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Abstract
This article is concerned with the approximation and expressive powers of deep neu-
ral networks. This is an active research area currently producing many interesting
papers. The results most commonly found in the literature prove that neural networks
approximate functions with classical smoothness to the same accuracy as classical
linear methods of approximation, e.g., approximation by polynomials or by piecewise
polynomials on prescribed partitions. However, approximation by neural networks
depending on n parameters is a form of nonlinear approximation and as such should
be compared with other nonlinear methods such as variable knot splines or n-term
approximation from dictionaries. The performance of neural networks in targeted
applications such as machine learning indicate that they actually possess even greater
approximation power than these traditional methods of nonlinear approximation. The
main results of this article prove that this is indeed the case. This is done by exhibiting
large classes of functions which can be efficiently captured by neural networks where
classical nonlinear methods fall short of the task. The present article purposefully
limits itself to studying the approximation of univariate functions by ReLU networks.
Many generalizations to functions of several variables and other activation functions
can be envisioned. However, even in this simplest of settings considered here, a theory
that completely quantifies the approximation power of neural networks is still lacking.
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1 Introduction

Neural networks produce structured parametric families of functions that have been
studied and used for almost 70 years, going back to the work of Hebb in the late 1940’s
[15] and of Rosenblatt in the 1950’s [25]. In the last several years, however, their pop-
ularity has surged as they have achieved state-of-the-art performance in a striking
variety of machine learning problems, from computer vision [19] (e.g., self-driving
cars) to natural language processing [34] (e.g., Google Translate) and to reinforcement
learning (e.g., superhuman performance at Go [30,31]). Despite these empirical suc-
cesses, even their proponents agree that neural networks are not yet well-understood
and that a rigorous theory of how and why they work could lead to significant practical
improvements [3,20].

An often cited theoretical feature of neural networks is that they produce universal
function approximators [5,16] in the sense that, given any continuous target function
f on a compact domain and a target accuracy ε > 0, neural networks with enough
judiciously chosen parameters give an approximation to f within an error of size ε.
Their universal approximation capacity has been known since the 1980’s, yet it is
not the main reason why neural networks are so effective in practice. Indeed, many
other families of functions are universal function approximators. For example, one can
approximate a fixed univariate real-valued continuous target function f : [0, 1] → R

using Fourier expansions, wavelets, orthogonal polynomials, etc. [10]. All of these
approximation methods are universal. Not only that, but in these more traditional
settings, through the core results of Approximation Theory [7,10], we have a complete
understanding of the properties of the target function f which determine how well it
can be approximated given a budget for the number of parameters to be used. Such
characterizations do not exist for neural network approximation, even in the simplest
setting when the target function is univariate and the network’s activation function is
the Rectified Linear Unit (ReLU).

The neural networks used in modern machine learning are distinguished from those
popular in the 1980’s/90’s by an emphasis on using deep networks (as opposed to
shallow networks with one hidden layer). If the universal approximation property
were key to the impressive recent successes of neural networks, then the depth of the
network would not matter since both shallow and deep networks are universal function
approximators.

The present article focuses on the advantages of deep versus shallow architectures
in neural networks. Our goal is to putmathematical rigor into the empirical observation
that deep networks can approximate many interesting functions more efficiently, per
parameter, than shallow networks (see [12,13,26,33,36,37] for a selection of rigorous
results).

In recent years, there has been a number of interesting papers that address the
approximation properties of deep neural networks. Most of them treat ReLU net-
works since the rectified linear unit is the activation function of preference in many
applications, particularly for problems in computer vision. Let us mention, as a short
list, some papers most related to our work. It is shown in [11] that deep ReLU networks
can approximate functions of d variables as well as linear approximation by algebraic
polynomials with a comparable number of parameters. This is done by using the fact
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(proved by Yarotsky [36]) that power functions xν can be approximated with expo-
nential efficiency by deep ReLU networks. Yarotsky also showed that certain classes
of classical smoothness (Lipschitz spaces) can be approximated with rates slightly
better than that of classical linear methods [37]. The main advantage of deep neural
networks is that they can output compositions of functions cheaply. This fact has been
exploited by many authors (see e.g., [24], where this approach is formalized, and [2]
where this property is used to compare deep network approximation with nonlinear
shearlet approximation).

In the present paper, we address the approximation power of ReLU networks and, in
particular, whether such networks are truly more powerful in approximation efficiency
than the classical methods of approximation. Although most of our results generalize
to the approximation of multivariate functions, we discuss only the univariate setting
since this gives us the best chance for definitive results. Our main focus is on the
advantages of depth, i.e., what advantages are present in deep networks that do not
appear in shallow networks. We restrict ourselves to ReLU networks since they have
the simplest structure and should be easiest to understand.

We emphasize that when discussing approximation efficiency, we assume that f
is fully accessible and we ask how well f can be approximated by a neural network
with n parameters. This is in contrast to problems of data fitting where, instead of
full access to f , we only have some data observations about it. In the latter case,
the approximation can only use the given data and its performance would depend on
the amount and form of that data. Performance in data fitting is often formulated in
a stochastic setting in which it is assumed that the data is randomly generated and
both the observations and the gradient descent parameter updates are noisy. The data
fitting problem, using a specific form of approximation like neural networks, has two
components, commonly referred to as bias and variance. We are concentrating on the
bias component. It plays a fundamental role not only in data fitting but also in any
numerical procedures based on neural network approximation.

Given two integers W ≥ 2 and L ≥ 1, we let (precise definitions are given in the
next section)

ϒW ,L := {S : R → R, S is produced by a ReLU network of width W and depth L}, (1)

and denote by n(W , L) the number of its parameters. We fixW and study the approx-
imation families ϒW ,L when the number of layers L is allowed to vary. Our interest
is in understanding why taking L large, i.e., why using deep networks is beneficial.
One way to investigate the approximation power of ϒW ,L is to first compare it to
known nonlinear approximation families with essentially the same number of degrees
of freedom. Since every element in ϒW ,L is a Continuous Piecewise Linear (CPwL)
function, the classical approximation family closest to ϒW ,L is the nonlinear set

�n := {S : R → R, S is a CPwL function with at most n distinct breakpoints in (0, 1)}.

The elements of �n are also called free knot linear splines. We place the restriction
that the breakpoints are in (0, 1) because we are concerned with approximation on the
interval [0, 1].
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When n � n(W , L), the sets �n and ϒW ,L have comparable complexity in terms
of parameters needed to describe them, since the elements in �n are determined by
2n + 2 parameters. This comparison also probes the expressive power1 of depth for
ReLU networks because �W is (essentially) the same as the one-layer ReLU network
ϒW ,1, see (4).

Several interesting results [6,22,33] show that, for arbitrarily large k ≥ 1 and
n = n(W , L) sufficiently large,

ϒW ,L\�nk �= ∅, (2)

cf e.g., [33, Theorem 1.2]. This means that sufficiently deep ReLU networks with n
parameters can output certain CPwL functions whose number of breakpoints exceeds
any power of n (the increase of the network depth is necessary as k grows). The reason
for (2) is that composing two CPwL functions can increase the number of breakpoints,
allowing networks with L layers of width W to create roughly WL breakpoints for
very special choices of weights and biases [33]. By choosing to use the available
n parameters in a deep rather than shallow network, one can thus produce functions
withmanymore breakpoints than parameters, albeit these functions have a very special
structure.

The first natural question to answer in comparing �n with ϒW ,L is whether, for
every fixed W ≥ 2, each function S ∈ �n is in a corresponding set ϒW ,L with
n(W , L) � n, i.e., with a comparable number of parameters. This would guarantee we
donot lose anything in termsof expressive powerwhen consideringdeepnetworkswith
fixed widthW over shallow networks with fixed depth L . One of our results, Theorem
3.1, gives a resolution to this question and shows that up to a constant multiplicative
factor, fixed-widthReLUnetworks dependingonn parameters are at least as expressive
as the free knot linear splines �n . In other words, deep ReLU networks retain all of
the approximation power of free knot linear splines but also add something since they
can create functions which are far from being in �n . We want to understand the new
functions being created and how they can assist us in approximation and thus in data
fitting. In this direction, we showcase in Sects. 5 and 6 two classes of functions easily
produced by ReLU networks, one consisting of self-similar functions and the other
emulating trigonometric functions. Appending these classes to�n naturally provides a
powerful dictionary for nonlinear approximation. Similar observation was announced
in [12], where the authors noticed that highly oscillatory textures and the Weierstrass
function can be exponentially well approximated by sparse ReLU networks.

What types of results could effectively explain the increased approximation power
of deep networks as compared with other forms of approximation? One possibility is
to exhibit classes K of functions on which the decay rate of approximation error for
neural networks is better than for other methods (linear or nonlinear) while depending
on the same number of parameters. On this point, let us mention that by now there are
several theorems in the literature [2,4,23,28],which show that neural networks perform
as well as certain classical methods such as polynomials, wavelets, and shearlets (but
they do not show that neural networks perform any better than these methods), or

1 By expressivity of a neural network, we mean the collection of functions the network outputs.
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optimally represent certain function classes in terms of Kolmogorov rate-distortion
theory, [2,12].

We seek more convincing results providing compact classes K that are subsets of
Banach spaces X on which neural networks perform significantly better than other
methods of approximation. In this direction, we mention at the outset that such sets
K cannot be described by classical smoothness (such as Lipschitz, Sobolev, or Besov
regularity) because for classical smoothness classes K , there are known lower bounds
on the performance for any methods of approximation (linear or nonlinear). These
lower bounds are provided by concepts such as entropy and widths. However, let us
point out that there is an interesting little twist here that allows deep neural networks to
give a slight improvement over classical approximation methods for certain Lipschitz,
Sobolev, and Besov classes (see Theorems 7.3 and 7.4). This improvement is possible
when the selection of parameters used in the approximation is allowed to be unstable.

Our results on the expressive power of depth describe certain classes of functions
that can be approximated significantly better by ϒW ,L than by �n when n(W , L) is
comparable to n, see Sect. 7.3. The construction of these new classes of functions
exploits the fact that when S and T are functions in �n , their composition S ◦ T can
be produced by fixed-width ReLU networks depending on a number of parameters
comparable to n. This composition property allows one to construct broad classes of
functions, based on self similarity, whose approximation error decays exponentially
when using deep networks but only polynomially when using �n (due to the utter
failure of this composition property for �n).

2 Preliminaries and Notation

To set some notation, recall the definition of the ReLU function applied to x =
(x1, . . . , xd) ∈ R

d :

ReLU(x1, . . . , xd) = (ReLU(x1), . . . ,ReLU(xd)) = (max {0, x1} , . . . ,max {0, xd}).

Definition 2.1 A fully connected feed-forward ReLU network N with width W
and depth L is a collection of weight matrices M (0), . . . , M (L) and bias vectors
b(0), . . . , b(L). The matrices M (�), � = 1, . . . , L − 1, are of size W × W , whereas
M (0) has sizeW ×1, and M (L) has size 1×W . The biases b(�) are vectors of sizeW if
� = 0, . . . , L − 1, and a scalar if � = L . Each such networkN produces a univariate
real-valued function

A(L) ◦ ReLU ◦ A(L−1) ◦ · · · ◦ ReLU ◦ A(0)(x), x ∈ R,

where

A(�)(y) = M (�)y + b(�), � = 0, . . . , L.

We define ϒW ,L as the set of such functions resulting from all possible choices of
weights and biases.
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Fig. 1 Computation graph associated with a neural network with input/output dimension 1, width W = 3
and L hidden layers. The edges between layers � − 1 and � are labeled by the entries of the weight matrix
M(�−1). The j th node (called a neuron) at layer � computes the j th component of x(�) by taking the dot
product of the j th row of M(�−1) with the entries of x(�−1) and adding it to the j th entry of the vector
b(�−1) of biases and applying ReLU to this quantity
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Fig. 2 Computation graph and usual graph associated with H

Every S ∈ ϒW ,L is a CPwL function on the whole real line. For each input x := x (0) ∈
R, the value S(x (0)) of any S ∈ ϒW ,L is computed after the calculation of a series of
intermediate vectors x (�) ∈ R

W , called vectors of activation at layer �, � = 1, . . . , L ,
before finally producing the output x (L+1) = M (L)x (L) + b(L). The computations
performed by such a network to produce an S ∈ ϒW ,L are shown schematically in
Fig. 1.

