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Abstract--In this paper, we prove that any continuous mapping can be approximately realized by Rumelhart- 
Hinton-Williams' multilayer neural networks with at least one hidden layer whose output functions are sigmoid 
functions. The starting point of the proof for the one hidden layer case is an integral formula recently proposed 
by Irie-Miyake and from this, the general case (for any number of hidden layers) can be proved by induction. 
The two hidden layers case is proved also by using the Kolmogorov-Arnold-Sprecher theorem and this proof 
also gives non-trivial realizations. 
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1. INTRODUCTION 

Since McCulloch-Pitts (1943), there have been many 
studies of mathematical models of neural networks. 
Recently, Hopfield, Hinton, Rumelhart, Sejnowski 
and others have tried many concrete applications 
such as pattern recognition, and have shown that it 
is possible to clarify the mechanism of human infor- 
mation processing by the use of these models. In 
particular, the back propagation algorithm (gener- 
alized delta rule) proposed by Rumelhart, Hinton, 
and Williams (1986) provides a learning rule for mul- 
tilayer networks. Many applications of this algorithm 
have been shown recently. However, there has been 
little theoretical research on the capability of the 
Rumelhart-Hinton-Williams multilayer network. 

On the application to pattern recognition, Lipp- 
mann (1987) asserts that arbitrary complex decision 
regions, including concave regions, can be formed 
using four-layer networks, but this is only an intuitive 
assertion. Wieland and Leighton (1987) showed an 
example of a three-layer network with thresholding 
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units which partitions a space into concave sub- 
spaces. Huang and Lippmann (1987) demonstrated 
by simulations that three-layer networks can form 
several complex decision regions in pattern recog- 
nition application. However, it has been known that 
any piecewise-linear decision region (which is not 
necessarily convex) can be realized by a multilayer 
network (Duda & Fossum, 1966). It's learning al- 
gorithm was also proposed (Amari, 1967) based on 
the same principle as the generalized delta rule. 
There are also other applications of multilayer net- 
works for forming mappings, such as NETtalk by 
Sejnowski and Rosenberg (1987). 

Hecht-Nielsen (1987) pointed out that Kolmo- 
gorov's theorem (Kolmogorov, 1957) and Sprecher's 
refinement (Sprecher, 1965), which are both known 
as negative solutions of Hilbert's thirteenth problem, 
show that any continuous mapping can be repre- 
sented by a form of four-layer neural network. Ue- 
saka (1971) and Poggio (1983) have also pointed this 
out. However, the assertion has a problem in that 
the output function of each unit of this network is 
not a given sigmoid function. 

Irie and Miyake (1988) obtained an integral for- 
mula which suggests the realization of functions of 
several variables by three-layer networks by analogy 
with the principle of the computerized tomography 
(CT). But in this integral formula, the output func- 
tion 0(x) must satisfy the condition of absolute in- 
tegrability, so that it cannot be a sigmoid function. 
Moreover, the function to be realized is given by an 
integral representation and the formula does not di- 
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rectly give the realization theorem of functions by 
networks with finite units. 

In neural networks of the feed-forward type by 
Rumelhart-Hinton-Williams, bounded and mono- 
tone increasing differentiable functions such as the 
sigmoid function ~b(x) = 1/(1 + e -x) are used as 
output functions of units. This is a different point 
from the McCulloch-Pitts model and perceptron 
which use heaviside function as output functions of 
units and is the reason why it is possible to derive a 
learning algorithm for multilayer networks. 

In a feed-forward type network, it's input-output 
relationship defines a mapping which is called an 
input-output mapping of the network. We studied 
the problem of network capabilities from the point 
of view of input-output mappings. 

In this paper, we started from an integral formula 
recently proposed by Irie and Miyake (1988) and 
proved the theorem which guarantees the approxi- 
mate realization of continuous mappings by three- 
layer (one hidden layer) networks whose output 
functions for hidden layer are sigmoid, and whose 
output functions for input and output layers are lin- 
ear in the sense of uniform topology. It is easy to 
prove the theorem for k (->3)-layer networks by us- 
ing the theorem for a three-layer case. But the proof 
of the theorem for the case k > 3 gives only trivial 
approximate realization of given mappings. There- 
fore we show another proof for the four-layer case 
by using the Kolmogorov-Arnold-Sprecher theorem 
(Kolmogorov, 1957; Sprecher, 1965). 

McCulloch-Pitts showed that any logical circuit 
can be designed using their model. Correspondingly, 
our assertion shows that any continuous mapping can 
be approximately represented by the Rumelhart- 
Hinton-Williams multilayer network. 

