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On the near optimality of the stochastic approximation
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We consider the problem of approximating the Sobolev class of functions by neural
networks with a single hidden layer, establishing both upper and lower bounds. The upper
bound uses a probabilistic approach, based on the Radon and wavelet transforms, and yields
similar rates to those derived recently under more restrictive conditions on the activation
function. Moreover, the construction using the Radon and wavelet transforms seems very
natural to the problem. Additionally, geometrical arguments are used to establish lower
bounds for two types of commonly used activation functions. The results demonstrate the
tightness of the bounds, up to a factor logarithmic in the number of nodes of the neural
network.
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1. Introduction

Investigations of function approximation of multi-variate real-valued functions
by neural networks have, in recent years, assumed an important place in the general
theory of non-linear function approximation (see, for example, [2,5,15], to name but a
few). General theorems pertaining to the density of typical neural networks in various
functional spaces can be found in [15,20,21].

Going beyond density issues, the various methods for obtaining upper bounds
on approximation rates can be broken up into two broad classes. The first class,
composed of stochastic methods, is based on the demonstration that some well-defined
stochastic procedure yields an approximating structure, which on the average possesses
some approximation rate. Standard arguments then lead to the conclusion that there
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exists a certain function in the approximating class with the desired approximation
rate. A second, more classical, approach is based on the construction of a specific
algorithm for which the desired approximation rates can be established. We refer to
this class of methods as deterministic.

Within the stochastic approach, Barron [2] considered the approximation of func-
tions by neural networks, and obtained upper bounds on approximation rates for classes
defined by the Fourier transform. More recently, Delyon et al. [9], developing the
method of Barron [2], obtained an upper bound for approximation of functions from
the Sobolev class W r,d

p by the linear combination of wavelet functions.
We observe that the stochastic methods alluded to above usually make use of some

integral representation of the function being approximated, using a kernel depending on
the structure of the particular approximation method used, followed by an application
of the Monte Carlo method. Barron [2] makes use of the Fourier representation of
functions, while Delyon et al. [9] utilize the multi-dimensional wavelet representation
of functions.

In this paper we consider the neural network manifold

Hn(ϕ) =

{
h(x) =

n∑
k=1

ckϕ(ak · x+ bk): ak ∈ Rd, ck, bk ∈ R, ∀k
}

, (1)

where ϕ is some sigmoidal function on R, and ak ·x is the inner product of two vectors
ak and x in Rd. Note that Hn(ϕ) has the following invariance property with respect to
affine transformations, namely if h(x) ∈ Hn(ϕ) then h(Ax+ t) ∈ Hn(ϕ) for any non-
degenerate matrix A and vector t ∈ Rd. Expressing the function to be approximated by
an integral representation, combining both the Radon [13] and wavelet [8] transforms,
we obtain an upper bound for the approximation error of functions from the Sobolev
class by use of the manifold Hn(ϕ), having order n−r/d+ε, where ε is an arbitrary
positive number. The techniques used for obtaining our estimates of the upper bound
make use of the methods of Delyon et al. [9], as well as basic properties of the Radon
and wavelet transforms.

Deterministic methods of approximation of functions by neural networks are con-
sidered in the works of Mhaskar and Micchelli [22], Chui et al. [4], and Mhaskar [20].
The latter work considered the approximation of the Sobolev class W r,d

p by the man-
ifold Hn(ϕ) for appropriate ϕ, and has given the best possible upper bound of order
n−r/d, but using functions ϕ from a rather restrictive class. DeVore et al. [7] obtained
an upper bound on the rate of approximation of the Sobolev class W r,d

p for the special
case of two-dimensional functions, d = 2, for a wide class of sigmoidal functions.
Recently, Petrushev [24] has extended these results to the class W r,d

2 , d > 2.
The problem of deriving lower bounds on the approximation rates by neural

networks has received considerably less emphasis. An important step, however, was
taken by DeVore et al. [6], who showed that with the additional requirement of conti-
nuity of the approximation operator, a lower bound of order n−r/d can be obtained for
approximating the Sobolev class W r,d

p by non-linear n-dimensional manifolds. More
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recently, Maiorov [16] and Maiorov and Pinkus [18] have obtained an asymptotically
tight lower bound on the rate of approximation which is of order n−r/(d−1).

In this work we obtain a lower bound of order (n lnn)−r/d, without the additional
continuity restriction. Here we consider sigmoidal functions of two types: piecewise
polynomial functions and the standard function of the form ϕ(x) = (1 + e−x)−1.
These results make use of known results from the analysis of multi-variate algebraic
polynomials ([30,31,14], see review in [28]).

Before presenting the main results of this work, we should stress that the gen-
eral conclusions presented here have broad applicability beyond the field of function
approximation. It has become clear in recent years that efficient and robust strategies
exist, whereby multi-variate functions may be estimated using samples of the function
values at a finite set of points (see, for example, [29]). It turns out that the error
incurred by such schemes is composed of two parts, the first being the approxima-
tion error discussed above, and the second being a stochastic error resulting from the
finiteness of the sample used to estimate an appropriate approximating function. Thus,
any attempt to deliver useful performance bounds for function estimation requires as
a first step the establishment of tight bounds on the approximation error, of the form
discussed in this work and the other papers alluded to above.

The remainder of the paper is organized as follows. We begin in section 2 by
expressing a general function as an integral representation, using properties of the
Radon and wavelet transforms. This integral is then approximated in section 3 by a
finite sum and upper bounds are derived on the approximation. Section 4 is devoted
to the computation of a lower bound for the case of piecewise polynomial activation
functions. Finally, we extend the lower bound results in section 5 to the widely studied
case of the standard sigmoidal activation function.

2. An integral representation for neural networks

In this section we pursue the line of thought discussed in section 1, pertaining
to a stochastic approach to approximation. These methods are based on two basic
ingredients. First, the function of interest is expressed as a convex integral of the form

f (x) =

∫
Φ(x, z)w(z) dz,

where Φ and w depend on the function f , and the non-negative function w(z) can
be thought of as a probability density function for the “random variable” z, namely∫
w(z) dz = 1. The second step then corresponds to approximating the integral by a

finite sum, as in the theory of Monte Carlo integration (see, for example, [2]). Standard
results from the latter theory then yield upper bounds on the rates of convergence of
the approximation to the exact value of the function. Following the work of Barron [2],
various authors have recently utilized this basic idea in constructing neural network
approximations. In this section we follow the line of work of Delyon et al. [9],
who applied it to wavelet networks, rather than neural networks. The basic idea
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behind the integral representation constructed in this work is the use of both the
Radon and the wavelet transformations. First we observe that neural networks, as
in (1), are characterized by constant values on hyper-planes in Rd. This observation
leads naturally to the Radon transform, which represents general multi-variate functions
by a superposition of integrals over hyper-planes in Rd. This property then permits
the transformation of the problem into a one-dimensional one, for which the wavelet
integral representation is well known and understood. One advantage in using the
Radon transformation in this fashion is that, in contrast to the work of Delyon et al.
[9], only one-dimensional wavelets need to be considered as opposed to d-dimensional
wavelets in [9]. We observe that the Radon transform has been used previously in
work related to approximation by neural networks. In particular, Chen et al. [3]
have provided an elegant proof of the density property of neural networks using this
transform. In this work, however, we go beyond density and establish convergence
rates as well.