For example, the hat function (also called triangle function) H : [0, 1] → R,
defined as

H(x) = 2(x − 0)+ − 4
(
x − 1

2

)
+ = [

2 −4
]
ReLU

{[
1
1

]
x +

[
0

− 1
2

]}

=
{
2x, 0 ≤ x ≤ 1

2 ,

2(1 − x), 1
2 < x ≤ 1,

(3)

belongs to ϒ2,1, see Fig. 2.
For L = 1, each function in ϒW ,1 is a CPwL function with at most W breakpoints

determined by the nodes in the first layer. Conversely, anyCPwL functionwith (W−1)
breakpoints interior to [0, 1], when considered on the interval [0, 1], is the restriction
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of a function from ϒW ,1 to that interval. Indeed, the elements S ∈ �W−1 on [0, 1]
can be represented as

ax + b +
W−1∑
j=1

m j (x − ξ j )+ = [
a m1 . . . mW−1

]
ReLU

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
1
. . .

1

⎤
⎥⎥⎦ x +

⎡
⎢⎢⎣

0
−ξ1
. . .

−ξW−1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

+ b,

where ξ1, . . . , ξW−1 are the interior breakpoints. In other words, as functions on [0, 1],
we have

�W−1 ⊂ ϒW ,1 ⊂ �W , (4)

which means that for largeW , the sets ϒW ,1 and �W are essentially the same. There-
fore, neural networks with one hidden layer have the same approximation power as
CPwL functions with the same number of parameters.

The number of parameters used to generate functions in ϒW ,L is

n(W , L) = W (W + 1)L − (W − 1)2 + 2. (5)

Not all counted parameters (the weights, i.e., entries of M (�), and biases, i.e., entries of
b(�)) are independent, since for instance some of the multipliers used in the transition
x (L) → x (L+1) could have been absorbed in the preceding layer. We write

n(W , L) � W 2L

to indicate that n(W , L) is comparable to W 2L , in the sense that there are constants
c,C > 0 such that c W 2L ≤ n(W , L) ≤ C W 2L—one could take c = 1/2 and
C = 2 when W ≥ 2 and L ≥ 2.

3 ReLU Networks are at Least as Expressive as Free Knot Linear
Splines

In this section,wefixW ≥ 4, L ≥ 2, and consider the setϒW ,L defined in (1).Our goal
is to prove that �n ⊂ ϒW ,L , where the number of its parameters n(W , L) ≤ Cn for a
certain fixed constant C . In order to formulate our exact result, we define q := �W−2

6 �
when W ≥ 8 and q := 2 for 4 ≤ W ≤ 7.

Theorem 3.1 Fix awidth W ≥ 4. For every n ≥ 1, the set�n of free knot linear splines
with n breakpoints is contained in the set ϒW ,L of functions produced by width-W
and depth-L ReLU networks, where

L =
{
2
⌈

n
q(W−2)

⌉
, n ≥ q(W − 2),

2, n < q(W − 2),

n(W , L) ≤
{
Cn, n ≥ q(W − 2),

W 2 + 4W + 1, n < q(W − 2),
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Fig. 3 Computation graph associated with ϒ
5,6

with C an absolute constant. Here, q := �W−2
6 � if W ≥ 8 and q := 2 if 4 ≤ W ≤ 7.

Before giving the proof of Theorem 3.1 in Sect. 3.2, we first introduce in Sect. 3.1
some notation.

3.1 Special Neural Networks

Our main vehicle for proving Theorem 3.1 is the construction of a special neural

network, whose output ϒ
W ,L

is subset of the output ϒW ,L of a RELU network with
width W and depth L2. Given a width W ≥ 4 and a depth L ≥ 2, we focus on
networks where a special role is reserved for two nodes in each hidden layer, see
Fig. 3, which depicts these nodes as the first (“top”) and at the last (“bottom”) node
of each hidden layer, respectively. The top neuron (first node), which is ReLU free,
is used to simply copy the input x . The concatenation of all these top nodes can be
viewed as a special “channel” (a term borrowed from the electrical engineering filter-
bank literature) that skips computation altogether and just carries x forward. We call
this the source channel (SC). The bottom neuron (last node) in each layer, which is
also ReLU free, is used to collect intermediate results. We call the concatenation of
all these bottom nodes the collation channel (CC). This channel never feeds forward
into subsequent calculations, it only accepts previous calculations. The rest of the
channels are computational channels (CmC). They consist of neurons (nodes), called
computational nodes, that are equipped with the ReLU function, applied to the input
and bias of that node. The fact that a special role is reserved for two channels enforces
the natural restriction W ≥ 4, since we need at least two computational channels. We
call these networks (with SC and CC) special neural networks, for which we introduce
a special notation, featuring a top and a bottom horizontal line to represent the SC and
CC, respectively. Namely, we set

ϒ
W ,L = {S : [0, 1] → R, S is produced by a special network of width W and depth L}.

We feel that these more structured networks are not only useful in proving results
on approximation but may be useful in applications such as data fitting. In practice,

2 Technically, the special networks differ from the usual ReLU networks because they contain ReLU-

free neurons, but the set of functions ϒ
W ,L

produced by them is always contained in the standard ReLU
network output ϒW ,L , see Remark 3.1.
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the designation of the first row as a SC and the last row as a CC amounts to having
matrices M (�) and vectors b(�) of the form

M (0) =
[
1 m(0)

2 . . . m(0)
W−1 0

]
, b(0) =

[
0 b(0)

2 . . . b(0)
W−1 0

]
,

M�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0
m(�)

2,1 m(�)
2,2 . . . m(�)

2,W−1 0

m(�)
3,1 m(�)

3,2 . . . m(�)
3,W−1 0

. . . . . .

m(�)
W−1,1 m(�)

W−1,2 . . . m(�)
W−1,W−1 0

m(�)
W ,1 m(�)

W ,2 . . . m(�)
W ,W−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, b(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
b(�)
2

b(�)
3
. . .

b(�)
W−1

b(�)
W

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, � = 1, . . . , L − 1, (6)

and

M (L) =
[
m(L)

1 . . . m(L)
W−1 1

]
, b(L) ∈ R.

Remark 3.1 Note that since the SC and CC are ReLU-free, the width-W depth-L
special networks do not form a subset of the set of width-W depth-L ReLU networks.
However, in terms of sets of functions produced by these networks, the inclusion

ϒ
W ,L ⊂ ϒW ,L (7)

is valid. Indeed, given S̄ ∈ ϒ
W ,L

, determined by the set of matrices and vectors
{M̄ (�), b̄(�)}, � = 0, . . . , L , we will construct {M (�), b(�)}, � = 0, . . . , L , such that
S̄ is also the output of a ReLU network with the latter matrices and vectors. First,
notice that the input x ∈ [0, 1], and therefore we have x = ReLU(x). Next, since the
bottom neuron in the �-th layer, � = 1, . . . , L , collects a function S̄(�)(x) depending
continuously on x ∈ [0, 1], there is a constant C� such that S̄(�)(x) + C� ≥ 0 for all
x ∈ [0, 1]. Hence, S̄(�)(x) = ReLU(S̄(�)(x)+C�)−C�. Therefore, the ReLU network
that produces S̄ has the samematricesM (�) = M̄ (�) and vectors b(�), � = 1, . . . , L−1,
where

b(�)
j = b̄(�)

j , j = 1, . . . ,W − 1, b(�)
W = b̄(�)

W + C�,

and b(L) = b̄(L) −∑L−1
�=1 C�.

Proposition 3.2 Special neural networks produce sets of CPwL functions that satisfy
the following properties:

(i) For all W , L, Q,

ϒ
W ,L + ϒ

W ,Q ⊂ ϒ
W ,L+Q

. (8)

(ii) For L < P,

ϒ
W ,L ⊂ ϒ

W ,P
.
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Fig. 4 Computational graph for summation

Proof To show (i), we first fix S ∈ ϒ
W ,L

and T ∈ ϒ
W ,Q

and use the following
‘concatenation’ of the special networks for S and T . The concatenated network has
the same input and first L hidden layers as the network that produced S. Its (L + 1)-st
layer is the same as the first hidden layer of the network that produced T except that
in the collation channel it places S rather than 0. The remainder of the concatenated
network is the same as the remaining layers of the network producing T except that
the collation channel is updated, see Fig. 4. The proof of (ii) follows the proof of (i)
with Q = P − L and T ≡ 0. ��

3.2 Proof of Theorem 3.1

In this section, we prove Theorem 3.1. Namely, we show that for any fixed width
W ≥ 4, any element T in �n is the output of a special network with a number of
parameters comparable to n.

Our constructive proof beginswithLemma3.3, inwhichwe create a special network
with only 2 layers that generates a particular collection of CPwL functions, see (9).
To describe this collection, we consider any positive integer N of the form N :=
q(W − 2), where q := �(W − 2)/6�. Since it is meaningful to have only cases when
q ≥ 1, we impose the restriction W ≥ 8. In the “Appendix,” we treat the remaining
cases when 4 ≤ W < 8. Notice that N is small and so at this stage we are only
showing how to construct CPwL functions with a few breakpoints.

Let x1 < · · · < xN ∈ (0, 1) be any N given breakpoints in (0, 1) and choose x0 and
xN+1 to be any two additional points such that 0 ≤ x0 < x1 and 1 ≥ xN+1 > xN . The
set of all CPwL functions which vanish outside of [x0, xN+1] and have breakpoints
only at the x0, x1, . . . , , xN , xN+1 is denoted by

S := S(x0, . . . , xN+1) (9)

and is a linear space of dimension N . We create a basis for S the following way.
We denote by ξ j , j = 1, . . . , (W − 2), the points ξ j := x jq , which we call
principal breakpoints and to each principal breakpoint ξ j , we associate q basis func-
tions Hi, j , i = 1, . . . , q. Here, Hi, j , see Fig. 5, is a hat function supported on
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. . . x(j−1)q−2 x(j−1)q−1 x(j−1)q xjq−q+1 xjq−q+2 . . . xjq−i . . . xjq−1 xjq xjq+1 . . .

(q − 1) points (q − 1) points (q − 1) points

=

ξj−1

=

ξj

(j − 1)st principal point jth principal point

H2,j−1 H1,j−1 Hq,j Hi,j H1,j

Fig. 5 Graphs of Hi, j

Ii, j := [x jq−i,, x jq+1] which takes the value 0 at the endpoints of this interval, the
value one at ξ j and is linear on each of the two intervals [x jq−i,, x jq ] and [x jq , x jq+1],
that is

Hi, j (x) =

⎧⎪⎨
⎪⎩

x−x jq−i
x jq−x jq−i

, if x ∈ (x jq−i , x jq),

0, if x /∈ Ii, j ,
x−x jq+1
x jq−x jq+1

, if x ∈ (x jq , x jq+1).

We rename these hat functions as φk , k = 1, . . . , N , and order them in such a way
that φk has leftmost breakpoint xk−1, that is φ jq−i+1 = Hi, j , j = 1, . . . ,W − 2,
i = 1, . . . , q. We say φk is associated with ξ j if ξ j is the principal breakpoint where
it is nonzero. We claim that these φk’s are a basis for S. Indeed, since there are N of
them, we need to only check that they are linearly independent. If

∑N
k=1 ckφk = 0,

then c1 = 0 because φ1 is the only one of these functions which is nonzero on [x0, x1].
We then move from left to right getting that each coefficient ck is zero.

Lemma 3.3 For any N breakpoints x1 < · · · < xN ∈ (0, 1), N := q(W − 2),

q := �(W − 2)/6�, W ≥ 8, S(x0, . . . , xN+1) ⊂ ϒ
W ,2

.

Proof Consider T ∈ S(x0, . . . , xN+1), T = ∑N
k=1 ckφk , and determine its principal

breakpoints ξ1, . . . , ξW−2 (every q-th point from the sequence (x1, x2, . . . , xN ) is a
principal breakpoint).We next represent the set of indices	 = {1, . . . , N } as a disjoint
union of K ≤ 6q ≤ W − 2 sets 	i ,

	 = ∪K
i=1	i ,

where the 	i ’s have the following two properties:

• For any 	′ ∈ {	1, . . . , 	K }, all of the coefficients ck with k ∈ 	′ of T have the
same sign.
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x0 xq−i xq xq+1 ξ2 ξ3 x4q−i x4q x4q+1 ξ5 ξ6 x7q−i x7q x7q+1 x8q

=

0

=

ξ1

=

ξ4

=

ξ7

S̃

T̃ = [S̃]+

Fig. 6 A typical T̃ computed by a node in the second layer of ϒ
W ,2

• If k, k′ ∈ 	′, then the principal breakpoints ξ j and ξ j ′ associated with φk, φk′ ,
respectively, satisfy the separation property | j − j ′| ≥ 3.

