of approximation are divided into two general categories:

linear and nonlinear. Amethod is said to be linear if, for each n, the set Σn is a linear
space of dimension n, i.e. Σn is the linear span of n elements from X . The standard
examples are spaces of polynomials, splines and wavelets. Note that the term linear
does not refer to how the approximation depends on f ∈ X . It only refers to the
structure of each Σn, n ≥ 0. All other methods of approximation are referred to as
nonlinear. For nonlinear methods, a linear combination of elements from Σn may
not lie in Σn. There are three prominent examples of nonlinear approximation we
wish to mention.
In the first, Σn consists of piecewise polynomials (of a fixed and generally small

degree r) on a domain Ω ⊂ Rd. Let Pr denote the linear space of polynomials of
degree r . Here we can use any notion of degree in d variables, such as coordinate
degree or total degree. Given n, an element S ∈ Σn is obtained by partitioning the
domain Ω into n disjoint cells Cj ⊂ Ω, j = 1, . . . , n, and assigning a polynomial
Pj ∈ Pr to each cell. Thus we have

S =
n∑
j=1

Pj χC j ,

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

376 R. DeVore, B. Hanin and G. Petrova

where χC j is the characteristic function of the cell Cj . The partitions are not
fixed but allowed to vary within a class of partitions that can be described by n
parameters. We have already seen an example of this in the case of free-knot CPwL
functions of one variable, in which case the partition was allowed to consist of any
n intervals. In the multivariate case, the allowable partitions are more structured
and usually generated adaptively. The general idea of this form of approximation
is to use small cells where the target function is rough and large cells where the
function is smooth.
From our description of the sets ΥW,L(ReLU; d, 1), we see that NN approxim-

ation fits into the above framework of piecewise polynomial approximation in the
sense that each element in one of these sets is a CPwL function on a polytope
partition; see Section 3. However, several notable distinctions arise. First of all, we
have many fewer restrictions on the partitions that arise when compared to other
piecewise polynomial methods of approximation such as FEMs, adaptive methods,
free-knot splines, etc. Another important point is that ΥW,L(ReLU; d, 1) is not the
collection of all CPwL functions subordinate to a fixed class of partitions. Here,
choosing the parameters of the network specifies in tandem the partition and the
CPwL. One view of how this is done is nicely explained in Balestriero and Baraniuk
(2021).
Another widely used example of nonlinear approximation is n-term approxima-

tion. Let B := {φ j, j ≥ 1} be an unconditional basis for X . The set Σn := Σn(B) in
this case consists of all functions S ∈ X which are a linear combination of at most
n of these basis elements. Thus each S ∈ Σn(B) takes the form

S =
∑
k∈Λ

αkφk, #(Λ) = n, αk ∈ R,

where Λ ⊂ N is a subset of n indices. The index set Λ is allowed to change at
each occurrence with the only restriction being that #(Λ) = n. One can generalize
this setting if B is replaced by a frame or, more generally, a dictionary. Typical
examples used in numerical analysis and signal/image processing are dictionaries
of wavelets, curvelets, ridge functions, shearlets and other families of waveforms.
In this generality, n-term approximation is not numerically implementable because
the dictionary is infinite. To circumvent this in practice, one uses a large but finite
dictionary that is sufficiently rich for the problem at hand.
Neural network approximation fits most naturally into a third type of nonlinear

approximation known as manifold approximation. In manifold approximation, the
elements of S ∈ Σn take the form

S = Mn(y), y ∈ Rn,
where Mn : Rn → X , i.e. Σn = {Mn(y) : y ∈ Rn}. As noted earlier, a numer-
ical implementation of manifold approximation is made by specifying a mapping
an : K → Rn which, when presented with f ∈ K , describes the parameters of the
point on the manifold used to approximate f .

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 377

Given an approximation method Σ := (Σn)n≥0 and f ∈ X , we let

En(f)X := E(f , Σn)X := En(f , Σ)X := inf
g∈Σn
‖ f − g‖X

denote the error of approximation of f by elements from Σn. Note that En(f)X
gives the smallest error we can achieve using Σn to do the approximation, but it
does not address the question of how to find such a best or near-best approximation.
This is an important issue, especially for NN approximation, that we address later
in this section.

An oft-quoted property of NNs is their universality, whichmeans that En(f)X →
0 as n → ∞, for all f ∈ X . This is a property possessed by all approximation
methods used in numerical analysis. Universality is not at all special and certainly
cannot be used to explain the success of NNs.

5.1. Approximation of model classes

We do not measure the performance of an approximation method on a single
function f but rather on a class K ⊂ X of functions. In this case we have the class
error

En(K)X := E(K, Σn)X := En(K, Σ)X := sup
f ∈K

En(f , Σ)X, n ≥ 0. (5.1)

Here K incorporates the knowledge we have about the function or potential func-
tions f that we are trying to capture. For example, when numerically solving a
PDE, K is typically provided by a regularity theorem for the PDE. In the case of
signal processing, K summarizes what is known or assumed about the underlying
signal, such as band limits or sparsity.
Note that En(K)X represents the worst-case error. It is also possible to measure

error in some averaged sense. This would be meaningful, for example, when the
set K is given by a stochastic process with some underlying probability measure.
For now, we discuss only the worst-case error.
A set K on which we wish to measure the performance of an approximation

method is called amodel class. We always assume that K is a compact subset of X .
If the approximation process is universal, then En(K)X → 0 as n → ∞ for every
model class K . How fast it tends to zero represents how good the sets (Σn)n≥0 are
for approximating the elements of K .
If we are presented with approximation processes given by Σ = (Σn)n≥0 and
Σ′ = (Σ′n)n≥0 respectively, then given a model class K , we can compare the
performance of these methods on K by checking the decay of En(K, Σ)X and
En(K, Σ′)X as n → ∞. If the decay rate of En(K, Σ)X is faster than that of
En(K, Σ′)X as n→∞, we are tempted to say that Σ is superior to Σ′ at least on this
model class. However, the question of the computability of the approximant is an
important issue and has to be taken into consideration.
To drive home this latter point, the following example is germane. Given a

compact set K ⊂ X and ε > 0, let S1 = S1(ε) be a finite subset of K such that

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

378 R. DeVore, B. Hanin and G. Petrova

dist(f , S1)X ≤ ε for all f ∈ K . For example, S1 could be the set of centres of
an ε covering of K . Going further, we can find a one-dimensional manifold Σ1
that is parametrized by t ∈ [0, 1] and passes through each point in S1 as t runs
through [0, 1], and thus E(K, Σ1)X ≤ ε. The point of this simple observation is
to emphasize that we must place some further restrictions on what we allow as
an approximation method (Σn)n≥0 so that we can have a meaningful theory. We
next address the subject of what such restrictions should look like and what their
implications are.

5.2. Widths for measuring approximation error

The concept of widths was introduced to quantify the best possible performance
of approximation methods on a given model class K . The best known width
is the Kolmogorov width, which was introduced to quantify the best possible
approximation when using linear spaces. If Xn is a linear subspace of X of
dimension n, then its performance in approximating the elements of the model
class K is given by the error E(K, Xn)X defined in (5.1). If we fix the value of
n ≥ 0, the Kolmogorov n-width of K is defined as

d0(K)X := sup
f ∈K
‖ f ‖X, dn(K)X := inf

dim(Y)=n
E(K,Y)X, n ≥ 1, (5.2)

where the infimum is taken over all linear spaces Y ⊂ X of dimension n. An
n-dimensional space which achieves the infimum in (5.2) is called a Kolmogorov
space for K if it exists.
The Kolmogorov n-width of a model class K tells us the optimal performance

possible for approximating K using linear spaces of dimension n for the approxim-
ation. It does not tell us how to select a (near-) optimal space Y of dimension n for
this purpose nor how to find a good/best approximation from Y once it is chosen.
In recent years, discrete optimization methods have been discovered for finding
optimal subspaces. They go by the name of greedy algorithms; see Buffa et al.
(2012), Binev et al. (2011) and DeVore, Petrova and Wojtaszczyk (2013). If X is
a Hilbert space and Y is a finite-dimensional subspace, then we can always find
the best approximation from Y to a given f ∈ X by orthogonal projections. This
becomes a problem when X is a general Banach space because linear projections
onto a general n-dimensional space Y may have large norm when n is large. Al-
though a famous theorem of Kadec and Snobar says that there is always a projection
with norm at most

√
n, finding such a projection is a numerical challenge. Also,

projecting onto such a linear space does not give the best approximation from the
space because the norm of the projection is large.

For classical model classes such as the finite ball in smoothness spaces such as
Lipschitz, Sobolev or Besov spaces, the Kolmogorov widths are known asymptot-
ically when X is an Lp space. Furthermore, it is often known that specific linear
spaces of dimension n such as polynomials, splines on uniform partition, etc.,

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 379

achieve this optimal asymptotic performance (at least within reasonable constants).
This can then be used to show that for such K , certain numerical methods, such
as spectral methods or FEMs, are also asymptotically optimal among all possible
choices of numerical methods built on using linear spaces of dimension n for the
approximation.
Let us note that in the definition of Kolmogorov widths we do not require the

mapping that sends f ∈ K into the approximation to f to be a linear map. There
is a concept of linear width which requires the linearity of the approximation map.
Namely, given n ≥ 0 and amodel class K ⊂ X , its linear width dL

n (K)X is defined as

dL
0 (K)X := sup

f ∈K
‖ f ‖X, dL

n (K)X := inf
L∈Ln

sup
f ∈K
‖ f − L(f)‖X, n ≥ 1, (5.3)

where the infimum is taken over the class Ln of all linear maps from X into itself
with rank at most n. The asymptotic decay of linear widths for classical smoothness
classes is also known. We refer the reader to the books by Pinkus (2012) andLorenz,
Makovoz and von Golitschek (1996) for the fundamental results for Kolmogorov
and linear widths. When X is not a Hilbert space, the linear width of K can decay
worse than the Kolmogorov width.
Now we want to make a very important point. There is a general lower bound on

the decay of Kolmogorov widths that was given by Carl (1981). This lower bound
can be very useful in showing that a linear method of approximation is nearly
optimal. To state this lower bound, we need to introduce the Kolmogorov entropy
of a compact set K . Given ε > 0, compactness says that K can be covered by a
finite number of balls of radius ε; see Figure 5.1. We define the covering number
Nε(K)X to be the smallest number of balls of radius ε that cover K , and we define
the entropy Hε(K)X of K to be the logarithm of this number

Hε(K)X := log2(Nε(K)X).

The entropy of K measures how compact the set K is, and is often used to give
lower bounds on how well we can approximate the elements in K and also how
well we can learn an element from K given data observations. The Kolmogorov
entropy of a compact set is an important quantity for measuring optimality, not only
in approximation theory and numerical analysis, but also in statistical estimation
and encoding of signals and images.
To formulate the lower bounds for widths in terms of entropy, we introduce the

related concept of entropy numbers. Given n ≥ 0, we define the entropy number
εn(K)X to be the infimum of all ε > 0 for which 2n balls of radius ε cover K ,
that is,

εn(K)X := inf{ε : Nε(K)X ≤ 2n}.

The decay rate of entropy numbers for all classical smoothness spaces in Lp(Ω) are
known.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

380 R. DeVore, B. Hanin and G. Petrova

Figure 5.1. Kolmogorov covering of K .

Carl proved that for each r > 0, there is a constant Cr , depending only on r , such
that

Λ := sup
m≥0

(m + 1)rdm(K)X < ∞ ⇒ εn(K)X ≤ CrΛ(n + 1)−r, n ≥ 0. (5.4)

Thus, for polynomial decay rates for approximation by n-dimensional linear spaces,
this decay rate cannot be better than the decay rate for the entropy numbers of K .
Let us note that for many standard model classes K , such as finite balls in Sobolev
and Besov spaces, the decay rate of dn(K)X is much worse than εn(K)X . A version
of Carl’s inequality holds for other decay rates, even exponential, and can be found
in Cohen, DeVore, Petrova and Wojtaszczyk (2020).

5.3. Nonlinear widths

Since NN approximation is a nonlinear method of approximation, the Kolmogorov
widths are not an appropriate measure of performance. Many different notions of
nonlinear widths (see the discussion in DeVore, Kyriazis, Leviatan and Tikhomirov
1993) have been introduced to match the various forms of nonlinear approximation
used in numerical computations. We shall discuss only nonlinear widths that match
the form of approximation provided by NNs.
Recall that NN approximation is a form of manifold approximation, where the

approximation set Σn consists of the outputs of a neural network with n parameters.
Thus Σn = Mn(Rn), with Mn being the mapping that describes how the output
function is constructed once the parameters and architecture of the NN are set.
Note that Σn is a nonlinear set in the sense that the sum of two elements from Σn
is generally not in Σn.
There are by now numerous papers that discuss the approximation by NNs. They

typically provide estimates for E(K, Σn)X for certain model classes K . We will
discuss such estimates subsequently in Sections 7 and 8. We have cautioned that

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 381

such results must be taken with a grain of salt since they do not typically discuss
how the approximation would be found or numerically constructed. Our point of
view is that it is not just an issue of how well Σn approximates K , although this is
indeed an interesting question, but also how a good approximation would be found.
In other words, the parameter selection mapping an is equally important.

When presented with an f ∈ K , one chooses the parameters of the NN to be
used to construct the approximation to f . Typical algorithms in learning base this
selection of parameters on some form of optimization, executed through gradient
descent methods. For our analysis, we denote this selection procedure by the
mapping an : K → Rn. So the approximation procedure is given by An(f) :=
Mn(an(f)). If we wish to establish some form of optimality of NNs, we should
compare NN approximation with other approximation methods of this form.
Given any pair of mappings (not necessarily using NNs) a : X → Rn and

M : Rn → X , we define the error for approximating f ∈ X by

Ea,M (f)X := ‖ f − M(a(f))‖X,
and the approximation error on a model class K ⊂ X by

Ea,M (K)X := sup
f ∈K

Ea,M (f).

For any such a, M we have

E(K, Σn)X ≤ Ea,M (K)X, where Σn := M(Rn), (5.5)

and we have equality when we choose a(f) so that M(a(f)) is a best approximation
to f (assuming such a best approximation exists) from Σn.

A first possibility for defining optimal performance of such methods of mani-
fold approximation on a model class K would be to simply find the minimum of
Ea,M (K)X over all such pairs of mappings. However, we have already pointed
out that this minimum would always be zero (even when n = 1) because of the
existence of space-filling manifolds. On the other hand, these space-filling man-
ifolds are useless in numerical analysis. Consider, for example, a one-parameter
space-filling manifold. By necessity, a small perturbation of the parameter will
generally result in a large change in the output, which makes parameter selection
for fitting f impossible. The natural question that arises is what restrictions need
to be imposed on the mappings a, M so that we have a theory which corresponds
to reasonable numerical methods. We discuss this next.

5.4. Restrictions on a, M in manifold approximation

The first suggestion, given inDeVore, Howard andMicchelli (1989), for the possible
restrictions to place on the mappings a, M , was to require them to be continuous.
This led to the following definition of manifold widths δn(K)X ,

δn(K)X := inf
an,Mn

Ean,Mn (K)X,

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

382 R. DeVore, B. Hanin and G. Petrova

with the infimum taken over all maps an : K → Rn and Mn : Rn → X , where
an is continuous on K and Mn is continuous on Rn. Manifold widths are closely
connected to other definitions of nonlinear widths; see the discussion in DeVore
et al. (1993).

It turns out that even with these very modest assumptions on the mappings a, M ,
one can prove lower bounds for δn(K)X when K is a unit ball of a classical smooth-
ness space, e.g. Besov, Sobolev or Lipschitz, and these lower bounds show that
manifold approximation is no better than other methods of nonlinear approximation
such as n-term wavelet approximation or adaptive finite element approximation for
these model classes. For example, if we approximate in Lp(Ω), with Ω = [0, 1]d,
and K is a unit ball of any Besov space Bs

q(Lp(Ω)) that embeds compactly into
Lp(Ω), then it was shown in DeVore et al. (1993) that

δn(K)Lp (Ω) ≥ Cn−s/d, n ≥ 1. (5.6)

This should not be used to deduce that manifold approximation, in general, and
NN approximation, in particular, offer nothing new in terms of their ability to
approximate. It may be that their power to approximate lies in their ability to
handle non-traditional model classes. Nevertheless, this should make us proceed
with caution.
A stark criticism of manifold widths is that its requirement of continuity of the

mappings is too minimal and does not correspond to the notions of numerical
stability used in practice. In other words, manifold approximation based on just
assuming that a, M are continuous may also not be implementable in a numerical
setting. We next discuss what may be more viable restrictions on a, M that match
numerical practice.

5.5. Stable manifold widths

A major issue in the implementation of a method of approximation is its stability,
i.e. its sensitivity to computational error or noisy inputs. The stability we want can
be summarized in the following two properties:

S1. When we input f into the algorithm, we often input a noisy discretization of f ,
which can be viewed as a perturbation of f . So we would like to have the property
that when ‖ f − g‖X is small, the algorithm outputs M(a(g)) which is close to
M(a(f)). A standard quantification of this is to require the mapping A := M ◦ a to
be a Lipschitz mapping from K to X . Note that in this formulation the perturbation
g should also be in K .

S2. In the numerical implementation of the algorithm, the parameters a(f) are not
computed exactly, so when a, b ∈ Rn are close to one another we would like M(a)
and M(b) to be close as well. Again, the usual quantification of this observation
is to impose that M : Rn → X is a Lipschitz map. This property requires the
specification of a norm on Rn which controls the size of the perturbation of a.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052
Matthew Buchholz

Matthew Buchholz

Neural network approximation 383

The simplest way to guarantee S1–S2 is to require both mappings a, M to be
Lipschitz, which means that there is a norm ‖ · ‖Y on Rn and a number γ ≥ 1, such
that

‖a(f) − a(g)‖Y ≤ γ‖ f − g‖X, f , g ∈ K,
‖M(x) − M(x ′)‖X ≤ γ‖x − x ′‖Y, x, x ′ ∈ Rn. (5.7)

If a, M satisfy (5.7), then obviously S1 and S2 hold, where the Lipschitz constant
in S1 is γ2.
Imposing Lipschitz stability on a, M leads to the following definition of stable

manifold widths,

δ∗n(K)X := δ∗n,γ(K)X := inf
a,M

Ea,M (K)X,

where now the infimum is taken over all maps a : K → Rn and M : Rn → X that
are Lipschitz-continuous with constant γ.

5.6. Bounds for stable manifold widths

Both upper and lower bounds for stablemanifoldwidths of a compact setK are given
in Cohen et al. (2020). These bounds are tight in the case when the approximation
takes place in a Hilbert space. Approximation in a Hilbert space is often used in
applications of NNs.
Lower bounds for the decay of stable manifold widths in a general Banach space

X are given by the following Carl’s type inequality (see (5.4)), which compares
δ∗n,γ(K)X with the entropy numbers εn(K)X . Specifically, for any r > 0 we have

εn(K)X ≤ C(r, γ)(n + 1)−r sup
m≥0

(m + 1)rδ∗m,γ(K)X, n ≥ 0. (5.8)

This shows that whenever the stable manifold widths δ∗n,γ(K)X of a model class
K tend to zero like O(n−r), n → ∞, then the entropy numbers of K must have
the same or faster rate of decay. Similar bounds are known when the decay rate
n−r , n → ∞, is replaced by other decays; see Cohen et al. (2020). In this sense,
the stable manifold widths δ∗n,γ(K)X cannot tend to zero faster than the entropy
numbers of K .
The inequalities (5.8) give a bound for how well manifold approximation can

perform on a model class K once Lipschitz stability of the maps a, M is imposed.
One might speculate, however, that in general εn(K)X may go to zero faster than
δ∗n,γ(K)X . This is not the case when X = H is a Hilbert space, since in that case,
for any compact set K ⊂ H, we have the estimate

δ∗26n,2(K)H ≤ 3εn(K)H, n ≥ 1, (5.9)

proved in Cohen et al. (2020). This is very useful information since it is often
relatively easy to compute the entropy numbers of a model class K . In addition, it
is also a very useful result for our forthcoming analysis of NN approximation.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

384 R. DeVore, B. Hanin and G. Petrova

The upper bound (5.9) is proved via three fundamental steps. The first is to select
2n points Sn := { fi}ni=1 from H such that the balls of radius ε := εn(K)H centred at
these points cover K . The next step is to use the Johnson–Lindenstrauss dimension
reduction lemma to find a (linear) mapping a : Sn → R26n, for which

1
2
‖ fi − fj ‖H ≤ ‖a(fi) − a(fj)‖`2(R26n) ≤ ‖ fi − fj ‖H, i, j = 1, . . . , 2n.

According to the Kirszbraun extension theorem (see Theorem 1.12 fromBenyamini
and Lindenstrauss 2000), the mapping a can be extended from Sn to the whole
H, preserving the Lipschitz constant 1. The last step is to define M on a(fj),
j = 1, . . . , 2n, as

M(a(fj)) = fj, j = 1, . . . , 2n.

Clearly

‖M(a(fi)) − M(a(fj))‖H = ‖ fi − fj ‖H ≤ 2‖a(fi) − a(fj)‖`2(R26n),

and therefore M is a Lipschitz map with a Lipschitz constant 2 when restricted to
the finite set a(Sn). Again, according to the Kirszbraun extension theorem, we can
extend M to a Lipschitz map on the whole R26n with the same constant 2.

It is now easy to see that the approximation operator A := M ◦a gives the desired
approximation performance since with a suitable choice of j we have

‖ f − A(f)‖H ≤ ‖ f − fj ‖H + ‖M(a(fj)) − M(a(f))‖H
≤ εn(K)H + 2‖a(f) − a(fj)‖`2(R26n)

≤ εn(K)H + 2‖ f − fj ‖H
≤ 3εn(K)H .

Therefore we have proved (5.9). Let us remark, however, that A is not very
constructive and that it is generally difficult to create Lipschitz mappings a, M that
achieve the optimal performance in stable nonlinear widths.

Remark 5.1. It is shown in Cohen et al. (2020) that the conditions SP2 and
SP3 are sufficient to guarantee the validity of Carl inequalities of the form (5.12).
However, note that they are not sufficient to guarantee the stability we want for
perturbations of the input f .

