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Abstract
While it is well-known that nonlinear methods of approximation can often perform
dramatically better than linear methods, there are still questions on how to measure
the optimal performance possible for such methods. This paper studies nonlinear
methods of approximation that are compatible with numerical implementation in that
they are required to be numerically stable. A measure of optimal performance, called
stable manifold widths, for approximating a model class K in a Banach space X by
stable manifold methods is introduced. Fundamental inequalities between these stable
manifold widths and the entropy of K are established. The effects of requiring stability
in the settings of deep learning and compressed sensing are discussed.
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1 Introduction

Nonlinear methods are now used in many areas of numerical analysis, signal/image
processing, and statistical learning. While their improvement of error reduction when
compared to linear methods is well-established, the intrinsic limitations of such meth-
ods have not been given, at least for what numerical analysts would consider as
acceptable algorithms.

Several notions of widths have been introduced to quantify optimal performance of
nonlinear approximation methods. Historically, the first of these was the Alexandroff
width described in [2]. Subsequently, alternate descriptions of widths were given in
[11]. We refer the reader to [12], where a summary of different nonlinear widths and
their relations to one another is discussed.

While these notions of nonlinear widths were shown to monitor certain approxima-
tion methods such as wavelet compression, they did not provide a realistic estimate
for the optimal performance of nonlinear methods in the context of numerical com-
putation. The key ingredient missing in these notions of widths was stability. Stability
is essential in numerical computation and should be included in formulations of the
best possible performance by numerical methods.

In this paper, wemodify the definition of nonlinearwidths to include stability. In this
way, we provide a more realistic benchmark for the optimal performance of numerical
algorithms whose ultimate goal is to recover an underlying function. Such algorithms
are the cornerstone of numerical methods for solving operator equations, statistical
methods in regression and classification, and in compressing and encoding signals and
images. It turns out that these new notions of widths have considerable interplay with
various results in functional analysis, including the bounded approximation property
and the extension of Lipschitz mappings.

The canonical setting in approximation theory is that we are given a Banach space
X equipped with a norm ‖ · ‖X , and we wish to approximate the elements of X with
error measured in this norm by simpler, less complex elements such as polynomials,
splines, rational functions, and neural networks. The quality of this approximation
is a critical element in the design and analysis of numerical methods. Any numerical
method for computing functions is built on some form of approximation and hence the
optimal performanceof the numericalmethod is nobetter than the optimal performance
of the approximation method. Note, however, that it may not be easy to actually
design a numerical method in a given applicative context that achieves this optimal
performance. For example, one may not be given a complete access to the target
function. This is the case whenwe are only given limited data about the target function,
as it occurs in statistical learning and in the theory of optimal recovery.

In analyzing the performance of approximation/numerical methods, we typically
examine their performance on model classes K ⊂ X , i.e., on compact subsets K of X .
The model class K summarizes what we know about the target function. For example,
when numerically solving a partial differential equation (PDE), K is typically provided
by a regularity theorem for the PDE. In the case of signal processing, K summarizes
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what is known or assumed about the underlying signal such as bandlimits in the
frequency domain or sparsity.

The concept of widths was introduced to quantify the best possible performance
of approximation methods on a given model class K . The best known among these
widths is the Kolmogorov width, which was introduced to quantify the best possible
approximation using linear spaces. If Xn ⊂ X is a linear subspace of X of finite
dimension n, then its performance in approximating the elements of the model class
K is given by the worst case error

E(K , Xn)X := sup
f ∈K

dist( f , Xn)X . (1.1)

The value of n describes the complexity of the approximation or numerical method
using the space Xn . If we fix the value of n ≥ 0, the Kolmogorov n-width of K is
defined as

d0(K )X := sup
f ∈K

‖ f ‖X , dn(K )X := inf
dim(Y )=n

E(K ,Y )X , n ≥ 1. (1.2)

It tells us the optimal performance possible on the model class K using linear spaces
of dimension n for the approximation. Of course, it does not tell us how to select a
(near) optimal space Y of dimension n for this purpose.

For classical model classes such as a finite ball in smoothness spaces like the Lip-
schitz, Sobolev, or Besov spaces, the Kolmogorov widths are known asymptotically.
Furthermore, it is often known that specific linear spaces of dimension n such as poly-
nomials, splines on uniform partition, etc., achieve this (near) optimal performance
(at least within reasonable constants). This can then be used to show that certain
numerical methods, such as spectral methods or finite element methods are also (near)
optimal among all possible choices of numerical methods built on using linear spaces
of dimension n for the approximation.

Let us note that in the definition of Kolmogorov width, we are not requiring that
the mapping which sends f ∈ K into an approximation to f is a linear map. There
is a concept of linear width which requires the linearity of the approximation map.
Namely, given n ≥ 0 and a model class K ⊂ X , its linear width dL

n (K )X is defined
as

dL
0 (K )X = sup

f ∈K
‖ f ‖X , dL

n (K )X := inf
L∈Ln

sup
f ∈K

‖ f − L( f )‖X , n ≥ 1,

(1.3)

where the infimum is taken over the class Ln of all continuous linear maps from X
into itself with rank at most n.

The asymptotic decay of linear widths for classical smoothness classes are known.
We refer the reader to the book of Pinkus [21] for the fundamental results for Kol-
mogorov and linear widths.

There is a general lower bound on the decay of the Kolmogorov width that was
given by Carl in [5]. Given n ≥ 0, we define the entropy number εn(K )X to be the
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infimum of all ε > 0 for which 2n balls of radius ε cover K . Then, Carl proved that
for each r > 0, there is a constant Cr such that whenever supm≥0(m + 1)r dm(K )X is
finite, then

εn(K )X ≤ Cr (n + 1)−r sup
m≥0

(m + 1)r dm(K )X . (1.4)

Thus, for polynomial decay rates for approximation of the elements of K by n-
dimensional linear spaces, this decay rate cannot be better than that of the entropy
numbers of K . For many standard model classes K , such as finite balls in Sobolev
and Besov spaces, the decay rate of dn(K )X is much worse than εn(K )X .

During the decade of the 1970s, it was recognized that the performance of approx-
imation and numerical methods could be significantly enhanced if one uses certain
nonlinear methods of approximation in place of the linear spaces Xn . For example,
there was the emergence of adaptive finite element methods in numerical PDEs, the
sparse approximation from a dictionary in signal processing, and various nonlinear
methods for learning. These new numerical methods can be viewed as replacing in
the construction of the numerical algorithm the linear space Xn by a nonlinear mani-
foldMn depending on n parameters. For example, in place of using piecewise linear
approximation on a fixed partitionwith n cells, onewould use piecewise linear approx-
imation on a partition ofn cellswhichwould be allowed to varywith the target function.
Adaptive finite element methods (AFEM) are a primary example of such nonlinear
algorithms. Another relevant example of nonlinear approximation, which is of much
interest these days, are neural networks. The parameters of the neural network are
chosen depending on the target function (or the available information about the target
function given through data observations) and hence is a nonlinear procedure. The
outputs of neural networks with fixed architecture form a nonlinear parametric family
Mn of functions, where n is the number of parameters.

When analyzing the performance of numerical algorithms built on some form of
approximation (linear or nonlinear), an important new ingredient emerges, namely,
the notion of stability. Stability means that when the input (the information about
the target function) is entered into the algorithm, the performance of the algorithm
is not severely affected by small inaccuracies. Moreover, the algorithm should not
be severely effected by small inaccuracies in computation since such inaccuracies
are inevitable. Having this in mind, we are interested in the following fundamental
question in numerical analysis:
Question:Given a numerical task on a model class K , is there a best stable numerical
algorithm for this task andaccordingly, is there anoptimal rate-distortion performance
which incorporates the notion of stability?
In this context, to formulate the notion of best, we need a precise definition of what
are admissible numerical algorithms. We would like a notion that is built on nonlinear
methods of approximation and also respects the requirement of numerical stability. In
this paper, we take the view that nonlinear methods of approximation depending on n
parameters are built on two mappings.

• A mapping a = an : X → R
n , which when given f ∈ X chooses n parameters

a( f ) ∈ R
n to represent f . Here, when n = 0, we take R0 := {0}.
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• A mapping M = Mn : Rn → X which maps a vector y ∈ R
n back into X and is

used to build the approximation of f . The set

Mn := {Mn(y) : y ∈ R
n} ⊂ X

is viewed as a parametric manifold.

Given f ∈ X , we approximate f by A( f ) = M ◦ a( f ) := M(a( f )). The error for
approximating f ∈ X is then given by

Ea,M ( f ) := ‖ f − M(a( f ))‖X ,

and the approximation error on a model class K ⊂ X is

Ea,M (K )X := sup
f ∈K

Ea,M ( f ).

A significant question is what conditions should be placed on the mappings a, M .
If no conditions at all are placed on these mappings, we would allow discontinuous or
non-measurable mappings that have no stability and would not be useful in a numer-
ical context. This observation led to requiring that both mappings a, M at least be
continuous and motivated the definition of the manifold width δn(K )X , see [11,12],

δn(K )X := inf
a,M

Ea,M (K )X , (1.5)

where the infimum is taken over all mappings a : K → R
n and M : Rn → X with a

continuous on K and M continuous on R
n . A comparison between manifold widths

and other types of nonlinear widths was given in [12].
Note that in numerical applications one faces the following two inaccuracies in

algorithms:

(i) In place of inputting f into the algorithm, one rather inputs a noisy discretization
of f which can be viewed as a perturbation of f . So one would like to have the
property that when ‖ f − g‖X is small then the algorithm outputs M ◦ a( f ) and
M ◦ a(g) are close to one another. A standard quantification of this is to require
that the mapping A := M ◦ a is a Lipschitz mapping.

(ii) In the numerical implementation of the algorithm the parameters a( f ) are not
computed exactly and so one would like to have the property that if a, b ∈ R

n

are close to one another then M(a) and M(b) are likewise close. Again, the
usual quantification of this in numerical implementation is that the mapping
M : Rn → X is a Lipschitz map. This property requires the specification of a
norm on R

n which is controlling the size of the perturbation of a.

One simple way to guarantee that these two properties hold is to require that the two
mappings a, M are themselves Lipschitz. Note that this requirement implies (i) and
(ii) but is indeed stronger. We shall come back to this point later in the paper. At
present, this motivates us to introduce the following stable manifold width. We fix a
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constant γ ≥ 1 and consider mappings a and M that are γ Lipschitz continuous on
their domains with respect to a norm ‖ · ‖Y on R

n , that is

‖a( f ) − a(g)‖Y ≤ γ ‖ f − g‖X , f , gεK , and ‖M(x) − M(y)‖X ≤ γ ‖x − y‖Y ,

x, y ∈ R
n . (1.6)

Then, the stable manifold width δ∗
n,γ (K )X of the compact set K ⊂ X is defined as

δ∗
n,γ (K )X := inf

a,M,‖·‖Y
Ea,M (K )X , (1.7)

where now the infimum is takenover allmapsa : K → (Rn, ‖·‖Y ),M : (Rn, ‖·‖Y ) →
X , and norms ‖ · ‖Y on R

n , where a, M are γ Lipschitz.

Remark 1.1 Note that a rescaling ã( f ) = ca( f ) and M̃(x) = M(c−1x) leaves
Ea,M (K )X unchanged. Therefore, if a is Lipschitz with constant λ1 andM is Lipschitz
with constant λ2 we can rescale them to satisfy our definition with constant

√
λ1λ2.

We choose the above version of the definition for simplicity of notation.

Throughout the paper, we use the standard notation

�np := (Rn, ‖ · ‖�p ) (1.8)

for the spaceRn equipped with the �p norm, and use ‖ ·‖�np
when we need to stress the

dependence on n, or simply ‖ · ‖�p when there is no ambiguity for the corresponding
�p norm.