2. MULTILAYER NEURAL NETWORKS 

The Rumelhart-Hinton-Will iams multilayer net- 
work that we consider here is a feed-forward type 
network with connections between adjoining layers 
only. Networks generally have hidden layers be- 
tween the input and output layers. Each layer con- 
sists of computational units. The input-output  
relationship of each unit is represented by inputs xi, 
output y, connection weights wi ,  threshold 0, and 
differentiable function + as follows: 

y 0 t 
The learning rule of this network is known as the 

back propagation algorithm (Rumelhart, Hinton, & 
Williams, 1986). The back propagation algorithm is 
an algorithm that uses a gradient descent method to 
modify weights and thresholds so that the error be- 

tween the desired output and the output signal of 
the network is minimized. We generally use a 
bounded and monotonic increasing differentiable 
function which is called sigmoid function for each 
unit's output function. 

If a multilayer network has n input units and m 
output units, then the input-output relationship de- 
fines a continuous mapping from n-dimensional Eu- 
clidean space to m-dimensional Euclidean space. We 
call this mapping the input-output mapping of the 
network. We study the problem of network capabil- 
ities from the point of view of input-output map- 
pings. It is observed that for the study of mappings 
defined by muitilayer networks it is sufficient to con- 
sider networks whose output functions for hidden 
layers are the above +(x) and whose output functions 
for input and output layers are linear. 

3. APPROXIMATE REALIZATION 
OF CONTINUOUS MAPPINGS 

BY NEURAL NETWORKS 

We shall consider the possibility of representing con- 
tinuous mappings by neural networks whose output 
functions in hidden layers are sigmoid, for example, 
+(x) = 1/(1 + e-X). It is simply noted here that 
general continuous mappings cannot be exactly rep- 
resented by Rumelhart-Hinton-Williams' networks. 
For example, if a real analytic output function such 
as the sigmoid function +(x) = 1/(1 + e -*) is used, 
then an input-output mapping of this network is an- 
alytic and generally cannot represent all continuous 
mappings. 

Let points of n-dimensional Euclidean space R" 
be denoted by x = ( x  1 . . . . .  Xn) and the norm of x 
defined by Ix[ = ten ~,l., i :o xT ) '-. 

We prove the following theorems and corollaries 
in this paper. 

Theorem 1. 

Let qb(x) be a nonconstant, bounded and monotone 
increasing continuous function. Let K be a compact 
subset (bounded closed subset) of R" and f ( x l  . . . . .  

xn) be a real valued continuous function on K. Then 
for an arbitrary e > 0, there exists an integer N and 
real constants ci, Oi(i = 1 . . . .  , N ) ,  w q ( i  = 1 . . . .  , 

N, j -- 1 . . . . .  n) such that 

f ( x l  . . . . .  x . )  = c ,+ w o x j  - oi 
i = 1  

satisfies max ,~  I f ( x ,  . . . . .  x , )  - f (x~ . . . . .  x , )[  < 

~. In other words, for an arbitrary ~ > 0, there exists 
a three-layer network whose output functions for the 
hidden layer are +(x), whose output functions for 
input and output layers are linear and which has an 
input-output function f ( x ~  . . . . .  x . )  such that 
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m a x , ~ K  I f ( x ,  . . . .  , x . )  - . . . . .  x . ) l  < 

The above theorem easily leads to the following 
general theorem. 

Theorem 2. 

Let ¢(x)  be a nonconstant, bounded and monotone 
increasing continuous function. Let K be a compact 
subset (bounded closed subset) of R" and fix an in- 
teger k - 3. Then any continuous mapping f :  K 
R ~ defined by x = ( x , , . . .  , Xn) ~ ( f , ( x )  . . . .  , 

f,,(x)) can be approximated in the sense of uniform 
topology on K by input-output  mappings of k-layer 
(k-2 hidden layers) networks whose output functions 
for hidden layers are d#(x), and whose output func- 
tions for input and output layers are linear. In other 
words, for any continuous mapping f : K  ~ R"  and 
an arbitrary e > 0, there exists a k-layer network 
whose input-output  mapping is given by f :  K ~ R"  
such that max,er  d(f(x) ,  f(x)) < e, where d(,) is a 
metric which induces the usual topology of R".  

Corollary 1. 

Let qb(x), K be as above and fix an integer k --- 
3. Then any mapping f : x  E K ~ (f,(x),  . . . , 
f,,(x)) E R"  where fl(x) (i = 1, . . . , m) are sum- 
mable on K, can be approximated in the sense of 
L2-topology on K by input-output  mappings of k- 
layer (k-2 hidden layers) networks whose output 
functions for hidden layers are ~b(x) and whose out- 
put functions for input and output layers are linear. 
In other words, for an arbitrary ~ > 0, there exists 
a k-layer network whose input-output mapping is 
given by f : x  E K---~ ( f l ( x )  . . . . .  fro(X)) E R m such 
that 

dL2(X)(f' f ) =  (~i=1 fr  [fi(x, . . . .  ,X,) 

- f , ( X m ,  . . . , x,)l 2 dx)1,2 < 

Corollary 2. 