5.7. Weaker measures of stability

It may be argued that requiring Lipschitz stability is too strong a requirement.
Recall that Lipschitz stability is just a sufficient condition to guarantee the stability
properties S1–S2 that we want. In this direction, we mention that S1–S2 will hold
if a, M satisfy the following weaker properties with ‖ · ‖Y some fixed norm on Rn.
SP1. The mapping A := M ◦ a, A : K → X is Lipschitz. We can even weaken
this further to requiring only ‖A(f) − A(g)‖X ≤ C‖ f − g‖αX , f , g ∈ K , for some
α ∈ (0, 1]. This is known as Lipα stability.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 385

SP2. The mapping M : Rn → X is Lipschitz, or more generally, Lipα with respect
to ‖ · ‖Y on Rn.
While not directly needed for stability, the following property will play a role in

our further discussions.

SP3. The mapping a : K → Rn is bounded with respect to ‖ · ‖Y on Rn. This
property limits the search over parameter space.

It turns out that if the mappings a, M satisfy the weaker assumptions SP1–
SP3, then one can still prove a version of Carl’s inequality, and thus we still have
limitations on the performance of these approximation methods in terms of entropy
number lower bounds. Let us briefly indicate how lower bounds for performance
are proved when the mappings an, Mn satisfy SP1–SP3. For notational simplicity
only, we take α = 1, the Lipschitz constant of both Mn and Mn ◦ an, to be γ, and
the image of K under an to be contained in the unit ball of Rn with respect to ‖ · ‖Y .
We fix ε > 0 and let an : K → Rn, Mn : Rn → X , satisfy SP1–SP3 and

approximate the elements of K with the accuracy

Ean,Mn (K)X ≤ ε/3 for some ε > 0. (5.10)

We now show that (5.10) implies a bound on the entropy of K . Let Packε :=
{ f1, . . . , fPε (K)} denote a maximal ε-packing of K , i.e. a collection of points
{ fi} ∈ K , with mini,j ‖ fi − fj ‖X > ε, whose size is maximal among all such
collections. Now define

yi := an(fi), gi := (Mn ◦ an)(fi) = Mn(yi), i = 1, . . . , Pε(K).

It follows that for i, j = 1, . . . , Pε(K),

‖gi − gj ‖X ≥ ‖ fi − fj ‖X − ‖ fi − gi ‖X − ‖ fj − gj ‖X > ε/3, i , j,

where we used (5.10). Since Mn is γ Lipschitz, we obtain

‖yi − yj ‖Y ≥ 1
γ
‖Mn(yi) − Mn(yj)‖X = 1

γ
‖gi − gj ‖X >

ε

3γ
, i , j .

In other words, since ‖yi ‖Y = ‖an(fi)‖Y ≤ 1, the collection {y1, . . . , yPε (K)} is an
ε/(3γ)-packing of the unit ball in Rn.Well-known volumetric considerations show
that a maximal such packing can have at most (1+6γε−1)n elements, and therefore
Pε(K) ≤ (1 + 6γε−1)n.
Now, since the balls of radius ε centred at the fi are a covering of K , we have

that
Nε(K) ≤ Pε(K) ≤ (1 + 6γε−1)n = 2n log2 (1+6γε−1). (5.11)

For example, the above derivation shows that whenever there are mappings an, Mn

satisfying SP1–SP3, then we have the Carl type inequality

Ean,Mn (K)X ≤ Cn−r, n ≥ 1 =⇒ εn(K)X ≤ C ′n−r [log2 n]r, n ≥ 1. (5.12)

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

386 R. DeVore, B. Hanin and G. Petrova

Indeed, we take ε = 3Cn−r and use (5.11) to find εcn log2 n ≤ Cn−r , which gives
(5.12).

5.8. Optimal performance for classical model classes described by smoothness

Although the definition of manifold widths places very mild conditions on the
mappings a, M , it still turns out that these conditions are sufficiently strong to
restrict how fast δn(K)X tends to zero for model classes built on classical notions
of smoothness described by smoothness conditions such as Sobolev or Besov
regularity. For example, if Bs

q(Lτ(Ω)), with Ω = [0, 1]d, is any Besov space that
lies above the Sobolev embedding line for Lp(Ω), then DeVore et al. (1993) proved
that

δn(U(Bs
q(Lτ(Ω))))Lp (Ω) � εn(U(Bs

q(Lτ(Ω))))Lp (Ω) � n−s/d, n > 0,

with the constants in this equivalence depending only on d.
It turns out that the decay rate O(n−s/d) can be obtained by many methods of

nonlinear approximation such as adaptive finite elements or n-termwavelet approx-
imation. The main message for us is that even with this mild condition of imposing
only continuity on the maps a, M , we cannot do better than the rate O(n−s/d) for
these classical smoothness classes when using manifold approximation. In par-
ticular, this holds for NN approximation with the restriction of continuity on the
mappings a, M associated to the NNs.

5.9. VC dimension also limits approximation rates for model classes

The results we have given above provide lower bounds on how well a model class
K can be approximated by a stable manifold approximation. If we remove the
requirement of stability, it is still possible to give lower bounds on approximation
rates for model classes if the approximation method (Σn)n≥0 is made up of sets Σn
which have limited VC dimension. For such results, one needs some additional
assumptions on the model class K . We describe results of this type in this section.

Suppose K is a model class in Lp(Ω) with 1 ≤ p ≤ ∞. A common technique
in proving lower bounds on the Kolmogorov entropy or widths of K is to exhibit a
function φ ∈ Lp(Ω) with compact support for which the normalized dilate

Φ(x) := Aφ(λx), x ∈ Ω, (5.13)

is in K , provided A and λ are chosen appropriately. The functionΦ is called a bump
function. By choosing λ large, one concentrates the support ofΦ but of course this
is at the expense of making A small in order to guarantee that the resulting φ is in
K . The small support of Φ guarantees that the shifted functions Φi(·) = Φ(· − x(i)),
i = 1, . . . , N , are also in K and these functions have disjoint supports, provided N
is not too large and the x(i)’s are suitably spaced out in Ω. It then follows that for

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 387

Figure 5.2. A bump function in 3D.

any assignment of signs Λ := (ε1, ε2, . . . , εN), εi = ±1, i = 1, . . . , N , the function

fΛ := B
N∑
i=1

εiΦi (5.14)

is also in K for a proper choice of B. One then uses the rich family of functions
fΛ as Λ runs over the 2N sign patterns to show that the Kolmogorov entropy of K
must be suitably large.
This strategy can be used to bound from below how well a model class can be

approximated by sets with limited VC dimension. For illustration, we consider
the simplest example where K = U(Cr (Ω)), with r being a positive integer, and
measure approximation error in the norm ‖ · ‖C(Ω). If we approximate the functions
in K by using a set F with VC(F) ≤ m, then we claim that there is a constant
C = C(r, d) > 0 such that

δ := dist(K,F)C(Ω) ≥ Cm−r/d . (5.15)

We prove this claim in the case Ω = [−1, 1]d. Consider a non-negative bump
function φ ∈ Cr (Rd) which vanishes outside [−1/2, 1/2]d and has norm ‖φ‖C(Ω) =
φ(0); see Figure 5.2. The dilated functionΦ of (5.13) is in K if we choose A so that
Aφ(0) + A|φ|Cr (Ω)λ

r = 1. The support of Φ is contained in a d-dimensional cube
centred at 0 with side length λ−1. So if N = bλdc, we can make the Φi’s appearing
in (5.14) have disjoint support by taking the x(i) suitably separated. Moreover, if
B = 1, we have fΛ ∈ K .
Now, to prove (5.15), we take λ = d(m + 1)1/de and obtain N ≥ m + 1 functions
Φi(·) := Φ(· − x(i)) ∈ K , i = 1, . . . , N , with disjoint supports. Then, for each
choice of sign patterns the function fΛ from (5.14) is in K and fΛ(x(i)) = Aφ(0)εi,
i = 1, . . . , N . Now fΛ is approximated by an SΛ ∈ F to accuracy δ. If δ were
smaller than Aφ(0), then the function SΛ would carry the sign pattern of the εi at
each x(i). Hence the points x(i), i = 1, . . . , N , would be shattered by F . Since by

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

388 R. DeVore, B. Hanin and G. Petrova

assumption VC(F) ≤ m, this is not possible, and we must have δ ≥ Aφ(0). Since
we have that φ(0)A = φ(0)(φ(0) + λr |φ|Cr (Ω))−1 ≥ Cm−r/d, this proves (5.15).
This argument can also be used to prove that there is an absolute constant

C > 0 depending only on s and d, such that for K = U(Bs
q(L∞(Ω))), with s > 0,

0 < q ≤ ∞, we have
dist(K,F)C(Ω) ≥ Cm−s/d, (5.16)

whenever the VC dimension of F is at most m. We leave the proof to the reader.
Let us now specialize to the case whereF is the output of a ReLU network. With

an eye towards our bounds on the VC dimension for the spaces ΥW,1(ReLU; d, 1)
(see Lemma 3.11) and ΥW0,L(ReLU; d, 1) (see Theorem 3.12), we obtain the fol-
lowing lower bounds for NN approximation for W ≥ 1 and d ≥ 2:

dist(U(Bs
q(L∞(Ω))),ΥW,1(ReLU; d, 1))C(Ω) ≥ C(s, d)[W · log2 W]−s/d, (5.17)

and

dist(U(Bs
q(L∞(Ω))),ΥW0,L(ReLU; d, 1))C(Ω) ≥ C(s, d)L−2s/d . (5.18)

The logarithm in (5.17) can be removed when d = 1.
In the case of (5.17), the lower bound can be stated as C(s, d)[n log2 n]−s/d,

where n = n(W, 1) is the number of parameters used to describe ΥW,1. Thus, in
this case, save for the logarithm, we cannot achieve any better approximation rates
than that obtained by traditional linear methods of approximation. We discuss later
in Section 7 what rates have been proved in the literature for one-layer networks.
In the case of (5.18), the lower bound is of the form C(s, d)n−2s/d, where

n = n(W0, L) is the number of parameters used to describe the space ΥW0,L . The
factor 2 in the exponent leaves open the possibility ofmuch improved approximation
rates (when compared with classical methods) when using deep networks. We shall
show in Section 8.7 that these rates of approximation are attained.
We close this section by mentioning that use of the VC dimension to bound

approximation rates from below seems to be restricted to the case when approx-
imation error is measured in the norm ‖ · ‖C(Ω). This makes one wonder if there
is a concept analogous to the VC dimension suitable for Lp approximation when
p , ∞.

5.10. Another measure of optimal performance: approximation classes

There is another important way to measure the performance of an approximation
method Σ = (Σn)n≥0 by looking at the set of all functions which have a given
approximation rate as n → ∞. Let λ = (λn)n≥0 be a sequence of positive real
numbers which decrease monotonically to zero. We define

A(λ) := A(λ, Σ) := { f ∈ X : ∃Λ > 0 such that E(f , Σn)X ≤ Λλn, ∀n ≥ 0},
(5.19)

and further define ‖ f ‖A(λ) as the smallest number Λ for which (5.19) holds. The
larger this set is, the better the approximation method Σ is.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 389

The case when λn := (n + 1)−r is the most often studied since it corresponds
to the rates most often encountered in numerical scenarios. In this case A(λ) is
usually denoted by

Ar = Ar (Σ) = Ar (Σ, X).

A major chapter in approximation theory is to characterize the approximation
classes Ar for a given approximation method. The main theorems of approx-
imation theory characterize Ar for polynomial and spline approximation. Such
characterizations are also known for some methods of nonlinear approximation.
As we shall see, we are far from understanding the approximation classesAr for

NN approximation. However, some useful results on the structure of these classes
can be found in Gribonval, Kutyniok, Nielsen and Voigtlaender (2019).

6. Approximation using ReLU networks: overview
As we have already noted, the collection ΥW,L = ΥW,L(ReLU; d, 1) of outputs of
a ReLU network with width W , depth L and input dimension d is a nonlinear set
of CPwL functions determined by n(W, L) parameters. Our interest in the next
few sections is to summarize the approximation power of ΥW,L . In the process of
analysing this, we shall not address the question of whether there is a practical stable
algorithm to produce the approximation, an issue we will discuss in Section 9.
One of the impediments to giving a coherent presentation of the approximation

properties of the outputs of neural networks, as the number of parameters increases,
is the great variety of possible architectures of the networks. Namely, when
examining the approximation efficiency, we can fix W and let L change, or fix
L and let W change, or let both change simultaneously. We can also vary the
architecture by allowing full connectivity or sparse connectivity between layers.
We may also impose further structure on the weight matrices, leading, for example,
to convolution networks. Moreover, we can also consider a variety of activation
functions σ.
While each such setting is of interest, we primarily concentrate on two cases of

ReLU networks. The first is the case that most closely matches classical approxim-
ation, the set ΥW,1 as W → ∞. We shall see that even this case is not completely
understood. At the other extreme is the case when we take the width W to be some
fixed constant W0 and let L → ∞. This is a most illuminating setting in that we
shall see a dramatic gain in approximation efficiency when the depth L is allowed
to grow. This is commonly referred to as the power of depth.
To provide a unified notational platform, we use Σn for the set ΥW,L under

consideration, where n is equivalent to the number of parameters being used. For
example, we can take Σn = Υn,1 or Σn = ΥW0,n since both of these sets depend on a
number of parameters proportional to n. Our goal is to understand how the family
Σ := (Σn)n≥0 performs as an approximation tool.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

390 R. DeVore, B. Hanin and G. Petrova

In what follows in this section, we consider the set ΥW,L restricted to the domain
Ω := [0, 1]d. Recall that each function S ∈ ΥW,L is the output of a neural network
with at most n(W, L) = (d + 1)W +W(W + 1)(L − 1) + (W + 1) parameters. We
consider the error of approximation to be measured in an Lp(Ω) norm, 1 ≤ p ≤ ∞.
Therefore, for f ∈ Lp(Ω), we are interested in the error of approximation

E(f , Σn)Lp (Ω) := En(f , Σ)Lp (Ω) := inf
S∈Σn
‖ f − S‖Lp (Ω),

when Σn is one of the nonlinear sets ΥW,L and n � n(W, L). In the case p = ∞, we
assume that f is continuous and the error is measured in the ‖ · ‖C(Ω) norm, so the
results hold uniformly in x ∈ Ω.

Note that using Lp(Ω), 1 ≤ p ≤ ∞, norms to measure error does not match the
usual measures of performance of classification algorithms, where the main criteria
are the probability or expectation of misclassification; see Bousquet, Boucheron
and Lugosi (2005). This is an important distinction that we will unfortunately not
address because of a lack of definitive results. It may be that this distinction is in
fact behind the success of NNs in the learning environment.
The results we prove can be extended to approximation in Lp(Ω) for 0 < p < 1,

but this requires some technical effort we want to avoid. We concentrate on the
three most important cases, namely p = ∞ (the case of uniform approximation),
the case p = 2 which is prevalent in stochastic estimates, and the case p = 1 which
monitors average error. We always take the Lp(Ω) spaces with Lebesgue measure.
Let us also remark that the results we derive hold equally well for general Lipschitz
domains taken in place of Ω = [0, 1]d. If we fix the value of p, the results we seek
are of the following two types.

Model class performance. For a model class K ⊂ Lp(Ω), we previously defined

E(K, Σn)p := En(K, Σ)Lp (Ω) := sup
f ∈K

E(f , Σn)p .

Our interest is to describe the decay of this error (with estimates from above and
below) as n→∞.
There are two types of model classes K that are of interest. The first are classical

smoothness classes such as the unit ball of a Lipschitz, Hölder, Sobolev or Besov
space; see Section 4. In this way we can compare the approximation properties
of NNs with more standard methods of approximation and see whether NNs offer
better performance on these classical model classes.
A second type of result of interest is to uncover new model classes K for which

NNs perform well and classical methods of approximation do not. Such new
model classes would help clarify exactly when NN approximation is beneficial.
Motivation for these new model classes should come from the intended application
of NN approximation. Such results might explain why NNs perform well in these
applications.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 391

Characterization of approximation classes. A second category of results that
is of interest would be to understand the approximation classes Ar (Σ, Lp(Ω)) for
NN approximation. Recall that these classes (see Section 5.10 for their definition)
consist of all functions f whose approximation error satisfies

E(f , Σn)Lp (Ω) ≤ M(n + 1)−r, n ≥ 0, (6.1)

with the smallest M defining ‖ f ‖Ar .

We would like to know which functions are in Ar . While a precise characteriz-
ation of these classes is beyond our current understanding of NN approximation,
the results that follow give sufficient conditions for a function f to be in such a
class. In contrast, for many types of classical approximation, both linear and non-
linear, there are characterizations of their corresponding approximation classes.
Such characterizations require what are called inverse theorems in approximation
theory. An inverse theorem is a statement that whenever f ∈ Ar , we can prove that
f is in a certain Banach space Yr .
Consider, for example, the case of approximation in Lp(Ω). An inverse theorem

is proved by showing an inequality of the form

|S |Yr ≤ C(n + 1)r ‖S‖Lp (Ω), S ∈ Σn, n ≥ 0.

For example, if we consider approximation by trigonometric polynomials of degree
n in one variable, in the metric Lp([−π, π]), one inequality of this type is the famous
Bernstein inequality for trigonometric polynomials,

‖T ′‖Lp (Ω) ≤ n‖T ‖Lp (Ω),

which holds for any trigonometric polynomial of degree n. So r = 1 in this
example, and Y1 = W1(Lp([−π, π])).

Such inverse theorems are not known for NN approximation save for the case
of Σ = (Υn,1(σ; 1, 1))n≥0 for certain activation functions σ, including ReLU. Thus
there is quite a large gap in our understanding of NN approximation as compared to
these more classical methods. It is of major interest to establish inverse inequalities
for the elements in Σn when Σn is a set of outputs of an NN.

7. Approximation using single-layer ReLU networks
In this section we study approximation on the domain Ω := [0, 1]d by the family
Σ := (Σn)n≥0, where Σ0 := {0} and Σn := Υn,1(ReLU; d, 1), n = 1, 2 . . . , with
input dimension d ≥ 1. These sets are rarely used in numerical settings since
deeper networks are preferred. However, for theoretical reasons, it is important
to understand their approximation properties in order to see the advantages of the
deeper networks studied later in this paper. Much of the activity on NN approx-
imation has been directed at understanding the approximation properties of these
single-hidden-layer networks. Surprisingly, we shall see that most fundamental
questions about approximation using Σ are not yet answered.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

392 R. DeVore, B. Hanin and G. Petrova

We have discussed in Section 3.2.1 the structure of Σn. Each function S ∈ Σn is
a CPwL function in d variables x = (x1, . . . , xd) of the form

S(x) := b0 +

n∑
j=1

ajηj(x), ηj(x) := (wj · x + bj)+, wj ∈ Rd, bj, aj ∈ R, (7.1)

where ηj is linear on the half-space H+j := {x : wj ·x+bj > 0} and is zero otherwise.
Note that S ∈ Σn is a CPwL function subordinate to a hyperplane partition P of
Rd into cells which are convex polytopes.
In spite of the simplicity of the representation (7.1), the setΣn is quite complicated

save for the case d = 1; see Section 3.1.1. First of all, the possible partitions P
that arise from hyperplane arrangements are complex in the sense that the cells
are not isotropic, the number of cells can be quite large, and there is not a simple
characterization of these partitions. This is compounded by the fact that, as we
have previously discussed, not every CPwL function subordinate to a partition
given by an arrangement of n hyperplanes is in Σn. For example, this set does not
contain any compactly supported functions when d > 1. This is in contrast to the
typical applications of CPwL functions in numerical PDEs. Thus Σn is a complex
but possibly rich nonlinear family. We shall see that this complexity inhibits our
understanding of its approximation properties.
Keeping in mind the discussion in the previous section, there are three types of

results that we would like to prove in order to understand the approximation power
of Σ := (Σn)n≥0, measured in the ‖ · ‖Lp (Ω) norm, 1 ≤ p ≤ ∞.
Problem 7.1. Give matching upper and lower bounds for En(K, Σ)Lp (Ω) when K
is one of the classical model classes such as unit balls of Lipschitz, Hölder, Sobolev
and Besov spaces.

We shall see that, save for the case d = 1, this problem is far from being solved.
As we have previously stressed, the partitions generated by hyperplane arrange-

ments are complex and not well understood, with cells that are possibly highly
anisotropic. This suggests the possibility of being able to approximate functions
which are not described by classical isotropic smoothness and leads us to expect
new model classes that are well approximated by Σ.

Problem 7.2. Describe new model classes K of functions that are guaranteed to
be well approximated by Σ.

Some advances on Problem 7.2 have been made, centering on the so-called
Barron classes that we discuss in Section 7.2.3.
Finally, the most ambitious approximation problem for Σ = (Σn)n≥0 is the

following.

Problem 7.3. For each r > 0 and 1 ≤ p ≤ ∞, characterize the approximation
class Ar (Σ, Lp(Ω)) consisting of all functions f ∈ Lp(Ω) for which

En(f , Σ)Lp (Ω) = O((n + 1)−r), n ≥ 0.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 393

Nothing is known on this last problem when d > 1, and we are sceptical that any
definitive result is around the corner for the case of general d.

In order to orient us to the type of results we might strive to obtain on these prob-
lems for general d, we begin in the next section by discussing the case d = 1, where
we have the most extensive results and the best understanding of approximation
from these spaces.

7.1. Approximation by single-layer networks when d = 1

We begin by discussing the case d = 1, not only because it is the best understood
but also because it can orient the reader as to what we can possibly expect when
engaging the case d > 1. Because approximation byΥn,1(ReLU; 1, 1) is essentially
the same as free-knot linear spline approximation, results for the NN approximation
are derived from the known results on free-knot splines. The latter are well
explained in DeVore (1998) and the literature cited therein, and summarized below.

