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ON THE BANACH SPACES ASSOCIATED WITH MULTI-LAYER RELU

NETWORKS

FUNCTION REPRESENTATION, APPROXIMATION THEORY AND GRADIENT

DESCENT DYNAMICS

WEINAN E AND STEPHAN WOJTOWYTSCH

Abstract. We develop Banach spaces for ReLU neural networks of finite depth L and infinite
width. The spaces contain all finite fully connected L-layer networks and their L2-limiting
objects under bounds on the natural path-norm. Under this norm, the unit ball in the space for
L-layer networks has low Rademacher complexity and thus favorable generalization properties.
Functions in these spaces can be approximated by multi-layer neural networks with dimension-
independent convergence rates.

The key to this work is a new way of representing functions in some form of expectations,
motivated by multi-layer neural networks. This representation allows us to define a new class
of continuous models for machine learning. We show that the gradient flow defined this way is
the natural continuous analog of the gradient descent dynamics for the associated multi-layer
neural networks. We show that the path-norm increases at most polynomially under this
continuous gradient flow dynamics.
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1. Introduction

It is well-known that neural networks can approximate any continuous function on a compact
set arbitrarily well in the uniform topology as the number of trainable parameters increase
[Cyb89, Hor91, LLPS93]. However, the number and magnitude of the parameters required may
make this result unfeasible for practical applications. Indeed it has been shown to be the case
when two-layer neural networks are used to approximate general Lipschitz continuous functions
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2 WEINAN E AND STEPHAN WOJTOWYTSCH

[EW20a]. It is therefore necessary to ask which functions can be approximated well by neural
networks, by which we mean that as the number of parameters goes to infinity, the convergence
rate should not suffer from the curse of dimensionality.

In classical approximation theory, the role of neural networks was taken by (piecewise) poly-
nomials or Fourier series and the natural function spaces were Hölder spaces, (fractional) Sobolev
spaces, or generalized versions thereof [Lor66]. In the high-dimensional theories characteristic
for machine learning, these spaces appear inappropriate (for example, approximation results of
the kind discussed above do not hold for these spaces) and other concepts have emerged, such
as reproducing kernel Hilbert spaces for random feature models [RR08], Barron spaces for two-
layer neural networks [EMW19a, Bac17, EW20b, EMW19b, EW20a, EMW18, KB16], and the
flow-induced space for residual neural network models [EMW19a].

In this article, we extend these ideas to networks with several hidden (infinitely wide) layers.
The key is to find how functions in these spaces should be represented and what the right norm
should be. Our most important results are:

(1) There exists a class of Banach spaces associated to multi-layer neural networks which
has low Rademacher complexity (i.e. multi-layer functions in these spaces are easily
learnable).

(2) The neural tree spaces introduced here are the appropriate function spaces for the cor-
responding multi-layer neural networks in terms of direct and inverse approximation
theorems.

(3) The gradient flow dynamics is well defined in a much simpler subspace of the correspond-
ing neural tree space. Functions in this space admit an intuitive representation in terms
of compositions of expectations. The path norm increases at most polynomially in time
under the natural gradient flow dynamics.

These results justify our choice of function representation and the norm.
Neural networks are parametrized by weight matrices which share indices only between ad-

jacent layers. To understand the approximation power of neural networks, we rearrange the
index structure of weights in a tree-like fashion and show that the approximation problem un-
der path-norm bounds remains unchanged. This approach makes the problem more linear and
easier to handle from the approximation perspective, but is unsuitable when describing training
dynamics. To address this discrepancy, we introduce a subspace of the natural function spaces
for very wide multi-layer neural networks (or neural trees) which automatically incorporates the
structure of neural networks. For this subspace, we investigate the natural training dynamics
and demonstrate that the path-norm increases at most polynomially during training.

Although the function representation and function spaces are motivated by developing an
approximation theory for multi-layer neural network models, once we have them, we can use
them as our starting point for developing alternative machine learning models and algorithms.
In particular, we can extend the program proposed in [EMW19b] on continuous formulations
of machine learning to function representations developed here. As an example, we show that
gradient descent training for multi-layer neural networks can be recovered as the discretization
of a natural continuous gradient flow.

The article is organized as follows. In the remainder of the introduction, we discuss the
philosophy behind this study and the continuous approach to machine learning. In Section 2,
we motivate the ‘neural tree’ approach, introduce an abstract class of function spaces and study
their first properties. A special instance of this class tailored to multi-layer networks is studied
in greater detail in Section 3. A class of function families with an explicit network structure is
introduced in Section 4. While Sections 2 and 3 are written from the approximation perspective,
Section 5 is devoted to the study of gradient flow optimization of multi-layer networks and its
relation to the function spaces we introduce. We conclude the article with a brief discussion of
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our results and some open questions in Section 6. Technical results from measure theory which
are needed in the article are gathered in the appendix.

1.1. Conventions and notation. LetK ⊆ Rd be a compact set. Then we denote by C0(K) the
space of continuous functions on K and by C0,α(K) the space of α-Hölder continuous functions
for α ∈ (0, 1]. In particular C0,1 is the space of Lipschitz-continuous functions. The norms are
denoted as

‖f‖C0(K) = sup
x∈K

|f(x)|, [f ]C0,α(K) = sup
x,y∈K,x 6=y

|f(x)− f(y)|
|x− y|α , ‖f‖C0,α = ‖f‖C0 + [f ]C0,α .

Since all norms on Rd are equivalent, the space of Hölder- or Lipschitz-continuous functions does
not depend on the choice of norm on Rd. The Hölder constant [·]C0,α however does depend on it,
and using different ℓp-norms leads to a dimension-dependent factor. In this article, we consider
always consider Rd equipped with the ℓ∞-norm.

Let X be a Banach space. Then we denote by BX the closed unit ball in X . Furthermore,
a review of notations, terminologies and results relating to measure theory can be found in the
appendix.

Frequently and without comment, we identify x ∈ Rd with (x, 1) ∈ Rd+1. This allows us to
simplify notation and treat affine maps as linear. In particular, for x ∈ Rd and w ∈ Rd+1 we

simply write wTx =
∑d

i=1 wixi + wd+1.

2. Generalized Barron spaces

We begin by reviewing multi-layer neural networks.

2.1. Neural networks and neural trees. A fully connected L-layer neural network is a func-
tion of the type

(2.1) f(x) =

mL∑

iL=1

aLiLσ




mL−1∑

iL−1=1

aL−1
iLiL−1

σ


∑

iL−2

. . . σ

(
m1∑

i1=1

a1i2i1 σ

(
d+1∑

i0=1

a0i1i0 xi0

))




where the parameters aℓij are referred to as the weights of the neural network, mℓ is the width of
the ℓ-th layer, and σ : R → R is a non-polynomial activation function. For the purposes of this
article, we take σ to be the rectifiable linear unit σ(z) = ReLU(z) = max{z, 0}.

Deep neural networks are complicated functions of both their input x and their weights, where
the weights of one layers only share an index with neighbouring layers, leading to parameter reuse.
For simplicity, consider a network with two hidden layers

f(x) =

m2∑

i2=1

a2i2σ

(
m1∑

i1=1

a1i2i1σ

(
d+1∑

i0=1

a0i1i0xi0

))

and note that f can also be expressed as

f(x) =

m2∑

i2=1

a2i2σ

(
m1∑

i1=1

a1i2i1σ

(
d+1∑

i0=1

b0i2i1i0xi0

))

with b0i2i1i0 ≡ a0i1i0 . In this way, an index in the outermost layer gets its own set of parameters
for deeper layers, eliminating parameter sharing. The function parameters are arranged in a
tree-like structure rather than a network with many cross-connections. On the other hand, a
function of the form

f(x) =

m2∑

i2=1

a2i2σ

(
m1∑

i1=1

a1i2i1σ

(
d+1∑

i0=1

a0i2i1i0xi0

))
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can equivalently be expressed as

f(x) =

m2∑

i2=1

a2i2σ




m1m2∑

j1=1

b1i2j1σ

(
d+1∑

i0=1

b0j1i0xi0

)


with

b1i2j1 =

{
a1i2, j1−(i2−1)m1

if (i2 − 1)m1 < j1 ≤ i2m1

0 else
, b0j1i0 = a⌊j1/m1⌋+1,j1−⌊j1/m1⌋,i0 .

The cost of rearranging a three-dimensional index set into a two-dimensional one is listing a
number of zero-elements explicitly in the preceding layer instead of implicitly. Conversely, if we
rearrange a two-dimensional index set into a three-dimensional one, we need to repeat the same
weight multiple times. For deeper trees, the index sets become even higher-dimensional, and the
re-arrangement introduces even more trivial branches or redundancies. Nevertheless, we note
that the space of finite neural networks of depth L

F∞ :=

{ ∞∑

iL=1

aLiLσ




∞∑

iL−1=1

aL−1
iLiL−1

σ


∑

iL−2

. . . σ

( ∞∑

i1=1

a1i2i1 σ

(
d+1∑

i0=1

a0i1i0 xi0

))




∣∣∣∣∣ a
l
ij = 0 for all but finitely many i, j, l

}

and the space of finite neural trees of depth L

F̃∞ :=

{ ∞∑

iL=1

aLiLσ




∞∑

iL−1=1

aL−1
iLiL−1

σ


∑

iL−2

. . . σ

( ∞∑

i1=1

a1iL...i2i1 σ

(
d+1∑

i0=1

a0iL...i1i0 xi0

))




∣∣∣∣∣ a
l
iL...ik

= 0 for all but finitely many l, i1, . . . , iL

}

are identical.

Remark 2.1. We note that this perspective is only admissible concerning approximation theory.
For gradient flow-based training algorithms, it makes a huge difference

• whether parameters are reused or not,
• which set of weights that induces a certain function is chosen, and
• how the magnitude of the weights is distributed across the layers (using the invariance

σ(z) = λ−1σ(λz) for λ > 0).

A perspective more adapted to the training of neural networks is presented in Section 5.

For given weights alij or aliL...il
, we consider the path-norm proxy, which is defined as

‖f‖pnp =
∑

iL

· · ·
∑

i0

∣∣aLiL . . . a0i1i0
∣∣ or ‖f‖pnp =

∑

iL

· · ·
∑

i0

∣∣aLiL . . . a0iL...i0

∣∣

respectively. Knowing the weights, the sum is easy to compute and it naturally controls the
Lipschitz norm of the function f .

When we train a function f to approximate values yi = f∗(xi) at data points xi, the path-
norm proxy controls the generalization error, as we will show below. If the path-norm proxy of f
is very large, the function values f(xi) heavily depend on cancellations between the partial sums
with positive and negative weights in the outermost layer. In the extreme case, these partial
sums may be several orders of magnitude larger than f(xi). In that situation, the function values
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f∗(x) and f(x) may be entirely different for unseen data points x, even if they are close on the
training sample {xi}Ni=1. On the other hand, we will show below that functions with low path-
norm proxy generalize well. Thus controlling the path-norm proxy effectively means controlling
the generalization error, either directly or indirectly. We will make this more precise below.

While the path-norm proxy is easy to compute from the weights of a network, it is a quantity
related to the parameterization of a function, not the function itself. The map from the weights
alij to the realization f of the network as in (2.1) is highly non-injective. The path-norm of a
function f is the infimum of the path-norm proxies over all sets of weights of an L-layer neural
network which have the realization f .

2.2. Definition of Generalized Barron Spaces. Let σ be the rectified linear unit, i.e. σ(z) =
max{z, 0}. ReLU is a popular activation function for neural networks and has two useful prop-
erties for us: It is positively one-homogeneous and Lipschitz continuous with Lipschitz constant
1.

Let K ⊆ Rd be a compact set and X be a Banach space such that

(1) X embeds continuously into the space C0,1(K) of Lipschitz-functions on K and
(2) the closed unit ball BX in X is closed in the topology of C0(K).

Recall the following corollary to the Arzelà-Ascoli theorem.

Lemma 2.2. [Dob10, Satz 2.42] Let un : K → R be a sequence of functions such that ‖un‖C0,1(K) ≤
1. Then there exists u ∈ C0,1(K) and a subsequence unk

such that unk
→ u strongly in C0,α(K)

for all α < 1 and

‖u‖C0,1(K) ≤ lim inf
k→∞

‖unk
‖C0,1(K) ≤ 1.

Thus BX is pre-compact in the separable Banach space C0(K). Since BX is C0-closed, it is
compact, so in particular a Polish space. A brief review of measure theory in Polish spaces and
related topics used throughout the article is given in Appendix A.

Let µ be a finite signed measure on the Borel σ-algebra of BX (with respect to the C0-norm).
Then µ is a signed Radon measure. The vector-valued function

BX → C0(K), g 7→ σ(g)

is continuous and thus µ-integrable in the sense of Bochner integrals. We define

fµ =

∫

BX

σ
(
g(·)
)
µ(dg)

‖f‖X,K = inf
{
‖µ‖M(BX) : µ ∈ M(BX) s.t. f = fµ on K

}
(2.2)

BX,K =
{
f ∈ C0(K) : ‖f‖X,K < ∞

}
.

Here M(BX) denotes the space of (signed) Radon measures on BX . The first integral can
equivalently be considered as a Lebesgue integral pointwise for every x ∈ K or as a Bochner
integral. We will show below that BX,K is a normed vector space of (Lipschitz-)continuous
functions on K. We call BX,K the generalized Barron space modelled on X .

Remark 2.3. The construction of the function space BX,K above resembles the approach to Bar-
ron spaces for two-layer networks [Bac17, EW20b, EMW19a, EMW18]. Note that Barron spaces
are distinct from the class of functions considered by Barron in [Bar93], which is sometimes
referred to as Barron class. While Barron spaces are specifically designed for applications con-
cerning neural networks, the Barron class is defined in terms of spectral properties and a subset
of Barron space for almost every activation function of practical importance.
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Example 2.4. If X is the space of affine functions from Rd to R (which is isomorphic to Rd+1), the
BX,K is the usual Barron space for two-layer neural networks as described in [EMW18, EMW19a,
EW20b].

Due to Lemma 2.2, we may choose X = C0,1(K).

Example 2.5. If X = C0,1(K), then BX,K = C0,1(K) and the norms are equivalent to within a
factor of two. For f ∈ C0,1(K), we represent

f = ‖f‖C0,1(K) σ

(
f

‖f‖C0,1(K)

)
− ‖f‖C0,1(K) σ

(
f

‖f‖C0,1(K)

)

=

∫

BX

σ(g)

(
‖f‖C0,1 · δ f

‖f‖
C0,1

− ‖f‖C0,1 · δ− f

‖f‖
C0,1

)
(dg).

These examples are on opposite sides of the spectrum with X being either the least complex
non-trivial space or the largest admissible space. Spaces of deep neural networks lie somewhere
between those extremes.

Remark 2.6. For the classical Barron space, we usually consider measures supported on the unit
sphere in the finite-dimensional space X . If X is infinite-dimensional, typically only the unit ball
in X is closed (and thus compact) in C0, but not the unit sphere. For mathematical convenience,
we choose the compact setting.

2.3. Properties. Let us establish some first properties of generalized Barron spaces.

Theorem 2.7. The following are true.

(1) BX,K is a Banach-space.
(2) X −֒→ BX,K and ‖f‖BX,K

≤ 2 ‖f‖X.

(3) BX,K −֒→ C0,1(K) and the closed unit ball of BX,K is a closed subset of C0(K).

Proof. Since X −֒→ C0,1(K), we know that there exist C1, C2 > 0 such that

‖g‖C0(K) ≤ C1 ‖g‖X , [g]C0,1(K) ≤ C2 ‖g‖X ∀ g ∈ X.