Let K be as above and fix an integer k -> 3. Let ~b(x) 
be a strictly increasing continuous function such that 
d~((- ~, ~)) = (0, 1). Then any continuous mapping 
f : K  ~ (0, 1)  m c a n  be approximated in the sense of 
uniform topology on K by input-output  mappings of 
k(->3)-layer neural networks whose output functions 
for hidden and output layers are d#(x). 

Proof. Set f(x) = ( f l ( x ) , . . . ,  fm(X)). As d#-l:(0, 
1) --9 ( - oo, ~) is continuous, the theorem 2 is applied 
to the mapping x ~ ~b-lf(x) = ( ~ b - l f ( x ) , . . .  , 
~b-lf,,(x)) and the corollary is obtained easily. 

q.e.d. 
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Remark 1. 

Usual output functions such as the sigmoid function 
1/(1 + e -x) used for back-propagation neural net- 
works satisfy the condition of d#(x) that ~b(x) is a 
nonconstant, bounded and monotone increasing con- 
tinuous function. 

Remark 2. 

Any mapping is approximately realized by a three- 
layer (one hidden layer) network. However, it should 
be theoretically studied in the future that the pos- 
sibility of k > 3-layer networks can realize a given 
mapping with less costs (number of units or connec- 
tions) than three-layer networks, within error e. 

For the application of neural networks to pattern 
recognition, if m is the number of recognized cate- 
gories, usually m output units corresponding to these 
categories are used, and the system is allowed to 
learn to take values near 1 only for units correspond- 
ing to the input categories. Corollaries show that if 
one uses multilayer networks with hidden layers, any 
decision region can be formed by a neural network. 
In particular, a strictly increasing continuous func- 
tion, as the output function of each unit, can be 
chosen. 

In this paper, we call bounded and monotone in- 
creasing continuous functions, sigmoid functions. In 
particular, a sigmoid function ~b(x) having a weak 
derivative which is summable has the property that 
if we set d#~(x) = ~b(x/e)(e > 0), then the derivatives 
d#~(x) = (1/()df(x/~) converge, in the sense of the 
generalized function (see, e.g., Gel 'fand & Shilov, 
1964), to the ~ function as • ~ 0. That is to say, if 
~b(oo) - ~b(- ~) = 1, then for any smooth function 
g(x) with compact support, 

lim (= ~b~(x) • g(x) dx = g(O). 
~'--~ + 0 .J - -  ~o 

The following examples are included in the class 
of sigmoid functions considered here. 

Example 1. For ~b(x) = 1/(1 + e x p ( - x ) ) ,  ~b'(x) = 
1/~ exp( -x /~) / (1  + exp( -x /~ ) )  2 and ~b(x) is a sig- 
moid function. 

Example 2. For ~(x)  = 1/V~--~ f~_~ exp( - tz /2 )  dt, 
• "(x) = ~ / X / ~  exp(-x2/2~) and ~(x)  is a sigmoid 
function. 

Example 3. For ~b(x) where ~b(x) = 0(x < 0), 
~b(x) = x(0 < x < 1) and ~b(x) = l (x -> 1), 
~b'(x) = 0(x < 0 or x ->- ~), ~b'(x) = l /e(0 -< x < 
~), and d#(x) is a sigmoid function. 

In the McCulloch-Pitts neural model and per- 
ceptron, a threshold function ~b(x) = l (x - 0), = 
0(x < 0) is used as the output function. 
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Sigmoid functions qb(x) where 6 ( - ~ )  = 0 and 
6(~) = 1 are appropriate as output functions in the 
neural model because if we set +,(x) = + ( x & ) ( e  > 
O) then these converge to the threshold function in 
the McCulloch-Pitts neural model and perceptron as 
~--> +0. 

McCulloch-Pitts shows that one can design any 
logical circuit using their model. Correspondingly, 
theorem 2 above shows that any continuous mapping 
can be approximately represented by multilayer net- 
works with sigmoid output functions. 

4. PRELIMINARY 1 (MOLLIFIERS, 
FOURIER TRANSFORMS) 

Fundamental matters used in this paper are reviewed 
here. 

Let LP(R")(p -> 1) denote the space of all mea- 
surable functions f(x) on R" which satisfy 

f If(x)? dx < ~. 
n 

The norm of f E LP(R ~) is defined by 

IIf(x)lk~ = If(x)l ~ dx , 
n 

and the convergence f,(x) ---> f(x) in LP(R") is de- 
fined by 

lim IIf,(x) - f(x)llL, = O. 