We can find such a partition as follows. First, we divide 	 = 	+ ∪ 	− where for
each i ∈ 	+, we have ci ≥ 0 and for each i ∈ 	−, we have ci < 0. We then divide
each of 	+ and 	− into at most 3q sets having the desired separation property. If
K < W − 2, we set 	K+1 = · · · = 	W−2 = ∅. It may also happen that some of the
	k’s, k ≤ K , are empty. In all cases for which 	k = ∅, we set Tk = 0, and write

T =
W−2∑
k=1

Tk, Tk :=
∑
i∈	k

ciφi , k = 1, . . . ,W − 2. (10)

Notice that the φi , i ∈ 	k �= ∅, have disjoint supports and so ci = Tk(ξ j ) where ξ j is
the principal breakpoint associated with φi .

We next show that each of the Tk corresponding to a nonempty 	k is of the form
±[Sk(x)]+ for some linear combination Sk of 1, x , (x − ξ1)+, . . . , (x − ξW−2)+. Fix
k and first consider the case where all of the ci in	k are nonnegative. We consider the
CPwL function Sk which takes the value ci at each principal breakpoint ξ j associated
with an i ∈ 	k . At the remaining principal breakpoints, we assign negative values to
the Sk(ξ j )’s. We choose these negative values so that for any i ∈ 	k , Sk vanishes at
the leftmost and rightmost breakpoints of all φi with i ∈ 	k . This is possible because
of the separation property. It follows that [Sk(x)]+ = Tk(x). A similar construction
applies when all the coefficients in 	k are negative. In this case, Tk = −[Sk]+ for
the constructed Sk . We have suggested a particular strategy for defining the 	k’s
in “Appendix 9.1”. A typical Tk , resulting from this strategy, which for the sake of
simplicity we call T̃ , is pictured in Fig. 6.

We can now describe the ReLU network that generates T . Since it is special, we
focus only the computational channels. The computational nodes in the first layer
are (x − ξ j )+, j = 1, . . . ,W − 2, where the ξ j ’s are the principal breakpoints. The
computational nodes in the second layer are equal to the [Sk]+ or 0. Because of (10),
the target T is the output of this network with output layer weights ±1 or 0. ��
Remark 3.2 If we want to generate all spaces S(x0, . . . , xN0+1) with N0 < N as
outputs of a special network, we can artificially add (N − N0) distinct points in the
interval (xN0 , xN0+1) and view the elements in S(x0, . . . , xN0+1) as CPwL with N
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x0 x1 xq(W−2)xq(W−2)+1 xN+1

. . .

. . .

=

0

=

1

S0

S1

SL SL−1

Fig. 7 Graphs of the functions S j , j = 0, . . . , L − 1, from Lemma 3.4

breakpoints vanishing outside [x0, xN0+1], even though the last N − N0 +1 points are
not really breakpoints, except possibly xN0+1.

Our next lemma shows how to carve up the target function T ∈ �n with a (possibly)
large number of breakpoints into “bitesize” pieces that are handled by Lemma 3.3.

Lemma 3.4 If T ∈ �N is any CPwL function on [0, 1] with N = q(W − 2)L,

q := �W−2
6 �, W ≥ 8, then T is the output of a special network ϒ

W ,2L
with at

most 2L layers.

Proof Let x1 < · · · < xN be the breakpoints of T in (0, 1) and set x0 := 0, xN+1 := 1.
We define �(x) := ax + b to be the linear function which interpolates T at the
endpoints 0, 1 and set S := T − �. We can write S = S0 + · · · + SL−1, where
S j ∈ �N is the CPwL function which agrees with S at the points xi , for all indices
i ∈ { jq(W − 2) + 1, . . . , ( j + 1)q(W − 2)} and is zero at all other breakpoints of T ,
see Fig. 7.

Clearly, see (9),

S j ∈ S(x jq(W−2), . . . , x( j+1)q(W−2)+1), j = 0, . . . , L − 1,

and therefore, it follows from Lemma 3.3 that each S j ∈ ϒ
W ,2
j . We concatenate the L

networks that produce S j ∈ ϒ
W ,2
j , j = 0, . . . , L − 1, as described in Proposition 3.2

and thereby produce S. In order to account for the linear term �(x), we assign weight
a and bias b to the output of the node of the source channel in the last layer of the
concatenated network, see Fig. 8. ��

Proof of Theorem 3.1: Now, we are ready to complete the proof of Theorem 3.1.
Case 1 We first consider the case when W ≥ 8. Let N1 := q(W − 2), where q :=
�W−2

6 �. Given n, if n ≥ N1, we choose L minimal such that N := q(W − 2)L ≥ n,
that is

L = L(n,W ) :=
⌈

n

q(W − 2)

⌉
.
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input x
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±1
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±1
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±1
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0 a

. . .

. . .

. . .

. . .

S0 S1 SL−1

S0(x) S0(x) + S1(x) S0(x) + S1(x) + · · · + SL−1(x) + ax + b

Fig. 8 Resulting network with 2L layers

Lemma 3.4 and inclusion (7) show that �N ⊂ ϒW ,2L and therefore �n ⊂ �N ⊂
ϒW ,2L . On the other hand, L < n

q(W−2) + 1. Using (5), we have that the number of

parameters in ϒW ,2L is

n(W , 2L) < 2W (W + 1)

(
n

q(W − 2)
+ 1

)
− (W − 1)2 + 2

= 2W (W + 1)

q(W − 2)
n + W 2 + 4W + 1.

Optimizing over W shows that the maximum of 2W (W+1)
q(W−2) over integers W ≥ 8 is

achieved at W = 13 and q = 1, giving the value 364
11 < 34. Hence,

n(W , 2L) < 34n + W 2 + 4W + 1 < 34n + 27q(W − 2) ≤ 61n,

where we used that W/13 ≤ q and q(W − 2) = N1 ≤ n.
On the other hand, if n < N1 := q(W − 2), then Lemma 3.4 and inclusion (7)

show that �n ⊂ �N1 ⊂ ϒW ,2. Then, we have

n(W , 2) = W 2 + 4W + 1,

as desired.
Case 2 The proof of the case 4 ≤ W ≤ 7 is given in “Appendix 9.2”. ��
Remark 3.3 A careful look at the proof of Theorem 3.1 gives in fact that

�n ⊂ ϒ
W ,L

rather than the inclusion �n ⊂ ϒW ,L , with the same values of L and bounds on the
number of parameters as described in Theorem 3.1.

Remark 3.4 We have not tried to optimize constants in the above theorem. If one
counts the actual number of parameters used in ϒW ,L (rather than the parameters
available), one obtains a much better constant. We know, in fact, that we can present
other constructions (different than those given here) which provide a better constant
in the statement of Theorem 3.1.
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4 More About Standard and Special Networks

In this section, we discuss further properties of the setsϒW ,L andϒ
W ,L

. We highlight
in particular Theorem 4.1, which is a generalization of Theorem 3.1, and whose proof
is deferred to “Appendix 9.3”. Note that the conclusion of Theorem 3.1 depends on
the ranges of the widthW and the parameter n in �n . To avoid excessive notation, we
concentrate on only one of these ranges in the theorem below.

Theorem 4.1 The following statement holds for compositions and sums of composi-
tions of free knot linear splines:

(i) For functions S1 ∈ �n1, . . . , Sk ∈ �nk with ni ≥ (W − 2)�W−2
6 �, and W ≥ 8,

the composition

Sk ◦ · · · ◦ S1 ∈ ϒW ,L , L = 2
k∑
j=1

⌈
n j

�W−2
6 �(W − 2)

⌉
, (11)

where the number of parameters describing ϒW ,L satisfies the bound

n(W , L) ≤ 34
k∑
j=1

n j + 2k(W 2 + W ).

(ii) For nonconstant functions Si, j ∈ �ni, j , i = 1, . . . ,m, j = 1, . . . , �i , with ni, j ≥
(W − 4)�W−4

6 �, and W ≥ 10, the sum of compositions satisfies

m∑
i=1

ai Si,�i ◦ · · · ◦ Si,1 ∈ ϒ
W ,L ⊂ ϒW ,L , (12)

where the number of parameters describing ϒW ,L satisfies the inequality

n(W , L) ≤ 44
m∑
i=1

�i∑
j=1

ni, j + 2W (W + 1)
m∑
i=1

�i .

Theorem 4.1 relies on some properties of standard and special networks. We state
and prove below the ones that are explicitly needed in the remainder of the paper,
starting with the following results.

Proposition 4.2 Let W ≥ 2. For any Y1 ∈ ϒW ,L1 , . . . ,Yk ∈ ϒW ,Lk ,

(i) The composition of the Yi satisfies

Yk ◦ · · · ◦ Y1 ∈ ϒW ,L , L = L1 + · · · + Lk; (13)
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input x

output
Y2 ◦ Y1(x)

. . .

. . .

. . .

. . .

Y1 Y2

. . .

. . .

. . .

. . .

Fig. 9 Network computing Y2 ◦ Y1
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Y1(x)
k−1∑

i=1
Yi(x)

k∑

i=1
Yi(x)

W
id
th

W

Fig. 10 Computational graph of the special network producing
∑k

j=1 Y j

(ii) The sum of the Yi satisfies

Y1 + · · · + Yk ∈ ϒ
W+2,L

, L = L1 + · · · + Lk; (14)

(iii) The sum of the (Yi )+ := ReLU ◦ Yi satisfies

(Y1)+ + · · · + (Yk)+ ∈ ϒ
W+2,L

, L = k + L1 + · · · + Lk . (15)

Proof The argument is constructive. First, to prove (13), letN j be the ReLU network
with widthW and depth L j producing Y j . We concatenate the networksN1, · · · ,Nk

as shown in Fig. 9 for the case ofY2◦Y1. The concatenated network has the same input
and first L1 hidden layers as the network N1. Its (L1 + 1)-st layer is the same as the
first hidden layer of the network N2. The weights between the L1-st and (L1 + 1)-st
layer are the output weights of Y1, multiplied by the input weights for the first hidden
layer of Y2. The remainder of the concatenated network is the same as the remaining
layers ofN2. Clearly, the resulting network will have n = L1+· · ·+Lk hidden layers.

To show (14), we concatenate the networks N1, . . . ,Nk as shown in Fig. 4 by
adding a source channel and a collation channel. The resulting network is a special
network with width W + 2 and depth L1 + · · · + Lk .
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Fig. 11 Computational graph of the special network producing
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m

i=1
aiT

◦i(x)

Fig. 12 Computational graph of the special network producing S

Finally, for (15), we concatenate the networksN1, . . . ,Nk by adding an extra layer
after each N j to perform the ReLU operation on its output, see Fig. 11. The rest of
the construction is similar to the one for (14). ��

The following two results will also be needed later. We use the notation g◦k , k ≥ 2,
to denote the function which results when g is composed with itself k − 1times.

Proposition 4.3 If T ∈ ϒw,L , 2 ≤ w ≤ W, then S = ∑m
i=1 ai T

◦i can be produced

by a special network with width W + 2 and depth Lm, that is S ∈ ϒ
W+2,Lm

.

Proof First, note that we have the inclusion ϒw,L ⊂ ϒW ,L for every 2 ≤ w ≤ W .
We can always assign zero weights and biases to any selected nodes of the network
producing ϒW ,L , and therefore we can always assume that T ∈ ϒW ,L . We adjust the
network generating T ◦m encountered in the proof of (13). We augment it to a special
network in such a way that after the computation of each of the T ◦i , we place ai T ◦i (x)
into the collation channel, see Fig. 12. The source channel is not needed in this case,
but we include it nonetheless since it will be used when creating the sum of S with
another function. ��
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Fig. 13 Computational graph of the special network producing Sg

Proposition 4.4 If T ∈ ϒW1,�, g ∈ ϒW2,�, and W1 +W2 = W, then Sg = ∑m
i=1 ai g ◦

T ◦i can be produced by a special network with width W + 2 and depth �(m + 1), i.e.,

Sg ∈ ϒ
W+2,�(m+1)

.