Banach space. By construction, BX,K is isometric to the quotient space M(BX)/NK where

NK =

{
µ ∈ M(BX)

∣∣∣∣
∫

BX

σ
(
g(x)

)
µ(dg) = 0 ∀ x ∈ K

}
.

In particular, BX,K is a normed vector space with the norm ‖ · ‖X,K . The map

M(BX) → C0(K), µ 7→ fµ =

∫

BX

σ(g)µ(dg)

is continuous as
∥∥∥∥
∫

BX

σ(g)µ(dg)

∥∥∥∥
C0(K)

≤
∫

BX

‖g‖C0(K) |µ|(dg) ≤ C1 ‖µ‖M(BX)

by the properties of Bochner spaces. Thus NK is the kernel of a continuous linear map, i.e. a
closed closed subspace. We conclude that BX,K is a Banach space [Bre11, Proposition 11.8].

X embeds into BX,K . For g ∈ X with ‖g‖X = 1 consider µ = δg − δ−g and observe that

fµ = σ(g)− σ(−g) = g, ‖µ‖M(BX) = 2.

The general case follows by homogeneity.
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BX,K embeds into C0,1. We have already shown that ‖fµ‖C0(K) ≤ C1 ‖µ‖M(BX). By taking
the infimum over µ, we find that ‖f‖C0(K) ≤ R ‖f‖BX,K

. Furthermore, for any x 6= y ∈ K we
have

|fµ(x)− fµ(x
′)| ≤

∫

BX

∣∣σ
(
g(x)

)
− σ

(
g(x′)

)∣∣ |µ|(dg)

≤
∫

BX

∣∣g(x)− g(x′)
∣∣ |µ|(dg)

≤
∫

BX

[g]C0,1 |x− x′| |µ|(dg)

≤ C2 ‖µ‖M(BX) |x− x′|
We can now take the infimum over µ.

Now assume that (fn)n∈N is a sequence such that ‖fn‖X,K ≤ 1 for all n ∈ N. Choose a
sequence of measures µn such that fn = fµn

and ‖µn‖ ≤ 1+ 1
n for all n ∈ N. By the compactness

theorem for Radon measures (see Theorem A.11 in the appendix), there exists a subsequence
µnk

and a Radon measure µ on BX such that µnk
⇀ µ as Radon measures and ‖µ‖ ≤ 1.

By definition, the weak convergence of Radon measures implies that
∫

BX

F (g)µnk
(dg) →

∫

BX

F (g)µ(dg) ∀ F ∈ C(BX).

Using F (g) = σ(g(x)), we find that fµnk
→ fµ pointwise. In particular, if fµn

converges to a

limit f̃ uniformly, then f̃ = f ∈ BBX,K , i.e. the unit ball of BX,K is closed in the C0-topology. �

The last property establishes that BX,K satisfies the same properties which we imposed on
X , i.e. we can repeat the construction and consider BBX,K ,K .

Remark 2.8. We have shown in [EW20b] that if K is an infinite set, Barron space is generally
neither separable nor reflexive. In particular, BX,K is not expected to have either of these
properties in the more general case.

2.4. Rademacher complexities. We show that generalized Barron spaces have a favorable
property from the perspective of statistical learning theory.

A convenient (and sometimes realistic) assumption is that all data samples accessible to a
statistical learner are drawn from a distribution P independently. The pointwise Monte-Carlo
error estimate follows from the law of large numbers which shows that for a fixed function f and
data distribution P, we have

∣∣∣∣∣E(X1,...,XN )∼πN

[
N∑

i=1

f(Xi)−
∫

f(x)P(dx)

]∣∣∣∣∣ ≤
Cf√
N

Typically, the uniform error over a function class is much larger than the pointwise error. For
example for the class of one-Lipschitz functions
∣∣∣∣∣E(X1,...,XN )∼πN sup

[f ]
C0,1≤1

[
N∑

i=1

f(Xi)−
∫

f(x)P(dx)

]∣∣∣∣∣ = E(X1,...,XN )∼πN

[
W1

(
P,

1

N

N∑

i=1

δXi

)]

is the expected 1-Wasserstein distance between P and the empirical measure of N independent
sample points drawn from it. If P is the uniform distribution on [0, 1]d, this decays like N−1/d

and thus much slower than N−1/2 [FG15, EW20a].
For Barron-type spaces, the Monte-Carlo error rate may be attained uniformly on the unit ball

of BX,K . This is established using the Rademacher complexity of a function class. Rademacher
complexities essentially decouple the sign and magnitude of oscillations around the mean by



8 WEINAN E AND STEPHAN WOJTOWYTSCH

introducing additional randomness in a problem. For general information on Rademacher com-
plexities, see [SSBD14, Chapter 26].

Definition 2.9. Let S = {x1, . . . , xN} be a set of points in K. The Rademacher complexity of
H ⊆ C0,1(K) on S is defined as

(2.3) Rad(H;S) = Eξ

[
sup
h∈H

1

N

N∑

i=1

ξi h(xi)

]

where the ξi are iid random variables which take the values 1 and −1 with probability 1/2 each.

The ξi are either referred to as symmetric Bernoulli or Rademacher variables, depending on
the author.

Theorem 2.10. Denote by F the unit ball of BX,K. Let S be any sample set in Rd. Then

Rad(F ;S) ≤ 2 Rad(BX , S).

Proof. Define the function classes H1 = {σ(g) : g ∈ BX}, H2 = {−σ(g) : g ∈ BX} and
H = H1 ∪H2. All three are compact in C0.

We decompose µ = µ+ − µ− in its mutually singular positive and negative parts and write
f = fµ in BX,K as

fµ(x) =

∫

BX

σ(g(x))µ+(dg) +

∫

BX

−σ(g(x))µ−(dg)

=

∫

H1

h(x) (ρ+♯ µ
+)(dh) +

∫

H2

h(x) (ρ−♯ µ
−)(dh)

=

∫

H
h(x) µ̂(dh)

where ρ± : BX → H is given by g 7→ ±σ(g) and µ̂ = ρ+♯ µ
+ + ρ−♯ µ

−. In particular, we note that

µ̂ is a non-negative measure and ‖µ̂‖ = ‖µ‖. We conclude that the closed unit ball in BX,K is
the closed convex hull of H.

Since σ is 1-Lipschitz, the contraction Lemma [SSBD14, Lemma 26.9] implies that Rad(H1;S) ≤
Rad(BX ;S). Due to [SSBD14, Lemma 26.7], we find that

Rad(BBX,K ;S) = Rad(H;S)

= Rad(H1 ∪ (−H1);S)

≤ Rad(H1;S) + Rad(−H1;S)

= 2 Rad(H1;S)

= 2 Rad(BX ;S)

since for any ξ, the supremum is non-negative. �

For a priori estimates, it suffices to bound the expected Rademacher complexity. However, the
use of randomness in the problem is complicated, and most known bounds work on any suitably
bounded sample set.

Example 2.11. If Hlin is the class of linear functions on Rd with ℓ1-norm smaller or equal to 1
and S is any sample set of N elements in [−1, 1]d, then

Rad(Hlin;S) ≤
√

2 log(2d)

N
,
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see [SSBD14, Lemma 26.11]. If Haff is the unit ball in the class of affine functions x 7→ wTx+ b
with the norm |w|ℓ1 + |b|, we can simply extend x to (x, 1) and see that

Rad(Haff ;S) ≤
√

2 log(2d+ 2)

N
.

We show that Monte-Carlo rate decay is the best possible result for Rademacher complexities
under very weak conditions.

Example 2.12. Let F be a function class which contains the constant functions f ≡ −1 and
f ≡ 1 for α, β ∈ R. Then there exists c > 0 such that

Rad(F ;S) ≥ c
|α− β|√

N

for any sample set S with N elements. Up to scaling and a constant shift (which does not affect
the complexity), we may assume that β = 1, α = −1. Then

Rad(F ;S) ≥ Eξ
1

m
sup
f≡±1

m∑

i=1

ξif(xi)

= Eξ
1

m

∣∣∣∣∣

m∑

i=1

ξi

∣∣∣∣∣

∼ 1√
2πm

by the central limit theorem.

3. Banach spaces for multi-layer neural networks

3.1. neural tree spaces. In this section, we discuss feed-forward neural networks of infinite
width and finite depth L. Let K ⊆ Rd be a fixed compact set. Consider the following sequence
of spaces.

(1) W0(K) = (Rd)∗ ⊕ R =̃ Rd+1 is the space of affine functions from Rd to R (restricted to
K).

(2) For L ≥ 1, we set WL(K) = BWL−1(K),K .

Since we consider Rd to be equipped with the ℓ∞-norm, we take W0 to be equipped with its
dual, the ℓ1-norm. Up to a dimension-dependent normalization constant, this does not affect the
analysis.

Thus WL is the function space for L + 1-layer networks (i.e. networks with L hidden lay-
ers/nonlinearities). Here we use inductively that WL embeds into C0,1(K) continuously and
that the unit ball of WL is C0-closed because the same properties held true for WL−1. Due to
the tree-like recursive construction, we refer to WL as neural tree space (with L layers).

Here and in the following, we often assume that K is a fixed set and will suppress it in the
notation WL = WL(K).

Remark 3.1. For a network with one hidden layer, by construction the coefficients in the inner
layer are ℓ∞-bounded, while the outer layer is bounded in ℓ1 (namely as a measure). Due to
the homogeneity of the ReLU activation function, the bounds can be easily achieved and the
function space is not reduced compared to just requiring the path-norm proxy to be finite.

For other activation functions, an ℓ∞-bound on the coefficients in the inner layer may restrict
the space of functions which can be approximated. In particular, if σ is Ck-smooth, then x 7→
a σ(wT x) is Ck-smooth uniformly in w ∈ BR(0) ⊆ Rd+1. As a consequence, the space of σ-
activated two-layer networks whose inner layer coefficients are ℓ∞-bounded embeds continuously
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into Ck. At least if k > d/2, it follows from [Bar93] that this space is smaller than the space of
functions which can be approximated by σ-activated two-layer networks with uniformly bounded
path-norm (see also [EW20b, Theorem 3.1]).

It is likely that neural tree spaces with more general activation require parametrization by
Radon measures on entire Banach spaces of functions. For networks with a single hidden layer,
some results in this direction were presented in the appendix of [EW20a]. While Radon measures
on Rd+2 are less convenient than those on Sd+1, many results can be carried over since Rd+2 is
locally compact.

The situation is very different for networks with two hidden layers. The space X = W1 on
which W2 = BX is modelled is infinite-dimensional, dense in C0, and not locally compact in the
C0-topology. The restriction to the compact set BX simplifies the analysis considerably.

3.2. Embedding of finite networks. The space WL contains all finite networks with L ≥ 1
hidden layers.

Theorem 3.2. Let

(3.1) f(x) =

mL∑

iL=1

aLiLσ




mL−1∑

iL−1=1

aL−1
iLiL−1

σ


∑

iL−2

. . . σ

(
m1∑

i1=1

a1i2i1 σ

(
d+1∑

i0=1

a0i1i0 xi0

))




Then f ∈ WL and

(3.2) ‖f‖WL ≤
mL∑

iL=1

· · ·
m1∑

i1=1

d+1∑

i0=1

∣∣aLiL aL−1
iLiL−1

. . . a0i1i0
∣∣

Proof. The statement is obvious for L = 1 as

f(x) =

m1∑

i=1

ai1σ

(
d+1∑

i0=1

ai1,i0xi0

)
=

∫

Sd

σ(wT x)

(
m∑

i=1

ai|wi| · δwi/|wi|

)
(dw).

is a classical Barron function, where we simplified notation by setting wi = (ai1, . . . , ai(d+1)) ∈
Rd+1. We proceed by induction.

Let f be like in (3.1). By the induction hypothesis, for any fixed 1 ≤ iL ≤ mL, the function

gIL(x) :=

mL−1∑

iL−1=1

aL−1
iLiL−1

σ


∑

iL−2

. . . σ

(
m1∑

i1=1

a1i2i1 σ

(
d+1∑

i0=1

a0i1i0 xi0

))


lies in WL−1 with the appropriate norm bound. We note that

f(x) =

mL∑

iL=1

aiLσ
(
giL(x)

)
=

mL∑

iL=1

āiLσ
(
ḡiL(x)

)

where

ḡiL =
giL∑mL

iL−1=1 · · ·
∑m1

i1=1

∑d+1
i0=1

∣∣aLiL−1
aL−1
iL−1iL−2

. . . a0i1i0
∣∣

āiL = aiL

mL∑

iL−1=1

· · ·
m1∑

i1=1

d+1∑

i0=1

∣∣aLiL−1
aL−1
iL−1iL−2

. . . a0i1i0
∣∣.

It follows that f ∈ WL with appropriate norm bounds. �
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3.3. Inverse Approximation. We show that WL does not only contain all finite ReLU net-
works with L hidden layers, but also their limiting objects.

Theorem 3.3 (Compactness Theorem). Let fn be a sequence of functions in WL such that
CL := lim infn→∞ ‖fn‖WL < ∞. Then there exists f ∈ WL and a subsequence fnk

such that
‖f‖WL ≤ CL and fnk

→ f strongly in C0,α(K) for all α < 1.

Proof. The result is trivial for L = 0 sinceW0 is a finite-dimensional linear space. Using the third
property from Theorem 2.7 inductively, we find that WL embeds continuously into C0,1, thus
compactly into C0,α for all α < 1. This establishes the existence of a convergent subsequence.

Since BWL

is C0-closed, it follows that the limit lies in WL. �

Corollary 3.4 (Inverse Approximation Theorem). Let

fn(x) =

mn,L∑

iL=1

an,LiL
σ




mn,L−1∑

iL−1=1

an,L−1
iLiL−1

σ


∑

iL−2

. . . σ

(mn,1∑

i1=1

an,1i2i1
σ

(
d+1∑

i0=1

an,0i1i0
xi0

))




be finite L-layer network functions such that

sup
n∈N

mn,L∑

iL=1

· · ·
mn,1∑

i1=1

d+1∑

i0=1

∣∣an,LiL
an,L−1
iLiL−1

. . . an,0i1i0

∣∣ < ∞.

If P is a compactly supported probability measure and f ∈ L1(P) such that fn → f in L1(P), then
f ∈ WL(sptP) and

(3.3) ‖f‖WL(spt P) ≤ lim inf
n→∞

mn,L∑

iL=1

· · ·
mn,1∑

i1=1

d+1∑

i0=1

∣∣an,LiL
an,L−1
iLiL−1

. . . an,0i1i0

∣∣.

Proof. Follows from Theorems 3.3 and 3.2. �

In particular, we make no assumption whether the width of any layer goes to infinity, or at
what rate. The path-norm does not control the number of (non-zero) weights of a network.

3.4. Direct Approximation. In Sections 3.2 and 3.3, we showed that WL is large enough
to contain all finite ReLU networks with L hidden layers and their limiting objects, even in
weak topologies. In this section, we prove conversely that WL is small enough such that every
function can be approximated by finite networks with L hidden layers (with rate independent of
the dimensionality), i.e. WL is the smallest suitable space for these objects.

In fact, we prove a stronger result with an approximation rate in a reasonably weak topology.
The rate however depends on the number of layers. Recall the following result on convex sets in
Hilbert spaces.

