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1 Introduction
In these notes, we study a mathematical structure called neural networks. These objects have recently received
much attention and have become a central concept in modern machine learning. Historically, however, they
were motivated by the functionality of the human brain. Indeed, the first neural network was devised by
McCulloch and Pitts [18] in an attempt to model a biological neuron.

A McCulloch and Pitts neuron is a function of the form

Rd 3 x 7→ 1R+

(
d∑
i=1

wixi − θ

)
,

where d ∈ N, 1R+ : R→ R, with 1R+(x) = 0 for x < 0 and 1R+(x) = 1 else, and wi, θ ∈ R for i = 1, . . . d. The
function 1R+ is a so-called activation function, θ is called a threshold, and wi are weights. The McCulloch and
Pitts neuron, receives d input signals. If their combined weighted strength exceeds θ, then the neuron fires,
i.e., returns 1. Otherwise the neuron remains inactive.

A network of neurons can be constructed by linking multiple neurons together in the sense that the output
of one neuron forms an input to another. A simple model for such a network is the multilayer perceptron∗ as
introduced by Rosenblatt [28].

Definition 1.1. Let d, L ∈ N, L ≥ 2 and % : R→ R. Then a multilayer perceptron (MLP) with d-dimensional
input, L layers, and activation function % is a function F that can be written as

x 7→ F (x) := TL (% (TL−1 (. . . % (T1 (x)) . . . ))) , (1.1)

where T`(x) = A`x + b`, and (A`)
L
`=1 ∈ RN`×N`−1 , b` ∈ RN` for N` ∈ N, N0 = d, and ` = 1, . . . , L. Here

% : R→ R is applied coordinate-wise.

The neurons in the MLP correspond again, to the applications of % : R→ R even though, in contrast to
the McCulloch and Pitts neuron, we now allow arbitrary %. In Figure 1.1, we visualise a MLP. We should
notice that the MLP does not allow arbitrary connections between neurons, but only between those, that are
in adjacent layers, and only from lower layers to higher layers.

N0 = 8 N1 = 12 N2 = 12 N3 = 12 N4 = 8 N5 = 1

Figure 1.1: Illustration of a multi-layer perceptron with 5 layers. The red dots correspond to the neurons.

While the MLP or variations thereof, are probably the most widely used type of neural network in practice,
they are very different from their biological motivation. Connections only between layers and arbitrary

∗We will later introduce a notion of neural networks, that differs slightly from that of a multilayer perceptron.
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activation functions make for an efficient numerical scheme but are not a good representation of the biological
reality.

Nowadays, the field of neural network theory draws most of its motivation from the fact that deep neural
networks are applied in a technique called deep learning [12]. In deep learning, one is concerned with the
algorithmic identification of the most suitable deep neural network for a specific application. It is, therefore,
reasonable to search for purely mathematical arguments why and under which conditions a MLP is an
adequate architecture in practice instead of taking the motivation from the fact that biological neural networks
perform well.

In this note, we will study deep neural networks with a very narrow focus. We will exclude all algorithmic
aspects of deep learning and concentrate fully on a functional analytical and well-founded framework.
One the one hand, following this focussed approach, it must be clear that we will not be able to provide a
comprehensive answer to how deep learning methods perform in practice. For an attempt to explain the
full pipeline, see [4]. On the other hand, we will see that this restricted focus allows us to make rigorous
statements which do provide explanations and intuition as to why certain neural network architectures are
preferable over others.

Concretely, we will identify many mathematical properties of sets of MLPs which explain, to some
extent, practically observed phenomena in machine learning. For example, we will see explanations of why
deep neural networks are, in some sense, superior to shallow neural networks or why the neural network
architecture can efficiently reproduce high dimensional functions when most classical approximation schemes
cannot.

2 Classical approximation results by neural networks
The very first question that we would naturally ask ourselves is which functions we can express as a MLP.
Given that the activation function is fixed, it is conceivable that the set of functions that can be represented or
approximated could be quite small.

Example 2.1. • For linear activation functions %(x) = ax, a ∈ R it is clear that every MLP with this activation
function is an affine linear map.

• More generally, if % is a polynomial of degree k ∈ N, then every MLP with L layers is a polynomial of degree at
most kL−1.∗

Example 2.1 demonstrates that under some assumptions on the activation function not every function
can be represented and not even approximated by MLPs with fixed depth.

2.1 Universality
One of the most famous results in neural network theory is that, under minor conditions on the activation
function, the set of networks is very expressive, meaning that every continuous function on a compact set can
be arbitrarily well approximated by a MLP. This theorem was first shown by Hornik [14] and Cybenko [8].

To talk about approximation, we first need to define a topology on a space of functions of interest. We
define, for K ⊂ Rd

C(K) := {f : K → R : f continuous}
and we equip C(K) with the uniform norm

‖f‖∞ := sup
x∈K
|f(x)|.

If K is a compact space, then the representation theorem of Riesz [30, Theorem 6.19] tells us that the
topological dual space of C(K) is the space

M := {µ : µ is a signed Borel measure on K}.
∗A diligent student would probably want to verify this.
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Having fixed the topology on C(K), we can define the concept of universality next.

Definition 2.2. Let % : R→ R be continuous, d, L ∈ N and K ⊂ Rd be compact. Denote by MLP(%, d, L) the set of
all MLPs with d-dimensional input, L layers, NL = 1, and activation function %.

We say that MLP(%, d, L) is universal, if MLP(%, d, L) is dense in C(K).

Example 2.1 demonstrates that MLP(%, d, L) is not universal for every activation function.

Definition 2.3. Let d ∈ N, K ⊂ Rd, compact. A continuous function f : R→ R is called discriminatory if the only
measure µ ∈M such that ∫

K

f(ax− b)dµ(x) = 0, for all a ∈ Rd, b ∈ R

is µ = 0.

Theorem 2.4 (Universal approximation theorem [8]). Let d ∈ N, K ⊂ Rd compact, and % : R → R be
discriminatory. Then MLP(%, d, 2) is universal.

Proof. We start by observing that MLP(%, d, 2) is a linear subspace of C(K). Assume towards a contradiction,
that MLP(%, d, 2) is not dense in C(K). Then there exists h ∈ C(K) \MLP(%, d, 2).

By the theorem of Hahn-Banach [30, Theorem 5.19] there exists a functional

0 6= H ∈ C(K)′

so that H = 0 on MLP(%, d, 2). Since, for a ∈ Rd, b ∈ R,

x 7→ %(ax− b) =: %a,b ∈ MLP(%, d, 2),

we have that H(%a,b) = 0 for all a ∈ Rd, b ∈ R. Finally, by the identification C(K)′ = M there exists a
non-zero measure µ so that ∫

K

%a,bdµ = 0, for all a ∈ Rd, b ∈ R.

This is a contradiction to the assumption that % is discriminatory.

At this point, we know that all discriminatory activation functions lead to universal spaces of MLPs. Since
the property of being discriminatory seems hard to verify directly, we are now interested in identifying more
accessible sufficient conditions guaranteeing this property.

Definition 2.5. A continuous function f : R → R such that f(x) → 1 for x → ∞ and f(x) → 0 for x → −∞ is
called sigmoidal.

Proposition 2.6. Let d ∈ N, K ⊂ Rd be compact. Then every sigmoidal function f : R→ R is discriminatory.

Proof. Let f be sigmoidal. Then it is clear from Definition 2.5 that, for λ→∞,

f (λ(ax− b) + θ)→

 1 if ax− b > 0
f(θ) if ax− b = 0
0 if ax− b < 0.

As f is bounded and K compact, we conclude by the dominated convergence theorem that, for every
µ ∈M, ∫

K

f(λ(a · −b) + θ)dµ→
∫
Ha,b,>

1dµ+

∫
Ha,b,=

f(θ)dµ,

where
Ha,b,> := {x ∈ K : ax− b > 0} and Ha,b,= := {x ∈ K : ax− b = 0}.
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Figure 2.1: A sigmoidal function according to Definition 2.5.

Now assume that ∫
K

f(λ(a · −b) + θ)dµ = 0

for all a ∈ Rd, b ∈ R. Then ∫
Ha,b,>

1dµ+

∫
Ha,b,=

f(θ)dµ = 0

and letting θ → −∞, we conclude that
∫
Ha,b,>

1dµ = 0 for all a ∈ Rd, b ∈ R.
For fixed a ∈ Rd and b1 < b2, we have that

0 =

∫
Ha,b1,>

1dµ−
∫
Ha,b2,>a

1dµ =

∫
K

1[b1,b2](ax)dµ(x).

By linearity, we conclude that

0 =

∫
K

g(ax)dµ(x) (2.1)

for every step function g. By a density argument and the dominated convergence theorem, we have that (2.1)
holds for every bounded continuous function g. Thus (2.1) holds, in particular, for g = sin and g = cos. We
conclude that

0 =

∫
K

cos(ax) + i sin(ax)dµ(x) =

∫
K

eiaxdµ(x).

This implies that the Fourier transform of the measure µ vanishes. This can only happen if µ = 0, [29, p.
176].

Remark 2.7. Universality results can be achieved under significantly weaker assumptions than sigmoidality. For
example, in [16] it is shown that Example 2.1 already contains all continuous activation functions that do not generate
universal sets of MLPs.

2.2 Approximation rates
We saw in Theorem 2.4 that MLPs form universal approximators. However, neither the result nor the proof
of it give any indication of how ”large” MLPs need to be to achieve a certain approximation accuracy.
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Before we can even begin to analyse this question, we need to introduce a precise notion of the size of a
MLP. One option could certainly be to count the number of neurons, i.e.,

∑L
`=1N` in (1.1) of Definition 1.1.

However, since a MLP was defined as a function, it is by no means clear if there is a unique representation
with a unique number of neurons. Hence, the notion of ”number of neurons” of a MLP requires some
clarification.

Definition 2.8. Let d, L ∈ N. A neural network (NN) with input dimension d and L layers is a sequence of
matrix-vector tuples

Φ =
(
(A1, b1), (A2, b2), . . . , (AL, bL)

)
,

where N0 := d and N1, . . . , NL ∈ N, and where A` ∈ RN`×N`−1 and b` ∈ RN` for ` = 1, ..., L.
For a NN Φ and an activation function % : R→ R, we define the associated realisation of the NN Φ as

R(Φ) : Rd → RNL : x 7→ xL := R(Φ)(x),

where the output xL ∈ RNL results from

x0 := x,

x` := % (A` x`−1 + b`) for ` = 1, . . . , L− 1,

xL := AL xL−1 + bL.

(2.2)

Here % is understood to act component-wise.
We call N(Φ) := d +

∑L
j=1Nj the number of neurons of the NN Φ, L(Φ) := L the number of layers or

depth, and M(Φ) :=
∑L
j=1Mj(Φ) :=

∑L
j=1 ‖Aj‖0 + ‖bj‖0 the number of weights of Φ. Here ‖.‖0 denotes the

number of non-zero entries of a matrix or vector.

According to the notion of Definition 2.8, a MLP is the realisation of a NN.

2.3 Basic operations of networks
Before we analyse how many weights and neurons NNs need to possess so that their realisations approximate
certain functions well, we first establish a couple of elementary operations that one can perform with NNs.
This formalism was developed first in [24].

To understand the purpose of the following formalism, we start with the following question: Given two
realisations of NNs f1 : Rd → Rd and f2 : Rd → Rd, is it the case that the function

x 7→ f2(f1(x))

is the realisation of a NN and how many weights, neurons, and layers does this new function need to have?
Given two functions f1 : Rd → Rd′ and f2 : Rd′ → Rd′′ , where d, d′, d′′ ∈ N, we denote by f1 ◦ f2 the

composition of these functions, i.e., f1 ◦ f2(x) = f1(f2(x)) for x ∈ Rd. Indeed, a similar concept is possible
for NNs.

Definition 2.9. Let L1, L2 ∈ N and let Φ1 = ((A1
1, b

1
1), . . . , (A1

L1
, b1L1

)),Φ2 = ((A2
1, b

2
1), . . . , (A2

L2
, b2L2

)) be two
NNs such that the input layer of Φ1 has the same dimension as the output layer of Φ2. Then Φ1 Φ2 denotes the
following L1 + L2 − 1 layer network:

Φ1 Φ2 :=
((
A2

1, b
2
1

)
, . . . ,

(
A2
L2−1, b

2
L2−1

)
,
(
A1

1A
2
L2
, A1

1b
2
L2

+ b11
)
,
(
A1

2, b
1
2

)
, . . . ,

(
A1
L1
, b1L1

))
.

We call Φ1 Φ2 the concatenation of Φ1 and Φ2.

It is left as an exercise to show that

R
(
Φ1 Φ2

)
= R

(
Φ1
)
◦ R

(
Φ2
)
.

A second important operation is that of parallelisation.
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Figure 2.2: Top: Two networks. Bottom: Concatenation of both networks according to Definition 2.9.

Definition 2.10. Let L, d1, d2 ∈ N and let Φ1 = ((A1
1, b

1
1), . . . , (A1

L, b
1
L)),Φ2 = ((A2

1, b
2
1), . . . , (A2

L, b
2
L)) be two

NNs with L layers and with d1-dimensional and d2-dimensional input, respectively. We define

1. P
(
Φ1,Φ2

)
:=
((
Â1, b̂1

)
,
(
Ã2, b̃2

)
, . . . ,

(
ÃL, b̃L

))
, if d1 = d2,

2. FP
(
Φ1,Φ2

)
:=
((
Ã1, b̃1

)
, . . . ,

(
ÃL, b̃L

))
, for arbitrary d1, d2 ∈ N,

where

Â1 :=

(
A1

1

A2
1

)
, b̂1 :=

(
b11
b21

)
, and Ã` :=

(
A1
` 0

0 A2
`

)
, b̃` :=

(
b1`
b2`

)
for 1 ≤ ` ≤ L.

P(Φ1,Φ2) is a NN with d-dimensional input and L layers, called the parallelisation with shared inputs of Φ1 and
Φ2. FP(Φ1,Φ2) is a NN with d1 + d2-dimensional input and L layers, called the parallelisation without shared
inputs of Φ1 and Φ2.

Figure 2.3: Top: Two networks. Bottom: Parallelisation with shared inputs of both networks according to
Definition 2.10.

One readily verifies that M(P(Φ1,Φ2)) = M(FP(Φ1,Φ2)) = M(Φ1) +M(Φ2), and

R%(P(Φ1,Φ2))(x) = (R%(Φ
1)(x),R%(Φ

2)(x)), for all x ∈ Rd. (2.3)
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We depict the parallelisation of two networks in Figure 2.3. Using the concatenation, we can, for example,
increase the depth of networks without significantly changing their output if we can build a network that
realises the identity function. We demonstrate how to approximate the identity function below. This is our
first quantitative approximation result.

Proposition 2.11. Let d ∈ N, K ⊂ Rd compact, and % : R → R be differentiable and not constant on an open set.
Then, for every ε > 0, there exists a NN Φ = ((A1, b1), (A2, b2)) such that A1, A2 ∈ Rd×d, b1, b2 ∈ Rd, M(Φ) ≤ 4d,
and

|R(Φ)(x)− x| < ε,

for all x ∈ K.

Proof. Assume d = 1, the general case of d ∈ N then follows immediately by parallelisation without shared
inputs.

Let x∗ ∈ R be such that % is differentiable on a neighbourhood of x∗ and %′(x∗) = θ 6= 0. Define, for λ > 0

b1 := x∗, A1 := 1/λ, b2 := −λ%(x∗)/θ, A2 := λ/θ.

Then we have, for all x ∈ K,

|R(Φ)(x)− x| =
∣∣∣∣λ%(x/λ+ x∗)− %(x∗)

θ
− x
∣∣∣∣ . (2.4)

If x = 0, then (2.4) shows that |R(Φ)(x)− x| = 0. Otherwise

|R(Φ)(x)− x| = |x|
|θ|

∣∣∣∣%(x/λ+ x∗)− %(x∗)

x/λ
− θ
∣∣∣∣ .

By the definition of the derivative, we have that |R(Φ)(x)− x| → 0 for λ→∞ and all x ∈ K.

Remark 2.12. It follows from Proposition 2.11 that under the assumptions of Theorem 2.4 and Proposition 2.11 we
have that MLP(%, d, L) is universal for every L ∈ N, L ≥ 2.

The operations above can be performed for quite general activation functions. If a special activation is
chosen, then different operations are possible. In Section 3, we will, for example, introduce an exact emulation
of the identity function by realisations of networks with the so-called ReLU activation function.

2.4 Reapproximation of dictionaries
Approximation theory is a well-established field in applied mathematics. This field is concerned with
establishing the trade-off between the size of certain sets and their capability of approximately representing a
function. Concretely, letH be a normed space and (AN )N∈N be a nested sequence (i.e. AN ⊂ AN+1 for every
N ∈ N) of subsets ofH and let C ⊂ H.

For N ∈ N, we are interested in the following number

σ(AN , C) := sup
f∈C

inf
g∈AN

‖f − g‖H. (2.5)

Here, σ(AN , C) denotes the worst-case error when approximating every element of C by the closest element
in AN . Quite often, it is not so simple to precisely compute σ(AN , C) but instead we can only establish an
asymptotic approximation rate. If h : N→ R+ is such that

σ(AN , C) = O(h(N)), for N →∞, (2.6)

then we say that (AN )N∈N achieves an approximation rate of h for C.
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Definition 2.13. A typical example of nested spaces of which we want to understand the approximation capabilities are
spaces of sparse representations in a basis or more generally in a dictionary. Let D := (fi)

∞
i=1 ⊂ H be a dictionary∗.

We define the spaces

AN :=

{ ∞∑
i=1

cifi : ‖c‖0 ≤ N

}
. (2.7)

Here ‖c‖0 = #{i ∈ N : ci 6= 0}.
With this notion of AN , we call σ(AN , C) the best N -term approximation error of C with respect to D. Moreover, if

h satisfies (2.6) then we say that D achieves a rate of best N -term approximation error of h for C.

We can introduce a simple procedure to lift approximation theoretical results for N -term approximation
to approximation theoretical results of NNs.

Theorem 2.14. Let d ∈ N,H ⊂ {f : Rd → R} be a normed space, % : R→ R, andD := (fi)
∞
i=1 ⊂ H be a dictionary.

Assume that there exist L,C ∈ N, such that, for every i ∈ N, and for every ε > 0 there exists a NN Φεi such that

L (Φεi) = L, M (Φεi) ≤ C, ‖R (Φεi)− fi‖H ≤ ε. (2.8)

For every C ⊂ H, define AN as in (2.7) and

BN := {R(Φ) : Φ is a NN with d-dim input, L(Φ) = L,M(Φ) ≤ N} .

Then, for every C ⊂ H,
σ (BCN , C) ≤ σ (AN , C) .

Proof. We aim to show that there exists C > 0 such that every element in AN can be approximated by a NN
with CN weights to arbitrary precision.

Let a ∈ AN , then a =
∑N
j=1 ci(j)fi(j). Let ε > 0 then, by (2.8), we have that there exist NNs (Φj)

N
j=1 such

that

L (Φj) = L, M (Φj) ≤ C,
∥∥R (Φj)− fi(j)

∥∥
H ≤ ε/ (N‖c‖∞) . (2.9)

We define, Φc := (([ci(1), ci(2), . . . , ci(N)], 0)) and Φa,ε := Φc P(Φ1,Φ2, · · · ,ΦN ). Now it is clear, by the
triangle inequality, that

‖R (Φa,ε)− a‖ =

∥∥∥∥∥∥
N∑
j=1

ci(j)
(
fi(j) − R (Φj)

)∥∥∥∥∥∥ ≤
N∑
j=1

|ci(j)|
∥∥(fi(j) − R (Φj)

)∥∥ ≤ ε.
Per Definition 2.9, L(Φc P(Φ1,Φ2, · · · ,ΦN )) = L(P(Φ1,Φ2, · · · ,ΦN )) = L and it is not hard to see that

M (Φc P (Φ1,Φ2, · · · ,ΦN )) ≤M (P (Φ1,Φ2, · · · ,ΦN )) ≤ N max
j=1,...,N

M (Φj) ≤ NC.

