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Abstract

We consider approximations of general continuous functions on finite-dimensional cubes
by general deep ReLU neural networks and study the approximation rates with respect
to the modulus of continuity of the function and the total number of weights W in the
network. We establish the complete phase diagram of feasible approximation rates and
show that it includes two distinct phases. One phase corresponds to slower approximations
that can be achieved with constant-depth networks and continuous weight assignments.
The other phase provides faster approximations at the cost of depths necessarily growing
as a power law L ∼Wα, 0 < α ≤ 1, and with necessarily discontinuous weight assignments.
In particular, we prove that constant-width fully-connected networks of depth L ∼ W
provide the fastest possible approximation rate ‖f− f̃‖∞ = O(ωf (O(W−2/ν))) that cannot
be achieved with less deep networks.1

1. Introduction

Expressiveness of deep neural networks with piecewise-linear (in particular, ReLU) activa-
tion functions has been a topic of much theoretical research in recent years. The topic has
many aspects, with connections to combinatorics (Montufar et al., 2014; Telgarsky, 2016),
topology (Bianchini and Scarselli, 2014), Vapnik-Chervonenkis dimension (Bartlett et al.,
1998; Sakurai, 1999) and fat-shattering dimension (Kearns and Schapire, 1990; Anthony and
Bartlett, 2009), hierarchical decompositions of functions (Mhaskar et al., 2016), information
theory (Petersen and Voigtlaender, 2017), etc.

Here we adopt the perspective of classical approximation theory, in which the problem of
expressiveness can be basically described as follows. Suppose that f is a multivariate func-
tion, say on the cube [0, 1]ν , and has some prescribed regularity properties; how efficiently
can one approximate f by deep neural networks? The question has been studied in several
recent publications. Depth-separation results for some explicit families of functions have
been obtained in Safran and Shamir (2016); Telgarsky (2016). General upper and lower
bounds on approximation rates for functions characterized by their degree of smoothness
have been obtained in Liang and Srikant (2016); Yarotsky (2017). Hanin and Sellke (2017);
Lu et al. (2017) establish the universal approximation property and convergence rates for
deep and “narrow” (fixed-width) networks. Petersen and Voigtlaender (2017) establish con-

1. Extended abstract. The full version with the proofs appears as [arXiv:1802.03620, v2]
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vergence rates for approximations of discontinuous functions. Generalization capabilities of
deep ReLU networks trained on finite noisy samples are studied in Schmidt-Hieber (2017).

In the present paper we consider and largely resolve the following question: what is the
optimal rate of approximation of general continuous functions by deep ReLU networks, in
terms of the number W of network weights and the modulus of continuity of the function?
Specifically, for any W we seek a network architecture with W weights so that for any
continuous f : [0, 1]ν → R, as W increases, we would achieve the best convergence in the
uniform norm ‖ · ‖∞ when using these architectures to approximate f .

In the slightly different but closely related context of approximation on balls in Sobolev
spaces Wd,∞([0, 1]ν), this question of optimal convergence rate has been studied in Yarot-
sky (2017). That paper described ReLU network architectures with W weights ensuring
approximation with error O(W−d/ν lnd/νW ) (Theorem 1). The construction was linear in
the sense that the network weights depended on the approximated function linearly. Up to
the logarithmic factor, this approximation rate matches the optimal rate over all paramet-
ric models under assumption of continuous parameter selection (DeVore et al. (1989)). It
was also shown in Theorem 2 of Yarotsky (2017) that one can slightly (by a logarithmic
factor) improve over this conditionally optimal rate by adjusting network architectures to
the approximated function.