Lemma 3.5. [Bar93, Lemma 1] Let G be a set in a Hilbert space H such that ‖g‖H ≤ R for all
g ∈ G. If f is in the closed convex hull of G, then for every m ∈ N and ε > 0, there exist m
elements g1, . . . , gm ∈ G such that

(3.4)

∥∥∥∥∥f − 1

m

m∑

i=1

gi

∥∥∥∥∥
H

≤ R+ ε√
m

.

The result is attributed to Maurey in [Bar93] and proved using the law of large numbers.
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Theorem 3.6. Let P be a probability measure with compact support spt(P) ⊆ BR(0). Then for
any L ≥ 1, f ∈ WL and m ∈ N, there exists a finite L-layer ReLU network

(3.5) fm(x) =

m∑

iL=1

aLiLσ




m2∑

iL−1=1

aL−1
iLiL−1

σ




m3∑

iL−2=1

. . . σ




mL∑

i1=1

a1i2i1 σ

(
d+1∑

i0=1

a0i1i0 xi0

)






such that

(1)

(3.6) ‖fm − f‖L2(P) ≤
L (2 +R) ‖f‖WL√

m

(2) the norm bound

(3.7)
m∑

iL=1

· · ·
mL∑

i1=1

d+1∑

i0=1

∣∣aLiL aL−1
iLiL−1

. . . a0i1i0
∣∣ ≤ ‖f‖WL

holds.

Remark 3.7. Note that the width of deep layers increases rapidly. This is due to the fact that
we construct an approximating network inductively. The procedure leads to a tree-like structure
where parameters are not shared, but every neuron in the ℓ-th layer has its own set of parameters
in the ℓ+1-th layer and aiℓiℓ−1

= 0 for all other parameter pairings. This is equivalent to standard
architectures from the perspective of approximation theory under path-norm bounds, since the
path norm does not control the number of neurons.

The total number of parameters in the network of the direct approximation theorem is

M = m+m ·m2 + · · ·+mL−1 ·mL +mL(d+ 1)

=

L−1∑

ℓ=0

m2ℓ+1 +mL(d+ 1)

= m
1−m2L

1−m2
+mL(d+ 1)

∼ m2L−1

by the geometric sum. Thus the decay rate in the direct approximation theorem is of the order

M− 1
2(2L−1) . This recovers the Monte-Carlo rate M−1/2 in the case L = 1 [EMW19a, Theorem

4], but quickly degenerates as L increases. Part of the problem is that the rapidly branching
structure combined with neural network indexing induces explicitly listed zeros in the set of
weights as explained in Section 2.1. A neural tree expressing the same function would require
only ∼ (d+ L)mL weights.

Note, however, that the approximation rate is independent of dimension d. In this sense, we
are not facing a curse of dimensionality, but a curse of depth.

It is unclear whether this rate can be improved in the general setting. Functions in Barron
space are described as the expectation of a suitable quantity, while multi-layer functions are
described as iterated conditional expectations and non-linearities. In this setting, it is not obvious
whether the Monte-Carlo rate should be expected.

Proof of Theorem 3.6. Without loss of generality ‖f‖WL = 1. Since WL −֒→ C0,1 with constant
1, we find that ‖f‖L2(P) ≤ (1 +R) ‖f‖WL for all f ∈ WL.

Recall from the proof of Theorem 2.10 that the unit ball of WL is the closed convex hull of
the class H = {±σ(g) : ‖g‖WL−1 ≤ 1}. Thus by Lemma 3.5 there exist g1, . . . gM ∈ WL−1 and
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εi ∈ {−1, 1} such that ∥∥∥∥∥f − 1

m

m∑

i=1

εi σ(gi(x))

∥∥∥∥∥
L2(P)

<
2 +R√

m
.

If L = 1, gi is an affine linear map and fm(x) =
∑m

i=1
εi
m σ(gi(x)) is a finite neural network. Thus

the Theorem is established for L = 1.
We proceed by induction. Assume that the theorem has been proved for L− 1 ≥ 1. Then we

note that ‖gi‖WL−1 ≤ 1, so for 1 ≤ i ≤ m we can find a finite L− 1-layer network g̃i such that
∥∥∥∥∥f − 1

m

m∑

i=1

εi σ(g̃i(x))

∥∥∥∥∥
L2(P)

≤
∥∥∥∥∥f − 1

m

M∑

i=1

εi σ(gi(x))

∥∥∥∥∥
L2(P)

+
1

m

m∑

i=1

‖gi − g̃i‖L2(P)

≤ 2 +R√
m

+
m

m

(L− 1)(2 +R)√
m

.

We merge the m trees associated with g̃i into a single tree, increasing the width of each layer by
a factor of m, and add an outer layer of width m with coefficients aiL =

εiL
m . �

Remark 3.8. Let p ∈ [2,∞). Then by interpolation

‖f − fm‖Lp(P) ≤ ‖f − fm‖
2
p

L2(P) ‖f − fm‖1−
2
p

L∞(P) ≤ C ‖f‖WL m−1/p.

Corollary 3.9. For every compact set K and f ∈ WL(K), there exists a sequence of finite
neural networks with L hidden layers

fn(x) =

mn,L∑

iL=1

an,LiL
σ




mn,L−1∑

iL−1=1

an,L−1
iLiL−1

σ


∑

iL−2

. . . σ

(mn,1∑

i1=1

an,1i2i1
σ

(
d+1∑

i0=1

an,0i1i0
xi0

))




such that ‖fn‖WL ≤ ‖f‖WL and fn → f in C0,α(K) for every α < 1.

Proof. We take R > 0 such that K ⊆ BR(0) and take P to be the uniform distribution on
BR(0). Fix ε > 0 and µ such that f = fµ on K and ‖µ‖M(BBL−1) ≤ ‖f‖WL + ε. Then we can

approximate fµ in L2(P) by Theorem 3.6 with the norm bound ‖fn‖WL ≤ ‖f‖WL + ε.

By compactness, we find that fn converges to a limit in C0,α(BR(0)) for all α < 1, which
coincides with the L2(P)-limit f . In particular, fn converges in C0,α(K). We can eliminate the
ε in the norm bound by a diagonal sequence argument. �

Remark 3.10. The direct and indirect approximation theorems show that neural tree spaces are
the correct function spaces for neural networks under path-norm bounds. The construction of
vector spaces and proofs made ample use of the equivalence between neural networks and neural
trees. It is tempting to try to force more classical neural network structures by prescribing
that the width of all layers tends to infinity at the same rate. However, this does not change
the approximation spaces since in the direct approximation theorem, we can repeat a function
from the approximating sequence multiple times until the width of the most restrictive layer is
sufficiently large to pass to the next element in the sequence. A more successful approach is
discussed in Section 4.

3.5. Composition of multi-layer functions. Let f ∈
(
WL(K))k be an L-layer function with

values in Rk. Since K is compact and f is continuous, f(K) is also compact. Let g ∈ Wℓ(f(K))
be an ℓ-layer function on f(K).

Lemma 3.11. g ◦ f ∈ WL+ℓ(K) and

(3.8)
∥∥g ◦ f

∥∥
WL+ℓ(K)

≤ ‖g‖Bℓ(f(K)) sup
1≤i≤k

‖fi‖BL(K).
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Proof. We proceed by induction. First consider the case ℓ = 0. Then g(x) = wT f(x), so

wT f(x) =
∑k

i=1 wi fi(x) is a (weighted) sum of L-layer functions, i.e. an L-layer function. By
the triangle inequality we have

‖g ◦ f‖WL ≤
k∑

i=1

|wi| ‖fi‖WL ≤ ‖w‖ℓ1 sup
1≤i≤k

‖fi‖WL = ‖g‖W0 sup
1≤i≤k

‖fi‖WL

Now assume that the theorem has been proved for ℓ−1 with ℓ ≥ 1. To avoid double superscripts,
denote by Bℓ the closed unit ball in Wℓ(K). Let g(z) =

∫
Bℓ−1 σ(h(z))µ(dh). Then

(g ◦ f) =
∫

Bℓ−1

σ
(
(h ◦ f)

)
µ(dh)

=

(
sup

1≤i≤k
‖fi‖BL

)∫

Bℓ−1

σ

(
h ◦ f

sup1≤i≤k ‖fi‖BL

)
µ(dh)

=

(
sup

1≤i≤k
‖fi‖BL

)∫

BL+ℓ−1

σ (j(·)) (F♯µ)(dj)

where

F : Bℓ−1 → BL+ℓ−1, F (h) =
h ◦ f

sup1≤i≤k ‖fi‖WL

is well-defined by the induction hypothesis. By definition, g ◦ f ∈ WL+ℓ with the appropriate
norm bound. �

For generalized Barron spaces, we showed that ‖f‖X,K ≤ 2 ‖f‖X for all f ∈ X , thus by
induction ‖f‖Wℓ+L ≤ 2ℓ ‖f‖WL for L ≥ 1. We show that this naive bound can be improved to
be independent of the number of additional layers.

Lemma 3.12. Let ℓ, L ≥ 1 and f ∈ WL(K). Then f ∈ Wℓ+L(K) and ‖f‖Wℓ+L(K) ≤
2 ‖f‖WL(K).

Proof. Without loss of generality, ‖f‖WL(K) ≤ 1. We note that g1 = σ(f) and g2 = σ(−f) are

both in the unit ball of WL+1 and non-negative, i.e. g1 = σ(g1) and g2 = σ(g2). Thus g1, g2
are also in the unit ball of WL+2. By induction, we observe that ‖gi‖WL+ℓ(K) ≤ 1 for all ℓ ≥ 1,
i = 1, 2 and thus

(3.9) ‖f‖WL+ℓ(K) = ‖g1 + g2‖WL+ℓ(K) ≤ ‖g1‖WL+ℓ(K) + ‖g2‖WL+ℓ(K) ≤ 2.

�

3.6. Rademacher complexity. Considering statistical learning theory, neural tree spaces in-
herit the convenient properties of the space of affine functions. These convenient properties are
one of the reasons why we study the path-norm in the first place. Recall the definition and
discussion of Rademacher complexities from Section 2.4.

Lemma 3.13. For every L, and every set of N points S ⊆ [−1, 1]d, the hypothesis class HL

given by the closed unit ball in WL satisfies the Rademacher complexity bound

(3.10) Rad
(
HL;S

)
≤ 2L

√
2 log(2d+ 2)

N
.

Proof. This follows directly from Example 2.11 and Theorem 2.10 by induction. �

The complexity bound has an immediate application in statistical learning theory.
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Corollary 3.14 (Generalization gap). Let P be any probability distribution supported on [−1, 1]d×
R and (X1, Y1) . . . , (XN , YN ) be iid random variables with law P. Consider the hypothesis space
H = {h ∈ WL(K) : ‖h‖WL(K) ≤ 1}. Assume that ℓ : R× R → [0, c̄] is a bounded loss function.
Then, with probability at least 1− δ over the choice of data points X1, . . . , XN , the estimate

sup
h∈H

∣∣∣∣∣
1

N

∑

i=1

ℓ
(
h(Xi), Yi

)
−
∫

[−1,1]d×R

ℓ
(
h(x), y

)
P(dx ⊗ dy)

∣∣∣∣∣ ≤ 2L+1

√
2 log(2d+ 2)

N
+ c̄

√
2 log(2/δ)

N

(3.11)

holds.

Proof. This follows directly from Lemma 3.13 and [SSBD14, Theorem 26.5]. �

Thus it is easy to “learn” a multi-layer function with low path norm in the sense that a
relatively small size of sample data points is sufficient to understand whether the function has
low population risk or not. More sophisticated methods can provide dimension-dependent decay
rates 1/2 + 1/(2d+ 2) of the generalization error at the expense of constants scaling like

√
d

instead of log(d) [BK18, Remark 1].

3.7. Generalization error estimates for regularized model. As an application, we prove
that empirical risk minimization with explicit regularization is a successful strategy in learning
multi-layer functions. For technical reasons, we work with a bounded modification of L2-risk
instead of the mean squared error functional.

Let P be a probability measure on [−1, 1]d and S = {x1, . . . , xN} be a set of samples drawn
iid from P. Denote

R,Rn : WL → R, R(f) =

∫

Rd

ℓ(x, f(x))P(dx), RN (f) =
1

N

N∑

i=1

ℓ(xi, f(xi))

where the loss function ℓ satisfies

ℓ(x, y) ≤ min
{
c̄, |y − f∗(x)|2

}
.

For finite neural networks with weights (aL, . . . , a0) ∈ RmL × · · · × Rm1×d we denote

R̂N (aL, . . . , a0) = RN (faL,...,a0)

faL,...,a0(x) =

mL∑

iL=1

aLiLσ




mL−1∑

iL−1=1

aL−1
iLiL−1

σ


∑

iL−2

. . . σ

(
m1∑

i1=1

a1i2i1 σ

(
d+1∑

i0=1

a0i1i0 xi0

))


 .

Theorem 3.15 (Generalization error). Assume that the target function satisfies f∗ ∈ WL.
Let Fm be the class of neural networks with architecture like in Theorem 3.6. The minimizer
fm ∈ Fm of the regularized risk functional

R̂n(a
L, . . . , a0) +

9L2

m

[
mL∑

iL=1

· · ·
d+1∑

i0=1

∣∣aLiL aL−1
iLiL−1

. . . a0i1i0
∣∣
]2

satisfies the risk bound

(3.12) R(fm) ≤ 18L2 ‖f∗‖2WL

m
+ 2L+3/2‖f∗‖WL

√
2 log(2d+ 2)

N
+ c̄

√
2 log(2/δ)

N
.

The first term comes from the direct approximation theorem. The explicit scaling in L looks
unproblematic, but recall that the network re quires ∼ m2L−1 parameters. The second term
stems from the Rademacher bound and is subject to the ‘curse of depth’. An improvement in
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either term would lead to better a priori estimates. The third term is purely probabilistic and
unproblematic.

Proof of Theorem 3.15. Denote λ = λm = 9L2m−1 and let f̂m = fâL,...,â0 be like in Theorem
3.6, i.e.

‖f̂m − f∗‖L2(Pn) ≤
3L ‖f∗‖WL√

m
,

∑

iL,...,i0

∣∣aLiL . . . a0i1i0
∣∣ ≤ ‖f∗‖WL .

Then by definition

R̂n(a
L, . . ., a0) + λ

[
mL∑

iL=1

· · ·
d+1∑

i0=1

∣∣aLiL aL−1
iLiL−1

. . . a0i1i0
∣∣
]2

≤ R̂n(â
L, . . . , â0) + λ

[
mL∑

iL=1

· · ·
d+1∑

i0=1

∣∣âLiL âL−1
iLiL−1

. . . â0i1i0
∣∣
]2

≤ 9L2 ‖f∗‖2WL

m
+ λ‖f∗‖2WL .

In particular

‖faL,...,a0‖2WL ≤
[

d+1∑

i0=1

∣∣aLiL aL−1
iLiL−1

. . . a0i1i0
∣∣
]2

≤ 2λ ‖f∗‖2WL

λ
= 2 ‖f∗‖2WL .

The Rademacher complexity is the supremum of linear random variables, so Rad(BL
R;S) =

R ·Rad(BL
1 ;S) where B

L
R denotes the ball of radius R centered at the origin in WL. We conclude

that, with probability at least 1− δ over the draw of the training sample, we have

R(faL,...,a0) ≤ Rn(faL,...,a0) + 2L+3/2‖f∗‖WL

√
2 log(2d+ 2)

N
+ c̄

√
2 log(2/δ)

N

=
18L2 ‖f∗‖2WL

m
+ 2L+3/2‖f∗‖WL

√
2 log(2d+ 2)

N
+ c̄

√
2 log(2/δ)

N
.