Remark 2.15. In words, Theorem 2.14 states that we can transfer a classical N -term approximation result to approxi-
mation by realisations of NNs if we can approximate every element from the underlying dictionary arbitrarily well by
NNs. It turns out that, under the right assumptions on the activation function, Condition (2.8) is quite often satisfied.
We will see one instance of such a result in the following subsection and another one in Proposition 3.3 below.

∗We assume here and in the sequel that a dictionary contains only countably many elements. This assumption is not necessary, but
simplifies the notation a bit.
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2.5 Approximation of smooth functions
We shall proceed by demonstrating that (2.9) holds for the dictionary of multivariate B-splines. This idea,
was probably first applied by Mhaskar in [19].

Towards our first concrete approximation result, we therefore start by reviewing some approximation
properties of B-splines: The univariate cardinal B-spline on [0, k] of order k ∈ N is given by

Nk(x) :=
1

(k − 1)!

k∑
`=0

(−1)`
(
k

`

)
(x− `)k−1

+ , for x ∈ R, (2.10)

where we adopt the convention that 00 = 0.
For t ∈ R and ` ∈ N, we defineN`,t,k := Nk(2`(· − t)). Additionally, we denote for d ∈ N, ` ∈ N, t ∈ Rd the

multivariate B-splines by

N d
`,t,k(x) :=

d∏
i=1

N`,ti,k(xi), for x = (x1, . . . xd) ∈ Rd.

Finally, for d ∈ N, we define the dictionary of dyadic B-splines of order k by

Bk :=
{
N d
`,t`,k

: ` ∈ N, t` ∈ 2−`Zd
}
. (2.11)

Best N -term approximation by multivariate B-splines is a well studied field. For example, we have the
following result by Oswald.

Theorem 2.16 ([22, Theorem 7]). Let d, k ∈ N, p ∈ (0,∞], 0 < s ≤ k. Then there exists C > 0 such that, for every
f ∈ Cs([0, 1]d), we have that, for every δ > 0, and every N ∈ N there exists ci ∈ R with |ci| ≤ C‖f‖∞ and Bi ∈ Bk
for i = 1, . . . , N such that ∥∥∥∥∥f −

N∑
i=1

ciBi

∥∥∥∥∥
Lp

. N
δ−s
d ‖f‖Cs .

In particular, for C := {f ∈ Cs([0, 1]d) : ‖f‖Cs ≤ 1}, we have that Bk achieves a rate of best N -term approximation
error of order N (δ−s)/d for every δ > 0. a

aIn [22, Theorem 7] this statement is formulated in much more generality. We cite here a simplified version so that we do not have
to introduce Besov spaces.

To obtain an approximation result by NN via Theorem 2.14, we now only need to check under which
conditions every element of the B-spline dictionary can be represented arbitrarily well by a NN. In this regard,
we first fix a class of activation functions.

Definition 2.17. A function % : R→ R is called sigmoidal of order q ∈ N, if % ∈ Cq−1(R) and

%(x)

xq
→ 0, for x→ −∞, %(x)

xq
→ 1, for x→∞, and

|%(x)| . (1 + |x|)q, for all x ∈ R.

Standard examples of sigmoidal functions of order k ∈ N are the functions x 7→ max{0, x}q . We have the
following proposition.

Proposition 2.18. Let k, d ∈ N, K > 0, and % : R→ R be sigmoidal of order q ≥ 2. There exists a constant C > 0
such that for every f ∈ Bk and every ε > 0 there is a NN Φε with dlog2(d)e+ dmax{logq(k − 1), 0}e+ 1 layers and
C weights, such that

‖f − R% (Φε)‖L∞([−K,K]d) ≤ ε.
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Proof. We demonstrate how to approximate a cardinal B-spline of order k, i.e., N d
0,0,k, by a NN Φ with

activation function %. The general case, i.e., N d
`,t,k, follows by observing that shifting and rescaling of the

realisation of Φ can be done by manipulating the entries ofA1 and b1 associated to the first layer of Φ. Towards
this goal, we first approximate a univariate B-spline. We observe with (2.10) that we first need to build
a network that approximates the function x 7→ (x)k−1

+ . The rest follows by taking sums and shifting the
function.

It is not hard to see (but probably a good exercise to formally show) that, for every K ′ > 0,∣∣∣∣∣∣a−qT % ◦ % ◦ · · · ◦ %(ax)︸ ︷︷ ︸
T− times

−xq
T

+

∣∣∣∣∣∣→ 0 for a→∞ uniformly for all x ∈ [−K ′,K ′].

Choosing T := dmax{logq(k − 1), 0}e we have that qT ≥ k − 1. We conclude that, for every K ′ > 0 and ε > 0
there exists a NN Φ∗ε with dmax{logq(k − 1), 0}e+ 1 layers such that∣∣R (Φ∗ε ) (x)− xp+

∣∣ ≤ ε, (2.12)

for every x ∈ [−K ′,K ′], where p ≥ k − 1. We observe that, for all x ∈ [−K ′,K ′],

R
(
Φ∗δ2

)
(x+ δ)− R

(
Φ∗δ2

)
(x)

δ
→ pxp−1

+ for δ → 0. (2.13)

One can prove (2.13) directly with the binomial theorem, by observing that∣∣∣∣∣R
(
Φ∗δ2

)
(x+ δ)− R

(
Φ∗δ2

)
(x)

δ
− pxp−1

+

∣∣∣∣∣ ≤ 2δ +

∣∣∣∣ (x+ δ)p+ − (x)p+
δ

− pxp−1
+

∣∣∣∣ .
Repeating the ’derivative-trick’ of (2.13), we can find, for every K ′ > 0 and ε > 0 a NN Φ†ε such that, for all
x ∈ [−K ′,K ′], ∣∣R(Φ†ε)(x)− xk−1

+

∣∣ ≤ ε.
By (2.10), it is now clear that there exists a NN Φ∨ε the size of which is independent of ε which approximates
a univariate cardinal B-spline up to an error of ε.

As a second step, we would like to construct a network which multiplies all entries of the d-dimensional
output of the realisation of the NN FP(Φ∨ε , . . . ,Φ

∨
ε ). Since % is a sigmoidal function of order larger than 2,

we observe by the ’derivative trick’ that led to (2.12) that we can also build a fixed size NN with two layers
which, for every K ′ > 0 and ε > 0, approximates the map x 7→ x2

+ arbitrarily well for x ∈ [−K ′,K ′].
We have that for every x = (x1, x2) ∈ R2

2x1x2 = (x1 + x2)2 − x2
1 − x2

2 = (x1 + x2)2
+ + (−x1 − x2)2

+ − (x1)2
+ − (−x1)2

+ − (x2)2
+ − (−x2)2

+. (2.14)

Hence, we can conclude that, for every K ′ > 0, we can find a fixed size NN Φmult
ε with input dimension 2

which, for every ε > 0, approximates the map (x1, x2) 7→ x1x2 arbitrarily well for (x1, x2) ∈ [−K ′,K ′]2.
We assume for simplicity, that log2(d) ∈ N. Then we define

Φmult,d,d/2
ε := FP(Φmult

ε , . . . ,Φmult
ε︸ ︷︷ ︸

d/2−times

).

It is clear that, for all x ∈ [−K ′,K ′]d,∣∣∣R(Φmult,d,d/2
ε

)
(x1, . . . , xd)− (x1x2, x3x4, . . . , xd−1xd)

∣∣∣ ≤ ε.
Now, we set

Φmult,d,1
ε := Φmult

ε
 Φmult,4,2

ε
 . . .  Φmult,d,d/2

ε . (2.15)

11



x1 x2 x3 x4 x5 x6 x5 x6

x1x2 x3x4 x5x6 x7x8

x1x2x3x4 x5x6x7x8

x1x2x3x4x5x6x7x8

Figure 2.4: Setup of the multiplication network (2.15). Every red dot symbolises a multiplication network
Φmult
ε and not a regular neuron.

We depict the hierarchical construction of (2.15) in Figure 2.4. Per construction, we have that Φmult,d,1
ε has

log2(d) + 1 layers and, for every ε′ > 0 and K ′ > 0, there exists ε > 0 such that∣∣Φmult,d,1
ε (x1, . . . xd)− x1x2 · · ·xd

∣∣ ≤ ε′.
Finally, we set

Φε := Φmult,d,1
ε

 FP(Φ∨ε , . . . ,Φ
∨
ε︸ ︷︷ ︸

d−times

).

Per definition of  , we have that Φ has dmax{logq(k− 1), 0}e+ log2(d) + 1 many layers. Moreover, the size of
all components of Φ was independent of ε. By choosing ε sufficiently small it is clear by construction that Φε
approximates N d

0,0,k arbitrarily well on [−K,K]d for sufficiently small ε.

As a simple consequence of Theorem 2.14 and Proposition 2.18 we obtain the following corollary.

Corollary 2.19. Let d ∈ N, s > δ > 0 and p ∈ (0,∞]. Moreover let % : R→ R be sigmoidal of order q ≥ 2. Then
there exists a constant C > 0 such that, for every f ∈ Cs([0, 1]d) with ‖f‖Cs ≤ 1 and every 1/2 > ε > 0, there exists
a NN Φ such that

‖f − R(Φ)‖Lp ≤ ε

and M(Φ) ≤ Cε−
d
s−δ and L(Φ) = dlog2(d)e+ dmax{logq(dse − 1), 0}e+ 1.

Remark 2.20. Corollary 2.19 constitutes the first quantitative approximation result of these notes for a large class
of functions. There are a couple of particularly interesting features of this result. First of all, we observe that with
increasing smoothness of the functions, we need smaller networks to achieve a certain accuracy. On the other hand,
at least in the framework of this theorem, we require more layers if the smoothness s is much higher than the order of
sigmoidality of %.

Finally, the order of approximation deteriorates very quickly with increasing dimension d. Such a behaviour is often
called curse of dimension. We will later analyse to what extent NN approximation can overcome this curse.

2.6 Fast approximations with Kolmogorov
One observation that we made in the previous subsection is that some activation functions yield better
approximation rates than others. In particular, in Theorem 2.19, we see that if the activation function % has a
low order of sigmoidality, then we need to use much deeper networks to obtain the same approximation
rates than with a sigmoidal function of high order.
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Naturally, we can ask ourselves if, by a smart choice of activation function, we could even improve
Corollary 2.19 further. The following proposition shows how to achieve an incredible improvement if d = 1.
The idea for the following proposition and Theorem 2.24 below appeared in [17] first, but is presented in a
slightly simplified version here.

Proposition 2.21. There exists a continuous, piecewise polynomial activation function % : R→ R such that for every
function f ∈ C([0, 1]) and every ε > 0 there is a NN Φf,ε with M(Φf,ε) ≤ 3, and L(Φf,ε) = 2 such that∥∥f − R

(
Φf,ε

)∥∥
∞ ≤ ε. (2.16)

Proof. We denote by ΠQ, the set of univariate polynomials with rational coefficients. It is well-known that
this set is countable and dense in C(K) for every compact set K. Hence, we have that {π|[0,1] : π ∈ ΠQ} is a
countable set and dense in C([0, 1]). We set (πi)i∈Z := {π|[0,1] : π ∈ ΠQ} and define

%(x) :=

{
πi(x− 2i), if x ∈ [2i, 2i+ 1],
πi(1)(2i+ 2− x) + πi+1(0)(x− 2i− 1), if x ∈ (2i+ 1, 2i+ 2).

It is clear that % is continuous and piecewise polynomial.
Finally, let us construct the network such that (2.19) holds. For f ∈ C([0, 1]) and ε > 0 we have by density

of (πi)i∈Z that there exists i ∈ Z such that ‖f − πi‖∞ ≤ ε. Hence,

|f(x)− %(x+ 2i)| = |f(x)− πi(x)| ≤ ε. (2.17)

The claim follows by defining Φf,ε := ((1, 2i), (1, 0)).

Remark 2.22. It is clear that the restriction to functions defined on [0, 1] is arbitrary. For every function f ∈
C([−K,K]) for a constant K > 0, we have that f(2K(· − 1/2)) ∈ C([0, 1]). Therefore, the result of Proposition 2.21
holds by replacing C([0, 1]) by C([−K,K]).

We will discuss to what extent the activation function % of Proposition 2.21 is sensible a bit further
below. Before that, we would like to generalise this result to higher dimensions. This can be done by using
Kolmogorov’s superposition theorem.

Theorem 2.23 ([15]). For every d ∈ N, there are 2d2 + d univariate, continuous, and increasing functions φp,q,
p = 1, . . . , d, q = 1, . . . , 2d+ 1 such that for every f ∈ C([0, 1]d) we have that, for all x ∈ [0, 1]d,

f(x) =

2d+1∑
q=1

gq

(
d∑
p=1

φp,q(xp)

)
, (2.18)

where gq , q = 1, . . . 2d+ 1, are univariate continuous functions depending on f .

We can combine Kolmogorov’s superposition theorem and Proposition 2.21 to obtain the following
approximation theorem for realisations of networks with the special activation function from Proposition
2.21.

Theorem 2.24. Let d ∈ N. Then there exists a constant C(d) > 0 and a continuous activation function %, such that
for every function f ∈ C([0, 1]d) and every ε > 0 there is a NN Φf,ε,d with M(Φf,ε,d) ≤ C(d), and L(Φf,ε,d) = 3
such that ∥∥f − R

(
Φf,ε,d

)∥∥
∞ ≤ ε. (2.19)

Proof. Let f ∈ C([0, 1]d). Let ε0 > 0 and let Φ̃1,d := (([1, . . . , 1], 0)) be a network with d dimensional input
and Φ̃1,2d+1 := (([1, . . . , 1], 0)) be a network with 2d + 1 dimensional input. Let gq, φp,q for p = 1, . . . , d,
q = 1, . . . , 2d+ 1 be as in (2.18).

13



We have that there exists C ∈ R such that

ran (φp,q) ⊂ [−C,C], for all p = 1, . . . , d, q = 1, . . . , 2d+ 1.

We define, with Proposition 2.21,

Φq,ε0 := Φ̃1,d FP
(
Φφ1,q,ε0 ,Φφ2,q,ε0 , . . . ,Φφd,q,ε0

)
.

It is clear that, for x = (x1, . . . , xd) ∈ [0, 1]d,∣∣∣∣∣R (Φq,ε0) (x)−
d∑
p=1

φp,q(xp)

∣∣∣∣∣ ≤ dε0 (2.20)

and, by construction, M(Φq) ≤ 3d. Now define, for ε1 > 0,

Φfε0,ε1 := Φ̃1,2d+1 FP (Φg1,ε1 ,Φg2,ε1 , . . .Φg2d+1,ε1)  P
(
Φ1,ε0 ,Φ2,ε0 , . . . ,Φ2d+1,ε0 , ε0

)
, (2.21)

where Φg1,ε1 is according to Remark 2.22 with K = C + 1.
Per definition of  it follows that L(Φfε0) ≤ 3 and the size of Φfε0 is independent of ε0 and ε1. We also have

that

R
(
Φfε0,ε1

)
=

2d+1∑
q=1

R (Φgq,ε1) ◦ R (Φq,ε0) .

We have by Proposition 2.21 that, for fixed ε1, the map R (Φgq,ε1) is uniformly continuous on [−C − 1, C + 1]
for all q = 1, . . . , 2d+ 1 and ε0 ≤ 1.

Hence, we have that, for each ε̃ > 0, there exists δε̃ > 0 such that

|R (Φgq,ε1) (x)− R (Φgq,ε1) (y)| ≤ ε̃,

for all x, y ∈ [−C − 1, C + 1] so that |x− y| ≤ δε̃ in particular this statement holds for ε̃ = ε1.
It follows from the triangle inequality, (2.20), and Proposition 2.21 that

∥∥R
(
Φfε0,ε1

)
− f

∥∥
∞ ≤

2d+1∑
q=1

∥∥∥∥∥R (Φgq,ε1) (R (Φq,ε0))− gq

(
d∑
p=1

φp,q

)∥∥∥∥∥
∞

≤
2d+1∑
q=1

∥∥∥∥∥R (Φgq,ε1) (R (Φq,ε0))− R (Φgq,ε1)

(
d∑
p=1

φp,q

)∥∥∥∥∥
∞

+

∥∥∥∥∥R (Φgq,ε1)

(
d∑
p=1

φp,q

)
− gq

(
d∑
p=1

φp,q

)∥∥∥∥∥
∞

=:
2d+1∑
p=1

Iε0,ε1 + IIε0,ε1 .

Choosing dε0 < δε1 , we have that Iε0,ε1 ≤ ε1. Moreover, II ≤ ε1 by construction .
Hence, for every 1/2 > ε > 0, there exists ε0, ε1 such that

∥∥R
(
Φfε0
)
− f

∥∥
∞ ≤ (2d + 1)ε1 ≤ ε. We define

Φf,ε,d := Φfε0,ε1 which concludes the proof.

Without knowing the details of the proof of Theorem 2.24 the statement that any function can be arbitrarily
well approximated by a fixed-size network is hardly believable. It seems as if the reason for this result to
hold is that we have put an immense amount of information into the activation function. At the very least,
we have now established that at least from a certain minimal size on, there is no aspect of the architecture of a
NN that fundamentally limits its approximation power. We will later develop fundamental lower bounds on
approximation capabilities. As a consequence of the theorem above, these lower bounds can only be given
for specific activation functions or under further restricting assumptions.
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3 ReLU networks
We have already seen a variety of activation functions including sigmoidal and higher-order sigmoidal
functions. In practice, a much simpler function is usually used. This function is called rectified linear unit
(ReLU). It is defined by

x 7→ %R(x) := (x)+ = max{0, x} =

{
x for x ≥ 0
0 else. (3.1)

There are various reasons why this activation function is immensely popular. Most of these reasons are based
on its practicality in the algorithms used to train NNs which we do not want to analyse in this note. One
thing that we can observe, though, is that the evaluation of %R(x) can be done much more quickly than that
of virtually any non-constant function. Indeed, only a single decision has to be made, whereas, for other
activation functions such as, e.g., arctan, the evaluation requires many numerical operations. This function is
probably the simplest function that does not belong to the class described in Example 2.1.

One of the first questions that we can ask ourselves is whether the ReLU is discriminatory. We observe
the following. For a ∈ R, b1 < b2 and every x ∈ R, we have that

Ha(x) := %R(ax− ab1 + 1)− %R(ax− ab1)− %R(ax− ab2) + %R(ax− ab2 − 1)→ 1[b1,b2] for a→∞.

Indeed, for x < b1 − 1/a, we have that Ha(x) = 0. If b1 − 1/a < x < b1, then Ha(x) = a(x − b1 + 1/a) ≤ 1.
If b1 < x < b2, then Ha(x) = %R(ax − ab1 + 1) − %R(ax − ab1) = 1. If b2 ≤ x < b2 + 1/a, then Ha(x) =
1− %R(ax− ab2) = 1− ax− ab2 ≤ 1. Finally, if x ≥ b2 + 1/a then Ha(x) = 0. We depict Ha in Figure 3.1.

b1b1 − 1
a b2 b2 + 1

a

Figure 3.1: Pointwise approximation of a univariate indicator function by sums of ReLU activation functions.

The argument above shows that sums of ReLUs can pointwise approximate arbitrary indicator function.
If we had that ∫

K

%R(ax+ b)dµ(x) = 0,

for a µ ∈M and all a ∈ Rd and b ∈ R, then this would imply∫
K

1[b1,b2](ax)dµ(x) = 0

for all a ∈ Rd and b1 < b2. At this point we have the same result as in (2.1). Following the rest of the proof of
Proposition 2.6 yields that %R is discriminatory.