On the other hand, it was proved in Theorem 4 of Yarotsky (2017) that ReLU networks
generally cannot provide approximation with accuracy better than O(W−2d/ν) – a bound
with the power 2d

ν twice as big as in the previously mentioned existence result. As was
shown in the same theorem, this bound can be strengthened for shallow networks. However,
without imposing depth constraints, there was a serious gap between the powers 2d

ν and d
ν

in the lower and upper accuracy bounds that was left open in that paper.
In the present paper we bridge this gap in the setting of continuous functions (which

is slightly more general than the setting of the Sobolev space of Lipschitz functions,
W1,∞([0, 1]ν), i.e. the case d = 1). Our key insight is the close connection between ap-
proximation theory and VC dimension bounds. The lower bound on the approximation
accuracy in Theorem 4 of Yarotsky (2017) was derived using the upper VCdim bound
O(W 2) from Goldberg and Jerrum (1995). More accurate upper and lower bounds involv-
ing the network depth L have been given in Bartlett et al. (1998); Sakurai (1999). The
recent paper Bartlett et al. (2017) establishes nearly tight lower and upper VCdim bounds:
cWL ln(W/L) ≤ VCdim(W,L) ≤ CWL lnW , where VCdim(W,L) is the largest VC dimen-
sion of a piecewise linear network with W weights and L layers. The key element in the
proof of the lower bound is the “bit extraction technique” (Bartlett et al. (1998)) providing
a way to compress significant expressiveness in a single network weight. In the present
paper we adapt this technique to the approximation theory setting.

Our main result is the complete phase diagram for the parameterized family of approx-
imation rates involving the modulus of continuity ωf of the function f and the number
of weights W . We prove that using very deep networks one can approximate function
f with error O(ωf (O(W−2/ν))), and this rate is optimal up to a logarithmic factor. In
fact, the depth of the networks must necessarily grow almost linearly with W to achieve
this rate, in sharp contrast to shallow networks that can provide approximation with error
O(ωf (O(W−1/ν))). Moreover, whereas the slower rate O(ωf (O(W−1/ν))) can be achieved
using a continuous weight assignment in the network, the optimal O(ωf (O(W−2/ν))) rate
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Figure 1: An example of a feed-forward network architecture of depth L = 2 with W = 24
weights.

necessarily requires a discontinuous weight assignment. All this allows us to regard these
two kinds of approximations as being in different “phases”. In addition, we explore the
intermediate rates O(ωf (O(W−p))) with p ∈ ( 1ν ,

2
ν ) and show that they are also in the

discontinuous phase and require network depths ∼ W pν−1. We show that the optimal rate
O(ωf (O(W−2/ν))) can be achieved with a deep constant-width fully-connected architecture,
whereas the rates O(ωf (O(W−p))) with p ∈ ( 1ν ,

2
ν ) and depth O(W pν−1) can be achieved by

stacking the deep constant-width architecture with a shallow parallel architecture. Apart
from the bit extraction technique, we use the idea of the two-scales expansion from Theorem
2 in Yarotsky (2017) as an essential tool in the proofs of our results.

2. The results

We define the modulus of continuity ωf of a function f : [0, 1]ν → R by

ωf (r) = max{|f(x)− f(y)| : x,y ∈ [0, 1]ν , |x− y| ≤ r}, (1)

where |x| is the euclidean norm of x.
We approximate functions f : [0, 1]ν → R by usual feed-forward neural networks with

the ReLU activation function x 7→ x+ ≡ max(0, x). The network has ν input units, some
hidden units, and one output unit. The hidden units are assumed to be grouped in a
sequence of layers so that the inputs of each unit is formed by outputs of some units from
previous layers. The depth L of the network is the number of these hidden layers. A
hidden unit computes a linear combination of its inputs followed by the activation function:
x1, . . . , xs 7→ (

∑s
k=1wkxk + h)+, where wk and h are the weights associated with this

unit. The output unit acts similarly, but without the activation function: x1, . . . , xs 7→∑s
k=1wkxk + h.
The network is determined by its architecture and weights. Clearly, the total number

of weights, denoted by W , is equal to the total number of connections and computation
units (not counting the input units). We don’t impose any constraints on the network
architecture (see Fig. 1 for an example of a valid architecture).