�

Remark 3.16. Since ‖f‖L∞ ≤
(
1 + supx∈K |x|

)
‖f‖WL for all f ∈ WL(K), we can repeat the

argument for the loss function ℓ(x, y) = |y − f∗(x)|2, which is a priori unbounded, but can be
modified outside of the interval which fm, f∗ take values in due to the a priori norm bound. The
constant c̄ in (3.12) in this case is

c̄ = 4 ‖f∗‖2WL([−1,1]d).

Remark 3.17. For large L, these bounds degenerate rapidly. In [BK18], the authors show that
under the stronger condition that a balanced version of the path-norm (which measures the
average weights of incoming and outcoming paths at all nodes in all layers), a better bound
on the Rademacher complexity is available. The balanced path norm achieves control over
cancellations and the balancing of weights at different layers.

Heuristically, the proof proceeds as follows: Let S = {x1, . . . , xN} be a sample set in [−1, 1]d

and the hypothesis space H be given by the unit ball in WL. By the direct approximation
theorem, there exists a network with O(m2L) weights which approximates f with ‖f‖WL ≤ 1 to
accuracy ∼ L√

m
in L2(PN ) where PN is the uniform measure on S. Thus the covering number

Nε,L2(PN )(H) of H in the L2(PN )-distance should scale like Lε−4L.
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Since f(x1), . . . f(xN ) ⊂ B√
m(0) ⊆ RN (with respect to the Euclidean distance), the Rademacher

complexity can be bounded by

Rad(H;S) ≤ 2−K
√
m√

m
+

6
√
m

m

K∑

i=1

2−i
√
log
(
N2−i

√
m,L2(PN )

)

≤ 2−K +
C√
m

K∑

i=1

2−i
√
log
(
Lm−2L 24iL)

)

≈ 2−K

√
m

+
C
√
L√
m

K∑

i=1

2−i
√
i

for any K ∈ N using [SSBD14, Lemma 27.1]. Taking K → ∞, only
√
L enters in the estimate.

The point in the proof that needs to be made rigorous is the connection between covering the
parameter space with an ε-fine net and covering the function class with an ε-fine net. For a
neural network

f(x) = ε2 σ

(
1

ε
x

)

the path-norm is bounded, but an ε-small change in the outer layer would lead to a large change
in the function space. Thus a balanced version of the path-norm is needed. In some cases, this
may be possible through rescaling layers, but see Remark 4.12 for a possible obstruction. Similar
ideas are explored below in Section 4.2, although we do not estimate the Rademacher complexity
explicitly.

The ability to obtain Rademacher estimates from covering also suggests that improvements
in the direct approximation theorem may not be possible, since the complexity of the function
classes should increase with increasing depth.

Unfortunately, the convenience in learning functions comes at a price when considering the
approximation power of neural tree spaces as described in [EW20a, Corollary 3.4] for general
function classes of low complexity.

Corollary 3.18. For any d ≥ 3 exists a 1-Lipschitz function φ on [0, 1]d such that

(3.13) lim sup
t→∞

(
tγ inf

‖f‖X≤t
‖φ− f‖L2(Q)

)
= ∞.

for all γ > 2
d−2 .

Thus to approximate even relatively regular functions in a fairly weak topology up to accuracy
ε, the path-norm of a network with L hidden layers may have to grow (almost) as quickly as

ε−
d−2
2 independently of L. In particular, increasing the depth of an infinitely wide network does

not increase the approximation power sufficiently to approximate general Lipschitz functions
(while the path norm remains bounded by the same constant).

3.8. Countably wide neural networks. Let us briefly comment on another natural concept
of infinitely wide neural networks. The space of countably wide networks

f(x) =
∞∑

iL=1

aLiLσ




∞∑

iL−1=1

aL−1
iLiL−1

σ


∑

iL−2

. . . σ

( ∞∑

i1=1

a1i2i1 σ

(
d+1∑

i0=1

a0i1i0 xi0

))




equipped with the path-norm

‖f‖ = inf
a

∑

iL

· · ·
∑

i0

∣∣aLiL . . . a0i1i0
∣∣
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is a subspace of WL by the same reasoning as Theorem 3.2 and the fact that the cross-product
of a finite number of countable sets is countable. Like in the introduction, we can show that the
spaces of countably wide neural networks and neural trees coincide.

Unlike finite neural networks, countable networks form a vector space. The space of countably
wide networks is a proper subspace of WL which contains all finite neural networks. The direct
approximation theorem implies that the unit ball in the space of countably wide neural networks
is not closed in weaker topologies like C0,α or Lp. Thus the space of countably wide neural
networks is not suitable from the perspective of variational analysis.

Intuitively, any convergent infinite sum contains a finite number of macroscopic terms and
an infinite tail of rapidly decaying terms. Thus at initialization and throughout training, a
scale difference would exist in a countable neural network between leading order neurons and
tail neurons. This is not a useful way to think of neural networks where parameters in a fixed
layer are typically chosen randomly from the same distribution and then optimized by gradient
flow-type algorithms. It should be noted however that common schemes like Xavier initialization
[GB10] choose the weights in a fashion which makes the path-norm grows beyond all bounds as
the number of neurons goes to infinity.

4. Indexed representation of arbitrarily wide neural networks

4.1. Neural networks with general index sets. The spaces considered above are a bit ab-
stract. In this section, we discuss a more concrete representation for a subspace of WL. As
we show below, this subspace is invariant under the gradient flow dynamics. For all practical
purposes, it might just be the right set of functions that we need to consider.

In [EW20b, Section 2.8], we showed that f : Rd → R is a Barron function if and only if there
exist measurable maps a, b : (0, 1) → R and w : (0, 1) → Rd such that

f(x) = fa,w,b(x) =

∫ 1

0

aθ σ
(
wT

θ x+ bθ
)
dθ.

Furthermore

‖f‖B(K) = inf

{∫ 1

0

|a|
[
|w|+ |b|

]
(θ) dθ

∣∣∣∣ f = fa,w,b on K

}
.

Thus we can think of Barron space as replacing the finite sum over neurons by an integral and
replacing the index set {1, . . . ,m} by the (continuous) unit interval. We extend the approach to
multi-layer networks in some generality.

Definition 4.1. For 0 ≤ i ≤ L, let (Ωi,Ai, π
i) be probability spaces where Ω0 = {0, . . . , d}

and π0 is the normalized counting measure. Consider measurable functions aL : ΩL → R and
ai : Ωi+1 × Ωi → R for 0 ≤ i ≤ L− 1. Then define
(4.1)

faL,...,a0(x) =

∫

ΩL

a
(L)
θL

σ

(

∫

ΩL−1

. . . σ

(
∫

Ω1

a1θ2,θ1σ

(
∫

Ω0

a0θ1,θ0 xθ0π
0(dθ0)

)

π1(dθ1)

)

. . . π(L−1)(dθL−1)

)

πL(dθL).

Consider the norm
(4.2)

‖f‖ΩL,...,Ω0;K = inf

{∫
∏

L
i=0 Ωi

∣∣a(L)
θL

. . . a
(0)
θ1θ0

∣∣ (πL ⊗ · · · ⊗ π0
)
(dθL ⊗ · · · ⊗ dθ0)

∣∣∣∣ f = faL,...,a0 on K

}

As usual, we set

(4.3) XΩL,...,Ω0;K = {f ∈ C0,1(K) : ‖f‖ΩL,...,Ω0;K < ∞}.
We call XΩL,...,Ω0;K the class of neural networks over K modeled on the index spaces Ωi =
(Ωi,Ai, π

i).
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The representation in (4.1) can also be written as:

(4.4) f(x) = EθL∼πL
a
(L)
θL

σ(EθL−1∼πL−1 . . . σ(Eθ1∼π1a
1
θ2,θ1σ(a

0
θ1 · x)) . . . )

Representing functions as some form of expectations is the starting point for the continuous
formulation of machine learning.

As we mentioned above, W1(K) = X(0,1),{0,...,d} where the unit interval is equipped with
Lebesgue measure. The collection of finite neural networks is realized when all sigma-algebras
Ai contain only finitely many sets (in particular, if all probability spaces are finite). In this
situation, XΩL,...,Ω0 is not even a vector space.

Lemma 4.2. (1) For L ≥ 2 and any selection of probability spaces ΩL, . . . ,Ω1, the space of
neuronal embeddings XΩL,...,Ω0;K is a subset of the neural tree space WL(K).

(2) If Ωi = (0, 1) and πi is Lebesgue measure for all i ≥ 1, then XΩL,...,Ω0;K is a vector-space
and ‖ · ‖ΩL,...,Ω0;K is a norm on it.

(3) If Ωi = (0, 1) and πi is Lebesgue measure for all i ≥ 1, then XΩL,...,Ω0;K contains all
finite neural networks with L hidden layers. In particular, XΩL,...,Ω0;K is a subspace of
WL(K) which is dense in WL(K) with respect to the C0,α-topology for all α < 1 and
consequently in Lp(P) for any probability measure on K, p ∈ [1,∞].

(4) X(0,1),(0,1),{0,...,d};K contains Barron space W1(K) and

‖f‖(0,1),(0,1),{0,...,d};K ≤ 2 ‖f‖W1(K) ∀ f ∈ W1(K).

(5) Let f ∈
(
W1(K))k be a vector-valued Barron function and g ∈ W1(Rk) a scalar-valued

Barron function. Then the composition g ◦ f lies in X(0,1),(0,1),{0,...,d};K and

(4.5) ‖g ◦ f‖(0,1),(0,1),{0,...,d};K ≤ ‖g‖W1(Rk)

k∑

i=1

‖fi‖W1(K).

In particular, this includes
• the absolute value/positive part/negative of a Barron function
• the pointwise maximum/minimum of two Barron functions,
• the product of two Barron functions.

Proof. First claim. This can be proved exactly like Theorem 3.2.
Second claim. For any choice of parameter spaces Ωi, the set of functions XΩL,...,Ω0;K is a

balanced cone, i.e. if f ∈ XΩL,...,Ω0;K then λf ∈ XΩL,...,Ω0;K for all λ ∈ R. It remains to show
that XΩL,...,Ω0;K is closed under function addition. Let

f(x) =

∫ 1

0

aLθL σ

(∫ 1

0

. . . σ

(∫ 1

0

a1θ2θ1 σ

(
1

d+ 1

d+1∑

θ0=1

a0θ1θ0xθ0

)))

g(x) =

∫ 1

0

bLθL σ

(∫ 1

0

. . . σ

(∫ 1

0

b1θ2θ1 σ

(
1

d+ 1

d+1∑

θ0=1

b0θ1θ0xθ0

)))
.

Then

(f + g)(x) =

∫ 1

0

cLθL σ

(∫ 1

0

. . . σ

(∫ 1

0

c1θ2θ1 σ

(
1

d+ 1

d+1∑

θ0=1

c0θ1θ0xθ0

)))
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where

cLθ =

{
2 aL2θ θ ∈ (0, 1/2)

2 bL2θ−1 θ ∈ (1/2, 1)
, cℓθξ =





4 aℓ2θ,2ξ θ, ξ ∈ (0, 1/2)

4 bℓ2θ−1,2ξ−1 θ, ξ ∈ (1/2, 1)

0 else

.

Essentially, we construct two parallel networks that are added in the final layer and otherwise
do not interact. The pre-factors stem from the fact that we re-arrange a mean-field index set
and could be eliminated if we chose more general measure spaces (e.g. Z or R) as index sets.

Third claim. Any finite neural network can be written as a mean field neural network

f(x) =
1

mL

mL∑

iL=1

aLiLσ


 1

mL−1

mL−1∑

iL−1=1

aL−1
iLiL−1

σ

(
. . . σ

(
1

m1

m1∑

i1=1

a1i2i1 σ

(
1

d+ 1

d+1∑

i0=1

a0i1i0 xi0

)))


Define the functions

aL :(0, 1) → R, aL(s) = aLi for
i− 1

mL
≤ s <

i

mL

aℓ :(0, 1)2 → R, aℓ(r, s) = aℓij for
i− 1

mℓ+1
≤ r <

i

mL
,

j − 1

mℓ
≤ s <

i

mℓ
.

for 0 ≤ ℓ < L. Then f = faL,...,a0 .
Fourth claim. Let f be a Barron function. Then, according to [EW20b, Section 2.8], f can

be written as

f(x) =

∫ 1

0

ā1θ σ

(
1

d+ 1

d+1∑

i=1

a0θ,i xi

)
dθ

For ā1, a0 ∈ L2(0, 1). In particular,

f(x) =

∫ 1

0

a2θ2 σ

(∫ 1

0

a1θ2θ1 σ

(
1

d+ 1

d+1∑

i=1

a0θ1,i xi

)
dθ1

)
dθ2

where

a2θ2 =

{
2 θ2 < 1/2

−2 θ2 > 1/2
, a1θ2θ1 =

{
āθ1 θ2 < 1/2

−āθ1 θ2 > 1/2
.

Fifth claim. Let fk+1 ≡ 1. For 1 ≤ i ≤ k, let

fi(x) =

∫ 1

0

ais σ


 1

d+ 1

d+1∑

j=1

bis,jxj


 ds

g(y) =

∫ 1

0

ct σ

(
1

k + 1

k+1∑

l=1

dt,lyl

)
dt.

Then

(g ◦ f)(x) =
∫ 1

0

ct σ


 1

k + 1

k+1∑

i=1

dt,i

∫ 1

0

ais σ


 1

d+ 1

d+1∑

j=1

bis,jxj


 ds


 dt

=

∫ 1

0

ct σ



∫ 1

0

āts σ


 1

d+ 1

d+1∑

j=1

b̄s,jxj


 ds


 dt

where

āts = dt,i a
i
(k+1)(s− i−1

k+1 )
for

i− 1

k + 1
≤ s ≤ i

k + 1
, b̄s,j = bi

(k+1)(s− i−1
k+1 ),j

for
i− 1

k + 1
.
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For the special cases observe that

g(z) = σ(z), g(z1, z2) = max{z1, z2} = z1 + σ(z2 − z1)

are Barron functions, thus the first two claims are immediate. Furthermore

g̃(z) = max{0, z}2 =
∫

R

10,∞2 σ(z − ξ) dξ

is a Barron function on bounded intervals, and so is z 7→ z2. The Barron functions f1, f2 are
continuous on a compact set K and hence bounded. It follows that

f1f2 =
1

4

[(
f1 + f2

)2 −
(
f1 − f2

)2] ∈ X(0,1),(0,1),{0,...,d};K

�

In particular, X(0,1),(0,1),{0,...,d};K contains many functions which are not in Barron space
(compare [EW20b, Remark 5.12]).

Remark 4.3. The unit interval with Lebesgue measure is a probability space with two convenient
properties for our purposes:

(1) For any finite collection of numbers 0 ≤ α1, . . . , αN ≤ 1 such that
∑N

i=1 αi = 1, there
exist disjoint measurable subsets Ii ⊆ (0, 1) such that L(Ii) = αi for all 1 ≤ i ≤ N . This
allows us to embed finite networks of arbitrary width (and can be extended to countable
sums).

(2) There exist measurable bijections between the unit interval and many index sets which
appear larger at first sight. By rearranging decimal representations, we may for exam-
ple construct a measurable bijection between (0, 1) and (0, 1)d for any d ≥ 1. Using
a hyperbolic tangent or similar for rescaling, we can further show that a measurable
bijection between (0, 1) and Rd exists. Furthermore, using the characteristic function of
a probability measure π on (0, 1), we can find a measurable map φ : (0, 1) → (0, 1) such
that φ♯π is Lebesgue measure. For details, see e.g. [EW20b, Section 2.8].