We saw in Proposition 2.18 how higher-order sigmoidal functions can reapproximateB-splines of arbitrary
order. The idea there was that, essentially, through powers of xq+, we can generate arbitrarily high degrees of
polynomials. This approach does not work anymore if q = 1. Moreover, the crucial multiplication operation
of Equation (2.14) cannot be performed so easily with realisations of networks with the ReLU activation
function.

If we want to use the local approximation by polynomials in a similar way as in Corollary 2.19, we have
two options: being content with approximation by piecewise linear functions, i.e., polynomials of degree one,
or trying to reproduce higher-order monomials by realisations of NNs with the ReLU activation function in a
different way than by simple composition.

Let us start with the first approach, which was established in [13].
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3.1 Linear finite elements and ReLU networks
We start by recalling some basics on linear finite elements. Below, we will perform a lot of basic operations
on sets and therefore it is reasonable to recall and fix some set-theoretical notation first. For a subset A of a
topological space, we denote by co(A) the convex hull of A, i.e., the smallest convex set containing A. By A we
denote the closure of A, i.e., the smallest closed set containing A. Furthermore, int A denotes the interior of A,
which is the largest open subset of A. Finally, the boundary of A is denoted by ∂A and ∂A := A \ int A.

Let d ∈ N, Ω ⊂ Rd. A set T ⊂ P(Ω) so that ⋃
T = Ω,

T = (τi)
MT
i=1 , where each τi is a d-simplex∗, and such that τi ∩ τj ⊂ ∂τi ∩ ∂τj is an n-simplex with n < d for

every i 6= j is called a simplicial mesh of Ω. We call the τi the cells of the mesh T and the extremal points of the
τi, i = 1 . . . ,MT , the nodes of the mesh. We denote the set of nodes by (ηi)

MN
i=1 . We will also assume that if

ηi ∈ τk for some k and i then ηi is always an extremal point of τk to prevent degenerate meshes.

Figure 3.2: A two dimensional simplicial mesh of [0, 1]2. The nodes are depicted by red x’s.

We say that a mesh T = (τi)
MT
i=1 is locally convex, if for every ηi it holds that

⋃
{τj : ηi ∈ τj} is convex.

For any mesh T one defines the linear finite element space

VT :=
{
f ∈ C(Ω): f|τi affine linear for all i = 1, . . . ,MT

}
.

Since an affine linear function is uniquely defined through its values on d+ 1 linearly independent points, it
is clear that every f ∈ VT is uniquely defined through the values (f(ηi))

MN
i=1 . By the same token, for every

choice of (yi)
MN
i=1 , there exists a function f in VT such that f(ηi) = yi for all i = 1, . . . ,MN .

For i = 1, . . . ,MN we define the Courant elements φi,T ∈ VT to be those functions that satisfy φi,T (ηj) = δi,j .
See Figure 3.3 for an illustration.

Proposition 3.1. Let d ∈ N and T be a simplicial mesh of Ω ⊂ Rd, then we have that

f =

MN∑
i=1

f(ηi)φi,T

holds for every f ∈ VT .
∗A d-simplex is a convex hull of d+ 1 points v0, . . . , vd such that (v1 − v0), (v2 − v0), . . . , (vd − v0) are linearly independent.
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Figure 3.3: Visualisation of a Courant element on a mesh.

As a consequence of Proposition 3.1, we have that we can build every function f ∈ VT as the realisation
of a NN with ReLU activation function if we can build φi,T for every i = 1, . . . ,MN .

We start by making a couple of convenient definitions and then find an alternative representation of φi,T .
We define, for i, j = 1, . . .MN ,

F (i) := {j ∈ {1, . . . ,MN} : ηi ∈ τj} , G(i) :=
⋃

j∈F (i)

τj , (3.2)

H(j, i) := {ηk ∈ τj , ηk 6= ηi} , I(i) := {ηk ∈ G(i)} . (3.3)

Here F (i) is the set of all indices of cells that contain ηi. Moreover, G(i) is the polyhedron created from
taking the union of all these cells.

Proposition 3.2. Let d ∈ N and T be a locally convex simplicial mesh of Ω ⊂ Rd. Then, for every i = 1, . . . ,MN , we
have that

φi,T = max

{
0, min
j∈F (i)

gj

}
, (3.4)

where gj is the unique affine linear function such that gj(ηk) = 0 for all ηk ∈ H(j, i) and gj(ηi) = 1.

Proof. Let i ∈ {1, . . . ,MN}. By the local convexity assumption we have that G(i) is convex. For simplicity, we
assume that ηi ∈ int G(i).∗

Step 1: We show that

∂G(i) =
⋃

j∈F (i)

co(H(j, i)). (3.5)

The argument below is visualised in Figure 3.4. We have by convexity that G(i) = co(I(i)). Since ηi lies in
the interior ofG(i) we have that there exists ε > 0 such thatBε(ηi) ⊂ G(i). By convexity, we have that also the
open set co(int τk, Bε(ηi)) is a subset ofG(i). It is not hard to see that τk \ co(H(k, i)) ⊂ co(int τk, Bε(ηi)) and

∗The case ηi ∈ ∂G(i) needs to be treated slightly differently and is left as an excercise.
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ηi

x

Figure 3.4: Visualisation of the argument in Step 1. The simplex τk is coloured green. The grey ball around
ηi is Bε(ηi). The blue × represents x.

hence τk \ co(H(k, i)) lies in the interior of G(i). Since we also have that ∂G(i) ⊂
⋃
k∈F (i) ∂τk, we conclude

that
∂G(i) ⊂

⋃
i∈F (i)

co(H(j, i)).

Now assume that there is j such that co(H(j, i)) 6⊂ ∂G(i). Since co(H(j, i)) ⊂ G(i) this would imply that
there exist x ∈ co(H(j, i)) such that x is in the interior of G(i). This implies that there exists ε′ > 0 such that
B′ε(x) ⊂ G(i). Hence, the line from ηi to x can be extended for a distance of ε′/2 to a point x∗ ∈ G(i) \ τj . As
x∗ must belong to a simplex τj∗ that also contains ηi, we conclude that τj∗ intersects the interior of τj which
cannot be by assumption on the mesh.

Step 2:
For each j, denote byH(j, i) the hyperplane through H(j, i). The hyperplaneH(j, i) splits Rd into two

subsets, and we denote by H int(j, i) the set that contains ηi.
We claim that

G(i) =
⋂

j∈F (i)

H int(j, i). (3.6)

This is intuitively clear and sketched in Figure 3.5.
We first prove the case G(i) ⊂

⋂
j∈F (i)H

int(j, i). Assume towards a contradiction that x′ ∈ G(i) is a point
in Rd \H int(j, i) for a j ∈ F (i)

Since ηi does not lie in the boundary of G(i) there exists ε > 0 such that Bε(ηi) ⊂ G(i) and therefore,
by convexity co(Bε(ηi), x

′) ⊂ G(i). Since ηi and x′ are on different sides of H(j, i), we have that there is a
point x′′ ∈ H(j, i) and ε′ > 0, such that Bε′(x′′) ⊂ G(i). Therefore, co(Bε′(x

′′), int co(H(j, i))) ⊂ G(i) is open.
In particular, co(Bε′(x

′′), int co(H(j, i))) ∩ ∂G(i) = ∅. We conclude that int co(H(j, i)) ∩ ∂G(i) = ∅. This
constitutes a contradiction to (3.5).

Next we prove that G(i) ⊃
⋂
j∈F (i)H

int(j, i). Let x′′′ 6∈ G(i). Next, we show that x′′′ lies in Rd \H int(j, i)

for at least one j. The line between x′′′ and ηi intersects G(i) and, by Step 1, it intersects co(H(j, i)) for a
j ∈ F (i). It is also clear that x′′′ is not on the same side as ηi. Hence x′′′ 6∈ H int(j, i).

Step 3: For each ηj ∈ I(i), we have that gk(ηj) ≥ 0 for all k ∈ F (i).
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G(i)

ηi

H(j1, i) H(j1, i)

Figure 3.5: The set G(i) and two hyperplanesH(j1, i),H(j2, i). Since G(i) is convex andH(j, i) extends its
boundary it is intuitively clear that G(i) is only on one side ofH(j, i) and that (3.6) holds.

This is because, by (3.6) G(i) lies fully on one side of each hyperplaneH(j, i), j ∈ F (i). Since gk vanishes
onH(k, i) and equals 1 on ηi we conclude that gk(ηj) ≥ 0 for all k ∈ F (i)

Step 4: For every k ∈ F (i) we have that gk ≤ gj on τk for all j ∈ F (i)
If for j ∈ F (i), gj(η`) ≥ gk(η`) for all η` ∈ τk, then, since τk = co({η` : η` ∈ τk}), we conclude that gj ≥ gk.

Assume towards a contradiction that gj(η`) < gk(η`) for at least one η` ∈ I(i). Clearly this assumption cannot
hold for η` = ηi since there gj(ηi) = 1 = gk(ηi). If η` 6= ηi, then gk(η`) = 0 implying gj(η`) < 0. Together
with Step 3 this yields a contradiction.

Step 5: For each z 6∈ G(i), we have that there exists at least one k ∈ F (i) such that gk(z) ≤ 0.
This follows as in Step 3. Indeed, if z 6∈ G(i) then, by (3.6) we have that there is a hyperplaneH(k, i) so

that z does not lie on the same side as ηi. Hence gk(z) ≤ 0.

Combining Steps 1-5 yields the claim (3.4).

Now that we have a formula for the functions φi,T , we proceed by building these functions as realisations
of NNs.

Proposition 3.3. Let d ∈ N and T be a locally convex simplicial mesh of Ω ⊂ Rd. Let kT denote the maximum
number of neighbouring cells of the mesh, i.e.,

kT := max
i=1,...,MN

# {j : ηi ∈ τj} . (3.7)

Then, for every i = 1, . . . ,MN , there exists a NN Φi with

L(Φi) = dlog2(kT )e+ 2, and M(Φi) ≤ C · (kT + d)kT log2(kT )

for a universal constant C > 0, and

R(Φi) = φi,T , (3.8)

where the activation function is the ReLU.
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Proof. We now construct the network the realisation of which equals (3.4). The claim (3.8) then follows with
Proposition 3.2.

We start by observing that, for a, b ∈ R,

min{a, b} =
a+ b

2
− |a− b|

2
=

1

2
(%R(a+ b)− %R(−a− b)− %R(a− b)− %R(b− a)) .

Thus, defining Φmin,2 := ((A1, 0), (A2, 0)) with

A1 :=


1 1
−1 −1

1 −1
−1 1

 , A2 :=
1

2
[1,−1,−1,−1],

yields R(Φmin,2)(a, b) = min{a, b}, L(Φmin,2) = 2 and M(Φmin,2) = 12. Following an idea that we saw earlier
for the construction of the multiplication network in (2.15), we construct for p ∈ N even, the networks

Φ̃min,p := FP(Φmin,2, . . . ,Φmin,2︸ ︷︷ ︸
p/2− times

)

and for p = 2q

Φmin,p = Φ̃min,2 Φ̃min,4 · · ·  Φ̃min,p.

It is clear that the realisation of Φmin,p is the minimum operator with p inputs. If p is not a power of two then
a small adaptation of the procedure above is necessary. We will omit this discussion here.

We see that L(Φmin,p) = dlog2(p)e + 1. To estimate the weights, we first observe that the number of
neurons in the first layer of Φ̃min,p is bounded by 2p. It follows that each layer of Φmin,p has less than 2p
neurons. Since all affine maps in this construction are linear, we have that

Φmin,p = ((A1, b1), . . . , (AL, bL)) = ((A1, 0), . . . , (AL, 0)). (3.9)

We have that gk = Gk(·) + θk for θk ∈ R and Gk ∈ R1,d. Let

Φaff := P
(
((G1, θ1)) , ((G2, θ2)) , . . . ,

((
G#F (i), θ#F (i)

)))
.

Clearly, Φaff has one layer, d dimensional input, and #F (i) many output neurons.
We define, for p := #F (i),

Φi,T := ((1, 0), (1, 0)) Φmin,p Φaff .

Per construction and (3.4), we have that R(Φi,T ) = φi,T . Moreover, L(Φi,T )) = L(Φmin,p) + 1 = dlog2(p)e+ 2.
Also, by construction, the number of neurons in each layer of Φi,T is bounded by 2p. Since, by (3.9), we have
that

Φi,T = ((A1, b1), (A2, 0), . . . , (AL, 0)),

with A` ∈ RN`×N`−1 and b1 ∈ Rp, we conclude that

M(Φi,T ) ≤ p+

L∑
`=1

‖A`‖0 ≤ p+

L∑
`=1

N`−1N` ≤ p+ 2dp+ (2p)2(dlog2(p)e).

Finally, per assumption p ≤ kT which yields the claim.

As a consequence of Propositions 3.3 and 3.1, we conclude that one can represent every continuous
piecewise linear function on a locally compact mesh with N nodes as the realisation of a NN with CN
weights where the constant depends on the maximum number of cells neighbouring a vertex kT and the
input dimension d.
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Theorem 3.4. Let T be a locally convex partition of Ω ⊂ Rd, d ∈ N. Let T have MN and let kT be defined as in (3.7).
Then, for every f ∈ VT , there exists a NN Φf such that

L
(
Φf
)
≤ dlog2(kT )e+ 2,

M (Φf ) ≤ CMN · (kT + d) kT log2 (kT ) ,

R
(
Φf
)

= f,

for a universal constant C > 0.

Remark 3.5. One way to read Theorem 3.4 is the following: Whatever one can approximate by piecewise affine linear,
continuous functions with N degrees of freedom can be approximated to the same accuracy by realisations of NNs with
C ·N degrees of freedom, for a constant C. If we consider approximation rates, then this implies that realisations of
NNs achieve the same approximation rates as linear finite element spaces.

For example, for Ω := [0, 1]d, one has that there exists a sequence of locally convex simplicial meshes (Tn)∞n=1 with
MT (Tn) . n such that

inf
g∈VTn

‖f − g‖L2(Ω) . n−
2
d ‖f‖W 2,2d/(d+2)(Ω),

for all f ∈W 2,2d/(d+2)(Ω), see, e.g., [13].

3.2 Approximation of the square function
With Theorem 3.4, we are able to reproduce approximation results of piecewise linear functions by realisations
of NNs. However, the approximation rates of piecewise affine linear functions when approximating Cs
regular functions do not improve for increasing s as soon as s ≥ 1, see, e.g., Theorem 2.16. To really benefit
from higher-order smoothness, one requires piecewise polynomials of higher degree.

Therefore, if we want to approximate smooth functions in the spirit of Corollary 2.19, then we need to be
able to efficiently approximate continuous piecewise polynomials of degree higher than 1 by realisations of
NNs.

It is clear that this emulation of polynomials cannot be performed as in Corollary 2.19, since the ReLU is
piecewise linear. However, if we allow sufficiently deep networks there is, in fact, a surprisingly effective
possibility to approximate square functions and thereby polynomials by realisations of NNs with ReLU
activation functions.

To see this, we first consider the remarkable construction below.

Efficient construction of saw-tooth functions: Let

Φ∧ := ((A1, b1), (A2, 0)),

where

A1 :=

 2
2
2

 , b1 :=

 0
−1
−2

 , A2 := [1,−2, 1].

Then
R (Φ∧) (x) = %R(2x)− 2%R(2x− 1) + %R(2x− 2)

and L(Φ∧) = 2, M(Φ∧) = 8, N0 = 1, N1 = 3, N3 = 1 . It is clear that R(Φ∧) is a hat function. We depict it in
Figure 3.6.

A quite interesting thing happens if we compose R(Φ∧) with itself. We have that

R(Φ∧ · · ·  Φ∧︸ ︷︷ ︸
n−times

) = R(Φ∧) ◦ · · · ◦ R(Φ∧)︸ ︷︷ ︸
n−times
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is a saw-tooth function with 2n−1 hats of width 21−n each. This is depicted in Figure 3.6. Compositions are
notoriously hard to picture, hence it is helpful to establish the precise form of R(Φ∧ · · ·  Φ∧︸ ︷︷ ︸) formally. We
analyse this in the following proposition.

Proposition 3.6. For n ∈ N, we have that

Fn = R(Φ∧ · · ·  Φ∧︸ ︷︷ ︸
n−times

)

satisfies, for x ∈ (0, 1),

Fn(x) :=

{
2n(x− i2−n) for x ∈ [i2−n, (i+ 1)2−n], i even,
2n((i+ 1)2−n − x)) for x ∈ [i2−n, (i+ 1)2−n], i odd (3.10)

and Fn = 0 for x 6∈ (0, 1). Moreover, L(Φ∧ · · ·  Φ∧︸ ︷︷ ︸
n−times

) = n+ 1 and M(Φ∧ · · ·  Φ∧︸ ︷︷ ︸
n−times

) ≤ 12n− 2.

Proof. The proof follows by induction. We have that, for x ∈ [0, 1/2],

R(Φ∧)(x) = %R(2x) = 2x.

Moreover, for x ∈ [1/2, 1] we conclude

R(Φ∧)(x) = 2x− 2(2x− 1) = 2− 2x.

Finally, if x 6∈ (0, 1), then
%R(2x)− 2%R(2x− 1) + %R(2x− 2) = 0.

This completes the case n = 1. We assume that we have shown (3.10) for n ∈ N. Hence, we have that

Fn+1 = Fn ◦ R(Φ∧), (3.11)

where Fn satisfies (3.10). Let x ∈ [0, 1/2] and x ∈ [i2−n−1, (i + 1)2−n−1], i even. Then R(Φ∧)(x) = 2x ∈
[i2−n, (i+ 1)2−n], i even. Hence, by (3.11), we have

Fn+1(x) = 2n(2x− i2−n) = 2n+1(x− i2−n−1).

If x ∈ [1/2, 1] and x ∈ [i2−n−1, (i+ 1)2−n−1], i even, then R(Φ∧)(x) = 2− 2x ∈ [2− (i+ 1)2−n, 2− i2−n] =
[(2n+1 − i− 1)2−n, (2n+1 − i)2−n] = [j2−n, (j + 1)2−n] for j := (2n+1 − i− 1) odd. We have, by (3.11),

Fn+1(x) = 2n(j2−n − (2− 2x)) = 2n((2− 2−n(i+ 1))− (2− 2x))

= 2n(2x− 2−n(i+ 1)) = 2n+1(x− 2−n−1(i+ 1)).

The cases for i odd follow similarly. If x 6∈ (0, 1), then R(Φ∧)(x) = 0 and per (3.11) we have that Fn+1(x) = 0.
It is clear by Definition 3.12 that L(Φ∧ · · ·  Φ∧︸ ︷︷ ︸

n−times

) = n+ 1. To show that M(Φ∧ · · ·  Φ∧︸ ︷︷ ︸
n−times

) ≤ 12n− 2, we

observe with
Φ∧ · · ·  Φ∧ =: ((A1, b1), . . . , (AL, bL)))

that M(Φ∧ · · ·  Φ∧) ≤
∑n+1
`=1 N`−1N` + N` ≤ (n − 1)(32 + 3) + N0N1 + N1 + NnNn+1 + Nn+1 = 12(n −

1) + 3 + 3 + 3 + 1 = 12n− 2, where we use that N` = 3 for all 1 ≤ ` ≤ n and N0 = NL = 1.
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Figure 3.6: Top Left: Visualisation of R(Φ∧) = F1. Bottom Right: Visualisation of R(Φ∧) ◦ R(Φ∧) = F2,
Bottom Left: Fn for n = 4.

Remark 3.7. Proposition 3.6 already shows something remarkable. Consider a two layer network Φ with input
dimension 1 and N neurons. Then its realisation with ReLU activation function is given by

R(Φ) =

N∑
j=1

cj%R(ajx+ bj)− d,

for cj , aj , bj , d ∈ R. It is clear that R(Φ) is piecewise affine linear with at most N ≤M(Φ) pieces. We see, that with
this construction, the resulting networks have not more than M(Φ) pieces. However, the function Fn from Proposition
3.6 has at least 2

M(Φ)+2
12 linear pieces.