Proof As before, we use the network of width W1 generating T ◦m . For the other W2
channels, we use m copies of the network G producing g and combine them as shown
in Fig. 13. After the computation of each of the T ◦i , we place T ◦i (x) as an input in
the i-th copy of G and put ai times its output into the collation channel. Again, the
source channel is not needed here but can be used at a later time. ��

5 ReLU Networks Efficiently Produce Functions with Self Similarity

Having established that ReLU networks can output sums and compositions of CPwL
functions, we show that they also can output CPwL functions with certain self-similar
patterns. We formalize this structure below.

Let 0 < ξ1 < ξ2 < · · · < ξk < 1 be a fixed set of breakpoints and let S be any
element of S(ξ) := S(0, ξ1, . . . , ξk, 1). In particular, S vanishes outside of [0, 1]. We
think of S as a pattern. It is easy and cheap for ReLU networks to replicate this pattern
on many intervals. To describe this, let {J1, . . . , Jm} denote a collection ofm intervals
contained in [0, 1]whose interiors are pairwise disjoint. We order these intervals from
left to right. We say that a CPwL function F is self similar with pattern S ∈ S(ξ) if

F(x) =
m∑
i=1

S(hi (x − ai )), x ∈ [0, 1], (16)
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where Ji = [ai , bi ] and hi = |Ji |−1, i = 1, . . . ,m. Thus, the function F consists of a
dilated version of S on each of them intervals Ji . It has roughly km breakpoints but is
only described by 2(k +m) parameters. We show below that in order to produce such
a function F , ReLU networks only need a number of parameters of the order k + m,
and not km as would be naively inferred by regarding F as an element of �km .

Theorem 5.1 Let W ≥ 8. Any self-similar function F of the form (16) with S ∈
S(ξ) ⊂ �k belongs to ϒ

W ,L
, for a suitable value of L that satisfies n(W , L) ≤

C1(k + m) + C2W 2 for some absolute constants C1,C2 > 0.

Proof We start with the case when S is nonnegative and the intervals Ji = [ai , bi ] (not
just their interiors) are disjoint. For each i = 1, . . . ,m, we introduce a point ci in the
interval (bi , ai+1), where am+1 := 1. We consider the hat function Hi which is zero
outside [ai , ci ], equal to one at bi , and linear on [ai , bi ] and [bi , ci ], as well as the hat
function Ĥi which is zero outside [bi , ai+1], equal to one at ci , and linear on [bi , ci ]
and [ci , ai+1]. In the case when bm = 1, we cannot construct Hm and Ĥm as above,
and instead set Hm(x) = 1

1−am
(x − am)+ and Ĥm(x) = 0. With Ŝ(x) := S(1 − x),

we claim that

F = (
S ◦ T − Ŝ ◦ T̂

)
+, where T :=

m∑
i=1

Hi , T̂ :=
m∑
i=1

Ĥi .

This can be easily verified by separating into the three cases x ∈ [ai , bi ], x ∈ [bi , ci ],
and x ∈ [ci , ai+1]. According to Theorem 3.1, we have S, Ŝ ∈ ϒW−4,L ′

with either
W 2L ′ � n(W − 4, L ′) ≤ C ′k or L ′ = 2, and T , T̂ ∈ ϒW−4,L ′′

with either W 2L ′′ �
n(W − 4, L ′′) ≤ C ′′m or L ′′ = 2. Then, by Proposition 4.2, we obtain that both

S ◦ T , Ŝ ◦ T̂ ∈ ϒW−4,L ′+L ′′
, that their difference S ◦ T − Ŝ ◦ T̂ ∈ ϒ

W−2,2(L ′+L ′′) ⊂
ϒW−2,2(L ′+L ′′). At last, the function F = (

S ◦ T − Ŝ ◦ T̂
)
+ ∈ ϒ

W ,L ′′′
, where

L ′′′ = 1 + 2(L ′ + L ′′), and therefore n(W , L ′′′) � W 2L ′′′ ≤ c1(k + m) + c2W 2.
Now, in the case of a general pattern S with k breakpoints, we write S = S+ − S−,

where S+, S− are nonnegative, vanish outside [0, 1], and have k′ ≤ 2k breakpoints.
We also decompose each sum (16) corresponding to S+ and S− into a sum over
odd indices and a sum over even indices to guarantee disjointness of the underlying
intervals. In this way, F is represented as a sum of the ReLU of four functions of the

form (Si ◦ Ti − Ŝi ◦ T̂i ) each of them belonging to ϒ
W−2,2(L ′+L ′′)

and according to

Proposition 4.2, it follows that F ∈ ϒ
W ,L

, where L = 4 + 8(L ′ + L ′′). Finally, a
parameter count gives

n(W , L) � W 2L = 4W 2 + 8W 2(L ′ + L ′′) ≤ C1(k + m) + C2W
2,

where C1 and C2 are absolute constants and concludes the proof. ��
Remark 5.1 The above argument also works if the condition S ∈ S(ξ) ⊂ �k is
replaced by S ∈ ϒW−4,L , where S(0) = S(1) and n(W − 4, L) ≤ Ck, with C being
an absolute constant.
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Fig. 14 Graphs of C, S, C3, and S3

6 ReLU Networks are at Least as Expressive as Fourier-like Sums

In this section, we show that ReLU networks can efficiently produce linear combi-
nations of functions from a certain Riesz basis that emulates the trigonometric basis.
The main point to emphasize here is that the linear combinations we consider can
involve any of these basis functions not just the first consecutive ones. Such a linear
combination consisting of n basis functions is commonly referred to as an n term
approximation from a dictionary (a basis in our case). Approximation by such sums
is a classic example of nonlinear approximation.

To describe the Riesz basis we have in mind, we consider the functions C,S :
[0, 1] → R, given by

C(x) :=
{
1 − 4x, x ∈ [0, 1/2),
4x − 3, x ∈ [1/2, 1], S(x) :=

⎧⎨
⎩

4x, x ∈ [0, 1/4),
2 − 4x, x ∈ [1/4, 3/4),
4x − 4, x ∈ [3/4, 1].

Next, for each k ≥ 1, we introduce Ck,Sk : [0, 1] → R, defined for any x ∈ [0, 1] by

Ck(x) := C(kx − �kx�), Sk(x) := S(kx − �kx�).

Examples of representatives of this family of functions are depicted in Fig. 14. The
system F := (Ck,Sk)k≥1 is an important example of a family of CPwL functions,
since it forms a Riesz basis for L0

2[0, 1], the set of square integrable functions on
[0, 1] with zero mean. Namely, the following statement holds.

Proposition 6.1 The system (Ck,Sk)k≥1 is a Riesz basis for L0
2[0, 1], that is it spans

L0
2[0, 1] and there are absolute constants c,C > 0 such that, for any two sequences

a, b ∈ �2(N) of real numbers, we have

c
∑
k≥1

(a2k + b2k ) ≤
∥∥∥∥
∑
k≥1

(akCk + bkSk)

∥∥∥∥
2

L2[0,1]
≤ C

∑
k≥1

(a2k + b2k ). (17)
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Proof The proof of this statement is deferred to “Appendix 9.4” ��
The following theorem shows how we can produce via ReLU networks 2k-term linear
combinations of elements from F with a good control on the depth L .

Theorem 6.2 Let W ≥ 6. For every set of indices 	 ⊂ N, the set

F	 :=
{∑

j∈	

(a jC j + b jS j ), a j , b j ∈ R, j ∈ 	, |	| = k

}
⊂ ϒW ,L ,

where

L = 2

⌈
k

�W−2
4 �

⌉
(�log2(λ)� + 2), with λ := max	,

and the wights and biases in this network are bounded by max j∈	{|a j |, |b j |, 8}.
Proof With H denoting the hat function fromFig. 2,weobserve that H◦m = H◦· · ·◦H
is a sawtooth function, see Fig. 15, i.e., a CPwL function taking alternatively the
values 0 and 1 at its breakpoints �2−m , � = 0, 1, . . . , 2m . Note that the restriction of
the function (2mx − �2mx�) on each interval [�2−m, (� + 1)2−m) is a linear function
passing through (�2−m, 0) with slope 2m . Using the definitions of C and H◦m , one
can easily see that

C2m (x) = C(2mx − �2mx�) = C(H◦m(x)).

Since H and C = 1− 2H can both be produced by ReLU networks of width 2 and
depth 1, it follows from (13) that C2m ∈ ϒ2,m+1, m = 0, 1, . . . , and that all entries of
the weight matrices and bias vectors of this ReLU network are bounded by 8, see (13)
and Fig. 2.

Next, given an integer j ≥ 1, we find the smallest m ∈ N0 with the property
j ≤ 2m . In view of C j (x) = C2m ( j2−mx), j ≤ 2m , we also derive that C j ∈ ϒ2,m+1 =
ϒ2,�log2 j�+1. Likewise, because S can be produced by a ReLU network of width 2
and depth 2 (by virtue of the identity S(x) = C2(x/2+3/8), x ∈ [0, 1]), we can show
that S j ∈ ϒ2,m+2 = ϒ2,�log2 j�+2. Thus, we have established that according to (14),
for each j ∈ 	,

a jC j + b jS j ∈ ϒ
4,2�log2 j�+4 ⊂ ϒ4,2(�log2 λ�+2), where λ := max	, (18)

and all entries of the weight matrices and bias vectors in this neural network are
bounded by max{|a j |, |b j |, 8}. Let us denote by p := 2(�log2 λ� + 2). By stacking
networks on top of each other, a sum of �W−2

4 � terms a jC j + b jS j belongs to the

set ϒ4�W−2
4 �,p ⊂ ϒW−2,p. Then, again by (14), a sum of k ≤ �k/�W−2

4 �� × �W−2
4 �

elements a jC j + b jS j belongs to ϒW ,�k/�(W−2)/4��p, as announced. ��
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Fig. 15 Graphs of H , H◦2, and H◦3

Remark 6.1 Each element of the set F	 is described by 2k parameters, while the
number of parameters n(W , L) for the set ϒW ,L above has the order of W 2L �
Wk log2(λ). Ignoring the logarithmic factor, this is comparable with 2k only when the
width W is viewed as an absolute constant.

We can take another approach and rather than stacking the networks producing S j

and C j on the top of each other, concatenate them into a special network with width
W = 4. This way, we will obtain that

F	 ⊂ ϒ4,2k(�log2(λ)�+2).

Remark 6.2 One can perform Fourier basis approximation via ReLU networks using
the standard approach where, as it has been done for other bases such as wavelets,
for example, one directly approximates each function from the (real) Fourier basis
(1, cos(2πkx), sin(2πkx))k≥1 using ReLU networks of constant width. An effort in
this direction is Theorem IV.1 in [12], where using the fact that cos(ax) is an analytic
function, the authors show that for every ε ∈ (0, 1/2) and a ∈ R

+, there is a ReLU
networkwithwidthW = 16, depth L = O(

[
log(1/ε)

]2+log a), and boundedweights

and biases (by an absolute constant) that outputs S ∈ ϒ16,O([log(1/ε)]2+log a) such that

‖S − cos(a·)‖C[−1,1] ≤ ε.

In particular, for ε = 2−n , a = 2π j , S ∈ ϒ16,O(n2+log j). One can now concatenate
or stack these networks, as shown above, to produce a ReLU network whose out-
put approximates a Fourier sum,

∑
j∈	(a j cos(2π j x) + b j sin(2π j x)) to a certain

accuracy. While this is certainly a viable strategy to emulate Fourier basis approx-
imation via ReLU neural networks, it is quite different from the approach above,
where we use directly the highly oscillatory outputs (Ck,Sk)k≥1 of ReLU networks
with constant width and bounded weights and biases as our building blocks in the
approximation. Even though one can show that (Ck,Sk)k≥1 are linear splines with
breakpoints the extrema of (cos(2πkx), sin(2πkx))k≥1, respectively, that interpolate
the latter functions at these points and the endpoints of [0, 1], and thus can be viewed
as approximations to the Fourier basis, they themselves are Riesz basis for L0

2[0, 1].
The latter fact circumvents the role of the Fourier basis and makes any error estimates
more or less straightforward.
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7 Approximation by (Deep) Neural Networks

So far, we have seen in Sects. 3, 5, and 6 that ReLU networks can produce free knot
linear splines, self-similar functions, and expansions in Fourier-like Riesz basis of
CPwL functions using essentially the same number of parameters that are used to
describe these sets. This implies that ReLU networks are at least as expressive as any
of these sets of functions. In fact, they are at least as expressive as the union of these
sets, which intuitively forms a powerful incoherent dictionary.