7.1.1. Approximation of classical model classes when d = 1
Here we measure approximation error in Lp(Ω) with 1 ≤ p ≤ ∞ and domain
Ω = [0, 1]. The classical model classes for Lp(Ω) are finite balls in the Lipschitz,
Hölder, Sobolev and Besov spaces. The latter spaces are the most flexible for
measuring smoothness and approximation properties, as all of the other smoothness
classes can be derived from them. So we restrict our discussion to the model
classes K = U(Bs

q(Lτ(Ω))), 0 < q, τ ≤ ∞, which have smoothness of order s > 0.
These spaces were introduced and discussed in Section 4.3, where we noted that
these spaces are compactly embedded in Lp(Ω) when s > 1/τ − 1/p, i.e. when
these spaces lie above the Sobolev embedding line; see Figure 4.1. They are not
embedded in Lp(Ω) if they lie below the embedding line.
The following theorem summarizes the results known about approximating Be-

sov classes in the case d = 1.

Theorem 7.4. Let K = U(Bs
q(Lτ(Ω))) be the unit ball of the Besov space

Bs
q(Lτ(Ω)). If 0 < s ≤ 2 and this space lies above the Sobolev embedding

line for Lp(Ω), 1 ≤ p ≤ ∞, then
En(K, Σ)p ≤ C(s, p, τ)(n + 1)−s, n ≥ 0. (7.2)

Let us elaborate a little on what this theorem is saying. First, note that the sets
K for which we obtain the approximation rate O((n + 1)−s) allow the smoothness
describing K to be measured in Lτ(Ω), where τ , p. When τ ≥ p, the result
does not need to exploit the nonlinearity of Σn in the sense that the approximation
rate can be obtained already by using linear spaces corresponding to fixing the
breakpoints in Σn to be equally spaced on [0, 1]. It is only when τ < p that we need
to exploit nonlinearity.
A couple of simple examples may be in order. Consider approximation in C(Ω)

and smoothness of order s = 1. Obviously the space Lip 1 is compactly embedded

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

394 R. DeVore, B. Hanin and G. Petrova

in C(Ω) and the approximation rate is O((n + 1)−1), n → ∞, when K = U(Lip 1).
Note that Lip 1 is not a Besov space but is continuously embedded in B1∞(L∞(Ω))
and the latter space is covered by the theorem. Hence Lip 1 is also covered by
the theorem. We can obtain the approximation rate O((n + 1)−1) by taking the
breakpoints equally spaced and thereby using a linear subspace of Σn. The Sobolev
space W1(L1(Ω)) is also contained in C(Ω) but not compactly. Nevertheless, its
unit ball has the approximation rate O((n+ 1)−1). The Sobolev spaces W1(Lp(Ω)),
p > 1, have unit balls that are compact in C(Ω) and the theorem gives that they
also have the approximation rate O((n + 1)−1), n → ∞. Recall that for f to be in
Lip 1 requires that it has bounded derivative ‖ f ′‖L∞(Ω) < ∞, while f ∈ W1(Lp(Ω))
only requires f ′ ∈ Lp(Ω). For example, the function f (t) = tα, 0 < α < 1, is
in W1(Lp(Ω)) if p > 1 is small enough, but this function is not in Lip 1. The
way to get good approximation of tα by Σn is to put half of the breakpoints of the
output S ∈ Σn near 0 and the remaining half equally spaced in Ω. Thus, for these
Sobolev spaces one truly needs the nonlinearity of Σn. To achieve the optimal
approximation rate, we need to choose the breakpoints to depend on f , and thus
we cannot choose them in advance.
Finally, let us remark why we have the restriction s ≤ 2. We are approximating

locally by linear functions. A function f with smoothness of order s > 2 would
need to use locally polynomials of degree higher than one to improve its local error
of approximation (think of Taylor expansions). Hence, when f has smoothness of
order s > 2, we do not improve on the rate O((n+ 1)−2), n→∞, which we already
have for functions with smoothness of order 2.

7.1.2. Approximation classes for d = 1
One of the crowning achievements of nonlinear approximation at the end of the last
century was the characterization of the approximation classes for several classical
methods of nonlinear approximation, including free-knot spline, n-term wavelet
and adaptive piecewise polynomial approximation. The key to establishing these
results was not only to give upper bounds for the error in approximating functions
from Besov spaces but also to prove certain inverse theorems saying that if a
function f can be approximated with a certain rate O((n + 1)−r), n → ∞, then f
must possess a certain Besov smoothness. These inverse theorems should not be
underestimated since they allow precise characterization of approximation classes.
In the case of approximation using CPwL functions, the inverse theorems were

provided by the seminal theorems of Pencho Petrushev; see Petrushev (1988).
The approximation space Ar = Ar (Σ, Lp(Ω)) is precisely characterized, provided
0 < r < 2 and 1 ≤ p ≤ ∞, with C(Ω) used in place of L∞(Ω) when p = ∞. In this
case Ar is a certain interpolation space; see DeVore (1998). Since we do not want
to go too deeply into interpolation space theory here, we simply mention thatAr is
sandwiched between two Besov spaces of smoothness order r . More precisely, if
0 < r < 2 and 1 ≤ p ≤ ∞ are fixed, and τ∗ := (r + 1/p)−1, then for all 0 < q ≤ ∞

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 395

we have
Br
q(Lτ(Ω)) ⊂ Ar ⊂ Br

∞(Lτ∗(Ω)), whenever τ > τ∗. (7.3)

Since this result may be difficult to digest at first glance, wemake some comments
to explain what these embeddings say. First, recall the relation of Besov spaces
to the Sobolev embedding line; see Figure 4.1. For a fixed value of r , all spaces
Br
q(Lτ(Ω)) appearing on the left-hand side of the embedding (7.3) are compactly

embedded in the space Lp(Ω), where we are measuring error. The left embedding
says that any function in one of these spaces is inAr , and hence has approximation
error decaying at the rate O((n + 1)−r). Note that these spaces get larger as we
approach the embedding line. The right embedding says that we cannot allow τ
to be smaller than τ∗; in fact if τ is smaller than τ∗ we do not even embed into
Lp(Ω). Besov spaces that appear on the embedding line itself may or may not be
compactly embedded in Lp(Ω), depending on q. They are compactly embedded if
q is small enough.
Finally, we remark that we have the characterization of Ar only if r < 2 for

the same reason we had the restriction s ≤ 2 when discussing approximation of
classical model classes in the previous section. Going a little further, note that if
Sn ∈ Σn, n ≥ 1, then Sn ∈ Ar for all r > 0, but Sn is not in any smoothness space
of order s > 2. Moreover, any function f =

∑
k≥1 αkSk , αk ∈ R, will be in Ar ,

0 < r < ∞, if (αk)k≥1 tends to zero sufficiently fast. However, f will not have any
classical smoothness of order s > 2. So Ar , r > 2, cannot be characterized by
classical smoothness such as membership in a Besov space.

7.2. Results for d ≥ 2

Continuing with single-hidden-layer networks, let us now consider the case d ≥ 2.
The difficulty in constructing effective approximations in this case is the fact that
when d ≥ 2, the set of NN outputs Σn = Υn,1(ReLU; d, 1) does not have locally
supported nodal functions that are commonly used to build approximants. So
approximation methods are built on global constructions. It is not surprising,
therefore, that the strongest results are known in the case where the approximation
is measured in the L2(Ω) norm, where orthogonality can be employed in the
constructions. We discuss the L2 approximation first.

7.2.1. Approximation in L2(Ω)
For approximation in X = L2(Ω), it is known that when f ∈ W s(L2(Ω)) we have

En(f , Σ)L2(Ω) ≤ Cn−s/d ‖ f ‖W s (L2(Ω)), n ≥ 1, (7.4)

provided s ≤ 2 + (d − 1)/2. The case d = 2 is given in DeVore, Oskolkov and
Petrushev (1997) and the general case is considered in Petrushev (1998).
We give a very coarse description of the ideas behind proving (7.4). In this

discussion it is useful toworkwith functions defined on the unit Euclidean ballΩ∗ ⊂
Rd rather than on the cube [0, 1]d. One can move between these different domains

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

396 R. DeVore, B. Hanin and G. Petrova

via restriction and extension operators which are known to preserve Sobolev and
Besov regularity. When g is a univariate function, then g(a · x), a ∈ Rd is a ridge
function of d variables (sometimes called a planar wave). If Xn is a linear space of
dimension n of univariate functions and Λ is a fixed subset of m unit vectors in Rd,
then the set of functions Yn,m := span{g(a · x) : g ∈ Xn, a ∈ Λ} is a linear space of
dimension at most mn.

The core of the proof of (7.4) is to show that if Xn is effective in approximating
univariate functions in L2, and if the set Λ is ‘uniformly distributed’ on the unit
sphere in Rd (the boundary of the unit ball of Rd), then Ym,n will provide an
approximation to W s(L2(Ω∗)) functions when choosing m = O(nd−1). We can take
Xn to be the space of univariate CPwL functions on an equally spaced partition.
The resulting space Yn,m is contained in Υmn,1(ReLU; d, 1), and thereby proves
(7.4). The proofs of these results are quite elaborate and technical.
If we wish to characterize the approximation performance of Σ on the model

class K := U(W s(L2(Ω∗)), then we would need to establish lower bounds for the
approximation error En(K)L2(Ω∗) that match those of (7.4). Such bounds are plaus-
ible but seem not to be known. However, there are lower bounds for approximating
K by general ridge functions given in Maiorov (1999), which for our setting and
d ≥ 2 give the lower bound

En(K)L2(Ω∗) ≥ Cn−s/(d−1), n ≥ 1,

where C depends only on d.
While the results given above are less than satisfactory, because of the lack of

matching upper and lower bounds, the situation becomes even worse when we seek
results that show the benefits of the nonlinear structure of the sets Σn, n ≥ 1. As
we know from the case d = 1, nonlinear methods of approximation should allow
smoothness to be measured in the weaker Lτ(Ω) norms while retaining the same
approximation order. Namely, the question is what the approximation rates are
when K is the unit ball of a Besov space Bs

q(Lτ(Ω)) that is above the Sobolev
embedding line for L2(Ω). In contrast to the case d = 1, we do not know results
that quantify the performance of Σ, for the Besov spaces that compactly embed
into L2.

7.2.2. Approximation in Lp, p , 2
When we consider approximation in Lp(Ω), p , 2, we are only aware of results for
p = ∞ given in Bach (2017). These are only stated for the unit ball K of Lip 1 with
approximation error measured in the norm of C(Ω), and take the form

En(K, Σ)C(Ω) ≤ C
log2 n
n1/d , n ≥ 1.

Since we are now considering approximation in the space C(Ω), we can use the
known upper bounds for the VC dimension of Υn,1(ReLU; d, 1) to derive lower
bounds on the approximation error for K . If we apply Lemma 3.11 and employ

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 397

arguments similar to those we used to prove (5.15), we obtain

En(K, Σ)C(Ω) ≥ C[n log2 n]−1/d, n ≥ 1.

In other words, modulo logarithms, the approximation rate of K is n−1/d. It is of
interest to remove these log terms.
We can derive bounds on the approximation rates for the model classes Kα :=

U(Lipα), 0 < α < 1, from the known Lip 1 bound by using interpolation theory
(see Extend 1 in Section 4.4), which gives the bound

En(Kα, Σ)C(Ω) ≤ C
[
log2 n
n1/d

]α
, n ≥ 1.

One expects that these results also extend to error estimates for approximation
by Σn of the unit balls of the smoothness spaces Bs

q(L∞(Ω)) for some range of s
larger than one. However, these do not seem to be found in the literature. Equally
missing are results for approximation in Lp(Ω) when p , 2,∞. Moreover, none
of the known results reflect the expected gain from the fact that Σ is a nonlinear
method of approximation.

7.2.3. Novel model classes for single-layer approximation
As we noted earlier, there is much interest in identifying new model classes for
which NN approximation is particularly effective. One celebrated model class
of this type was introduced by Andrew Barron (1994). This model class and
its corresponding approximation results are nicely explained in the exposition by
Pinkus (1999). The most recent results on NN approximation of this class of
functions can be found in Siegel and Xu (2020) and Klusowski and Barron (2018).
We limit ourselves to describing how these model classes fit into the themes of this
article.
Given any domain Ω ⊂ Rd, Barron introduced the model class K = KΩ consist-

ing of all functions f ∈ L2(Ω) which have an extension to all of Rd (still denoted
by f) whose Fourier transform f̂ satisfies∫

Rd
‖ω‖`1(Rd) | f̂ (ω)| dω ≤ 1. (7.5)

Note that (7.5) imposes additional conditions over just requiring that f is square-
integrable. Namely, (7.5) requires the decay of f̂ (ω) as the frequency ω gets large.
It is easy to check that this is equivalent to requiring that f has a gradient (in the
weak sense) whose Fourier transform is in L1.
Barron initially showed that for any sigmoidal activation function σ the approx-

imation family Σ := (Υn,1(σ; d, 1))n≥1 approximates the model class KΩ in the
norm of L2(Ω) with the following accuracy:

En(KΩ, Σ)L2(Ω) ≤ CΩn−1/2, n ≥ 1. (7.6)

This result was then shown to hold for ReLU activation as well, by using the fact
that (ReLU(t) − ReLU(t − 1)) is a sigmoidal function.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052
Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

398 R. DeVore, B. Hanin and G. Petrova

Barron’s result has inspired a lot of generalizations and applications, and even
the introduction of new Banach spaces; see E, Ma and Wu (2019). Important
generalizations of (7.6) were given byMakovoz (1996), who showed that the above
result for the class KΩ holds for approximation in Lq, 1 ≤ q < ∞, and moreover, the
rate of approximation can be improved to O(n−1/2−1/(q∗d)), where q∗ is the smallest
even integer ≥ q. Further improvements on approximation rates for Barron classes
and their generalizations have been given through the years. We refer the reader to
Siegel and Xu (2020) for the latest information.

We will not dig too deeply into the known approximation rates for Barron classes
and their generalizations here. Rather, we confine ourselves to some comments
to properly frame these results in the context of nonlinear approximation. Let
H be a Hilbert space. We say that a collection D := {φ} of functions from H
is a dictionary if each φ has norm one, and whenever φ ∈ D then so is −φ.
Given such a dictionary D, we consider the closed convex hull co(D) of D. A
fundamental result in approximation theory is that whenever f ∈ co(D), then there
exists g =

∑n
k=1 ckφk with the φk ∈ D, such that

‖ f − g‖H ≤ Cn−1/2, n ≥ 1. (7.7)

There is a constructive method to find such a g, known as the orthogonal greedy
algorithm; see DeVore and Temlyakov (1996).
To derive (7.6) from this, it is enough to show that KΩ is contained in the convex

hull of the dictionary of all functions cσ(w · x + b) with w ∈ Rd, b ∈ R and c a
suitable normalizing constant. The proof of this fact can be found in Barron (1993)
and Pinkus (1999). The improvements of Makovoz rest on the fact that in the case
of sigmoidal functions, the dictionary elements σ(w · x + b) are very close to one
another when the parameters w and b change slightly and so one can reduce the
number of terms needed in the approximation when seeking an error ε.
Note that neither the constant CΩ nor the form of the decay n−1/2 in (7.6) depend

on d. This should be compared with approximation for Sobolev classes where the
rates decrease and the constant explodes in size as d grows. However, this must be
viewed in the light that the condition for membership in K gets much stronger as
d gets large. This class is analogous to requiring f to have a Fourier series (in d
variables) whose coefficients are absolutely summable. Another important point is
that the proof of (7.6) exploits nonlinear approximation since the n terms from the
dictionary D used to approximate f are chosen to depend on f .

8. Approximation using deep ReLU networks
We now study in detail the approximation by the family Σ = (Σn)n≥0 of deep
networks, with Σ0 := {0} and Σn := ΥW0,n(ReLU; d, 1), n ≥ 1, where W0 is fixed
depending on d. The three main conclusions we uncover, following the order of
our exposition, are as follows:

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052
Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

Neural network approximation 399

• When error is measured in an Lp norm, 1 ≤ p ≤ ∞, deep NNs approximate
functions in the classical model classes (such as Lipschitz, Hölder, Sobolev
and Besov classes) at least as well as all of the known methods of nonlinear
approximation; see Section 8.6.
• For all classical model classes, deep NN approximation gives error rates dra-
matically better than all other standard methods of nonlinear approximation;
see Section 8.7.
• There are novel model classes, built on the ideas of self-similarity, where
NNs provide approximation rates not available by standard approximation
methods; see Section 8.10.

8.1. Results obtained from basic decompositions

In this section we describe what is perhaps the most common method of obtaining
estimates for deep NN approximation. It is based on two principles. The first is to
show that the target function has a decomposition in terms of fundamental building
blocks with a control on the coefficients in the decomposition. These building
blocks could be wavelets or some of their mathematical cousins, such as shearlets
or ridgelets, or they could be global representations such as power series or Fourier
decompositions. For functions f in classical smoothness spaces, we often know
the existence of such decompositions with quantifiable bounds on the coefficients
of f . The second step is then to show that each of these building blocks can be
captured very efficiently (usually with exponential accuracy) by deep networks.
These two principles can then be put together in order to give quantifiable

performance for approximation using deepNNs. This technique appears often in the
literature. A partial list of prominent papers using this method are those of Yarotsky
(2017), Opschoor, Schwab and Zech (2019b), Bölcskei, Grohs, Kutyniok and
Petersen (2019), Gühring, Raslan and Kutyniok (2020), Elbrächter, Perekrestenko,
Grohs and Bölcskei (2019), Petersen and Voigtlaender (2018), Petersen (2020), E
and Wang (2018), Shen et al. (2019) and Lu, Shen, Yang and Zhang (2020).

We formalize the above-mentioned procedure by considering any Banach space
X and representing f ∈ X as f =

∑
k≥1 αkgk , where the αk’s are scalars, gk ∈ X ,

and ‖gk ‖X = 1. Then we can bound the error in approximating f by its partial sum
by f −

∑
k≤n

αkgk

X

≤
∑
k>n

|αk |.

We can exploit this simple observation in the context of neural networks as follows.
If gk ∈ ΥW0−(d+1),n(ReLU; d, 1), 1 ≤ k ≤ n, then

En2(f , Σ)X ≤
∑
k>n

|αk |, (8.1)

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052
Matthew Buchholz

Matthew Buchholz

Matthew Buchholz

400 R. DeVore, B. Hanin and G. Petrova

since the partial sum satisfies
n∑

k=1
αkgk ∈ Σn2 = ΥW0,n

2
(ReLU; d, 1)

(see Addition by increasing depth in Section 3.3.2).
The bound (8.1) is quite crude and can be improved in many ways. For example,

we can give a better control on depth needed, when each gk is a composition of the
same univariate function T . We shall use this fact below, so we formulate it in the
following proposition.

Proposition 8.1. If T ∈ ΥW0−1,L0(ReLU; 1, 1), then any linear combination S
satisfies

S =
m∑
i=1

αiT◦i ∈ ΥW0,mL0(ReLU; 1, 1).

Proof. Let N be a neural network with width W0 − 1 and depth L0, with input
and output dimension 1, whose output function is T . We concatenateN with itself
(m − 1) times to obtain the network N ∗ of width W0 and depth mL0. Note that the
(kL0)th layer of N ∗ can output T◦k . We add one collation channel to N ∗, whose
nodes pass value zero until layer (L0+1), where its node collects α1T . This value is
then passed forward until layer 2L0 + 1, where α2T◦2 is added, so that α1T + α2T◦2

is now held in the node of this channel for layers, 2L0 + 1, . . . 3L0. We continue in
this way. Then we output S from the (mL0)th layer.

In deriving an estimate like (8.1), it is not necessary to assume that the functions
gk ∈ Σn, k = 1, . . . , n, but merely that the gk’s are approximated sufficiently well
by Σn, as we see in the next proposition.

Proposition 8.2. If gk , k = 1, . . . , n, can be approximated by outputs ĝk from
ΥW0−(d+1),n(ReLU; d, 1) with error ‖gk − ĝk ‖X ≤ ε, then the function

Ŝ :=
n∑

k=1
αk ĝk

is in ΥW0,n
2(ReLU; d, 1), and

En2(f , Σ)X ≤ ‖ f − Ŝ‖X ≤ ε
n∑

k=1
|αk | +

∑
k>n

|αk |. (8.2)

Proof. The error estimate (8.2) follows from the fact that f −
n∑

k=1
αk ĝk

X

≤
 f −

n∑
k=1

αkgk

X

+

n∑
k=1
|αk |‖gk − ĝk ‖X .

The network that outputs Ŝ is obtained in the same way as described above.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 401

In this section we shall use the following theorem.

Theorem 8.3. Let ϕ ∈ ΥW0,L0(ReLU; d, 1), Aj be a d × d matrix, and bj ∈ Rd,
j = 1, . . . , n. Then the function

S =
n∑
j=1

cjϕ(Aj x + bj), cj ∈ R, (8.3)

is in Υd+1+W0,nL0(ReLU; d, 1).

Proof. Let N0 be the network which outputs ϕ, and let A∗ be the W0 × d matrix
of input weights of N0 and b∗ the biases of its first layer.
We build a special network N with width W = d + 1 +W0 and depth L = nL0

to output S. Its first d channels are source channels to push forward x1, . . . , xd.
The next W0 channels will be the channels of N0, and the final channel will be a
collation channel to form the sum defining S.
The network N consists of n copies of N0 placed next to each other. We feed

the source channels to the jth copy ofN0, j = 1, . . . , n. For this copy we use input
matrix A∗Aj and bias (b∗ + A∗bj) for its first layer. The nodes of the collation
channel forward zeros up to layer L0 + 1, where the output c1ϕ(A1x + b1) of the
first copy of N0 is entered and then forwarded. The output of the jth copy is
multiplied by cj through modification of the output weights of N0, and forwarded
to the (jL0 + 1)th node of the collation channel if j < n, where it is added to the
current sum in that channel and then the result is forwarded. When j = n the
output of the nth copy is output together with the content of the collation channel
to produce S.

8.2. Approximation of products

We now turn to showing how to approximate certain simple building blocks with
exponential accuracy using deep ReLU networks. These building blocks include
monomials, polynomials, tensor products and B-splines. An important tool in
establishing such results is to show how one can approximate products of functions,
which is our next item of interest.
Let H be the hat function introduced in (3.4). We begin with the well-known

formula2
t(1 − t) =

∑
k≥1

4−kH◦k(t), t ∈ [0, 1]. (8.4)

We define

S(t) := t2 and Sn(t) := t −
n∑

k=1
4−kH◦k(t), n ≥ 1, t ∈ [0, 1].