The stable manifold width defined above gives a benchmark for accuracy which
no Lipschitz stable numerical algorithm can exceed when numerically recovering the
model class K . Note, however, that whether there is a numerical procedure that can
achieve this accuracy depends in part on what access is available to the target functions
from K . In typical numerical settings, onemay not have full access to f and this would
restrict the possible performance of a numerical procedure. For example, if we are only
given partial information in the form of data about f , then the performance will be
limited by the quality of that data.

The majority of this paper is a study of this stable manifold width. We begin in the
next section by discussing some of its fundamental properties. It turns out that some
of these properties are closely connected to classical concepts in the theory of Banach
spaces. For example, we prove in Theorem 2.4 that a separable Banach space X has
the property that δ̄n,γ (K )X → 0, n → ∞, for every compact set K ⊂ X if and only
if X has the γ 2-bounded approximation property. Here, δ̄n,γ (K )X is a modified stable
manifold width, defined the same way as δ∗

n,γ (K )X , with the only difference being
that the infimum is taken over all a : X → R

n defined on the whole space X (rather
than only on K ) which are γ Lipschitz.

The next part of this paper seeks comparison of stablemanifold widths of a compact
set K ⊂ X with its entropy numbers. In Sect. 3, we show that for a general Banach
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space X stable manifold widths δ∗
n,γ (K )X essentially cannot go to zero faster than the

entropy numbers of K . Namely, we show that for any r > 0, we have

εn(K )X ≤ C(r , γ )(n + 1)−r sup
m≥0

(m + 1)rδ∗
m,γ (K )X , n ≥ 0. (1.9)

Inequalities of this type are called Carl’s type inequalities since such inequalities were
first proved for Kolmogorov widths by Carl [5]. This inequality says that if δ∗

n,γ (K )X

tends to zero like n−r as n tends to infinity, then the entropy numbers must at least do
the same. The significance of Carl’s inequality is that in practice it is usually much
easier to estimate the entropy numbers of a compact set K than it is to compute its
widths. In fact, the entropy numbers of all classical Sobolev and Besov finite balls in
an L p space (or Sobolev space) are known. Note that the assumption of stability is
key here since we show that less restrictive forms of nonlinear widths, for example
the manifold widths, do not satisfy a Carl’s inequality.

While the inequality (1.9) is significant, onemight speculate that in general εn(K )X
may go to zeromuch faster than δ∗

n,γ (K )X . In Sect. 4, we show that when X is a Hilbert
space H , for any compact set K ⊂ H , we have

δ∗
26n,2(K )H ≤ 3εn(K )H , n ≥ 1. (1.10)

We prove (1.10) by exploiting well-known results from functional analysis (the
Johnson–Lindenstrauss embedding lemma together with the existence of extensions
of Lipschitz mappings). When combined with the Carl’s inequalities, this shows that
δ∗
n,γ (K )H and εn(K )H behave the same when the approximation takes place in a
Hilbert space H . Thus, the entropy numbers of a compact set provide a benchmark
for the best possible performance of numerical recovery algorithms in this case.

A central question (not completely answered in this paper) is what are the best
comparisons like (1.10) that hold for a general Banach space X? In Sect. 5, we prove
some first results of the form (1.10) for more general Banach spaces. Our results
show some loss over (1.10) when moving from a Hilbert space to a general Banach
space in the sense that the constant 3 is now replaced by C0nα , where α depends on
the particular Banach space. This topic seems to be intimately connected with the
problem of extension of Lipschitz maps defined on a subset S of X to all of X .

From the viewpoint of approximation theory and numerical analysis, it is also of
interest how classical nonlinear approximation procedures comply with the stability
properties proposed in this paper. This is discussed in Sect. 6 for compressed sens-
ing and neural network approximation. Another relevant issue is to determine the
asymptotic behavior of δ∗

n,γ (K )X for classical smoothness classes K used in numer-
ical analysis, for example when K is the unit ball of a Sobolev or Besov space. For
now, only in the case X = L2 is there a satisfactory understanding of this behavior.
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2 Properties of Stable ManifoldWidths

In this section, we derive properties of the stable manifold width and discuss its
relations with certain concepts in the theory of Banach spaces such as the bounded
approximation property.

2.1 On the Definition of ı∗
n,�(K)X

Let us begin by making some comments on the definition of δ∗
n,γ (K )X presented in

(1.7). In this definition, we assumed that the mappings a were Lipschitz only on K .
We could have imposed the stronger condition that a is defined and Lipschitz on all
of X . Since this concept is sometimes useful, we define the modified stable manifold
width

δ̄n,γ (K )X := inf
a,M,‖·‖Y

sup
f ∈K

‖ f − M(a( f ))‖X , (2.1)

with the infimum now taken over all norms ‖ · ‖Y on R
n and mappings a : X →

(Rn, ‖ · ‖Y ) and M : (Rn, ‖ · ‖Y ) → X which are γ Lipschitz. Obviously, we have

δ∗
n,γ (K )X ≤ δ̄n,γ (K )X , n ≥ 0. (2.2)

On the other hand, in the case of a Hilbert space H , the following lemma holds.

Lemma 2.1 For K ⊂ H a compact convex subset of the Hilbert space H, we have

δ∗
n,γ (K )H = δ̄n,γ (K )H , n ≥ 0.

Proof Having in mind (2.2), we only need to show that δ∗
n,γ (K )H ≥ δ̄n,γ (K )H . Let

us fix n ≥ 0 and let

a : K → (Rn, ‖ · ‖Y )

be any γ Lipschitz map and let us consider the metric projection PK : H → K of H
onto K ,

PK ( f ) := argmin
g∈K

‖g − f ‖H .

Note that PK is 1 Lipschitz map. Therefore, a can be extended to the γ Lipschitz map

ã := a ◦ PK : H → (Rn, ‖ · ‖Y )

defined on H , and we find that Eã,M (K )X = Ea,M (K )X for any reconstruction map
M . Thus, δ∗

n,γ (K )H ≥ δ̄n,γ (K )H , and the proof is completed. �
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Remark 2.2 The above approach relies on properties of metric projections, see [1], and
can be used to show intrinsic relations between δ∗

n,γ (K )X and δ̄n,γ (K )X for certain
compact subsets K ⊂ X of a general Banach space X .

Remark 2.3 In the definition of δ∗
n,γ (K )X and δ̄n,γ (K )X , the space (Rn, ‖ · ‖Y ) can be

replaced by any normed space (Xn, ‖ · ‖Xn ) of dimension n. That is, for example, in
the case of δ∗

n,γ (K )X ,

δ∗
n,γ (K )X = inf

a,M,Xn
sup
f ∈K

‖ f − M(a( f ))‖X , (2.3)

where now the infimum is taken over all normed spaces Xn of dimension n with norm
‖ · ‖Xn and all γ Lipschitz maps a : X → (Xn, ‖ · ‖Xn ) and M : (Xn, ‖ · ‖Xn ) →
X . Indeed, consider any basis (φ1, . . . , φn) of Xn . The associated coordinate map
κ : Xn → R

n defined by κ(g) = (x1, . . . , xn) = x for g = ∑n
i=1 xiφi is an

isometry when Rn is equiped with the norm ‖x‖Y := ‖g‖Xn . For this norm, the maps
ã = κ ◦a : X → R

n and M̃ = M ◦κ−1 : Rn → X have the same Lipschitz constants
as a : X → Xn and M : Xn → X , which shows the equivalence between the two
definitions.

2.2 When Does ı̄n,�(K)X Tend to Zero as n → ∞?

We turn next to the question of whether δ̄n,γ (K )X tends to zero for all compact sets
K ⊂ X . In order to orient this discussion, we first recall results of this type for other
widths and for other closely related concepts in the theory of Banach spaces.

Let X be a separable Banach space. While the Kolmogorov widths dn(K )X tend
to zero as n → ∞ for each compact set K ⊂ X , notice that this definition of widths
says nothing about how the approximants to a given f ∈ K are constructed. In the
definition of the linear widths dL

n (K )X , see (1.3), it is required that the approximants
to f are constructed by finite rank continuous linear mappings. In this case, it is known
that a necessary and sufficient condition that these widths tend to zero is that X has
the approximation property, i.e., for each compact subset K ⊂ X , there is a sequence
of bounded linear operators Tn of finite rank at most n such that

sup
f ∈K

‖ f − Tn( f )‖X → 0, n → ∞. (2.4)

In the definition of approximation property, the norms of the operators Tn are allowed
to grow with n. A second concept of γ -bounded approximation property requires in
addition that there is a γ ≥ 1 such that the operator norm bound ‖Tn‖ ≤ γ holds for
the operators in (2.4).

The main result of this section is the following theorem which characterizes
the Banach spaces X for which every compact subset K ⊂ X has the property
δ̄n,γ (K )X → 0 as n → ∞.

Theorem 2.4 Let X be a separable Banach space and γ ≥ 1. The following two
statements are equivalent:
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(i) δ̄n,γ (K )X → 0 as n → ∞ for every compact set K ⊂ X.
(ii) X has the γ 2-bounded approximation property.

Before going further, we state a lemma that we use in the proof of the above theorem.
The proof of the lemma is given after the proof of the theorem.

Lemma 2.5 Let ‖ ·‖Y be a norm onRn, n ≥ 1, and X be any separable Banach space.
If M : Rn → X is a γ Lipschitz mapping, then for any bounded set S ⊂ R

n, and any
ε > 0, there exists a map M : Rn → X, M = M(S, ε), with the following properties:

(i) M is Lipschitz with constant γ .
(ii) M has finite rank, that is M(Rn) is a subset of a finite dimensional subspace of X.
(iii) M approximates M to accuracy ε on S, namely

‖M − M‖L∞(S,X) := max
x∈S ‖M(x) − M(x)‖X ≤ ε. (2.5)

Proof of Theorem 2.4 First, we show that (ii) implies (i). If X has the γ 2-bounded
approximation property, then given any compact set K ⊂ X , there is a sequence of
operators {Tn}, n ≥ 1, Tn : X → Xn with Xn of dimension at most n, with operator
norms ‖Tn‖ ≤ γ 2, and

sup
f ∈K

‖ f − Tn( f )‖X → 0, n → ∞. (2.6)

Consider the mappings

a := γ −1Tn : X → Xn, M := γ I d : Xn → Xn ⊂ X .

Each of thesemappings is Lipschitz with Lipschitz constant at most γ andM ◦a = Tn .
By virtue of (2.6) and Remark 2.3, we have that δ̄n,γ (K )X → 0 as n → 0.

Next, we show that (i) implies (ii). Suppose that (i) of Theorem 2.4 holds and K
is any compact set in X . From the definition of δ̄n,γ (K )X , there exist γ Lipschitz
mappings

an : X → R
n, Mn : Rn → X ,

with some norm ‖ · ‖Yn on R
n and

sup
f ∈K

‖ f − Mn ◦ an( f )‖X → 0, n → ∞.

We take ε = 1/n in Lemma 2.5 and letMn be themodifiedmapping forMn guaranteed
by the lemma with the set S being an(K ). Then, the mapping Tn : X → X defined
by

Tn := Mn ◦ an

123



Foundations of Computational Mathematics (2022) 22:607–648 617

is γ 2 Lipschitz and has a finite rank. Moreover, since for every f ∈ K ,

‖ f − Tn( f )‖X ≤ ‖ f − Mn ◦ an( f )‖X + ‖Mn ◦ an( f )

−Mn ◦ an( f )‖X ≤ ‖ f − Mn ◦ an( f )‖X + 1/n,

one has

sup
f ∈K

‖ f − Tn( f )‖X → 0, n → ∞.

To complete the proof, we use Theorem 5.3 from [15], see also the discussions in
[13,14], to conclude that X has the γ 2-bounded approximation property. �


We now proceed with the proof of the lemma.