Let K be a compact set in the space Rd. Consider the space Lp(K,Rd), 1 6
p 6∞, of functions defined on Rd with support on the set K and norm

‖f‖p =

(∫
Rd

∣∣f (x)
∣∣p dx

)1/p

.

We denote the ball of radius r in Rd by Bd(r) = {x = (x1, . . . ,xd):
∑d

i=1 x
2
i 6 r2}.

In the sequel we mainly consider the unit ball Bd(1), and will simplify the notation
somewhat by using Bd = Bd(1) and Lp = Lp(Bd,Rd). The results can be immediately
extended to general compact domains K by use of standard extension theorems, as
in [1].

For any two sets W ,H ⊆ Lp we define a distance measure of W from H by

dist(W ,H ,Lp) = sup
f∈W

dist(f ,H ,Lp), (2)

where dist(f ,H ,Lp) = infh∈H ‖f − h‖Lp . Furthermore, for any function f ∈ L1 we

denote by F(f ) or f̂ the Fourier transform of f

f̂ (u) = (2π)−d/2
∫
Rd
f (x)eiu·x dx,

where u ∈ Rd and u ·x is the inner product of u and x. The inverse Fourier transform
will be denoted by F−1.

In the space L1 define the derivative of order ρ > 0 as

Dρf = (−∆)ρ/2f = F−1{|u|ρF(u)
}

, (3)

where |u| =
√
u2

1 + · · · + u2
d, and the Fourier transform and derivatives are in the

distributional sense. In the space Lp consider the Sobolev class of functions

W r,d
p =

{
f : max

ρ6r

∥∥Dρf∥∥
p
6 1
}
.
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As stressed above, a basic tool in the construction of this section is the wavelet
transform (see, for example, [12]). We follow here the definitions and notation of
Delyon et al. [9].

2.1. The wavelet transform

We introduce the class Φr
q of functions ϕ defining the neural network class (1),

where r > 0, 1 < q < ∞. Let ϕ be some function in the space L1(R). Using the
function ϕ, construct a second function ψ on R satisfying the equality∫ ∞

0
a−1ϕ̂(aw)ψ̂(aw) da = 1, (4)

for any w, where ϕ̂ and ψ̂ are the Fourier transforms of ϕ and ψ, respectively. The
function class Φr

q consists of all functions ϕ ∈ Lq(R)∩L1(R) for which there exists a
function ψ satisfying (4) and such that for all ρ ∈ [0, r], Dρϕ ∈ Lq(R) and D−ρψ ∈
L1(R). Observe that the functions ϕ are uni-variate, and the condition is imposed in
R rather than Rd. Further, set

Mϕ = max
06ρ6r

{∥∥Dρϕ
∥∥
Lq

,
∥∥D−ρψ∥∥

L1

}
. (5)

We observe that in many neural network applications it is customary to use
sigmoidal functions which approach a constant non-zero value at infinity. However, by
taking suitable linear combinations of such functions, one can always obtain functions
vanishing at infinity, which belong to L1(R). For example, for sigmoidal functions
σ(t), t ∈ R, if limt→−∞ σ(t) = 0, limt→∞ σ(t) = 1 and σ(t) is non-decreasing, then
we require σ(t+ 1)− σ(t) = ϕ(t) ∈ Φr

q .

Examples. One can easily verify that the functions

ϕ(t) =
√

2e−t
2/2,

1√
2

(
1− t2

)
e−t

2/2,
(t+ 1)

3
χ[−1,0](t) +

(1− t)
3

χ[0,1](t),

where χ∆ is the characteristic function of the segment ∆, belong to the class Φr
q. The

corresponding functions ψ are, respectively

ψ(t) =
√

2
(
1− t2

)
e−t

2/2,
1√
2

(
1− t2

)
e−t

2/2, −χ[−1,0](t) + χ[0,1](t).

Using any legitimate pair of functions ϕ and ψ as above, and following [8],
we construct the wavelet integral representation of functions on R. Let g(t) be any
function from the space L1(R). Then

g(t) =

∫
R+×R

u(a, τ )ϕ
(
a(t− τ )

)
a da dτ , (6)
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where a ∈ R+, τ ∈ R, and the function u is defined as

u(a, τ ) =

∫
R
g(t)ψ

(
a(t− τ )

)
dt. (7)

In order to utilize this one-dimensional integral representation for neural networks, we
first use the Radon transform to express a general multi-variate function in terms of
projections onto hyper-planes.

2.2. The Radon transform

Let Sd−1 = {x ∈ Rd:
∑d

i=1 x
2
i = 1} be the unit sphere in Rd. For a given ω ∈

Sd−1 and t ∈ R+ consider the hyper-plane in Rd given by Πω,t = {x ∈ Rd: x ·ω = t}.
For any f ∈W d−1,d

1 define the Radon transform Rf (ω, t), defined on Sd−1 × R,

Rf (ω, t) =

∫
Πω,t

f (x) dm(x), (8)

where dm(x) is the Lebesgue measure on the hyper-plane Πω,t. For t < 0 define
Rf (ω, t) = Rf (−ω,−t).

Using the Radon transform, construct a function g(ω, t) on Sd−1×R. For odd d

g(ω, t) =

(
∂

∂t

)d−1 (
Rf (ω, t)

)
and for even d

g(ω, t) = Ht
(
∂

∂t

)d−1 (
Rf (ω, t)

)
,

where (Hp)(t) = 1
π p.v.

∫
R
p(τ )
t−τ dτ is the Hilbert transform of the function p(t), and the

integral is evaluated as the Cauchy principal value, i.e.,

p.v.
∫
R

p(τ )
t− τ dτ = lim

δ→+0

∫
τ : |t−τ |>δ

p(τ )
t− τ dτ.

The function f ∈ W d−1,d
1 is then given by the so-called inverse Radon transform

(see [13])

f (x) =

∫
Sd−1

g(ω,x · ω) dω, (9)

where dω is the Lebesgue normed measure on Sd−1.
Two important properties of the Radon transform (see [13] and [26]) are the

following. For any function f ∈ L1 the following connection between the Radon and
Fourier transforms

Rf (ω, t) =

∫
Πω,t

f (x) dm(x) = (2π)−1
∫
R
f̂ (sω)eist ds (10)
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holds. Moreover, the Hilbert transform with respect to t satisfies the equation
Ĥg(ω, s) = sgn(s)ĝ(ω, s). Therefore, directly from the definition of the function g(·)
and (10) it follows that

g(ω, t) = (2π)−1id−1
∫
R
|s|d−1f̂ (sω)eist ds. (11)

At this stage we have all the tools needed in order to construct an integral
representation combining the Radon and wavelet transforms. This representation will
be used in section 3 to compute an upper bound for the approximation error by neural
networks.

2.3. The Radon–wavelet integral representation

Using (9), (5) and (6) we construct the neural network integral representation

f (x) =

∫
Sd−1

∫
R+×R

u(ω, a, τ )ϕ
(
a(x · ω − τ )

)
a da dτ dω, (12)

where

u(ω, a, τ ) =

∫
R
g(ω, t)ψ

(
a(t− τ )

)
dt. (13)

This expression may be simplified using the following notation. Let α and l be some
positive numbers. Consider the set Z = Sd−1 × R+ × R, and denote elements of Z
by z = (ω, a, τ ). Introduce a measure on Z by dz = dω da dτ . Then (12) may be
re-written as

f (x) = Q

∫
Z
F (x; z)ω(z) dz, (14)

where we have used the notation

F (x; z)≡F (x; z,α, l) =
a1−α

1 + al
ϕ
(
a(x · ω − τ )

)
sgn
(
u(z)

)
,

w(z) =
aα(1 + al)|u(z)|

Q(u,α, l)
, (15)

Q≡Q(u,α, l) =

∫
aα
(
1 + al

)∣∣u(z)
∣∣ dz.