Throughout the paper, we consider the input dimension ν as fixed. Accordingly, by
constants we will generally mean values that may depend on ν.

We are interested in relating the approximation errors to the complexity of the function
f , measured by its modulus of continuity ωf , and to the complexity of the approximating
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‖f − f̃W‖∞ ≤ aωf(cW
−p)

p

1
ν

Shallow linear phase
L ∼ const

2
ν

Deep discontinuous phase
L ∼ W pν−1

infeasible

Figure 2: The phase diagram of convergence rates. At p = 1
ν the rate is achieved by shallow

networks with weights linearly (and continuously) depending on f . At p ∈ ( 1ν ,
2
ν ], the rate is

achieved by deep networks with weights discontinuously depending on f . Rates with p > 2
ν

are infeasible.

network, measured by its total number of weights W . More precisely, we consider approxi-
mation rates in terms of the following procedure.

First, suppose that for each W we choose in some way a network architecture ηW with
ν inputs and W weights. Then, for any f : [0, 1]ν → R we construct an approximation
f̃W : [0, 1]ν → R to f by choosing in some way the values of the weights in the architecture
ηW – in the sequel, we refer to this stage as the weight assignment. The question we ask is
this: for which powers p ∈ R can we ensure, by the choice of the architecture and then the
weights, that

‖f − f̃W ‖∞ ≤ aωf (cW−p), ∀f ∈ C([0, 1]ν), (2)

with some constants a, c possibly depending on ν and p but not on W or f?
Clearly, if inequality (2) holds for some p, then it also holds for any smaller p. However,

we expect that for smaller p the inequality can be in some sense easier to satisfy. In this
paper we show that there is in fact a qualitative difference between different regions of p’s.

Our findings are best summarized by the phase diagram shown in Fig. 2. We give
an informal overview of the diagram before moving on to precise statements. The region
of generally feasible rates is p ≤ 2

ν . This region includes two qualitatively distinct phases
corresponding to p = 1

ν and p ∈ ( 1ν ,
2
ν ]. At p = 1

ν , the rate (2) can be achieved by fixed-depth
networks whose weights depend linearly on the approximated function f . In contrast, at
p ∈ ( 1ν ,

2
ν ] the rate can only be achieved by networks with growing depths L ∼ W pν−1 and

whose weights depend discontinuously on the approximated function. In particular, at the
rightmost feasible point p = 2

ν the approximating architectures have L ∼ W and are thus
necessarily extremely deep and narrow.

We now turn to precise statements. First we characterize the p = 1
ν phase in which

the approximation can be obtained using a standard piecewise linear interpolation. In the
sequel, when writing f = O(g) we mean that |f | ≤ cg with some constant c that may
depend on ν. For brevity, we will write f̃ without the subscript W .

Proposition 1 There exist network architectures ηW with W weights and, for each W ,
a weight assignment linear in f such that Eq. (2) is satisfied with p = 1

ν . The network
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Figure 3: The parallel, constant-depth network architecture implementing piecewise linear
interpolation and ensuring approximation rate (2) with p = 1

ν .

Figure 4: Approximation by linear combinations of “spike” functions in dimension ν =
2. Left: a spike function and examples of sums of neighboring spike functions. Right:
approximation of a radial function by a linear combination of spike functions.

architectures can be chosen as consisting of O(W ) parallel blocks each having the same
architecture that only depends on ν (see Fig. 3). In particular, the depths of the networks
depend on ν but not on W .