2 It is not clear who was the first to observe this formula, but it appears already in Hata (1986).

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

402 R. DeVore, B. Hanin and G. Petrova

Let us note that we can also represent Sn by

Sn(t) := t2 +

∞∑
k=n+1

4−kH◦k(t), n ≥ 1. (8.5)

These two representations of Sn show that

t2 ≤ Sn(t) ≤ t, t ∈ [0, 1], (8.6)

and so Sn : [0, 1] → [0, 1].
We now prove the following univariate result.

Proposition 8.4. For each n ≥ 1, the function Sn ∈ Υ4,n(ReLU; 1, 1) satisfies

‖S − Sn‖C([0,1]) ≤
1
3
· 4−n, n ≥ 1, (8.7)

and
‖S′ − S′n‖L∞([0,1]) ≤ 2−n, n ≥ 1. (8.8)

Proof. Since H ∈ Υ2,1(ReLU; 1, 1), in view of Proposition 8.1, there is a ReLU
network of width 3 and depth L = n that outputs

∑n
k=1 4−kH◦k . If we add one more

channel to push forward t, then we can also output Sn(t) := t −∑n
k=1 4−kH◦k(t).

Since

S(t) − Sn(t) = −
∞∑

k=n+1
4−kH◦k(t),

the bound (8.7) follows from

|S(t) − Sn(t)| ≤
∞∑

k=n+1
4−k ≤ 1

3
· 4−n, t ∈ [0, 1], (8.9)

whereas (8.8) follows from the fact that each H◦k has Lipschitz norm 2k .

Let us mention that there are many functions other than t2 for which explicit
formulas like (8.4) hold. These will be discussed in Section 8.10. For now, we
want to examine how we can capture higher-order monomials from the above
results. First we begin by showing how we can implement multiplication using
deep ReLU networks. We start with the simple formula

Π(x1, x2) := x1x2 = 2S
(

x1 + x2
2

)
− 1

2
{S(x1) + S(x2)}, x1, x2 ∈ [0, 1]. (8.10)

We can construct a neural network with input dimension 2 which outputs the
function Π(·, ·) with high accuracy.

For n ≥ 1, we define for x1, x2 ∈ [0, 1] the function

Πn(x1, x2) := 2Sn

(
x1 + x2

2

)
− 1

2
{Sn(x1) + Sn(x2)}, (8.11)

and prove the following properties of Πn.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 403

Proposition 8.5. For each n ≥ 1, Πn(x1, x2) ∈ [0, 1] for (x1, x2) ∈ [0, 1]2.
Proof. First we show thatΠn(x1, x2) ≤ 1 for (x1, x2) ∈ [0, 1]2. Indeed, this follows
from (8.6) since for (x1, x2) ∈ [0, 1]2

Πn(x1, x2) = 2Sn

(
x1 + x2

2

)
− 1

2
{Sn(x1) + Sn(x2)}

≤ (x1 + x2) − 1
2

(x2
1 + x2

2)

=
1
2
[x1(2 − x1) + x2(2 − x2)]

≤ 1.

To show that Πn ≥ 0, we start with

2Πn(x1, x2) = x1 + x2 +

n∑
k=1

4−k
[
H◦k(x1) + H◦k(x2) − 4H◦k

(
x1 + x2

2

)]
. (8.12)

We introduce the function

ζ(t) := 2 min{|t − m| : m ∈ Z}, t ∈ R.
Then for t ∈ [0, 1] we have

H(t) = ζ(t) and H◦k(t) = ζ(2k−1t), k ≥ 2.

Since ζ is subadditive, i.e. ζ(t + t ′) ≤ ζ(t) + ζ(t ′), we have

H◦k
(

x1 + x2
2

)
≤ H◦k

(
x1
2

)
+ H◦k

(
x2
2

)
= H◦(k−1)(x1) + H◦(k−1)(x2). (8.13)

We now replace each term H◦k((x1 + x2)/2) appearing in (8.12) with the right-hand
side of (8.13). The result is a telescoping sum. Since H(t/2) = t, t ∈ [0, 1], this
telescoping sum gives

2Πn(x1, x2) ≥ 4−n[H◦n(x1) + H◦n(x2)] ≥ 0,

as desired.

Next we observe that Πn approximates Π with exponential accuracy.

Proposition 8.6. For each n ≥ 1, the function Πn ∈ Υ5,3n(ReLU; 2, 1) satisfies
the inequalities

‖Π − Πn‖C([0,1]2) ≤ 4−n

and

‖∂iΠ − ∂iΠn‖L∞([0,1]2) ≤ 2 · 2−n, where ∂i := ∂xi, i = 1, 2. (8.14)

Proof. Let N be the network of width W = 4 and depth n which outputs Sn;
see Proposition 8.4. We now construct a network N ′ which inputs (x1, x2) and

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

404 R. DeVore, B. Hanin and G. Petrova

outputs Πn. First we add a source channel toN to push forward x2 (N already has
a source channel to push x1). Then we place three copies of this extended network
next to each other. We output the three terms from (8.10) in the collation channel of
N , and produce Πn(x1, x2). The new network has width W = 5 and depth L = 3n.
From (8.7), we have ‖Π − Πn‖C([0,1]2) ≤ 4−n.

Finally we check (8.14) for i = 1. The case i = 2 is the same. We have
∂1Π(x1, x2) = x2, and modulo a set of measure zero,

∂1Πn(x1, x2) = S′n

(
x1 + x2

2

)
− 1

2
S′n(x1)

= x1 + x2 + ε1 − 1
2

(2x1 + ε2)

= x2 + ε1 − ε2

= ∂1Π(x1, x2) + ε1 − ε2

≤ 2−n+1,

where |ε1 |, |ε2 | ≤ 2−n because of (8.8). The proof is completed.

In general, we can approximate any product

Π
k(x1, . . . , xk) := x1x2 · · · xk, x1, . . . , xk ∈ [0, 1],

up to exponential accuracy, using outputs of ReLU neural networks. We write

Π
k+1(x1, . . . , xk+1) = Π(xk+1,Π

k(x1, . . . , xk)),

denote Π2
n := Πn (see (8.11)) and recursively define

Π
k+1
n (x1, . . . , xk+1) = Πn(xk+1,Π

k
n(x1, . . . , xk)), k = 2, 3,

It follows by induction, using Proposition 8.5, that Πk(x1, . . . , xk) ∈ [0, 1], and
therefore Πk+1 is well-defined. Then the following theorem holds.

Theorem 8.7. For each k ≥ 2, the function Πk
n ∈ Υ3+k,3(k−1)n(ReLU; k, 1) satis-

fies

|Πk(x1, . . . , xk) − Πk
n(x1, . . . , xk)| ≤ Ck · 4−n, x1, . . . , xk ∈ [0, 1], (8.15)

where, for k ≥ 2,

Ck ≤ (k − 1)αk−2
n , αn := 1 + 2−n+1.

In particular, Ck ≤ ek, as long as n ≥ 1 + log2 k.

Proof. For k ≥ 3, we construct a network of width k + 2 which takes the inputs
x1, . . . , xk−1 and outputs Πk−1

n (when k = 3, this is the network for Π2
n). Its first

3n(k − 2) layers are the same as the network that inputs x1, . . . , xk−1 and outputs
Πk−1

n , except that we add an additional channel to push forward xk . We then
follow this with the network forΠ2

n using as inputs xk andΠk−1
n (x1, . . . , xk−1). This

network will have width W = k + 3 and depth L = 3(k − 1)n, as desired.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 405

Next, we fix n and prove (8.15) by induction on k. The case k = 2 is covered by
Proposition 8.6 with C2 = 1. To advance the induction hypothesis, we assume that
we have proved the result for some k − 1 with constant Ck−1. We write (with the
obvious abbreviation of notation)

Π
k − Πk

n = Π(xk,Πk−1) − Πn(xk,Πk−1) + Πn(xk,Πk−1) − Πn(xk,Πk−1
n),

and use Proposition 8.6 to obtain

‖Πk − Πk
n ‖C([0,1]k) ≤ 4−n + ‖∂2Πn‖L∞([0,1]2)‖Πk−1 − Πk−1

n ‖C([0,1]k−1). (8.16)

We now use (8.14) to conclude that ‖∂2Πn‖L∞([0,1]2) ≤ 1 + 2 · 2−n. Inserting this
into (8.16) gives

‖Πk − Πk
n ‖C([0,1]k) ≤ 4−n + (1 + 2−n+1) Ck−14−n = (1 + αnCk−1) 4−n.

The recurrence formula Ck = 1 + αnCk−1, k ≥ 3, with initial value C2 = 1, has the
solution

Ck =

k−2∑
j=0

α
j
n ≤ (k − 1)αk−2

n .

Moreover, if k ≤ 2n−1, we have

Ck ≤ (k − 1)
(

1 +
1

2n−1

)k−2
< k

(
1 +

1
k

)k

< ek .

This completes the proof of the theorem.

Remark 8.1. If a > 1, then a simple change of variables gives that the func-
tion Πk , k ≥ 2, now considered as a function in C([0, a]k), is approximated by
Π̃k

n(x1, . . . , xk) := akΠk
n(x1/a, . . . , xk/a) with accuracy

‖Πk − Π̃k
n ‖C([0,a]k) ≤ Ckak · 4−n,

with Ck as in Theorem 8.7. Moreover Π̃k
n ∈ Υ3+k,3(k−1)n(ReLU; k, 1).

8.3. Approximation of polynomials

In the following, we show that polynomials can be well approximated by the outputs
of deep ReLU networks. We begin with monomials.

Approximation of monomials. For ν ∈ Nd, let φν(x) := xν, x ∈ [0, 1]d. We use
the standard notation |ν | = ∑d

j=1 νj for the length of ν. Theorem 8.7 shows that
any monomial φν, with |ν | = m, is well approximated by deep ReLU networks.
Namely, for each n ≥ 1, there is an Sν ∈ Υ3+d,3(m−1)n(ReLU; d, 1) such that

‖φν − Sν ‖C([0,1]d) ≤ em · 4−n, n ≥ 1 + log2 m. (8.17)

Note that here we can keep the width of the network bounded by 3 + d rather than
3 + m because the x1, . . . , xd are repeated; we leave the details to the reader.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

406 R. DeVore, B. Hanin and G. Petrova

Approximation of polynomials. If P(x) =
∑
ν∈Λ cνxν, x ∈ [0, 1]d, where all of

the indices ν ∈ Λ satisfy |ν | ≤ m, then we can approximate P by the function
S :=

∑
ν∈Λ cνSν. Note that S is the output of the concatenation of the networks

that output the Sν’s; see Addition by increasing depth in Section 3.3.2. Since all
networks producing the Sν’s already have source channels that forward the values
x1, . . . , xd, we need to add only a collation channel to collect the terms in the sum
defining S, and therefore S ∈ Υ4+d,3(m−1)n#(Λ)(ReLU; d, 1). We have the following
estimate for the approximation error:

‖P − S‖C([0,1]d) ≤ em · 4−n
∑
ν∈Λ
|cν |, n ≥ 1 + log2 m, (8.18)

obtained from (8.17). There are several savings that can be made in the size of
the network in such constructions by balancing the size of cν with the size of the
networks for the Sν when given a desired target accuracy.

Constructions of NN approximations to polynomial sums have been employed to
prove results on approximating real analytic functions using deep ReLU networks.
We do not formulate those results here but rather refer the reader to the papers by
Opschoor et al. (2019b) and E and Wang (2018) for statements and proofs.

8.4. Approximation of tensor products

Tensor structures are a very effective method for approximation in high dimensions.
It is beyond the scope of this article to lay this subject out in its full detail. We
simply wish to point out here that a rank-one tensor product

f (x1, . . . , xd) = f1(x1) · · · fd(xd), x1, . . . , xd ∈ [0, 1], (8.19)

is well approximated in C(Ω), Ω = [0, 1]d, whenever the univariate components
fj are well approximated. The starting point for this is the following simple
proposition.

Proposition 8.8. If gj : [0, 1] → [0, 1], gj ∈ ΥW0,L0(ReLU; 1, 1), W0 ≥ 3, for
j = 1, . . . , d, then the rank-one tensor

g(x1, . . . , xd) = g1(x1) · · · gd(xd) (8.20)

can be approximated by S ∈ ΥdW0,L0+3(d−1)n(ReLU; d, 1) to accuracy

‖g − S‖C(Ω) ≤ ed · 4−n, n ≥ 1 + log2 d. (8.21)

Proof. We can take S := Πd
n (g1, . . . , gd). We claim that S is an element of

ΥdW0,L0+3(d−1)n(ReLU; d, 1). Indeed, we stack the networks producing the gj’s,
j = 1, . . . , d on top of each other and end up with a networkN1 with width dW0 and
depth L0. Then we concatenate it with the network N2 producing Πd

n (y1, . . . , yd).
The latter has depth 3(d − 1)n and width 3 + d ≤ dW0. The concatenation is done
by forwarding the output of the network producing gj as an input to the jth channel

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 407

of N2 (the first d channels of N2 are source channels). We end up with a network
with the desired width and depth. Inequality (8.21) follows from Theorem 8.7.

Remark 8.2. We make two remarks on the above proposition:
• If 0 ≤ gj(t) ≤ M instead of 0 ≤ gj(t) ≤ 1, then by using Remark 8.1 we
obtain an S in the same ReLU space but the accuracy of approximation is now
lessened by the factor Md.
• If the gj’s are not in the designated ReLU space but are only approximated
by ĝj : [0, 1] → [0, 1], j = 1, . . . , d, from the designated ReLU space to an
accuracy ε, then the function S := Πd

n (ĝ1, . . . , ĝd) is in the designated ReLU
space and we can write

‖g − S‖C(Ω) ≤ ‖g − Π(ĝ1 · · · ĝd)‖C(Ω) + ‖[Π − Πn](ĝ1 · · · ĝd)‖C(Ω)

≤ dε + ed · 4−n, n ≥ 1 + log2 d, (8.22)

where the first term does not exceed the sum of the d errors

‖ĝ1 · · · ĝj · gj+1 · · · gd − ĝ1 · · · ĝj+1 · gj+2 · · · gd ‖C(Ω) ≤ ε. (8.23)

In particular, the result also holds for the univariate product

g(t) = g1(t)g2(t) · · · gd(t).

8.5. Approximation of B-splines

In our presentation of classical smoothness classesK of functions given in Section 4,
we have stressed that the elements in K have certain atomic decompositions and
their membership in K is characterized by the decay of their coefficients in such
representations. Thus, if we can show that the atoms in such a decomposition are
well approximated by NNs, then we can obtain bounds for NN approximation of
K . The aim of the present section is to show how this unfolds when we choose
B-splines as the atomic representation system.
Let Nr be the univariate B-spline defined in (4.2). Let us recall that Nr is

supported on [0, r] and is normalized so that ‖Nr ‖C(R) = 1.

Proposition 8.9. Let r ≥ 2 and consider the B-spline

N(x) := Nr (x1) · · · Nr (xd)

of d variables. There is a function N̂ ∈ ΥW,L(ReLU; d, 1) with width W = 6d and
depth L = Cn, with C depending only on r and d, which satisfies

‖N − N̂ ‖C(Rd) ≤ C ′(r, d)4−n, n ≥ 1, (8.24)

with the constant C ′(r, d) depending only on r and d. Moreover, the support of N̂
is contained in that of N .

Proof. This is proved by approximating in succession the functions

tr−1, ρr−1(t) := tr−1
+ , Nr (t), N(x1, . . . , xd) = Nr (x1) · · · Nr (xd), (8.25)

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

408 R. DeVore, B. Hanin and G. Petrova

where Nr is the univariate B-spline. Our results of the previous sections on
approximating products were stated for approximation on [0, 1]d and now we want
approximation on [0, r]d. This is done by using Remark 8.1, and changes the
estimates by a constant depending only on r and d. We assume such changes
without further elaboration in what follows. All constants C appearing in the proof
depend at most on r and d.

Because of (8.17), we can approximate the function tr−1 by an element of
Υ4,3(r−2)n(ReLU; 1, 1) with an error that does not exceed C4−n. By adding an
extra layer for ReLU, we can approximate the function ρr−1 by an Sr from
Υ4,3(r−2)n+1(ReLU; 1, 1) with accuracy

‖ρr−1 − Sr ‖C([0,r]) ≤ C4−n. (8.26)

Next, we use Sr to approximate the univariate B-spline Nr by replacing ρr−1(k−t)
with Sr (k − t) in formula (4.2). The resulting function Tr (see Theorem 8.3) is in
Υ6,3(r+1)(r−2)n+r+1(ReLU; 1, 1) (note that the network producing the latter set has
one source channel for t and one collation channel). In addition, we have

‖Nr − Tr ‖C([0,r]) ≤ C4−n and ‖Tr ‖C([0,r]) ≤ 1 + C4−n. (8.27)

We next consider T+r := ReLU(Tr) which also satisfies (8.27), with the additional
property T+r ≥ 0.

Remark 8.2 with ε = C4−n and M ≤ (1+C/4) gives that N can be approximated
by Ñ = Πd

n (T+r , . . . ,T+r) with accuracy

‖N − Ñ ‖C([0,r]d) ≤ C4−n, n ≥ 1 + log2 d. (8.28)

The approximant Ñ ∈ ΥW,L(ReLU; d, 1) with width W = 6d and depth L =
3(r+1)(r−2)n+r+2+3(d−1)n. The network producing Ñ has d source channels
for each of the variables xi, i = 1, . . . , d, and d collation channels.
Finally, we modify the function Ñ of (8.28) so that it vanishes outside [0, r]d.

This is done by what should by now be a familiar technique to the reader. We
construct a function S with support [0, r]d and S ≥ Nr , using the method for the
construction of nodal functions; see (3.19). More precisely,

S := ReLU(min{`1, . . . , `2d }) ∈ Υd+1,2d

(ReLU; d, 1)

(see MM2 in Section 3.3.2), where `j , j = 1, . . . , 2d, are affine functions, each of
which vanishes on one of the 2d facets of the cube [0, r]d and is above the graph of
the B-spline N . Then the function N̂ := ReLU(min{Ñ, S}) agrees with Ñ when Ñ
is non-negative and vanishes outside [0, r]d. Therefore it satisfies all the properties
of the theorem. Since both networks producing Ñ and S have source and collation
channels, it follows that N̂ ∈ Υ6d,Cn(ReLU; d, 1) withC depending only on r and d.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 409

8.6. Approximation of Besov classes with deep ReLU networks

With the results of the previous section on B-spline approximation in hand, we can
now show that deep neural networks are at least as effective as standard nonlinear
methods (modulo logarithms), such as adaptive FEMs or n-term wavelets, when
approximating the classical smoothness spaces (Sobolev and Besov). The ideas
used in the presentation below were put forward by Ali and Nouy (2020), Bölcskei
et al. (2019) and Gribonval et al. (2019).
We fix Ω = [0, 1]d and measure the approximation error in some Lp(Ω) norm,

1 ≤ p ≤ ∞. Let K = U(Bs
q(Lτ(Ω))) be the unit ball of a Besov space that lies

above the Sobolev embedding line for Lp(Ω), and therefore is a compact subset
of Lp(Ω). Classical methods of nonlinear approximation show that K can be
approximated in Lp(Ω) to accuracy O(n−s/d), where n is the number of parameters
used in the approximation. We now show how to achieve these rates when using
Σn := ΥW0,n(ReLU; d, 1) with W0 fixed and depending only on s and d. Note that
the number of parameters needed to describe the elements in Σn is at mostC(s, d)n.
Here and later in this section, the constant C(s, d) changes at each occurrence.

Theorem 8.10. Let s > 0 and Ω = [0, 1]d. Suppose
K = U(Bs

q(Lτ(Ω))), 0 < q, τ ≤ ∞,
is the unit ball of a Besov space lying above the Sobolev embedding line for Lp(Ω)
with 1 ≤ p ≤ ∞, that is,

δ := s − d
τ
+

d
p
> 0.

Then we have

E(K, Σn[log2 n]β)Lp (Ω) ≤ C(s, d, δ)n−s/d, n ≥ 1, (8.29)

where Σn := Υ6d,Cn(ReLU; d, 1), n ≥ 1, with C = C(s, d, δ) fixed, depending only
on s, d and δ, and where β := max{1, 2d/(s − δ)}.
Proof. We only treat the case 1 ≤ p < ∞ and leave it to the reader to make the
necessary changes for p = ∞. We fix p and s > 0. We can assume q = ∞ since this
is the largest unit ball for the given τ, and τ < p. We can further assume that δ > 0
is arbitrarily small since the Besov spaces of order s get larger as we approach the
Sobolev embedding line which corresponds to δ = 0.

To prove the theorem, it is sufficient to prove that it holds for n = 2L with L
a sufficiently large positive integer. We take r = dse + 1 and let N denote the
multivariate tensor product B-spline of order r . We recall the notation D(Ω) for
the collection of all dyadic cubes I such that NI is non-zero on Ω, Dk(Ω) for these
cubes at dyadic level k (they have measure 2−kd), and D+(Ω) := ∪k≥0Dk(Ω).
From (4.5) and (4.6), we know that any f ∈ K has the representation

f =
∑

I ∈D+(Ω)
cI (f)NI, (8.30)

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

410 R. DeVore, B. Hanin and G. Petrova

with ∑
I ∈Dk (Ω)

|cI (f)|τ |I | ≤ 2−ksτ, k = 0, 1, 2, (8.31)

Here we use (4.6) for the definition of the norm in the Besov space. For each j ∈ Z
and k ≥ 0, we define

Λ(j, k) := {I ∈ Dk(Ω) : 2−j ≤ |cI (f)| < 2−j+1}, (8.32)

and estimate its cardinality from (8.31). We derive that
∞∑

j=−∞
2−jτ#(Λ(j, k)) ≤ 2k(d−sτ), k = 0, 1, (8.33)

It follows from (8.33) that if Λ(j, k) , ∅, then 2−jτ ≤ 2k(d−sτ), and therefore

j ≥
(

s − d
τ

)
k =

(
δ − d

p

)
k =: Jk . (8.34)

In other words,

Λ(j, k) = ∅, when j < Jk . (8.35)

We will now replace some of the NI ’s from (8.30) with approximants N̂I from
Σm(I), where the non-negative integers m(I) := m(j, k) ∈ {1, 2, . . .} will be chosen
the same for each I ∈ Λ(j, k) (as we shall see below). The NI ’s that are not
approximated are associated with m(I) = 0.