Generally, for any measurable set K, L P ( K ) ( p  >- 
1) is defined similarly. 

Let p(x) be a function on R" which satisfies the 
following conditions: 

(i) p(x) >- O, 9(x) has continuous partial derivatives 
of all orders and the support is contained in the 
unit sphere Ix I <-- 1. 

(ii) fR" p(x) dx = 1 

Then, for ~ > O, set p,(x) = (1/e)"p(x/e). 
If u(x) ~ L~o~, that is, u(x) is locally summable, 

consider 

p**u(x) = fR° p,(x - y)u(y) dy, 

then the following assertions hold: (a) p,*u(x) C 
C ~, that is, p,*u(x) has continuous partial derivatives 
of all orders, and the support of p,*u(x) is contained 
in the ¢ neighborhood of support of u(x); (b) if u(x) 
is a continuous function with compact support, then 
O~*u(x) ---" u(x) uniformly on R" as e ~ + 0; and (c) 
if u(x) E LP(R~)(p >- 1) then p~*u(x) ---> u(x) in L p 
as ¢ ~ + 0. The operator p,* is called a mollifier. 

For f(x) E LI(R"), Fourier transform 

r(e) : f .  e dx, (1) 

where (x, {) = £7-1 xi{i, can be defined and set 
/ ( g )  = , . ; f (g) .  

If f (x)  satisfies an additional condition that f(x) 
has continuous partial derivatives of order up to n, 
then f(x)  can be represented at each point by inverse 
Fourier transform of .f (~) as follows. 

f(x)  = (2~r)-" f., e'<X4>f({) d{. 

The Plancherel theorem especially asserts that ,-;can 
be extended one to one onto mapping S :  L2(R ") --~ 
L2(R ") and for f(x) E L ~ V1 L2(R"), / ; f ( { )  is equal 
to the one defined by (1). Furthermore, for f(x) C 
L2(R"), 

-i<*4>f(x) dx ~ ) + zc) 0(A e 

i ,  2 

(see e.g., Yosida, 1968). 

5. PRELIMINARY 2 (IRIE-MIYAKE'S 
INTEGRAL FORMULA) 

The following theorem is a starting point for proof 
of Theorem 1. 

Theorem (Irie-Miyake) 
Let O(x) E LI(R), that is, let O(x) be absolutely 
integrable and f ( x t  . . . . .  x , )  ~ L2(R"). Let W(~j) 
and F(wl  . . . . .  w, )  be Fourier transforms of @(x) 
and f ( x l ,  . • • , xn) respectively. 

If W(1) # 0, then 

qJ x ; w ; -  Wo (2,rr),xF(1) 
i = l  

x exp(iw0) dwo dwl "'" dw,,. 

Remark 
This formula precisely asserts that if we set 

I~A(X1 . . . . .  Xn) . . . .  
- A  - A  

1 
x F(wl  . . . . .  wn) 

(2"rr)"*(1) 

x exp(iw0) dwo] dwl dw,  1 1 0  

d 
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then 

lim IIL.A(X, . . . .  , x , )  - f ( x , ,  . . . , X,)IIL= = O. 

Connecting this formula with three-layer net- 
works, Irie and Miyake (1988) assert that arbitrary 
functions can be represented by a three-layer net- 
work with an infinite number of computational units. 
In this formula, w0 corresponds to threshold, wi cor- 
responds to connection weight and 0(x) corresponds 
to the output function of the units. However, the 
sigmoid function 1/(1 + e -~) does not satisfy the 
condition of this formula that 0(x) be absolutely in- 
tegrable and so the formula does not directly give 
the realization theorem of functions by networks. 

6. P R E L I M I N A R Y  3 ( S E V E R A L  L E M M A S )  

We prepare several Lemmas for proof of our theo- 
rem 1. 

L e m m a  1. 

Let d0(x) be a nonconstant, bounded and monotone 
increasing continuous function. For a > 0, if we set 

g ( x )  = do(x + ~)  - do(x - ~ ) ,  

then g ( x )  ~ L~(R), that is, 

f _  Ig(x)] d x  < ~ .  

Furthermore, for some 8 > O, if we set 

g d x )  = do(x/~ + ~)  - do(x/~ - ~ ) ,  

then the value of Fourier transform G~({) of g~(x) at 
= 1 is non-zero. 