We are more interested in the approximation power of deep neural networks rather
than their expressiveness.Of course, one expects these two concepts are closely related.
The remainder of this paper aims at providing convincing results about the approx-
imation power of ReLU networks that establishes their superiority over the existing
and more traditional methods of approximation. We shall do so by concentrating on

special networks ϒ
W+2,L

with a fixed width W + 2. We introduce the notation

ϒm := ϒ
W+2,m ⊂ ϒW+2,m, when m ≥ 1,

and ϒ0 := {0}, and formally define the approximation family

ϒ := (ϒm)m≥0.

The number of parameters determining the set ϒm is n(W + 2,m) � W 2m, and
in going further, we shall refer to them as roughly W 2m. Recall that according to
Proposition 3.2, this nonlinear family possesses the following favorable properties:

• Nestedness: ϒm′ ⊂ ϒm when m′ ≤ m;
• Summation property: ϒm′ + ϒm ⊂ ϒm′+m .

7.1 Nonlinear Approximation

Let X be any Banach space of (equivalence classes of) functions defined on [0, 1].
The typical examples of X are the L p[0, 1] spaces, 1 ≤ p ≤ ∞, C[0, 1], Sobolev and
Besov spaces. Our only stipulation on X , at this point, is that it should contain all con-
tinuous piecewise linear functions on [0, 1]. Given f ∈ X , we define its approximation
error when using deep neural networks to be

σm( f , ϒ)X := inf
S∈ϒm

‖ f − S‖X , m ≥ 0.

Since ϒ0 := {0}, we have σ0( f , ϒ)X = ‖ f ‖X . Given a compact subset K ⊂ X , we
define the performance on K to be

σm(K , ϒ)X := sup
f ∈K

σm( f , ϒ)X , m ≥ 0.

In other words, the approximation error on the class K is the worst error.
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In a similar way, we define approximation error for other approximation fami-
lies, in particular σm( f , �)X and σm(K , �)X when � := (�m)m≥0 is the family
of continuous piecewise linear functions. We want to understand the decay rate of
(σm( f , ϒ)X )m≥0 for individual functions f and of (σm(K , ϒ)X )m≥0 for compact
classes K ⊂ X and to compare them with the decay rate for other methods of approx-
imation.

Another common way to understand the approximation power of a specific method
of approximation such as neural networks is to characterize the following approxima-
tion classes. Given r > 0, the approximation class Ar (ϒ)X , r > 0, is defined as the
set of all functions f ∈ X for which

‖ f ‖Ar (ϒ)X
:= sup

m≥0
(m + 1)rσm( f , ϒ)X

is finite. While approximation rates other than (m + 1)−r are also interesting, under-
standing the classes Ar , r > 0, matches many applications in numerical analysis,
statistics, and signal processing. The approximation spacesAr (ϒ)X are linear spaces.
Indeed, if f , g ∈ Ar (ϒ)X and Sm, Tm ∈ ϒm provide the approximants to f , g satis-
fying

‖ f − Sm‖X ≤ M(m + 1)−r and ‖g − Tm‖X ≤ M ′(m + 1)−r , m ≥ 0,

then Sm + Tm provides an approximant to f + g satisfying

‖ f + g− (Sm + Tm)‖X ≤ (M + M ′)(m + 1)−r ≤ 2r (M + M ′)(2m + 1)−r , m ≥ 0.

Since Sm + Tm is in ϒ2m , we derive that f + g ∈ Ar (ϒ)X . We notice in passing that
‖ · ‖Ar (ϒ)X

is a quasi-norm.
Approximation classes are defined for other methods of approximation in the same

way as for neural networks. Thus, given a sequence X := (Xm)m≥0 of sets (linear
or nonlinear), X0 := {0}, we define Ar (X )X as above with ϒ replaced by X . The
approximation spaces for all classical linear methods of approximation have been
characterized for all r > 0 when X = L p[0, 1], 1 ≤ p < ∞, and X = C[0, 1].
For example, these approximation classes are known for approximation by alge-
braic polynomials, by trigonometric polynomials, and by piecewise polynomials on
an equispaced partition. Interestingly enough, these characterizations do not expose
any advantage of one classical linear method over another. All of these approximation
methods have essentially the same approximation classes. For example, the approxi-
mation classesAr for approximation in C[0, 1] by piecewise constants on equispaced
partition of [0, 1] are the Lip r spaces when 0 < r ≤ 1. Here, the space Lip r is
specified by the condition

| f (x) − f (y)| ≤ M |x − y|r

and the smallest M ≥ 0 for which this holds is by definition the semi-norm | f |Lip r .
The space Ar , 0 < r < 1, remains the same if we use trigonometric polynomials of
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degree m. The notion of Lipschitz spaces can be extended to r > 1 and then can be
used to characterize approximation spaces Ar when r > 1. We do not go into more
detail on approximation spaces for the classical linear spaces but we refer the reader
to [10] for a complete description.

The situation changes dramatically when using nonlinear methods of approxima-
tion. There is typically a huge gain in favor of nonlinear approximation in the sense
that their approximation classes are much larger than for linear approximation, and so
it is easier for a function to have the approximation order O(m−r ). We give just one
example, important for our discussion of neural networks, to pinpoint this difference. It
is easy to see that any continuous function of bounded variation is inA1(�). Namely,
given such a target function f defined on [0, 1] and with total variation one, we parti-
tion [0, 1] intom intervals such that the variation of f on each of these intervals is 1/m.
Then, the CPwL function which interpolates f at the endpoints of these intervals is in
�m and approximates f with error at most 1/m. Notice that such functions of bounded
variation are far from being in Lip 1 because they can change values quite abruptly.
This illustrates the central theme of nonlinear approximation that their approximation
spaces are much larger than their linear counterparts. We refer the reader to [7] for an
overview of nonlinear approximation.

7.2 Approximation of Classical Smoothness Spaces

Let us start this section by revisiting the statement of Theorem 3.1 and Remark 3.3,
from where we derive that for W ≥ 4

�m ⊂ ϒ
W ,
⌈

C
W2

⌉
m
, m ≥ q(W − 2),

and

�m ⊂ ϒ
W ,2

, 1 ≤ m < q(W − 2),

where q = 2 when 4 ≤ W ≤ 7 and otherwise q = �W−2
6 �. In addition, for any m

we can embed ϒW ,m ⊂ ϒ
W+2,m = ϒm by adding a source and collation channel.

Hence, in the view of the new notation, Theorem 3.1 can be restated the following
way.

Theorem 7.1 For W ≥ 4 and m ≥ q(W − 2), we have

�m ⊂ ϒγm, where γ = γ (W ) :=
⌈

C

W 2

⌉
,

and thus for any f ∈ C[0, 1]

σγm( f , ϒ)C[0,1] ≤ σm( f , �)C[0,1].
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For 1 ≤ m < q(W − 2),

�m ⊂ ϒ2,

and thus for any f ∈ C[0, 1] we have σ2( f , ϒ)C[0,1] ≤ σm( f , �)C[0,1].

Therefore, all upper bounds for the error of best approximation σm( f , �)C[0,1] by
the family � of free knot linear splines will hold for the error of best approximation
σγm( f , ϒ)C[0,1] by the family ϒ . We refer the reader to the paper [7] for a detailed
description of free knot spline approximation. To orient the discussion that follows,
we mention a small set of results on the approximation of functions in C[0, 1]. One
of the best known results for approximation by CPwL functions is that any Lip 1
function can be approximated in the norm of C[0, 1] by a CPwL with n breakpoints
to accuracy ‖ f ‖Lip 1n−1. This estimate can already be achieved by linear methods
of approximation since the breakpoints in this result can be chosen equally spaced,
and thus the approximation need not be chosen to nonlinearly dependent of f . On
the other hand, exploiting the nonlinearity of �n , one can show that the above rate
of approximation O(n−1) holds with the much weaker assumption f ′ ∈ L1[0, 1] in
place of the Lip 1 assumption (which is equivalent to assuming f ′ ∈ L∞[0, 1]). This
fact does not hold when using CPwL functions with equally spaced breakpoints, and
indeed, here one has to take full advantage of the nonlinear structure of �n . It follows
that these results hold equally well when using the approximation family ϒ in place
of �.

However, the question is can we say more when using deep neural networks in
approximating these traditional smoothness classes? The answer is quite surprising
and indicative. A series of results beginning with Yarotsky [36–38] and continuing in
[17,29] show that the approximation rate of some classical smoothness classes, e.g.,
Lipschitz classes, is dramatically better when using deep networks. Results are now
known for approximating the unit ball U (Ws(L p[0, 1]d)), s > 0, of this Sobolev
space with the approximation error measured in L p[0, 1]d for the same p ∈ [1,∞] .
We limit our discussion to the approximation in the C[0, 1] norm of classes like Lip
1 and refer the reader to the above references for the full spectrum of results. The first
result in this direction [37] showed that for W = 5,

sup
f ∈Lip 1

inf
S∈ϒW ,n

‖ f − S‖C[0,1] ≤ C
| f |Lip 1

n ln n
. (19)

This was a small but still surprising improvement over the optimal rateO(n−1) known
for approximation by �n . Later, for W = 12, this was improved to

sup
f ∈Lip 1

inf
S∈ϒW ,n

‖ f − S‖C[0,1] ≤ C | f |Lip 1n
−2. (20)

This is now known to be the optimal rate which cannot be improved. We shall return
to discussing this result in more detail in Sects. 7.2.2 and 8. For now, we want to show
how the original result (19) can be obtained from Theorem 5.1. The stronger results
(20) require a different technique known as bit extraction.
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7.2.1 The Space Lip˛

We begin by discussing the Lip α spaces, 0 < α ≤ 1. For this, we isolate a simple
remark about the Kolmogorov entropy of the unit ball of Lip α. Let Kα be the set of
functions f : [0, 1] �→ R with | f |Lip α ≤ 1 vanishing at the endpoints 0 and 1.

Lemma 7.2 For each 0 < α ≤ 1 and for each integer k ≥ 2, there are at most 3k

patterns S1, . . . , S3k from S(ξ), ξ = (0, 1
k , . . . ,

k−1
k , 1), such that whenever g ∈ Kα ,

there is a j ∈ {1, . . . , 3k} with

‖g − S j‖C[0,1] ≤ 2hα, h := 1

k
. (21)

In other words, the set Kα can be covered by 3k balls in C[0, 1] of radius 2k−α with
centers from S(ξ).

Proof We consider the following set P of patterns from S(ξ). For T to be in P , we
require that T (ξ j ) = m jhα , with m0, . . . ,mk integers satisfying the conditions

m0 = mk = 0, |m j − m j−1| ≤ 1, j = 1, . . . , k. (22)

There are at most 3k such patterns, i.e., #(P) ≤ 3k .
For the proof of our claim, given g ∈ Kα , wefirst notice that |g(ξ j )−g(ξ j−1)| ≤ hα ,

j = 1, . . . , k. We then approximate g by the CPwL function S ∈ S(ξ), where the
values S(ξ j ) are of the form β j hα , β j ∈ Z, and are chosen so that S(ξ j ) = β j hα is
the closest to g(ξ j ), j = 1, . . . , k. Note that this gives β0 = βk = 0 since g(ξ0) =
0 = g(ξk) and ∣∣S(ξ j ) − g(ξ j )

∣∣ ≤ hα/2. (23)

When assigning the values S(ξ j ), startingwith S(ξ0) = 0 andmoving from left to right,
if it happens that there are two possible choices for β j (which happens if g(ξ j )±hα/2
is an integer multiple of hα), we select the β j that is closest to the already determined
β j−1. Since

∣∣β j − β j−1
∣∣ hα = ∣∣S(ξ j ) − S(ξ j−1)

∣∣
≤ ∣∣S(ξ j ) − g(ξ j )

∣∣+ ∣∣g(ξ j ) − g(ξ j−1)
∣∣+ ∣∣g(ξ j−1) − S(ξ j−1)

∣∣
≤ hα/2 + hα + hα/2 = 2hα,

we have |β j − β j−1| ≤ 2. But the case of equality is not possible since it would
mean that at step j we have not selected β j to be the closest to β j−1. Therefore
|β j − β j−1| ≤ 1, and thus (22) holds, i.e., the constructed approximant S is a pattern
from P . Finally, we notice that any pattern from P has slopes with absolute value at
most hα−1. Hence, for any x ∈ [0, 1], picking the point ξ j the closest to x , we have

|g(x) − S(x)| ≤ |g(x) − g(ξ j )| + |g(ξ j ) − S(ξ j )| + |S(ξ j ) − S(x)|
≤ (h/2)α + hα/2 + hα−1(h/2) ≤ 2hα,
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where we used (23) and the fact that |x − ξ j | ≤ h/2. Taking the maximum over
x ∈ [0, 1] establishes (21) and concludes the proof. ��

The following theorem proves an estimate like (19) for Lip α spaces.