From the definition of the function w it follows that w(z) > 0, ∀z ∈ Z, and∫
Z
w(z) dz = 1. (16)

Thus, w(z) can be viewed as a probability density function on the set Z. For any
w-measurable function G(z) we denote by

Ew(G) =

∫
Z
G(z)w(z) dz (17)
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the average value of G(z), where z is viewed as a random variable with probability
density function w(z). From (14) and (17) we have for all x

f (x) = QEw
(
F (x, z)

)
. (18)

3. Upper bound

Starting from the integral representation (14) we construct an approximation to
f (x) by a finite sum, corresponding to a neural network. For this purpose use is made
of the probabilistic structure inherent in the probability measure w. Fix a number n,
and points z1, . . . , zn ∈ Z, and let z̄ = (z1, . . . , zn). Consider the function

fn(x; z̄) =
Q

n

n∑
i=1

F (x; zi), (19)

as a function in the variable x.
Consider the direct product Zn = Z × · · · × Z of n copies of the set Z, and

define on Zn the product measure w̄ = w × · · · × w. For any function h(z̄) defined
on Zn we set

Ew̄(h) =

∫
Zn
h(z̄)w̄(z̄) dz̄ =

∫
Zn
h(z1, . . . , zn)w(z1) · · ·w(zn) dz1 · · · dzn.

Let 1 < q <∞ be a fixed number. Below we will estimate the average value

Ew̄
(∥∥f (x)− fn(x; z̄)

∥∥q
q

)
=

∫
Bd

Ew̄
(∣∣f (x)− fn(x, z̄)

∣∣q) dx. (20)

From (14) and (19) we have

f (x)− fn(x, z̄) =
Q

n

n∑
i=1

[
Ew
(
F (x; z)

)
− F (x; zi)

]
. (21)

The Burkholder inequality (see, for example, [11]) guarantees the existence of a con-
stant c0 depending only on q, such that for any 1 < q <∞

Ew̄

∣∣∣∣ n∑
i=1

[
Ew
(
F (x; z)

)
− F (x; zi)

]∣∣∣∣q 6 cq0Ew̄

[( n∑
i=1

∣∣Ew(F (x; z)
)
− F (x; zi)

∣∣2)q/2]
.

(22)
From (20)–(22) using Hölder’s inequality(

n∑
i=1

|ai|2
)1/2

6 n(1/2−1/q)+

(
n∑
i=1

|ai|q
)1/q

,
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where (θ)+ = θ for θ > 0, and zero otherwise, we obtain

Ew̄
(∥∥f (x)− fn(x; z̄)

∥∥q
q

)
6
(
c0Qn

(1/2−1/q)+

n

)q
×
∫
Bd

Ew̄

(
n∑
i=1

∣∣EwF (x; z) − F (x; zi)
∣∣q) dx

and hence

Ew̄
(∥∥f (x)− fn(x; z̄)

∥∥q
q

)
6
(

2c0Q

nγ

)q ∫
Bd

Ew
∣∣F (x, z)

∣∣q dx, (23)

where γ = min{1− 1
q , 1

2}. We now estimate the integral.
Set α = 1− 1/q. Then we have

Lemma 1. For any z ∈ Z the inequality∫
Bd

Ew
∣∣F (x, z)

∣∣q dx 6 vd−1‖ϕ‖qLq (R)

holds, where vd−1 =
2d−1Γ( 3

2 )d−1

Γ( d−1
2 +1)

is the (d − 1)-dimensional volume of the unit ball

Bd−1.

Proof. We have from definition (15) of the function F∫
Bd

Ew
(∣∣F (x; z)

∣∣q) dx =

∫
Bd×Z

∣∣F (x; z)
∣∣qw(z) dx dz

=

∫
Bd×Sd−1×R+×R

aq(1−α)

(1 + al)q
∣∣ϕ(a(x · ω − τ ))

∣∣qw(ω, a, τ ) dx dω da dτ

6
∫
Bd×Sd−1×R+×R

a
∣∣ϕ(a(x · ω − τ )

)∣∣qw(ω, a, τ ) dx dω da dτ

=

∫
Sd−1×R+×R

w(ω, a, τ ) dω da dτ
∫
Bd
a
∣∣ϕ(a(x · ω − τ )

)∣∣q dx. (24)

Since for any x ∈ Πω,s, x · ω = s, we have for any fixed ω, a and τ∫
Bd
a
∣∣ϕ(a(x · ω − τ )

)∣∣q dx =

∫ 1

−1
ds
∫

Πω,s∩Bd
a
∣∣ϕ(a(x · ω − τ )

)∣∣q dm(x)

=

∫ 1

−1
a
∣∣ϕ(a(s− τ )

)∣∣qm(Πω,s ∩Bd
)

ds 6 vd−1

∫
R

∣∣ϕ(a(s− τ )
)∣∣q d(as)

= vd−1‖ϕ‖qLq (R).
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Hence, from (24) using (16) we obtain∫
Bd

Ew
∣∣F (x; z)

∣∣q dq 6 vd−1‖ϕ‖qLq (R)

∫
Sd−1×R+×R

w(ω, a, τ ) dω da dτ = vd−1‖ϕ‖qLq (R),

establishing the lemma. �

From inequality (23) and lemma 1 we have

Ew̄
(∥∥f (x)− fn(x; z̄)

∥∥q
q

)
6 vd−1

(
2c0Q

nγ

)q
‖ϕ‖qLq (R),

which, upon using Hölder’s inequality, yields

Ew̄
(∥∥f (x)− fn(x; z̄)

∥∥
q

)
6
(
Ew̄
∥∥f (x)− fn(x; z̄)

∥∥q
q

)1/q 6 v1/q
d−1

2c0Q

nγ
‖ϕ‖Lq (R).

We therefore obtain the following statement.

Lemma 2. Let ϕ ∈ Φr
q where 1 < q <∞ and r > 0. Then

Ew̄
(∥∥f (x)− fn(x; z̄)

∥∥
q

)
6 c1Q

nγ
‖ϕ‖Lq (R),

where c1 = 2v1/q
d−1c0.

A similar approximation result may be established for the derivative of the func-
tion f .

Lemma 3. For any ϕ ∈ Φr
q , 1 < q <∞ and any 0 6 l 6 r,

Ew̄
(∥∥Dlxf (x)−Dlxfn(x; z̄)

∥∥
q

)
6 c1

Q

nγ
∥∥Dltϕ(t)

∥∥
Lq(R).