Proof.  Let ]g(x)] ~ M. For L > M, 

I I -° • J L J -L+ct 
Ig (x) l  d x  = f'_' g ( x )  d x  = 

L 

- f _ - °  do(x) d x  
L - o r  

= (~+~ re(x) ax 
dL-a 

_ ( - L + ~  do(x) dx  <- 4oLM. 
J - L - a  

Therefore, 

f: lira Ig(x)] dx < ~.  
L--*~ L 

We show that for some g > 0, G~(1) ~ 0. If the 
assertion does not hold, then for any g > 0, 

f ~  (do(x/~ + - - ax o. Or) + ( x / ~  oO)e -~ 
oo 

By the change of the variable, 

f [  (+(x  + ~)  - O(x  - a))e - ~  dx = 0 
(for any ~ > 0). (1) 

Taking the complex conjugate of the above equation 
(1), 

f [  (+(x  + a) - do(x - a))e/~ dx = 0 
~o 

(for any g > 0). (2) 

Since the Fourier transform al(~) of gl (x )  = 
do(X + o 0 -- 6(X -- a) E LI(R) is continuous, so, 
from (1) and (2), GI(0  is identically zero. Therefore, 

do(x + a )  - do(x - a ) - - - 0 .  

This is a contradiction, because do(x) is not 
constant, q.e.d. 

Remark 

Lemma 1 holds for do(x) which is locally summable. 

L e m m a  2 

Let Ai > 0 (i = 1 . . . .  , m),  K be a compact subset 
(bounded closed subset) of R n and h(x~ . . . . .  Xm, 
h . . . .  , t,) be a continuous function on [ - m l ,  Zl] 
X "" X [ - A m ,  Am] X K. 

Then the function defined by the integral 

H ( t ) =  f _ ' - - ,  f~m 
A1 Am 

h(Xl  . . . . .  xm, tl, • • • , tn) dXl • • • dxm 

can be approximated uniformly on K by the Riemann 
s u m  

Hs(t)  = 
2Ai "'" 2Am 

N m 
N-1 ( 

x ~ h -A1 
kl...km=0 

k,. • 2A,, 
- A m +  

N 

kl • 2A1 + - -  
N , • . . , 

, tl . . . .  , tn)- 

In other words, for an arbitrary e > 0, there exists 
a natural number No such that for N -> No, 

max ]H(t) - HN(t)] < e. 
I • K  

Proof .  The function h(x, t) is continuous on the com- 
pact set [ -A1 ,  ml] x ... x [ - A m ,  Am] x K,  so h(x, 
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t) is uniformly continuous. Therefore for any e > 0, 
we can take the integer No such that if N - No and 

xi I 
<--N-2A; (i = 1, . . . ,  m) then 

h ( X l  . . . . .  Xm, tl . . . . .  tn) 

k l"  2A1 
- h - A 1  + ~ . . . . .  

- A m  + - - - - ~ - ,  fi . . . . .  tn < 2A1 "" 2Am" 

Assertion of the Lemma is obvious from this 
inequality, q.e.d. 

7. P R O O F  OF T H E O R E M S  

We will prove our theorems in Section 3 under the 
above preliminaries. 

Proof of  Theorem 1 

Step I. Because f (x)(x  = (x~, . . . , x , ) )  is a contin- 
uous function on a compact subset K of R", f (x)  can 
be extended to be a continuous function on R" with 
compact support. We also denote this by f (x) .  

If we operate the mollifier p~* on f (x) ,  p~*f(x) is 
C~-function with compact support. Furthermore,  
p~*f(x) ~ f ( x ) ( a  ~ + 0) uniformly on R ~. Therefore  
we may suppose f (x)  is a C~-function with compact 
support for proving Theorem 1. By the Paley-Wie- 
ner theorem (see, e.g., Yosida, 1968), the Fourier 
transform F(w)(w = (wl . . . . .  w~)) of f (x)  is real 
analytic and, for any integer N, there exists a con- 
stant CN such that 

IF(w)h ~ C~(1 + Iwl) N. (3) 

In particular, F(w) E L ~ O LZ(R"). 
We define IA(Xl . . . . .  X,),  L.A(Xl . . . . .  X,) and 

J A ( X I ,  . . . , Xn) as follows: 

I a ( X l '  " " " ' X n )  = f ~ A  ""  f ~ z Q  ( ~ X i W i  -- Wo)  

1 
F(wl  . . . .  , w,)  

(2"rr)"qs(1) 

× exp(iw0) dwo dWl "" dw, ,  (4) 

j: f:[f: I ~ A ( X , ,  . . . , Xn) . . . .  
A A 

) 1 
* i = , x i w i -  wo (2~r)"~(1) 

× exp(iw0) dwo] dWl "" dw, ,  (5) 
3 

JA(XI  . . . . .  X n ) - -  1 f A  f A  
(2~r)" A - A  

F(wl . . . . .  wn)exp ( i  ~ xiwi) dwl ... 

where t~(x) E L 1 is defined by 

(6) 

+ ( x )  = + - - 

for some ot and ~ so that +(x) satisfies Lemma 1 in 
Section 6. 