Proof of Lemma 2.5 We fix the value of n ≥ 1 and a norm ‖ · ‖Y on Rn . We will prove
the apparently weaker statement that for any ε, δ > 0, there exists a (γ + δ) Lipschitz
map M̃ : Rn → X with finite rank such that

‖M − M̃‖L∞(S,X) := max
x∈S ‖M(x) − M̃(x)‖X ≤ ε. (2.7)

Once we construct M̃ , we obtain the claimed statement by taking

M = γ

γ + δ
M̃ .

Clearly, M will satisfy (i), (ii), and (iii), since

‖M − M‖L∞(S,X) ≤ ‖M − M̃‖L∞(S,X) + ‖M̃ − M‖L∞(S,X)

≤ ε + δ

γ + δ
max
x∈S ‖M̃(x)‖X < ε + δ

γ
max
x∈S ‖M̃(x)‖X ,

where δ and ε are arbitrarily small and S ⊂ R
n is bounded.

The construction of M̃ from M proceeds in 3 steps, where one of the main issues
is to keep control of the Lipschitz constants.
Step 1: Let us fix δ > 0. In this step, we construct a map M1 that agrees with M on S,
takes the constant value M(0) outside of a larger set that contains S, and is (γ + δ/2)
Lipschitz. We take R1 > 0 sufficiently large such that S is contained in the ball of
radius R1 with respect to the ‖ · ‖Y norm, that is,

x ∈ S �⇒ ‖x‖Y < R1.

For λ > 0, we then define the continuous piecewise linear function φλ : R+ → R by

φλ(t) =

⎧
⎪⎨

⎪⎩

1, 0 ≤ t ≤ R1,

1 − λ(t − R1), R1 ≤ t ≤ R1 + 1/λ,

0, t ≥ R1 + 1/λ.
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Clearly, φλ is λ Lipschitz function and 0 ≤ φλ(t) ≤ 1 for all t ≥ 0. Next, we define
the function �λ : Rn → R

n by

�λ(x) := φλ(‖x‖Y )x =

⎧
⎪⎨

⎪⎩

x, ‖x‖Y ≤ R1,

(1 − λ(‖x‖Y − R1))x, R1 ≤ ‖x‖Y ≤ R1 + 1/λ,

0, ‖x‖Y ≥ R1 + 1/λ,

and thus �λ(x) = x for x ∈ S. Let us check the Lipschitz property of �λ.
First, for x, y contained in the ball B of radius R1 + 1/λ with respect to the ‖ · ‖Y

norm, we have

�λ(x) − �λ(y) = (φλ(‖x‖Y ) − φλ(‖y‖Y )) x + φλ(‖y‖Y )(x − y),

and thus

‖�λ(x) − �λ(y)‖Y ≤ ‖x‖Y
∣
∣φλ(‖x‖Y ) − φλ(‖y‖Y )

∣
∣ + φλ(‖y‖Y )‖x − y‖Y

≤ λ‖x‖Y |‖x‖Y − ‖y‖Y | + φλ(‖y‖Y )‖x − y‖Y
≤ (λ‖x‖Y + φλ(‖x‖Y ))‖x − y‖Y
≤ (1 + λR1)‖x − y‖Y , x, y ∈ B. (2.8)

Next, for x, y ∈ R
n such that ‖x‖Y ≥ R1 + 1/λ and ‖y‖Y ≥ R1 + 1/λ

�λ(x) − �λ(y) = 0. (2.9)

Lastly, if ‖x‖Y ≤ R1 + 1/λ and ‖y‖Y > R1 + 1/λ, we consider the point x∗ :=
x + s∗(y − x), s∗ ∈ [0, 1] of the intersection of the line segment connecting x and
y and the sphere with radius R1 + 1/λ. We have �λ(y) = �λ(x∗) = 0, and thus it
follows from (2.8) that

‖�λ(x) − �λ(y)‖Y = ‖�λ(x) − �λ(x
∗)‖Y ≤ (1 + λR1)‖x − x∗‖Y

= (1 + λR1)s
∗‖x − y‖Y ≤ (1 + λR1)‖x − y‖Y . (2.10)

From (2.8), (2.9), and (2.10), we conclude that�λ is a (1+λR1)Lipschitz function.
We can make the Lipschitz constant (1 + λR1) as close to one as we wish by taking
λ small. Therefore, choosing λ sufficiently small, we have that the function

M1 := M ◦ �λ,

is (γ + δ/2) Lipschitz, agrees with M over S and has constant value M(0) on the set

{x ∈ R
n : ‖x‖Y ≥ R1 + 1/λ}.

By equivalence of norms on Rn , we conclude that M1 has value M(0) outside an �∞
cube [−R2, R2]n , with R2 = R2(λ, n).
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Step 2: In the second step, we approximate M1 by a function M2 obtained by regu-
larization, see [16]. We consider a standard mollifier

ϕm(x) := mnϕ(mx), x ∈ R
n,

where ϕ is a smooth positive function supported on the unit euclidean ball of Rn and
such that �Rnϕ = 1. We then define M2 := ϕ ∗ M1, that is,

M2(x) = M2(m, x) :=
∫

Rn

ϕm(y)M1(x − y)dy.

The function M2 is smooth and equal to M(0) outside of the cube

Q := [−D, D]n, D := R2 + 1

m
. (2.11)

By taking m sufficiently large, we are ensured that

max
x∈Rn

‖M1(x) − M2(x)‖X ≤ ε/2,

and in particular (since M1 agrees with M on S)

max
x∈S ‖M(x) − M2(x)‖X ≤ ε/2, (2.12)

because

‖M1(x) − M2(x)‖X =
∥
∥
∥

∫

Rn

ϕm(y)M1(x)dy −
∫

Rn

ϕm(y)M1(x − y) dy
∥
∥
∥
X

≤
∫

Rn

ϕm(y)‖M1(x) − M1(x − y)‖X dy

≤ (γ + δ/2)
∫

Rn

ϕm(y)‖y‖Y dy = γ + δ/2

m

∫

Rn

ϕ(y)‖y‖Y dy.

In addition, by convexity we find that M2 is (γ + δ/2) Lipschitz since

‖M2(x) − M2(y)‖X =
∥
∥
∥

∫

Rn

ϕm(z)(M1(x − z) − M1(y − z)) dz
∥
∥
∥
X

≤
∫

Rn

ϕm(z)‖M1(x − z) − M1(y − z)‖X dz

≤
∫

Rn

ϕm(z)(γ + δ/2)‖x − y‖Y dz = (γ + δ/2)‖x − y‖Y .
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If we takem sufficiently large then (2.12) holds and the construction of M2 in this step
is complete. We fix m for the remainder of the proof. Any constants C given below
depend only on m, n, δ, and the initial function M . The value of C may change from
line to line.
Step 3: In this step, we derive M̃ from M2 by piecewise linear interpolation. We work
on the support cube Q = [−D, D]n . We recall that M2 is constant and equal to M(0)
outside of Q. We create a simplicial mesh of 2Q by subdividing it into subcubes Qk

of equal side length h = 2D/N , and then using the Kuhn simplicial decomposition
of each of these subcubes into n! simplices, see [20]. The set of vertices of the cubes
Qk form a mesh of discrete points in 2Q. We denote by 
h = {xν} ⊂ Q ⊂ R

n the
set of these vertices that belong to Q .

We denote by Ih the operator of piecewise linear interpolation at the vertices of

h . It is usually applied to scalar-valued functions but its extension to Banach space-
valued functions is immediate. Since M2 has value M(0) on ∂Q, the same holds for
IhM2 which may be written as

M̃(x) := IhM2(x) =
∑

xν∈
h

M2(xν)Nν(x), x ∈ Q.

Here, the functions Nν are the nodal basis for piecewise linear interpolation, that is Nν

is a continuous piecewise linear functionwith Nν(xμ) = δμ,ν , with δμ,ν the Kronecker
symbol for μ, ν ∈ 
h . We then can extend M̃ by the value M(0) outside of Q. It
follows that M̃(Rn) is contained in a linear subspace of dimension #(
h) + 1, that is
M̃ has finite rank. We are now left to show that M̃ is (γ + δ) Lipschitz and that (2.7)
holds. Thus, it is enough to show that:

(i) (M̃ − M2) is δ/2 Lipschitz, since M2 is (γ + δ/2) Lipschitz;
(ii) maxx∈S ‖M̃(x) − M2(x)‖X ≤ ε/2, because of (2.12).

In order to prove (i) and (ii), we first note that if U is the unit ball in X∗, we have
that

‖(M̃(x) − M2(x)) − (M̃(y) − M2(y))‖X
= sup

�∈U
|�(M̃(x)) − �(M2(x)) − (�(M̃(y)) − �(M2(y)))|,

and

‖M̃(x) − M2(x)‖X = sup
�∈U

|�(M̃(x)) − �(M2(x))|.

For any � ∈ U , we denote by v� : Rn → R the scalar valued function

v�(x) := �(M2(x)) =
{

�(M2(x)), x ∈ Q,

�(M(0)), x ∈ R
n\Q.
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Then we have

�(M̃(x)) =
{

�(IhM2(x)) = Ihv�(x), x ∈ Q,

�(M(0)), x ∈ R
n\Q,

and

�(M2(x)) − �(M̃(x)) =
{

v�(x) − Ihv�(x), x ∈ Q,

0, x ∈ R
n\Q.

Note here that we have used the slight abuse of notation since the same notation Ih
is used for the interpolation operator applied to scalar valued functions as well as for
Banach space valued functions. In particular, we may extend Ihv� by �(M(0)) outside
of Q.

Therefore, to show (i) and (ii), it is enough to show that uniformly in � ∈ U , for h
sufficiently small, (v� − Ihv�) is δ/2 Lipschitz function on R

n and

max
x∈Q |v�(x) − Ihv�(x)| ≤ ε/2. (2.13)

Note that the functions v�, � ∈ U , are smooth with uniformly bounded (in �) second
derivatives

|v�|W 2,∞(Rn) := max
x∈Rn

max|α|=2
|∂αv�(x)| ≤ C0,

with C0 a fixed constant independent of �.
Let K be any one of the simplices in the Kuhn simplicial decomposition of any of

the Qk’s. Then, the diameter of K is
√
nh and the radius of the inscribed sphere is

h√
2(n−1+√

2)
, see subsection 3.1.4 in [20]. It follows from Corollary 2 in [6] that

max
x∈K

|v�(x) − Ihv�(x)| ≤ Ch2|v�|W 2,∞(K),

max
i=1,...,n

max
x∈K

| ∂

∂xi
v�(x) − ∂

∂xi
Ihv�(x)| ≤ Ch|v�|W 2,∞(K),

and in turn

max
x∈Rn

|v�(x) − Ihv�(x)| ≤ Ch2|v�|W 2,∞(Rn),

max
i=1,...,n

‖ ∂

∂xi
v� − ∂

∂xi
Ihv�‖L∞(Rn) ≤ Ch|v�|W 2,∞(Rn).

Thus, (2.13) follows from the first inequality if we select h small enough. From the
second of these inequalities, we find that for x, y ∈ R

n ,
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|(v�(x) − Ihv�(x)) − (v�(y) − Ihv�(y))| ≤ Ch|v�|W 2,∞(Rn)‖x − y‖�1

≤ Ch|v�|W 2,∞(Rn)‖x − y‖Y
< δ/2‖x − y‖Y ,

where we have used the fact that any two norms on R
n are equivalent and h can be

made small enough. This completes the proof of the lemma. �


2.3 When is ı∗
n,�(K)X = 0?

In this section, we characterize the sets K for which δ∗
n,γ (K )X = 0. We also consider

a closely related question of whether δ∗
n,γ (K )X is assumed. We will use the following

lemma which is a form of Ascoli’s theorem.

Lemma 2.6 Let (X , d) be a separable metric space and (Y , ρ) be a metric space for
which every closed ball is compact. Let Fn : X → Y be a sequence of γ Lipschitz maps
for which there exists a ∈ X and b ∈ Y such that Fn(a) = b for n = 1, 2, . . .. Then,
there exists a subsequence Fn j , j ≥ 1, which is point-wise convergent to a function
F : X → Y and F is γ Lipschitz. If (X , d) is also compact, then the convergence is
uniform.