Proof. By analogy with (23) we have the estimate

Ew̄
(∥∥Dlxf (x)−Dlxfn(x; z̄)

∥∥q
q

)
6
(
c0Q

nγ

)q ∫
Bd

Ew̄
(∣∣DlxF (x, z̄)

∣∣q) dx. (25)

We estimate the last integral. From definition (15) of the function F and the relation
α = 1− 1/q we conclude that∫

Bd
Ew̄
(∣∣DlxF (x, z̄)

∣∣q) dx=

∫
Bd×Z

al

(1 + al)
a
∣∣Dlxϕ(a(x · ω − τ )

)∣∣qw(z) dz dx

6
∫
Bd×Z

∣∣Dlxϕ(a(x · ω − τ )
)∣∣qa dx dz.
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From definition (3) of the operator Dl it follows that Dlxϕ(a(x · ω − τ )) =
Dltϕ(a(t− τ ))|t=x·ω . Therefore∫

Bd

∣∣Dlxϕ(a(x · ω − τ )
)∣∣qa dx =

∫
Bd

∣∣(Dltϕ)(a(x · ω − τ )
)∣∣qa dx

=

∫ 1

−1
ds
∫

Πω,s∩Bd

∣∣(Dltϕ)(a(x · ω − τ )
)∣∣qa dm(x)

=

∫ 1

−1

∣∣(Dlsϕ)(a(s− τ )
)∣∣qam(Πω,s ∩Bd

)
ds 6 vd−1

∥∥Dltϕ(t)
∥∥q
Lq(R).

Combining these results using Hölder’s inequality the claim in the lemma follows. �

In the next lemma we estimate the function

Q = Q(u,α, l) =

∫
Z
aα
(
1 + al

)∣∣u(z)
∣∣ dz,

used to define the approximant fn(x, z̄) in (19). The function u(z) = u(ω, a, t) was
defined in (13).

Lemma 4. If r > ρ > 1 − 1
q + l, l > 0, 1 < q < ∞, are any numbers, α = 1 − 1

q ,
and ϕ ∈ Φr

q then

Q(u,α, l) 6 c2

∫
Sd−1×R

(∣∣g(ω, t)
∣∣ +
∣∣Dρt g(ω, t)

∣∣) dω dt,

where c2 = Mϕ max
{

2
1−(1/q) ,

2
lρ−l−1+(1/q)

}
.

Proof. Denote
∫

=
∫
R. We have from (13)∫ ∣∣u(ω, a, τ )

∣∣ dτ =

∫ ∣∣∣∣ ∫ g(ω, t)ψ
(
a(t− τ )

)
dt

∣∣∣∣ dτ. (26)

Set ψρ = D−ρψ. From Plancherel’s formula it follows that for fixed ω, a and τ∫
g(ω, t)ψ

(
a(t− τ )

)
dt= a−1

∫
ĝ(ω, θ)ψ̂(−θ/a)eiτθ dθ

= a−1
∫
|θ|ρĝ(ω, θ)|θ|−ρψ̂(−θ/a)eiτθ dθ

= a−1−ρ
∫
|θ|ρĝ(ω, θ)ψ̂ρ(−θ/a)eiτθ dθ.

Therefore from (26), using the inequality ‖ÛV ‖1 6 ‖Û‖1‖V̂ ‖1 we have∫ ∣∣u(ω, a, τ )
∣∣ dτ 6 a−ρ−1

∥∥F−1{|θ|ρĝ(ω, θ)
}∥∥

L1(R)

∥∥F−1{ψ̂ρ(−θ/a)
}∥∥

L1(R)

= a−ρ−1
∥∥Dρt g(ω, t)

∥∥
L1(R)‖ψρ‖L1(R). (27)
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Represent the integral in Q(u,α, l) as

Q(u,α, l) =

∫
Z
aα
(
1 + al

)∣∣u(z)
∣∣ dz

=

∫
Sd−1×R

[∫ 1

0
aα
(
1 + al

)∣∣u(ω, a, τ )
∣∣ da+

∫ ∞
1

aα
(
1 + al

)∣∣u(ω, a, τ )
∣∣ da] dω dτ ,

(28)

and separately estimate each summand. From Fubini’s Theorem and the inequality
(27) for ρ = 0 we have∫

Sd−1×R

∫ 1

0
aα
(
1 + al

)∣∣u(ω, a, τ )
∣∣ da dω dτ

=

∫
Sd−1

dω
∫ 1

0
da aα

(
1 + al

) ∫
R

∣∣u(ω, a, τ )
∣∣ dτ

6 ‖ψ‖L1(R)

∫
Sd−1

∥∥g(ω, t)
∥∥
L1(R) dω

∫ 1

0
a−1+α

(
1 + al

)
da

6 c3‖ψ‖L1(R)

∫
Sd−1

∥∥g(ω, t)
∥∥
L1(R) dω, (29)

where c3 = 2/(1 − (1/q)). The second summand in (28) is estimated using Fubini’s
Theorem once more and the inequality (27)∫

Sd−1×R

∫ ∞
1

aα
(
1 + al

)∣∣u(ω, a, τ )
∣∣ da dω dτ

6 ‖ψρ‖L1(R)

∫
Sd−1

∥∥Dρt g(ω, t)
∥∥
L1(R) dω

∫ ∞
1

aα−ρ−1(1 + al
)

da

6 c4‖ψρ‖L1(R)

∫
Sd−1

∥∥Dρt g(ω, t)
∥∥
L1(R) dω, (30)

where c4 = 2(1 + l − ρ − (1/q))−1. From (29) and (30) we obtain the statement of
lemma 4. �

In the following lemma we obtain an estimate for the approximation of a function
f and its derivatives by neural networks.

Lemma 5. Assume f ∈W r,d
2 and ϕ ∈ Φr

q where r = d/2 + 1/2− 1/q + l + ε, with
l > 0, 1 < q <∞, ε > n−δ, n > (q/(q−1))1/δ and 0 < δ < 1. Set γ = min{1− 1

q , 1
2}.

Then

Ew̄
(∥∥Dlf (x)−Dlfn(x; z̄)

∥∥
q

)
6 c6

nγ−δ
(∥∥D d−1

2 f (x)
∥∥

2 +
∥∥D d

2 + 1
2−

1
q

+l+εf (x)
∥∥

2

)
,

where D = Dx, and c6 = c1
2π

2dΓ(3/2)d

Γ(d/2+1)Mϕ.
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Proof. Set ρ = 1− 1
q + l + ε. From lemmas 3 and 4 we conclude that

Ew̄
(∥∥Dlf (x)−Dlfn(x; z̄)

∥∥
q

)
6 c1Q

nγ
∥∥Dltϕ(t)

∥∥
Lq(R)

6 c1c2

nγ

∫
Sd−1×R

(∣∣g(ω, t)
∣∣+
∣∣Dρt g(ω, t)

∣∣) dω dt.

According to the conditions of the lemma we have

c2 = Mϕ max

{
2

1− 1
q

,
2

ρ− l − 1 + 1
q

}
= Mϕ max

{
2

1− 1
q

,
2
ε

}
6 2Mϕn

δ.

Therefore

Ew̄
(∥∥Dlf (x)−Dlfn(x; z̄)

∥∥
q

)
6 2c1Mϕ

nγ−δ

∫
Sd−1×R

(∣∣g(ω, t)
∣∣+∣∣Dρt g(ω, t)

∣∣) dω dt. (31)

In the appendix we show that(∫
Sd−1×R

∣∣Dρt g(ω, t)
∣∣ dω dt

)2

6 c5

∫
Sd−1×R

∣∣Dρt g(ω, t)
∣∣2 dω dt+ c‖f‖2

W r,d
2

, (32)

where c5 = 2dΓ(3/2)d

Γ(d/2+1) . From the identity (11) and the definition of the operator Dρt we
have

Dρt g(ω, t) = (2π)−1id−1Dρt
(∫

R
|s|d−1f (sω)eist ds

)
= (2π)−1id−1

∫
R
|s|ρ+d−1f̂ (sω)eist ds.