The essential part of the proof of Ir ie-Miyake's  
integral formula is the equality 

I~A(X 1 . . . . .  X , , )  = J A ( X 1  . . . . .  X n )  ( 7 )  

and this is derived from 

= exp(i~xiwi)i=l " * ( 1 ) .  (8) 

In our discussion, using the estimate of F(w), we 
can prove 

lira JA(Xl . . . . .  Xn) = f (x l ,  • • • , X,) 
A~zc 

uniformly on R". Therefore  

lira I~ A(Xt . . . . .  X,) = f(Xl . . . . .  Xn) 
A ~  

uniformly on R". That  is to say, we can state that 
for any e > 0 there exists A > 0 such that 

max II~A(X, . . . . .  Xn) -- f ( x l ,  • • • , X,)I < ~/2. 
x~R n 

(i) 

Step 2. We will approximate I~.A by finite integrals 
on K. For e > 0, fix A which satisfies (i). 

For A '  > 0, set 

A 
IA' .A(X1 . . . . .  Xn) . . . .  

-A f 
A 

-A 

IfA:  (, xiwi Wo) 
1 

× F(wl  . . . .  , w,)  
(2"rr)"~(1) 

exp(iw0) dwo[ dwv • .dw,.  × 

We will show that, for ~ > 0, we can take A '  > 
0 so that 

max [IA' A(Xl . . . . .  X,) -- L A(Xl, • • • , X,)I < ~/2. 
x•K 

(ii) 
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Using the following equation 

f_AA, t~(i=~lXiWi -- WO)exp(iwo)dWo 

= (~='x'w~+m'd~(t) e x p ( - i t ) d t . e x p ( i £ x i w i ) ,  
35"?=  lxiw i - A  ' i = 1 

the fact F(x) E L ] and compactness of [ - A ,  A ]" × 
K, we can take A '  so that 

I f ~AA l~l (i=~l XiWi - wo) exp(iwo) dwo 

- ~ ¢(~]x~w~-  wo) exp(iwo)dwo 

< ¢(2rr)"l't'(1)l 

× "'" IF(x)l dx on g .  
A A 

Therefore, 

max I1a,,a(Xl . . . .  , x,) - L.a(xl . . . .  , x,)l 
xEK 

E 

, x + ,  _= [F(x)l ) 

x --. IF(x)l dx < ~/2. 
- A  A 

Step 3. From (i) and (ii), we can say that for any 
> 0, there exist A, A' > 0 such that 

m a x  I f ( x 1  . . . .  , x . )  - Z A '  A ( x , ,  • • • , X.)I < 
x E K  

(iii) 

That is to say, f(x) can be approximated by the 
finite integral IA',A(X) uniformly on K. The integrand 
of I~'.A(X) can be replaced by the real part and is 
continuous on [ -A ' ,  A'] × ... × [ -A ,  A] × K, 
so by Lemma 2, Im',a(X) can be approximated by the 
Riemann sum uniformly on K. 

Since 

wo) = o) 
O( aWX,, wo o) 

the Riemann sum can be represented by a three-layer 
network. Therefore f(x) can be represented approx- 
imately by the three-layer networks, q.e.d. 

Proof of Theorem 2 

If k = 3, set f : x  = (xl, • • • , x,) ---> (fl(x) . . . . .  
fro(X)) and apply Theorem 1 to each fi(x). 

For the general case, we first remark that a k(>3)- 
layer network can be represented by the composition 
of k-2 three-layer networks and using the realization 
of identity mapping by three-layer network, 

Proof of Corollary 1 

In the expression f:x---> (fl(x), . , . , fro(x)), we ex- 
tend fi(x) to functions which take value zero on 
R" - K. We also denote these by f~(x) (i = 1 . . . . .  
m). We can approximate fi(x)(i = 1 . . . .  , m) by 
C~-functions with compact support by operating mol- 
lifier p~* on f~ and apply theorem 2 to p~*fi, q.e.d. 

The above proof of the theorem 2 for the case 
k > 3 gives only trivial approximate realizations of 
given mappings by k-layer networks. Therefore, we 
shall give a different proof for the case k = 4, by 
using the Kolmogorov-Arnold-Sprecher theorem, 
which gives nontrivial realizations of continuous 
mappings. 

8. KOLMOGOROV-ARNOLD- 
SPRECHER'S THEOREM 

Let I = [0, 1] denote the closed unit interval, I" = 
[0, 1]"(n - 2) the Cartesian product of I. 

In his famous thirteenth problem, Hilbert conjec- 
tured that there are analytic functions of three vari- 
ables which cannot be represented as a finite 
superposition of continuous functions of only two 
arguments. Kolmogorov (1957) and Arnold refuted 
this conjecture and proved the following theorem. 