Proof For any f ∈ X , we have

ρ(Fn( f ), b) = ρ(Fn( f ), Fn(a)) ≤ γ d( f , a).

Let us fix a countable dense subset A = { f j }∞j=1 ⊂ X and define

Bj := B(b, γ d( f j , a))

as the closed ball in Y with radius γ d( f j , a) centered at b. Then, the cartesian product

B := B1 × B2 × · · ·

is a compact metric space under the natural product topology. We naturally identify
each Fn with an element F̂n ∈ B whose j-th coordinate is Fn( f j ), that is

F̂n := (Fn( f1), Fn( f2), . . . , Fn( f j ), . . .) ∈ B.

So, there exists a subsequence F̂ns convergent to an element F̂ ∈ B, that is

F̂( j) = lim
s→∞ F̂ns ( j) = lim

s→∞ Fns ( f j ), j ≥ 1.

In other words, we get a function F : A → Y , defined as

F( f j ) = lim
s→∞ Fns ( f j ).
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We check that ρ(F( f j ), F( fi )) ≤ γ d( f j , fi ) for each i, j = 1, 2, . . .. Since A is
dense, F extends to a γ Lipschitz function on X , F : X → Y . Moreover, F( f ) =
lims→∞ Fns ( f ) for every f ∈ X . If (X , d) is compact, uniform convergence is proved
by a standard argument, remarking that for any ε > 0we can cover X by afinite number
of ε-balls with centers g1, . . . , gk ∈ X , and so

sup
f ∈X

ρ(Fns ( f ), F( f )) ≤ 2γ ε + max
i=1,...,n

ρ(Fns (gi ), F(gi )) ≤ (2γ + 1)ε,

for s large enough. �

Theorem 2.7 Let K ⊂ X be a compact set in a separable Banach space X. If
δ∗
n,γ (K )X = 0, then the set K is γ Lipschitz equivalent to a subset of Rn. That
is, there is a norm ‖ · ‖Y on R

n and a function F : K → (Rn, ‖ · ‖Y ) such that F is
invertible and both F and F−1 are γ Lipschitz.

Proof Notice that if we knew that δ∗
n,γ (K )X = 0 was assumed by maps a, M , then

we could simply take F := a and F−1 = M |a(K ). So the proof consists of a limiting
argument. For each k ≥ 1, there exist a norm ‖.‖Yk on R

n and γ Lipschitz maps
ak : K → (Rn, ‖.‖Yk ) and Mk : (Rn, ‖.‖Yk ) → X such that

lim
k→∞ sup

f ∈K
‖ f − Mk(ak( f ))‖X = δ∗

n,γ (K )X = 0. (2.14)

Let us fix f0 ∈ K and define

a′
k( f ) := ak( f ) − ak( f0) and M ′

k(x) := Mk(x + ak( f0)).

Then, a′
k : K → (Rn, ‖.‖Yk ) and M ′

k : (Rn, ‖.‖Yk ) → X are γ Lipschitz maps.
Moreover, a′

k( f0) = 0 and M ′
k ◦ a′

k = Mk ◦ ak for k = 1, 2, . . ..
We denote by U the unit ball in R

n with respect to the Euclidean norm ‖.‖�n2
and

byUk the unit ball ofRn with respect to the norm ‖ · ‖Yk . From the Fritz John theorem
(see e.g., [22, Chapt. 3]) we infer that there exist invertible linear operators 
k on Rn

such that

U ⊂ 
k(Uk) ⊂ √
nU ,

and therefore the modified norm ‖.‖Zk defined as

‖x‖Zk := ‖
−1
k (x)‖Yk , x ∈ R

n,

satisfies the inequality

1√
n
‖x‖�2 ≤ ‖x‖Zk ≤ ‖x‖�2 . (2.15)
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Next, we replace a′
k and M ′

k by

ãk := 
k ◦ a′
k : K → (Rn, ‖.‖Zk ), M̃k := M ′

k ◦ 
−1
k : (Rn, ‖.‖Zk ) → X .

Note that Mk ◦ ak = M ′
k ◦ a′

k = M̃k ◦ ãk , and ãk( f0) = 0. We note that ãk and M̃k are
γ Lipschitz with respect to the new norm ‖ · ‖Zk . Indeed,

‖ãk( f ) − ãk(g)‖Zk = ‖
k ◦ a′
k( f ) − 
k ◦ a′

k(g)‖Zk

= ‖a′
k( f ) − a′

k(g)‖Yk ≤ γ ‖ f − g‖X , (2.16)

and

‖M̃k(x) − M̃k(y)‖X = ‖M ′
k ◦ 
−1

k (x) − M ′
k ◦ 
−1

k (y)‖X
≤ γ ‖
−1

k (x) − 
−1
k (y)‖Yk = γ ‖x − y‖Zk .

We then extract subsequence of these mappings that converges point-wise by using
Lemma 2.6. For this, we first note that from (2.15), we have

‖ãk( f ) − ãk(g)‖�n2
≤ √

n‖ãk( f ) − ãk(g)‖Zk ≤ γ
√
n‖ f − g‖X .

Hence, the sequence ãk : K → �n2 is a sequence of γ
√
n Lipschitz mappings for

which ãk( f0) = 0. We apply Lemma 2.6 to infer that up to a subsequence extraction,
ãk converges point-wise on K to a mapping F . Note that F : K → �n2 is also a γ

√
n

Lipschitz map.
The remainder of the proof is to show that the function F is the mapping claimed

by the theorem. To prove it, we want first to extract a single norm to use in place of
the ‖ · ‖Zk . For this, we apply Lemma 2.6 to the subsequence of norms

‖ · ‖Zk : �n2 → R, j = 1, 2, . . . ,

viewed as 1 Lipschitz functions, to derive that, up to another subsequence extraction,
‖ · ‖Zk converges pointwise to a 1 Lipschitz function from �n2 to R which we denote
by ‖.‖Y . It is easy to check that ‖ · ‖Y is a norm on R

n and it satisfies

1√
n
‖x‖�2 ≤ ‖x‖Y ≤ ‖x‖�2 , x ∈ R

n . (2.17)

We now verify the required Lipschitz properties of F with respect to ‖ · ‖Y . First, we
claim that

‖F( f ) − F(g)‖Y ≤ γ ‖ f − g‖X , (2.18)

namely, F : K → (Rn, ‖.‖Y ) is a γ Lipschitz mapping. Since limk→∞ ‖F( f ) −
ãk( f )‖Y = 0 for all f ∈ K because of (2.17), we prove (2.18) by showing that for
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any ε > 0 and f , g ∈ K , we have

‖ãk( f ) − ãk(g)‖Y ≤ γ ‖ f − g‖X + ε, (2.19)

for any sufficiently large k. Now the set S := {z ∈ R
n : z = ãk( f ) − ãk(g), f , g ∈

K , k ≥ 1} is bounded and therefore

sup
z∈S

|‖z‖Zk − ‖z‖Y | := εk → 0, k → ∞. (2.20)

This gives

‖ãk( f ) − ãk(g)‖Y ≤ ‖ãk( f ) − ãk(g)‖Zk + εk ≤ γ ‖ f − g‖X + εk, k ≥ 1,

(2.21)

where we have used (2.16). Choosing k sufficiently large we have (2.19) and in turn
have proved (2.18).

Finally, we need to check that F has an inverse on F(K ) which is γ Lipschitz. Let
f , g ∈ K . For every k, we have

γ ‖F( f ) − F(g)‖Zk ≥ ‖M̃k(F( f )) − M̃k(F(g))‖X ≥ ‖M̃k(ãk( f )) − M̃k(ãk(g))‖X
−‖M̃k(F( f )) − M̃k(ãk( f ))‖X − ‖M̃k(F(g)) − M̃k(ãk(g))‖X

≥ ‖M̃k(ãk( f )) − M̃k(ãk(g))‖X − γ ‖F( f ) − ãk( f )‖Zk

−γ ‖F(g) − ãk(g)‖Zk .

Passing to the limit and using (2.14) and that Mk ◦ ak = M̃k ◦ ãk , we obtain

γ ‖F( f ) − F(g)‖Y ≥ ‖ f − g‖X ,

and the proof is complete. �

The above argument brings up the interesting question ofwhen δ∗

n,γ (K )X is attained.
To prove a result in this direction, we recall the well-known vector version of the
Banach limit, see Appendix C in [3]. Given X , let �∞(N, X) denote the space of all
sequences �f = ( fk)∞k=1 with fk ∈ X , k ≥ 1, equipped with the norm ‖ �f ‖∞ =
supk ‖ fk‖X . The following theorem holds.

Theorem 2.8 For each Banach space X, there exists a norm one linear operator

L : �∞(N, X) → X∗∗,

such that L( �f ) = g whenever �f = ( fk)∞k=1, fk ∈ X, and limk→∞ fk = g ∈ X. Note
that we have

‖L( �f )‖X∗∗ ≤ lim sup
k→∞

‖ fk‖X .
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Theorem 2.9 Let X be a separable Banach space such that there exists a linear norm
one projection P from X∗∗ onto X. Then, for every n and every compact set K ⊂ X,
there is a norm ‖·‖Y onRn andmappings ã : K → (Rn, ‖·‖Y ) and M̃ : (Rn, ‖·‖Y ) →
X such that

sup
f ∈K

‖ f − M̃ ◦ ã( f )‖X = δ∗
n,γ (K )X .

This is also the case for δ̄n,γ (K )X .

Proof For each k ≥ 1, consider the γ Lipschitz maps ak : K → (Rn, ‖.‖Yk ), Mk :
(Rn, ‖.‖Yk ) → X and the norms ‖.‖Yk on R

n , such that

lim
k→∞ sup

f ∈K
‖ f − Mk(ak( f ))‖X = δ∗

n,γ (K )X .

We follow themethod and notation in the proof of Theorem2.7 to generate a norm ‖·‖Y
onRn and a sequence of mappings ãk that converges pointwise on K to the γ Lipschitz
mapping ã : K → (Rn, ‖ · ‖Y ) (denoted by F in Theorem 2.7), and a sequence of
γ Lipschitz mappings M̃k : (Rn, ‖ · ‖Zk ) → X . Note that Mk ◦ ak = M̃k ◦ ãk , and
therefore

lim
k→∞ sup

f ∈K
‖ f − M̃k ◦ ãk( f )‖X = δ∗

n,γ (K )X .

For x ∈ R
n , we consider the sequence

−−−→
M(x) := (M̃k(x))∞k=1 ∈ �∞(N, X) and define

the mapping

M∞ : (Rn, ‖.‖Y ) → X∗∗

as M∞(x) = L(
−−−→
M(x)). One easily verifies that this is γ Lipschitz map since

‖M∞(x) − M∞(y)‖X∗∗ = ‖L(
−−−→
M(x) − −−−→

M(y))‖X∗∗ ≤ lim sup
k→∞

‖M̃k(x) − M̃k(y)‖X
≤ γ lim sup

k→∞
‖x − y‖Zk = γ ‖x − y‖Y .

Then, the mapping M̃ := P ◦ M∞, M̃ : (Rn, ‖.‖Y ) → X is a γ Lipschitz map since
P is linear projection on X of norm one. For f ∈ K , we define �f := ( f , f , . . .) ∈
�∞(N, X), and then

‖ f − M̃ ◦ ã( f )‖X = ‖P ◦ L( �f ) − P ◦ M∞ ◦ ã( f )‖X ≤ ‖L( �f ) − M∞(ã( f ))‖X∗∗

= ‖L( �f ) − L
(−−−−−→
M(ã( f ))

)‖X∗∗ ≤ lim sup
k→∞

‖ f − M̃k(ã( f ))‖X
≤ lim sup

k→∞
‖ f − M̃k(ãk( f ))‖X + ‖M̃k(ãk( f )) − M̃k(ã( f ))‖X
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≤ lim sup
k→∞

‖ f − M̃k(ãk( f ))‖X + γ ‖ãk( f ) − ã( f )‖Zk

≤ lim sup
k→∞

‖ f − M̃k(ãk( f ))‖X + γ ‖ãk( f ) − ã( f )‖�2

≤ δ∗
n,γ (K )X .