Hence by the Plancherel formula we obtain∫
R

∥∥Dρt g(ω, t)
∥∥2

2 dt= (2π)−2
∫
R

dt

∣∣∣∣ ∫
R
|s|ρ+d−1f̂ (sω)eist ds

∣∣∣∣2
= (2π)−2

∫
R

(
|s|ρ+d−1

∣∣f̂ (sω)
∣∣)2

ds. (33)

Passing to polar coordinates we have∫
Sd−1

∫
R

(
|s|ρ+d−1

∣∣f̂ (sω)
∣∣)2

ds dω =

∫
Sd−1

dω
∫
R
|s|2ρ+d−1

∣∣f̂ (sω)
∣∣2|s|d−1 ds

=

∫
Rd
|x|2ρ+d−1

∣∣f̂ (x)
∣∣2 dx =

∥∥D(ρ+ d−1
2 )f

∥∥2
2. (34)

Hence from (32)–(34) and r = ρ+ (d− 1)/2 we conclude(∫
Sd−1×R

∣∣Dρt g(ω, t)
∣∣ dt dω

)2

6 2(2π)−2c5
∥∥D(ρ+ d−1

2 )f
∥∥

2,
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where an extra factor of 2 appears by assuming that the second term on the r.h.s. of
(32) is smaller than the first.

From this and (31) we finally obtain the statement of lemma 5. �

We are now ready to prove the main result of this section, establishing an upper
bound for the approximation of the Sobolev class by neural networks. The results are
proved for the case q = 2. A simple corollary will then yield results for all 1 < q <∞.
We state the results separately for small and large values of the smoothness parameters
of the given class.

Theorem 1 (Small smoothness). Let f ∈ W r,d
2 , r = d/2 + ε, ε > n−δ for some

0 < δ < 1. Furthermore, assume that ϕ ∈ Φr
2. Then for any integers d > 1 and

n > 2, there exists a function h ∈ Hn(ϕ) such that

‖f − h‖2 6
c

n1/2−δ ‖f‖W r,d
2

,

where c is a constant depending only on d and ϕ.

Proof. From lemma 5, using q = 2, we obtain

Ew̄
(∥∥f (x)− fn(x; z̄)

∥∥
2

)
6 c6

n1/2−δ
(∥∥D d−1

2 f (x)
∥∥

2 +
∥∥Drf (x)

∥∥
2

)
6 c7

n1/2−δ ‖f‖W r,d
2

,

where c7 = 2c6
c1
π

2dΓ(3/2)d

Γ(d/2+1)Mϕ. Note that from the above result the expected value
obeys the required bound. Therefore, clearly there exists a set of values for the
parameters (ω, a, τ ) which yield the desired result. �

Remark 1. Note that the conditions imposed on the functions ϕ in theorem 2, as well
as theorem 2 below, pertain to the dimension d = 1, although the approximation
is done in Rd. The conditions on f , though, are given in terms of d, and become
increasingly restrictive as the dimension increases. A similar situation occurs in [10].

Theorem 2 (Large smoothness). Let f ∈ W r,d
2 , ϕ ∈ Φr

2, d > 1, and set 0 < δ < 1
and ε > n−δ. Let r = (kd/2) +kε, k ∈ N. Then for any n > 1 there exists a function
h ∈ Hn(ϕ) such that

‖f − h‖2 6
c

nr/d−δ′
‖f‖

W r,d
2

,

where c = (4c6)kkr/d, c6 = c1
2π

2dΓ(3/2)d

Γ(d/2+1)Mϕ and δ′ = δ + kε
d .
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Proof. The claim will be established using a variant of the iterative approach intro-
duced in [9]. Define δ̂ = δ/k and ε̂ = n−δ̂. From lemma 5 with q = 2 it follows that
for any function f ∈W r,d

2 , and any numbers l > 0, the following inequalities hold:

Ew
(∥∥f (x)− fn(x, z̄)

∥∥
2

)
6 c6

n1/2−δ̂

(∥∥D d−1
2 f (x)

∥∥
2 +

∥∥D d
2 +ε̂f (x)

∥∥
2

)
, (35)

Ew
(∥∥Dl(f (x)− fn(x, z̄))

∥∥
2

)
6 c6

n1/2−δ̂

(∥∥D d−1
2 f (x)

∥∥
2 +

∥∥D d
2 +l+ε̂f (x)

∥∥
2

)
. (36)

Let {z̄i}ki=1 be k independent draws of the random variable z with corresponding
densities wi = w. Then from (35) we have

Ew1Ew2 · · ·Ewk
∥∥f (x)− fn(x, z̄1)− · · · − fn(x, z̄k)

∥∥
2

6 c6

n1/2−δ̂

{
Ew1 · · ·Ewk−1

(∥∥D d−1
2
(
f (x)− fn(x, z̄1)− · · · − fn(x, z̄k−1)

)∥∥
2

)
+ Ew1 · · ·Ewk−1

(
D d

2 +ε̂
(
f (x)− fn(x, z̄1)− · · · − fn(x, z̄k−1)

)∥∥
2

)}
.

Continuing this iterative inequality k times using (35) and (36) we obtain

E ≡ Ew1 . . .Ewk
(∥∥f (x)− fn(x, z̄1)− · · · − fn(x, z̄k)

∥∥
2

)
6
(

c6

n1/2−δ̂

)k k∑
s=0

(∥∥D d−1
2 f
∥∥

2 +
∥∥Ds( d2 +ε̂)f

∥∥
2

)
.

Then for k = (kd/2) + kε we have

E 6 2ck6k

nk/2−δ max
ρ6 kd2 +kε

∥∥Dρf∥∥2 6
c

nr/d−δ
‖f‖W r,d

2
,

which establishes the claim. �

The results of theorem 2 can easily be extended to general values of 1 < q <∞.
The only modification to the proof will be the replacement of n1/2 in (35), (36) and
subsequent equations by nγ in accordance with lemma 5, where γ = min(1−1/q, 1/2).
Note that in this case, however, the condition on ϕ is ϕ ∈ Φr

q. We summarize this
observation in the following corollary.

Corollary 1. Let the conditions of theorem 2 hold with ϕ ∈ Φr
q , 1 < q < ∞. Then

for any n > 1 there exists a function h ∈ Hn(ϕ) such that

‖f − h‖q 6
c

nr/d−δ
‖f‖W r,d

2
,

where c depends on q.

Remark 2. Observe that theorems 1 and 2 apply only in situations where the degree
of smoothness is large, namely r > d/2. In a recent paper [19], we have been able to
extend these results to all values of r, using a somewhat different approach.
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4. Lower bound – piecewise polynomial functions

In this section and the next we establish lower bounds on the approximation
error by neural networks, focusing on two specific types of activation functions. In
particular, we consider first piecewise polynomial activation functions, followed in
section 5 by the study of the standard sigmoidal activation function.

The basic idea of the proof is based on transforming the problem into a finite-
dimensional one by an appropriate linear transformation, as was done, for example,
in [31]. Lower bounds for the latter problem can be more easily established and, due
to the linearity of the transformation, serve as lower bounds for the original problem.
We start with some notation. Denote the lmq -norm of vector f = (f1, ..., fm) ∈ Rm by
‖f‖lmq = (

∑m
i=1 |fi|q)1/q , q > 1, and let the unit ball in the space lmq be denoted by

Bm
q = {f ∈ Rm: ‖f‖lmq 6 1}. For any f define a vector sgn f = (sgn f1, ..., sgn fm),

where sgn a = 1 if a > 0, sgn a = −1 if a < 0, and sgn a = 0 if a = 0. For any set
G ⊂ Rm let sgnG = {sgn f : f ∈ G}. Finally, if A,B ⊆ lmq , the distance of the set
A from B is given by

dist
(
A,B, lmq

)
= sup

a∈A
dist
(
a,B, lmq

)
,

where dist(a,B, lmq ) = infb∈B ‖a− b‖lmq .