Theorem (Kolmogorov) 

Any continuous functions f(xl . . . .  , x,) of several 
variables defined on l"(n >- 2) can be represented in 
the form 

f(x) = ~ ×j d~o(xi ) , 
1=1 i=1  

where ×j,  ¢ij are continuous functions of one variable 
and ¢0 are monotone functions which are not de- 
pendent on f .  

Sprecher (1965) refined the above theorem and 
obtained the following: 

Theorem (Sprecher) 

For each integer n -> 2, there exists a real, monotone 
increasing function ¢(x), ¢([0, 1]) = [0, 1], depen- 
dent on n and having the following property: 
For each preassigned number ~ > 0 there is a rational 
number ~, 0 < ¢ < 8, such that every real continuous 
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function of n variables, f (x) ,  defined on 1% can be 
represented as 

f(x)  ~-~ × hi~J(Xi + ¢ ( j  -- 1)) + j -- 1 , 
/=1 i=1 

where the function × is real and continuous and h is 
an independent constant of f .  

Hecht-Nielsen (1987) pointed out that this theo- 
rem means that any continuous mapping f : x  
I" ---> (fl(x) . . . . .  f r o (X) )  E R m is represented by a 
form of four-layer neural network with hidden units 
whose output functions are 0, ×~(i = 1 . . . . .  m),  
where ~ is used for the first hidden layer, ×~ is given 
by Sprecher's theorem for f~(x) and ×~(i = 1, . . . . 
m) are used for the second hidden layer. 

9. A L T E R N A T I V E  P R O O F  OF T H E O R E M  2 
F O R  T H E  C A S E  k -- 4 

In section 8, we reviewed Kolmogorov's theorem and 
its refinement from the point of view of neural net- 
works. The Kolmogorov-Arnold-Sprecher  theorem 
and the following proposition are used to prove our 
theorem 2 for the case k = 4. This proposition is a 
special case (one variable case) of theorem 1 in Sec- 
tion 3. 

Proposit ion 

Let g ( x )  be a continuous function on R and ~b(x) a 
bounded and monotone increasing continuous func- 
tion. For an arbitrary compact subset (bounded 
closed subset) K of R and an arbitrary ~ > 0, there 
are an integer N and real constants a~, bi, ci(i  = 
1 . . . . .  N) such that 

N be) g ( x )  - ~ c,4)(aix + < 
i = l  

holds on K. 
In the appendix, we shall state the direct proof of 

the above proposition by a different method without 
using Fourier transforms under the additional con- 
dition that ¢b(x) has a weak derivative which is sum- 
mable. 

Next we prove theorem 2 for the case k = 4 by 
using the Kolmogorov-Arnold-Sprecher  theorem 
and the above proposition. 

Proof .  We may suppose that K = [0, 1]", because 
fp(x)(p = 1, . . . , m) can be extended continuous 
functions with compact supports. We apply Sprech- 
er's theorem to f p ( x ) ( p  = 1, . . . , m )  and represent 
fp(x) by the form 

fp(x) = ~ ×e hi*( x' + ~ ( J -  1)) + j -  1 
j= l  i=1 

(p = 1, . . . , m), where h and ~ are constants. We 
apply our proposition to functions ×p, tb, and ap- 

proximate these functions using a sigmoid func- 
tion ¢b. 

Let K j ( j  = 1, . . . , 2n + 1) be the images of [0, 
1]" by mappings 

n 

• j : x  
, = l  

( j  = 1 . . . . .  2n + 1) 

and set K = U Kj. Take ~ > 0 and the closure K~ 
of 6 neighborhood of K. Continuous functions Xp 
(p = 1 . . . . .  m) are approximated by 

N 

Xp.N(X) = E Ci.N+(ai.NX + bi,N) (9) 
i=1 

so that 

I×p(x) - Xp.N(X)l < ¢ / ( 4 n  + 2)(p = 1 . . . .  , m) 

(10) 

on K~. As ×p.U(X) are uniformly continuous on K~, 
sufficiently small -q can be taken so that if Ix - Yl 
< ~q(x, y ~ K~) t h e n  ]Xp,N(X) -- Xp.N(Y)I < ¢ / (4n  + 
2)(p = 1 , . . .  , m ) .  