Thus, we get

sup
f ∈K

‖ f − M̃ ◦ ã( f )‖X ≤ δ∗
n,γ (K )X ,

and the proof is completed. To show the theorem for δ̄n,γ (K )X , it suffices to repeat
those arguments assuming that ak’s are defined on X . �


Remark 2.10 Clearly a reflexive Banach space X is complemented in X∗∗ by a lin-
ear projection of norm one, namely the identity. The same holds for L1([0, 1]) and
L∞([0, 1]). However, C([0, 1]) is not complemented in C([0, 1])∗∗.

3 Stable Nonlinear Widths Bound Entropy: Carl Type Inequalities

In this section, we study whether δ∗
n,γ (K )X can go to zero faster than the entropy

numbers of K . To understand this question, we shall prove bounds for the entropy
numbers εn(K )X in terms of δ∗

n,γ (K )X . The inequalities we obtain are analogous to
the bounds on entropy in terms of Kolmogorov widths as given in Carl’s inequality.
Before formulating our main theorem, let us note that we cannot expect inequalities
of the form

εn(K )X ≤ Cδ∗
αn,γ (K )X , n ≥ 1, (3.1)

with α > 0 a fixed constant. For example, take X = �p(N) with 1 ≤ p < ∞ and
define

K := Km := {(x1, . . . , xm, 0, . . .) :
m∑

j=1

|x j |p ≤ 1} ⊂ �p(N).

Then δ̄n,1(Km) = δ∗
n,1(Km) = 0, provided n ≥ m. Indeed, in this case, we can take,

an : X → �np, Mn : �np → X ,

where an(x) = (x1, . . . , xn) when x = (x1, x2, . . .) ∈ X and Mn((x1, . . . , xn)) =
(x1, . . . , xn, 0, 0, . . .). Now, given any α > 0, we choose n so that αn ≥ m and find
that the right side of (3.1) is zero but the left side is not.
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3.1 AWeak Inequality for Entropy

While direct inequalities like (3.1) do not hold, we shall prove a weak inequality
between the entropy numbers εn(K )X and the stable widths δ∗

n,γ (K )X . To formulate
our results, we assume that δ∗

n,γ (K )X → 0 as n → 0, and consider the function

φ(ε) := φK ,γ (ε) := min{m : δ∗
m,γ (K )X ≤ ε}. (3.2)

We shall use the following lemma.

Lemma 3.1 Let γ > 0 and let K ⊂ X be a compact subset of the Banach space X.
Let us fix a point f0 ∈ K, δ > 0, and consider the ball B := B( f0, δ) in X of radius
δ, centered at f0 and BK := K ∩ B. Then, BK can be covered by N balls of radius
δ/2, where

N ≤ Am, with A := 1 + 16γ 2, m := φ(δ/8), (3.3)

Proof Let N be the largest number such that there exist points f1, . . . , fN from BK

such that

‖ fi − f j‖X ≥ δ/2, i �= j . (3.4)

Since f1, . . . , fN is a maximal number of points from BK satisfying the separation
condition (3.4), it follows that any f ∈ BK must be in one of the balls centered at f j
of radius δ/2. So, we want to bound N .

Let m = φ(δ/8), namely m is the minimal index for which δ∗
m,γ (K )X ≤ δ/8.

In what follows, we assume that there are mappings am, Mm for which δ∗
m,γ (K )X is

assumed, that is ‖ f − Mm(am( f ))‖X ≤ δ/8, where am : K → (Rm, ‖ · ‖Ym ) and
Mm : (Rm, ‖ · ‖Ym ) → X are both γ Lipschitz. A similar proof, based on limiting
arguments, holds in the case when the infimum δ∗

m,γ (K )X is not assumed.
Let us denote by y0 := am( f0), y j := am( f j ) ∈ R

m and g j := Mm(y j ) ∈ X for
j = 1, 2, . . . , N . Then, we know that

‖ f j − g j‖X ≤ δ∗
m,γ (K )X ≤ δ/8, j = 1, . . . , N ,

and therefore

‖gi − g j‖X ≥ ‖ fi − f j‖X − ‖ fi − gi‖X − ‖ f j − g j‖X ≥ δ/4, i �= j . (3.5)

From the assumption that Mm is γ Lipschitz, we have

‖gi − g j‖X = ‖M(yi ) − M(y j )‖Ym ≤ γ ‖yi − y j‖Ym ,

and therefore it follows from (3.5) that

‖yi − y j‖Ym ≥ δ

4γ
, i �= j . (3.6)
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Since

‖y0 − y j‖Ym = ‖am( f0) − am( f j )‖Ym ≤ γ ‖ f0 − f j‖X ≤ γ δ, j = 1, . . . , N ,

all y j ’s, j = 1, 2, . . . , N , are in a ball BY := BY (y0, γ δ) of radius γ δ and center y0
in R

m with respect to the norm ‖ · ‖Ym . We recall that for any η > 0, the unit ball in
an m dimensional Banach space can be covered by (1 + 2/η)m open balls of radius
η, see [22], p. 63. Therefore, BY can be covered by (1 + 2/η)m balls of radius ηγ δ.
We take η := 8−1γ −2 so that the radius of each of these balls is δ

8γ . Then, in view of
(3.6), each of these balls has at most one of the points y j , j = 1, . . . , N . This tells us
that

N ≤ (1 + 2/η)m ≤ (1 + 16γ 2)m,

and thus proves the lemma. �

Theorem 3.2 Let K ⊂ X be a compact subset of the Banach space X and assume K
is contained in a ball with radius R. Let ε > 0 and L be the smallest integer such that
2Lε ≥ R. Then, K can be covered by N (ε) balls where

N (ε) ≤ A
∑L

k=1 φ(2kε/8), A := 1 + 16γ 2. (3.7)

Proof Let εk := 2kε, k = 0, 1, . . . , L , and mk := φ(εk/8). We know that K is
contained in the ball B of radius εL which without loss of generality we can assume
is centered at 0. From Lemma 3.1, we have that K is contained in AmL balls of radius
εL−1. We can apply Lemma 3.1 to each of these new balls and find that K is contained
in

AmL · AmL−1 = AmL+mL−1

balls of radius εL−2. Continuing in this way, we have that K is contained in N (ε) balls
of radius ε = ε0, where

N (ε) ≤ A
∑L

k=1 mk .

This proves the theorem. �


3.2 Carl Type Inequalities for a General Banach Space

We can apply the last theorem to derive bounds on entropy numbers from an assumed
decay of δ∗

n,γ (K )X in the following way. From the assumed decay, we obtain bounds
on the growth of φ(ε) as ε → 0 . Then, we use these bounds in Theorem 3.2 to derive
a bound on the number N (ε) of balls of radius ε needed to cover K . The latter then
translates into bounds on εn(K )X . We illustrate this approach with two examples in
this section. The first is the usual form of Carl’s inequality as stated in the literature.
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Theorem 3.3 Let r , γ > 0. If K is any compact subset of a Banach space X, then

εn(K )X ≤ C(n + 1)−r sup
m≥0

(m + 1)rδ∗
m,γ (K )X , n ≥ 0,

with C depending only on r and γ .

Proof We fix r > 0 and γ > 0 and let


 := sup
m≥0

(m + 1)rδ∗
m,γ (K )X .

If 
 = ∞, there is nothing to prove and so we assume 
 < ∞. We claim that

φ(
2−αr ) ≤ 2α, α ∈ R. (3.8)

Indeed, this follows from the definition of φ and the fact that

δ∗
n,γ (K )X ≤ 
(n + 1)−r , n ≥ 0.

Since K is compact, it is contained in a ball of some radius R. We now define
ε := 8
2−nr and let L be the smallest integer for which

2Lε = 
23+L−nr ≥ R,

and apply Theorem 3.2. From (3.8), we have

L∑

k=1

φ(2kε/8) =
L∑

k=1

φ(
2k−nr ) ≤
L∑

k=1

2n− k
r ≤ 2n

∞∑

k=0

2− k
r = 2n(1 − 2−1/r )−1.

Therefore, it follows from (3.7) that

N (ε) ≤ A
∑L

k=1 φ(
2k−nr ) ≤ A2n(1−2−1/r )−1 ≤ 22
n+c

,

with c an integer depending only on r and γ . It follows that

ε2n+c (K )X ≤ 8
2−rn = 2cr8
2−(n+c)r , n ≥ 0.

This proves the desired inequality for integers of the form 2n+c. This can then be
extended to all integers by using the monotonicity of εn(K )X . �


This same idea can be used to derive entropy bounds under other decay rate assump-
tions on δ∗

n,γ (K )X . Wemention just one other example to illustrate this point. Suppose
that

δ∗
n,γ (K )X ≤ 
(log2(n + 1))β(n + 1)−r , n ≥ 0,

123



Foundations of Computational Mathematics (2022) 22:607–648 631

for some r > 0 and some β ∈ R. Then, the above argument gives

εn(K )X ≤ C
(log2(n + 1))β(n + 1)−r , n ≥ 1,

with now C depending only on r , β, γ .

Remark 3.4 The same results obviously hold for δn,γ (K )X since it is larger than
δ∗
n,γ (K )X .

3.3 Carl’s Inequality Does Not Hold for ManifoldWidths

It is easy to see that Carl’s inequality does not hold for the manifold widths δn(K )X ,
where the assumption on the mappings a, M are only that these maps are continuous.
For a simple example, let X = �2(N) and let (α j ) j≥1 be any strictly decreasing
sequence of positive numbers which tend to 0. We consider the set

K = K (α1, α2, . . .) := {α j e j } j≥1 ∪ {0} ⊂ X ,

where e j , j = 1, 2, . . ., is the canonical basis for �2(N). For each k ≥ 1, we define
continuous maps ak : K → R by

ak(0) = αk, ak(α j e j ) = αmin( j,k), j = 1, 2, . . . ,

and Mk : R → X as the piecewise linear function with breakpoints 0, αk, . . . , α1,
defined by the following conditions

Mk(t) =

⎧
⎪⎨

⎪⎩

0, t ≤ 0,

α1e1, t ≥ α1,

α j e j , for t = α j j = 1, . . . , k.

Clearly Mk(ak(x)) = x when x = α j e j with j ≤ k. For any other x ∈ K we have
Mk(ak(x)) = αkek , and so

sup
x∈K

‖x − Mk(ak(x))‖�2 = sup
j>k

‖α j e j − αkek‖�2 <
√
2αk .

Since αk → 0 as k → ∞, we get δ1(K )�2(N) = 0, and thus

δn(K )�2(N) = 0 for n = 1, 2, . . . .

Next, we bound the entropy numbers of K from below. For 1 ≤ j ≤ 2n and any
k �= j , we have

‖α j e j − αkek‖�2 =
√

α2
j + α2

k > α j ≥ α2n .
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So if we take ε := 1
2α2n with n ≥ 1, then any attempt to cover K with 2n balls with

radius ε0 ≤ ε will fail since every ball in this set will contain exactly one of the α j e j ,
j = 1, . . . , 2n , and no more elements from K . This gives that εn(K )�2(N) ≥ 1

2α2n .

We can now show that Carl’s inequality cannot hold for any r > 0. Given such
an r , we take for K = K (α) the set corresponding to a sequence α = (α1, α2, . . .),
where

αn := 1

[1 + log2 n]r/2 .

We have that

εn(K (α))�2(N) ≥ 1

2(n + 1)r/2
, while δn(K (α))�2(N) = 0 ≤ n−r , n ≥ 1.