The function Fn is therefore a function that can be very efficiently represented by deep networks, but not very
efficiently by shallow networks. This was first observed in [37].

The surprisingly high number of linear pieces ofFn is not the only remarkable thing about the construction
of Proposition 3.6. Yarotsky [40] made the following insightful observation:

Proposition 3.8 ([40]). For every x ∈ [0, 1] and N ∈ N, we have that∣∣∣∣∣x2 − x+

N∑
n=1

Fn(x)

22n

∣∣∣∣∣ ≤ 2−2N−2. (3.12)
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Proof. We claim that

HN := x−
N∑
n=1

Fn
22n

(3.13)

is a piecewise linear function with breakpoints k2−N where k = 0, . . . , 2N , and HN (k2−N ) = k22−2N . We
prove this by induction. The result clearly holds for N = 0. Assume that the claim holds for N ∈ N. Then we
see that

HN −HN+1 =
FN+1

22N+2
.

Since, by Proposition 3.6, FN+1 is piecewise linear with breakpoints k2−N−1 where k = 0, . . . , 2N+1 and HN

is piecewise linear with breakpoints `2−N−1 where ` = 0, . . . , 2N+1 even, we conclude thatHN+1 is piecewise
linear with breakpoints k2−N−1 where k = 0, . . . , 2N+1. Moreover, by Proposition 3.6, FN+1 vanishes for all
k2−N−1, where k is even. Hence, by the induction hypothesis HN+1(k2−N−1) = (k2−N−1)2 for all k even.

To complete the proof, we need to show that

FN+1

22N+2
(k2−N−1) = HN (k2−N−1)− (k2−N−1)2,

for all k odd. Since HN is linear on [(k − 1)2−N−1), (k + 1)2−N−1)], we have that

HN (k2−N−1)− (k2−N−1)2 =
1

2

(
((k − 1)2−N−1)2 + ((k + 1)2−N−1)2

)
− (k2−N−1)2 (3.14)

= 2−2N−2

(
1

2

(
((k − 1))2 + (k + 1)2

)
− k2

)
= 2−2(N+1) = 2−2(N+1)FN+1(k2−N−1),

where the last step follows by Proposition 3.6. This shows that HN+1(k2−N−1) = (k2−N−1)2 for all k =
0, . . . , 2N+1 and completes the induction.

Finally, let x ∈ [k2−N , (k + 1)2−N ], k = 0, . . . , 2N − 1, then

|HN (x)− x2| = HN − x2 = (k2−N )2 +

(
(k + 1)2 − k2

)
2−2N

2−N
(x− k2−N )− x2, (3.15)

where the first step is because x 7→ x2 is convex and therefore its graph lies below that of the linear interpolant
and the second step follows by representing HN locally as the linear map that intersects x 7→ x2 at k2−N and
(k + 1)2−N .

Since (3.15) describes a continuous function on [k2−N , (k + 1)2−N ] vanishing at the boundary, it assumes
its maximum at the critical point

x∗ :=
1

2

(
(k + 1)2 − k2

)
2−2N

2−N
=

1

2
(2k + 1)2−N = (2k + 1)2−N−1 = `2−N−1,

for ` ∈ {1, . . . 2N+1} odd. We have already computed in (3.14) that

|HN (x∗)− (x∗)2| ≤ 2−2(N+1).

This yields the claim.

Equation 3.12 and Proposition 3.6 make us optimistic that, with sufficiently deep networks, we can
approximate the square function very efficiently. Before we can do this properly, we need to enlarge our
toolbox slightly and introduce a couple of additional operations on NNs.
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Figure 3.7: Visualisation of the construction of HN of (3.13).

ReLU specific network operations We saw in Proposition 2.11 that we can approximate the identity func-
tion by realisations of NNs for many activation functions. For the ReLU, we can even go one step further and
rebuild the identity function exactly.

Lemma 3.9. Let d ∈ N, and define
ΦId := ((A1, b1) , (A2, b2))

with

A1 :=

(
IdRd
−IdRd

)
, b1 := 0, A2 :=

(
IdRd −IdRd

)
, b2 := 0.

Then R(ΦId) = IdRd .

Proof. Clearly, for x ∈ Rd, R(ΦId)(x) = %R(x)− %R(−x) = x.

Remark 3.10. Lemma 3.9 can be generalised to yield emulations of the identity function with arbitrary numbers of
layers. For each d ∈ N, and each L ∈ N≥2, we define

ΦId
d,L :=

(( IdRd

−IdRd

)
, 0

)
, (IdR2d , 0), . . . , (IdR2d , 0)︸ ︷︷ ︸

L−2 times

, ([IdRd | −IdRd ] , 0)

 .

For L = 1, one can simply set ΦId
d,1 := ((IdRd , 0)).

Our first application of the NN of Lemma 3.9 is for a redefinition of the concatentation. Before that, we
first convince ourselves that the current notion of concatenation is not adequate if we want to control the
number of parameters of the concatenated NN.

Example 3.11. Let N ∈ N and Φ = ((A1, 0), (A2, 0)) with A1 = [1, . . . , 1]T ∈ RN×1, A2 = [1, . . . , 1] ∈ R1×N .
Per definition we have that M(Φ) = 2N .

Moreover, we have that
Φ Φ = ((A1, 0), (A1A2, 0), (A2, 0)).

It holds that A1A2 ∈ RN×N and every entry of A1A2 equals 1. Hence M(Φ Φ) = N +N2 +N .
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Example shows that the number of weights of networks behaves quite undesirably under concatenation.
Indeed, we would expect that it should be possible to construct a concatenation of networks that imple-
ments the composition of the respective realisations and the number of parameters scales linearly instead of
quadratically in the number of parameters of the individual networks.

Fortunately, Lemma 3.9 enables precisely such a construction, see also Figure 3.8 for an illustration.

Definition 3.12. Let L1, L2 ∈ N, and let Φ1 = ((A1
1, b

1
1), . . . , (A1

L1
, b1L1

)) and Φ2 = ((A2
1, b

2
1), . . . , (A2

L2
, b2L2

)) be
two NNs such that the input layer of Φ1 has the same dimension d as the output layer of Φ2. Let ΦId be as in Lemma
3.9.

Then the sparse concatenation of Φ1 and Φ2 is defined as

Φ1 � Φ2 := Φ1 ΦId Φ2.

Remark 3.13. It is easy to see that

Φ1 � Φ2 =

(
(A2

1, b
2
1), . . . , (A2

L2−1, b
2
L2−1),

((
A2
L2

−A2
L2

)
,

(
b2L2

−b2L2

))
,
([
A1

1

∣∣−A1
1

]
, b11
)
, (A1

2, b
1
2), . . . , (A1

L1
, b1L1

)

)

has L1 + L2 layers and that R(Φ1 � Φ2) = R(Φ1) ◦ R(Φ2) and M(Φ1 � Φ2) ≤ 2M(Φ1) + 2M(Φ2).

Approximation of the square: We shall now build a NN that approximates the square function on [0, 1].
Of course this is based on the estimate (3.12).

Proposition 3.14 ([40, Proposition 2]). Let 1/2 > ε > 0. There exists a NN Φsq,ε such that, for ε→ 0,

L(Φsq,ε) = O(log2(1/ε)) (3.16)
M(Φsq,ε) = O(log2

2(1/ε)) (3.17)∣∣R(Φsq,ε)(x)− x2
∣∣ ≤ ε, (3.18)

for all x ∈ [0, 1]. In addition, we have that R(Φsq,ε)(0) = 0.

Proof. By (3.12), we have that, for N := d− log2(ε)/2e, it holds that, for all x ∈ [0, 1],∣∣∣∣∣x2 − x+

N∑
n=1

Fn(x)

22n

∣∣∣∣∣ ≤ ε. (3.19)

We define, for n = 1, . . . , N ,

Φn := ΦId
1,N−n � (Φ∧ · · ·  Φ∧︸ ︷︷ ︸

n−times

). (3.20)

Then we have that L(Φn) = N − n+ L(Φ∧ · · ·  Φ∧︸ ︷︷ ︸
n−times

) = N + 1 by Proposition 3.6. Moreover, by Remark 3.13,

M(Φn) ≤ 2M(ΦId
1,N−n) + 2M(Φ∧ · · ·  Φ∧︸ ︷︷ ︸

n−times

) ≤ 4(N − n) + 2(12n− 2) ≤ 24N, (3.21)

where the penultimate inequality follows from Remark 3.10 and Proposition 3.6.
Next, we set

Φsq,ε :=
([

1,−1/4, . . . ,−2−2N
]
, 0
)
� P

(
ΦId

1,N+1,Φ1, . . . ,ΦN
)
.

Per construction, we have that

R (Φsq,ε) (x) = R
(
ΦId

1,N+1

)
(x)−

N∑
n=1

2−2nR (Φj) (x) = x−
N∑
n=1

Fn(x)

22n
,

26



Figure 3.8: Top: Two neural networks, Middle: Sparse concatenation of the two networks as in Definition
3.12, Bottom: Regular concatenation as in Definition 2.9.

and, by (3.19), we conclude (3.18), for all x ∈ [0, 1], and that R(Φ)(0) = 0. Moreover, we have by Remark 3.13
that

L (Φsq,ε) = L
(([

1,−1/4, . . . ,−2−2N
]
, 0
))

+ L
(
P
(
ΦId

1,N+1,Φ1, . . . ,ΦN
))

= N + 2 = d− log2(ε)/2e+ 2.

This shows (3.16). Finally, by Remark 3.13

M (Φsq,ε) ≤ 2M
(([

1,−1/4, . . . ,−2−2N
]
, 0
))

+ 2M
(
P
(
ΦId

1,N+1,Φ1, . . . ,ΦN
))

= 2(N + 1) + 2

(
M
(
ΦId

1,N+1

)
+

N∑
n=1

M (Φn)

)

= 2(N + 1) + 4(N + 1) + 2

N∑
n=1

M (Φn)

≤ 6(N + 1) + 2

N∑
n=1

24N = 6(N + 1) + 48N2,

where we applied (3.21) in the last estimate. Clearly,

6(N + 1) + 48N2 = O
(
N2
)
, for N →∞,
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and hence
M (Φsq,ε) = O

(
log2

2(1/ε)
)
, for ε→ 0,

which yields (3.17).

Remark 3.15. In [31, Theorem 5], a proof of the result above is given that does not require Proposition 3.8, but instead
is based on three fascinating ideas:

• Multiplication can be approximated by finitely many semi-binary multiplications: For x ∈ [0, 1], we
write x =

∑∞
`=1 x`2

−`. Then

x · y =

∞∑
`=1

2−`x`y =

N∑
`=1

2−`x`y +O(2−N ), for N →∞.

• Multiplication on [0, 1] by 0 or 1 can be build with a single ReLU: It holds that

%R(2−`y + x` − 1) =

{
2−`y if x` = 1
0 else

= 2−`x`y.

• Extraction of binary representation is efficient: We have, by Proposition 3.6, that F` vanishes on all i2−` for
i = 0, . . . , 2` even and equals 1 on all i2−` for i = 0, . . . , 2` odd. Therefore

FN

(
N∑
`=1

2−`x`

)
= xN .

By a short computation this yields that for all x ∈ [0, 1] that FN (x− 2−N−1) > 1/2, if xN = 1 and FN (x−
2−N−1) ≤ 1/2, if xN = 0. Hence, by building an approximate Heaviside function 1x≥0.5 with ReLU realisations
of networks, it is clear that one can approximate the map x 7→ x` for all `.

Building N of the binary multiplications therefore requires N bit extractors and N multipliers by 0/1. Hence, this
requires of the order of N neurons, to achieve an error of 2−N .

3.3 Approximation of smooth functions
With the emulation of the square function on [0, 1] we have, in principle, a way of emulating the higher-order
sigmoidal function x2

+ by ReLU networks. As we have seen in Section 2.5, sums and compositions of these
functions can be used to approximate smooth functions very efficiently.

Approximation of multiplication: Based on the idea, that we have already seen in the proof of Propo-
sition 2.18, in particular, Equation (2.14), we show how an approximation of a square function yields an
approximation of a multiplication operator.

Proposition 3.16. Let p ∈ N, K ∈ N, ε ∈ (0, 1/2). There exists a NN Φmult,p,ε such that for ε→ 0

L(Φmult,p,ε) = O(log2(K) · log2(1/ε)) (3.22)
M(Φmult,p,ε) = O(log2(K) · log2

2(1/ε)) (3.23)∣∣∣∣∣R(Φmult,p,ε)(x)−
p∏
`=1

x`

∣∣∣∣∣ ≤ ε, (3.24)

for all x = (x1, x2, . . . , xp) ∈ [−K,K]p. Moreover, R(Φmult,p,ε)(x) = 0 if x` = 0 for at least one ` ≤ p. Here the
implicit constant depends on p only.
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Proof. The crucial observation is that, by the parallelogram identity, we have that for x, y ∈ [−K,K]

x · y = K2 ·

((
x+ y

2K

)2

−
(
x− y
2K

)2
)

= K2

((
%R(x+ y)

2K
+
%R(−x− y)

2K

)2

−
(
%R(x− y)

2K
+
%R(−x+ y)

2K

)2
)
.

We set

Φ1 :=





1 1
−1 −1

1 −1
−1 1

 , 0

 ,

(
1

2K
·
(

1 1 0 0
0 0 1 1

)
, 0

) , and Φ2 :=
(([

K2,−K2
]
, 0
))
.

Now we define
Φmult,2,ε := Φ2 � FP

(
Φsq,ε/(2K2),Φsq,ε/(2K2)

)
� Φ1.

It is clear that, for all x, y ∈ [−K,K] it holds that |x± y|/(2K) ≤ 1 and hence∣∣R (Φmult,2,ε
)

(x, y)− x · y
∣∣ ≤ ε.

Moreover, the size of Φmult,2,ε is up to a constant that of Φsq,ε/K2 . Thus (3.23)-(3.24) follow from Proposition
3.14. The construction for p > 2 follows by the now well-known stategy of building a binary tree of basic
multiplication networks as in Figure 2.4.

A direct corollary of Proposition 3.16 is the following corollary that we state without proof.

Corollary 3.17. Let p ∈ N, K ∈ N, ε ∈ (0, 1/2). There exists a NN Φpow,p,ε such that, for ε→ 0,

L(Φpow,p,ε) = O(log2(K) · log2(1/ε))

M(Φpow,p,ε) = O(log2(K) · log2
2(1/ε))

|R(Φpow,p,ε)(x)− xp| ≤ ε,

for all x ∈ [−K,K]. Moreover, R(Φpow,p,ε)(x) = 0 if x = 0. Here the implicit constant depends on p only.

Approximation of B-splines: Now that we can build a NN the realisation of which is a multiplication of
p ∈ N scalars, it is not hard to see with (2.10) that we can rebuild cardinal B-splines by ReLU networks.

Proposition 3.18. Let d, k, ` ∈ N, k ≥ 2, t ∈ Rd, 1/2 > ε > 0. There exists a NN Φd`,t,k such that for ε→ 0

L(d, k) := L(Φd`,t,k) = O(log2(1/ε)), (3.25)
M(d, k) := M(Φd`,t,k) = O(log2

2(1/ε)), (3.26)∣∣R(Φd`,t,k)(x)−N d
`,t,k(x)

∣∣ ≤ ε, (3.27)

for all x ∈ Rd.

Proof. Clearly, it is sufficient to show the result for ` = 0 and t = 0. We have by (2.10) that

Nk(x) =
1

(k − 1)!

k∑
`=0

(−1)`
(
k

`

)
(x− `)k−1

+ , for x ∈ R, (3.28)
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It is well known, see [33], that supp Nk = [0, k] and ‖Nk‖∞ ≤ 1. Let δ > 0, then we set

Φk,δ :=

((
1

(k − 1)!

[(
k

0

)
,−
(
k

1

)
, . . . , (−1)k

(
k

k

)]
, 0

))
� FP

Φpow,k−1,δ, . . . ,Φpow,k−1,δ︸ ︷︷ ︸
k+1−times


� ((A1, b1), (IdRk+1 , 0)),

where
A1 = [1, 1, . . . , 1]T , b1 = −[0, 1, . . . , k]T ,

and IdRk+1 is the identity matrix on Rk+1. Here K := k + 1 in the definition of Φpow,k−1,δ via Corollary 3.17.
It is now clear, that we can find δε > 0 so that

|R(Φk,δε)(x)−Nk(x)| ≤ ε/(4d2d−1), (3.29)

for x ∈ [−k − 1, k + 1]. With sufficient care, we see that, we can choose δε = Ω(ε), for ε→ 0. Hence, we can
conclude from Definition 3.12 that Lδε := L(Φk,δε) = O(L(Φmult,k+1,δε)) = O(log2(1/ε)), and M(Φk,δε) =
O(Φmult,k+1,δε) ∈ O(log2

2(1/ε)), for ε→ 0 which yields (3.25) and (3.26). At this point, R(Φk,δε) only accurately
approximates Nk on [−k − 1, k + 1]. To make this approximation global, we multiply R(Φk,δε) with an
appropriate indicator function.

Let
Φcut :=

((
[1, 1, 1, 1]

T
, [1, 0,−k,−k − 1]

T
)
, ([1,−1,−1, 1] , 0)

)
.

Then R(Φcut) is a piecewise linear spline with breakpoints −1, 0, k, k + 1. Moreover, R(Φcut) is equal to 1 on
[0, k], vanishes on [−1, k + 1]c, and is non-negative and bounded by 1. We define

Φ̃k,δ := Φmult,2,ε/(4d2d−1) � P
(

Φk,δε ,Φ
Id
1,Lδε−2 � Φcut

)
.

Since the realisation of the multiplication is 0 as soon as one of the inputs is zero by Proposition 3.16, we
conclude that ∣∣∣R(Φ̃k,δε

)
(x)−Nk(x)

∣∣∣ ≤ ε/(2d2d−1), (3.30)

for all x ∈ R. Recall that

N d
0,0,k(x) :=

d∏
j=1

Nk (xj) , for x = (x1, . . . , xd) ∈ Rd.

Now we define

Φd0,0,k,ε := Φmult,d,ε/2 � FP(Φ̃k,δε , . . . , Φ̃k,δε︸ ︷︷ ︸
d−times

).

We have that

∣∣N d
0,0,k(x)− R

(
Φd0,0,k,ε

)
(x)
∣∣ ≤

∣∣∣∣∣∣
d∏
j=1

Nk (xj)−
d∏
j=1

R
(

Φ̃k,δε

)
(xj)

∣∣∣∣∣∣+

∣∣∣∣∣∣R (Φd0,0,k,ε) (x)−
d∏
j=1

R
(

Φ̃k,δε

)
(xj)

∣∣∣∣∣∣ .
Additionally, we have by (3.30) that∣∣∣∣∣∣∣

d∏
j=1

R
(

Φ̃k,δ

)
(xj)− R

(
Φ̃mult,d,ε/2

)
◦ R(FP(Φ̃k,δε , . . . , Φ̃k,δε︸ ︷︷ ︸

d−times

))(x)

∣∣∣∣∣∣∣ ≤ ε/2,
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for all x ∈ Rd. It is clear, by repeated applications of the triangle inequality that for aj ∈ [0, 1], bj ∈ [−1, 1],
for j = 1, . . . , d,∣∣∣∣∣∣

d∏
j=1

aj −
d∏
j=1

(aj + bj)

∣∣∣∣∣∣ ≤ d ·
(

1 + max
j=1,...,d

|bj |
)d−1

max
j=1,...,d

|bj | ≤ d2d−1 max
j=1,...,d

|bj |.

Hence, ∣∣∣∣∣∣
d∏
j=1

Nk (xj)−
d∏
j=1

R
(

Φ̃k,δε

)
(xj)

∣∣∣∣∣∣ ≤ ε/2.
This yields (3.27). The statement on the size of Φd0,0,k,ε follows from Remark 3.13.