The entire analysis remains valid for any index set with these two properties. We describe a
more natural (but also more complicated) approach in Section 4.4.

Remark 4.4. Let (Ωℓ,Aℓ, π
ℓ), (Ω̃ℓ, Ãℓ, π̃

ℓ) be families of probability spaces for 0 ≤ ℓ ≤ ΩL and

φℓ : Ωℓ → Ω̃ℓ measurable maps such that π̃ℓ = φℓ
♯π

ℓ. Then the spaces

XΩL,...,Ω0;K = WπL,...,π0(K)

coincide and the norms induced by network representations with the different index spaces agree.

Remark 4.5. We never used that the measures πi are probability measures (or even finite). More
general measures could be used on the index set. In particular, the analysis of this section also
applies to the space of countably wide neural networks (which corresponds to the integers with
the counting measure).

There currently seems little gain in pursuing that generality, and we will remain in the natural
mean field setting of networks indexed by probability spaces.

4.2. Networks with Hilbert weights. We can bound the path-norm by a more convenient
expression. At first glance, it looks as though the weight functions ai are required to satisfy a
restrictive integrability condition like ai ∈ LL+1(πL⊗· · ·⊗π0). This can be weakened significantly
by using the neural-network structure in which indices for layers separated by one intermediate
layer are independent.
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Lemma 4.6. For any f , the path-norm is bounded by

‖f‖ΩL,...,Ω0;K ≤ inf

{
‖aL‖L2(πL)

L−1∏

i=0

‖ai‖L2(πi+1⊗πi)

∣∣∣∣ a
i s.t. f = faL,...,a0 on K

}
(4.6)

Proof. To simplify notation, we denote πi(dθi) = dθi as in the case of the unit interval. The
proof goes through in the general case. We quickly observe that for a network with two hidden
layers, we can easily bound∫

Ω2×Ω1×Ω0

∣∣a2θ2 a
1
θ2θ1 a

0
θ1θ0

∣∣dθ2 dθ1 dθ0 =

∫

Ω2×Ω1×Ω0

∣∣a2θ2a
0
θ1θ0

∣∣ ∣∣a1θ2θ1
∣∣dθ2 dθ1 dθ0

≤
(∫

Ω2×Ω1×Ω0

∣∣a2θ2a
0
θ1θ0

∣∣2 dθ2 dθ1 dθ0
) 1

2
(∫

Ω2×Ω1×Ω0

∣∣a1θ2θ1
∣∣2 dθ2 dθ1 dθ0

) 1
2

=

(∫

Ω2

∣∣a2θ2
∣∣2 dθ2

) 1
2
(∫

Ω2×Ω1

∣∣a1θ2θ1
∣∣2dθ2dθ1

) 1
2
(∫

Ω1×Ω0

∣∣a0θ1θ0
∣∣2 dθ1dθ0

) 1
2

In the general case, we set ΩL+1 = {0} to simplify notation. the argument follows as above by

‖faL,...,a0‖ΩL,...,Ω0;K ≤
∫
∏L+1

i=0 Ωi

∣∣a(L)
θL+1θL

. . . a
(0)
θ1θ0

∣∣ dθL . . . dθ0

=

∫
∏L+1

i=0 Ωi

∣∣∣∣∣∣

⌊L/2⌋∏

i=0

a2iθ2i+1θ2i

∣∣∣∣∣∣

∣∣∣∣∣∣

⌊(L−1)/2⌋∏

i=0

a2i+1
θ2i+2θ2i+1

∣∣∣∣∣∣
dθL . . . dθ0

≤



∫
∏L+1

i=0 Ωi

∣∣∣∣∣∣

⌊L/2⌋∏

i=0

a2iθ2i+1θ2i

∣∣∣∣∣∣

2

dθL . . . dθ0




1
2


∫
∏L+1

i=0 Ωi

∣∣∣∣∣∣

⌊L−1/2⌋∏

i=0

a2i+1
θ2i+2θ2i+1

∣∣∣∣∣∣

2

| dθL . . . dθ0




1
2

= ‖aL‖L2(πL)

L−1∏

i=0

‖ai‖L2(πi+1×πi).

We may now take the infimum over all coefficient functions. �

The lemma allows us to analyze networks in a convenient fashion using only L2-norms. In
numerical simulations, explicit regularization by penalizing L2-norms provides a smoother alter-
native to penalizing the path-norm directly. Note that the proof is built on the network index
structure and does not extend to neural trees.

Lemma 4.7. The realization map

(4.7) F : L2(πL)× L2(πL ⊗ πL−1) · · · × L2(π1 ⊗ π0) → C0(K), F (aL, . . . , a0) = faL,...,a0

is locally Lipschitz-continuous.

Proof. For L = 1 and x ∈ K, note that

∣∣fa1,a0(x) − fā1,ā0(x)
∣∣ =

∣∣∣∣∣

∫

Ω1

a1θ1σ

(
1

d+ 1

d+1∑

θ0=1

a0θ1θ0xθ0

)
− ā1θ1σ

(
1

d+ 1

d+1∑

θ0=1

ā0θ1θ0xθ0

)
π1(dθ1)

∣∣∣∣∣

≤
∫

Ω1

∣∣a1θ1 − ā1θ1
∣∣
∣∣∣∣∣σ
(

1

d+ 1

d+1∑

θ0=1

a0θ1θ0xθ0

)∣∣∣∣∣

+
∣∣ā1θ1

∣∣
∣∣∣∣∣σ
(

1

d+ 1

d+1∑

θ0=1

a0θ1θ0xθ0

)
− σ

(
1

d+ 1

d+1∑

θ0=1

ā0θ1θ0xθ0

)∣∣∣∣∣ π
1(dθ1)
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≤ ‖a1 − ā1‖L2(Ω1)‖a0‖L2(Ω1×Ω0) sup
x∈K

|x|+ ‖ā1‖L2(Ω1)‖a0 − ā0‖L2(Ω1×Ω0) sup
x∈K

|x|.

The general case follows analogously by induction. �

We define a third class of spaces for the L2-approach.

Definition 4.8. For 0 ≤ i ≤ L, let (Ωi,Ai, π
i) be a probability space where Ω0 = {0, . . . , d} and

π0 is the normalized counting measure. Let aL ∈ L2(πL) and ai ∈ L2(πi+1⊗πi) for 0 ≤ i ≤ L−1.
Then define like in (4.1)

faL,...,a0(x) =

∫

ΩL

a
(L)
θL

σ

(

∫

ΩL−1

. . . σ

(
∫

Ω1

a1θ2,θ1σ

(
∫

Ω0

a0θ1,θ0 xθ0π
0(dθ0)

)

π1(dθ1)

)

. . . π(L−1)(dθL−1)

)

πL(dθL).

We define the class of neural networks over K with Hilbert weights over the index spaces Ωi =
(Ωi,Ai, π

i) as the image of L2(πL)×· · ·×L2(π1⊗π0) under the realization map (4.7) and denote
it by

WπL,...,π0(K) =

{
f : K → R

∣∣∣∣ ∃ aL ∈ L2(πL), aℓ ∈ L2(πℓ ⊗ πℓ) s.t. f ≡ faL,...,a0 on K

}
.

The function class is equipped with the measure of complexity

(4.8) QπL,...,π0;K(f) = inf

{
‖aL‖L2(πL)

L−1∏

i=0

‖ai‖L2(πi+1⊗πi)

∣∣∣∣ a
i s.t. f = faL,...,a0 on K

}
.

We declare a notion of convergence onWπL,...,π0(K) by the convergence of the weight functions

in the L2-strong topology. To avoid pathological cases, we normalize the weights across layers.
Using the homogeneity of σ, note that faL,...,a0 = fλℓaℓ,...,λ0a0 ∈ WπL,...,π0(K) for λi > 0 such

that
∏L

i=0 λi = 1. In particular, we may assume without loss of generality that

‖aℓ‖L2 =

(
L∏

i=0

‖ai‖L2

) 1
L+1

for all ℓ ≥ 1.

Definition 4.9. We say that a sequence of functions fn ∈ WπL,...,π0(K) converges weakly to a

limit f ∈ WπL,...,π0(K) if there exist coefficient functions aL,n, . . . , a0,n for n ∈ N and aL, . . . , a0

such that

(1) fn = faL,n,...,a0,n for all n ∈ N and f = faL,...,a0 .

(2) ‖aℓ,n‖ =
(∏L

i=0 ‖ai,n‖L2

) 1
L+1

for all n ∈ N and 0 ≤ ℓ ≤ L.

(3) lim supn→∞

[∏L
i=0 ‖ai,n‖L2 −Q(fn)

]
= 0.

(4) aℓ,n → aℓ in the L2-strong topology for all 0 ≤ ℓ ≤ n.

To evaluate the notion of convergence, consider the case L = 1 and write (a, w) for (a1, a0).
We interpret a0 as an Rd+1-valued function on (0, 1) rather than a scalar function on (0, 1) ×
{0, . . . , d}. Then it is easy to see that

(an, wn) → (a, w) strongly in L2(0, 1) ⇒ (an, wn)♯L → (a, w)♯L in Wasserstein.

The inverse statement holds up to a rearrangement of the index set. The Wasserstein distance
is associated with the weak convergence of measures, while the topology of Barron space is
associated with the the norm topology for the total variation norm (strong convergence). This
justifies the terminology of ‘weak convergence’ of arbitrarily wide neural networks.



24 WEINAN E AND STEPHAN WOJTOWYTSCH

Weak convergence is locally metrizable, but not induced by a norm. A relaxed version of
convergence described above is metrizable by the distance function

dHW (f, g) = inf

{
L∑

ℓ=0

‖aℓ,f − aℓ,g‖L2(πℓ)

∣∣∣∣ a
L,f , . . . , a0,g s.t. f = faL,f ,...,a0,f , g = faL,g,...,a0,g and

‖aℓ,h‖ ≡
(

L∏

i=0

‖ai,h‖L2

) 1
L+1

≤ 2Q(h)
1

L+1 for h ∈ {f, g}
}
.(4.9)

The third condition has been weakened from
∏L

i=0 ‖ai,n‖L2−Q(fn) → 0 toQ(fn) ≤
∏L

i=0 ‖ai,n‖L2 ≤
2Q(fn). The normalization is required to ensure that functions in which one layer can be cho-
sen identical do not have zero distance by shifting all weight to the one layer. Which mode of
convergence is superior to another remains to be seen. Equipped with the Hilbert weight metric
dHW , the spaces WπL,...,π0(K) are complete.

To avoid the unwieldy terminology of arbitrarily wide neural networks with Hilbert weights,
we introduce the following simpler terminology.

Definition 4.10. The metric spaces WπL,...,π0(K), d) equipped with the metric dHW from (4.9)
are called multi-layer spaces for short.

Remark 4.11. As seen in Lemma 4.6, the inclusions

(4.10) WπL,...,π0(K) ⊆ XΩL,...,Ω0;K ⊆ WL(K)

hold. The last three points of Lemma 4.2 hold with WπL,...,π0(K) in place of XΩL,...,Ω0;K . We
note however that the functions

cLθ =

{
2 aL2θ θ ∈ (0, 1/2)

2 bL2θ−1 θ ∈ (1/2, 1)
, cℓθξ =





4 aℓ2θ,2ξ θ, ξ ∈ (0, 1/2)

4 bℓ2θ−1,2ξ−1 θ, ξ ∈ (1/2, 1)

0 else

satisfy

‖cL‖2L2(0,1) = 2
[
‖aL‖2L2(0,1) + ‖bL‖2L2(0,1)

]
, ‖cℓ‖

L2
(
(0,1)2

) = 4

[
‖aℓ‖

L2
(
(0,1)2

) + ‖bℓ‖
L2
(
(0,1)2

)
]
.

In particular, if Ωℓ = (0, 1) and πℓ is Lebesgue measure for all 1 ≤ ℓ ≤ L, then WπL,...,π0(K) is
a linear space, but both QπL,...,π0;K and dHW generally fail to be a norm.

Remark 4.12. It is not clear whether the inclusions in (4.10) are necessarily strict. In the case
of Barron space, it is easily possible to normalize by replacing

a1θ1 7→
a1θ1
ρθ1

, a0θ1θ0 7→ ρθ1 a
0
θ1θ0

such that both layers have the same magnitude in L2(0, 1), even if they are only assumed to be
measurable with finite path-norm a priori. For multiple layers, this may not be possible. Let

(4.11) as ≡ 1, bst = f(s− t), ct ≡ 1

where f is a one-periodic function on R which is in L1(0, 1), but not L2(0, 1). Then any normal-
ization

as 7→
as
ρs

, bst 7→ ρs ρ̃t bst, ct 7→
ct
ρ̃t

fails to make b L2-integrable. Whether or not this can be compensated by choosing other weights
with the same realization remains an open question.
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4.3. Networks with two hidden layers. We investigate the space X(0,1),(0,1),{0,...,d};K and

WL1,L1,π0(K) more closely where π0 denotes counting measure and L1 is the Lebesgue measure
on (0, 1). In general, any network modelled on probability spaces Ω2,Ω1,Ω0 can be written as

f(x) =

∫

Ω2

a2θ2 σ

(∫

Ω1

a1θ2,θ1 σ

(
d+1∑

θ0=1

a0θ1,θ0xθ0

)
π1(dθ1)

)
π2(dθ2)

=

∫

Ω2

a2θ2ρθ2 σ

(∫

Ω1

a1θ2,θ1 |wθ1 |
ρθ2

σ

(
wT

θ1

|wθ1 |
(x, 1)

)
π1(dθ1)

)
π2(dθ2)

=

∫

Ω2

a2θ2 ρθ2 σ

(∫

R×Sd

ã σ(w̃T x) (Ψ(θ2, ·)♯π1)(dã⊗ dw̃)

)
π2(dθ2)

where wθ = (a0θ1,1, . . . , a
0
θ1,d+1) and

Ψ : Ω2 × Ω1 → R× Sd, Ψ(θ2, θ1) =

(
a1θ2θ1 |wθ1 |

ρθ2
,
wθ1

|wθ1 |

)
.

Since the second component of Ψ does not depend on θ2, the marginal π of Ψ(θ2, ·)♯π1 on the
sphere is independent of θ2. We can therefore write

∫

R×Sd

ã σ(w̃T x) (Ψ(θ2, ·)♯π1)(dã⊗ dw̃) =

∫

Sd

āθ2(w)σ(wT x) π̄(dw)

by integrating in the a-direction and making ā a function of w (see [EW20b, Section 2.3] for the
technical details). Thus

f(x) =

∫

Ω2

a2θ2 ρθ2 σ

(∫

Sd

āθ2(w)σ(wT x) π̄(dw)

)
π2(dθ2).

We can in particular choose ρ ≥ 0 such that
∫

Sd

∣∣āθ2(w)
∣∣ π̄(dw) ≤

∫

Ω1

|a1θ2θ1 | |wθ1 |
ρθ2

π1(dθ1) =
1

ρθ2

∫

Ω1

|a1θ2θ1 | |wθ1 |π1(dθ1) ≤ 1

for all θ2 ∈ Ω2. Then the map

F : Ω2 → BX , θ2 7→ fθ2 =

∫

Sd

āθ2(w)σ(wT x) π̄(dw)

is well-defined and Bochner integrable. In particular

f(x) =

∫

Ω2

a
(2)
θ2

ρθ2 σ
(
fθ2(x)

)
π2(dθ2)

=

∫

BX

σ(g(x))µ(dg)

where µ = F♯

(
(a(2)ρ) · π2

)
. By construction, µ is concentrated on the subspace Yπ̄ of Barron

functions which can be represented with an L1-density with respect to the measure π̄, by which
we mean that |µ|(BX \ Yπ̄) = 0. This equation can be sensibly interpreted since any measure
can be extended to a potentially larger σ-algebra containing all null sets.