Theorem 7.3 Let W ≥ 8. If X = C[0, 1] and f ∈ Lip α, 0 < α ≤ 1, then

σm( f , ϒ)X ≤ C(W )
| f |Lip α

(m lnm)α
, m ≥ 2. (24)

Proof Without loss of generality, we can assume that | f |Lip α = 1. Fixing f and m,
we first choose T as the piecewise linear function which interpolates f at the equally
spaced points x0, . . . , xm , where xi := i/m, i = 0, . . . ,m.

Since f and T agree at the endpoints of the interval Ji := [xi , xi+1], the slope of
T on Ji has absolute value at most m1−α . Therefore,

|T (x) − T (y)| ≤ m1−α|x − y| ≤ |x − y|α, x, y ∈ Ji ,

and hence, T is also in Lip α with semi-norm at most one on each of these intervals.
We now define g := f −T andwrite g = ∑m

i=1 gχJi . Each gi := gχJi is a function
in Lip α with |gi |Lip α ≤ 2. Let k be the largest integer such that 3kk ≤ m and let P =
{S1, . . . , S3k } be the set of the 3k patterns given by Lemma 7.2. Applying this lemma to
each of the functions ḡi : [0, 1] → R, defined by ḡi (x) := 2−1mαgi ((x+i)/m) ∈ Kα ,
we find a pattern S ji ∈ P , S ji : [0, 1] → R, such that

‖ḡi − S ji ‖C[0,1] ≤ 2k−α.

Shifting back to the interval Ji provides a function S ji ∈ P such that

|gi (x) − 2m−αS ji (m(x − xi ))| ≤ 4(km)−α, x ∈ Ji ,

and therefore the function T̂ given by

T̂ (x) := T (x) + 2m−α
m∑
i=1

S ji (m(x − xi ))χJi (x) (25)

approximates f to accuracy 4(km)−α in the uniform norm.
For each j = 1, . . . , 3k , we consider the (possibly empty) set of indices 	 j = {i ∈

{1, . . . ,m} : ji = j}. We have

T̂ = T +
3k∑
j=1

Tj , where Tj := 2m−α
∑
i∈	 j

S j (m(x − xi )).

Since T ∈ �m , Remark 3.3 says that T belongs to ϒ
W ,L0 with either W 2L0 �

n(W , L0) ≤ C ′m or L0 = 2. According to Theorem 5.1, each function Tj is in
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ϒ
W ,L j with either W 2L j � n(W , L j ) ≤ C1(k + m j ) + C2W 2 or L j = 2, where

m j := |	 j |. Therefore, in view of (14), we derive that T̂ belongs to ϒ
W ,L

with

L = L0 +∑3k
j=1 L j , and

L = L0 +
3k∑
j=1

L j ≤ 1

W 2

⎛
⎝C ′m + C13

kk + C1

3k∑
j=1

m j

⎞
⎠+ C33

k ≤
⌈
C̃1

W 2 + C̃2

⌉
m = c(W )m,

where we have used the facts that 3kk ≤ m and
∑3k

j=1m j = m. This shows that

T̂ ∈ ϒc(W )m and in turn that

σc(W )m( f , ϒ)C[0,1] ≤ ‖ f − T̂ ‖C[0,1] ≤ 4

(km)α
≤ C̃

(m lnm)α
,

where in the last inequality we have used that k ≥ c lnm since 3k+1(k + 1) > m. Up
to the change of m in c(W )m, this is the result announced in (24). ��

7.2.2 Other Classical Smoothness Spaces via K-Functionals

In this section, we want to show how the existing theorems on approximating classi-
cal smoothness classes with deep networks have a simple extension to more general
smoothness classes using methods of K-functionals. Since we do not wish to delve
too deeply into the theory of smoothness spaces in the present paper, we illustrate this
with just one example.

Theorem 7.4 Let W ≥ 12. If X = C[0, 1] and f ∈ C[0, 1] satisfies f ′ ∈ L p[0, 1],
1 ≤ p ≤ ∞, then

σm( f , ϒ)X ≤ C(W )‖ f ′‖L pm
−2+1/p, m ≥ 2. (26)

Proof When p = ∞, (26) follows from (20) since f ′ ∈ L∞[0, 1] is equivalent to
f ∈ Lip 1 and | f |Lip 1 = ‖ f ′‖L∞ . The case p = 1 follows from

σγm( f , ϒ)X ≤ σm( f , �)X ≤ ‖ f ′‖L1m
−1, m ≥ 1. (27)

Here, the first inequality follows from Theorem 7.1 and the second inequality is a
consequence of an estimate (already mentioned) for CPwL approximation of f with
f ′ ∈ L1[0, 1]. Now, given 1 < p < ∞ and f ∈ C[0, 1] with f ′ ∈ L p[0, 1], for any
t > 0, we can write

f = f0 + f1,

where

max{‖ f ′
1‖L1 , t‖ f ′

0‖L∞} ≤ ‖ f ′
1‖L1 + t‖ f ′

0‖L∞ ≤ 2‖ f ′‖L p t
1−1/p.
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This is a well-known and easily derived result for K-functionals. We take t := m−1

and find

σ2γm( f , ϒ)X ≤ σγm( f0, ϒ)X + σγm( f1, ϒ)X

≤ C(W ){‖ f ′
0‖L∞m−2 + ‖ f ′

1‖L1m
−1}

≤ C(W )‖ f ′‖L p {m−2t−1/p + m−1t1−1/p}
≤ C(W )‖ f ′‖L pm

−2+1/p,

where we used the summation property for the elements of the family ϒ . ��
Remark 7.1 This theorem is not contained in the existing results mentioned above.
One could use the existing results together with the Sobolev embedding which says
that f ′ ∈ L p implies f is in Lip (1−1/p) and obtain the rateO(m−2+2/p). However,
this is worse than that given in the theorem. The theorem shows an improvement in the
approximation rate when using deep networks in that the rateO(m−1) obtained when
using �m is now replaced by m−2+1/p when using deep networks. Note however that
this improved rate lessens as we near the Sobolev embedding line.

7.3 The Power of Depth

In this subsection,we highlight several other classes of functionswhose approximation
rates by neural networks far exceed their approximation rates by free knots linear
splines or any other standard approximation family. Our constructions are based on
variants of the following simple observation.

Proposition 7.5 For functions fk ∈ ϒk satisfying ‖ fk‖C[0,1] = 1 for all k ≥ 1 and
for a sequence (βk)k≥1 in �1(N), the function

F :=
∑
k≥1

βk fk

has approximation error satisfying

σm2(F, ϒ)C[0,1] ≤
∑
k>m

|βk |, m ≥ 1.

Proof The function Sm := ∑m
k=1 βk fk belongs to ϒm2 , thanks to the summation and

inclusion properties for ϒ . A triangle inequality gives

‖F − Sm‖C[0,1] ≤
∑
k>m

|βk |,

and the statement follows immediately. ��
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Remark 7.2 When the functions fk are related to one another, the proposition can be
improved by replacingm2 with a smaller quantity. For example, if fk = φ◦k for a fixed
function φ in ϒw,�, with width 2 ≤ w ≤ W − 2 and fixed depth �, then Proposition
4.3 reveals that m2 can be changed to �m.

We now present some classes of such functions F that are well-approximated by
ReLU networks. For the most part, these functions cannot be well-approximated by
standard approximation families.

7.3.1 The Takagi Class of Functions

For our first set of examples, let us recall that functions of the form

F =
∑
k≥1

tkg ◦ ψ◦k, |t | < 1, (28)

with ψ : [0, 1] → [0, 1] and g : [0, 1] → R, provide primary examples of self
similar functions and dynamical systems [35]. If g ∈ ϒW1,� and ψ ∈ ϒW2,�, with
W1 + W2 = W , Proposition 4.4 implies that the partial sum Sm := ∑m

k=1 t
kg◦ψ◦k

belongs to ϒ
W+2,�(m+1) = ϒ�(m+1). Therefore, in this case, the function F defined

via (28) is approximated by the partial sum Sm with exponential accuracy by ReLU
networks,

σ�(m+1)(F, ϒ)C[0,1] ≤ C
|t |m+1

1 − |t | , m ≥ 1.

Now,we consider a special class of functions. For this purpose, we recall that the hat
function H ∈ ϒ2,1 and its k-fold composition H◦k := H ◦ H ◦ · · · ◦ H , according to

the composition property (13), belongs to ϒ
2,k

. On the other hand, the same function
H◦k is in �n only if n is exponential in k. For an absolutely summable sequence
(ck)k≥1 of real numbers, we consider continuous functions F of the form

F :=
∑
k≥1

ck H
◦k,

approximations to which are produced by the special networks shown in Fig. 16. The
collection of all such functions is called the Takagi class. It contains a number of
interesting and important examples. A good source of information on the Takagi class
is [1], from which the two examples below are taken.

For the first example, we take ck := 2−k , which gives the Takagi function

T :=
∑
k≥1

2−k H◦k .

From Remark 7.2, we have

σm(T , ϒ)X ≤ 2−m, m ≥ 1,
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Fig. 16 Computation graph associated with the approximation of the Takagi class

and so theoretically T can be approximated with exponential accuracy by ReLU net-
works with roughly W 2m parameters. In practice, see Fig. 16, we can approximate
it using m parameters. However, T is nowhere differentiable and so it has very little
smoothness in the classical sense. This means that all of the traditional methods of
approximation will fail miserably to approximate it. Note that the function T has self
similarity, in that it satisfies a simple refinement equation.

Other examples take a highly lacunary sequence of coefficients and thereby con-
struct functions in the Takagi class that do not satisfy a Lipschitz condition of any order
and yet they can be approximated to exponential accuracy byϒ . Many functions from
the Takagi class are fractals, in the sense that the Hausdorff dimension of their graph
is strictly greater than one.

We do not go into the Takagi class more deeply but refer the reader to [1,14] where
the properties and applications of the Takagi functions are given as well as numerous
examples of similar constructions. The main point to draw from these examples is that
the approximation classesAr for r large contain many functions which are not smooth
in any classical sense. This point was also made in [12], where the authors show that
oscillatory textures can be approximated with exponential accuracy, see Proposition
IX.2, and that see Proposition IX.3, the Weierstrass function

Wp,a(x) :=
∞∑
k=0

pk cos(akπx), p ∈ (0, 1/2), a ∈ R
+, ap ≥ 1,

can be approximated by S ∈ ϒ20,Cn3 with exponential accuracy 2−n , that is

‖Wp,a − S‖C[−1,1] ≤ 2−n .

7.3.2 Analytic Functions

Another example in the Takagi class is the function, see [36],

x(1 − x) =
∑
k≥1

4−k H◦k . (29)
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This formula is used as a starting point to show that analytic functions are well-
approximated by deep neural networks (see [11,21,36]), as we briefly discuss below.

It follows from (29) that the function x2 is approximated with exponential accuracy
by ReLU networks From this, one derives that all power functions xk also are approxi-
mated with exponential accuracy. Then, using the summation property, one concludes
that analytic functions and functions in Sobolev spaces are approximated with the
same accuracy as their approximation by algebraic polynomials, up to logarithmic
factors. Similarly, we can approximate functions on [0, 1] from their power series
representation. The point we emphasize here is the flexibility of ReLU networks. On
one hand, classes of functions with little classical smoothness are well approximated
by ReLU networks (some even with exponential accuracy), while on the other hand,
ReLU networks still retain the accuracy of well-known approximation methods for
classically smooth functions.

8 Neural Network Approximation as Manifold Approximation

Up to this point, we have reflected on the expressive power and the corresponding
approximation power of deep ReLU networks. In other words, we wondered how well
the best approximation from ϒ� to a target function performs. An important practical
issue is the construction of reasonable methods of approximation that yield near-best
approximations to any given target function f ∈ X with, e.g., X = C[0, 1].