Let m̃ be any integer, and set m = m̃d. Consider the cube Id =
[
− 1√

d
, 1√

d

]d
contained in the unit ball Bd, and construct the uniform net

Sm =

{
1√
d

(
2i1
m̃
− 1, . . . ,

2id
m̃
− 1

)
: 0 6 i1, . . . , id 6 m̃− 1

}
consisting of the m points {ξ1, . . . , ξm}.

Introduce a manifold in Rm

H̄nm(ϕ) =
{(
h(ξ1), . . . ,h(ξm)

)
: h ∈ Hn(ϕ)

}
,

which is the restriction of the manifold Hn(ϕ) to Sm. Consider the finite set in Rm

E =
{

(ε1, . . . , εm): εi ∈ {−1, +1} ∀ i = 1, . . . ,m
}
.

In the following theorem we establish a lower bound for the distance of E from
H̄nm(ϕ), specialized to the case where ϕ are piecewise polynomial functions.

Theorem 3. Let ϕ be a piecewise polynomial function on R with s breakpoints
τ1, . . . , τs, such that on any interval [τi, τi+1), i = 0, 1, . . . , s (here τ0 = −∞, and
τs = +∞) the function ϕ is an algebraic polynomial of degree at most n. Let n and
m be integers such that m = [c(d+ 2)n log2 n]. Then

dist
(
E, H̄nm(ϕ), lm1

)
> cm,

where c depends only on d, s and r.
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We first prove an auxiliary lemma.

Lemma 6. The cardinality of the set sgn H̄nm(ϕ) obeys, for any positive integers n
and m,

∣∣sgn H̄nm(ϕ)
∣∣ 6 (cm2

n

)(d+2)n

,

where c depends only on d, s, and r.

Proof. The manifold H̄nm(ϕ) is the set of all functions on Sm of the form

ξ 7→ h(ξ; a, b, c) =
n∑
i=1

ciϕ(ai · ξ + bi),

where ci, bi ∈ R, ai ∈ Rd for 1 6 i 6 n, and a = (a1, . . . , an), b = (b1, . . . , bn),
c = (c1, . . . , cn), and ai · ξ is the inner product of the vectors ai and ξ. Denote
γ = (a, b, c) ∈ R(d+2)n and h(ξ; a, b, c) = h(ξ; γ).

The manifold H̄nm(ϕ) can be expressed in terms of the variables γ,

H̄nm(ϕ) =
{(
h(ξ1; γ), . . . ,h(ξm; γ)

)
: γ ∈ R(d+2)n}.

The following statement is well known (see, for example, [31, theorem 3], or
[28] for a more modern treatment).

Claim 1. If p1(γ), . . . , pM (γ) are algebraic polynomials of degree at most r in N 6M
variables, γ = (γ1, . . . , γN ) ∈ RN , then

∣∣{(sgn p1(γ), . . . , sgn pM (γ)
)
: γ ∈ RN

}∣∣ 6 (4eMr

N

)N
.

Construct the partition of the space R(d+2)n by hyper-planes of the form

Γijk =
{

(a, b, c) ∈ R(d+2)n: ai · ξk − bi = τj
}

,

where i = 1, . . . ,n, j = 1, . . . , s, and k = 1, . . . ,m. Set M = nsm, and N = (d+2)n.
Denote by S1, . . . ,SP the connected components of the set R(d+2)n \

⋃
ijk Γijk.

Since all polynomials of the form p(γ) = ai · ξ − bi − τj retain a single sign on any
component Sl, then from claim 1 the following estimate for the number of components
P follows:

P 6
(

4eM
N

)N
=

(
4ems
d+ 2

)(d+2)n

. (37)
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Using this result, we can now estimate the cardinality of the set sgn H̄nm(ϕ). From
the construction of the hyper-planes {Γijk} it follows that the space R(d+2)n can be
divided into P polyhedral regions S1, . . . ,SP , and therefore we have∣∣sgn H̄nm(ϕ)

∣∣= ∣∣{(sgn h(ξ1; γ), . . . , sgnh(ξm; γ)
)
: γ ∈ R(d+2)n}∣∣

=
P∑
l=1

∣∣{(sgnh(ξ1; γ), . . . , sgnh(ξm; γ)
)
: γ ∈ Sl

}∣∣. (38)

Since for any l and i the function γ 7→ h(ξi; γ), γ ∈ Sl, is a polynomial of degree
6 r, then according to claim 1 we obtain∣∣{(sgnh(ξ1; γ), . . . , sgnh(ξm; γ)

)
: γ ∈ Sl

}∣∣ 6 ( 4emr
(d+ 2)n

)(d+2)n

. (39)

Hence from (38), (39) and (37) we have∣∣sgn H̄nm(ϕ)
∣∣ 6 (4ems

d+ 2

)(d+2)n( 4emr
(d+ 2)n

)(d+2)n

=

(
cm2

n

)(d+2)n

,

where the constant c depends only on d, s, and r. �

Proof of theorem 3. Let a be an absolute constant satisfying the equation 2a2− 8a+
7 = 0 (i.e., a = 2− 1/

√
2) . Fix a vector γ ∈ R(d+2)n, and construct a subset in E

Eγ =

{
ε ∈ E:

m∑
i=1

∣∣εi − sgnh(ξi; γ)
∣∣ 6 am}.

The cardinality of the set Eγ can be estimated as follows:

|Eγ |=
∣∣∣∣∣
{
ε ∈ E:

m∑
i=1

(εi + 1) 6 am
}∣∣∣∣∣ =

∣∣∣∣∣
{
ε ∈ E:

∑
i: εi=1

1 6 am

2

}∣∣∣∣∣
=

(
m

0

)
+

(
m

1

)
+ · · · +

(
m

bβmc

) (
β =

a

2

)
6 2me−2m(1/2−bβmc/m)2

(Chernoff bound)

6 2me−2m(1/2−β)2 6 2m(2−2a+a2/2) 6 2m/4,

where we have used 2a2 − 8a+ 7 = 0.
Consider the set E′ =

⋂
γ∈R(d+2)n(E \ Eγ). From the definition of the set

sgn H̄nm(ϕ) it follows that

|E′|=
∣∣∣∣E \ ⋃

γ∈R(d+2)n

Eγ

∣∣∣∣
> 2m −

∣∣sgn H̄nm(ϕ)
∣∣max

γ
|Eγ | > 2m −

∣∣sgn H̄nm(ϕ)
∣∣2m/4.
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Set m = [(d + 2)n log2 n]. Then there exist constants c1, c2 > 0 such that c1m
log2 m

6
n 6 c2m

log2 m
. Therefore it follows from lemma 6 that for some 0 < c < 1

∣∣sgn H̄nm(ϕ)
∣∣ 6 (cm2

n

)(d+2)n

6 2m/4.