We explain now the idea of the proof. The approximating function f̃ is constructed as a
linear combination of “spike” functions sitting at the knots of the regular grid in [0, 1]ν ,
with coefficients given by the values of f at these knots (see Fig. 4). For a grid of spacing
1
N with an appropriate N , the number of knots is ∼ Nν while the approximation error
is O(ωf (O( 1

N ))). We implement each spike by a block in the network, and implement the
whole approximation by summing blocks connected in parallel and weighted. Then the
whole network has O(Nν) weights and, by expressing N as ∼ W 1/ν , the approximation
error is O(ωf (O(W−1/ν)), i.e. we obtain the rate (2) with p = 1

ν .
We note that the weights of the resulting network either do not depend on f at all or are

given by w = f(x) with some x ∈ [0, 1]ν . In particular, the weight assignment is continuous
in f with respect to the standard topology of C([0, 1]ν).

We turn now to the region p > 1
ν . Several properties of this region are either direct

consequences or slight modifications of existing results, and it is convenient to combine
them in a single theorem.
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Theorem 1

a) (Feasibility) Approximation rate (2) cannot be achieved with p > 2
ν .

b) (Inherent discontinuity) Approximation rate (2) cannot be achieved with p > 1
ν if the

weights of f̃ are required to depend on f continuously with respect to the standard
topology of C([0, 1]ν).

c) (Inherent depth) If approximation rate (2) is achieved with a particular p ∈ ( 1ν ,
2
ν ],

then the architectures ηW must have depths L ≥ dW pν−1/ lnW with some possibly ν-
and p-dependent constant d > 0.

Proof The proofs of these statements have the common element of considering the approx-
imation for functions from the unit ball Fν,1 in the Sobolev space W1,∞([0, 1]ν) of Lipschitz
functions. Namely, suppose that the approximation rate (2) holds with some p. Then all
f ∈ Fν,1 can be approximated by architectures ηW with accuracy

εW = c1W
−p (3)

with some constant c1 independent of W . The three statements of the theorem are then
obtained as follows.

a) This statement is a consequence of Theorem 4a) of Yarotsky (2017), which is in turn a
consequence of the upper bound O(W 2) for the VC dimension of a ReLU network (Goldberg
and Jerrum (1995)). Precisely, Theorem 4a) implies that if an architecture ηW allows to

approximate all f ∈ Fν,1 with accuracy εW , then W ≥ c2ε
−ν/2
W with some c2. Comparing

this with Eq. (3), we get p ≤ 2
ν .

b) This statement is a consequence of the general bound of DeVore et al. (1989) on the
efficiency of approximation of Sobolev balls with parametric models having parameters
continuously depending on the approximated function. Namely, if the weights of the net-
works ηW depend on f ∈ Fν,1 continuously, then Theorem 4.2 of DeVore et al. (1989) implies
that εW ≥ c2W−1/ν with some constant c2, which implies that p ≤ 1

ν .

c) This statement can be obtained by combining arguments of Theorem 4 of Yarotsky (2017)
with the recently established tight upper bound for the VC dimension of ReLU networks
(Bartlett et al. (2017), Theorem 6) with given depth L and the number of weights W :

VCdim(W,L) ≤ CWL lnW, (4)

where C is a global constant.
Specifically, suppose that an architecture ηW allows to approximate all f ∈ Fν,1 with

accuracy εW . Then, by considering suitable trial functions, one shows that if we threshold
the network output, the resulting networks must have VC dimension VCdim(ηW ) ≥ c2ε

−ν
W

(see Eq.(38) in Yarotsky (2017)). Hence, by Eq. (3), VCdim(ηW ) ≥ c3W
pν . On the

other hand, the upper bound (4) implies VCdim(ηW ) ≤ CWL lnW . We conclude that
c3W

pν ≤ CWL lnW , i.e. L ≥ dW pν−1/ lnW with some constant d.

Theorem 1 suggests the existence of an approximation phase drastically different from
the phase p = 1

ν . This new phase would provide better approximation rates, up to p = 2
ν ,
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at the cost of deeper networks and some complex, discontinuous weight assignment. The
main contribution of the present paper is the proof that this phase indeed exists.