To discuss this problem, we need to formulate what would be considered a reason-
able approximation procedure. The set ϒ� is described by roughly W 2� parameters,
which are identified by a point in R

m , m = CW 2�. We let M = Mm be the mapping
that sends z ∈ R

m to the function M(z) generated by the neural network with the
chosen parameters z. We view the collection M = Mm of all M(z), z ∈ R

m , as
an m-dimensional manifold. Here, in contrast to the usual use of the term manifold
in topology, we do not assume a priori any particular smoothness of the mapping
M . In this context, we also view any approximation method as providing a mapping
a = am : X → R

m which, for a given f ∈ X , selects the parameters of the network
used to approximate f . The approximation to f is then

Am( f ) = Mm(am( f )), m ≥ 0.

A fundamental question for both theory and numerical practice is what conditions to
impose on am and Mm so that the resulting scheme Am is reasonable. In keeping with
the notion of numerical stability, we could require that each of these mappings is a
Lip 1 function with a fixed Lipschitz constant � independent of m. This means that
there is a norm ‖ · ‖ on R

m (typically an �p norm) such that for any f1, f2 ∈ X ,

‖am( f1) − am( f2)‖ ≤ �‖ f1 − f2‖X .

The stability of Mm means that, for any z1, z2 ∈ R
m ,

‖Mm(z1) − Mm(z2)‖X ≤ �‖z1 − z2‖.
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One can lessen the demand on numerical stability to requiring only that the map-
pings am and Mm are continuous, not necessarily Lipschitz. This weaker assumption
was used in the definition of manifold widths [8]. This manifold width of a compact
set K ⊂ X is defined as

δm(K ) := inf
(a,M)

sup
f ∈K

‖ f − M(a( f ))‖X ,

where the infimum is taken over all continuous maps a : K → R
m and M : Rm → X .

It is shown in [9] that this milder requirement still puts a restriction on how well sets
characterized by classical smoothness can be approximated. For example, if K is the
unit ball of Lip α, then δm(K ) ≥ Cm−α . Therefore, the improvements discussed in
Sect. 7.2 cannot be obtained with continuous selection of parameters. This lack of
continuity for some approximation schemes was also recognized in [18]. This may be
a crucial point in the framing of results on the instability of certain methods for con-
structing deep network approximations to target functions from data via optimization
methods (such as least squares or constrained least squares methods).

9 Appendix

9.1 TheMatrices of Lemma 3.3

In order to explicitly write the affine transforms A(1) and A(2) that determine the ReLU
net, we describe here one of the possible ways to partition the set of indices 	 so that
the constant sign and separation properties are satisfied. To do this, we first consider
	+ and only the main breakpoints ξ j with indices j for which j mod 3 = �. We
collect into the set 	

�,+
i all indices k ∈ 	+ that correspond to the i-th hat function

Hi, j associated with a principal breakpoint ξ j with the above mentioned property.
Recall that there are q hat functions Hi, j associated with each principal breakpoint
ξ j . We do this for every � = 0, 1, 2, and 	−, and we get the partition

	
�,+
i := {s : s ∈ 	+ and φs = Hi, j with j mod 3 = �},

	
�,−
i := {s : s ∈ 	− and φs = Hi, j with j mod 3 = �},

where � = 0, 1, 2, i = 1, . . . , q. The matrices that determine the special network are

M (1) = [
1 1 . . . 1 0

]
, b(1) = [

0 ξ1 . . . ξW−2 0
]

,

M (2) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0
m(2)

2,1 m(2)
2,2 . . . m(2)

2,W−1 0
. . . . . .

m(2)
W−1,1 m(2)

W−1,2 . . . m(2)
W−1,W−1 0

0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎦

, b(2) =

⎡
⎢⎢⎢⎢⎣

0
b(2)
2
. . .

b(2)
W−2
0

⎤
⎥⎥⎥⎥⎦

M (3) =
[
0 ε

(3)
1 . . . ε

(3)
W−2 1

]
, b(3) = 0,
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where ε
(3)
k = 1 if 	k ⊂ 	+, ε(k)

k = −1 if 	k ⊂ 	−, and ε
(3)
k = 0 if 	k = ∅. Next,

we demonstrate how to find the entries of one row in M (2). The rest of the rows are
computed likewise. The index k = 1, . . . ,W − 2 in (10) corresponds to a different
labeling of the index set

{(i, �,+), (i, �,−), i = 1, . . . , q, � = 0, 1, 2},

of the particular partition we work with here. We take the index (1, 1,+) and compute
the corresponding T̃ ,

T̃ := T(1,1+) =
∑

s∈	
1,+
1

csφs = [S̃]+,

see Fig. 6, where S̃ is a CPwL function with breakpoints the principal breakpoints
ξ1, . . . , ξW−2, with the property

S̃(ξ3s+1) = c3s+1, S̃(x(3s+1)q−1) = S̃(x(3s+1)q+1) = 0, s = 0, . . . ,

⌊
W − 3

3

⌋
.

Then, the entries in the second row in M (2) and b(2) are the coefficients from the
representation

S̃(x) = m(2)
2,1x +

W−2∑
j=2

m(2)
2, j (x − ξ j )+ + b(2)

2 .

9.2 Theorem 3.1, Case 4 ≤ W ≤ 7

In this case, we have to show that for every n ≥ 1 the set�n of free knot linear splines
with n breakpoints is contained in the set ϒW ,L of functions produced by width-W
and depth-L ReLU networks where

L =
{
2
⌈

n
2(W−2)

⌉
, n ≥ 2(W − 2),

2, n < 2(W − 2),

and whose number of parameters

n(W , L) ≤
{
Cn, n ≥ 2(W − 2),

W 2 + 4W + 1, n < 2(W − 2),

where C is an absolute constant. We start with the case W − 2 = 2. Given n ≥ 4,
we choose L := � n

4 �. If n < 4L , we add artificial breakpoints so that we represent
T ∈ �n ⊂ �4L as
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T (x) = ax + b +
4L∑
j=1

c j (x − ξ j )+ = ax + b +
2L∑
j=1

S j ,

S j := c2 j−1(x − ξ2 j−1)+ + c2 j (x − ξ2 j )+.

Now we can construct the special network with output ϒ
4,2L

that generates T via the
successive transformations A( j) given by the matrices

M (1) = [
1 1 1 0

]
, b(1) = [

0 −ξ1 −ξ2 0
]

,

The j th layer, j = 2, . . . , 2L , produces S j−1 in its CC node via the matrix

M ( j) =

⎡
⎢⎢⎣
1 0 0 0
1 0 0 0
1 0 0 0
0 c2 j−3 c2 j−2 1

⎤
⎥⎥⎦ , b( j) =

⎡
⎢⎢⎣

0
−ξ2 j−1
−ξ2 j
0

⎤
⎥⎥⎦ .

Finally, the output layer is given by the matrix

M (2L) = [
a c2L−1 c2L 1

]
, b(2L) = b,

where the first entry a and the bias b account for the linear function ax + b in T . In

this case, we have �4L ⊂ ϒ
4,2L ⊂ ϒ4,2L , with number of parameters

n(4, 2L) = 40L − 7 = 40
⌈n
4

⌉
− 7 < 10n + 33 < 19n, n ≥ 4.

For the case n < 4, we again add artificial breakpoints so that we represent T ∈ �n ⊂
�4 as

T (x) = ax + b +
4∑
j=1

c j (x − ξ j )+ = ax + b +
2∑
j=1

S j ,

S j := c2 j−1(x − ξ2 j−1)+ + c2 j (x − ξ2 j )+,

and as above construct a special network with output ϒ
4,2

for which �n ⊂ ϒ
4,2

, and
whose parameters

n(4, 2) = 33 = W 2 + 4W + 1, W = 4.

Now, for the case (W − 2) ∈ {3, 4, 5}, let us first consider n ≥ 2(W − 2) and take

L :=
⌈

n
2(W−2)

⌉
. If n < 2(W −2)L , we add artificial breakpoints so that we represent

T ∈ �n ⊂ �2(W−2)L . We do the same construction as in the case W − 2 = 2, by
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dividing the indices {1, . . . , 2(W − 2)L} into 2L groups ofW − 2 numbers, as shown
in

T (x) = ax + b +
2(W−2)L∑

j=1

c j (x − ξ j )+ = ax + b +
2L∑
j=1

S j ,

S j :=
W−3∑
i=0

c(W−2) j−i (x − ξ(W−2) j−i )+,

and execute the same construction as before by concatenating the networks producing

S j . In this case, we have �n ⊂ �2(W−2)L ⊂ ϒ
W ,2L

, and when n ≥ 2(W − 2),

n(W , 2L) = 2W (W + 1)

⌈
n

2(W − 2)

⌉
− (W − 1)2 + 2

<
W (W + 1)

W − 2
n + W 2 + 4W + 1 < 25n.

When n < 2(W − 2), we again add artificial breakpoints so that we represent T ∈
�n ⊂ �2(W−2) as

T (x) = ax + b +
2(W−2)∑

j=1

c j (x − ξ j )+ = ax + b +
2∑
j=1

S j ,

S j :=
W−3∑
i=0

c(W−2) j−i (x − ξ(W−2) j−i )+,

and as above generate a special network that outputs ϒ
W ,2

with depth L = 2 for

which �n ⊂ ϒ
W ,2

, and whose parameters

n(W , 2) = 2W (W + 1) − (W − 1)2 + 2 = W 2 + 4W + 1, n < 2(W − 2).

This completes the proof. ��

9.3 Proof of Theorem 4.1

Proof Note that for every k-tuple (S̃k, · · · , S̃1) ∈ �nk × · · · × �n1 , we can find
another k-tuple (Sk, . . . , S1) ∈ �nk ×· · ·×�n1 , which we call a representative of the
composition, with the properties:

• S j ([0, 1]) ⊂ [0, 1], j = 1, . . . , k − 1.
• S̃k ◦ · · · ◦ S̃1 = Sk ◦ · · · ◦ S1.
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Indeed, if we denote by m1 := minx∈[0,1] S̃1(x), M1 := maxx∈[0,1] S̃1(x), define
inductively

m j := min
x∈[m j−1,Mj−1]

S̃ j , Mj := max
x∈[m j−1,Mj−1]

S̃ j , j = 2, . . . , k − 1,

and consider the functions

S1 := S̃1 − m1

M1 − m1
∈ �n1,

S j (x) := S̃ j (x(Mj−1 − m j−1) + m j−1) − m j

M j − m j
∈ �n j , j = 2, . . . , k − 1,

Sk(x) := S̃k(x(Mk−1 − mk−1) + mk−1).

The k-tuple (Sk, . . . , S1) will be a representative of the composition S̃k ◦ . . . ◦ S̃1. So,
in going further, we will always assume that we are dealing with representatives of all
compositions we consider and with ReLU networks that output these representatives.

Relation (11) follows from Proposition 4.2 and Theorem 3.1. Indeed, if we fix an
element in �nk◦···◦n1 := {S̃k ◦ · · · ◦ S̃1 : S̃ j ∈ �n j , j = 1, . . . , k} and consider its
representative (Sk, . . . , S1), each S j in the composition Sk ◦ · · · ◦ S1 can be produced
by a ReLU network with width W and depth

L j = 2

⌈
n j

�W−2
6 �(W − 2)

⌉
,

and therefore, part (i) of Proposition 4.2 ensures that Sk ◦ · · · ◦ S1 ∈ ϒ
W ,
∑k

j=1 L j . A
similar estimate as in the proof of Theorem 3.1 yields

n(W , L) < 34
k∑
j=1

n j + 2k(W 2 + W ),

as desired.
To establish (12), for each i = 1, . . . ,m, let us denote by Ni the ReLU network

from (11) with width W − 2 that produces the composition Si,�i ◦ · · · ◦ Si,1 and has
depth

Li = L(ni,�i , . . . , ni,1) = 2
�i∑
j=1

⌈
ni, j

�W−4
6 �(W − 4)

⌉
.

Then, Proposition 4.2, part (ii) gives

S =
m∑
i=1

ai Si,�i ◦ · · · ◦ Si,1 ∈ ϒ
W ,L

,
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with

L =
m∑
i=1

Li = 2
m∑
i=1

�i∑
j=1

⌈
ni, j

�W−4
6 �(W − 4)

⌉
.

A similar estimate as in the proof of Theorem 3.1 yields

n(W , L) < 44
m∑
i=1

�i∑
j=1

ni, j + 2W (W + 1)
m∑
i=1

�i .

As discussed in Remark 3.1, ϒ
W ,L

can always be viewed as a subset of ϒW ,L , and
the proof is completed. ��

9.4 Proof of Proposition 6.1

Let us first start with the notation

1{i= j} :=
{
1, i = j,

0, i �= j,

and isolate the following technical observation.