It follows from (8.24) that

‖NI − N̂I ‖Lp (Ω) ≤ C |I |1/p4−m(I), (8.36)

where here and later in this proof all constants C depend only on s, d and δ.
According to Proposition 8.9, we can also assume that N̂I is zero outside the
support of NI .
Next we define the functions

Ŝ :=
∑

I ∈D+(Ω),m(I)>0
cI (f)N̂I, Ŝk :=

∑
I ∈Dk (Ω),m(I)>0

cI (f)N̂I, k ≥ 0, (8.37)

and proceed to show that Ŝ provides the needed approximation if we choose m(I)
appropriately.
In preparation for the choice of the m(I), we first estimate how well Ŝ approxim-

ates f . If we let

Sk :=
∑

I ∈Dk (Ω)
cI (f)NI, k ≥ 0,

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 411

using (8.36) and the fact that ‖NI ‖Lp (Ω) ≤ C |I |1/p, we obtain
‖Sk − Ŝk ‖pLp (Ω) ≤ Cp

∑
I ∈Dk (Ω)

|cI (f)|p |I |4−m(I)p

≤ Cp2−kd
∑
j≥Jk

2−jp#(Λ(j, k))4−m(j,k)p

= Cp2−kd
∑
j≥Jk

2−jτ#(Λ(j, k))2−2m(j,k)p−jp+jτ .

For the definition of m(j, k), let us introduce the notation

εt := 2 log2(t + 1), t ≥ 0. (8.38)

For every j ≥ Jk , k ≥ 0, we choose m(j, k) to be the smallest non-negative integer
such that

εk + Lsp/d ≤ ksτ + [2m(j, k) + 2]p + j(p − τ).

This choice satisfies

0 ≤ 2m(j, k)p ≤ [εkp + Lsp/d − jp − (ks − j)τ]+. (8.39)

Then we obtain

‖Sk − Ŝk ‖pLp (Ω) ≤ Cp2−kd2−εk p−Lsp/d+ksτ
∑
j≥Jk

2−jτ#(Λ(j, k))

≤ Cp2−Lsp/d(k + 1)−2p,

where we used (8.33) for the last inequality. It then follows from (8.30) that

‖ f − Ŝ‖Lp (Ω) ≤
∞∑
k=0
‖Sk − Ŝk ‖Lp (Ω) ≤ C2−Ls/d

∞∑
k=0

(k + 1)−2 = Cn−s/d .

We are left to show that Ŝ ∈ ΣLβ2L , which in turn proves the theorem. We
know that N̂I ∈ Υ6d,Cm(I)(ReLU; d, 1). Since the network producing N̂I already
has d source channels and a collation channel, our Addition by increasing depth
in Section 3.3.2 gives that Ŝ ∈ Υ6d,CA(ReLU; d, 1), where

A :=
∞∑
k=0

J+
k∑

j=Jk

m(j, k)#(Λ(j, k)). (8.40)

The index in the second sum in (8.40) has upper bound J+
k
, where J+

k
is defined by

the equation
J+k (1 − τ/p) + ksτ/p = εk + Ls/d, (8.41)

because m(j, k) = 0 when j ≥ J+
k
; see (8.39). Later we shall use the fact that

τJ+k = λ(εk + Ls/d − ksτ/p), with λ := (1/τ − 1/p)−1 =
d

s − δ . (8.42)

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

412 R. DeVore, B. Hanin and G. Petrova

For j ∈ [Jk, J+
k
], m(j, k) takes its maximum value at j = Jk , which is

m(Jk, k) ≤ 1
2

(εk + Ls/d − ksτ/p − Jk(1 − τ/p))

=
1
2

(2 log2(k + 1) − kδ + Ls/d)

≤ CL,

where we used the definition of Jk and (8.39). Therefore we have the estimate

A ≤ CL
∞∑
k=0

J+
k∑

j=Jk

#(Λ(j, k)) ≤ CL
L/d−1∑
k=0

2kd + CL
∞∑

k=L/d
2kd−ksτ+J

+
k
τ, (8.43)

where in the first sum we used the fact that
J+
k∑

j=Jk

#(Λ(j, k)) ≤ C2kd,

because Λ(j, k) ⊂ Dk(Ω), and the second sum used that

J+
k∑

j=Jk

#(Λ(j, k)) ≤ 2J
+
k
τ

J+
k∑

j=Jk

2−jτ#(Λ(j, k))

≤ 2J
+
k
τ
∞∑

j=Jk

2−jτ#(Λ(j, k))

≤ 2kd−ksτ+J
+
k
τ .

Obviously the first sum on the right does not exceed CL2L , so we concentrate
on the second sum. We first want to see what the exponent is in that sum. From
(8.42), we have

kd − ksτ + J+k τ = λ(Ls/d + εk) + k{d − sτ(1 + λ/p)}. (8.44)

Going further, we find

d − sτ(1 + λ/p) = d − sτ
(

1 +
1

p(1/τ − 1/p)

)
= d − sτ

(
1 +

1
p/τ − 1

)
= d − sp

p/τ − 1

= d − s
1/τ − 1/p

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 413

=
d(1/τ − 1/p) − s

1/τ − 1/p
=

−δ
1/τ − 1/p

= −δλ,
and thus

kd − ksτ + J+k τ = λ(Ls/d + εk − δk).

We substitute the latter relation into (8.43) and obtain, after change of index i =
k − L/d and using (8.42),

A ≤ CL2L + CL
∞∑

k=L/d
2λ(Ls/d+εk−δk)

= CL2L +

∞∑
i=0

2λ(s−δ)L/d22λ log2(i+L/d+1)−iλδ

= CL2L + 2L
∞∑
i=0

(i + L/d + 1)2λ2−iλδ

< CL2L + CL2λ2L

< CLβ2L .

This gives the bound we want and proves the theorem.

Before proceeding, wemake the following remarks concerning the above theorem
and its proof.

Remark 8.3. The above result is not quite as good as the results for approximating
unit balls of Besov classes when using other methods of nonlinear approximation
(see DeVore 1998) because of the appearance of the logarithm. We should mention
that Ali and Nouy (2020) have proved a result similar to the above theorem by using
spline wavelets rather than B-splines as the main vehicle. In the next section we
show that when p = ∞ this logarithm does not appear, and in fact we can prove
much better rates of approximation. These can in turn be used to improve the above
results for all Besov classes, as we shall discuss at the end of the next section. The
determination of the best approximation rates for Lp approximation when using
the outputs of deep networks such as Σn = ΥW0,n(ReLU; d, 1) remains unsettled.

8.7. Super-convergence for deep ReLU networks

In this sectionwe present some very intriguing results on approximation byNNs that
show quite unexpected rates of approximation for certain classical model classes
K described by smoothness. The initial results were given in Yarotsky (2018) for
the model classes U(Lipα), 0 < α ≤ 1 on Ω = [0, 1]d, and were later extended

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

414 R. DeVore, B. Hanin and G. Petrova

to more general model classes U(Cs(Ω)), s > 0, in Lu et al. (2020). Our aim in
this section is to show how these super rates are established in the simple case of
univariate functions in Lip 1, and leave the reader to consult the above references
for the treatment for functions of d variables and higher smoothness. At the end
of this section we put these results into perspective and formulate some related
questions.

Theorem 8.11. If K = U(Lip 1) on Ω := [0, 1] and Σ := (Σn)n≥1 with Σn :=
Υ11,16n+2(ReLU; 1, 1), n ≥ 1, then we have

E(K, Σn)C(Ω) ≤ 6n−2, n ≥ 1. (8.45)

Proof. We use the same notation as in Section 3.6.3. Namely, we define N := n2,
with n ≥ 4 an even positive integer and set ti := i/N , 0 ≤ i ≤ N , and ξj := j/n,
j = 0, . . . , n. Given f ∈ K , as a first step, we take S0 to be the CPwL function
with breakpoints precisely the ξj’s, j = 1, . . . , n− 1, which interpolates f at the ξj ,
j = 0, . . . , n. Then S0 has the following three properties:

(i) ‖ f − S0‖C(Ω) ≤ 1/n, n ≥ 4.
(ii) ‖S0‖Lip 1 ≤ 1, n ≥ 4.
(iii) S0 ∈ Υ3,n(ReLU; 1, 1); see Proposition 3.9.

Now consider the function R := f − S0. It vanishes at each of the ξj , j = 0, . . . , n,
and R ∈ Lip 1 with ‖R‖Lip 1 ≤ 2. We next show that there is a sequence of
εi ∈ {−1,+1}, i = 0, . . . , N − 1, such that (yi)Ni=0, defined recursively by y0 := 0
and

yi+1 := yi + εi, i = 0, . . . , N − 1, (8.46)

satisfy

yjn = 0, j = 0, . . . , n and
����R(ti) − 2yi

N

���� ≤ 2
N
, 0 ≤ i ≤ N . (8.47)

Let us for the moment assume we have found such a sequence (εi)N−1
i=0 and

show how to complete the proof of the theorem. We apply Theorem 3.13 to the
(yi)Ni=0 defined in (8.46) and obtain a function S1 ∈ Υ11,15n+2(ReLU; 1, 1) with the
properties guaranteed by this theorem. Next we consider the function

S := S0 +
2
N

S1.

Note that S ∈ Υ11,16n+2(ReLU; 1, 1) because of Addition by increasing depth in
Section 3.3.2, taking into account that the network from Theorem 3.13 producing
S1 already has a source and collation channel. Moreover,

‖ f − S‖C([0,1]) =
R − 2

N
S1

C([0,1])

≤ 6/N . (8.48)

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 415

Indeed, if t ∈ [ti, ti+1], i = 0, . . . , N − 1, then S1(ti) = yi, and we have����R(t) − 2
N

S1(t)
���� ≤ |R(t) − R(ti)| +

����R(ti) − 2
N

S1(ti)
���� + 2

N
|S1(t) − S1(ti)| ≤ 6/N,

because of the Lipschitz properties of R, the properties of S1, and (8.47). This in
turn would prove the theorem.
So we are left with finding a sequence (εi)N−1

i=0 such that (8.47) is valid. It
is enough to show how to define this sequence for i = 0, . . . , n − 1 since for
i = jn, . . . , (j + 1)n − 1 it is defined similarly. We choose the sequence ε0, ε1, . . .
and the corresponding yj+1 := yj +εj and verify (8.47) recursively. We first choose
ε0 ∈ {−1, 1} so that 2ε0/N is closest to R(t1) for this choice of the two possible
values ±1. Clearly, since |R(t1)| ≤ 2/N , for y1 := ε0 we have the inequality
|R(t1) − 2y1/N | ≤ 2/N . In other words we have verified (8.47) for i = 1.
Assume now that ε0, . . . , εj−1 have been chosen and the corresponding y1, . . . , yj

have been shown to satisfy (8.47). We now choose εj so that

2yj+1

N
=

2(yj + εj)
N

is closest to R(tj+1). Since R changes by at most 2/N in moving from tj to tj+1,
this choice will also satisfy (8.47). So we are left to verify that yn = 0. Since
n is even, yn = ε0 + · · · + εn−1 = 2m for some integer m. In addition, we have
|2yn/N − 0| ≤ 2/N , and therefore we must have m = 0. Thus we have shown
the existence of a sequence (εi)N−1

i=0 with the required properties. The proof of the
theorem is completed.

8.7.1. Remarks on Theorem 8.11
We make some remarks on this theorem in order to put into perspective what it is
saying. In this section we take Σ := (Σn), where the sets Σn used for approximation
are Σn = ΥW0,Cn(ReLU; d, 1) with W0 and C fixed and depending only on d.
At first glance this theorem is very surprising to numerical analysts and ap-

proximation theorists since it is giving a rate of approximation O(n−2), n ≥ 1,
whose exponent is twice that given by standard approximation methods based on
n parameters. This indicates that the nonlinear manifold Σn := ΥW0,Cn has certain
space-filling properties in X = C(Ω). While this seems like a great advantage of
this manifold, recall that there are always one-parameter manifolds which are dense
in X , albeit not as neatly described as Σn. But then we must throw in some caution.
The theorem says that given f ∈ K , there is a mapping a : K → Rn which selects
the parameters a(f) of the approximant that produces this exceptional approxima-
tion performance. From our remarks in Section 5 on manifold width, the mapping
a cannot be continuous (note that the mapping M is always continuous, as will
be discussed in more detail in the next section). This shows a lack of numerical
stability in the approximation process which yields Theorem 8.11. This means that
we can expect that it will be very difficult to numerically find the parameters that

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

416 R. DeVore, B. Hanin and G. Petrova

attain the super-convergence rate via a search over parameter domain. On the other
hand, if we are willing to allow a long enough search time with an a posteriori
error estimator, we might be able to find such parameters.
In spite of the negative comments just put forward, the theorem is intriguing

and brings up several questions that we now discuss. The first natural question is:
In what generality does this super-convergence hold? We have already mentioned
that Yarotsky proved it for multivariate functions of d variables. He also proved
a general result which gives that the theorem holds for Lipα spaces, 0 < α ≤ 1.
A generalization of this theorem is provided in Lu et al. (2020). It shows that the
set K = U(Lip 1) can be replaced by the unit ball K of Cs(Ω), Ω = [0, 1]d, for any
s > 0. However, in the latter presentation there is a loss of logarithm in that the
proved approximation rate is

E(K, Σn)C(Ω) ≤
(

log n
n

)2s/d
, n ≥ 1.

Next, let us remark that the results of Section 5.9 and Theorem 3.12 give that for
the model classes K = U(Cs(Ω)) we have the lower bound

E(K, Σn)C(Ω) ≥ c0n−2s/d, n ≥ 1. (8.49)

So, at least for the Lipschitz spaces, we have matching upper and lower bounds,
and therefore a satisfactory understanding of the approximation properties of deep
NNs for these classes.

8.8. Super-convergence for approximation in Lp

The above results were limited to approximation in C(Ω), Ω = [0, 1]d and the
Sobolev spaces W s(L∞(Ω)). What happens when the approximation takes place
in Lp(Ω), 1 ≤ p < ∞, and what happens for general Besov spaces that compactly
embed in Lp? We show in this section that we can obtain super-convergence results
in this case as well by using results from the theory of interpolation spaces.

Theorem 8.12. We consider approximation in Lp(Ω), 1 ≤ p ≤ ∞, with domain
Ω = [0, 1]d. Let Σ := (Σn)n≥1, where Σn := ΥW0,Cn(ReLU; d, 1), n ≥ 1, W0
sufficiently large depending only on d, C = C(s, d, τ, p). If K := U(Bs

q(Lτ(Ω))) is
the unit ball of a Besov space above the Sobolev embedding line, then

En(K, Σ)Lp (Ω) ≤ C[log n]βn−θs/d, n ≥ 1, (8.50)

for any 1 ≤ θ < 2 − τ∗/τ, with τ∗ := (s/d + 1/p)−1, τ > τ∗, and β depending only
on s, d and θ.

Proof. This is proved by using the K-functionals of interpolation theory. To keep
the presentation simple and to just sketch how this is done, we limit ourselves
to proving one result of the above form when d = 1 and s = 1 with the ap-
proximation taking place in L∞. Instead of Besov balls, we use the unit balls

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 417

Kτ := U(W1(Lτ(Ω))), 1 ≤ τ ≤ ∞ of the Sobolev spaces. After presenting this
example, we give in Remark 8.4 an outline of the proof of the general result stated
in the theorem.
We know the two estimates

En(K1, Σ)L∞(Ω) ≤ Cn−1, En(K∞, Σ)L∞(Ω) ≤ Cn−2, n ≥ 1, (8.51)

of which the first was given in Section 7.1.1 (in this case the result holds on the
Sobolev embedding line and the approximant in this theorem can be viewed as
element from Υ3,n(ReLU; 1, 1)) and the second is the super-convergence result of
Yarotsky (see Theorem 8.11) with Σn := Υ11,16n+2(ReLU; 1, 1). From interpolation
between the pair W1(L1(Ω)) and W1(L∞(Ω)) (this is where K-functionals are used;
see DeVore and Scherer 1979), we know that whenever f ∈ Kτ , for any t > 0 there
is a function g ∈ W1(L∞(Ω)) such that

‖ f − g‖W 1(L1(Ω)) + t‖g‖W 1(L∞(Ω)) ≤ Mt1−1/τ, (8.52)

with M an absolute constant. We take t = 1/n in going further. Now let S
approximate (f − g) in L∞(Ω) with the accuracy of the first statement in (8.51),
and let T approximate g with the accuracy of the second statement. Then S + T ∈
Υ11,17n+2 and

‖ f − (S + T)‖L∞(Ω) ≤ ‖ f − g − S‖L∞(Ω) + ‖g − T ‖L∞(Ω)

≤ C{n−1‖ f − g‖W 1(L1(Ω)) + n−2‖g‖W 1(L∞(Ω))}
≤ Cn−1n−1+1/τ

= Cn−2+1/τ . (8.53)

In this case τ∗ = 1 , so this is the desired inequality. Moreover, since

‖ f − (S + T)‖Lp (Ω) ≤ ‖ f − (S + T)‖L∞(Ω),

we also have
En(Kτ, Σ)Lp (Ω) ≤ Cn−2+1/τ, 1 ≤ p ≤ ∞.

Remark 8.4. We outline the changes necessary to prove the general case in
the statement of the theorem. Now we want to measure approximation error
in Lp(Ω), 1 ≤ p < ∞, not just C(Ω). Of course, the error of approximation
in Lp(Ω) of a function f is smaller than that in C(Ω). We use analogues of
(8.51) for approximation in Lp(Ω) and two Besov balls. The first is K0 = U(Z0),
Z0 = Bs∞(Lτ0(Ω)), where we use Theorem 8.10 to get the approximation rate
[log2 n]β0n−s/d. Here we can choose τ0 > τ∗ so that we are as close to the
Sobolev embedding line as we want (but not on it). The second inequality is the
super-convergence result for K1 = U(Z1), Z1 = Cs(Ω). To that end, we use the
generalization of Theorem 8.11, as given in Lu et al. (2020), which gives the super
approximation rate [log2 n]β1n−2s/d. We now interpolate between Z0 and Z1 to
obtain the theorem for approximation in the fixed Lp(Ω) space. The reason we

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

418 R. DeVore, B. Hanin and G. Petrova

s E = n−2s/d
E = n−s/d
E = n−θs/d, 1 < θ < 2

Sobolev embedding line

(1
p , 0

) (1
τ , 0

)

Lp

Figure 8.1. Why we get general super-convergence by using interpolation theory.
All error rates E are modulo powers of logarithms when s > 1.

have the given restriction on θ is because we cannot take Z0 directly on the Sobolev
embedding line. Figure 8.1 may be useful in helping the reader to understand this
theorem.

8.9. A summary of known approximation rates for classical smoothness spaces

Let us summarize what we know about the optimal approximation rates when
approximating functions fromBesov (and Sobolev) model classes using the outputs
Σn of deep neural networks, Σn := ΥW0,Cn(ReLU; d, 1), where W0 is fixed, large
enough, and depending only on d, and C depends on d and the model class. Given
a value of p with 1 ≤ p ≤ ∞, recall that

En(K, Σ)Lp (Ω) := sup
f ∈K

dist(f , Σn)Lp (Ω), Ω := [0, 1]d . (8.54)

We want to address what we know regarding the following problem.

Problem 8.13. For each model class K which is the unit ball of a Besov space
Bs
q(Lτ(Ω)) which lies above the Sobolev embedding line for Lp(Ω), determine

asymptotically matching upper and lower bounds for En(K, Σ)Lp (Ω), n ≥ 1.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 419

Even for the most favourable case p = ∞, we only have a satisfactory answer to
this question when 0 < s ≤ 1 and τ = ∞, in which case the optimal rate is n−2s/d,
n ≥ 1. The above results on super-convergence provide the upper bounds. The
lower bounds follow from the derivation of lower bounds on approximation rates
using the VC dimension, given in Section 5.9. Going further with the case p = ∞,
the above results only provide a complete description of approximation rates when
s ≤ 1 because of the appearance of a logarithm in the extension of Yarotsky’s
results given in Lu et al. (2020).
When we move to the case p < ∞, the situation is even less clear. First,

Theorem 8.12 does give a super rate. However, we have no corresponding lower
bounds that come close to matching this rate because we cannot use the VC
dimension theory for Lp approximation. In summary, for all Besov spaces that
compactly embed into Lp(Ω), we obtain error bounds for approximation in Lp(Ω)
strictly better than classical methods. What is missing vis-à-vis Problem 8.13 is
what the best bounds are and how we prove lower bounds for approximation rates
in Lp(Ω), p , ∞.

8.10. Novel model classes

While the performance of NN approximation on the classical smoothness spaces is
an intriguing question that deserves a full and complete answer, we must stress the
fact that such an answer will not provide an explanation for the success and pop-
ularity of NNs in their current domains of application, especially in deep learning.
Indeed, the problems addressed via deep learning typically have the feature that
the functions to be captured are very high-dimensional, i.e. the input dimension
d is very large. Since all of the classical model classes built on smoothness have
large entropy and suffer the curse of dimensionality as d gets large, they are not
appropriate model classes for such learning problems. This amplifies the need to
uncover new model classes that do not suffer the curse of dimensionality, that are
well approximated by outputs of NNs, and are a good match for the targeted ap-
plication. We must say that little is formally known in terms of rigorously defining
new model classes in high dimensions, showing that they have reasonable entropy
bounds, and then analysing their approximation properties by NNs. However, sev-
eral ideas have emerged as to how such model classes may be defined. We mention
some of those ideas here with the intention of outlining a road map of how to
proceed with defining model classes in high dimensions.