Thus |E′| > 2m − 2m/2 > 0. Hence there exists in E′ a vector ε = (ε1, . . . , εm) such
that for all γ ∈ R(d+2)n

m∑
i=1

∣∣εi − h(ξi; γ)
∣∣ > 1

2

m∑
i=1

∣∣εi − sgnh(ξi; γ)
∣∣ > am

2
. �

The following lemma yields a lower bound for the approximation error of the
Sobolev space, with the help of the lower bound established for the finite-dimensional
case in theorem 3.

Lemma 7. If 1 6 p, q 6∞ and r
d >

( 1
p −

1
q

)
+

then

dist
(
W r,d
p ,Hn(ϕ),Lq

)
> c

m
r
d
− 1
p

+ 1
q

dist
(
Bm
p , H̄mn(ϕ), lmq

)
.

Proof. In order to derive a lower bound for W r,d
p it clearly suffices to find a lower

bound holding for some set Fm ⊆W r,d
p , which will now be constructed. For x ∈ Rd

let η be any function in W r,d
p which satisfies η(x) = 1 for x ∈ 1

2I
d and η(x) = 0

for x /∈ Id. The function in the remaining region may be computed by using spline
functions.

Let m and m̃ be positive integers such that m = m̃d. Consider the uniform grid
of m points Sm = {ξi}mi=1, where ξi ∈ Id. For each i define a function

ηi(x) = η
(
m̃(x− ξi)

)
.

Consider the normed space lmp consisting of vectors a = (a1, . . . , am) ∈ Rm, and
denote by Bm

p the unit ball in this space. Construct the functional subclass

Fm =

{
fa(x) =

1

mr/d−1/p

m∑
i=1

aiηi(x): ‖a‖lmp 6 1

}
.

We first show that Fm ⊆W r,d
p . Let ρ ∈ [0, r]. Then for any a ∈ Bm

p

∥∥Dρfa∥∥pLp =
1

mrp/d−1

∫
Id

∣∣∣∣∣
m∑
i=1

aiDρηi(x)

∣∣∣∣∣
p

dx

=
1

mrp/d−1

m∑
i=1

∫
1
m̃
Id

∣∣aiDρη(m̃(x− ξi)
)∣∣p dx,
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where 1
m̃I

d is the cube Id scaled down by a factor of m̃ for each side. Since

Dρxη
(
m̃(x− ξi)

)
= m̃ρDρt η(t)

∣∣
t=m̃(x−ξi),

clearly ∥∥Dρfa∥∥pLp =
m̃ρp−d

mrp/d−1

(
m∑
i=1

|ai|p
)∫

Id

∣∣Dρη(t)
∣∣p dt 6

∥∥Dρη∥∥p
Lp
6 1.

We therefore conclude that fa ∈W r,d
p .

We proceed with bounding dist(W r,d
p ,Hn(ϕ),Lq) from below. For all f ∈ Fm

and h ∈ Hn(ϕ) we have

‖f − h‖qLq =

∫
Id

∣∣∣∣∣ 1

mr/d−1/p

m∑
i=1

aiηi(x)− h(x)

∣∣∣∣∣
q

dx,

=
m∑
i=1

∫
1
m̃
Id

∣∣∣∣ 1

mr/d−1/p
aiηi(y + ξi)− h(y + ξi)

∣∣∣∣q dy.

Since ηi(y + ξi) = η(m̃y), i = 1, 2, . . . ,m, and y ∈ 1
m̃I

d, we obtain

dist
(
W r,d
p ,Hn(ϕ),Lq

)q > sup
f∈Fm

inf
h∈Hn(ϕ)

‖f − h‖qLq

> 1
m(r/d−1/p)q

sup
a∈Bmp

inf
h∈Hn(ϕ)

m∑
i=1

∫
1
m̃
Id

∣∣aiηi(y + ξi)− h(y + ξi)
∣∣q dy

> 1

m(r/d−1/p)q
sup
a∈Bmp

inf
h∈Hn(ϕ)

m∑
i=1

1
m̃d

∫
Id

∣∣aiη(y)− h(y/m̃+ ξi)
∣∣q dy. (40)

Note that due to the infimum taken over Hn(ϕ) it has been possible to rescale h(·) by the
factor mr/d−1/p. Define ay = (a1, . . . , am)η(y) and hy = (h(y/m̃+ ξ1), . . . ,h(y/m̃+
ξm)). Then moving the summation into the integral in (40) we have

dist
(
W r,d
p ,Hn(ϕ),Lq

)q > 1

m(r/d−1/p+1/q)q
sup
a∈Bmp

inf
h∈Hn(ϕ)

∫
Id
‖ay − hy‖qlmq dy

> 1

m(r/d−1/p+1/q)q
sup
a∈Bmp

∫
Id

inf
h∈Hn(ϕ)

‖ay − hy‖qlmq dy.

Using the affine invariance of Hn(ϕ) mentioned in section 1 we conclude that for
any y

inf
h∈Hn(ϕ)

‖ay − hy‖lmp = dist
(
a, H̄mn(ϕ), lmq

)
η(y).

Thus

dist
(
W r,d
p ,Hn(ϕ),Lq

)q > 1

m(r/d−1/p+1/q)q
sup
a∈Bmp

dist
(
a, H̄mn(ϕ), lmq

) ∫
Id

∣∣η(y)
∣∣q dy.
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The theorem follows upon taking c = (
∫
Id |η(y)|q dy)1/q . �

We can now prove the main theorem.

Theorem 4. Let ϕ satisfy the conditions of theorem 3. Then for any 1 6 p, q 6 ∞
and r

d >
(

1
p −

1
q

)
+

the inequality

dist
(
W r,d
p ,Hn(ϕ),Lq

)
> c

(n logn)r/d

holds, where c depends on p, q, d and r.

Proof. Let ε be the vector constructed in lemma 6. Consider a vector a =
(a1, . . . , am), where ai = m−1/pεi. Clearly a ∈ Bm

p . Set m = [cn(d + 2) log n].
Then using lemma 7 and theorem 3 we obtain

dist
(
W r,d
p ,Hn(ϕ),Lq

)
> m−1/p(c3m)1/q

m
r
d
− 1
p

+ 1
q

> c

(n logn)r/d
. �

5. Lower bound – the standard sigmoid

We extend the results of section 4 to cover the case of the widely studied sigmoidal
function σ(t) = 1

1+e−t . We derive estimates for the distance of W r,d
p from the manifold

Hn(σ). The main result is the following theorem.

Theorem 5. For any 1 6 p, q 6∞ and r
d >

(
1
p −

1
q

)
+

the inequality

dist
(
W r,d
p ,Hn(σ),Lq

)
> c

(n logn)r/d

holds.

First we need an auxiliary lemma. In the space Rm consider the manifold H̄n,m(σ)
defined in section 4, that is,

H̄nm(σ) =
{(
h(ξ1), . . . ,h(ξm)

)
: h ∈ Hn(σ)

}
.

We make use of the following result.

Claim 2. Let ρ1(γ) = p1(γ)
q1(γ) , . . . , ρM (γ) = pM (γ)

qM (γ) be rational functions of degree at
most r, i.e., pi and qi, i = 1, 2, . . . ,M , are algebraic polynomials of degree at most r
in N 6M variables γ = (γ1, . . . , γN ) ∈ RN . Then

∣∣{(sgn ρ1(γ), . . . , sgn ρM (γ)
)
: γ ∈ RN

}∣∣ 6 (4eMr

N

)2N

.
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Proof. Clearly∣∣{(sgn ρ1(γ), . . . , sgn ρM (γ)): γ ∈ RN
}∣∣

=

∣∣∣∣{(sgn p1(γ)
sgn q1(γ)

, . . . ,
sgn pM (γ)
sgn qM (γ)

)
: γ ∈ RN

}∣∣∣∣
6
∣∣{(sgn p1(γ), . . . , sgn pM (γ)): γ ∈ RN

}∣∣∣∣{(sgn q1(γ), . . . , sgn qM (γ)
)
: γ ∈ RN

}∣∣.
The result then follows upon using claim 1. �

Lemma 8. The cardinality of the set sgn H̄nm(σ) is upper bounded as follows:∣∣sgn H̄nm(σ)
∣∣ 6 (cm)(1+1/d)(d+2)n.