Approximation of smooth functions: Having established how to approximate arbitrary B-splines with
Proposition 3.18, we obtain that we can also approximate all functions that can be written as weighted sums of
B-splines with bounded coefficients. Indeed, we can conclude with Theorem 2.16 and with similar arguments
as in Theorem 2.14 the following result. Our overall argument to arrive here followed the strategy of [36].

Theorem 3.19. Let d ∈ N, s > δ > 0 and p ∈ (0,∞]. Then there exists a constant C > 0 such that, for every
f ∈ Cs([0, 1]d) with ‖f‖Cs ≤ 1 and every 1/2 > ε > 0, there exists a NN Φ such that

L(Φ) ≤ C log2(1/ε), (3.31)

M(Φ) ≤ Cε−
d
s−δ , (3.32)

‖f − R(Φ)‖Lp ≤ ε. (3.33)

Here the activation function is the ReLU.

Proof. Let f ∈ Cs([0, 1]d) with ‖f‖Cs ≤ 1 and let s > δ > 0. By Theorem 2.16 there exist a constant C > 0
and, for every N ∈ N, ci ∈ R with |ci| ≤ C and Bi ∈ Bk for i = 1, . . . , N and k := dse, such that∥∥∥∥∥f −

N∑
i=1

ciBi

∥∥∥∥∥
p

≤ CN
δ−s
d .

By Proposition 3.18, each of the Bi can be approximated up to an error of N δ−s
d /(CN) with a NN Φi of

depth O(log2(N
δ−s
d /(CN))) = O(log2(N)) and number of weights O(log2

2(N
δ−s
d /(CN))) = O(log2

2(N)) for
N →∞.

We define
ΦNf := ([c1, . . . , cN ], 0)  P (Φ1, . . . ,ΦN ) .

It is not hard to see that, for N →∞,

M(ΦNf ) = O(N log2
2(N)) and L(ΦNf ) = O(log2(N)).

Additionally, by the triangle inequality ∥∥f − R(ΦNf )
∥∥
p
≤ 2N

δ−s
d .

To achieve (3.33), we, therefore, need to choose N = Nε := d(ε/2)d/(δ−s)e.
A simple estimate yields that L(ΦNεf ) = O(log2(1/ε)) for ε→ 0, i.e, (3.31). Moreover, we have that

Nε log2
2(Nε) ≤ 4d/(s− δ)(ε/2)d/(δ−s) log2

2(ε/2) ≤ C ′ε−d/(s−δ) log2
2(ε),
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for a constant C ′ > 0. It holds that log2
2(ε) = O(ε−σ) for every σ > 0. Hence, for every δ′ > δ with s > δ′, we

have
ε−d/(s−δ) log2

2(ε) = O(ε−d/(s−δ
′)), for ε→ 0.

As a consequence we have thatM(ΦNεf ) = O(ε−d/(s−δ
′)) for ε→ 0. Since δ was arbitrary, this yields (3.32).

Remark 3.20. • It was shown in [40] that Theorem 3.19 holds with δ = 0 but with the bound M(Φ) ≤
Cε−d/s log2(1/ε). Moreover, it holds for f ∈ Cs([−K,K]d) for K > 0, but the constant C will then de-
pend on K.

4 The role of depth
We have seen in the previous results that NNs can efficiently emulate the approximation of classical approxi-
mation tools, such as linear finite elements or B-splines. Already in Corollary 2.19, we have seen that deep
networks are sometimes more efficient at this task than shallow networks. In Remark 3.7, we found that
ReLU-realisations of deep NNs can represent certain saw-tooth functions with N linear pieces using only
O(log2(N)) many weights, whereas shallow NNs require O(N) many weights for N →∞.

In this section, we investigate further examples of representation or approximation tasks that can be
performed easily with deep networks but cannot be achieved by small shallow networks or any shallow
networks.

4.1 Representation of compactly supported functions
Below we show that compactly supported functions cannot be represented by weighted sums of functions of
the form x 7→ %R(〈a, x〉), but they can be represented by 3-layer networks. This result is based on [5, Section
3].

Proposition 4.1. Let d ∈ N, d ≥ 2. The following two statements hold for the activation function %R:

• If L ≥ 3, then there exists a NN Φ with L layers, such that supp R(Φ) = B‖.‖1(0),∗

• If L ≤ 2, then, for every NN Φ with L layers, such that supp R(Φ) is compact, we have that R(Φ) ≡ 0.

Proof. It is clear that, for every x ∈ Rd, we have that

d∑
`=1

(%R(x`) + %R(−x`)) = ‖x‖1.

Moreover, the function %R(1− ‖x‖1) is clearly supported on B‖.‖1(0). Moreover, we have that %R(1− ‖x‖1)
can be written as the realisation of a NN with at least 3 layers.

Next we address the second part of the theorem. If L = 1, then the set of realisations of NNs contains
only affine linear functions. It is clear that the only affine linear function that vanishes on a set of non-empty
interior is 0. For L = 2, all realisations of NNs have the form

x 7→
N∑
i=1

ci%R(〈ai, x〉+ bi) + d, (4.1)

for N ∈ N, ci, bi, d ∈ R and ai ∈ Rd, for i = 1, . . . , N . We assume without loss of generality that all
ai 6= 0 otherwise %R(〈ai, x〉+ bi) would be constant and one could remove the term from (4.1) by adapting d
accordingly.

∗ Here ‖x‖pp :=
∑d

k=1 |xk|p for p ∈ (0,∞).
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We next show that every function of the form (4.1) with compact support vanishes everywhere. For an
index i, we have that %R(〈ai, x〉+ bi) is not continously differentiable at the hyperplane given by

Si :=

{
− bai
‖ai‖2

+ z : z ⊥ ai
}
.

Let f be a function of the form (4.1). We define i ∼ j, if Si = Sj . Then we have that, for J ∈ {1, . . . , N}/ ∼
that a⊥i = a⊥j for all i, j ∈ J . Hence, ∑

j∈J
cj%R(〈aj , x〉+ bk),

is constant perpendicular to aj for every j ∈ J . And since the sum is piecewise affine linear, we have that it is
either affine linear or not continuously differentiable at every element of Sj . We can write

f(x) =
∑

J∈{1,...,N}/∼

∑
j∈J

cj%R(〈aj , x〉+ bj)

+ d.

If i 6∼ j, then Si and Sj intersect in hyperplanes of dimension d − 2. Hence, it is clear that, if for at least
one J ∈ {1, . . . , N}/ ∼,

∑
j∈J cj%R(〈aj , x〉+ bj) is not linear, then f is not continuously differentiable almost

everywhere in Sj for j ∈ J . Since Sj is unbounded, this contradicts the compact support assumption on f .
On the other hand, if, for all J ∈ {1, . . . , N}/ ∼, we have that

∑
j∈J cj%R(〈aj , x〉+ bj) is affine linear, then f

is affine linear. By previous observations we have that this necessitates f ≡ 0 to allow compact support of
f .

Remark 4.2. Proposition 4.1, deals with representability only. However, a similar result is true in the framework of
approximation theory. Concretely, two layer networks are inefficient at approximating certain compactly supported
functions, that three layer networks can approximate very well, see e.g. [10].

4.2 Number of pieces
We start by estimating the number of piecewise linear pieces of the realisations of NNs with input and output
dimension 1 and L layers. This argument can be found in [37, Lemma 2.1].

Theorem 4.3. Let L ∈ N. Let % be piecewise affine linear with p pieces. Then, for every NN Φ with d = 1, NL = 1
and N1, . . . , NL−1 ≤ N , we have that R(Φ) has at most (pN)L−1 affine linear pieces.

Proof. The proof is given via induction over L. For L = 2, we have that

R(Φ) =

N1∑
k=1

ck%(〈ak, x〉+ bi) + d,

where ck, ak, bi, d ∈ R. It is not hard to see that if f1, f2 are piecewise affine linear with n1, n2 pieces each,
then f1 + f2 is piecewise affine linear with at most n1 + n2 pieces. Hence, R(Φ) has at most Np many affine
linear pieces.

Assume the statement to be proven for L ∈ N. Let ΦL+1 be a NN with L+ 1 layers. We set

ΦL+1 =: ((A1, b1) , . . . , (AL+1, bL+1)) .

It is clear, that
R(ΦL+1)(x) = AL+1[%(h1(x)), . . . , %(hNL(x))]T + bL+1,

where for ` = 1, . . . , NL each h` is the realisation of a NN with input and output dimension 1, L layers, and
less than N neurons in each layer.
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For a piecewise affine linear function f with p̃ pieces, we have that % ◦ f has at most p · p̃ pieces. This is
because, for each of the p̃ affine linear pieces of f—let us call one of those pieces A ⊂ R—we have that f is
either constant or injective on A and hence % ◦ f has at most p linear pieces on A.

By this observation and the induction hypothesis, we conclude that % ◦ h1 has at most p(pN)L−1 affine
linear pieces. Hence,

R(ΦL+1)(x) =

NL∑
k=1

(AL+1)k%(hk(x)) + bL+1

has at most Np(pN)L−1 = (pN)L many affine linear pieces. This completes the proof.

For functions with input dimension more than 1 we have the following corollary.

Corollary 4.4. Let L, d ∈ N. Let % be piecewise affine linear with p pieces. Then, for every NN Φ with NL = 1 and
N1, . . . , NL−1 ≤ N , we have that R(Φ) has at most (pN)L−1 affine linear pieces along every line.

Proof. Every line in Rd can be parametrized by R 3 t 7→ x0 + tv for x0, v ∈ Rd. For Φ as in the statement of
corollary, we have that

R(Φ)(x0 + tv) = R(Φ  Φ0)(t),

where Φ0 = ((v, x0)), which gives the result via Theorem 4.3.

4.3 Approximation of non-linear functions
Through the bounds on the number of pieces of a realisation of a NN with an piecewise affine linear activation
function, we can deduce a limit on approximability through NNs with bounds on the width and numbers of
layers for certain non-linear functions. This is based on the following observation, which can, e.g., be found
in [11].

Proposition 4.5. Let f ∈ C2([a, b]), for a < b < ∞ so that f is not affine linear, then there exists a constant
c = c(f) > 0 so that, for every p ∈ N,

‖g − f‖∞ > cp−2,

for all g which are piecewise affine linear with at most p pieces.

From this argument, we can now conclude the following lower bound to approximating functions which
are not affine linear by realisations of NNs with fixed numbers of layers.

Theorem 4.6. Let d, L,N ∈ N, and f ∈ C2([0, 1]d), where f is not affine linear. Let % : R→ R be piecewise affine
linear with p pieces. Then for every NN with L layers and fewer than N neurons in each layer, we have that

‖f − R(Φ)‖∞ ≥ c(pN)−2(L−1).

Proof. Let f ∈ C2([0, 1]d) and non-linear. Then it is clear that there exists a point x0 and a vector v so that
t 7→ f(x0 + tv) is non-linear in t = 0.

We have that, for every NN Φ with d-dimensional input, one-dimensional output, L layers, and fewer
than N neurons in each layer that

‖f − R(Φ)‖∞ ≥ ‖f(x0 + ·v)− R(Φ)(x0 + ·v)‖∞ ≥ c · (pN)−2(L−1),

where the last estimate is by Corollary 4.4 and Proposition 4.5.

Remark 4.7. Theorem 4.6 shows that Theorem 3.19 would not hold with a fixed, bounded number of layers L as soon
as s sufficiently large. In other words, for very smooth functions, shallow networks yield suboptimal approximation
rates.

Moreover, no twice continuously differentiable and non-linear function can be approximated with an error that
decays with a super polynomial rate in the number of neurons by NNs with a fixed number of layers. In particular, the
approximation rate of Proposition 3.14 is not achievable by sequences of NNs of fixed finite depth.
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5 High dimensional approximation
At this point we have seen two things on an abstract level. Deep NNs can approximate functions as well as
basically every classical approximation scheme. Shallow NNs do not perform as well as deep NNs in many
problems. From these observations we conclude that deep networks are preferable over shallow networks,
but we do not see why we should not use a classical tool, such as B-splines in applications instead. What is it
that makes deep NNs better than classical tools?

One of the advantages will become clear in this section. As it turns out, deep NNs are quite efficient in
approximating high dimensional functions.

5.1 Curse of dimensionality
The curse of dimensionality is a term introduced by Bellman [3] which is commonly used to describe an
exponentially increasing difficulty of problems with increasing dimension. A typical example is that of
function interpolation. We define the following function class, for d ∈ N,

Fd :=

{
f ∈ C∞([0, 1]d) : sup

|α|=1

‖Dαf‖ ≤ 1

}
.

If one defines e(n, d) as the smallest number such that there exists an algorithm reconstructing every f ∈ Fd
up to an error of e(n, d) from n point evaluations of f , then

e(n, d) = 1

for all n ≤ 2bd/2c − 1, see [21]. As a result, in any statement of the form

e(n, d) ≤ Cd,rn−r,

we have that the constant Cd,r depends exponentially on d.
Another instance of this principle can be observed when approximating non-smooth functions. For

example, in Theorem 2.16, we saw that the approximation rate, when approximating functions f ∈ Cs([0, 1]d)
deteriorates exponentially with the dimension d. In fact, the approximation rates of Theorem 2.16 are, up to
the δ, optimal under some very reasonable assumptions on the approximation scheme, see [9] and discussions
later in the manuscript. Hence, there is a fundamental lower bound on approximation capabilities of any
approximation scheme that increases exponentially with the dimension.

Careful inspection of the arguments above show that these arguments also apply to approximation by
deep NNs. Hence, whenever we say below, that NNs overcome the curse of dimensionality then we mean that
under a certain additional assumption on the functions to approximate, we will not see a terrible dependence
of the approximation rate on the dimension.

5.2 Hierarchy assumptions
We have seen in Corollary 2.19 and Theorem 3.19 that, to approximate a Cs regular function by a NN with a
higher-order sigmoidal function or a ReLU as activation function up to an accuracy ε > 0, we need essentially
O(ε−d/s) many weights. In contrast to that, a d-dimensional function f so that f(x) =

∑d
i=1 gi(xi), where

all the gi are one dimensional can be approximated using essentially dO(ε−1/s) many weights, which is
asymptotically much less than O(ε−d/s) for ε→ 0.

It is, therefore, reasonable to assume that high dimensional functions that are build from lower dimensional
functions in a way that can be emulated well with NNs, can be much more efficiently approximated than
high dimensional functions without this structure.

This observation was used in [27] to study approximation of so-called compositional functions. The
definition of these functions is based on special types of graphs.
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Definition 5.1. Let d, k,N ∈ N and let G(d, k,N) be the set of directed acyclic graphs with N vertices, where the
indegree of every vertex is at most k and the outdegree of all but one vertex is at least 1 and the indegree of exactly d
vertices is 0.

For G ∈ G(d, k,N), let (ηi)
N
i=1 be a topological ordering of G. In other words, every edge ηiηj in G satisfies i < j.

Moreover, for each i > d we denote
Ti := {j : ηjηi is an edge of G},

and di = #Ti ≤ k.

With the necessary graph theoretical framework established, we can now define sets of hierarchical
functions.

Definition 5.2. Let d, k,N, s ∈ N. Let G ∈ G(d, k,N) and let, for i = d + 1, . . . , N , fi ∈ Cs(Rdi) with
‖fi‖Cs(Rdi ) ≤ 1∗. For x ∈ Rd, we define, for i = 1, . . . , d, vi = xi and, for i = d + 1, . . . , N , vi(x) =
fi(vj1(x), . . . , vjdi (x)), where j1, . . . , jdi ∈ Ti and j1 < j2 < · · · < jdi .

We call the function

f : [0, 1]d → R, x 7→ vN (x)

a compositional function associated toGwith regularity s. We denote the set of compositional functions associated
to any graph in G(d, k,N) with regularity s by CF(d, k,N ; s).

We present a visualisation of three types of graphs in Figure 5.1. While we have argued before that it is
reasonable to expect that NNs can efficiently approximate these types of functions, it is not entirely clear
why this is a relevant function class to study. In [20, 27], it is claimed that these functions are particularly
close to the functionality of the human visual cortex. In principle, the visual cortex works by first analysing
very localised features of a scene and then combining the resulting responses in more and more abstract
levels to yield more and more high-level descriptions of the scene.

If the inputs of a function correspond to spatial locations, e.g., come from several sensors, such as in
weather forecasting, then it might make sense to model this function as network of functions that first
aggregate information from spatially close inputs before sending the signal to a central processing unit.

Compositional functions can also be compared with Boolean circuits comprised of simple logic gates.
Let us now show how well functions from CF(d, k,N ; s) can be approximated by ReLU NNs. Here we

are looking for an approximation rate that increases with s and, hopefully, does not depend too badly on d.

Theorem 5.3. Let d, k,N, s ∈ N. Then there exists a constant C > 0 such that for every f ∈ CF(d, k,N ; s) and
every 1/2 > ε > 0 there exists a NN Φf with

L(Φf ) ≤ CN2 log2(k/ε) (5.1)

M(Φf ) ≤ CN4(2k)
kN
s ε−

k
s log2(k/ε) (5.2)

‖f − R(Φf )‖∞ ≤ ε, (5.3)

where the activation function is the ReLU.

Proof. Let f ∈ CF(d, k,N ; s) and let, for i = d + 1, . . . , N , fi ∈ Cs(Rdi) be according to Definition 5.2. By
Theorem 3.19 and Remark 3.20, we have that there exists a constant C > 0 and NNs Φi such that

|R(Φi)(x)− fi(x)| ≤ ε

(2k)N
, (5.4)

for all x ∈ [−2, 2]di and L(Φi) ≤ CN log2(k/ε) and

M(Φi) ≤ Cε−di/s(2k)
diN

s N log2(k/ε) ≤ Cε−k/s(2k)
kN
s N log2(k/ε).

∗The restriction ‖fi‖Cs(Rdi ) ≤ 1 could be replaced by ‖fi‖Cs(Rdi ) ≤ κ for a κ > 1, and Theorem 5.3 below would still hold up to
some additional constants depending on κ. This would, however, significantly increase the technicalities and obfuscate the main ideas
in Theorem 5.3.
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Figure 5.1: Three types of graphs that could be the basis of compositional functions. The associated functions
are composed of two or three dimensional functions only.

For i = d + 1, . . . , N , let Pi be the orthogonal projection from Ri−1 to the components in Ti, i.e, for
Ti =: {j1, . . . , jdi}, where j1 < · · · < jdi , we set Pi((xk)i−1

k=1) = (xjk)dik=1.
Now we define for j = d+ 1, . . . , N − 1,

Φ̃j := P
(

ΦId
j−1,L(Φj)

,Φj Pj

)
,

and
Φ̃N := ΦN PN .

Moreover,
Φf := Φ̃N � Φ̃N−1 � . . .� Φ̃d+1.

We first analyse the size of Φf . It is clear that

L (Φf ) ≤ N N
max
j=d+1

L
(

Φ̃j
)
≤ N N

max
j=d+1

L (Φj) ≤ CN2 log2(k/ε),

which yields (5.1). Additionally, since

M
(

Φ̃N � Φ̃N−1 � . . .� Φ̃d+1
)
≤ 2M

(
Φ̃N � Φ̃N−1 � . . .� Φ̃d(N+d+1)/2e

)
+ 2M

(
Φ̃d(N+d+1)/2e−1 � . . .� Φ̃N+d+1/2

)
,

we have that

M (Φf ) . 2dlog2(N)eN
N

max
j=d+1

M
(

Φ̃j
)
. N2 N

max
j=d+1

M
(

Φ̃j
)
. (5.5)
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Furthermore,
N

max
j=d+1

M
(

Φ̃j
)
≤ N−1

max
j=d+1

M
(

ΦId
j−1,L(Φj)

)
+

N
max
j=d+1

M(Φj)

≤ 2NL (Φj) +
N

max
j=d+1

M (Φj)

≤ 2CN2 log2(k/ε) + Cε−k/s(2k)Nk/sN log2(k/ε),

where the penultimate estimate follows by Remark 3.10. Therefore, by (5.5),

M(Φf ) . ε−k/s(2k)Nk/sN4 log2(k/ε),

which implies (5.2).
Finally, we prove (5.3). We claim that for N > j > d in the notation of Definition 5.2, for x ∈ [0, 1]d,∣∣∣R(Φ̃j � . . .� Φ̃d+1

)
(x)− [v1(x), v2(x), . . . , vj(x)]

∣∣∣ ≤ ε/ (2k)
N−j

. (5.6)

We prove (5.6) by induction. Since the realisation of ΦId
d,L(Φd+1) is the identity, we have, by construction that

(R(Φ̃d+1)(x))k = vk(x) for all k ≤ d. Moreover, by (5.4), we have that∣∣∣∣(R
(

Φ̃d+1
)

(x)
)
d+1
− vd+1(x)

∣∣∣∣ =

∣∣∣∣(R
(

Φ̃d+1
)

(x)
)
d+1
− fd+1(x)

∣∣∣∣ ≤ ε/ (2k)
N
.