Finally, let us observe that in the above construction of ak, Mk for K , the mapping
ak is 1 Lipschitz. On the other hand, Mk has poor Lipschitz constant. Note that since

‖Mk(αk) − Mk(αk−1)‖X ≥ αk−1,

the Lipschitz constant of Mk is at least of size
αk−1

αk−1−αk
. When (α j ) tends to zero slowly

as in our example, then these Lipschitz constants tend to infinity.

3.4 Finer Results on Carl’s Inequality

Our motivation for the results in this section is the following. One may argue that
requiring that the maps a, M are Lipschitz is too severe and perhaps stability can be
gained under weaker assumptions on these mappings. The results of this section show
that this is indeed the case. Namely, we show that to establish a form of numerical
stability, it is enough to have the mapping a bounded and the mapping M satisfy a
considerably weaker mapping property than the requirement that it be Lipschitz. We
then go on to show that even under these weaker assumptions on the mappings a, M ,
one can compare the error of approximation on a model class K with the entropy
numbers of K .

Let K be a compact set in the Banach space X and recall the notation A := M ◦ a
and

EA(K )X := sup
f ∈K

‖ f − A( f )‖X .

We introduce the following new properties on the pair (a, M) of mappings:
(i) a : K → (Rn, ‖ · ‖Y ) is bounded, i.e., ‖a( f )‖Y ≤ γ ‖ f ‖X , f ∈ K ;
(ii) M : (Rn, ‖ · ‖Y ) → X satisfies

‖M(x) − M(y)‖X ≤ γ ‖x − y‖β
Y + EA(K )X , x, y ∈ R

n, (3.9)

where γ, β > 0 are fixed and ‖ · ‖Y is a norm on R
n .
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Obviously, the assumption (i) is much weaker than the assumption that a is Lipschitz.
Notice that (ii) is only requiring that M is a Lip β mapping for x, y sufficiently far
apart which is weaker than Lipschitz when β ≥ 1 and stronger when 0 < β ≤ 1.

Using these properties, we define the following bounded stable manifold width

δ̃n,γ,β(K )X := inf
a,M,‖·‖Y

sup
f ∈K

‖ f − M(a( f ))‖X , (3.10)

where the infimum is over all maps a, M satisfying (i) and (ii) and all norms ‖ · ‖Y on
R
n . Clearly, we have δn.γ,1(K )X ≤ δ∗

n,γ (K )X for all n ≥ 1. We show that properties
(i) and (ii) still guarantee a form of numerical stability.

Theorem 3.5 If the pair (a, M) satisfies (i) and (ii) with respect to the norm ‖ · ‖Y
on R

n for some β > 0, then the approximation operator A := M ◦ a is stable in the
following sense. If in place of f ∈ K we input g ∈ K with ‖ f − g‖X ≤ η and in
place of y = a(g) we compute y′ with ‖y − y′‖Y ≤ η, then

‖ f − M(y′)‖X ≤ 2EA(K )X + η + γ ηβ. (3.11)

Proof Since A(g) = M(a(g)) = M(y), we have

‖ f − M(y′)‖X ≤ ‖ f − g‖X + ‖g − A(g)‖X + ‖M(y) − M(y′)‖X
≤ η + EA(K )X + EA(K )X + γ ηβ,

where we have used (ii). �

The above theorem shows that we can obtain a form of numerical stability under

rather weak assumptions on a, M . The question now is whether it is still true that when
using such mappings, the approximation error cannot go to zero faster than entropy
numbers. That is, do we still have a form of Carl inequality. The following theorem
shows that this is indeed the case, up to a logarithmic loss. In formulating the theorem,
we let C0(K ) := sup f ∈K ‖ f ‖X , which is finite because by assumption K is compact.

Theorem 3.6 Let r , γ, β > 0. If K is any compact subset of a Banach space X, then

εcn ln n(K )X ≤ (n + 1)−r sup
m≥0

(m + 1)r δ̃m,γ,β(K )X , n ≥ 3, (3.12)

with c depending only on r , β, γ and C0(K ).

Proof Let δ̃n := δ̃n,γ,β(K )X , n ≥ 1. We assume that the right side of (3.12) is finite
since otherwise there is nothing to prove. Given any ε > 0, we let m = m(ε) be the
smallest integer such that

δ̃m ≤ ε/4. (3.13)

We fix for now such a pair (ε,m). Suppose that { f1, . . . , fN } is the largest collection
of points in K such that ‖ fi − f j‖X ≥ ε for all i, j . Then, the balls centered at the f j
with radius ε cover K . We want now to bound N .
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Let the pair (am, Mm) satisfies (i-ii) with respect to the norm ‖ · ‖Ym and achieves
the accuracy δ̃m (in case the accuracy is not actually attained, a slight modification
of the argument below gives the result). It follows from (3.13) that the mapping
A := Am = Mm ◦ am satisfies

δ̃m = EA(K )X ≤ ε/4. (3.14)

Now, consider

y j := am( f j ) ∈ R
m, g j := Mm(y j ) ∈ X , j = 1, . . . , N .

Because of (i), the points y j , j = 1, . . . , N , are all in the ball B centered at 0 of radius
R := γC0(K ) with respect to the norm ‖ · ‖Ym . Since

‖ f j − g j‖X = ‖ f j − A( f j )‖X ≤ δ̃m ≤ ε/4,

we have that whenever i �= j ,

‖M(yi ) − M(y j )‖X = ‖gi − g j‖X ≥ ‖ fi − f j‖X − ‖ fi − gi‖X
−‖ f j − g j‖X ≥ ε/2. (3.15)

Combining condition (ii), (3.14), and (3.15), we have that y j ∈ R
m , j = 1, . . . , N ,

satisfy

γ ‖yi − y j‖β
Ym

≥ ‖M(yi ) − M(y j )‖X − EA(K )X ≥ ε/2 − EA(K )X

= ε/4 + (ε/4 − EA(K )X ) ≥ ε/4, i �= j .

In other words, {y1, . . . , yN } are in the ball B and they are separated in the sense that

‖yi − y j‖Ym ≥
[ ε

4γ

] 1
β =: τ, i �= j . (3.16)

We take a minimum covering of the ball B by balls B1, . . . , BM of radius τ/2. Then,
in view of (3.16), each of these balls has at most one of the points y j , j = 1, . . . , N ,
and therefore N ≤ M . As we have used earlier, for any η > 0, the unit ball with
respect to ‖ · ‖Ym can be covered by (1 + 2/η)m balls of radius η. This tells us that

N ≤ M ≤
[C1

ε

]m/β

, (3.17)

with C1 depending only on γ, β and C0(K ).
We can now finish the proof of the theorem. If C2 := supm≥0(m + 1)r δ̃m is finite,

we take ε = C2(n+1)−r . We can find cr ∈ N, depending on r , such that 41/r (n+1) ≤
crn + 1, for n ≥ 3, and thus

δ̃cr n ≤ C2

(crn + 1)r
≤ C2

4(n + 1)r
= ε/4.
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Because of the definitionm = m(ε), we have thatm(ε) ≤ crn. Hence, it follows from
(3.17) that K can be covered with at most

[C1(n + 1)r

C2

]cr n/β ≤ 2cn ln n (3.18)

balls of radius ε. Here c depends only on β, γ, r , and C0(K ). In other words

εcn ln n(K )X ≤ C2(n + 1)−r ,

which is the desired result. �


4 Bounds for Stable ManifoldWidths in a Hilbert Space

The previous section gave lower bounds in terms of entropy numbers for the optimal
possible performance when using Lipschitz stable approximation. We now turn to the
question of whether these performance bounds can actually be met. In this section, we
consider the case when the performance error is measured in a Hilbert space H. The
following theoremproves that in this case there always exits Lipschitz stable numerical
algorithms whose error behaves like the entropy numbers. Hence, this result combined
with the Carl type inequalities shows that stable manifold widths and entropy numbers
behave the same in the case of Hilbert spaces.

Theorem 4.1 Let H be a Hilbert space and K ⊂ H be any compact subset of H. Then
for γ = 2, any n ≥ 1, we have

δ∗
26n(K )H := δ∗

26n,γ (K )H ≤ δ̄26n,γ (K )H ≤ 3εn(K )H . (4.1)

Proof Let us fix n and consider the discrete set

K := Kn := { f1, . . . , f2n } ⊂ K

with the property that every f ∈ K can be approximated by an element fromKn with
accuracy εn(K )H . That is, for every f ∈ K there is f j ∈ K, such that

‖ f − f j‖H ≤ εn(K )H . (4.2)

For the set of 2n points Kn ⊂ H we apply the Johnson-Lindenstrauss Lemma [17],
see Theorem 2.1 in [9] for the version we use. According to this theorem, for any
0 < ε < 1, we can find a linear map aε : Kn → �

c(ε)n
2 such that

√
1 − ε

1 + ε
‖ fi − f j‖H ≤ ‖aε( fi ) − aε( f j )‖�2 ≤ ‖ fi − f j‖H , i, j = 1, . . . , 2n,

whenever c(ε) is a positive integer satisfying c(ε) ≥ 4 ln 2
ε2/2−ε3/3

.
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We take ε = 3/5 and find we can take c(ε) = 26. This gives a linear map

a : Kn → �26n2 ,

for which

1

2
‖ fi − f j‖H ≤ ‖a( fi ) − a( f j )‖�2 ≤ ‖ fi − f j‖H , i, j = 1, . . . , 2n . (4.3)

Using the Kirszbraun extension theorem, see Theorem 1.12 from [3], page 18, the
mapping a can be extended fromKn to the whole H preserving the Lipschitz constant
1. Let us denote byMn the image of Kn under a, that is the discrete set

Mn := {a( f j ) : f j ∈ Kn} ⊂ R
26n .

Now consider the map M : (Mn, ‖ · ‖�2) → H , defined by

M(a( f j )) = f j , j = 1, . . . , 2n .

Clearly

‖M(a( fi )) − M(a( f j ))‖H = ‖ fi − f j‖H ≤ 2‖a( fi ) − a( f j )‖�2 ,

and therefore M is a Lipschitz map with a Lipschitz constant 2. According to the
Kirszbraun extension theorem, we can extend M to a Lipschitz map on the whole �26n2
with the same Lipschitz constant 2.

Let us now consider the approximation algorithm A defined by A := M ◦ a. If
f ∈ K , there is an f j ∈ Kn , such that ‖ f − f j‖H ≤ εn(K )H . Therefore,

f − A( f ) = ( f − f j ) + ( f j − M(a( f j ))) + (M(a( f j )) − M(a( f ))),

and since f j = M(a( f j )), we have that

‖ f − A( f )‖H ≤ ‖ f − f j‖H + ‖M(a( f j )) − M(a( f ))‖H
≤ εn(K )H + 2‖a( f ) − a( f j )‖�2

≤ εn(K )H + 2‖ f − f j‖H ≤ 3εn(K )H ,

which proves the theorem. �

We can combine the last result with the results of the previous section to obtain the

following corollary.

Corollary 4.2 Let γ ≥ 2. If K ⊂ H is a compact set in a Hilbert space H and if r > 0,
then
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δ∗
n,γ (K )H = O((n + 1)−r ), n ≥ 0, if and only if εn(K )H = O((n + 1)−r ), n ≥ 0.

The same result holds if δ∗
n,γ is replaced by δ̄n,γ .

5 Comparisons for an Arbitrary Banach Space X

In this section, we consider bounding the stable manifold widths by entropy numbers
in the case of an arbitrary Banach space X . Let us note that for such a general Banach
space we can no longer have a direct bound for δ̄n,γ (K )X in terms of entropy numbers.
Indeed, for any compact set K and any Banach space, the entropy numbers of K tend
to zero. However, we know that δ̄n,γ (K )X tends to zero for all compact sets K only
if X has the γ 2-bounded approximation property, see Theorem 2.4. Since there are
Banach spaces without this property, we must expect a loss when compared to the
theorems of the previous section. We present in this section results that exhibit a loss
in both the growth of the Lipschitz constants and in the rate of decay of δ̄n,γ (K )X , as
n tends to infinity. It is quite possible that the results of this section may be improved
with a deeper analysis.