We describe some architectures that, as we will show, correspond to this phase. First
we describe the architecture for p = 2

ν , i.e. for the fastest possible approximation rate.
Consider the usual fully-connected architecture connecting neighboring layers and having
a constant number of neurons in each layer, see Fig. 5. We refer to this constant number
of neurons as the “width” H of the network. Such a network of width H and depth L has
W = L(H2+H)+H2+(ν+1)H+1 weights in total. We will be interested in the scenario of
“narrow” networks where H is fixed and the network grows by increasing L; then W grows
linearly with L. Below we will refer to the “narrow fully-connected architecture of width H
having W weights”: the depth L is supposed in this case to be determined from the above
equality; we will assume without loss of generality that the equality is satisfied with an
integer L. We will show that these narrow architectures provide the p = 2

ν approximation
rate if the width H is large enough (say, H = 2ν + 10).

In the case p ∈ ( 1ν ,
2
ν ) we consider another kind of architectures obtained by stacking

parallel shallow architectures (akin to those of Proposition 1) with the above narrow fully-
connected architectures, see Fig. 6. The first, parallelized part of these architectures consists
of blocks that only depend on ν (but not on W or p). The second, narrow fully-connected
part will again have a fixed width, and we will take its depth to be ∼ W pν−1. All the
remaining weights then go into the first parallel subnetwork, which in particular determines
the number of blocks in it. Since the blocks are parallel and their architectures do not depend
on W , the overall depth of the network is determined by the second, deep subnetwork
and is O(W pν−1). On the other hand, in terms of the number of weights, for p < 2

ν
most computation is performed by the first, parallel subnetwork (the deep subnetwork has
O(W pν−1) weights while the parallel one has an asymptotically larger number of weights,
W −O(W pν−1)).

Clearly, these stacked architectures can be said to “interpolate” between the purely
parallel architectures for p = 1

ν and the purely serial architectures for p = 2
ν . Note that a

parallel computation can be converted into a serial one at the cost of increasing the depth
of the network. For p < 2

ν , rearranging the parallel subnetwork of the stacked architecture
into a serial one would destroy the O(W pν−1) bound on the depth of the full network, since
the parallel subnetwork has ∼W weights. However, for p = 2

ν this rearrangement does not
affect the L ∼W asymptotic of the depth more than by a constant factor – that’s why we
don’t include the parallel subnetwork into the full network in this case.

We state now our main result as the following theorem.

Theorem 2

a) For any p ∈ ( 1ν ,
2
ν ], there exist a sequence of architectures ηW with depths L =

O(W pν−1) and respective weight assignments such that inequality (2) holds with this
p.

b) For p = 2
ν , an example of such architectures is the narrow fully-connected architectures

of constant width 2ν + 10.
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Figure 5: An example of “narrow” fully-connected network architecture having ν = 2 inputs,
depth L = 9 and width H = 5. These architectures provide the optimal approximation rate
(2) with p = 2

ν if H is sufficienly large and held constant while L is increased.

in
out

Figure 6: The “stacked” architectures for p ∈ ( 1ν ,
2
ν ), providing the optimal approximation

rates (2) under the depth constraint L = O(W pν−1).

c) For p ∈ ( 1ν ,
2
ν ), an example of such architectures are stacked architectures described

above, with the narrow fully-connected subnetwork having width 3ν(2ν+10) and depth
W pν−1.

Comparing this theorem with Theorem 1a) we see that the narrow fully-connected archi-
tectures provide the best possible approximation in the sense of Eq. (2). Moreover, for
p ∈ ( 1ν ,

2
ν ) the upper bound on the network depth in Theorem 2c) matches the lower bound

in Theorem 1c) up to a logarithmic factor. This proves that for p ∈ ( 1ν ,
2
ν ) our stacked

architectures are also optimal (up to a logarithmic correction) if we additionally impose the
asymptotic constraint L = O(W pν−1) on the network depth.