Thus general functions in W2(K) and X(0,1),(0,1),{0,...,d};K both take the form

f(x) =

∫

BX

σ(g(x))µ(dg)

where BX is the unit ball in Barron space, but in the second case, µ is concentrated on a subspace
Yπ̄ . This space is a quotient of L1(π̄) by a closed subspace and thus closed in Barron space, but
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may be dense in C0(K). If π̄ is the uniform distribution on Sd, then Yπ̄ is dense in C0 since
L1(π̄) is dense in the space of Radon measures on Sd with respect to the weak topology.

Claim: There is no distribution π̄ on Sd such that every Barron function can be expressed
with an L1-density with respect to π̄ if K is the closure of an open set.

Proof of claim: Barron space is not separable since

‖σ(wT
1 ·)− σ(wT

2 ·)‖B1(K) ≥ [σ(wT
1 ·)− σ(wT

2 ·)]C0,1(K) ≥ 1

if one of the hyperplanes {x : wT
1/2x = 0} intersects the interior of K. This is the case for

uncountably many w ∈ Sd. On the other hand, L1(π̄) (and also its quotient by the kernel of the
realization map) is separable for any Radon measure. Thus the two spaces cannot coincide. �

The claim can be phrased and proved in greater generality if K is a manifold or similar. We
note that for fixed π̄, the space Yπ̄ embeds continuously into C0,1(K), but its unit ball is not
closed in C0(K). Nevertheless, we may consider the space

BYπ̄,K =

{
fµ(x) =

∫

BX∩Yπ̄,K

σ(g(x))µ(dg)

∣∣∣∣ µ admissible

}

where admissible measures are finite (signed) Radon measures for which Yπ̄ is measurable. Every
distribution π̄ on Sd can be obtained as the push-forward of Lebesgue measure on the unit interval
along a measurable map φ : (0, 1) → Sd, see e.g. [EW20b, Section 2.8]. Thus the associated space
of neural networks with two hidden layers is

X(0,1),(0,1),{0,...,d};K =
⋃

π̄

BYπ̄,K =: W̃2(K)

where the union is over all probability distributions π̄ on Sd. Thus the first layer of f ∈ W2

is wide enough to contain the entire unit ball of W1, while the first layer of f ∈ W̃2 can only
express a separable subset of the unit ball in W1. The question whether this reduces expressivity

or whether in fact W2 = W̃2 remains open.
Finally, consider the space WL1,L1,π0(K) where the weights of a function satisfy

a2 ∈ L2(0, 1), a1 ∈ L2
(
(0, 1)2

)
, a0 ∈ L2

(
(0, 1)× {0, . . . , d}

)
= L2

(
(0, 1);Rd).

We proceed as before, but normalize with respect to L2 rather than L1/L∞. Again, we can
consider the maps

Ψ : (0, 1)× (0, 1) → Rd+2, (θ2, θ1) 7→
(
a1θ2θ1 , a

0
θ1

)

and note as before that

∫ 1

0

a1θ2,θ1 σ

(
d+1∑

θ0=1

a0θ1,θ0xθ0

)
dθ1 =

∫

Rd+1

āθ2(w)σ(wT x) π̄(dw)

where this time ā ∈ L2(π̄) for almost all θ2 ∈ (0, 1). Thus the first layer of f ∈ WL1,L1,π0 takes
values in a single reproducing kernel Hilbert space Hπ̄ associated to the kernel

kπ̄(x, x
′) =

∫

Rd+1

σ(wT x)σ(wT x′) π̄(dw)

while the first layer of f ∈ W2 may be wide enough to contain every function in the unit ball of
Barron space. Again, the relationship between the function spaces remains open.
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4.4. Natural index sets. In this section, we focus on the natural index set for WπL,...,π0(K).
Above, we allowed the index spaces Ωi to be generic or focused on the case Ωi = (0, 1). While
(0, 1) is simple and mathematically convenient, it is not a natural choice. First consider the
simpler case of neural networks with a single hidden layer. The classical representation in this
case is

f(x) =

∫

R×Rd+1

a σ(wT x)π(da⊗ dw)

for some distribution π on Rd+2, see [EW20b] and the sources cited therein. Using the scaling
invariance σ(·) = λ−1σ(λ·) if necessary, we may assume that

∫

Rd+2

|a|2 + |w|2 π(da⊗ dw) < ∞.

Then we set Ω1 = Rd+2,Ω0 = {0, . . . , d} and

a1θ1 = (θ1)1, a0θ1,θ0 = (θ1)1+θ0 ,

i.e. we index Rd+2 by itself. In this equation, (θ1)i denotes the i-the component of the vector
θ1 ∈ Rd+2.

For networks with more than one hidden layer, the output of the first layer is vector-valued.
The preceding analysis determined that the first hidden layer takes values in the reproducing
kernel Hilbert space Hπ̄. It thus seems reasonable at first glance to choose Hπ̄ as an index space
for the second hidden layer. This intuition is flawed since the output of the first hidden layer is
an RKHS function of x, a variable which is fixed when calculating the output of the network and
inaccessible to the second hidden layer. The previous observation has no bearing on the inner
workings of neural networks, but only on the approximation power of functions described by a
given neural network architecture.

Pursuing a different route, we note that π is a Radon measure on R × Rd+1 where R is the
output and Rd+1 the input layer (interpreting x as (x, 1)). For networks with two hidden layers,
we note that
∥∥∥∥
∫

Ω1

a1θ2θ1 σ

(∫

Ω0

a0θ1θ0xθ0π
0(dθ0)

)
π1(dθ1)

∥∥∥∥
2

L2(π2)

≤
∫

Ω2

(∫

Ω1

∣∣a1θ2θ1
∣∣2 π1(dθ1)

) 2
2
(∫

Ω1

∫

Ω0

∣∣a0θ1θ0
∣∣2 π0(dθ0)π

1(dθ1)

) 2
2

π2(dθ2) sup
x∈K

|x|2

= ‖a1‖L2(π2⊗π1) ‖a0‖L2(π1⊗π0) sup
x∈K

|x|2

for all x ∈ K. We can thus view a neural network with two hidden layers and parameter functions
a2, a1, a0 as a composition of linear and non-linear maps in the following way:

(1) Let π1 be the distribution of vectors w := (a0θ1θ0)
d+1
θ0=1 on Rd+1 and A1 : Rd → L2(π1) is

the affine map described by

(A1x)θ1 =

∫

Ω0

a0θ1θ0xθ0 =
1

d+ 1

d+1∑

θ0=1

a0θ1θ0xθ0 .

We may use Rd+1 as its own index set, i.e. a0θ1: = θ1. To emphasize the fact that index

set and distribution are natural, we denote w = 1
d+1θ1, π̄ = π1.

(2) The non-linearity σ acts on L2(π1) by pointwise application.
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(3) Let (Ω2,A2, π
2) be a general probability space used as an index set. The linear map

A2 : L2(π1) → L2(π2) is given by

(A2f)θ2 =

∫

Ω1

a1θ2θ1 fθ1 π
1(dθ1) = 〈a1θ2:, z〉L2(π1)

where a1θ2:(θ1) = a1θ2θ1 .

(4) The non-linearity σ acts on L2(π2) by pointwise application.
(5) The map A3 : L2(π2) → R is given by

A3f =

∫

Ω2

a2θ2 fθ2 π
2(dθ2).

Then

f(x) =
(
A3 ◦ σ ◦A2 ◦ σ ◦A1)(x)

=

∫

Ω2

a2θ2 σ

(〈
a1θ2:, σ

(
1

d+ 1
〈a0θ1:, x〉Rd+1

)〉

L2(π1)

)
π(dθ2)

=

∫

R×L2(π̄)

ã σ
(
〈h̃, σ(wT x)〉L2(π̄)

)
(H♯π

2)(dã⊗ dh̃)

where

H : Ω2 → R× L2(π̄), θ2 7→ (a2θ2 , a
1
θ2:).

Thus we may in a natural way interpret

• Ω0 = {0, . . . , d} with the normalized counting measure.
• Ω1 = Rd+1 = L2(Ω0). π̄ = π1 can be any probability distribution on Ω1 with finite
second moments.

• Ω2 = R× L2(π̄) and π2 is a probability distribution with finite second moments.

More generally, we set

• Ω0 = {0, . . . , d} with the normalized counting measure π̄0.
• Ωℓ = L2(π̄ℓ−1) and a measure π̄ℓ with finite second moments on Ωℓ for 1 ≤ ℓ ≤ L− 1.
• ΩL = R× L2(π̄L−1) and a measure π̄L with finite second moments on ΩL.

The outermost index space ΩL has the additional factor R compared to Ωℓ because both the first
and the last operations in a neural network are linear. Note that Ωℓ is a Polish space for every
ℓ by induction.

All considerations above were for fixed x. As x varies, a neural network with L hidden layers
takes the form f(x) = (zL ◦ · · · ◦ z1)(x) where

(1) z1 ∈ C0,1(sptP,Ω1), z
0(w, x) = wTx = Ewi∼π0wixi where we interpretw ∈ Ω1 = L2(π0).

(2) xℓ ∈ C0,1(sptP,Ωℓ+1) is defined by zℓ(y, f) = 〈f, σ(y)〉πℓ−1 where y ∈ πℓ−1 is the output
of the previous layer and f ∈ πℓ−1 is the natural index of zℓ. Thus zℓ(·, y) ∈ L2(πℓ−1) =
Ωℓ.

(3) zL(y) =
∫
ΩL

ã σ(〈f, y〉πL−1)πL(dã⊗ df).

All natural index spaces above are separable Hilbert spaces and therefore isomorphic to each
other (for all ℓ for which Ωℓ if infinite-dimensional) and to both L2(0, 1) and ℓ2. However, the
application of the non-linearity σ in L2 and ℓ2 is not invariant under Hilbert-space isomorphisms.
It makes a big difference whether we take the positive part of a function f ∈ L2(0, 1) set all
negative Fourier-coefficients of a function to zero. Luckily, natural isomorphisms preserve the
structure of continuous neural network models as in Remark 4.4.
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5. Optimization of the continuous network model

We now study gradient flows for the risk functionals in the continuous setting. We will
restrict ourselves to the indexed representation with L2-weights. The most natural optimization
algorithm for weight-functions aℓ ∈ L2((0, 1)2) is the L2-gradient flow. We show that the usual
gradient descent dynamics of neural network training can be recovered as discretizations of
the continuous optimization algorithm. In this sense, we follow the philosophy of designing
optimization algorithms for continuous models and discretizing them later which was put forth
in [EMW19b]. We present our findings in the simplest possible setting.

5.1. Discretizations of the continuous gradient flow. We now show that a natural dis-
cretization of the continuous gradient flow recovers the gradient descent dynamics for the usual
multi-layer neural networks with the “mean-field” scaling. This is a general feature of Vlasov
type dynamics.

The following computations are purely formal, assuming that solutions to all ODEs proposed
below exist – the issue of existence and uniqueness of solutions is briefly discussed in Appendix
B. The arguments however are based on an identity and energy dissipation property which are
expected to be stable when considering generalized solutions. For smooth activation functions
σ, all computations can be made rigorous and solutions exist.

Lemma 5.1. Consider a discretized version of the continuous indexed representation:

f(x) =
1

mL

mL∑

iL=1

aLiLσ


 1

mL−1

mL−1∑

iL−1=1

aL−1
iLiL−1

σ

(
. . . σ

(
1

m1

m1∑

i1=1

a1i2i1 σ

(
1

d+ 1

d+1∑

i0=1

a0i1i0 xi0

)))
 .

Define functions

aL :(0, 1) → R, aL(s) = aLi for
i− 1

mL
≤ s <

i

mL

aℓ :(0, 1)2 → R, aℓ(r, s) = aℓij for
i− 1

mℓ+1
≤ r <

i

mL
,

j − 1

mℓ
≤ s <

i

mℓ
.

for 0 ≤ ℓ < L. Then f = faL,...,a0 and the coefficient functions aL, . . . , a0 evolve by the L2-
gradient flow of

R(aL, . . . , a0) =

∫

Rd

ℓ
(
faL,...,a0(x), y

)
P(dx⊗ dy)

if and only if the parameters aLi , a
ℓ
ij evolve by the time-rescaled gradient flows

ȧLi = −mL ∂aL
i
R
(
aLiL , . . . , a

0
i1i0

)

ȧℓij = −mℓ+1mℓ ∂aℓ
ij
R
(
aLiL , . . . , a

0
i1i0

)
0 ≤ i ≤ L− 1(5.1)

where the risk of finitely many weights is defined accordingly.

Passing to a single index set (0, 1) for all layers, we lose the information about the scaling
of the width and compensate by prescribing layer-wise learning rates which lead to balanced
training velocities.

Proof. The proof for networks with one hidden layer can be found in [EW20a, Lemma 2.8]. To
simplify the presentation, we focus on the case of two hidden layers. The general case follows
the same way. Consider the network

f(x) =
1

M

M∑

i=1

ai σ


 1

m

m∑

j=1

bij σ

(
1

d+ 1

d+1∑

k=1

cjkxk

)

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and compute the gradient

∇ai,bij ,cjkR(a, b, c) = ∇ai,bij ,cjk

∫

Rd

ℓ
(
fa,b,c(x), y

)
P(dx⊗ dy)

=

∫

Rd

(∂1ℓ)
(
fa,b,c(x), y

)
∇ai,bij ,cjkfa,b,c,(x)P(dx ⊗ dy)

=

∫

Rd

(∂1ℓ)
(
fa,b,c(x), y

)




1
M σ

(
1
m

∑m
j=1 bij σ

(
1

d+1

∑d+1
k=1 cjkxk

))

1
M ai σ

′ ( 1
m

∑
l bil σ (. . . )

)
1
mσ

(
1

d+1

∑d+1
k=1 cikxk

)

1
M

∑M
i=1 ai σ

′(. . . ) 1
m σ′

(
1

d+1

∑d+1
l=1 cjlxl

)
1

d+1 xk


 P(dx⊗ dy)

=

∫

Rd

(∂1ℓ)
(
fa,b,c(x), y

)



1
M σ (fbi:,c(x))

1
Mmai σ

′ (fbi:,c(x)) σ
(
fcj:(x)

)
1

m(d+1)
1
M

∑M
i=1 ai σ

′(fbi:,c(x)) σ
′ (fcj:(x)

)


 P(dx⊗ dy)

where

fbi:,c(x) =
1

m

m∑

j=1

bij σ

(
1

d+ 1

d+1∑

k=1

cjkxk

)
and fcj:(x) =

1

d+ 1

d+1∑

l=1

cjlxl.