Theorem 5.1 Let X be a Banach space and K ⊂ X be a compact subset of X. Then,
there is a fixed positive constant C, such that for each n ≥ 1 there are Lipschitz
mappings

an : X → (R26n, ‖ · ‖�∞), Mn : (R26n, ‖ · ‖�∞) → X

whose Lipschitz constants are at most Cn5/4 and

sup
f ∈K

‖ f − Mn(an( f ))‖X ≤ Cn5/2εn(K )X , n = 1, 2, . . . . (5.1)

Proof As in the proof of Theorem 4.1, we fix n > 0, and consider the discrete set

Kn := { f1, . . . , f2n } ⊂ K ,

with the property that for every f ∈ K there is f j ∈ Kn , such that

‖ f − f j‖X ≤ εn(K )X . (5.2)

For the discrete set Kn ⊂ X of 2n points we apply Proposition 1 from [4], according
to which we can construct a bi-Lipschitz map ãn from Kn into a Hilbert space H ,

ãn : (Kn, ‖ · ‖X ) → H , ã−1
n : (Hn, ‖ · ‖H ) → Kn, where Hn := ãn(Kn) ⊂ H ,

such that ãn is C1n5/4 Lipschitz map and ã−1
n is C2n−1/4 Lipschitz map. Using the

version of the Johnson-Lindenstrauss lemma as in the proof of Theorem 4.1, we get a
map
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J : (Hn, ‖ · ‖H ) → �26n2 ,

such that J and J−1 are 2 Lipschitz maps. We also consider the identity map

I : �26n2 → �26n∞ ,

where I is 1 Lipschitz map and I−1 is
√
26n Lipschitz map. Thus, the map

an := I ◦ J ◦ ãn : Kn → �26n∞

is a Cn5/4 Lipschitz map which, see [3, Lemma 1.1], can be extended to a map

an : X → �26n∞

with the same Lipschitz constant.
Next, we proceed with the construction of Mn . First, we denote byMn ⊂ R

26n the
image of Kn under an , that is the discrete set

Mn := {an( f j ) : f j ∈ Kn, j = 1, . . . , 2n} ⊂ R
26n,

and consider the map

M̃n := ã−1
n ◦ J−1 ◦ I−1 : (Mn, ‖ · ‖�∞) → X .

From the above observations it follows that M̃n is aCn1/4 Lipschitzmap.According
to Theorem 1 from [18], we can extend M̃n to a Lipschitz map Mn from �26n∞ into X
with the Lipschitz constant Cn5/4.

Now that an and Mn are constructed, we continue with the analysis of the approx-
imation power of the mapping Mn ◦ an . We fix f ∈ K , find f j ∈ Kn , such that
‖ f − f j‖ ≤ εn(K )X . Clearly,

‖ f − Mn ◦ an( f )‖X ≤ ‖ f − f j‖X + ‖Mn(an( f j )) − Mn(an( f ))‖X
≤ εn(K )x + Cn5/4‖an( f ) − an( f j )‖�∞
≤ εn(K )x + Cn5/2‖ f − f j‖X ≤ Cn5/2εn(K )X .

Therefore, for the Cn5/4 Lipschitz mappings an and Mn , we have

sup
f ∈K

‖ f − Mn ◦ an( f )‖X ≤ Cn5/2εn(K )X .

This completes the proof. �

Remark 5.2 If we have additional information about the Banach space X , we can get
better estimates than (5.1), as illustrated in the next lemmas.
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Lemma 5.3 Let the Banach space X be isometric to �∞(�) for some set �. Then,
there is a fixed positive constant C, such that for each n ≥ 1 there are Cn3/4 Lipschitz
mappings

an : X → �26n∞ , Mn : �26n∞ → X ,

with the property

sup
f ∈K

‖ f − Mn(an( f ))‖X ≤ Cn3/2εn(K )X , n = 1, 2, . . . .

Proof For Kn as in the proof of Theorem 5.1 and H a Hilbert space, using [4], we
construct mappings

ãn : Kn → H , ã−1
n : Hn → Kn, where Hn := ã(Kn) ⊂ H ,

where ãn is Lipschitz with constant C1n3/4 and ã−1
n with a Lipschitz constant C2n1/4.

Then, with I and J are as in Theorem 5.1, the mapping

I ◦ J ◦ ãn : Kn → �26n∞ ,

is a C1n3/4 Lipschitz. We extend it to a mapping an on the whole X with the same
Lipschitz constant.

Next, we consider

M̃n := ã−1
n ◦ J−1 ◦ I−1 : (Mn, ‖ · ‖�∞) → X ,

which isC2n3/4 Lipschitz. Now, according to Lemma1.1 from [3], since X is isometric
to �∞(�) for some �, M̃n can be extended to

Mn : �26n∞ → X

with the same Lipschitz constant C2n3/4. Then An = Mn ◦an isCn3/2 Lipschitz, and

‖ f − Mn ◦ an( f )‖X ≤ ‖ f − f j‖X + ‖Mn(an( f j )) − Mn(an( f ))‖X
≤ εn(K )X + Cn3/2‖ f − f j‖X ≤ Cn3/2εn(K )X ,

which gives

δ̄26n,Cn3/4(K )X ≤ Cn3/2εn(K )X .

�
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Corollary 5.4 Let C(S) be the Banach space of continuous functions on a compact
subset S of a metric space. Further, let K ⊂ C(S) be a compact set. Then, there is a
fixed positive constant C, such that for each n ≥ 1 there are Cn3/4 Lipschitz mappings

an : C(S) → �26n2 , Mn : �26n2 → C(S),

with the property

sup
f ∈K

‖ f − Mn(an( f ))‖C(S) ≤ Cn3/2εn(K )C(S), n = 1, 2, . . . .

Proof Let us fix arbitrary ε > 0. Since C(S) is separable, it follows from [19] that
there exists a finite dimensional subspace X ⊂ C(S) isometric to �∞(�) and a linear
projection P : C(S) → X from C(S) onto X of norm 1 such that

sup
f ∈K

‖ f − P( f )‖C(S) ≤ ε.

We apply Lemma 5.3 to the space X and its compact subset P(K ), according to which
there are Cn3/4 Lipschitz mappings

an : X → �26n∞ , Mn : �26n∞ → X ,

with the property

sup
g∈P(K )

‖g − Mn(an(g))‖C(S) ≤ Cn3/2εn(P(K ))C(S), n = 1, 2, . . . .

We next define ãn : C(S) → �26n∞ , and M̃n : �26n∞ → C(S), where

ãn := an ◦ P, M̃n := I ◦ Mn,

with I : X → C(S) the identity embedding from X into C(S). Clearly ãn and M̃n are
both Cn3/4 Lipschitz and

sup
f ∈K

‖ f − M̃n(ãn( f ))‖C(S) = sup
f ∈K

‖ f − Mn(an(P( f ))‖C(S)

≤ sup
f ∈K

(‖ f − P( f )‖C(S) + ‖P( f ) − Mn(an(P( f ))
) ‖C(S)

≤ ε + Cn3/2εn(K )C(S),

where we have used that εn(P(K ))C(S) ≤ εn(K )C(S). Since ε is arbitrary we get
the claim. �
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6 Examples of Linear and Nonlinear Approximation

Next, we discuss a few standard examples of approximation from the viewpoint of
stable manifold widths.

6.1 Linear Approximation

Let X be a Banach space, K ⊂ X be compact, and let Xn be a linear subspace of X
of dimension n. Let us consider approximation procedures f → A( f ) = M ◦ a( f )
given by maps a, M , where

a : X → R
n, M : Rn → Xn ⊂ X .

Ifwe are interested only in such approximationmethods given by continuousmappings
then it is easy to see that by using coverings and partitions of unity (see Theo-
rem 2.1 in [11]) one can achieve an approximation error for K equivalent to the
error dist(K , Xn)X . Thus, δn(K )X can be bounded by the Cdn(K )X where dn is the
Kolmogorov width. The situation becomes more subtle when we require Lipschitz
continuity of the mappings as we now discuss.

Let � := {φ1, . . . , φn} be any basis for Xn and let us consider the norm on R
n ,

induced by the basis φ1, . . . , φn , namely

‖y‖Y :=
∥
∥
∥
∥
∥
∥

n∑

j=1

y jφ j

∥
∥
∥
∥
∥
∥
X

, y ∈ R
n . (6.1)

We define the mapping M : (Rn, ‖ · ‖Y ) → X , as

M(y) :=
n∑

j=1

y jφ j ∈ Xn ⊂ X , y ∈ R
n .

Clearly, M is a linear mapping with norm one, and hence a 1 Lipschitz mapping. Thus,
the main question is whether we can construct a mapping a : X → (Rn, ‖ · ‖Y ) that
is Lipschitz.

If Xn admits a bounded projection Pn : X → Xn , then we can write for f ∈ X ,

Pn( f ) =
n∑

j=1

a j ( f )φ j , (6.2)

and therefore define a as

a( f ) = (a1( f ), . . . , an( f )) ∈ R
n .

123



642 Foundations of Computational Mathematics (2022) 22:607–648

Since

‖a( f ) − a(g)‖Y = ‖
n∑

j=1

a j ( f − g)φ j‖X = ‖Pn( f − g)‖X ≤ ‖Pn‖‖ f − g‖X ,

a is a γn-Lipschitz mapping with γn := ‖Pn‖ ≥ 1. We thus have

δ̄n,γn (K )X ≤ sup
f ∈K

‖ f − M(a( f ))‖X = sup
f ∈K

‖ f − Pn( f )‖X .

If X = H is a Hilbert space, then we know there is always a projection with norm one
and hence

δ̄n,1(K )H ≤ dn(K )H , n ≥ 1. (6.3)

For non-Hilbertian Banach spaces every finite dimensional space admits a projection,
however the normmay depend on n. The Kadec-Snobar theorem guarantees that there
is a projection with norm

√
n and so we obtain for a general Banach space X and

compact K ⊂ X the bound

δ̄n,
√
n(K )X ≤ dn(K )X , n ≥ 1. (6.4)

Of course, we already know fromour earlier results that relate the decay of δ̄n,γ (K )X to
the bounded approximation property that some growth factor is needed. If we assume
additional structure on X then the quantitative growth can be better controlled. For
example, for X = L p, 1 < p < ∞, we can replace

√
n in (6.4) by n|1/2−1/p|, see e.g.

[25, III.B.10.].

6.2 Compressed Sensing

One of the primary settings where nonlinear approximation methods prevail is in
compressed sensing which is concerned with the numerical recovery of sparse signals.
The standard setting of compressed sensing is the following. We consider vectors
x ∈ R

N where N is large. Such a vector x is said to be k sparse if at most k of its
coordinates are nonzero. Let �k denote the set of all k sparse vectors in RN . The goal
of compressed sensing is to make a small number n of linear measurements of a vector
x which can then be used to approximate x . The linear measurements take the form of
inner products of x with vectors φ1, . . . , φn . These measurements can be represented
as the application of a compressed sensing matrix � ∈ R

n×N to x , where the rows of
� are the vectors φ1, . . . , φn .

A fundamental assumption about the measurements used in compressed sensing is
the so called restricted isometry property of order k, RIP(k, δk). We say that the matrix
� satisfies the RIP(k, δk), 0 < δk < 1, if

(1 − δk)‖x‖�N2
≤ ‖�(x)‖�n2

≤ (1 + δk)‖x‖�N2
, for all x ∈ �k . (6.5)

123



Foundations of Computational Mathematics (2022) 22:607–648 643

A decoder is a mapping M which takes the measurement vector y = �(x)
and maps it back into R

N . The vector M(�(x)) is the approximation to x . Thus,
compressed sensing falls into our paradigm of nonlinear approximation as given by
the two mapping a : R

N → (Rn, ‖ · ‖Y ) with a(x) := �(x) and the mapping
M : (Rn, ‖ · ‖Y ) → R

N . Note that the mapping a is rather special since it is assumed
to be linear.