Proof. For any function h(ξ; γ) ∈ H̄nm(σ) we have

h(ξk; γ) =
n∑
i=1

ci
1 + e−ai·ξk+bi

, (41)

where γ = (a, b, c), a ∈ Rdn, c, b ∈ Rn, and the vector ξ = (ξ1, . . . , ξm) has coordinates
ξi = ki

m̃ , 0 6 ki 6 m̃−1, and m̃ = m1/d. Denote in (41) e−aij/m̃ = tij and e−bi = τi.
Then

h(ξk; γ) =
n∑
i=1

ci

1 + tk1
i1 · · · t

kd
id · τi

.

Therefore, for each fixed k, the function γ 7→ h(ξk; γ) is a rational function in (d+2)n
variables ci, τi and ti1, . . . , tid, 1 6 i 6 n, of degree at most ((m̃−1)d+1)(n−1)+1 6
4dnm1/d. Hence using claim 2 we conclude that∣∣sgn H̄nm(σ)

∣∣ 6 (4e ·m · 4ndm1/d

(d+ 2)n

)2(d+2)n

6 (cm)2(1+1/d)(d+2)n. �

Similarly to the proof of theorem 4, theorem 5 is established using lemmas 6, 7
and 8.

The following result, by Mhaskar [20], establishes an upper bound for the error
of approximation of the space W r,d

p by Hn(σ). Let r > 1, n > 1 be integers, and
1 6 p 6∞. Then

dist
(
W r,d
p ,Hn(σ),Lp

)
6 cn−r/d. (42)

Combining (42) and the lower bound of theorem 5 we have

Corollary 2. If r > 1 is an integer, and 1 6 p 6∞ then for any n = 1, 2, . . .
c1

(n logn)r/d
6 dist

(
W r,d
p ,Hn(σ),Lp

)
6 c2

nr/d
,

where c1 and c2 depend only on r, d and p.
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Appendix

Proof of (32). We need to show that for any ρ > 0∫
Sd−1×R

∣∣Dρt g(w, t)
∣∣ dω dt 6 c

(∫
Sd−1×R

∣∣Dρt g(w, t)
∣∣2 dω dt

)1/2

+ c‖f‖W r
2 (K). (43)

Note that Hölder’s inequality cannot be used to show this, since the domain of the
integral is infinite. Recall that the function f is supported over the unit ball Bd(1) ⊂
Rd, namely f ∈W r,d

2 (Bd(1)). We find it useful to extend the function to the Sobolev
space of functions defined over the whole space Rd. This can be done using standard
results from the theory of function spaces, and is based on defining a function f̃ over
Rd such that f̃ ∈W r,d

2 (Rd), f̃ (x) = 0 for x /∈ Bd(2) and f̃ (x) = f (x) for x ∈ Bd(1).
Details of this procedure can be found in [27, section 4.2]. Let J = [0, 2] and fix
ω ∈ Sd−1. Then∫

R+

∣∣Dρt g(w, t)
∣∣ dt =

(∫
J

+

∫
R+\J

)∣∣Dρt g(w, t)
∣∣ dt ≡ I1 + I2. (44)

Applying Hölder’s inequality to the first integral (defined over a compact domain) we
have

I1 =

∫
J

∣∣Dρt g(w, t)
∣∣ dt 6 |J |1/2

(∫
J

∣∣Dρt g(w, t)
∣∣2 dt

)1/2

6 c8

(∫
R+

∣∣Dρt g(w, t)
∣∣2 dt

)1/2

. (45)

In order to estimate I2 we use the definition of g(ω, t) from (11). Then we have

Dρt g(ω, t) =
id−1

2π

∫
R
|s|ρ+d−1f̂ (sω)eist ds

=
id−1

2π

∫
R
|s|ρ+d−1

(∫
Rd
f (y)e−isy·ω dy

)
eist ds

=
id−1

2π

∫
Rd
f (y) dy

∫
R
|s|ρ+d−1eis(t−y·ω) ds.

The Fourier transform implicit in the second integral should be understood in the
sense of a Fourier transform of a generalized function (note that we only require the
value of this quantity integrated over τ ). From [23] we obtain for λ 6= −1,−3, . . .

F
(
|s|λ
)
(τ ) = C(λ)|τ |−λ−1,

where C(λ) = −2 sin(λπ2 )Γ(λ + 1). Recall that the Fourier transform f̂ of the gener-
alized function F is defined by the relationship (f̂ , ϕ̃) = (F ,ϕ) which holds for any
compactly supported function ϕ ∈ L1(R).
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Hence we obtain∫
Rd
f (y) dy

∫
R
|s|ρ+d−1eis(t−y·ω) ds = C(ρ+ d− 1)

∫
Rd
f (y)|t− y · ω|−ρ−d dy.

Set A = C(ρ+ d− 1)/(2π). Then, since supp(f ) ⊆ Bd
2 (2),

I2 =

∫
R+\J

∣∣Dρ
t g(ω, t)

∣∣ dt 6 A∫
R+\J

∣∣∣∣ ∫
Rd
f (y)|t− y · ω|−ρ−d dy

∣∣∣∣ dt
=A

∫ ∞
2

∫
|y|61

∣∣f (y)
∣∣|t− y · ω|−ρ−d dy dt = A

∫
|y|61

∣∣f (y)
∣∣ dy ∫ ∞

2

dt
|t− y · ω|ρ+d .

Since |2− y · ω| > 2− |y|1/2|ω|1/2 > 1,∫ ∞
2

dt
|t− y · ω|ρ+d =

ρ+ d− 1
(2− y · ω)ρ+d−1 6 ρ+ d− 1.

Combining this result with Hölder’s inequality we obtain

I2 6 c9‖f‖L2(K), where c9 =
|Bd(1)|(ρ + d− 1)C(ρ+ d− 1)

2π
. (46)

From (44), (45) and (46) we obtain∫
R+

∣∣Dρt g(ω, t)
∣∣ dt 6 c8

(∫
R+

∣∣Dρt g(w, t)
∣∣2 dt

)1/2

+ c9‖f‖L2(K). (47)

Integrating (47) over the unit sphere and using Hölder’s inequality we then obtain∫
Sd−1×R

∣∣Dρt g(ω, t)
∣∣ dω dt

6 c8

∫
Sd−1

(∫
R+

∣∣Dρg(ω, t)
∣∣2dt)1/2

dω + 2c9
∣∣Sd−1

∣∣‖f‖W r
2 (K)

6 c8
∣∣Sd−1

∣∣1/2
(∫

Sd−1×R+

∣∣Dρg(ω, t)
∣∣2 dt dω

)1/2

+ 2c9
∣∣Sd−1

∣∣‖f‖W r
2 (K),

which establishes (32) with c = |Sd−1|1/2 max(c8, 2|Sd−1|1/2c9). �
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