Assume, for the induction step, that (5.6) holds for N − 1 > j > d.
Again, since the identity is implemented exactly, we have by the induction hypothesis that, for all k ≤ j,∣∣∣(R

(
Φ̃j+1 � . . .� Φ̃d+1

)
(x)
)
k
− vk(x)

∣∣∣ ≤ ε/ (2k)
N−j

.

Moreover, we have that vj+1(x) = fj+1(Pj+1([v1(x), . . . , vj(x)])). Hence,∣∣∣∣(R
(

Φ̃j+1 � . . .� Φ̃d+1
)

(x)
)
j+1
− vj+1(x)

∣∣∣∣
=
∣∣∣R (Φj+1) ◦ Pj+1 ◦ R

(
Φ̃j � . . .� Φ̃d+1

)
(x)− vj+1(x)

∣∣∣
≤
∣∣∣R (Φj+1) ◦ Pj+1 ◦ R

(
Φ̃j � . . .� Φ̃d+1

)
(x)− fj+1 ◦ Pj+1 ◦ R

(
Φ̃j � . . .� Φ̃d+1

)
(x)
∣∣∣

+
∣∣∣fj+1 ◦ Pj+1 ◦ R

(
Φ̃j � . . .� Φ̃d+1

)
(x)− fj+1 ◦ Pj+1 ◦ [v1(x), . . . , vj(x)]

∣∣∣ =: I + II.

Per (5.4), we have that I ≤ ε/(2k)N (Note that Pj+1 ◦ R
(

Φ̃j � . . .� Φ̃d+1
)

(x) ⊂ [−2, 2]dj+1 by the induction
hypothesis). Moreover, since every partial derivative of fj+1 is bounded in absolute value by 1 we have that
II ≤ dj+1ε/

(
(2k)N−j

)
≤ ε/

(
2(2k)N−j−1

)
by the induction assumption. Hence I + II ≤ ε/(2k)N−j−1

Finally, we compute∣∣∣R(Φ̃N � . . .� Φ̃d+1
)

(x)− vN (x)
∣∣∣

=
∣∣∣R (ΦN ) ◦ PN ◦ R

(
Φ̃N−1 � . . .� Φ̃d+1

)
(x)− vN (x)

∣∣∣
≤
∣∣∣R (ΦN ) ◦ PN ◦ R

(
Φ̃N−1 � . . .� Φ̃d+1

)
(x)− fN ◦ PN ◦ R

(
Φ̃N−1 � . . .� Φ̃d+1

)
(x)
∣∣∣

+
∣∣∣fN ◦ PN ◦ R

(
Φ̃N−1 � . . .� Φ̃d+1

)
(x)− fN ◦ PN ◦ [v1(x), . . . , vN−1(x)]

∣∣∣ =: III + IV.

Using the exact same argument as for estimating I and II above, we conclude that

III + IV ≤ ε,

which yields (5.3).
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Remark 5.4. Theorem 5.3 shows what we had already conjectured earlier. The complexity of approximating a composi-
tional function depends asymptotically not on the input dimension d, but on the maximum indegree of the underlying
graph.

We also see that, while the convergence rate does not depend on d, the constants in (5.2) are potentially very large.
In particular, for fixed s the constants grow superexponentially with k.

5.3 Manifold assumptions
Realisations of deep NNs are, by definition, always functions on a d dimensional euclidean space. Of course,
we may only care about the values that this function takes on subsets of this space. For example, we may
only study approximation by NNs on compact subsets of Rd. In this manuscript, we have mostly studied this
setup for compact subsets of the form [A,B]d, where A < B.

Another approach could be, that we only care about the approximation of functions that live on low
dimensional submanifoldsM⊂ Rd. In applications, such as image classification, it is conceivable that the
input data, only come from the (potentially) low dimensional submanifold of natural images. In that context,
it is clear that the approximation properties of NNs are only interesting to us on that submanifold. In other
words, we would not care about the behaviour of a NN on inputs that are just unstructured combinations of
pixel values.

For a function f : M→ Rn and ε > 0, we now search for a NN Φ with input dimension d and output
dimension n, such that

|f(x)− R(Φ)(x)| ≤ ε, for all x ∈M.

IfM is a d′-dimensional manifold with d′ < d, and f ∈ Cn(M), then we would expect to be able to obtain
an approximation rate by NNs, that does not depend on d but on d′.

To obtain such a result, we first make a convenient definition of certain types of submanifolds of Rd.

Definition 5.5. Let M be a smooth d′-dimensional submanifold of Rd. For N ∈ N, δ > 0, we say that M is
(N, δ)-covered, if there exist x1, . . . , xN ∈M and such that

•
⋃N
i=1Bδ/2(xi) ⊃M

• the projection
Pi : M∩Bδ(xi)→ TxiM

is injective and smooth and
P−1
i : Pi(M∩Bδ(xi))→M

is smooth.

Here TxiM is the tangent space ofM at xi. See Figure 5.2 for a visualisation. We identify TxiM with Rd′ in the
sequel.

Next, we need to define spaces of smooth functions onM. For k ∈ N, a function f onM is k-times
continuously differentiable if f ◦ ϕ−1 is k-times continuously differentiable for every coordinate chart ϕ. If
M is (N, δ) covered, then we can even introduce a convenient Ck- norm on the space of k-times continuously
differentiable functions onM by

‖f‖Ck,δ,N := sup
i=1,...,N

∥∥f ◦ P−1
i

∥∥
Ck(Pi(M∩Bδ(xi)))

.

With this definition, we can have the following result which is similar to a number of results in the
literature, such as [34, 35, 6, 32].
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M

Figure 5.2: One dimensional manifold embedded in 2D. For two points the tangent space is visualised in red.
The two circles describe areas where the projection onto the tangent space is invertible and smooth.

Theorem 5.6. Let d, k ∈ N,M ⊂ Rd be a (N, δ)-covered d′-dimensional manifold for an N ∈ N and δ > 0. Then
there exists a constant c > 0, such that, for every ε > 0, and f ∈ Ck(M,R) with ‖f‖Ck,δ,N ≤ 1, there exists a NN Φ,
such that

‖f − R(Φ)‖∞ ≤ ε,

M(Φ) ≤ c ·
(
ε−

d′
k log2(1/ε)

)
L(Φ) ≤ c · (log2(1/ε)) .

Here the activation function is the ReLU.

Proof. The proof is structured in two parts. First we show a convenient alternative representation of f , then
we construct the associated NN.

Step 1: SinceM is (N, δ)-covered, there exists B > 0 such thatM⊂ [−B,B]d.
Let T be a simplicial mesh on [−B,B]d so that for all nodes ηi ∈ T we have that

G(i) ⊂ Bδ/8(ηi).

See (3.2) for the definition of G(i) and Figure 5.3 for a visualisation of T .
By Proposition 3.1, we have that

1 =

MN∑
i=1

φi,T .

We denote
IM := {i = 1, . . . ,MN : dist(ηi,M) ≤ δ/8},

where dist(a,M) = miny∈M |a− y|. Per construction, we have that

1 =
∑
i∈IM

φi,T (x), for all x ∈M.
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M

Figure 5.3: Construction of mesh and choice of IM for a given manifoldM

In Figure 5.3, we highlight the cells corresponding to IM.
Moreover, by Definition 5.5, there exist x1 . . . xN ∈ M such that

⋃N
i=1Bδ/2(xi) ⊃ M. Hence, ηi ∈⋃N

i=1B5δ/8(xi) for all i ∈ IM. Thus, for each ηi there exists j(i) ∈ {1, . . . , N} such thatBδ/8(ηi) ⊂ B3δ/4(xj(i)).
We rewrite f as follows: For x ∈M, we have that

f(x) =
∑
i∈IM

φi,T (x) · f(x)

=
∑
i∈IM

φi,T (x) ·
(
f ◦ P−1

j(i) ◦ Pj(i)(x)
)

=:
∑
i∈IM

φi,T (x) ·
(
fj(i) ◦ Pj(i)(x)

)
, (5.7)

where fi : Pi(M∩Bδ(xi))→ R has Ck norm bounded by 1. We have that

Pi(M∩B3δ/4(xi)) ⊂ Pi(M∩B3δ/4(xi)) ⊂ Pi(M∩B7δ/8(xi))

and Pi(M∩B3δ/4(xi)), Pi(M∩B7δ/8(xi)) are open. By a C∞ version of the Urysohn Lemma, there exists a
smooth function σ : Rd → [0, 1] such that σ = 1 on Pi(M∩B3δ/4(xi)) and σ = 0 on (Pi(M∩B7δ/8(xi)))

c.
We define

f̃i :=

{
σfi for x ∈ Pi(M∩Bδ(xi))
0 else.

It is not hard to see that f̃i ∈ Ck(Rd′) with ‖f‖Ck ≤ CM, where CM is a constant depending onM only and
f̃i = fi on Pi(M∩B3δ/4(xi)). Hence, with (5.7), we have that

f(x) =
∑
i∈IM

φi,T (x) ·
(
f̃j(i) ◦ Pj(i)(x)

)
. (5.8)

Step 2: The form of f given by (5.8) suggests a simple way to construct a ReLU approximation of f .
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First of all, for every i ∈ IM, we have that Pj(i) is an affine linear map from [−B,B]d to Rd′ . We set
ΦPi := ((Ai1, b

i
1)), where Ai1, bi1 are such that Ai1x+ bi1 = Pj(i)(x) for all x ∈ Rd.

Let K > 0 be such that Pi(M) ⊂ [−K,K]d
′ for all i ∈ IM. For every i ∈ IM, we have by Theorem 3.19

and Remark 3.20 that for every ε1 > 0 there exists a NN Φfi such that, for all x ∈ [−K,K]d
′ ,∣∣∣f̃j(i)(x)− R

(
Φfi

)
(x)
∣∣∣ ≤ ε1,

M
(

Φfi

)
. ε
−d′/k
1 log2(1/ε1), (5.9)

L
(

Φfi

)
. log2(1/ε1). (5.10)

Per Proposition 3.3, there exists, for every i ∈ IM, a neural network Φφi with

R
(

Φφi

)
= φi,T , M

(
Φφi

)
, L
(

Φφi

)
. 1, (5.11)

with a constant depending on d.
Now we define, with Proposition 3.16, for ε2 > 0,

Φ
φ(fP )
i := Φmult,2,ε2 � P

(
ΦId

1,L∗ � Φφi ,Φ
f
i � ΦPi

)
,

where L∗ := L(Φfi � ΦPi )− L(Φφi ). At this point, we assume that L∗ ≥ 0. If L(Φfi � ΦPi ) < L(Φφi ), then one
could instead extend Φfi .

Finally, we define, for Q := |IM|,

Φε1,ε2 := (([1, . . . , 1], 0))  P
(

Φ
φ(fP )
i1

,Φ
φ(fP )
i2

, . . . ,Φ
φ(fP )
iQ

)
.

We have, by (5.8) that

‖f − R(Φε1,ε2)‖∞ ≤ Q max
i∈IM

∥∥∥φi,T · (f̃j(i) ◦ Pj(i))− R
(

Φ
φ(fP )
i

)∥∥∥
∞

≤ Q max
i∈IM

∥∥∥φi,T · (f̃j(i) ◦ Pj(i))− R
(

Φφi

)
· R
(

Φfi � ΦPi

)∥∥∥
∞

+Q max
i∈IM

∥∥∥R
(

Φφi

)
· R
(

Φfi � ΦPi

)
− R

(
Φ
φ(fP )
i

)∥∥∥
∞

=: Q · (I + II).

We proceed by estimating I. By (5.11) we have that φi,T = R
(

Φφi

)
and hence

I = max
i∈IM

∥∥∥φi,T · (f̃j(i) ◦ Pj(i))− φi,T · R(Φfi � ΦPi

)∥∥∥
∞

≤ max
i∈IM

∥∥∥(f̃j(i) ◦ Pj(i))− R
(

Φfi � ΦPi

)∥∥∥
∞
≤ ε1.

Moreover, II ≤ ε2 by construction. We have, for ε > 0 and ε1 := ε2 := ε/(2Q), that

‖f − R (Φε1,ε2)‖∞ ≤ ε.

Finally, we estimate the size of Φε1,ε2 . We have that

M(Φε1,ε2) ≤ Q max
i∈IM

M
(

Φ
φ(fP )
i

)
≤ 2Q ·

(
M
(
Φmult,2,ε2

)
+M

(
ΦId

1,L∗ � Φφi

)
+M

(
Φfi � ΦPi

))
≤ 2Q ·

(
cmult log2(1/ε) + 4L∗ + 2M

(
Φφi

)
+ 2M

(
Φfi

)
+ 2M

(
ΦPi
))
,
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for a constant cmult > 0 by Proposition 3.16 and Remark 3.10. By (5.9), we conclude that

M(Φε1,ε2) . ε−d
′/k log2(1/ε),

where the implicit constant depends onM and d. As the last step, we compute the depth of Φε1,ε2 . We have
that

L(Φε1,ε2) = max
i∈IM

L
(

Φ
φ(fP )
i

)
= L

(
Φmult,2,ε2

)
+ L

(
Φfi � ΦPi

)
,

. log2(1/ε2) + log2(1/ε1) . log2(1/ε)

by (5.10).

Remark 5.7. Theorem 5.6 shows that the approximation rate when approximating Ck regular functions defined on a
manifold does not depend badly on the ambient dimension. However, at least in our construction, the constants may
still depend on d and even grow rapidly with d. For example, in the estimate in (5.11) the implicit constant depends,
because of Proposition 3.3 on the maximal number of neighbouring cells of the underlying mesh. For a typical mesh on
a grid Zd of a d dimensional space, it is not hard to see that this number grows exponentially with the dimension d.

5.4 Dimension dependent regularity assumption
The last instance of an approximation result without curse of dimension that we shall discuss in this section
is arguably the historically first result of this form. In [2], it was shown that, under suitable assumptions on
the integrability of the Fourier transform of a function, approximation rates that are (almost) independent of
the underlying dimensions are possible.

Here we demonstrate a slightly simplified result compared to that of [2]. Let, for C > 0,

ΓC :=

{
f ∈ L1

(
Rd
)

: ‖f̂‖1 <∞,
∫
Rd
|2πξ|

∣∣∣f̂(ξ)
∣∣∣ dξ < C

}
,

where f̂ denotes the Fourier transform of f . By the inverse Fourier transform theorem, the condition ‖f̂‖1 <∞
implies that every element of ΓC is continuous (in fact it is even continuously differentiable). We also denote
the unit ball in Rd by Bd1 := {x ∈ Rd : |x| ≤ 1}.

We have the following result:

Theorem 5.8 (cf. [2, Theorem 1]). Let d ∈ N, f ∈ ΓC , % : R → R be sigmoidal and N ∈ N. Then, for every
c > 4C2, there exists a NN Φ with

L(Φ) = 2,

M(Φ) ≤ N · (d+ 2) + 1,

1

|Bd1 |

∫
Bd1

|f(x)− R(Φ)(x)|2 dx ≤ c

N
,

where |Bd1 | denotes the Lebesgue measure of Bd1 .

Remark 5.9. The approximation rate above cannot be significantly improved. From [25, Proposition 4.6] it follows
that the approximation rate cannot be improved beyond N−(2+d)/d.

Before we present the proof of Theorem 5.8, we show the following auxilliary result, which is sometimes
called Approximate Caratheodory theorem, [39, Theorem 0.0.2].
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Lemma 5.10 ([2, 26]). Let G be a subset of a Hilbert space and let G be such that the norm of each element of G is
bounded by B > 0. Let f ∈ co(G). Then, for every N ∈ N and c′ > B2 there exist (gi)

N
i=1 ⊂ G and (ci)

N
i=1 ⊂ [0, 1]

with
∑N
i=1 ci = 1 such that ∥∥∥∥∥f −

N∑
i=1

cigi

∥∥∥∥∥
2

≤ c′

N
. (5.12)

Proof. Let f ∈ co(G). For every δ > 0, there exists f∗ ∈ co(G) so that

‖f − f∗‖ ≤ δ.

Since f∗ ∈ co(G), there exists m ∈ N so that

f∗ =

m∑
i=1

c′ig
′
i

for some (g′i)
m
i=1 ⊂ G, (c′i)

m
i=1 ⊂ [0, 1], with

∑m
i=1 c

′
i = 1.

At this point, there exists an at most m dimensional linear space Lm such that (g′i)
m
i=1 ⊂ Lm which is

isometrically isomorphic to Rm. Hence, we can think of g′i, and f∗ to be elements of Rm in the sequel.∗
Let σ be a probability distribution on {1, . . . ,m}with Pσ(k) = c′k for k ∈ {1, . . . ,m}. Let (gj)

∞
j=1 be i.i.d

random variable with gj = g′ij , where ij ∼ σ. We have that

E(gj) = E(g1) =

m∑
i=1

c′ig
′
i = f∗,

and therefore we can find (Xj)
∞
j=1 := gij − f∗, for ij ∼ σ, are i.i.d random variables with E(Xj) = 0. Since

the Xj are independent random variables, we have that

E


∥∥∥∥∥∥ 1

N

N∑
j=1

Xj

∥∥∥∥∥∥
2
 =

1

N2

N∑
j=1

E
(
‖Xj‖2

)
=

1

N2

N∑
j=1

Ei∼σ
(
‖gi‖2 − 2 〈gi, f∗〉+ ‖f∗‖2

)

=
1

N2

N∑
j=1

Ei∼σ
(
‖gi‖2

)
− ‖f∗‖2 ≤ B2

N
. (5.13)

The first identity above follows from Bienaymé’s identity whereas the rest of the argument is, of course,
commonly known as the weak law of large numbers. Because of (5.13) there exists at least one event ω such
that ∥∥∥∥∥∥ 1

N

N∑
j=1

Xj(ω)

∥∥∥∥∥∥
2

≤ B2

N

and hence ∥∥∥∥∥∥ 1

N

N∑
j=1

gij(ω) − f∗
∥∥∥∥∥∥

2

≤ B2

N
.

By the triangle inequality, we have that∥∥∥∥∥ 1

N

N∑
i=1

gij(ω) − f

∥∥∥∥∥
2

≤ B2

N
+ δ.