Lemma 9.1 For any nonnegative sequence u ∈ �2(N),

∑
k,�≥1
k �=�

uku�

∑
m,n≥0

1

(2m + 1)2
1

(2n + 1)2
1{(2m+1)k=(2n+1)�} ≤ π4

192
‖u‖22. (30)

Proof For each integer m ≥ 0, let us introduce the sequence u(2m+1) ∈ �2(N) defined
by

u(2m+1)
j =

{
u j

2m+1
, if j ∈ (2m + 1)N,

0, if j /∈ (2m + 1)N,

i.e., we consider a new sequence obtained from the original one by separating every
two consecutive terms with 2m zeros, starting with 2m zeros. We easily see that

〈u(2m+1), u(2n+1)〉 =
∑
j∈N

u(2m+1)
j u(2n+1)

j =
∑
k,�∈N

uku�1{(2m+1)k=(2n+1)�},

123



166 Constructive Approximation (2022) 55:127–172

and in particular ‖u(2m+1)‖22 = ‖u‖22 for every m ≥ 0. Thus, the left-hand side of
(30), which we denote by �, can be written as

� =
∑

m,n≥0
m �=n

1

(2m + 1)2
1

(2n + 1)2
∑
k,�≥1

uku�1{(2m+1)k=(2n+1)�}

=
∑

m,n≥0
m �=n

1

(2m + 1)2
1

(2n + 1)2
〈u(2m+1), u(2n+1)〉

=
∥∥∥∥
∑
m≥0

1

(2m + 1)2
u(2m+1)

∥∥∥∥
2

2
−
∑
m≥0

1

(2m + 1)4
‖u‖22. (31)

By a simple triangle inequality, we have, see [32], Chapter 2, Exercise 6,

∥∥∥∥
∑
m≥0

1

(2m + 1)2
u(2m+1)

∥∥∥∥
2

≤
∑
m≥0

1

(2m + 1)2
‖u‖2 = π2

8
‖u‖2. (32)

Moreover, it is well-known that see [32], Chapter 3, Exercise 8(a),

∑
m≥0

1

(2m + 1)4
= π4

96
. (33)

Substituting (32) and (33) into (31) yields the announced result. ��

Proof of Proposition 6.1 We equivalently prove the result for the L2-normalized ver-
sion of the system (Ck,Sk)k≥1, i.e., for (C̃k := √

3 Ck, S̃k := √
3 Sk)k≥1. Let

(ck, sk)k≥1 denote the orthonormal basis for L0
2[0, 1] made of the usual trigonometric

functions

ck(x) = √
2 cos(2πkx), sk(x) = √

2 sin(2πkx), x ∈ [0, 1].

It is routine to verify (by computing Fourier series) that

C = λ
∑
m≥0

1

(2m + 1)2
c2m+1, S = λ

∑
m≥0

(−1)m

(2m + 1)2
s2m+1,

for some constant λ > 0, from which one immediately obtains that, for any k ≥ 1,

C̃k = μ
∑
m≥0

1

(2m + 1)2
c(2m+1)k, S̃k = μ

∑
m≥0

(−1)m

(2m + 1)2
s(2m+1)k,
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for some constant μ > 0. Notice that this implies C̃k ⊥ s�, S̃k ⊥ c�, and C̃k ⊥ S̃� for
all k, � ≥ 1. Moreover, the normalization ‖C̃k‖L2[0,1] = ‖S̃k‖L2[0,1] = 1 gives

μ2
∑
m≥0

1

(2m + 1)4
= 1, i.e., μ2π4

96
= 1.

Let us introduce operators TC, TS defined for v ∈ �2(N) and j ∈ N, by

TC(v) j =
∑
k≥1

vk〈C̃k, c j 〉 = μ
∑
k≥1

vk
∑
m≥0

1

(2m + 1)2
1{(2m+1)k= j},

TS(v) j =
∑
k≥1

vk〈S̃k, s j 〉 = μ
∑
k≥1

vk
∑
m≥0

(−1)m

(2m + 1)2
1{(2m+1)k= j},

and let us first verify that these are well-defined operators from �2(N) to �2(N), i.e.,
that both ‖TCv‖2 and ‖TSv‖2 are finite when v ∈ �2(N). To do so, we observe that

‖TCv‖22 = μ2
∑
j≥1

∑
k,�≥1

vkv�

∑
m,n≥0

1

(2m + 1)2
1

(2n + 1)2
1{(2m+1)k= j}1{(2n+1)�= j}

= �(=) + �( �=),

where �(=) represents the contribution to the sum when k and � are equal and �( �=)

represents the contribution to the sum when k and � are distinct. We notice that

�(=) =
∑
k≥1

v2k μ2
∑
m≥0

1

(2m + 1)4
∑
j≥1

1{(2m+1)k= j} =
∑
k≥1

v2k μ2
∑
m≥0

1

(2m + 1)4
=
∑
k≥1

v2k .

Therefore, relying on Lemma 9.1, we obtain

∣∣‖TCv‖22 − ‖v‖22
∣∣

= ∣∣�(�=)

∣∣ ≤ μ2
∑
k,�≥1
k �=�

|vk ||v�|
∑

m,n≥0

1

(2m + 1)2
1

(2n + 1)2
∑
j≥1

1{(2m+1)k= j}1{(2n+1)�= j}

= μ2
∑
k,�≥1
k �=�

|vk ||v�|
∑

m,n≥0

1

(2m + 1)2
1

(2n + 1)2
1{(2m+1)k=(2n+1)�}

≤ μ2 π4

192
‖v‖22 = 1

2
‖v‖22. (34)

This clearly justifies that ‖TCv‖22 < ∞, and ‖TSv‖22 < ∞ is verified in a similar
fashion. In fact, the inequality (34) and the analogous one for TS show that

‖T ∗
C TC − I‖2→2 = max‖v‖2=1

|〈v, (T ∗
C TC − I )v〉| ≤ 1

2
, ‖T ∗

STS − I‖2→2 ≤ 1

2
. (35)
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This ensures that the operators T ∗
C TC and T ∗

STS are invertible. Let us assume for
a while that the operators TCT ∗

C and TST ∗
S are also invertible. Then we derive

that TC is invertible with inverse (T ∗
C TC)−1T ∗

C , since (T ∗
C TC)−1T ∗

C TC = I is
obvious and TC(T ∗

C TC)−1T ∗
C = I is equivalent, by the invertibility of TCT ∗

C , to
TCT ∗

C TC(T ∗
C TC)−1T ∗

C = TCT ∗
C , which is obvious. We derive that TS is invertible in a

similar fashion. From here, we can show that the system (C̃k, S̃k)k≥1 spans L0
2[0, 1].

Indeed, we claim that any f ∈ L0
2[0, 1] can be written, with α := (〈 f , c j 〉) j≥1 and

β := (〈 f , s j 〉) j≥1, as

f =
∑
k≥1

(T−1
C α)k C̃k +

∑
k≥1

(T−1
S β)k S̃k .

This identity is verified by taking the inner product of partial sums with the c j and s j .
Indeed,

〈
f −

K∑
k=1

(T−1
C α)k C̃k −

K∑
k=1

(T−1
S β)k S̃k , c j

〉
= 〈 f , c j 〉 −

K∑
k=1

(T−1
C α)k〈C̃k , c j 〉 − 0

=
(
TC(T−1

C α)
)
j
−
(
TC(T−1

C α){1,...,K }
)
j

=
(
TC(T−1

C α){K+1,...}
)
j
.

After a similar calculation with s j , and in view of ‖TC‖22→2 = ‖T ∗
C TC‖2→2 ≤ 3/2, it

follows that

∥∥∥∥∥ f −
K∑

k=1

(T−1
C α)k C̃k −

K∑
k=1

(T−1
S β)k S̃k

∥∥∥∥∥
2

L2[0,1]

≤
∥∥∥TC(T−1

C α){K+1,...}
∥∥∥
2

2
+
∥∥∥TS(T−1

S α){K+1,...}
∥∥∥
2

2

= 3

2

(∥∥∥(T−1
C α){K+1,...}

∥∥∥
2

2
+
∥∥∥(T−1

S α){K+1,...}
∥∥∥
2

2

)

−→
K→∞ 0,

which confirms our claim. As for a normalized version of (17), it follows from (35)
by noticing that

∥∥∥∥
∑
k≥1

(ak C̃k + bk S̃k)

∥∥∥∥
2

L2[0,1]
− (‖a‖22 + ‖b‖22) =

∥∥∥∥
∑
k≥1

ak C̃k
∥∥∥∥
2

L2[0,1]
− ‖a‖22

+
∥∥∥∥
∑
k≥1

bk S̃k

∥∥∥∥
2

L2[0,1]
− ‖b‖22,
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combined with the observation that

∣∣∣∣
∥∥∥∥
∑
k≥1

ak C̃k
∥∥∥∥
2

L2[0,1]
− ‖a‖22

∣∣∣∣ =
∣∣∣∣
∑
j≥1

(∑
k≥1

ak
〈C̃k , c j

〉 )2

− ‖a‖22
∣∣∣∣ =

∣∣∣∣
∑
j≥1

(TCa)2j − ‖a‖22
∣∣∣∣

= ∣∣‖TCa‖22 − ‖a‖22
∣∣ = ∣∣〈(T ∗

C TC − I )a, a〉∣∣ ≤ 1

2
‖a‖22,

and the similar observation that

∣∣∣∣
∥∥∥∥
∑
k≥1

bk S̃k

∥∥∥∥
2

L2[0,1]
− ‖b‖22

∣∣∣∣ ≤ 1

2
‖b‖22.

We deduce that a normalized version of (17) holds with constants c̃ = 1/2 and
C̃ = 3/2, hence (17) holds with c = 1/6 and C = 1/2.

It now remains to establish that the operators TCT ∗
C and TST ∗

S are invertible, which
we do by showing that

‖TCT ∗
C − I‖2→2 ≤ ρ and ‖TST ∗

S − I‖2→2 ≤ ρ (36)

for some constant ρ < 1. We concentrate on the case of TC , as the case of TS is
handled similarly. We first remark that the adjoint of TC is given, for any v ∈ �2(N)

and j ∈ N, by

T ∗
C (v) j =

∑
k≥1

vk〈C̃ j , ck〉 = μ
∑
k≥1

vk
∑
m≥0

1

(2m + 1)2
1{(2m+1) j=k}.

We then compute

‖T ∗
C v‖22 = μ2

∑
j≥1

∑
k,�≥1

vkv�

∑
m,n≥0

1

(2m + 1)2
1

(2n + 1)2
1{(2m+1) j=k}1{(2n+1) j=�}

= �∗
(=) + �∗

( �=),

where �∗
(=) represents the contribution to the sum when k and � are equal and �∗

( �=)

represents the contribution to the sum when k and � are distinct. We notice that

�∗
(=) =

∑
k≥1

v2k μ2
∑
m≥0

1

(2m + 1)4
∑
j≥1

1{(2m+1) j=k}

satisfies, on the one hand,

�∗
(=) ≤

∑
k≥1

v2k μ2
∑
m≥0

1

(2m + 1)4
=
∑
k≥1

v2k = ‖v‖22,
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and on the other hand, by considering only the summand for m = 0 and j = k,

�∗
(=) ≥

∑
k≥1

v2k μ2 = μ2‖v‖22.

Moreover, we have

∣∣∣�∗
( �=)

∣∣∣ ≤ μ2
∑
k,�≥1
k �=�

|vk ||v�|
∑

m,n≥0

1

(2m + 1)2
1

(2n + 1)2
∑
j≥1

1{(2m+1) j=k}1{(2n+1) j=�}

≤ μ2
∑
k,�≥1
k �=�

|vk ||v�|
∑

m,n≥0

1

(2m + 1)2
1

(2n + 1)2
1{(2m+1)�=(2n+1)k}

≤ μ2 π4

192
‖v‖22 = 1

2
‖v‖22, (37)

where the last inequality used Lemma 9.1 again. Therefore, we obtain

∣∣〈(TCT ∗
C − I )v, v〉∣∣ = ∣∣‖T ∗

C v‖22 − ‖v‖22
∣∣ =

∣∣∣(�∗
(=) − ‖v‖22) + �∗

(�=)

∣∣∣ ≤ (1 − μ2)‖v‖22 + 1

2
‖v‖22.

Taking the maximum over all v ∈ �2(N) with ‖v‖2 = 1, we arrive at the result
announced in (36) with ρ := 1 − μ2 + 1/2 ≤ 0.5145. The proof is now complete. ��
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