Equally, we can compute the L2-gradient by taking variations

δa;φR(a, b, c) = lim
h→0

R(a+ hφ, b, c)−R(a, b, c)

h

=

∫

Rd

lim
h→0

ℓ
(
fa+hφ,b,c(x), y

)
− ℓ
(
fa,b,c(x), y

)

h
P(dx⊗ dy)(5.2)

=

∫

Rd

(∂1ℓ)
(
fa,b,c(x), y

)
lim
h→0

fa+hφ,b,c(x) − fa,b,c(x)

h
P(dx⊗ dy)

=

∫

Rd

(∂1ℓ)
(
fa,b,c(x), y

) ∫ 1

0

φ(s)σ
(
fbs:,c(x)

)
dsP(dx⊗ dy)

=

∫ 1

0

(∫

Rd

(∂1ℓ)
(
fa,b,c(x), y

)
σ
(
fbs:,c(x)

)
P(dx⊗ dy)

)
φ(s) ds

since fa,b,c is linear in a. Thus the L2-gradient is of R with respect to a is represented by the
L2-function

δaR(a, b, c; s) =

∫

Rd

(∂1ℓ)
(
fa,b,c(x), y

)
σ
(
fbs:,c(x)

)
P(dx⊗ dy)

where again

fbs:,c(x) =

∫ 1

0

bst

(
1

d+ 1

d+1∑

i=1

ctixi

)
dt.

Using the chain rule instead of linearity, we compute

δb;φR(a, b, c) =

∫

Rd

(∂1ℓ)
(
fa,b,c(x), y

)
lim
h→0

fa+hφ,b,c(x)− fa,b,c(x)

h
P(dx⊗ dy)

=

∫

Rd

(∂1ℓ)(. . . )

∫ 1

0

as lim
h→0

σ
(∫ 1

0

(
bs,t + hφs,t

)
σ(fct:(x)) dt

)
− σ

(∫ 1

0
bs,t σ(fct:(x)) dt

)

h
dsP(dx⊗ dy)

=

∫

Rd

(∂1ℓ)(. . . )

∫ 1

0

as σ
′(fbs:c(x))

∫ 1

0

φs,t σ(fct:(x)) ds dtP(dx ⊗ dy)
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=

∫

(0,1)2
φs,t

(∫

Rd

(∂1ℓ)(. . . )

∫ 1

0

as σ
′(fbs:c(x))σ(fct: (x))

)
ds dt

and obtain

δbR(a, b, c; s, t) =

∫

Rd

(∂1ℓ)
(
fa,b,c(x), y

)
asσ

′(fbs:c(x)
)
σ (fct:(x)) P(dx⊗ dy)

δcR(a, b, c; t) =

∫

Rd

(∂1ℓ)
(
fa,b,c(x), y

) ∫ 1

0

a(s)σ′(fbs:c(x)) b(s, t)σ
′(fct:(x))

xi

d+ 1
dsP(dx⊗ dy).

We can now see by comparing the terms that the gradient flow of a finite number of weights,
interpreted as a step function, is a solution to the L2-gradient flow under the appropriate time-
scaling.

The general case for deep neural networks follows the same way, in which case

δaℓR(aL, . . . , a0; θℓ+1, θℓ) =

∫

Rd

(∂1ℓ)
(
faL,...,a0(x), y

) ∫

(0,1)L−ℓ−1

aLθL σ′(faL−1
θL: ...a0(x)) . . . a

ℓ+1
θℓ+1θℓ

σ′(faℓ
θℓ:

...a0(x))σ(faℓ−1
θℓ :

...a0(x)) dθL . . . dθℓ+2 P(dx⊗ dy).

�

If the learning rates are not adapted to the layer width, the weights of different layers may
move at different rates. In the natural time scaling, some layers would evolve at positive speed
while others would remain frozen at their initial position in the limit. In particular, if the
width of the two outermost layers goes to infinity, the index set of the second layer has size
mLmL−1 ≫ mL, meaning that the outermost layer would move much faster. In [AOY19], the
authors consider the opposite extreme where the coefficients of the first and last layers are frozen
and only intermediate layers evolve (with mℓ ≡ m for all ℓ).

Remark 5.2. Alternative proposals for multi-layer network training in mean field scaling [AOY19,
Ngu19, NP20, SS19]. In this article, we opted for a particularly simple description of wide multi-
layer networks and the natural extension of gradient descent dynamics. All results proved here
hold for networks with finite layers of any width and therefore should remain valid more generally
for another description of the parameter distribution associated to infinitely wide multi-layer
networks.

5.2. Growth of the path norm. Assuming existence of the gradient-flow evolution for the
moment, we prove that the path-norm of an arbitrarily wide neural network increases at most
polynomially in time under natural training dynamics. First, we consider the second moments.

Lemma 5.3. Consider the risk functional

R(aL, . . . a0) =

∫

Rd

ℓ
(
faL,...,a0(x), y

)
P(dx⊗ dy)

where ℓ : R × R → [0,∞) is a sufficiently smooth loss function and P is a compactly supported
data distribution. Then

(5.3)
∥∥ai(t)

∥∥
L2(πi+1⊗πi)

≤
∥∥ai(0)

∥∥
L2(πi+1⊗πi)

+
√
R
(
aL(0), . . . a0(0)

)
t1/2

Proof. We calculate

d

dt

∫

Ωi+1×Ωi

(
aiθi+1θi(t)

)2
(πi+1 ⊗ πi)(dθi+1 ⊗ dθi) = 2

∫

Ωi+1×Ωi

aiθi+1θi(t)
d aiθi+1θi

(t)

dt
dθi+1 dθi

≤ 2

(∫

Ωi+1×Ωi

(
aiθi+1θi(t)

)2
dθi+1 dθi

) 1
2
(∫

Ωi+1×Ωi

(
d

dt
aiθi+1θi(t)

)2

dθi+1 dθi

) 1
2
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so

d

dt
‖ai‖L2(πi+1⊗πi) =

d
dt‖ai‖2L2(πi+1⊗πi)

2 ‖ai‖L2(πi+1⊗πi)

≤
∥∥∥∥
d

dt
ai
∥∥∥∥
L2(πi+1⊗πi)

≤
∣∣∣∣
d

dt
R(aL, . . . a0)

∣∣∣∣
1
2

since the L2-gradient flow naturally satisfies the energy dissipation identity

d

dt
R(aL, . . . a0) = −

L∑

i=0

∥∥∥∥
d

dt
ai
∥∥∥∥
2

L2(πi+1⊗πi)

.

Thus

∥∥ai(t)
∥∥
L2(πi+1⊗πi)

≤
∥∥ai(0)

∥∥
L2(πi+1⊗πi)

+

∫ t

0

d

ds
‖ai(s)‖L2(πi+1⊗πi) ds

≤
∥∥ai(0)

∥∥
L2(πi+1⊗πi)

+

(∫ t

0

1 ds

) 1
2
(∫ t

0

∣∣∣∣
d

ds
R
(
aL(s), . . . a0(s)

)∣∣∣∣ ds
) 1

2

≤
∥∥ai(0)

∥∥
L2(πi+1⊗πi)

+
√
R
(
aL(0), . . . a0(0)

)
t1/2

since the risk is monotone decreasing and bounded from below by zero. �

Remark 5.4. Like in [Woj20, Lemma 3.3], a more careful analysis shows that the increase in the
L2-norm actually satisfies the stronger estimate

lim
t→∞

‖ai(t)‖L2

t1/2
= 0.

The proof of this result is based on the energy dissipation identity which characterizes weak
solutions to gradient flows.

Corollary 5.5. Assume that ‖ai(0)‖L2(πi+1⊗πi) ≤ C0 for all i = 0, . . . , L and some constant
C0 > 0. Then

(5.4) ‖faL(t),...,a0(t)‖ΩL,...,Ω0;K ≤
(
C0 +

√
R
(
aL(0), . . . a0(0)

)
t1/2

)L+1

for all t > 0.

Proof. Follows from Lemmas 4.6 and 5.3. �

As such, neural tree spaces are also the relevant class of function spaces for suitably initialized
neural networks which are trained by a gradient descent algorithm. Like in [WE20, Theorem 2],
the slow increase of the norm together with the poor approximation property from Corollary 3.18
implies that the training of multi-layer networks may be subject to the curse of dimensionality
when trying to approximate general Lipschitz functions in L2(P) for a truly high-dimensional
data-distribution P.

Corollary 5.6. Consider population and empirical risk functionals

R(aL, . . . , a0) =
1

2

∫

[0,1]d
(faL,...,a0 − f∗)2(x) dx, Rn(a

L, . . . , a0) =
1

2n

n∑

i=1

(fπ − f∗)2(xi)

where f∗ is a Lipschitz-continuous target function and the points xi are iid samples from the
uniform distribution on [0, 1]d. There exists f∗ satisfying

sup
x∈[0,1]d

∣∣f∗(x)
∣∣ + sup

x 6=y

|f∗(x) − f∗(y)|
|x− y| ≤ 1
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such that the weight functions of aL, . . . , a0 evolving by L2-gradient flow of either Rn or R satisfy

lim sup
t→∞

[
tγ R(aL(t), . . . , a0(t))

]
= ∞

for all γ > 2L
d−2 .

6. Conclusion

The classical function spaces which have been proved very successful in low-dimensional anal-
ysis (Sobolev, BV, BD, . . . ) seem ill-equipped to tackle problems in machine learning. The
situation has been partially remedied in some cases by introducing the function spaces asso-
ciated to different models, like reproducing kernel Hilbert spaces for random feature models,
Barron space for two-layer neural networks or the flow-induced function space for infinitely deep
ResNets [EMW19a].

In this article, we introduced several function classes for fully connected multi-layer feed-
forward networks:

(1) The neural tree spaces WL(K) for questions related to approximation theory and varia-
tional analysis,

(2) the classes of arbitrarily wide neural networks modelled on general index spaces ΩL, . . . ,Ω0,
which we denoted by XΩL,...,Ω0;K , and

(3) the classes of arbitrarily wide neural networks modelled on general index spaces with
Hilbert weights (or multi-layer spaces), which we denoted by WπL,...,π0(K).

The key to the definition of these spaces is the representation of functions.
Neural tree spaces are built using a tree-like index structure, and network weights have no

natural meaning. This point of view thus cannot encompass training algorithms which operate
on network weights. By analogy with classical approximation theory, we can think of finite neural
networks as polynomials (finitely parametrized functions) and of neural tree spaces as Sobolev
or Besov classes obtained as the closure under a weak norm, but too general for classical Taylor
series. We denoted these by W for ‘wide’ structures.

The classes of arbitrarily wide neural networks are introduced as very general function classes
which exhibit the natural neural network structure via generalized index spaces. In the general
class of arbitrarily wide networks, weight functions are assumed to be merely measurable with
integrable products, which is a too large space to study training dynamics. The restriction of
the multi-layer norm to this space is a natural norm, and the closure of the unit ball in the space
of arbitrarily wide neural networks and neural tree space coincides.

To study training dynamics, we consider the space of arbitrarily wide neural networks with
Hilbert weights, where the L2-inner product induces a gradient flow in the natural way. The
restriction of the path norm does not control the L2-magnitude of the weight functions, so we
studied a different measure of complexity on this function space (which is not usually a norm).
The complexity measure was seen to bound the path-norm from above and to grow at most like

t
L+1
2 in time under gradient flow training.
It is immediate that WπL,...,π0(K) ⊆ XΩL,...,Ω0;K ⊆ WL(K) with inclusions that are strict if

the index spaces are finite. Whether the inclusions are strict in the general case, is not clear.
In the case of three-layer networks, they can be interpreted as the spaces in which the first
hidden layer is wide enough to output Barron space, a separable subspace of Barron space and a
reproducing kernel Hilbert space respectively. All three spaces contain all Barron functions and
their compositions.

One naturally asks which one of these spaces is most suited for describing multi-layer neural
networks. An ideal space should (1) be complete, (2) have a nice approximation theory, (3) have
a low Rademacher complexity, and (4) most importantly, be concrete enough so that one can
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make use of the function representation for practical purposes. At this point, we cannot prove
any of the spaces introduced here satisfies all these requirements. Our feeling is that the space
WπL,...,π0(K) for sufficiently large index spaces (Ωℓ,Aℓ, π

ℓ) might be the most promising one,
even though at this point it is only a metric vector space, not a normed space (see Definitions
4.9 and 4.10 and the surrounding paragraphs.). However, it seems to be the most relevant space
for practical purposes.

A number of questions remain open.

(1) Beyond first observations, the relationship between the neural tree spaces WL(K) and
its subspace WπL,...,π0(K) for sufficiently expressive index sets remains unexplored. The
first space is suited for variational and approximation problems, while the second is a
natural object for mean-field training. It is an important question how much of the
hypothesis space we can explore using natural training dynamics.

Even for networks with two hidden layers, only heuristic observations about W2(K)

and its subspaces WL,L,π0;K and W̃2 = X(0,1),(0,1),{0,...,d};K of network-like functions are
available. Whether the two can be treated in a unified perspective remains to be seen.

(2) The direct approximation theorem holds for neural tree spaces, but not with the Monte-
Carlo rate(in terms of free parameters). Whether a better rate can be achieved for
functions in neural tree space for L ≫ 1 (or at least a space of arbitrarily wide neural
networks) remains an important open problem.

(3) The properties of the complete metric vector spaces WπL,...π0(K) have not been studied
yet.

(4) We defined a monotonically increasing sequence of spaces WL for L ∈ N. Examples 2.4
and 2.5 show that BX,K may much larger than X or exactly the same, depending on X .
Concerning neural networks, it is clear that W1 is much larger than W0. In [EW20b],
we give give an easy to check criterion which implies that a function is not in W1 and
provide examples of functions which are in WL,L,π0(K) ⊆ W2, but not W1. Beyond this,

the relationship between the spaces Wℓ and WL for ℓ < L is largely unexplored.
(5) In this paper, we considered the minimization of an integral risk functional. A more

classical problem in numerical analysis concerns the discretization of variational prob-
lems and partial differential equations. In both applications, a key component is the
approximation of a solution f∗ of the problem by functions fm in a finitely parameter-
ized hypothesis class (Galerkin spaces or neural networks). Often, the approximation
rate ‖fm − f∗‖ ≤ m−α of solutions fm of the discretized problem to the true solution
depends on the properties of f∗ (as well as the choice of norm).

For many variational problems and partial differential equations, a priori estimates on
the solutions in Sobolev or Hölder spaces are available. The regularity of f∗ is therefore
understood, as well as the expected rate of convergence fm → f .

In machine learning, a regularity theory of this type is generally missing. It is often
unclear in which function space the minimizer of a well-posed risk functional should lie,
and thus equally unclear what type of machine learning model to use (random feature
model, shallow neural network, deep neural network, ResNet, . . . ). A regularity theory
which bounds the necessary number of layers in a neural network from above or below
even for specific learning applications is not yet available.

As shown in Corollary 5.6, gradient descent may converge very slowly if the target
function does not lie in the correct target space and L

d ≪ 1.
(6) Even assuming that the solution to a variational problem is known explicitly, it remains

difficult to decide whether it lies in WL for a given L. Only for L = 1 a positive criterion
is given in [Bar93] and a negative criterion following [EW20b, Theorem 5.4]. In general,
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it remains hard to check whether a function can be expressed as a neural network of
depth L.

(7) In this article, we focused on fully connected networks with infinitely wide layers. The
theory for other types of neural networks (convolutional, recurrent, residual) will be the
subject of future work.

Starting with the articles [HR17, E17, LCTW17, EHL18], deep ResNets have been
modeled as discretizations of an ODE flow (sometimes referred to as ‘neural ODEs’).
A function space for infinitely deep residual networks with skip-connections after every
layer has been proposed in [EMW19a]. In this model, the width of incremented layers
is constant, but the width of the residual block may go to infinity. The case of ResNets
which are both very wide and very deep and have skip-connections every ℓ ≥ 1 layers is
currently unexplored.

As demonstrated in Example 2.12, Rademacher complexity cannot give a significantly
better generalization bound for the space of convolutional networks than for the space of
fully connected networks. Despite many heuristic explanations, the factors contributing
to the success of convolutional networks in image processing have not been understood
rigorously (for non-linear activation functions).