Since δ was arbitrary this yields the result.
∗This simplification is not necessary at all, but some people might find it easier to think of real-valued random variables instead of

Hilbert-space-valued.
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We can have a more intuitive and elementary argument yielding Lemma 5.10 if G = (φi)
∞
i=1 is an

orthonormal basis. This is based on an argument usually referred to as Stechkin’s estimate, see e.g. [7, Lemma
3.6]. Let f ∈ co(G), then

f =

∞∑
i=1

〈f, φi〉φi =:
∞∑
i=1

ci(f)φi (5.14)

with ‖ci‖1 = 1. We have now that if Λn corresponds the indices of the n largest of (|ci(f)|)∞i=1 in (5.14), then∥∥∥∥∥∥f −
∑
j∈Λn

cj(f)φj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
j 6∈Λn

cj(f)φj

∥∥∥∥∥∥
2

=
∑
j 6∈Λn

|cj(f)|2. (5.15)

by Parseval’s identity. Let (c̃k(f))∞k=1 be a non-increasing rearrangement of (|cj(f)|)∞j=1. We have that∑
j 6∈Λn

|cj(f)|2 =
∑

k≥n+1

c̃k(f)2 ≤ c̃n+1(f)
∑

k≥n+1

c̃k(f) ≤ c̃n+1(f), (5.16)

Since (n+ 1)c̃n+1 ≤
∑n+1
j=1 c̃j ≤ 1, we have that c̃n+1 ≤ (n+ 1)−1 and hence, the estimate∥∥∥∥∥∥f −

∑
j∈Λn

cj(f)φj

∥∥∥∥∥∥
2

≤ (n+ 1)−1,

follows. Therefore, in the case that G is an orthogonal basis, we can explicitly construct the gi and ci of
Lemma 5.10.

Remark 5.11. Lemma 5.10 allows a quite powerful procedure. Indeed, to achieve an approximation rate of 1/N for a
function f by superpositions of N elements of a set G, it suffices to show that any convex combination of elements of G
approximates f .

In the language of NNs, we could say that every function that can be represented by an arbitrary wide two-layer
NN with bounded activation function and where the weights in the last layer are positive and sum to one can also be
approximated with a network with only N neurons in the first layer and an error proportional to 1/N .

In view of Lemma 5.10, to show Theorem 5.8, we only need to demonstrate that each function in ΓC is in
the convex hull of functions representable by superpositions of sigmoidal NNs with few weights. Before we
prove this, we show that each function f ∈ ΓC is in the convex hull of functions of the set

GC :=
{
Bd1 3 x 7→ γ · 1R+(〈a, x〉+ b) : a ∈ Rd, b ∈ R, |γ| ≤ 2C

}
.

Lemma 5.12. Let f ∈ ΓC . Then f|Bd1 −f(0) ∈ co(GC). Here the closure is taken with respect to the norm ‖·‖L2,�(Bd1 ),
defined by

‖g‖L2,�(Bd1 ) :=

(
1

|Bd1 |

∫
Bd1

|g(x)|2dx

)1/2

.

Proof. Since f ∈ ΓC is continuous and f̂ ∈ L1(Rd), we have by the inverse Fourier transform that

f(x)− f(0) =

∫
Rd
f̂(ξ)

(
e2πi〈x,ξ〉 − 1

)
dξ

=

∫
Rd

∣∣∣f̂(ξ)
∣∣∣ (e2πi〈x,ξ〉+iκ(ξ) − eiκ(ξ)

)
dξ

=

∫
Rd

∣∣∣f̂(ξ)
∣∣∣ (cos(2π〈x, ξ〉+ κ(ξ))− cos(κ(ξ))) dξ,
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where κ(ξ) is the phase of f̂(ξ) and the last inequality follows since f is real-valued. Moreover, we have that∫
Rd

∣∣∣f̂(ξ)
∣∣∣ (cos(2π〈x, ξ〉+ κ(ξ))− cos(κ(ξ))) dξ =

∫
Rd

(cos(2π〈x, ξ〉+ κ(ξ))− cos(κ(ξ)))

|2πξ|
|2πξ|

∣∣∣f̂(ξ)
∣∣∣ dξ.

Since f ∈ ΓC , we have
∫
Rd |2πξ||f̂(ξ)|dξ ≤ C, and thus Λ such that

dΛ(ξ) :=
1

C
|2πξ||f̂(ξ)|dξ

is a finite measure with Λ(Rd) =
∫
Rd dΛ(ξ) ≤ 1. In this notion, we have

f(x)− f(0) = C

∫
Rd

(cos(2π〈x, ξ〉+ κ(ξ))− cos(κ(ξ)))

|2πξ|
dΛ(ξ).

Since (cos(2π〈x, ξ〉+ κ(ξ))− cos(κ(ξ)))/|2πξ| is continuous and bounded by 1 by the Lipschitz continuity of
cos, and hence integrable with respect to dΛ(ξ) we have by the dominated convergence theorem that, for
n→∞,∣∣∣∣∣∣C

∫
Rd

(cos(2π〈x, ξ〉+ κ(ξ))− cos(κ(ξ)))

|2πξ|
dΛ(ξ)− C

∑
θ∈ 1

nZd

(cos(2π〈x, θ〉+ κ(θ))− cos(κ(θ)))

|2πθ|
· Λ(Iθ)

∣∣∣∣∣∣→ 0,

(5.17)

where Iθ := [0, 1/n]d + θ. Since f(x)− f(0) is continuous and thus bounded on Bd1 and

C

∣∣∣∣∣∣
∑

θ∈ 1
nZd

(cos(2π〈x, θ〉+ κ(θ))− cos(κ(θ)))

|2πθ|
· Λ(Iθ)

∣∣∣∣∣∣ ≤ C,
we have by the dominated convergence theorem that

1

|Bd1 |

∫
Bd1

∣∣∣∣∣∣f(x)− f(0)− C
∑

θ∈ 1
nZd

(cos(2π〈x, θ〉+ κ(θ))− cos(κ(θ)))

|2πθ|
· Λ(Iθ)

∣∣∣∣∣∣
2

dx→ 0. (5.18)

Since
∑
θ∈ 1

nZd Λ(Iθ) = Λ(Rd) ≤ 1, we conclude that f(x)− f(0) is in the L2,�(Bd1 ) closure of convex combi-
nations of functions of the form

x 7→ gθ(x) := αθ
cos(2π〈x, θ〉+ κ(θ))− cos(κ(θ))

|2πθ|
,

for θ ∈ Rd and 0 ≤ αθ ≤ C. The result follows, if we can show that each of the functions gθ is in co(GC).
Setting z = 〈x, θ/|θ|〉, it suffices to show that the map

[−1, 1] 3 z 7→ αθ
cos(2π|θ|z + κ(θ))− cos(κ(θ))

|2πθ|
=: g̃θ(z),

can be approximated arbitrarily well by convex combinations of functions of the form

[−1, 1] 3 z 7→ γ · 1R+ (a′z + b′) , (5.19)

where a′, b′ ∈ R and |γ| ≤ 2C.
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Per definition, we have that ‖g̃′θ‖ ≤ C. We define, for T ∈ N,

gT,+ :=

T∑
i=1

|g̃θ(i/T )− g̃θ((i− 1)/T )|
2C

· (2C · sign(g̃θ(i/T )− g̃θ((i− 1)/T )) · 1R+(x− i/T )) ,

gT,− :=

T∑
i=1

|g̃θ(−i/T )− g̃θ((1− i)/T )|
2C

(2C · sign(g̃θ(−i/T )− g̃θ((1− i)/T )) · 1R+(−x+ i/T )) .

Clearly, (gT,−) + (gT,+) converges to g̃θ for T →∞ and since

T∑
i=1

|g̃θ(i/T )− g̃θ((i− 1)/T )|
2C

+

T∑
i=1

|g̃θ(−i/T )− g̃θ((1− i)/T )|
2C

≤ 2

T∑
i=1

‖g̃′θ‖∞/(2CT ) ≤ 1

we have that g̃θ can be arbitrarily well approximated by convex combinations of the form (5.19). Therefore,
we have that gθ ∈ co(GC) and by (5.18) this yields that f − f(0) ∈ co(GC).

Proof of Theorem 5.8. Let f ∈ ΓC , then, by Lemma 5.12, we have that

f|Bd1 − f(0) ∈ co(GC).

Moreover, for every element g ∈ GC we have that ‖g‖L2,�(Bd1 ) ≤ 2C. Therefore, by Lemma 5.10, applied to the
Hilbert space L2,�(Bd1 ), we get that for every N ∈ N, there exist |γi| ≤ 2C, ai ∈ Rd, bi ∈ R, for i = 1, . . . , N ,
so that

1

|Bd1 |

∫
Bd1

∣∣∣∣∣fBd1 (x)− f(0)−
N∑
i=1

γi1R+(〈ai, x〉+ bi)

∣∣∣∣∣
2

dx ≤ 4C2

N
.

Since %(λx) → 1R+(x) for λ → ∞ almost everywhere, it is clear that, for every δ > 0, there exist ãi, b̃i,
i = 1, . . . , N , so that

1

|Bd1 |

∫
Bd1

∣∣∣∣∣fBd1 (x)− f(0)−
N∑
i=1

γi%
(
〈ãi, x〉+ b̃i

)∣∣∣∣∣
2

dx ≤ 4C2

N
+ δ.

The result follows by observing that

N∑
i=1

γi%
(
〈ãi, x〉+ b̃i

)
+ f(0)

is the realisation of a network Φ with L(Φ) = 2 and M(Φ) ≤ N · (d+ 3). This is clear by setting

Φ := (([γ1, . . . , γN ], f(0)))  P
(

((ã1, b̃1)), . . . , ((ãN , b̃N ))
)
.

Remark 5.13. The fact, that the approximation rate of Theorem 5.8 is independent from the dimension is quite surprising
at first. However, the following observation might render Theorem 5.8 more plausible. The assumption of having a
finite Fourier moment is comparable to a certain dimension dependent regularity assumption. In other words, the
condition of having a finite Fourier moment becomes more restrictive in higher dimensions, meaning that the complexity
of the function class does not, or only mildly grow with the dimension. Indeed, while this type of regularity is not
directly expressible in terms of classical orders of smoothness, Barron notes that a necessary condition for f ∈ ΓC , for
some C > 0, is that f has bounded first-order derivatives. A sufficient condition is that all derivatives of order up to
bd/2c+ 2 are square-integrable, [2][Section II]. The sufficient condition amounts to f ∈W bd/2c+2,2(Rd) which would
also imply an approximation rate of N−1 in the squared L2 norm by sums of at most N B-splines, see [22, 9].
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Example 5.14. A natural question, especially in view of Remark 5.13, is which well known and relevant functions are
contained in ΓC . In [2, Section IX], a long list with properties of this set and elements thereof is presented. Among
others, we have that

1. If g ∈ ΓC , then
a−dg (a(· − b)) ∈ ΓC ,

for every a ∈ R+, b ∈ Rd.

2. For gi ∈ ΓC , i = 1, . . . ,m and c = (ci)
m
i=1 it holds that

m∑
i=1

cigi ∈ Γ‖c‖1C .

3. The Gaussian function: x 7→ e−|x|
2/2 is in ΓC for C = O(d1/2).

4. Functions of high smoothness. If the first dd/2e+ 2 derivatives of a function g are square integrable on Rd, then
g ∈ ΓC , where the constant C depends linearly on ‖g‖W bd/2c+2,2 .

The last three examples show quite nicely how the assumption g ∈ ΓC includes an indirect dependence on the dimension.

6 Complexity of sets of networks
Until this point, we have mostly tried understanding the capabilities of NNs through the lens of approximation
theory. This analysis is based on two pillars: First, we are interested in asymptotic performance, i.e., we are
aiming to understand the behaviour of NNs for increasing sizes. Second, we measure our success over a
continuum by studying Lp norms for p ∈ [1,∞].

This point of view is certainly not the only possible, and different applications require a different analysis
of the capabilities of NNs. Consider, for example, a binary classification task, i.e., a process, where values
(xi)

N
i=1 should be classified as either 0 or 1. In this scenario, it is interesting to establish if for every possible

classification of the values (xi)
N
i=1 as 0 or 1 there exists a NN the realisation of which is a function performing

this classification.
This question, in contrast to the point of view of approximation theory, is non-asymptotic and only studies

the success of networks on a finite, discrete set of samples. Nonetheless, we will later see, that the complexity
measures that we will introduce below are also closely related to some questions in approximation theory
and can be used to establish lower bounds on approximation rates.

The following sections are strongly inspired by [1, Sections 3-8].

6.1 The growth function and the VC dimension
We now introduce two notions of the capability of a class of functions to perform binary classification of
points: Let X be a space, H ⊂ {h : X → {0, 1}} and S ⊂ X be finite. We define by

HS := {h|S : h ∈ H},

the restriction of H to S. We define, the growth function of H by

GH(m) := max {|HS | : S ⊂ X, |S| = m} , for m ∈ N.

The growth function counts the number of functions that result from restricting H to the best possible set S
with m elements. Intuitively, in the framework of binary classification, the growth function tells us in how
many ways we can classify the elements of the best possible sets S of any cardinality by functions in H .

It is clear that for every set S with |S| = m, we have that |HS | ≤ 2m and hence GH(m) ≤ 2m. We say that
a set S with |S| = m for which |HS | = 2m is shattered by H .
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A second, more compressed notion of complexity in the context of binary classification is that of the
Vapnik–Chervonenkis dimension (VC Dimension), [38]. We define VCdim(H) to be the largest integer m such
that there exists S ⊂ X with |S| = m that is shattered by H . In other words,

VCdim(H) := max {m ∈ N : GH(m) = 2m} .

Example 6.1. Let X = R2.

1. Let H := {0, 1}, then GH(m) = 2 for all m ≥ 1. Hence, VCdim(H) = 1.

2. LetH := {0, χΩ, χΩc , 1} for some fixed non-empty set Ω ( R2. Then, choosing S = (x1, x2) with x1 ∈ Ω, x2 ∈
Ωc, we have GH(2) = 4 for all m ≥ 2. Hence, VCdim(H) = 2.

3. Let h := χR+ and

H :=

{
hθ,t := h

((
cos θ

sin θ

)T
· −t

)
: θ ∈ [−π, π], t ∈ R2

}
.

Then H is the set of all linear classifiers. It is not hard to see, that if S contains 3 points in general position, then
|H|S | = 8, see Figure 6.1. Hence, these sets S are shattered by H . We will later see that H does not shatter any
set of points with at least 4 elements. Hence VCdim(H) = 3. This is intuitively clear when considering Figure
6.2.

Figure 6.1: Three points shattered by a set of linear classifiers.

As a first step to familiarise ourselves with the new notions, we study the growth function and VC
dimension of realisations of NNs with one neuron and the Heaviside function as activation function. This
situation was discussed before in the third point of Example 6.1.

We have the following theorem:

Theorem 6.2 ([1, Theorem 3.4]). Let d ∈ N and % = 1R+ . Let SN (d) be the set of realisations of neural networks
with two layers, d-dimensional input, one neuron in the first layer and one dimensional output and the weights in the
second layer satisfy (A2, b2) = (1, 0). Then SN (d) shatters a set of points (xi)

m
i=1 ⊂ Rd if and only if

(x1, 1), (x2, 1), . . . , (xm, 1) (6.1)

are linearly independent points. In particular, VCdim(SN (d)) = d+ 1.
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Figure 6.2: Four points which cannot be classified in every possible way by a single linear classifier. The
classification sketched above requires at least sums of two linear classifiers.

Proof. Assume first, that (xi)
m
i=1 is such that it is shattered by SN (d) and assume towards a contradiction

that (6.1) are not linearly independent.
Then we have that for every v ∈ {0, 1}m there exists a neural network Φv , such that, for all j ∈ {1, . . . ,m},

R(Φv)(xj) = vj .

Moreover, since (6.1) are not linearly independent there exist (αj)
m
j=1 ⊂ R such that, without loss of generality,

m−1∑
j=1

αj

(
xj
1

)
=

(
xm
1

)
.

Let v ∈ {0, 1}m be such that, for j ∈ {1, . . . ,m− 1}, vj = 1− 1R+(αj) and vm = 1. Then,

R (Φv) (xm) = %
(
[ Av1 bv1 ][ xm 1 ]

)
= %

m−1∑
j=1

αj · (Av1xj + bv1)

 = 0,

where the last equality is because 1R+(Av1xj+b
v
1) = vj = 1−1R+(αj). This produces the desired contradiction.

If, on the other hand (6.1) are linearly independent, then the matrix

X =


x1 1
x2 1
...

...
xm 1


has rankm. Hence, for every v ∈ {0, 1}m there exists a vector [ Av1 bv1 ] ∈ R1,d+1 such thatX[ Av1 bv1 ]T =
v. Setting Φv := ((Av1, b

v
1), (1, 0)) yields the claim.

In establishing bounds on the VC dimension of a set of neural networks, the activation function plays a
major role. For example, we have the following lemma.

Lemma 6.3 ([1, Lemma 7.2]). Let H := {x 7→ 1R+(sin(ax)) : a ∈ R}. Then VCdim(H) =∞.

Proof. Let xi := 2i−1, for i ∈ N. Next, we will show that, for every k ∈ N, the set {x1, . . . , xk} is shattered by
H .
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The argument is based on the following bit-extraction technique: Let b :=
∑k
j=1 bj2

−j + 2−k−1. Setting
a := 2πb, we have that

1R+(sin(axi)) = 1R+

sin

2π

k∑
j=1

bj2
−jxi + 2π2−k−1xi


= 1R+

sin

2π

i−1∑
j=1

bj2
−jxi + 2π

k∑
j=i

bj2
−jxi + 2π2−k−1xi

 =: I(xi).

Since
∑i−1
j=1 bi2

−jxi ∈ N, we have by the 2π periodicity of sin that

I(xi) = 1R+

sin

2π

k∑
j=i

bj2
−jxi + 2π2−k−1xi


= 1R+

sin

biπ + π ·

 k∑
j=i+1

bj2
i+1−j + 2i−k

 .

Since
(∑k

j=i+1 bj2
i+1−j + 2i−k

)
∈ (0, 1), we have that

I(xi) =

{
0 if bi = 1,
1 else.

Since b was chosen arbitrary, this shows that VCdim(H) ≥ k for all k ∈ N.

In the previous two results (Theorem 6.2, Lemma 6.3), we observed that the VC dimension of sets of
realisations of NNs depends on their size and also on the associated activation function. We have the
following result, that we state without proof:

Denote, d, L,M ∈ N by NN d,L,M the set of neural networks with d dimensional input, L layers and at
most M weights.

Theorem 6.4 ([1, Theorem 8.8]). Let d, `, p ∈ N, and % : R→ R be a piecewise polynomial with at most ` pieces of
degree at most p. Let, for L,M ∈ N,

H := {1R+ ◦ R(Φ): Φ ∈ NN d,L,M} .a

Then, for all L,M ∈ N,
VCdim(H) .ML log2(M) +ML2.

aWe are a bit sloppy with the notation here. In [1, Theorem 8.8] the result only applies to sets of neural networks that all have the
same M indices of weights potentially non-zero.

6.2 Lower bounds on approximation rates
We will see next that the bound on the VC dimension of sets of neural networks of Theorem 6.4 implies a
lower bound on the approximation capabilities of neural networks. The argument below follows [41, Section
4.2].

We first show the following auxiliary result.

Lemma 6.5. Let d, k ∈ N, K ⊂ Rd, H ⊂ {h : K → R} be such that, for ε > 0, {x1, . . . , xk} ⊂ K and every
b ∈ {0, 1}k, there exists h ∈ H such that

h(xi) = εbi, for all i = 1, . . . , k. (6.2)
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Let G ⊂ {g : K → R} be such that for every h ∈ H , there exists a g ∈ G satisfying

sup
x∈K
|g(x)− h(x)| < ε/2. (6.3)

Then

VCdim({1R+ ◦ (g − ε/2) : g ∈ G}) ≥ k. (6.4)

Proof. Choose for any b ∈ {0, 1}k an associated hb ∈ H according to (6.2) and gb according to (6.3).
Then |gb(xi)− bi| < ε/2 and therefore gb(xi)− ε/2 > 0 if bi = 1 and gb(xi)− ε/2 < 0 otherwise. Hence

1R+(gb − ε/2)(xi) = bi,

which yields the claim.

Remark 6.6. Lemma 6.5 and Theorem 6.4 allow an interesting observation about approximation by NNs. Indeed,
if a set of functions H is sufficiently large so that (6.2) holds, and NNs with M weights and L layers achieve an
approximation error less than ε > 0 for every function in H , then ML log2(M) +ML2 & k.