We explain now the idea of the proof. Given a function f and some W , we first proceed
as in Proposition 1 and construct its piecewise linear interpolation f̃1 on the length scale
1
N with N ∼ W 1/ν . This approximation has uniform error O(ωf (O(W−1/ν))). Then,

we improve this approximation by constructing an additional approximation f̃2 for the
discrepancy f − f̃1. This second approximation lives on a smaller length scale 1

M with

M ∼ W p. In contrast to f̃1, the second approximation is inherently discrete: we consider
a finite set of possible shapes of f − f̃1 in patches of linear size ∼ 1

N , and in each patch

we use a special single network weight to encode the shape closest to f − f̃1. The second
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approximation is then fully determined by the collection of these special encoding weights
found for all patches. We make the parallel subnetwork of the full network serve two
purposes: in addition to computing the initial approximation f̃1(x) as in Proposition 1, the
subnetwork returns the position of x within its patch along with the weight that encodes the
second approximation f̃2 within this patch. The remaining, deep narrow part of the network
then serves to decode the second approximation within this patch from the special weight
and compute the value f̃2(x). Since the second approximation lives on the smaller length
scale 1

M , there are Z = exp(O((M/N)ν)) possible approximations f̃2 within the patch that
might need to be encoded in the special weight. It then takes a narrow network of depth
L ∼ lnZ to reconstruct the approximation from the special weight using the bit extraction
technique of Bartlett et al. (1998). As M ∼ W p, we get L ∼ W pν−1. At the same time,
the second approximation allows us to effectively improve the overall approximation scale
from ∼ 1

N down to ∼ 1
M , i.e. to ∼ W−p, while keeping the total number of weights in the

network. This gives us the desired error bound O(ωf (O(W−p))).
We remark that the discontinuity of the weight assignment in our construction is the

result of the discreteness of the second approximation f̃2: whereas the variable weights in
the network implementing the first approximation f̃1 are found by linearly projecting the
approximated function to R (namely, by computing f 7→ f(x) at the knots x), the variable
weights for f̃2 are found by assigning to f one of the finitely many values encoding the
possible approximate shapes in a patch. This operation is obviously discontinuous. While
the discontinuity is present for all p > 1

ν , at smaller p it is “milder” in the sense of a smaller
number of assignable values.

3. Discussion

We discuss now our result in the context of general approximation theory and practical
machine learning. First, a theorem of Kainen et al. (1999) shows that in the optimal
approximations by neural networks the weights generally discontinuously depend on the
approximated function, so the discontinuity property that we have established is not sur-
prizing. However, this theorem of Kainen et al. (1999) does not in any way quantify the
accuracy gain that can be acquired by giving up the continuity of the weights. Our result
does this in the practically important case of deep ReLU networks, and explicitly describes
a relevant mechanism.

In general, many nonlinear approximation schemes involve some form of discontinuity,
often explicit (e.g., using different expansion bases for different approximated functions (De-
Vore (1998)). At the same time, discontinuous selection of parameters in parametric models
is often perceived as an undesirable phenomenon associated with unreliable approximation
(DeVore et al. (1989); DeVore (1998)). We point out, however, that deep architectures
considered in the present paper resemble some popular state-of-the-art practical networks
for highly accurate image recognition – residual networks (He et al., 2016) and highway
networks (Srivastava et al., 2015) that may have dozens or even hundreds of layers. While
our model does not explicitly include shortcut connections as in ResNets, a very similar
element is effectively present in the proof of Theorem 2 (in the form of channels reserved for
passing forward the data). We expect, therefore, that our result may help better understand
the properties of ResNet-like networks.
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Quantized network weights have been previously considered from the information-
theoretic point of view in Bölcskei et al. (2017); Petersen and Voigtlaender (2017). In
the present paper we do not use quantized weights in the statement of the approximation
problem, but they appear in the solution (namely, we use them to store small-scale descrip-
tions of the approximated function). One can expect that weight quantization may play an
important role in the future development of the theory of deep networks.
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