We apply our lemma to "rj and approximate "r/on 
[0, 1]" by "rj,U' SO that 

]-rj(x) - Tj.N'(X)] < min(-q, a), (11) 

where % N , ( x ) ( j  = 1 . . . . .  m )  are defined as follows: 
We approximate +(x) by 

N ' 

~JN'(x) ~--- E eil~)( ~lix + [)i) ( 1 2 )  
i-1 

on 2n~ neighborhood of [0, 1] and set 

"rj.N'(X) = L hiON'(X, + ~(J -- 1)) + j - 1 (13) 

so that the above inequality (11) is satisfied. Using 
a transformation 

2n+ l  2n+l  

X X 
j = l  j -1 

2n+l  2n+ l  

= E E 
/=1 j=l  

2 n + l  2n+l  

+ X E 
j = l  /=1 

it is seen that fp(x)(p = 1 , . . .  , m) are approxi- 
mated by 

2n+l  

Xp,N['rj.N,(X)] (p  = 1 . . . . .  m )  
/=1 

on [0, 1]" so that the errors are less than ~. Looking 
at the form of this approximation, the theorem is 
obtained, q.e.d. 
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10. NEURAL NETWORK 
A ND INFORMATION PROCESSING 

IN THE BRAIN 

In the Rumelhart-Hinton-Wil l iams multilayer 
neural network, input and output values of each unit 
correspond to pulse-frequencies in a neuron and thus 
each unit, disregarding time characteristics, is a very 
simple model of the neuron. When a neural network 
is implemented for pattern recognition in engineer- 
ing fields, output units correspond to gnostic cells in 
the brain. 

The approximate realization of continuous map- 
pings using neural networks, which are simple 
models of the neural system, suggest that there are 
several gnostic cells in the brain. It also shows the 
possibility of revealing information processing in the 
brain through neural network approaches. 

11. SUMMARY 

We proved the approximate realization theorem of 
continuous functions by three-layer networks. This 
theorem leads to the approximate realization theo- 
rem of continuous mappings by k(->3)-layer net- 
works and we showed that any mapping whose 
components are summable on compact subset, can 
be approximately represented by k(->3)-layer net- 
works in the sense of L2-norm. We also showed an 
alternative proof of the theorem for the case k = 4 
by using the Kolmogorov-Arnold-Sprecher theo- 
rem and a proposition which is a special case of the 
three-layer case. We consider that one of the prob- 
lems of analyzing neural network capabilities is 
solved in the form of the existence theorem of net- 
works which are approximately capable of repre- 
senting any mapping given. 

Presently, for application of neural networks to 
pattern recognition or related engineering fields, up 
to four-layer networks are used (Waibel, Hanazawa, 
Hinton, Shikano, & Lang, 1988; Tamura & Waibel, 
1988). The theorems proved here provide that the 
mathematical base and their use would be funda- 
mental in further discussions of neural network sys- 
tem theory. 
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APPENDIX (DIRECT PROOF OF THE PROPOSITION 
IN SECTION 9 BY A DIFFERENT METHOD) 

Proof. There is a continuous function g(x) on R which has a 
compact support such that g(x) = g(x) on K. We may prove the 
proposition for 8(x) and so we may initially suppose that g(x) has 
a compact support. We may also suppose that ~b(~) - d~(-~)  = 
1. For the arbitrary ¢ > 0, we will approximate g(x) on K by a 
summation of sigmoid functions whose variables are shifted and 
scaled. Initially, we can approximate g(x) by a simple function 
(step function) c(x) with compact support so that 

[g(x)  - c(x)l  < ~/2 (A.1)  

on R and whose step variances are less than e/4. Here c(x) is 
represented using the Heaviside function H(x) as follows: 

c(x) : ~ ciH(x - x,). 

For a sigmoid function ~b(x), set (b~(x) = ¢(x/ot)(ot > 0). Then 
d 

~b'(x) = d~x ~b~(x) converge to the delta function as ct ~ 0. We 

consider the convolution c*~b'(x) of c(x) and ~b'(x). We set 
2~' = "minimum width of steps" and obtain 

c(x) - c*~'(x) = f "  *'(y)[c(x) - c(x - Y)] dy. 
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Divide the integrand of the right term into ( - ~ ,  - ( ) ,  [ - , ' ,  
E'], ( ( ,  ~)  and estimate these using the properties of sigmoid 
functions. For example, 

fi'~, ~b'~(y)[c(x) - c(x - y)] dy < , / 4  f j  ~b'(y) dy = ~/4 

and other terms will be arbitrarily small for a sufficiently small c~. 
Therefore we obtain 

I c ~ x )  - c*+'(x) l  < ~/4. 

As c*+~(x) = c'*qb~(x) and c'(x) is given by 

c'(x) = ~ c,~(x - x,) 
i . . l  

and so, c*+'(x) is represented as follows: 

c*+'(x) = ~ e,+°(x - x3. 
i : I  

That is to say, 

c(x) - ~ c,+°(x x,) < ~/2. (A.2) 
i = l  

Using (A.1) and (A.2) we obtain 

g(x) - ~ c,+o(x -- x,) < E. 

i=1 

Here +~(x - x~) = +(x/a - x,/c O , s o w e  set a, = l / a ,  b, = 
- x , / a  and the proposition is proved, q.e.d. 