We would now like to establish a lower bound on the size of neural networks that approximate regular
functions well. Considering functions f ∈ Cs([0, 1]d) with ‖f‖Cs ≤ 1, we we would, in view of Remark 6.6,
like to find out which value of k is achievable for any given ε.

We begin by constructing one bump function with a finite Cn norm.

Lemma 6.7. For every n, d ∈ N, there exists a constant C > 0, such that, for every ε > 0, there exists a smooth
function fε ∈ Cn(Rd) with

supp fε ⊂ [−Cε1/n, Cε1/n]d, (6.5)

such that fε(0) = ε and ‖f‖Cn(Rd) ≤ 1.

Proof. The function

f̃(x) :=

{
e1−1/(1−|x|2) for |x| < 1,

0 else.

is smooth and supported in [−1, 1]d and f̃(0) = 1. We set

fε(x) := εf̃

(
ε−1/n

1 + ‖f̃‖Cn
x

)
.

Then fε(0) = ε, supp fε ⊂ [−(1 + ‖f̃‖Cn)ε−1/n, (1 + ‖f̃‖Cn)ε−1/n]d, and ‖fε‖Cn ≤ 1 by the chain rule.

Adding up multiple, shifted versions of the function of Lemma 6.7 yields sets of functions that satisfy
(6.2). Concretely, we have the following lemma.

Lemma 6.8. Let n, d ∈ N. There exists C > 0 such that, for every ε > 0, there are {x1, . . . , xk} with k ≥ Cε−d/n

such that, for every b ∈ {0, 1}k there is fb ∈ Cn([0, 1]d) with ‖f‖Cn ≤ 1 and

fb(xi) = εbi.

Proof. Let, for C > 0 as in (6.5), {x1, . . . , xk} := 2Cε1/nZd ∩ [0, 1]d. Clearly, k ≥ C ′ε−d/n for a constant C ′ > 0.
Let b ∈ {0, 1}k. Now set, for fε as in Lemma 6.7,

fb :=

k∑
i=1

bifε(· − xi).

52



Figure 6.3: Illustration of fb from Lemma 6.8 on [0, 1]2.

By the properties of fε, we have that fε(· − xi) vanishes on every xj for j 6= i and hence

fb(xi) = εbi, for all i = 1, . . . , k.

The construction of fb is depicted in Figure 6.3. Moreover, since supp fε(· − xi) ⊂ xi + [−Cε1/n, Cε1/n]d, we
have that supp fε(· − xi) ∩ supp fε(· − xj) = ∅ if i 6= j. Hence ‖fb‖Cn = supi=1,...,k ‖fε(· − xi)‖Cn ≤ 1.

Combining all observations until here, yields the following result.

Theorem 6.9. Let n, d ∈ N. Let % : R → R be piecewise polynomial. Assume that, for all ε > 0, there exist
M(ε), L(ε) ∈ N such that

sup
f∈Cn([0,1]d),‖f‖Cn≤1

inf
Φ∈NNd,L(ε),M(ε)

‖f − R(Φ)‖∞ ≤ ε/2,

then
(M(ε) + 1)L(ε) log2(M(ε) + 1) + (M(ε) + 1)L(ε)2 & ε−d/n.

Proof. Let H := {h ∈ Cn([0, 1]d : ‖h‖Cn ≤ 1) and G := {R(Φ): Φ ∈ NN d,L(ε),M(ε)}.
H satisfies (6.2) with k ≥ Cε−d/n due to Lemma 6.8 and G satisfies (6.3) by assumption. Hence,

VCdim({1R+ ◦ (g − ε/2) : g ∈ G}) ≥ k. (6.6)

Moreover,
{g − ε/2: g ∈ G} ⊆ {R(Φ): Φ ∈ NN d,L(ε),M(ε)+1}.

Hence
VCdim

({
1R+ ◦ R(Φ): Φ ∈ NN d,L(ε),M(ε)+1

})
≥ Cε−d/n.

An application of Theorem 6.4 yields the result.

Remark 6.10. Theorem 6.9 shows that to achieve a uniform error of ε > 0 over sets of Cn regular functions requires a
number of weights M and layers L such that

ML log2(M) +ML2 ≥ ε−d/n.

If we require L to only grow like log2(ε) then this demonstrates that the rate of Theorem 3.19/ Remark 3.20 is optimal.
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For the case, that L is arbitrary, [1, Theorem 8.7] yields an upper bound on the VC dimension of

H̃ :=

{
1R+ ◦ R(Φ): Φ ∈

∞⋃
`=1

NN d,`,M

}
. (6.7)

of the form

VCdim
(
H̃
)
.M2. (6.8)

Using (6.8) yields the following result:

Theorem 6.11. Let n, d ∈ N. Let % : R→ R be piecewise polynomial. Assume that, for all ε > 0, there existM(ε) ∈ N
such that

sup
f∈Cn([0,1]d),‖f‖Cn≤1

inf
Φ∈

⋃∞
`=1NNd,`,M(ε)

‖f − R(Φ)‖∞ ≤ ε/2,

then
M(ε) & ε−d/(2n).

Proof. The proof is the same as for Theorem 6.9, using (6.8) instead of Theorem 6.4.

Remark 6.12. Comparing Theorem 6.9 and Theorem 6.11, we see that approximation by NNs with arbitrarily many
layers can potentially achieve double the rate of that with restricted or only slowly growing number of layers.

Indeed, at least for the ReLU activation function, the lower bound of Theorem 6.11 is sharp. It could be shown in
[41], that ReLU realisations of NNs with unrestricted numbers of layers achieve approximation fidelity ε > 0 using
only O(ε−d/(2n)) many weights, uniformly over the unit ball of Cn([0, 1]d).

7 Spaces of realisations of neural networks
As a final step of our analysis of deep neural networks from a functional analytical point of view, we would
like to understand set-topological aspects of sets of realisations of NNs. What we are analysing in this section
are sets of neural networks of a fixed architecture. We first define the notion of an architecture.

Definition 7.1. A vector S = (N0, N1, . . . , NL) ∈ NL+1 is called architecture of a neural network Φ =
((A1, b1), . . . , (AL, bL)) if A` ∈ RN`×N`−1 for all ` = 1, . . . , L. We denote by NN (S) the set of neural networks
with architecture S and, for an activation function % : R→ R, we denote by

RNN %(S) := {R(Φ): Φ ∈ NN (S)}

the set of realisations of neural networks with architecture S.

For any architecture S, NN (S) is a finite dimensional vector space on which we use the norm

‖Φ‖total := |Φ|scaling + |Φ|shift :=
L

max
`=1
‖A`‖∞ +

L
max
`=1
‖b`‖∞.

Now we have that, for a given architecture S = (d,N1, . . . , NL) ∈ NL+1, a compact set K ⊂ Rd, and for a
continuous activation function % : R→ R:

RNN %(S) ⊂ Lp(K),

for all p ∈ [1,∞]. In this context, we can ask ourselves about the properties ofRNN %(S) as a subset of the
normed linear spaces Lp(K).

The results below are based on the following observation about the realisation map:
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Theorem 7.2 ([23, Proposition 4]). Let Ω ⊂ Rd be compact and let S = (d,N1, . . . , NL) ∈ NL+1 be a neural
network architecture. If the activation function % : R→ R is continuous, then the map

R: NN (S)→ L∞(Ω)

Φ 7→ R(Φ)

is continuous. Moreover, if % is locally Lipschitz continuous, then R is locally Lipschitz continuous.

7.1 Network spaces are not convex
We begin by analysing the simple question if, for a given architecture S, the set RNN %(S) is star-shaped.
We start by fixing the notion of a centre and of star-shapedness.

Definition 7.3. Let Z be a subset of a linear space. A point x ∈ Z is called a centre of Z if, for every y ∈ Z it holds
that

{tz + (1− t)y : t ∈ [0, 1]} ⊂ Z.

A set is called star-shaped if it has at least one centre.

The following proposition follows directly from the definition of a neural network:

Proposition 7.4. Let S = (d,N1, . . . , NL) ∈ NL+1. Then RNN %(S) is scaling invariant, i.e. for every λ ∈ R it
holds that λf ∈ RNN %(S) if f ∈ RNN %(S), and hence 0 ∈ RNN %(S) is a centre ofRNN %(S).

Knowing thatRNN %(S) is star-shaped with centre 0, we can also ask ourselves ifRNN %(S) has more
than this one centre. It is not hard to see that also every constant function is a centre. The following theorem
yields an upper bound on the number of centres.

Theorem 7.5 ([23, Proposition C.4]). Let S = (N0, N1, . . . , NL) be a neural network architecture, let Ω ⊂ RN0 , and
let % : R→ R be Lipschitz continuous. ThenRNN %(S) contains at most

∑L
`=1(N`−1 + 1)N` linearly independent

centres, where N0 = d.

Proof. Let M∗ :=
∑L
`=1(N`−1 + 1)N`. We first observe that M∗ = dim(NN (S)).

Assume towards a contradiction, that there are functions (gi)
M∗+1
i=1 ⊂ RNN %(S) ⊂ L2(Ω) that are linearly

independent.
By the Theorem of Hahn-Banach, there exist (g′i)

M∗+1
i=1 ⊂ (L2(Ω))′ such that g′i(gj) = δi,j , for all i, j ∈

{1, . . . , L+ 1}. We define

T : L2(Ω)→ RM
∗+1, g 7→


g′1(g)
g′2(g)

...
g′M+1(g)

 .

Since T is continuous and linear, we have that T ◦R is locally Lipschitz continuous by Theorem 7.2. Moreover,
since the (gi)

M∗+1
i=1 are linearly independent, they span an M∗ + 1 dimensional linear space V and T (V ) =

RM∗+1.
Next we would like to establish thatRNN %(S) ⊃ V . Let g ∈ V then

g =

M∗+1∑
`=1

a`g`,

55



for some (a`)
M∗+1
`=1 ⊂ R. We show by induction that g̃(m) :=

∑m
`=1 a`g` ∈ RNN %(S) for every m ≤M∗ + 1.

This is obviously true for m = 1. Moreover, we have that g̃(m+1) = am+1gm+1 + g̃(m). Hence the induction
step holds true if am+1 = 0. If am+1 6= 0, then we have that

g(m+1) = 2am+1

(
1

2
gm+1 +

1

2am+1
g̃(m)

)
, (7.1)

By Proposition 7.4 g̃(m)/(am+1) ∈ V . Additionally, gm+1 is a centre of RNN %(S). Therefore, we have
that 1

2gm+1 + 1
2am+1

g̃(m) ∈ RNN %(S). By Proposition 7.4, we conclude that g̃(m+1) ∈ RNN %(S). Hence
V ⊂ RNN %(S). Therefore, T ◦ R(NN (S)) ⊇ T (V ) = RM∗+1.

It is a well known fact of basic analysis that there does not exist a surjective and locally Lipschitz continuous
map from Rn to Rn+1 for any n ∈ N. This yields the contradiction.

For a convex set X , the line between any two points of X is a subset of X . Hence, every point of a convex
set is a centre. This yields the following corollary.

Corollary 7.6. Let S = (N0, N1, . . . , NL) be a neural network architecture, let Ω ⊂ RN0 , and let % : R → R be
Lipschitz continuous. If RNN %(S) contains more than

∑L
`=1(N`−1 + 1)N` linearly independent functions, then

RNN %(S) is not convex.

Remark 7.7. It was shown in [23, Theorem 2.1] that the only Lipschitz continuous activation functions such that
RNN %(S) contains not more than

∑L
`=1(N`−1 + 1)N` linearly independent functions are affine linear functions.

Additionally, it can be shown that Corollary 7.6 holds for locally Lipschitz functions as well. In this case,RNN %(S)

necessarily contains more than
∑L
`=1(N`−1 + 1)N` linearly independent functions if the activation function is not a

polynomial.

In addition to the non-convexity ofRNN %(S), we will now show that, under mild assumptions on the
activation function,RNN %(S) is also very non-convex. Let us first make the notion of convexity quantitative.

Definition 7.8. A subset X of a metric space is called r-convex, if
⋃
x∈X Br(x) is convex.

By Proposition 7.4, it is clear thatRNN %(S) +Br(0) = r (RNN %(S) +B1(0)). Hence,

RNN %(S) +Br(0) = r/r′ · (RNN %(S) +Br′(0)) ,

for every r, r′ > 0. Therefore, RNN %(S) is r-convex for one r > 0 if and only if RNN %(S) is r-convex for
every r > 0.

With this observation we can now prove the following result.

Proposition 7.9 ([23, Theorem 2.2.]). Let S ∈ NL+1, Ω ⊂ RN0 be compact, and % ∈ C1 be discriminatory and such
thatRNN %(S) is not dense in C(Ω). Then there does not exist an r > 0 such thatRNN %(S) is r-convex.

Proof. By the discussion leading up to Proposition 7.9 we can assume, towards a contradiction thatRNN %(S)
is r-convex for every r > 0.

We have that

co(RNN %(S)) ⊂
⋂
r>0

(RNN %(S) +Br(0)) ⊂
⋂
r>0

(RNN %(S) +Br(0)) ⊂ RNN %(S).

Therefore co(RNN %(S)) = co(RNN %(S)) ⊂ RNN %(S) and thus we conclude thatRNN %(S) is convex.
We now aim at producing a contradiction by showing thatRNN %(S) = C(Ω). We show this for L = 2,

and N2 = 1 only, the general case is demonstrated in [23, Theorem 2.2.] (there also the differentiability of % is
used).

Per assumption, for every a ∈ RN1 , t ∈ R,

x 7→ %(ax− t) ∈ RNN %(S).
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Figure 7.1: Sketch of the set of realisations of neural networks with a fixed architecture. This set is star-shaped,
having 0 in the centre. It is not r-convex for any r and hence we see multiple holes between different rays. It
is not closed, which means that there are limit points outside of the set.

By the same argument applied in the proof of Theorem 7.5 in (7.1), we have that for all sequences
(a`)

∞
`=1 ⊂ RN1 , (b`)

∞
`=1 ⊂ R, and (t`)

∞
`=1 ⊂ R the function

g(m)(x) :=

m∑
`=1

b`%(a`x− t`)

satisfies g(m) ⊂ RNN %(S) for all m ∈ N.
By Theorem 2.4, we have that{

m∑
`=1

b`%(a` · −t`) : (a`)∞`=1 ⊂ RN1 , (b`)∞`=1, (t`)
∞
`=1 ⊂ R

}
= C(Ω)

and hence C(Ω) ⊂ RNN %(S) which yields the desired contradiction.

7.2 Network spaces are not closed
The second property that we would like to understand is closedness. To make this more precise, we need to
decide on a norm first. We will now study closedness in the uniform norm.

Theorem 7.10. Let L ∈ N, S = (N0, N1, . . . , NL−1, 1) ∈ NL+1, where N1 ≥ 2, Ω ∈ Rd compact with nonempty
interior, and % ∈ C2 \ C∞. ThenRNN %(S) is not closed in L∞.
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Proof. Since % ∈ C2 \ C∞, we have that there exists k ∈ N such that % ∈ Ck and % 6∈ Ck+1. It is not hard to
see that thereforeRNN %(S) ⊂ Ck(Ω) and the map

F : Rd → R : x 7→ F (x) = %′(x1)

is not in Ck(Rd). Therefore, since Ω has non-empty interior, there exists t ∈ Rd so that F (· − t) 6∈ Ck(Ω) and
thus F (· − t) 6∈ RNN %(S).

Assume for now that S = (N0, 2, 1). The general statement follows by extending the networks below
to neural networks with architecture (N0, 2, 1, . . . , 1, 1) by concatenating with the neural networks from
Proposition 2.11. To artificially increase the width of the networks and produce neural networks of architecture
S one can simply zero-pad the weight and shift matrices without altering the associated realisations.

We define the neural network

Φn :=

(((
1 01×(N0−1)

1 0(N1−1)×1

)
,

(
1/n
0

))
, ([n,−n], 0)

)
,

and observe that for every x ∈ Ω

|R(Φn)(x)− %′(x1)| = |n(%(x1 + 1/n)− %(x1))− %′(x1)| ≤ sup
z∈[−B,B]

|%′′(z)|/n,

by the mean value theorem, where B > 0 is such that Ω ⊂ [−B,B]d. Therefore, R(Φn)→ F in L∞(Ω) and
henceRNN %(S) is not closed.

Remark 7.11. Theorem 7.10 holds in much more generality. In fact, a similar statement holds for various types of
activation functions, see [23, Theorem 3.3]. Surprisingly, the statement does not hold for the ReLU activation function,
[23, Theorem 3.8].

Theorem 7.10, should be contrasted to the following result that shows that subsets of the set of realisations
of neural networks with bounded weights are always closed.

Proposition 7.12. Let S ∈ NL+1, Ω ⊂ RN0 be compact, and % be continuous. For C > 0, we denote by

RNNC := {R(Φ): Φ ∈ NN (S), ‖Φ‖total ≤ C}

the set of realisations of neural networks with weights bounded by C. ThenRNNC is a closed subset of C(Ω).

Proof. By the Theorem of Heine-Borel, we have that

{Φ ∈ NN (S) : ‖Φ‖total ≤ C}

is compact. Hence the result follows by Theorem 7.2.

Combining Theorem 7.10 and Proposition 7.12 yields the following observation: Consider a function
g ∈ RNN %(S) \ RNN %(S) and a sequence Φn ∈ NN (S) so that

R(Φn)→ g.

Then ‖Φn‖total → ∞ since if ‖Φn‖total would remain bounded, then g ∈ RNN %(S)C = RNN %(S)C ⊂
RNN %(S).

References
[1] M. Anthony and P. L. Bartlett. Neural network learning: theoretical foundations. Cambridge University

Press, Cambridge, 1999.

58



[2] A. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf.
Theory, 39(3):930–945, 1993.

[3] R. Bellman. On the theory of dynamic programming. Proceedings of the National Academy of Sciences of
the United States of America, 38(8):716, 1952.

[4] J. Berner, P. Grohs, G. Kutyniok, and P. Petersen. The modern mathematics of deep learning. arXiv
preprint arXiv:2105.04026, 2021.

[5] E. K. Blum and L. K. Li. Approximation theory and feedforward networks. Neural networks, 4(4):511–515,
1991.

[6] C. K. Chui and H. N. Mhaskar. Deep nets for local manifold learning. Frontiers in Applied Mathematics
and Statistics, 4:12, 2018.

[7] A. Cohen and R. DeVore. Approximation of high-dimensional parametric pdes. Acta Numerica, 24:1–159,
2015.

[8] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signal Systems,
2(4):303–314, 1989.

[9] R. A. DeVore. Nonlinear approximation. Acta numerica, 7:51–150, 1998.

[10] R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Conference on learning
theory, pages 907–940, 2016.

[11] C. L. Frenzen, T. Sasao, and J. T. Butler. On the number of segments needed in a piecewise linear
approximation. Journal of Computational and Applied mathematics, 234(2):437–446, 2010.

[12] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[13] J. He, L. Li, J. Xu, and C. Zheng. ReLU deep neural networks and linear finite elements. arXiv preprint
arXiv:1807.03973, 2018.

[14] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators.
Neural Netw., 2(5):359–366, 1989.

[15] A. N. Kolmogorov. The representation of continuous functions of several variables by superpositions of
continuous functions of a smaller number of variables. Doklady Akademii Nauk SSSR, 108(2):179–182,
1956.

[16] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with a nonpolynomial
activation function can approximate any function. Neural Netw., 6(6):861–867, 1993.

[17] V. Maiorov and A. Pinkus. Lower bounds for approximation by MLP neural networks. Neurocomputing,
25(1-3):81–91, 1999.

[18] W. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys.,
5:115–133, 1943.

[19] H. N. Mhaskar. Approximation properties of a multilayered feedforward artificial neural network. Adv.
Comput. Math., 1(1):61–80, 1993.

[20] H. N. Mhaskar and T. Poggio. Deep vs. shallow networks: An approximation theory perspective. Analysis
and Applications, 14(06):829–848, 2016.
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