8.10.1. Comments on the curse of dimensionality
First let us say a few words about the curse of dimensionality. One frequently hears
the claim that a certain numerical method ‘breaks the curse of dimensionality’.
There are two components to such a statement. The first is that the specific
numerical problem is such that it can be solved in high dimensionswithout suffering
adversely from dimensionality. The second is that a particular numerical method
has been found that actually does the job.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

420 R. DeVore, B. Hanin and G. Petrova

In the setting of numericalmethods for function approximation, the first statement
has to do with the model class assumption on f , or the model class information that
can be derived about f from the context of the problem. For example, when solving
a PDE numerically, the model class information is usually given by a regularity
theorem for the solution to the PDE. In other words, it is the model class K that
determines whether or not the problem is solvable by a numerical method that
avoids the curse of dimensionality.
Heuristically, it is thought that the crucial factor on whether or not a given model

class K suffers from the curse of dimensionality is its Kolmogorov entropy in the
metric where the error is to be measured; see Section 5.2 for the definition of
this entropy and the entropy numbers εn(K)X . There is not always a clear-cut
mathematical proof that entropy is indeed the deciding factor. This lack of clarity
stems from our vagueness in describing what is an allowable numerical method.
This takes us back to the use of space-filling manifolds in approximation. We
have already noted that such manifolds have the capacity to approximate arbitrarily
well. But are they a fair method of approximation? Implementing such a manifold
numerically as an approximation tool requires an inordinate amount of computation.
So really, the computational time to implement the numerical method is an issue.
This is well known in the numerical analysis community but does not seem to
be treated sufficiently well in the learning community. The latter would involve
statements about howmany steps of a descent algorithm are necessary to guarantee
a prescribed accuracy.
We have touched on this subject in Section 5.6, where we introduced stable

methods of approximation. The introduction of stability was made precisely to
quantify when a numerical method could be implemented within a reasonable
computational budget. Under the imposition of stability inmanifold approximation,
we have shown that indeed the entropy of K governs optimal approximation rates.

Regarding the second factor, the question is whether we can put forward a
concrete numerical scheme which can approximate the target function with a com-
putational budget that does not grow inordinately with the dimensionality d. In
this sense, it is not only an issue of how well we can approximate a given f using
a specific tool Σ := (Σn)n≥1, but whether we can find an approximant within a
reasonable computational budget.

8.10.2. Model classes in high dimension
With these remarks in hand, our quest is to find appropriate model classes for
high-dimensional functions which have reasonable entropy when d is large and yet
match intended applications. In this context, it is allowable for the entropy of the
model class to grow polynomially with d but not exponentially.

The search for appropriate high-dimensional model classes has carried on in-
dependently of deep learning or NN approximation, since it has always been a
driving issue whenever we are dealing with high-dimensional approximation. We
next mention some of the ideas that have emerged over recent decades on how

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 421

to define high-dimensional model classes and how these ideas intersect with NN
approximation.

Model classes built on sparsity. The idea of using sparsity to describe high-
dimensional model classes appeared largely in the context of signal/image pro-
cessing. The simplest example is the following. Assume {φ j}j≥1, with ‖φ j ‖X = 1,
is an unconditional basis in a Banach space X of functions of d variables. So, every
f ∈ X has a unique representation

f =
∞∑
j=1

λj(f)φ j, (8.55)

where λj’s are linear functionals on X and the convergence in (8.55) is absolute.
Here, the reader may assume that X is an Lp space to fix ideas. The space X defines
the norm where we will measure performance (error of approximation). Given any
q ≤ 1, let Kq consist of all functions f ∈ X such that

f =
∞∑
j=1

λj(f)φ j,

∞∑
j=1
|λj(f)|q ≤ 1. (8.56)

If one wishes to approximate functions from Kq, the most natural candidate is n-
term approximation using the basis (φ j)j≥1. Let Σn be the (nonlinear) set consisting
of all functions S =

∑
j∈Λ ajφ j , #(Λ) ≤ n. It is a simple exercise to show that

E(Kq, Σn)X ≤ Cqn−1/q+1, n ≥ 1. (8.57)

Note that the Besovmodel classes take a form similar to (8.56) because of their char-
acterization by atomic decompositions using splines or wavelets; see Section 4.3.1.
There are numerous generalizations of this notion of sparsity. For example, one
can replace the unconditional basis with a more general set of functions, which
form a frame or a dictionary.
Even though they give approximation rates that do not depend on the number of

variables d, model classes built on sparsity are not necessarily immune to the curse
of dimensionality because the basis or dictionary is infinite. To avoid this, we must
impose other conditions on the sequence of coefficients (λj(f))j≥1 that allow us to
truncate the sum to a finite set of indices when seeking an n-term approximation.
This is often imposed by putting mild decay assumptions on these coefficients. The
other central issue is whether the model class built on sparsity matches the intended
application. That is, there should be some justification that the sparsity class is a
natural assumption in the application area.
We have already seen an example of using sparsity in terms of a dictionary in

discussing NN approximation when we introduced the Barron class. The Barron
class appears as a natural model class when using shallow neural networks as an
approximation tool. The neat thing about the Barron class is that its definition
was not made in terms of a dictionary but rather classical notions such as Fourier

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

422 R. DeVore, B. Hanin and G. Petrova

transforms. Generalizations of Barron classes to deeper networks are given in E
et al. (2019), where it was shown to be a sparsity class for a suitable dictionary of
waveforms.

Model classes built on composition. Since NNs are built on the composition of
functions, it is natural to try to define model classes based on such compositions.
The basic idea is that the model class should consist of functions f with the
representation f = g1 ◦g2 ◦ · · · ◦gm, where gk , k = 1, . . . ,m, are simple component
functions. This approach is studied, for example, in Mhaskar and Poggio (2020),
Shen et al. (2019) and Schmidt-Hieber (2020).
The key question in such an approach is what assumptions should be placed on

the component functions. One expects to build the model class in a hierarchical
fashion by showing that when g1 and g2 are well approximated then so is their
composition. Let us consider for a moment the simple setting of approximating in
the univariate uniform norm ‖ · ‖C(Ω), Ω = [0, 1]. Given g1, g2 and approximants
ĝ1 and ĝ2, the simplest inequality for how well ĝ1 ◦ ĝ2 approximates g1 ◦ g2 is

‖g1 ◦ g2 − ĝ1 ◦ ĝ2‖C(Ω) ≤ ‖g1 ◦ g2 − ĝ1 ◦ g2‖C(Ω) + ‖ĝ1 ◦ g2 − ĝ1 ◦ ĝ2‖C(Ω)

≤ ‖g1 − ĝ1‖C(Ω) + ‖ĝ1‖Lip 1‖g2 − ĝ2‖C(Ω), (8.58)

which points to the observation that formulations of such model classes will prob-
ably involve mixed norms.

Model classes built on self-similarity. Let us continue with the last example of
the composition g1 ◦ g2. If g2 is a CPwL function (as is the case for outputs of
ReLU NNs), then as the input variable t traverses [0, 1], the composition traces out
scaled copies of g1 or parts of it. For example, if g2 is the sawtooth function H◦L

of Figure 3.1, then we trace out multiple copies of g1. The composition is therefore
a self-similar function. This self-similarity is prevalent in outputs of deep NNs
and has been used to show that certain functions such as the Weierstrass nowhere
differentiable function are well approximated by outputs of deep NNs. There are
even classes of functions, generated by dynamical systems, which are efficiently
approximated by outputs of deepNNs. So it is natural to try and buildmodel classes
using self-similarity or fractal-like structures, and then show that its members are
well approximated by deep NNs. Examples of such univariate function classes are
given in Daubechies et al. (2019), including the so-called Tagaki class. In higher
dimensions, Dym, Sober and Daubechies (2020) showed that the characteristic
functions χS of certain fractal sets are also efficiently approximated by the outputs
of deep networks. This may relate to the success of deep learning in classification
problems.

Model classes built on dimension reduction. Acommonhigh-dimensionalmodel
class with reasonable entropy is the set of functions with anisotropic smoothness.
These functions depend non-democratically on their variables, that is, certain
variables are more important than others; see e.g.DeVore, Petrova andWojtaszczyk

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 423

(2011). This is a dominant theme in numerical methods for PDEs, where notions
of hyperbolic smoothness classes and numerical methods built on sparse grids or
tensor structures arise.
Another prominent example is a model class viewed as low-dimensional mani-

folds in a high-dimensional ambient space. Since our approximation tool is itself
a parametrized manifold, these model classes seem like a good fit for NN ap-
proximation. This is related to the viewpoint that the NN output is an adaptive
partition/filter design as expressed in Balestriero and Baraniuk (2021).

9. Stable approximation
Up to this point, we have mainly been interested in how well we can approximate a
target function f by the elements of the setsΥW,L(ReLU; d, 1). The results we have
obtained do not usually provide an actual procedure that could be implemented
numerically. In this section we discuss in more detail issues surrounding the
construction of numerical approximation procedures and whether we can guarantee
their stability. This section builds on the general discussion in Section 5 which the
reader needs to keep in view.
Here, we measure error in the norm of X = Lp(Ω), Ω = [0, 1]d, 1 ≤ p ≤ ∞. We

let Σn, n ≥ 1, be the ReLU sets ΥW,L(ReLU; d, 1) with the number of parameters
n(W, L) � n. As usual, the two main examples that we have in mind are when
W = n and L = 1, and secondly when W = W0 is fixed (depending on d) and
L = n. Let K be a model class in the chosen Lp(Ω).
We have mentioned before that any approximation method is described by two

mappings
an : K → Rn, Mn : Rn → Σn,

where an chooses the parameters of the network for a given f ∈ K , and Mn describes
how the neural network takes a vector y ∈ Rn of parameters and assigns the output
Mn(y) ∈ Σn. Thus the approximation to f is the function An(f) = Mn(an(f)).
Note that once we have decided to use NN with a specific architecture for the
method of approximation, the mapping Mn is fixed and we do not get to choose it.

We now wish to understand two main issues.

Stability issue 1. How does imposing stability restrictions on the mappings an
and Mn affect the approximation rates we can obtain?

Stability issue 2. How can we construct stable numerical algorithms for approx-
imation?

We have already discussed the first in some detail; see Section 5.5. We have seen
that imposing stability limits the achievable approximation rates for NN approx-
imation of a model class K in the sense that the decay rate cannot be better than
the entropy numbers εn(K)X of K . Of course, this does not say we can necessarily
achieve (with NNs) an approximation rate equivalent to εn(K)X . However, this

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

424 R. DeVore, B. Hanin and G. Petrova

does give a benchmark for optimal performance. This leads us to the following
problem.

Problem 9.1. What are the optimal stable approximation rates for classical model
classes such as Sobolev and Besov balls when using Σ := (Σn)n≥1 with Σn :=
ΥW0,Cn(ReLU; d, 1) as the approximation tool? In other words, we want matching
upper and lower bounds for stable approximation of these model classes. A more
modest question would be to replace stability by simply asking for continuity of
these mappings.

Consider, for example, approximation in Lp(Ω) with Ω = [0, 1]d of the Besov
balls Bs

q(Lτ(Ω)) that embed into Lp(Ω). The entropy of such a ball is known and
gives the lower bounds O(n−s/d) for the best approximation rate by a stable method
of approximation. However, we have not provided stable mappings for NNs that
achieve this approximation rate. A similar situation holds when we assume only
continuity of these maps.

9.1. Stability of Mn

As we have noted, when using NN approximation, the mapping Mn is determined
by the architecture of theNN. In this sectionwe discuss the stability of thismapping.
We always take Mn, n = n(W, L) to be the natural mapping which identifies the
output S ∈ ΥW,L(ReLU; d, 1)with the parameters that are the entries of thematrices
and bias vectors of the NN; see Section 2.1. We identify these parameters with a
point in Rn in such a way that the parameters at layer ` appear before those for the
next layer and the ordering for each hidden layer is done in the same way.
It is easy to see that the mapping Mn : Rn → C(Ω),Ω = [0, 1]d, is continuous. In

fact, as we shall now show, it is a Lipschitz map on any bounded set of parameters,
i.e. Mn is locally Lipschitz. To describe this, we need to specify a norm to be used
for Rn. We take this norm to be the `∞(Rn) norm, i.e. ‖y‖`n∞ := max1≤i≤n |yi |.
This choice is not optimal for obtaining the best constants in estimates but it will
simplify the exposition that follows.

Theorem 9.2. If B is any finite ball in `∞(Rn), then Mn : B→ C(Ω) is a Lipschitz
mapping, that is,

‖Mn(y) − Mn(y′)‖C(Ω) ≤ C‖y − y′‖`n∞, y, y′ ∈ B, (9.1)

with the constant C depending only on B, W , L and d.

Sketch of proof. We will be a bit brutal and not search for the best constant in
(9.1). In what follows in this proof, C denotes a constant depending only on B,
W , L and d, and may change from line to line. For y, y′ ∈ B we wish to bound
‖M(y) − M(y′)‖C(Ω) by δ := ‖y − y′‖`n∞ . For a vector-valued continuous function
g, we use ‖g‖ to denote its C(Ω) norm, which is the maximum of the C(Ω) norm
of its components.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 425

We let η(j), j = 1, . . . , L, denote the vector-valued function of x ∈ Rd computed
at layer j by the networkwith parameters y, andwe let η′(j) denote the corresponding
vector of functions computed with parameters y′. We can write

η(1) = ReLU(A0x + b(0)), η′(1) = ReLU(A′0x + b′(0)),
η(j+1) = ReLU(Ajη

(j) + b(j)), η′(j+1) = ReLU(A′jη
′(j) + b′(j)),

where Aj is the matrix determined by y to go from layer j to layer j + 1, and
b(j) is the bias vector, j = 0, . . . , L − 1. Similarly, A′j and b′(j) correspond to the
parameter y′.
Since y, y′ ∈ B, all entries in the Aj, A′j, b

(j), b′(j) are bounded. Likewise the
matrix norms of Aj, A′j as mappings from `∞ to `∞ are bounded. Also, we have

‖A0 − A′0‖`d∞→`W∞ ≤ Cδ, ‖Aj − A′j ‖`W∞ →`W∞ ≤ Cδ for j = 1, . . . , L − 1,

and
‖b(j) − b′(j)‖`W∞ ≤ δ for j = 0, . . . , L − 1.

Using
η(j+1) = ReLU[Aj(η(j) − η′(j)) + Aj(η′(j)) + b(j)]

and the fact that ReLU(·) is a Lip 1 function, we derive

‖η(j+1) − η′(j+1)‖ ≤ ‖Aj ‖‖η(j) − η′(j)‖ + ‖Aj − A′j ‖‖η′(j)‖ + ‖b(j) − b′(j)‖
≤ C{‖η(j) − η′(j)‖ + δ‖η′(j)‖ + δ}.

We then prove by induction that ‖η′(j)‖ ≤ C, j = 0, 1, . . . , L, and that

‖η(j) − η′(j)‖ ≤ Cδ, j = 1, 2, . . . , L.

The final step is that

‖Mn(y) − Mn(y′)‖C(Ω) ≤ C(‖η(L) − η′(L)‖ + δ),

which gives the theorem.

Remark 9.1. A closer look at the above estimates shows that the Lipschitz con-
stant for Mn can be controlled if we take B as a small ball around the origin. The
size of the ball is chosen so that each of the matrices Aj, A′j have small norm. To
do this, the required size of the ball gets smaller as W gets larger.

9.2. Stability of an

With the above analysis of Mn in hand, we see that the stability of an NN approxim-
ation method rests on the properties of the parameter selection an. It is of interest
to understand whether the most common methods of parameter selection based on
gradient descent provide any stability. We discuss this issue in Section 11.3.1. For
now, we limit ourselves to recalling our discussion on how imposing stability limits

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

426 R. DeVore, B. Hanin and G. Petrova

approximation rates and when we know methods are stable. For the discussion
that follows, we limit ourselves to approximation using Σn = ΥW0,n(ReLU; d, 1)
with W0 fixed. Many of the same issues we raise concerning stability appear in
approximation using shallow networks.

Let us first observe that the parameter selection procedures that generate the
super rates of convergence for Besov and Sobolev classes cannot be continuous
because of (5.6). If we require that the mappings an are only continuous and
consider approximation in Lp(Ω), Ω = [0, 1]d, then we can never attain rates of
approximation better than O(n−s/d) for the unit ball of any Besov space Bs

q(Lτ(Ω))
that embeds compactly into Lp(Ω). The only cases where we know that we can
actually attain this rate is when τ ≥ p. In these cases there are linear spaces, such
as FEM spaces, contained in Σn that provide this rate and the approximation can be
done by a linear operator. So the following problem is not solved except for very
special cases.

Problem 9.3. Consider the approximation of the unit ball of a Besov space
Bs
q(Lτ(Ω)) compactly embedded in Lp(Ω) using the manifold Σn. Give matching

upper and lower bounds for the approximation rate when an and Mn are Lipschitz
mappings. Similarly, determine upper and lower bounds when the parameter se-
lection mapping an is continuous.

A question closely related to stability is whether one can approximate well under
the very modest restriction that an is bounded. Recall that boundedness helps
us with Mn as well (see the above discussion). The issue of what approximation
rates are possible when one imposes boundedness on an was studied in detail by
Bölcskei et al. (2019). Their motivation was different from ours in that they were
interested in NN approximation from the viewpoint of encoding. However, there
is an intimate connection with stability, as we have just discussed.

10. Approximation from data
Thus far we have limited ourselves to understanding the approximation power of
neural networks. The approximation rates we have obtained assumed full access
to the target function f . This scenario does not match the typical application of
NN approximation to the tasks of learning. In problems of learning, the only
information we have is data observations of f . Such data observations alone do
not allow any rigorous quantitative guarantee of how well f can be recovered, i.e.
how accurately the behaviour of f at new points can be predicted. What is needed
for the latter is additional information about f , which we have referred to as model
class information. The model class information is an assumption about f that is
often not provable but based more on heuristics about the application area.
Learning from data is a vast area of research that cannot be covered in any

detail in this exposition. So we limit ourselves to pointing out some aspects of
this problem and how they interface with the theory of NN approximation that

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 427

we have discussed so far. Obviously, any performance guarantees derived in the
learning setting must necessarily be worse than those for approximation, where full
information about f is assumed. Thus an important issue is to quantify this loss in
performance.
The most common setting for the learning problem is a stochastic one, where it

is assumed that the data are given by random draws from an underlying probability
distribution. However, it is useful to consider the deterministic setting as well since
it sheds some light on the stochastic formulation and the type of results that we can
expect.

10.1. Deterministic learning; optimal recovery

In this section we wish to learn a function f which is an element of a Banach space
X . Our goal is to recover f from some finite set of data observations. We assume
that the data observations are in the form of bounded linearly independent linear
functionals applied to f . Thus our data take the form

(λ1(f), . . . , λm(f)) ∈ Rm, λj ∈ X∗, j = 1, . . . ,m, (10.1)

where X∗ is the dual space of X . As we have pointed out numerous times, to give
quantitative results on howwell f can be recovered requiresmore information about
f , whichwe call model class information, i.e. information of the form f ∈ K , where
K is a compact set in X . When we inject the model class assumption that f ∈ K ,
we have the question of how accurately we can recover f from the two pieces of
information: the data and the model class. We shall present the functional analytic
view of this problem which is known as optimal recovery. It will turn out that the
optimal recovery problem is not always amenable to a simple numerical method
for the recovery of f . Nevertheless, this viewpoint will be useful in motivating
specific numerical methods and analysing how well they do when compared with
the optimal solution.

10.2. Optimal recovery in a Hilbert space

We shall restrict our development here to the most popular setting where X = H is
a Hilbert space. The reader interested in the more general Banach space setting can
consult DeVore et al. (2013). In the Hilbert space setting, each of the functionals
λj has a representation

λj(f) = 〈 f , ωj〉, ωj ∈ H, j = 1, . . . ,m,

which is referred to as the Riesz representation of λj . The functions ωj span an
m-dimensional subspace

W := span{ωj}mj=1

of H. We can assume without loss of generality that the ωj’s are an orthonormal
system. From the given data, we can find the projection

w := PW f

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

428 R. DeVore, B. Hanin and G. Petrova

of f onto W . We think of w as the given data.
Now let us assume in addition that f is in a certain model class K , and ask what

is the best approximation (with error measured in the norm of H) that we can give
to f based on this information, i.e. the data and the model class information. One
may think that the best we can do is to take PW f as the approximation. However,
this is not the case since the information that f ∈ K allows us to say something
about the projection of f onto the orthogonal complement W⊥ of W .
Indeed, the model class information will allow us to give a best approximation

to f from the available information (model class and data w) as follows. Let

Kw := {g ∈ K : PWg = w}.
Then the membership of f in Kw is the totality of information we have about f .
The best approximation to f is now given by the centre of the set Kw . Namely, let
B := B(Kw) be the smallest ball in H which contains Kw . This ball is referred to
as the Chebyshev ball, its centre bw ∈ H is called the Chebyshev centre, and its
radius Rw is the Chebyshev radius. The best approximation we can give to f is to
take bw as the approximation and the error that will ensue is Rw . The function bw
is the optimal recovery and Rw is its error of optimal recovery.
Let us reflect a bit on the above optimal solution. Every function in Kw is a

possibility for f . From the information presented to us (model class plus data), we
do not know which of these functions is the desired f . So we do the best we can
to approximate all of the possible f ’s, which turns out to be the Chebyshev centre.
Each g ∈ Kw (the possibilities for approximants of f) is of the form w + η, where
η is in the null space N = W⊥. So, in essence, we are trying to find the η ∈ W⊥

that we can add to w so that the sum w + η ∈ K .

Remark 10.1. Note that if we find any η ∈ N such that w + η is in K , then we
have essentially solved the problem, since f̂ := w + η approximates f to accuracy
at worst 2Rw . Such an f̂ is called a near-best solution.

The above description of optimal recovery, despite being elegant and optimal,
is not very useful in constructing a numerical procedure since the Chebyshev ball
is difficult to find numerically. Also, in practice, we are often not sure what is the
appropriate model class K in a given setting. However, optimal recovery is still a
good guide for the development of numerical procedures.
There are two standard approaches to developing numerical algorithms for op-

timal recovery. The first one is to numerically generate a recovery through least-
squares minimization with a constraint that enforces the model class assumption.
We will not engage this approach here but simply mention that several elegant
results show that for certain model classes these optimization problems have an
exact solution in NN spaces, especially those with a single hidden layer. We refer
the reader to Unser (2020), Parhi and Nowak (2020), Ongie, Willett, Soudry and
Srebro (2020) and Savarese, Evron, Soudry and Srebro (2019) for the most recent
results using this approach.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 429

The second approach, which is more closely tied to approximation, is to replace
K with a simpler set K̂ which is less complex than K , and yet accurate. One then
solves the optimal recovery problem on the simpler surrogate model class K̂ . We
discuss this approach in the following two sections.