The first goal of compressed sensing is to find suchmappings for whichM(a(x)) =
x whenever x is in �k . It is easy to see that n = 2k is the smallest number of
measurements for which this is true and it is easy to characterize all mappings a = �

that do the job (see e.g., [8]). However, these matrices � and perfect reconstruction
maps M with n = 2k are deemed unsatisfactory because of their instability. To discuss
this and other issues connected with compressed sensing using the viewpoint of this
paper, we need to introduce a norm on R

N in which we shall measure performance.
We consider the �p norms for 1 ≤ p ≤ 2 in what follows, therefore taking X :=
(RN , ‖ · ‖�p ).

There are two flavors of results one can ask for in the context of compressed sensing
or sparse recovery. The strongest guarantees are in the form of instance optimality. To
formulate this let x ∈ R

N and define

σk(x)p := inf
y∈�k

‖x − y‖�p (6.6)

to be its error of best approximation by k sparse vectors. We say that the measurement
system (�, M) is C instance optimal of order k if

‖x − M(�(x))‖�p ≤ Cσk(x)p, x ∈ R
N . (6.7)

A central issue in compressed sensing is how large must the number of measurements
n be to guarantee instance optimality of order k with a reasonable constant C . It is
known, see [8], that for p = 1, linear mappings � based on n measurements and
satisfying the RIP(3k, δ3k), with δ3k ≤ δ < (

√
2 − 1)2/3, and the recovery map M

based on �1 minimization

M(y) := argmin{‖x‖�1 : �x = y},

provide instance optimality. One can construct such matrices when n ≥ ck log(N/k)
with a suitable constant c independent of k.On the other hand, see [8],when1 < p ≤ 2,
the number of measurements n must necessarily grow as a power of N in order to
guarantee that the instance optimality (6.7) is achieved. In particular, for p = 2,
instance optimality cannot hold unless n is proportional to N .

A weaker notion of performance is to consider only distortion on compact subsets
K of RN . The distortion is now measured in the worst error described by

E(K ,�, M)p := sup
x∈K

‖x − M(�(x))‖�p . (6.8)
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A common family of model classes are the unit balls Kq ,

Kq := {x ∈ R
N : ‖x‖�q ≤ 1}, q < p.

Byutilizing the above results on instance optimality for p = 1, one canderive estimates
for the above error when using a suitably chosen compressed sensing matrix � for
encoding and with �1 minimization decoding M . Given p ≥ 1, one can derive bounds
for the above error for a certain range of q and show these are optimal by comparing
this error with Gelfand widths. We refer the reader to [8] for details.

Our main goal in this paper is not to restrict the measurement map a to be linear
but rather impose only that it is Lipschitz. By relaxing the condition on a to only be
Lipschitz we will derive improved approximation error bounds. We first observe that
the matrices �, which are the canonical measurement maps of compressed sensing,
have rather big Lipschitz constants when considered as mapping from �Np to �n2. Let
us denote by ‖�‖�Np →�n2

the norm of �. Then, the following lemma holds.

Lemma 6.1 If the matrix � satisfies the RIP(1, δ), then for all 1 ≤ p ≤ 2,

(1 − δ)−1n−1/2N 1−1/p ≤ ‖�‖�Np →�n2
≤ (1 + δ)N 1−1/p. (6.9)

Proof Let � := (ai, j ) ∈ R
n×N . It follows from the RIP(1, δ) that for j = 1, . . . , N ,

(1 − δ)2 ≤
n∑

i=1

|ai, j |2 ≤ (1 + δ)2, (6.10)

and therefore

(1 − δ)
√
N ≤ ‖�‖F ≤ (1 + δ)

√
N , (6.11)

where ‖�‖F is the Frobenious norm of �. Since

1√
n
‖�‖F ≤ ‖�‖�N2 →�n2

≤ ‖�‖F ,

it follows from (6.11) that

(1 − δ)n−1/2
√
N ≤ ‖�‖�N2 →�n2

≤ (1 + δ)
√
N . (6.12)

We now derive bounds for � on the �Np spaces, 1 ≤ p < 2. Let e j :=
(0, . . . , 1, 0, . . . , 0) ∈ R

N , be the j-th standard basis element. We have ‖e j‖�1 = 1
and

‖�e j‖2�2 =
n∑

i=1

|ai, j |2 ≤ (1 + δ)2, j = 1, . . . , N ,
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where we have used (6.10). Thus, for every x = ∑n
j=1 x j e j ∈ �N1 ,

‖�x‖�n2
≤

n∑

j=1

|x j |‖�e j‖�n2
≤ (1 + δ)‖x‖�N1

.

In other words,

‖�‖�N1 →�n2
≤ (1 + δ),

and from (6.12) and the Riesz–Thorin theorem, we get the right inequality in (6.9).
To prove the left inequality in (6.9) , we observe that from (6.11) there exists

1 ≤ i0 ≤ n such that

N∑

j=1

a2i0, j ≥ N

(1 − δ)2n
.

We define a∗ := (ai0,1, . . . , ai0,N ) ∈ R
N and x∗ := a∗/‖a∗‖�2 Then, we have

N 1/2n−1/2

(1 − δ)
≤

N∑

j=1

x∗
j ai0, j = [�x∗]i0 ≤ ‖�x∗‖�n2

≤ ‖�‖�Np →�n2
‖x∗‖�Np

.

Since ‖x∗‖�Np
≤ N 1/p−1/2, we get the left inequality in (6.9). �


Since the mapping � is linear, its norm is the same as its Lipschitz constant. So
the above lemma shows that this Lipschitz constant is large, at least when we choose
the norm on R

n to be the �2 norm. Choosing another norm on R
n cannot help much

because of norm equivalences onRn and changing norms will change the Lip constant
for the recovery mapping M . We next want to show that dropping the requirement
that a is linear, and replacing it by requiring only that it is Lipschitz, dramatically
improves matters. For now, we illustrate this only in one setting. We consider instance
optimality in �2 which we recall fails to hold in the classical setting of compressed
sensing.

Let X = �N2 and let � be an n× N matrix which satisfies the RIP of order 2k (with
suitable RIP constants). Define a : �k → �n2 by

a(x) := �(x), x ∈ �k .

It follows from the RIP that ‖�x‖�n2
≤ C‖x‖�N2

, for all x ∈ �2k , and so a is C
Lipschitz on �k . By the Kirszbraun extension theorem, a has a C Lipschitz extension
to all of X which extension we continue to denote by a. Note that a will not be linear
on X .

Now consider the construction of a recovery map M . There is a 1 Lipschitz inverse
mapping M : a(�k) → X such that M(a(x)) = x when x ∈ �k (for example �1
minimization provides such an M). Again by the Kirszbraun extension theorem, M
has a 1 Lipschitz extension to all of �n2, which we continue to denote by M .
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These new mappings

a : �N2 → �n2, M : �n2 → �N2 , (6.13)

have Lipschitz constant at most C for a and one for M . Moreover, when applied to
any x ∈ �k , we still have M(a(x)) = x .

Now, consider the performance of these mappings on all of �N2 . Given x ∈ R
N , we

can write x = x0 + e, where x0 is a best approximation to x from �k and ‖e‖�2 =
σk(x)�2 . We have that

‖x − M(a(x))‖�2 ≤ ‖x0 + e − M(a(x0))‖�2 + ‖M(a(x0)) − M(a(x))‖�2

≤ ‖e‖�2 + C‖e‖�2 = (C + 1)σk(x)�2 , (6.14)

because M(a(x0)) = x0 and because the composition mapping M ◦ a is C Lipschitz
mapping. Thus, instance optimality can be achieved in �2, for n of the order of k up
to logarithmic factors provided one generalizes the notion of measurement maps to
be nonlinear but Lipschitz, while linear measurements would impose that n is of the
order of N .

6.3 Neural Networks

This is now a very active area of research. A neural network is a vehicle for creating
multivariate functions which depend on a fixed number n of parameters given by the
weights and biases of the network. We consider all networks with n parameters with
perhaps some user prescribed restrictions imposed on the architecture of the network.
Let us denote by ϒn the outputs of such networks. Thus, the elements in ϒn are
multivariate functions, say with d variables, described by n parameters and hence are
a nonlinear manifold depending on n parameters.

Let us fix a function norm ‖ · ‖X to measure error. Given a target function f ∈ X
(or data observations of f such as point values), one determines the n parameters
a( f ) = (a1( f ), . . . , an( f )) of the network which will be used to approximate f .
These parameters determine the output function M(a) from ϒn . The decoder M is
explicit and simple to describe from the assumed architecture. For example, for the
ReLU activation function this output is a piecewise linear function. Thus, neural net-
works provide an approximation procedure A( f ) := M(a( f )) of the type studied in
this paper.

There are by now several papers addressing the approximation properties of neural
networks (see [10] and the references therein). In some cases, they advertise some
surprising results. We mention here only the results on approximating univariate 1
Lipschitz functions with respect to an L p norm on an interval [0, 1] by neural networks
with a ReLU activation function. It is shown in [23] (with earlier results in [24]) that
any function in the unit ball K of Lip 1 can be approximated to accuracy Cn−2 by
elements from ϒn . This result is on first glance quite surprising since the entropy
number εn(K )L p ≥ cn−1 with c an absolute constant.
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So, how should we evaluate such a result? The first thingwe should note is that if we
view such a neural network approximation as simply a manifold approximation, then
the result is not surprising. Indeed, we could equally well construct a one parameter
(space filling) manifold (even with piecewise linear manifold elements) and achieve
arbitrary approximation error for K . Such a one parameter manifold is not very useful,
since given f or data for f , it would be essentially impossible to numerically find an
approximant from the manifold with this error. So the main issues center around the
properties of a and M . If we require the rather minimal condition that a and M are
continuous, we can never achieve accuracy better than cn−1 in approximating the
elements of K using an n parameter manifold as is proved in [12]. We can even lessen
the requirement that a be continuous to just requiring that a is bounded if we impose
a little smoothness on M (see Theorem 3.6). So, to achieve a rate of approximation
better than O(n−1) for K using n parameter neural networks, onemust necessarily use
mappings which are not continuous. The question is the numerical cost to find good
parameters and whether the numerical procedure to find these parameters is stable.
The results of the present paper clarify these issues.

In practice, the parameters of the neural network are found from given data obser-
vations of f , by typically using stochastic gradient descent algorithms with respect to
a chosen loss function related to fitting the data. Unfortunately, there is no clear anal-
ysis of the convergence of these decent algorithms for such optimization problems,
although it seems to be recognized that one needs to impose constraints on the size of
the steps in each iteration that tend to zero as the number of steps increase. The results
of the present paper may provide a better understanding of what conditions need to
be imposed in the descent and what approximation results can be obtained under such
constraints.

6.4 Conclusion

A general question, which is not answered in this paper is to determine the asymptotic
behavior of δ∗

n,γ (K )X for classical model classes K in classical Banach spaces X . For
example, we do not know the decay rate of δ∗

n,γ (K )X for all of the Besov or Sobolev
balls K that compactly embed into L p, 1 ≤ p ≤ ∞. The asymptotic decay of these
widths remains an open fundamental question. In the case that this ball is a compact
subset of L p, then it is known, see Theorem 1.1 in [7], that the entropy numbers of this
unit ball decay like n−s/d and so in view of the Carl type inequality of Theorem 3.3,
we have

δ∗
n,γ (K )L p ≥ cn−s/d , n ≥ 1. (6.15)

The main question therefore is whether the inequality in (6.15) can be reversed. In the
case p = 2, the fact that it can be reversed follows from Theorem 4.1. The situation
for p �= 2 is not so straightforward and is still not settled. Let us remark that for
the weaker notion of manifold widths δn(K )L p both (6.15) and its reverse have been
proven, see Theorem 1.1 in [12].
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