(8) Even for finite neural networks with ReLU activation and more than one hidden layer,
we are not aware of rigorous results for the existence of solutions to the gradient flow
equations in any strong or weak formulation.

(9) In many applications, neural networks are initialized with parameters that scale in such
a way that the path-norm grows beyond all bounds as the number of neurons increases.
Learning rates may not be adapted to the width of the layers in applications, and the
scaling invariance σ(z) ≡ λσ(λ−1z) for λ > 0 may lead to coefficients which are of very
different magnitude on different layers. In this situation, our analysis does not apply,
and it can be shown rigorously in some cases that very wide networks of fixed depth may
behave like linear models [ADH+19, DZPS18, DLL+18, EMWW19, EMW19c, JGH18].

These analyses typically make use of over-parametrization by assuming that the net-
work has many more neurons than the data set has training samples. In this scaling
regime, the correct function spaces and training dynamics for wide networks under pop-
ulation risk are generally unexplored.
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[SS19] J. Sirignano and K. Spiliopoulos. Mean field analysis of deep neural networks. arXiv:1903.04440

[math.PR], 2019.



BANACH SPACES OF WIDE MULTI-LAYER NEURAL NETWORKS 37

[SSBD14] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

[WE20] S. Wojtowytsch and W. E. Can shallow neural networks beat the curse of dimensionality? A mean
field training perspective. arXiv:2005.10815 [cs.LG], 2020.

[Woj20] S. Wojtowytsch. On the global convergence of gradient descent training for two-layer Relu networks
in the mean field regime. arXiv:2005.13530 [math.AP], 2020.

[Yos12] K. Yosida. Functional analysis. Springer Science & Business Media, 2012.

Appendix A. A brief review of measure theory

We briefly review some notions of measure theory used throughout the article. We assume
familiarity with the basic notions of topology, measure theory, and functional analysis (metrics,
topologies, σ-algebras, measures, Banach spaces, dual spaces, weak topologies, . . . ). Further
background material can be found e.g. in [Bre11, Els96, Mun74, Yos12, Kle06].

A.1. General measure theory. Let (X,A) be a measurable space. A signed measure is a map
µ : A → R ∪ {−∞,∞} such that for any collection {Ai}i∈Z of measurable disjoint sets we have

µ

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

µ(Ai)

(σ-additivity), assuming that the right hand side is defined. A signed measure µ admits a Hahn
decomposition µ = µ+ − µ− where µ+, µ− are mutually singular (non-negative) measures. All
proofs for this section can be found in [Kle06, Chapter 7.5] for proofs in this section. Being
mutually singular means that there exist measurable sets A+, A− such that

µ+(A+) = µ+(X), µ−(A+) = 0, µ+(A−) = 0, µ−(A−) = µ−(X),

i.e. µ+, µ− “live” on different subset of X . The (non-negative) measure |µ| = µ+ + µ− is called
the total variation measure of µ. The total variation norm of µ is defined as

‖µ‖ = |µ|(X) = µ+(A+) + µ−(A−) = sup
A,A′∈A

µ(A)− µ(A′).

Let X,Y be measurable spaces, φ : X → Y a measurable map and µ a (signed) measure on X .
Then we define the push-forward φ♯µ of µ along φ by (φ♯µ)(A) = µ(φ−1(A)) for all measurable
A ⊆ Y . Note that by definition

∫

X

f(φ(x))µ(dx) =

∫

Y

f(y) (φ♯µ)(dy) ∀ f : Y → R.

Furthermore, ‖φ♯µ‖ ≤ ‖µ‖ (since the images φ(A+) and φ(A−) may intersect non-trivially) and
‖φ♯µ‖ = ‖µ‖ if µ is a (non-negative) measure (since no cancellations can occur).

A.2. Measure theory and topology. All measurable spaces considered in this article have
compatible topological and measure theoretic structures. The following kind of spaces have
proved to be well suited for many applications.

Definition A.1. A Polish space is a second countable topological space X such that there exists
a metric d on X which induces the topology of X and such that (X, d) is a complete metric
space.

In particular, compact metric spaces are Polish. Since Polish spaces are metrizable, being
second countable and separable is equivalent here.

Lemma A.2. [Els96, Appendix A.22] Let X,Y be Polish spaces. The following are Polish spaces.

(1) An open subset U ⊆ X with the subspace topology.
(2) A closed subset U ⊆ X with the subspace topology.
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(3) X × Y with the product topology.

All but the first point are trivial. If U is a non-empty open set, note that the metric

dU (x, x
′) = d(x, x′) +

∣∣fU (x)− fU (x
′)
∣∣, fU (x) =

1

dist(x, ∂U)

induces the same topology as d on U and is complete if d is complete on X . There are various
compatibility notions between the topological structure and measure theoretic structure of a
space X .

Definition A.3. Let X be a Hausdorff space (so that compact sets are closed ⇒ Borel).

(1) The Borel σ-algebra is the σ-algebra generated by the collection of open subsets of X .
We will always assume that measures are defined on a the Borel σ-algebra.

(2) A measure µ is called locally finite if every set x ∈ X has a neighbourhood U such that
µ(U) < ∞. Locally finite measures are also referred to as Borel measures.

(3) A measure µ is called inner regular if

µ(A) = sup{µ(K) |K ⊆ A, K is compact}

for all measurable sets A. An inner regular Borel measure is called a Radon measure.
(4) A measure µ is called outer regular if

µ(U) = inf{µ(U) | A ⊆ U, U is open}

for all measurable sets A. A measure is called regular if it is both inner and outer regular.
(5) A measure µ is called moderate if X =

⋃∞
k=1 Uk where the Uk are open sets of finite

measure.

On Polish spaces, most measures of importance are Radon measures. The following result is
due to Ulam.

Theorem A.4. [Els96, Kapitel VIII, Satz 1.16] Let X be a Polish space. Then every Borel
measure µ on X is moderate and regular (in particular, a Radon measure).

For Radon measures, we can define the analogue of the support of a function to capture the
set the measure ‘sees’.

Definition A.5. Let µ be a Radon measure. We set

spt(µ) =
⋂

K closed, µ(X\K)=0

K.

The support of a measure is closed. Note that the measure µ =
∑∞

i=1 ai δqi has support R if
ai is a summable sequence of positive numbers and qi is an enumeration of Q. We say that µ
concentrates on Q since µ(R \ Q) = 0. The support of a measure µ can be significantly larger
than a set on which µ concentrates.

A.3. Continuous functions on metric spaces. In many analysis classes, the space of contin-
uous functions on [0, 1] is shown to be separable as a corollary to the Stone-Weierstrass theorem
with the dense set of polynomials with rational coefficients. This can be shown in a simpler way
and greater generality.

Theorem A.6. Let X be a compact metric space and C(X) the space of continuous real-valued
functions on X with the supremum norm. Then C(X) is separable.
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Proof. Since X is compact, it has a countable dense subset {xn}n∈N. Consider a family of
continuous functions ηn,m : X → [0, 1] such that

ηn,m(x) =

{
1 d(x, xn) ≤ 1

m

0 d(x, xn) ≥ 2
m

.

Denote

Fn,m =





n∑

i=1

m∑

j=1

ai,j ηi,j(x)

∣∣∣∣ ai,j ∈ Q ∀ i, j ∈ N



 , F =

∞⋃

n,m=1

Fn,m.

Then F is a countable subset of C(X). If f : X → R is continuous, it is uniformly continuous,
and it is easy to see by contradiction that f can be approximated uniformly by functions in
F . �

Remark A.7. The same holds for the space of continuous functions from a compact metric space
X into a separable metric space Y with the metric

d(f, g) = sup
x∈X

dY (f(x), g(x))

and more generally on locally compact Hausdorff spaces and the compact-open topology on the
space of continuous maps.

A.4. Measure theory and functional analysis. Radon measures allow a convenient func-
tional analytic interpretation due to the following Riesz representation theorem. We only invoke
the theorem in the special case of compact spaces and note that compact metric spaces are both
locally compact and separable. The same result holds in greater generality, which we shall avoid
to focus on the setting where the space of continuous functions is a Banach space.

Theorem A.8. [AFP00, Theorem 1.54] Let X be a compact metric space and C(X ;Rm) the
space of all continuous Rm-valued functions on X. Let L be a continuous linear functional on
C(X ;Rm). Then there exist a (non-negative) Radon measure µ and a µ-measurable function
ν : X → Sm−1 such that

L(f) =

∫

X

〈f(x), ν(x)〉µ(dx) ∀ f ∈ C(X ;Rm).

Furthermore, ‖L‖C(X;Rm)∗ = ‖µ‖.

Denote by A the Borel σ-algebra of X . The function

ν · µ : A → Rm, (ν · µ)(A) =
∫

A

ν(x)µ(dx)

is called a vector valued Radon measure if m ≥ 2 (and a signed Radon measure if m = 1). Vector-
valued Radon measures are σ-additive on the Borel σ-algebra. The measure µ is called the total
variation measure of ν ·µ. In the following, we will denote vector-valued Radon measures simply
by µ and the total variation measure by |µ|, like we did before for signed measures. The theorem
admits the following interpretation and extension.

Theorem A.9. The dual space of C(X ;Rm) is the space of Rm-valued Radon measures M(X ;Rm)
with the norm

‖µ‖M(X;Rm) = |µ|(X).

We denote the space of Rm-valued Radon measures by M(X ;Rm) and M(X ;R) =: M(X).
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Definition A.10. We say that a sequence of (signed, vector-valued) Radon measures µn con-
verges weakly to µ and write µn ⇀ µ if∫

X

f(x)µn(dx) →
∫

X

f(x)µ(dx) ∀ f ∈ C(X) = C(X ;R).

In this terminology, the weak convergence of Radon measures coincides with weak* conver-
gence in the dual space of C(X). By the Banach-Alaoglu theorem [Bre11, Theorem 3.16], the unit
ball of M(X) is compact in the weak* topology. Since C(X) is separable, the weak* topology of
M(X) is metrizable [Bre11, Theorem 3.28]. Thus if µn is a bounded sequence in M(X), there
exists a weakly convergent subsequence. This establishes the compactness theorem for Radon
measures.

Theorem A.11. Let µn be a sequence of (signed, vector-valued) Radon measures such that
‖µn‖ ≤ 1. Then there exists a (signed, vector-valued) Radon measure µ such that µn ⇀ µ.

A good exposition in the context of Euclidean spaces can be found in [EG15, Chapter 1] with
arguments which can be applied more generally.

A.5. Bochner integrals. Bochner integrals are a generalization of Lebesgue integrals to func-
tions with values in Banach spaces. A quick introduction can be found e.g. in [Yos12, Chapter
V, part 5] or [Růž06, Kapitel 2.1].

Definition A.12. Let (X,A, µ) be a measure space and Y a Banach space. A function f : X →
Y is called Bochner-measurable if there exists a sequence of step functions fn =

∑n
i=1 yiχAi

with
yi ∈ Y,Ai ∈ A such that fn → f pointwise µ-almost everywhere.

For real-valued functions, Bochner-measurability coincides with the usual notion of measura-
bility.

Lemma A.13. Let X be a compact metric space, A its Borel sigma algebra, µ a measure on A
and Y a Banach space. Then every continuous function f : X → Y is uniformly continuous and
thus Bochner-measurable.

A function f is Bochner-integrable if the integrals
∑n

i=1 µ(Ai) yi of the approximating sequence
fn converge and do not depend on the choice of fn.

Lemma A.14. Let X be a compact metric space, A its Borel sigma algebra, µ a finite measure
on A and Y a Banach space. Then every continuous function f : X → Y is additionally bounded
and thus Bochner-integrable.

Bochner-integrals are linked to Lebesgue-integrals in the following way.

Lemma A.15. Let f be a Bochner-measurable function. Then f is Bochner-integrable if and
only if ‖f‖ : X → R is Lebesgue-integrable. Furthermore,

∥∥∥∥
∫

X

f(x)µ(dx)

∥∥∥∥
Y

≤
∫

X

‖f(x)‖Y µ(dx).

If µ is a finite signed measure, these notions generalize in the obvious way.

Definition A.16. Let (Ω,A, µ) be a measure space, p ∈ [1,∞] and X a Banach space. Then
the Bochner space Lp(Ω;X) is the space of all Bochner-measurable functions f : Ω → X such
that ‖f‖ ∈ Lp(Ω).

The following is proved in the unnumbered example following [Růž06, Lemma 1.23]. The
claim is formulated in the special case where Ω1 is an interval and Ω2 ⊆ Rd, but the proof holds
more generally.
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Lemma A.17. Let (Ωi,Ai, µi) be measure spaces for i = 1, 2. Then f ∈ Lp(µ1⊗µ2) if and only
if the function

F : Ω1 → Lp(Ω2),
[
F (ω1)

]
(ω2) = f(ω1, ω2)

is well-defined and in Lp(Ω1, L
p(Ω2)).

Furthermore, we recall the following immediate result, which we will apply in conjunction
with the previous Lemma in the special case that H = L2(0, 1).

Lemma A.18. If H is a Hilbert space, so is L2(Ω;H) with the inner production

〈f, g〉L2(H) =

∫

Ω

〈f(ω), g(ω)〉µ(dω).

Appendix B. On the existence and uniqueness of the gradient flow

For networks with smooth activation functions, the preceding analysis can be justified rigor-
ously. We briefly discuss some obstacles in the case of ReLU activation.

Example B.1. Generically, solutions of gradient flow training for ReLU-activation are non-unique,
even for functions with one hidden layer. We consider a network with one hidden layer, one
neuron, and a risk functional with one data point:

fa,b(x) = a σ(b1x− b2), R(a, b) =
∣∣fa,b(1)− 1

∣∣2 =
∣∣a(b1 − b2)+ − 1

∣∣2.

If a, b is initialized as a0 = 1, b0 = (1, 1), then one solution of the gradient flow inclusion is
constant in time. This solution is obtained as the limit of gradient flow training for regularized
activation functions σε satisfying (σε)′(0) = 0. Another solution is the solution (a, b) of ReLU
training is



ȧt
ḃ1t
ḃ2t


 = −∇a,b

∣∣a(b1 − b2)− 1
∣∣2 = −2

(
a(b1 − b2)− 1

)


b1 − b2

a
−a


 ,

for which the risk decays to zero. This is obtained as the limit of approximating gradient flows
associated to σε with (σε)′(0) = 1.

As the training dynamics are non-unique, the Picard-Lindelöff theorem cannot apply. In
[Woj20, Lemma 3.1], we showed that the situation can be remedied by considering gradient flows
of population risk for suitably regular data distributions P. A key ingredient of the proof is that
for fixed w, σ′(wTx) is well-defined except on a hyper-plane in Rd, which we assume to be P-null
sets. An existence proof based on the Peano existence theorem is also presented in a specific
context in [CB20].

This argument cannot be extended to networks with multiple hidden layers since terms of the
form σ′(f(x)) occur where f can be a general Barron function (or even more general for deep
networks). The level sets of Barron functions may be highly irregular and even for C1-smooth
Barron functions, Sard’s theorem need not apply [EW20b, Remark 3.2]. In particular, for any
data distribution P, we can find a non-constant Barron function f such that P({f = 0}) > 0.
It thus appears inevitable to consider a class of weak solutions based on energy dissipation
properties or differential inclusions. We note that the proofs in this article are based on purely
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formal identities and the energy dissipation property. We thus expect the results to remain valid
for suitable generalized solutions.
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