10.3. Optimal recovery by linear space surrogates

The usual approach to finding a surrogate K̂ for K is to approximate K by a linear
space of dimension n, or more generally, a nonlinear manifold Σn, with n the
number of parameters needed for its description. If we know that Σn approximates
K to accuracy εn (here is where our error estimates for approximation are useful),
we can then replace K with

K̂ := {h ∈ H : dist(h, Σn)H ≤ εn}. (10.2)

Clearly K ⊂ K̂ . Usually we also have some knowledge on the norm ‖ f ‖H for
functions f ∈ K and this can be used to trim the set K̂ even further.

Once a surrogate K̂ has been chosen, we solve the optimal recovery problem for
K̂ in place of K by using Chebyshev balls for K̂w as described above. As we shall
now see, we can often solve the optimal recovery problem for the surrogate exactly
by a numerical procedure.
We assume for the time being that K̂ is given by (10.2) with Σn a linear space

of dimension n ≤ m. In this case the problem is a much simpler recovery problem
than the one for K , and optimal recovery has an exact solution that we now describe;
see Binev et al. (2017). Let us define Hw := {h ∈ H : PW h = w}, that is, Hw is
the set of all functions in H which satisfy the data. Since f ∈ K , K ⊂ K̂ , and
PW f = w, we see that K̂w := Hw ∩ K̂ is non-empty. The centre of the Chebyshev
ball B(K̂w) for K̂w is the point u∗(w) ∈ Hw which is closest to Σn, that is,

u∗(w) := argmin
h∈Hw

dist(h, Σn)H .

The function u∗(w) is found as follows. One solves the least-squares problem

v∗(w) := argmin
v∈Σn

‖PW v − w‖H,

and then u∗(w) = w + PW⊥v
∗(w), where W⊥ is the orthogonal complement of W

in H (the null space of PW). One can also compute the Chebyshev radius R̂w of
B(K̂w) as

R̂(w) = µ(Σn,W)H (ε2
n − ‖u∗(w) − v∗(w)‖2H)1/2,

where

µ(Σn,W)H := sup
η∈W⊥

‖η‖H
dist(η, Σn)H

.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

430 R. DeVore, B. Hanin and G. Petrova

Here are a few remarks to put the above results into context.

Remark 10.2. The quantity µ(Σn,W) is the reciprocal of the cosine of the angle
between the two spaces Σn and W . It reflects the quality of the data relative to
Σn. This number will be large when the data are not well positioned relative to the
linear space Σn. In particular, it will always be infinite whenever the dimension n
of Σn is larger than m. This is because there will always be elements from Σn in
the null space of PW and hence there will be points in K̂w that are arbitrarily far
apart in this case.

Remark 10.3. The above results give a bound for the performance of least-
squares; see Binev et al. (2017). Namely, given data w∗j = λj(f), j = 1, . . . ,m, for
some f ∈ H, let

S∗ := argmin
S∈Σn

m∑
j=1
[w∗j − λj(S)]2.

Then, for any f ∈ H which satisfies the data, we have

‖ f − S∗‖H ≤ µ(Σn,W)H dist(f , Σn)H,

and this bound cannot be improved in the sense that there are always f ∈ H for
which we have equality.

The above analysis and remarks only apply to the case that Σn is a linear space
and X = H is a Hilbert space. In the spirit of this paper, we would take Σn to
be ΥW,L(ReLU; d, 1), the outputs of a ReLU network which depends on roughly n
parameters. We should choose the architecture to match K as closely as possible,
given the budget n of parameters.

Let us, for example, consider the case where Σn := ΥW0,n, n ≥ 1, with W0 fixed,
i.e. the case of a deep network with constant width, and continue to assume that
X = H is a Hilbert space. We suppose that Σn provides an approximation with
error

dist(K, Σn)H = εn.

We view K̂ := {h ∈ H : dist(h, Σn)H ≤ εn} as a surrogate for K . Note that K ⊂ K̂ .
If f , g ∈ K̂w := {h ∈ K̂ : PW h = w} then η := f − g ∈ W⊥, and

dist(η, Σ̄n)H ≤ 2εn,

where Σ̄n := ΥW0+d+1,2n(ReLU; d, 1). It follows that

‖ f − g‖H ≤ 2µnεn, where µn := sup
η∈W⊥

‖η‖H
dist(η, Σ̄n)H

, n ≥ 1. (10.3)

This tells us that the Chebyshev radius R̂w of K̂w (and thereby the Chebyshev radius
Rw of Kw) satisfies

Rw ≤ R̂w ≤ µnεn.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 431

This is the same estimate as in the case when Σn is a linear space, except that now
we have to expand Σn to Σ̄n because of the nonlinearity of Σn.

We are left with finding an approximation to the Chebyshev centre of K̂w (and
thereby Kw). For this we take any S∗ ∈ Σn which satisfies

‖w − PW S∗‖H = inf
S∈Σn
‖w − PW S‖H ≤ εn, (10.4)

where the last inequality follows because

‖w − PW S‖H = ‖PW f − PW S‖H ≤ ‖ f − S‖H,
and we know dist(f , Σn)H ≤ εn. This is a least-squares problem which does not
necessarily have a unique solution. However, we now show that any solution S∗

provides a good estimate for the Chebyshev centre of K̂w .
Indeed, let us take any of its solutions S∗ ∈ Σn and consider

h∗ := w + PW⊥S∗ ∈ Hw .

With an eye towards (10.4), we see that

‖h∗ − S∗‖H = ‖w − PW S∗‖H ≤ εn,
and thus h∗ ∈ K̂w . Moreover, it follows from (10.3) that for every f ∈ K̂w we have

‖ f − h∗‖H ≤ 2µnεn,

and therefore the ball of radius 2µnεn with centre h∗ contains K̂w . Thus h∗ can be
taken as an approximation to theChebyshev centre of K̂w (and thus to theChebyshev
centre of Kw). A cruder but less laborious approximation to f is provided by S∗,
since

‖ f − S∗‖H ≤ ‖ f − h∗‖H + ‖h∗ − S∗‖H ≤ 2µnεn + εn, f ∈ Kw, (10.5)

and therefore
dist(Kw, S∗n)H ≤ (2µn + 1)εn.

Inequality (10.5) can be reformulated in the following way. For any f ∈ H, the
least-squares solution S∗n for w := PW f provides an approximation to f of accuracy

‖ f − S∗n‖H ≤ (2µn + 1) dist(f , Σn)H, (10.6)

since the above argument can be repeated with εn = dist(f , Σn)H .
Finally, note again that if n > m, then there will be non-trivial elements of Σn

that interpolate zero data and hence µn is infinite, which renders the bound (10.6)
useless. Yet this is the case of overparametrized learning, which is often used in
practice. So something must be added to least-squares minimization in order to
have viable results in the overparametrized case. What this additional ingredient
should be is the subject of the next section.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

432 R. DeVore, B. Hanin and G. Petrova

11. Using neural networks for data fitting
The typical setting for supervised learning is to find an approximation of an un-
known function f , given a training data set of its point values

{(x(i), f (x(i))}, x(i) ∈ Rd, f (x(i)) ∈ R, i = 1, . . . ,m. (11.1)

We refer to the points x(i), i = 1, . . . ,m, as the data sites. Thus the data observation
functionals are point evaluations (delta functionals). In many applications the
dimension d is very large. For example, in classification problems for images, d
is the number of pixels in the images, typically somewhere in the range of 103 to
106, and for videos it is even higher. The learning problem is then to numerically
produce a function f̂ from these data that is in some sense a good predictor of f
on new unseen draws x ∈ Rd.

In the preceding section we described a systematic approach to learning from
data, called optimal recovery. It begins with two vital requirements: (i) a known
model class K to which f is assumed to belong, and (ii) a specific norm or
metric in which the recovery of f by f̂ is measured. In the optimal recovery
formulation of the problem, a solid theory exists to describe the optimal solution
via the Chebyshev ball. The deficiency in this approach is that the construction of
numerical algorithms to generate a surrogate f̂ may be a significant computational
challenge.
Optimal recovery is not the viewpoint taken in the general literature on learning.

Rather, in the learning community, the data-fitting task is formulated in a stochastic
setting, where one assumes that the data come from random draws of the data
sites x(i) with respect to a probability distribution, and the f (x(i))’s are noisy
observations of some unknown function f . Performance is then evaluated on new
draws of data in the sense of probability or expectation of accuracy on these draws.
This is commonly referred to as generalization error. Note that in this setting there
is no model class assumption on the function f giving rise to the data, so there can
be no provable bound for the generalization error. What is done in practice is to
give an empirical bound based on checking performance on a lot of new (random)
draws which are referred to as validation data.
Traditionally, model class assumptions on the unknown function f played a dom-

inant role in the classical formulation and proof of a priori performance guarantees;
see Bousquet et al. (2005). However, as noted in the previous paragraph, in the
now dominant field of deep learning, where neural network approximation is an
important technique, one deviates from the classical setting of model class assump-
tions. Our goal in the sections that follow is to understand what role approximation
using neural networks plays in this new setting.

11.1. Deep learning

Deep learning is characterized by its ability to successfully treat very high-dimen-
sional problems, beginning with inordinately large data sets and employing intens-

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 433

ive computation for generating surrogates. Its success in handling high-dimensional
problems is provided only by empirical verification that the numerically created
surrogate performs well on new draws of x. A priori guarantees of performance
are generally lacking. In fact, performance is not typically formulated under model
class assumptions, which in turn prevents such a priori analysis. The lack of a
specific model class assumption is probably due, at least in part, to the high dimen-
sionality d, since in this case it is often unclear what appropriate model classes
should be. Note, however, that since the data observations are point evaluations,
a minimal assumption is that f is in a reproducing kernel Hilbert space (RKHS),
although the specific RKHS is not known or postulated.
Another important feature of deep learning is its use of overparametrization in

the search for a surrogate. This runs in the face of classical learning, which warns
against overfitting the data because it leads to fitting the noise.

11.2. Possible model class assumption in high dimension

Before turning to the overparametrized setting, we wish to make a few remarks
on possible viable model class assumptions that could be used towards providing
a priori guarantees in deep learning. One valid viewpoint is that the functions we
are trying to recover do possess some special properties; we just do not know what
they are.
The fact that neural networks are used quite successfully suggests that the func-

tions we are trying to learn are well approximated by neural networks. If this is the
case, then a natural model class assumption would be that f is in an approximation
class Ar ((Σn)n≥1, X), which we recall consists of the functions f for which

dist(f , Σn)X ≤ Mn−r, n ≥ 1, (11.2)

where again there is the question: What is the appropriate space X in which to
measure error? Here (Σn)n≥1 would be the family of spaces output by the chosen
NNs and n would represent the number of their parameters. This underlines the
importance of understanding the approximation performance of neural networks in
a rate/distortion sense, and, in particular, which functions are well approximated
by neural network outputs.

11.3. Overparametrization

We turn now to learning fromdata using overparametrizedmodels. When searching
for an approximation to f from a set of outputs of a neural network with a given
architecture, say Σn = ΥW,L(σ; d; 1), it is usually the case in practice that the
number of trainable parameters, i.e. the number n = n(W, L) of weights and biases,
exceeds the number m of data sites x(k):

#data points = m � n = #parameters.

In other words, neural networks are usually overparametrized. This means that
there are generally infinitely many choices of the parameter vector θ (of network

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

434 R. DeVore, B. Hanin and G. Petrova

weights and biases) so that the network with these parameters outputs a function
S(·; θ) that fits (interpolates) the data, that is,

S(x(i); θ) = f (x(i)), i = 1, . . . ,m.

Characterizing exactly which interpolant is chosen by the numerical method is at
the heart of learning via overparametrized neural networks. In this section we
want to understand how this selection is done in practice and whether the selection
has an analytic interpretation. In particular, there is the question of whether the
numerical method itself is in a certain sense specifying a model class assumption.
If so, it would be important to unravel what this hidden assumption is.

11.3.1. Selecting the interpolant by gradient descent
The standard way of selecting an approximant f̂ to f in the practice of overpara-
metrized deep learning using neural networks is to begin with a random starting
guess θ(0) for the parameters and thereby specify the first guess S(·; θ0) for a sur-
rogate. Successive approximations S(·, θ(k)), for k = 1, 2, . . . , are then generated
by applying a gradient descent (or stochastic gradient descent) algorithm to find an
approximate global minimum of a loss function L, which usually takes the form of
an empirical risk, such as the mean squared error

L(θ) :=
m∑
i=1

(f (x(i)) − S(x(i); θ))2. (11.3)

If the step sizes are appropriately chosen in the descent algorithm, then this proced-
ure seems to work well in practice in that S(·, θ(k)) with k large is an approximation
to f which generalizes well. Here θ(k) is the output parameter of the gradient
descent algorithm at the kth step.
The above method for selecting a surrogate does not employ the traditional

remedy for working with approximation methods that have the capacity to overfit
the data, which is to add a regularizer such as an `1 or `2 penalty function on the
parameter vector in the iteration. The effect of incorporating such regularizers is
studied, for example, in Savarese et al. (2019), Ongie et al. (2020) and Parhi and
Nowak (2020). The main conclusion of the above papers is that one can view the
addition of a constraint as a model class assumption. However, it is important to
note that adding such a regularizer is not usually done in NN practice. While a weak
regularization is sometimes employed, empirical evidence seems to indicate that it
is not necessary for good generalization performance; see Zhang et al. (2017).
A number of attempts have been made to understand why descent algorithms,

employed to train overparametrized neural networks, provide a surrogate that gen-
eralizes well; see Jacot, Gabriel and Hongler (2018), Dziugaite and Roy (2017),
Arora, Ge, Neyshabur and Zhang (2018b) andBartlett, Foster and Telgarsky (2017).
However, the resulting a priori performance guarantees are often vacuous in prac-
tice in the sense that the probability of misclassification of a new sample is bounded
from above by a number greater than one. Of course, no such guarantee can hold

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 435

in the absence of a model class assumption on the underlying function f which
provided the data.
On the other hand, some heuristic explanations have been put forward to explain

the success of this approach. One of the most popular is that the descent algorithm
itself provides a form of implicit regularization that biases learning towards select-
ing parameter values θ∗ that correspond in some sense to low complexity functions
S(·; θ∗). The idea is that the starting guess S(·; θ(0)) has relatively low complexity
with high probability. Then, since the model is overparametrized, there are many
values of θ for which S(·; θ) interpolates the data. In particular, there is often such
a value θ∗ near θ(0). Since gradient descent is essentially a greedy local search, it
is reasonable to expect that it will converge to such a θ∗ that is near θ(0).
These heuristics would match a model class assumption that f itself is well

approximated by the output of neural networks depending on relatively few para-
meters, that is, f is in a model classAr with a large value of r . Or, more generally,
that f is well approximated by networks depending on many parameters, but with
some additional constraints on the size or complexity of these parameters. The
purpose of the next section is to provide some support for this idea in the simple
case of overparametrized regression.

11.3.2. Gradient descent for linear regression
As we have seen, the outputs of a neural network form a complicated nonlinear
family which is difficult to analyse. It could therefore be useful to understand what
the above numerical approach based on gradient descent yields in the simpler case
of linear regression. We briefly describe this in the present section.
We seek to model a data set

{(x(i), f (x(i)))}, x(i) ∈ Rd, f (x(i)) ∈ R, i = 1, . . . ,m,

by using a function from a linear space

Vn = span{φ j, j = 1, . . . , n}.
The key assumption we make is that the model is overparametrized, meaning that
m < n. If A := (ai j) is the m × n matrix with entries

ai, j := φ j(x(i)), i = 1, . . . ,m, j = 1, . . . , n,

the coefficients θ = (θ j)nj=1 of any interpolant

S(·, θ) =
n∑
j=1

θ jφ j(·) ∈ Vn (11.4)

to the data satisfy the underdetermined system of equations

Aθ = y, y := (f (x(1)), . . . , f (x(m))) ∈ Rm. (11.5)

The standard way of choosing a solution to (11.5) is to choose the Moore–Penrose

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

436 R. DeVore, B. Hanin and G. Petrova

pseudoinverse θ∗ ∈ Rn, which we recall is the solution which has minimum
`2(Rn) norm.

Let W⊥ denote the null space, which corresponds to all θ ∈ Rn which are
solutions to (11.5) with the zero vector on the right-hand side. Further, we let W
denote the orthogonal complement ofW⊥ in Rn. Note that θ∗ ∈ W since θ∗ is itself
a solution to (11.5).

Claim. Suppose that we apply the gradient descent algorithm, with appropriate
step size restrictions, to find a minimum of the loss function (11.3), where S is the
interpolant (11.4). Then this procedure determines parameter selections θ(k) ∈ Rn,
k = 1, 2, . . . , which have a limit

θ̂ = lim
k→∞

θ(k) = θ∗ + PW⊥θ
(0), (11.6)

where θ(0) is the initial guess.

We do not provide a full detailed proof of this claim, but make the following
remarks, which will allow the reader to fill in the details. The iterative procedure
chooses step sizes ηk and defines an optimization trajectory as follows,

θ(k+1) := θ(k) − ηk∇L(θ(k)), k = 0, 1, . . . ,

where ∇L is the gradient of the loss function L. Note that ∇L(θ) · θ ′ = 0 for any
θ ∈ Rn and θ ′ ∈ W⊥ since the function h(t) := L(θ + tθ ′) is a constant function of
t ∈ R. Thus the vector ∇L(θ(k)), k = 0, 1, . . . , does not have components in W⊥. It
follows that PW⊥(θ(k+1)) = PW⊥(θ(k)), k = 0, 1, . . . , which gives

θ(k) = PW θ
(k) + PW⊥(θ(0)), k = 0, 1, . . . , (11.7)

and
L(θ(k)) = L(PW θ

(k)). (11.8)

The function L is strictly convex on W with minimizer θ∗. Since the iterations
of gradient descent converge under restriction on the step size provided by the
eigenvalues of AT A, we obtain the claim.
In summary, we find that optimization by gradient descent from a random ini-

tialization has at least two important effects. First, the choice of initialization
determines the value of the component PW⊥(θ(0)) not ‘seen’ by the data. Its norm
is precisely the distance between the θ∗ and θ̂, which suggests that it is important
to properly initialize the optimization. Second, the gradient descent was greedy,
leaving PW⊥(θ(0)) unchanged during the optimization. This can be viewed as a
form of implicit regularization, since at least it does not increase this component.
In addition, it implies an implicit model class assumption that the function f un-
derlying the data {(x(i), f (x(i)))} is of low complexity, which means that it is well
approximated by Vn.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 437

11.3.3. Gradient descent selection for neural networks
The above discussion does not carry over directly to overparametrized data fitting
with neural networks because the set of NN outputs is not a linear space. However, a
recent line ofwork has shown that for sufficientlywide networks such considerations
are still approximately valid: see Jacot et al. (2018), Du, Zhai, Poczos and Singh
(2019b), Allen-Zhu, Li and Song (2019), Du et al. (2019a) and Liu, Zhu and Belkin
(2020). In short, as we sketch immediately below, a number of rigorous results
show that, as W → ∞, gradient descent on the mean squared error loss L using
neural networks ΥW,L(σ; d, 1) can be recast as overparametrized regression in a
RKHS Hσ,L , determined by σ and L. The reproducing kernel of Hσ,L is called the
neural tangent kernel and is fixed throughout training in the limit when W → ∞.
These results hold under certain restrictions on the initialization scheme and the
learning rate.
To explain this point, suppose we are given a data set as in (11.1). Let us fix L

and solve the learning problem for this data set using a class of neural networks
ΥW,L(σ; d, 1) in whichW is large. Starting from a random guess θ(0), the trajectory
of the gradient descent on the lossL (see (11.3)) for the network parameters is given
by

θ(t+1) = θ(t) − ηt∇θL(θ(t)). (11.9)

VaryingW changes the number of components of θ. It is convenient to introduce
the functions

vi = vi(θ) := S(x(i); θ), i = 1, . . . ,m,

which record the values of S on the data set. A simple calculus exercise (Taylor’s
formula) shows that the trajectory of vi induced by (11.9) is

v
(t+1)
i = v

(t)
i − ηt

m∑
j=1

Kθ(t)(x(j), x(i))(v(t)
j − yj) +O(η2

t), (11.10)

where v(t+1)
i := S(x(i); θ(t+1)), yj = f (x(j)) and Kθ is the so-called neural tangent

kernel

Kθ(x(j), x(i)) := 2
n∑
l=1

∂S(x(j); θ)
∂θl

∂S(x(i); θ)
∂θl

.

Note that Kθ(t) depends on the current setting θ(t) of trainable parameters. However,
it turns out that in the limit when W , and hence n, tends to infinity, Kθ(t) is given
for all t by the average

Kσ,L(x, x ′) := E[Kθ(0)(x, x ′)], x, x ′ ∈ Rd,
of Kθ(0) over the randomness in θ(0). The notation Kσ,L is meant to emphasize that
this limiting kernel depends on the network depth L and the activation function
σ; see Jacot et al. (2018) and subsequent work. Thus the training dynamics are

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

438 R. DeVore, B. Hanin and G. Petrova

summarized by

v
(t+1)
i = v

(t)
i − ηt

m∑
j=1

Kσ,L(x(j), x(i))(v(t)
j − yj). (11.11)

The term multiplied by ηt on the right-hand side is precisely the derivative with
respect to vi of

‖v(t) − y‖2Kσ,L :=
m∑

j,i=1
Kσ,L(x(j), x(i))(v(t)

j − yj)(v(t)
i − yi),

where v(t)− y := (v(t)
1 − y1, . . . , v

(t)
m − ym) and the norm is with respect to the RKHS

structure determined by Kσ,L .
This derivation shows that in the case of small step sizes and large widths, using

gradient descent on the loss function L (see (11.3)) for neural networks of fixed
depth is similar to using gradient descent for the least-squares regression problem
in the RKHS determined by Kσ,L .

While the discussion above gives some view of what gradient descent minim-
ization is doing, a satisfactory understanding of why overparametrized learning
generalizes well remains elusive. This is an important but poorly understood topic
with a rapidly growing literature; see Ghorbani, Mei, Misiakiewicz and Montanari
(2021), Bartlett, Long, Lugosi and Tsigler (2020) and Chizat, Oyallon and Bach
(2019).

11.3.4. Stability of gradient descent
A natural question when applying gradient descent to find an approximant to the
underlying function is its stability as a numerical algorithm. That is, if we slightly
change the input data (the data sites and the values assigned to these points), how
does this affect the output of the numerical algorithm? In this section we ask some
natural questions that would aid our understanding of stability.
In our earlier treatment of stability (see Section 5.5) we assumed full access to

the target function f in the formulation of what stability meant and what was an
optimal performance of a stable recovery when using nonlinear manifolds. Recall
that the optimal recovery rate on a model class K was given by the stable widths
δ∗n,γ(K)X , and these were connected to the entropy of K .
Let us denote the data provided to us by

D := {(x(i), f (x(i))}, x(i) ∈ Rd, f (x(i)) ∈ R, i = 1, . . . ,m.

So D is a collection of m points in Rd+1 and D itself can be viewed as a point in
R(d+1)m. We let Σn = ΥW,L := ΥW,L(ReLU; d, 1) be the output set of the neural
network architecture that has been chosen. Here n is the total number of parameters
used to describe the elements of Σn, i.e. n = n(W, L). We let an : D 7→ θ(D)
denote the mapping of the data into the parameters θ(D) chosen by the numerical

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

Neural network approximation 439

algorithm which, for the time being, we assume is based on gradient descent. Then
An(D) = Mn(an(D)) ∈ Σn is the output of the algorithm and the learned surrogate.

Question 1. What are the regularity properties of An? Is it continuous or perhaps
even smoother?

Of course, the answer will depend on the step size restrictions imposed during the
steps of gradient descent and, in addition, on the stopping criteria for the iterations.
Recall that we know from Section 9.1 that Mn is locally Lipschitz, that is, on each
bounded set B in Rn it is Lipschitz with Lipschitz constant γB. This leads us to ask
the next question.

Question 2. On which compact sets in Rn does Mn have a reasonable Lipschitz
constant?

Some information about this question can be extracted from our discussion in
Section 9.1, but the analysis there was quite crude. Given an answer to Question 2,
we would like an to map into such a ball, which leads us to the next question.

Question 3. What can be said about the range of an as it relates to the initial
parameter guess and subsequent step size restrictions?

Our next questions centre on whether An(D) is a good surrogate. Although
model classes do not appear in the construction of An, there is a belief that An(D)
provides a good surrogate for the target function f that gave rise to the data. If
this is indeed the case, then this statement needs an analytic formulation. One such
possible answer is that An is good for a universal collection of model classes. To
try to formulate this, let us now introduce a model class K into the picture, where
K ⊂ X is a compact subset of X . We take the view that K exists but is unknown
to us.
Given such a model class K , the data sets given to us are now of the form

D = D(f), f ∈ K , where f (x(i)) are the observed values at the data sites x(i),
i = 1, . . . ,m. We can further add in variability of the data sites by introducing
X := (x(i))m

i=1. In this way, we can view the data provided to depend on both
the selection of sites and the f ∈ K , and write D(X , f). One can then revisit
Questions 1–3 in this setting.
We can now view An as a map An : X × K → Σn and treat it as a random

variable. This would allow us to measure its performance in expectation or with
high probability. At this point there would be no need to require the mapping an to
be given by gradient descent but rather put gradient descent into competition with
more general mappings. This would lead to various notions of optimal performance
similar to those considered in information-based complexity; see e.g. Traub and
Wozniakowski (1980). One of these is

Em,n(K)X := inf
#(X)=m;An ∈A

sup
f ∈K
‖ f − An(X , f)‖X, (11.12)

where the infimum is taken over a class A of algorithms An, perhaps imposing

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492921000052

440 R. DeVore, B. Hanin and G. Petrova

some stability on An. Another meaningful measure of optimality would involve
expected performance over random draws X .

Whatever measure of performance is chosen, one can introduce a corresponding
concept of width. Now the width δm,n(K)X for a model class K would depend on
both m and n, and the properties imposed on the algorithms inA such as Lipschitz
mappings. With such a width in hand, one can now ask for lower and upper bounds
for these widths.

Acknowledgement
All three authors were supported byMURI grant N00014-20-1-2787, administered
through the US Office of Naval Research. RD and GP were supported by NSF
grant DMS-1817603, NSF TRIPODS grant CCF-1934904, and BH was supported
by NSF grant DMS-1855684.

References
R. A. Adams and J. J. F. Fournier (2003), Sobolev Spaces, Elsevier.
M. Ali and A. Nouy (2020), Approximation of smoothness classes by deep ReLU networks.

Available at arXiv:2007.15645v1.
Z. Allen-Zhu, Y. Li and Z. Song (2019), A convergence theory for deep learning via

over-parameterization, in Proceedings of the 36th International Conference on Machine
Learning (ICML2019) (K.Chaudhuri andR. Salakhutdinov, eds), Vol. 97 of Proceedings
of Machine Learning Research, PMLR, pp. 242–252.

R. Arora, A. Basu, P. Mianjy and A. Mukherjee (2018a), Understanding deep neural
networks with rectified linear units, in 6th International Conference on Learning Rep-
resentations (ICLR 2018). Available at https://openreview.net/forum?id=B1J_rgWRW.

S. Arora, R. Ge, B. Neyshabur and Y. Zhang (2018b), Stronger generalization bounds
for deep nets via a compression approach, in Proceedings of the 35th International
Conference on Machine Learning (ICML 2018) (J. Dy and A. Krause, eds), Vol. 80 of
Proceedings of Machine Learning Research, PMLR, pp. 254–263.

F. Bach (2017), Breaking the curse of dimensionality with convex neural networks, J.Mach.
Learn. Res. 18, 1–53.

R. Balestriero and R. Baraniuk (2021), MadMax: Affine spline insights into deep learning,
Proc. IEEE 109, 704–727.

A. R. Barron (1993), Universal approximation bounds for superpositions of a sigmoidal
function, IEEE Trans. Inform. Theory 39, 930–945.

A. R. Barron (1994), Approximation and estimation bounds for artificial neural networks,
Mach. Learn. 14, 115–133.

P. L. Bartlett, D. J. Foster and M. Telgarsky (2017), Spectrally-normalized margin bounds
for neural networks, in Advances in Neural Information Processing Systems 30 (NIPS
2017) (I. Guyon et al., eds), Curran Associates, pp. 6240–6249.

P. L. Bartlett, N. Harvey, C. Liaw and A. Mehrabian (2019), Nearly-tight VC-dimension
and pseudodimension bounds for piecewise linear neural networks, J. Mach. Learn. Res.
20, 1–17.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://arxiv.org/abs/2007.15645v1
https://openreview.net/forum?id=B1J_rgWRW
https://doi.org/10.1017/S0962492921000052

Neural network approximation 441

P. L. Bartlett, P. M. Long, G. Lugosi and A. Tsigler (2020), Benign overfitting in linear
regression, Proc. Natl Acad. Sci. 117, 30063–30070.

C. Bennett and R. Sharpley (1990), Interpolation of Operators, Academic Press.
Y. Benyamini and J. Lindenstrauss (2000), Geometric Nonlinear Functional Analysis 1,

Vol. 48 of Colloquium Publications, American Mathematical Society.
J. Bergh and Lofstrom (1976), Interpolation Spaces: An Introduction, Springer.
P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk (2011),

Convergence rates for greedy algorithms in reduced basis methods, SIAM J. Math. Anal.
43, 1457–1472.

P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk (2017), Data
assimilation in reduced modeling, SIAM/ASA J. Uncertain. Quantif. 5, 1–29.

H. Bölcskei, P. Grohs, G. Kutyniok and P. Petersen (2019), Optimal approximation with
sparsely connected deep neural networks, SIAM J. Math. Data Sci. 1, 8–45.

O. Bousquet, S. Boucheron and G. Lugosi (2005), Theory of classification: A survey of
some recent advances, ESAIM Probab. Statist. 9, 323–375.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam and P. Vandergheynst (2017), Geometric
deep learning: Going beyond Euclidean data, IEEE Signal Process. Mag. 34, 18–42.

A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme and G. Turinici (2012), A priori con-
vergence of the greedy algorithm for the parameterized reduced basis, Math. Model.
Numer. Anal. 46, 595–603.

B. Carl (1981), Entropy numbers, s-numbers, and eigenvalue problems, J. Funct. Anal. 41,
290–306.

L. Chizat, E. Oyallon and F. Bach (2019), On lazy training in differentiable programming,
in Advances in Neural Information Processing Systems 32 (NeurIPS 2019) (H. Wallach
et al., eds), Curran Associates, pp. 2937–2947.

A. Cohen, R. DeVore, G. Petrova and P. Wojtaszczyk (2020), Optimal stable nonlinear
approximation. Available at arXiv:2009.09907.

M. Csiskos, A. Kupavskii and N.Mustafa (2019), Tight lower bounds on the VC-dimension
of geometric set systems, J. Mach. Learn. Res. 20, 1–8.

G. Cybenko (1989), Approximation by superpositions of a sigmoidal function, Math.
Control Signals Systems 2, 303–314.

I. Daubechies, R. DeVore, S. Foucart, B. Hanin and G. Petrova (2019), Nonlinear approx-
imation and (deep) ReLU networks. Available at arXiv:1905.02199 (to appear inConstr.
Approx.).

C. de Boor (1978), APractical Guide to Splines, Vol. 27 of AppliedMathematical Sciences,
Springer.

R. A. DeVore (1998), Nonlinear approximation, in Acta Numerica, Vol. 7, Cambridge
University Press, pp. 51–150.

R. A. DeVore and V. A. Popov (1988), Interpolation of Besov spaces, Trans. Amer. Math.
Soc. 305, 397–414.

R. A. DeVore and K. Scherer (1979), Interpolation of linear operators on Sobolev spaces,
Ann. of Math. 189, 583–599.

R. A. DeVore and R. C. Sharpley (1993), Besov spaces on domains in RD, Trans. Amer.
Math. Soc. 335, 843–864.

R. A. DeVore and V. N. Temlyakov (1996), Some remarks on greedy algorithms, Adv.
Comput. Math. 5, 173–187.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://arxiv.org/abs/2009.09907
https://arxiv.org/abs/1905.02199
https://doi.org/10.1017/S0962492921000052

442 R. DeVore, B. Hanin and G. Petrova

R. A. DeVore, R. Howard and C. Micchelli (1989), Optimal non-linear approximation,
Manuscripta Math. 4, 469–478.

R. A. DeVore, G. Kyriazis, D. Leviatan and V. Tikhomirov (1993), Wavelet compression
and nonlinear n-widths, Adv. Comput. Math. 1, 197–214.

R. A. DeVore, K. I. Oskolkov and P. P. Petrushev (1997), Approximation by feed-forward
neural networks, Ann. Numer. Math. 4, 261–287.

R. A. DeVore, G. Petrova and P. Wojtaszczyk (2011), Approximation of functions of few
variables in high dimensions, Constr. Approx. 33, 125–143.

R. A. DeVore, G. Petrova and P. Wojtaszczyk (2013), Greedy algorithms for reduced basis
in Banach spaces, Constr. Approx. 37, 455–466.

S. S. Du, J. Lee, H. Li, L. Wang and X. Zhai (2019a), Gradient descent finds global
minima of deep neural networks, in Proceedings of the 36th International Conference
on Machine Learning (ICML 2019) (K. Chaudhuri and R. Salakhutdinov, eds), Vol. 97
of Proceedings of Machine Learning Research, PMLR, pp. 1675–1685.

S. S. Du, X. Zhai, B. Poczos and A. Singh (2019b), Gradient descent provably optimizes
over-parameterized neural networks, in 7th International Conference on Learning Rep-
resentations (ICLR 2019). Available at https://openreview.net/forum?id=S1eK3i09YQ.

N. Dym, B. Sober and I. Daubechies (2020), Expression of fractals through neural network
functions, IEEE J. Selected Areas Inform. Theory 1, 57–66.

G. K. Dziugaite and D. M. Roy (2017), Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters than training data, in
Workshop on Principled Approaches to Deep Learning (ICML 2017).

W. E and Q. Wang (2018), Exponential convergence of the deep neural network approxim-
ation for analytic functions, Sci. China Math. 61, 1733–1740.

W. E, C. Ma and L. Wu (2019), The Barron space and the flow-induced function spaces
for neural network models. Available at arXiv:1906.08039.

D. Elbrächter, D. Perekrestenko, P. Grohs and H. Bölcskei (2019), Deep neural network
approximation theory. Available at arXiv:1901.02220.

M. W. Frazier, B. Jawerth and G. Weiss (1991), Littlewood–Paley Theory and the Study
of Function Spaces, Vol. 79 of CBMS Regional Conference Series in Mathematics,
American Mathematical Society.

B. Ghorbani, S. Mei, T. Misiakiewicz and A. Montanari (2021), Linearized two-layers
neural networks in high dimension, Ann. Statist. 49, 1029–1054.

R. Gribonval, G. Kutyniok, M. Nielsen and F. Voigtlaender (2019), Approximation spaces
of deep neural networks. Available at arXiv:1905.01208.

I. Gühring, M. Raslan and G. Kutyniok (2020), Expressivity of deep neural networks.
Available at arXiv:2007.04759.

B. Hanin (2019), Universal function approximation by deep neural nets with boundedwidth
and ReLU activations, Mathematics 7, 992.

B. Hanin and D. Rolnick (2019), Deep ReLU networks have surprisingly few activation
patterns, in Advances in Neural Information Processing Systems 32 (NeurIPS 2019)
(H. Wallach et al., eds), Curran Associates, pp. 361–370.

M. Hata (1986), Fractals in mathematics, in Patterns and Waves: Qualitative Analysis of
Nonlinear Differential Equations (T. Nishida, M. Mimura and H. Fujii, eds), Vol. 18 of
Studies in Mathematics and Its Applications, Elsevier, pp. 259–278.

J. He, L. Li, J. Xu and C. Zheng (2020), ReLU deep neural networks and linear finite
elements, Comput. Math 38, 502–527.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://openreview.net/forum?id=S1eK3i09YQ
https://arxiv.org/abs/1906.08039
https://arxiv.org/abs/1901.02220
https://arxiv.org/abs/1905.01208
https://arxiv.org/abs/2007.04759
https://doi.org/10.1017/S0962492921000052

Neural network approximation 443

D. O. Hebb (1949), The Organization of Behavior: A Neuropsychological Theory, Wiley,
Chapman & Hall.

K. Hornik, M. Stinchcombe, H. White et al. (1989), Multilayer feedforward networks are
universal approximators, Neural Networks 2, 359–366.

A. Jacot, F. Gabriel and C. Hongler (2018), Neural tangent kernel: Convergence and gener-
alization in neural networks, in Advances in Neural Information Processing Systems 31
(NeurIPS 2018) (S. Bengio et al., eds), Curran Associates, pp. 8571–8580.

J. Klusowski and Barron (2018), Approximation by combinations of ReLU and squared
ReLU ridge functions with l1 and l0 controls, IEEE Trans. Inform. Theory 64, 7649–
7656.

A. Krizhevsky, I. Sutskever and G. E. Hinton (2012), ImageNet classification with deep
convolutional neural networks, inAdvances inNeural InformationProcessing Systems 25
(NIPS 2012) (F. Pereira et al., eds), Curran Associates, pp. 1097–1105.

Y. LeCun, Y. Bengio and G. Hinton (2015), Deep learning, Nature 521 (7553), 436–444.
C. Liu, L. Zhu and M. Belkin (2020), Toward a theory of optimization for over-

parameterized systems of non-linear equations: The lessons of deep learning. Available
at arXiv:2003.00307.

G. G. Lorenz, Y. Makovoz and M. von Golitschek (1996), Constructive Approximation:
Advanced Problems, first edition, Springer.

J. Lu, Z. Shen, H. Yang and S. Zhang (2020), Deep network approximation for smooth
functions. Available at arXiv:2001.03040.

V.Maiorov (1999), On best approximation by ridge functions, J. Approx. Theory 99, 68–94.
Y. Makovoz (1996), Random approximants and neural networks, J. Approx. Theory 85,

98–109.
H. N. Mhaskar and T. Poggio (2020), Function approximation by deep networks, Commun.

Pure Appl. Anal. 19, 4085–4095.
G. F. Montufar, R. Pascanu, K. Cho and Y. Bengio (2014), On the number of linear regions

of deep neural networks, in Advances in Neural Information Processing Systems 27
(NIPS 2014) (Z. Ghahramani et al., eds), Curran Associates, pp. 2924–2932.

G. Ongie, R. Willett, D. Soudry and N. Srebro (2020), A function space view of bounded
norm infinite width ReLU nets: The multivariate case, in 8th International Confer-
ence on Learning Representations (ICLR 2020). Available at https://openreview.net/
forum?id=H1lNPxHKDH.

J. Opschoor, P. Petersen and C. Schwab (2019a), Deep ReLU networks and high-order
finite element methods, SAM, ETH Zürich.

J. Opschoor, C. Schwab and J. Zech (2019b), Exponential ReLU DNN expression of
holomorphic maps in high dimension. SAM Research Report, ETH Zürich.

R. Parhi and R. D. Nowak (2020), Banach space representer theorems for neural networks
and ridge splines. Available at arXiv:2006.05626v2.

J. Peetre (1976), New Thoughts on Besov Spaces, Vol. 1 of Duke University Mathematics
Series, Mathematics Department, Duke University.

P. Petersen (2020), Neural network theory. Available at http://pc-petersen.eu/Neural_
Network_Theory.pdf.

P. Petersen and F. Voigtlaender (2018), Optimal approximation of piecewise smooth func-
tions using deep ReLU neural networks, Neural Networks 108, 296–330.

P. Petrushev (1988), Direct and converse theorems for spline and rational approximation
and Besov spaces, in Function Spaces and Applications, Vol. 1302 of Lecture Notes in
Mathematics, Springer, pp. 363–377.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://arxiv.org/abs/2003.00307
https://arxiv.org/abs/2001.03040
https://openreview.net/forum?id=H1lNPxHKDH
https://openreview.net/forum?id=H1lNPxHKDH
https://arxiv.org/abs/2006.05626v2
http://pc-petersen.eu/Neural_Network_Theory.pdf
http://pc-petersen.eu/Neural_Network_Theory.pdf
https://doi.org/10.1017/S0962492921000052

444 R. DeVore, B. Hanin and G. Petrova

P. Petrushev (1998), Approximation by ridge functions and neural networks, SIAM J. Math.
Anal. 30, 155–189.

A. Pinkus (1999), Approximation theory of the MLP model in neural networks, in Acta
Numerica, Vol. 8, Cambridge University Press, pp. 143–195.

A. Pinkus (2012),N-widths in Approximation Theory, Vol. 7 of A Series ofModern Surveys
in Mathematics, Springer Science & Business Media.

F. Rosenblatt (1958), The perceptron: A probabilistic model for information storage and
organization in the brain, Psychological Review 65, 386.

P. Savarese, I. Evron, D. Soudry andN. Srebro (2019), How do infinite width bounded norm
networks look in function space?, in Proceedings of the 32nd Conference on Learning
Theory (COLT 2019) (A. Beygelzimer and D. Hsu, eds), Vol. 99 of Proceedings of
Machine Learning Research, PMLR, pp. 2667–2690.

J. Schmidt-Hieber (2020), Nonparametric regression using deep neural networks with
ReLU activation, Ann. Statist. 48, 1875–1897.

Z. Shen, H. Yang and S. Zhang (2019), Nonlinear approximation via compositions, Neural
Networks 119, 74–84.

J. W. Siegel and J. Xu (2020), High order approximation rates for neural networks with
ReLUk activation functions. Available at arXiv:2012.07205.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schritt-
wieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al. (2016), Mastering the game
of Go with deep neural networks and tree search, Nature 529 (7587), 484–489.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton et al. (2017), Mastering the game of Go without human
knowledge, Nature 550 (7676), 354–359.

R. P. Stanley et al. (2004), An introduction to hyperplane arrangements, Geometric Com-
binatorics 13, 389–496.

E. M. Stein (1970), Singular Integrals and Differentiability Properties of Functions, Prin-
ceton University Press.

M. Telgarsky (2016), Representation benefits of deep feedforward networks, JMLR: Work-
shop and Conference Proceedings 49, 1–23.

J. Traub and H.Wozniakowski (1980), AGeneral Theory of Optimal Algorithms, Academic
Press.

M. Unser (2020), A unifying representer theorem for inverse problems and machine learn-
ing, Found. Comput. Math. doi:10.1007/s10208-020-09472-x.

V. Vapnik (1989), Statistical Learning Theory, Wiley-Interscience.
Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,

Q.Gao, K.Macherey et al. (2016), Google’s neuralmachine translation system: Bridging
the gap between human and machine translation. Available at arXiv:1609.08144.

D. Yarotsky (2017), Error bounds for approximations with deep ReLU networks, Neural
Networks 94, 103–114.

D. Yarotsky (2018), Optimal approximation of continuous functions by very deep ReLU
networks, in 31st Conference on Learning Theory (COLT 2018) (S. Bubeck et al., eds),
Vol. 75 of Proceedings of Machine Learning Research, PMLR, pp. 639–649.

T. Zaslavsky (1975), Facing Up To Arrangements: Face-Count Formulas for Partitions of
Space by Hyper-Planes, American Mathematical Society.

C. Zhang, S. Bengio, M. Hardt, B. Recht and O. Vinyals (2017), Understanding deep learn-
ing requires rethinking generalization, in 5th International Conference on Learning Rep-
resentations (ICLR 2017). Available at https://openreview.net/forum?id=Sy8gdB9xx.

https://doi.org/10.1017/S0962492921000052 Published online by Cambridge University Press

https://arxiv.org/abs/2012.07205
https://doi.org/10.1007/s10208-020-09472-x
https://arxiv.org/abs/1609.08144
https://openreview.net/forum?id=Sy8gdB9xx
https://doi.org/10.1017/S0962492921000052

	Introduction
	What is a neural network?
	ReLU networks
	Classical model classes: smoothness spaces
	Evaluation of nonlinear methods of approximation
	Approximation using ReLU networks: overview
	Approximation using single-layer ReLU networks
	Approximation using deep ReLU networks
	Stable approximation
	Approximation from data
	Using neural networks for data fitting
	References

