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Abstract—The starting point of this article is the inversion formula of the Radon transform: the article aims to
contribute 1o the theory of three-layered neural networks. Let H be the Heaviside function. Then, for any function
1€ (R, there is a function g, such that f can be represented on R* by an integral | H(x -« — 0)g,(t. w) dt
du(w). where g is the uniform measure on the unit sphere 8 ', t € R and » € S . Further-
more, [ can be approximated uniformly arbitrarily well on the whole space R" by a finite sum of the
form Xpa, H(x - ™ — %), Let H, be a sigmoid function on R defined by HAt) = [ H(t — x - v) do(x), where
a is a spherically symmetric probability measure. Suppose that ¢ satisfies a few further conditions. Then, for
any '€ S(R"), there is a function g, such that f can be written [ H(x -« — 0)g, (t. ) dt du(w) with the
unscaled sigmoid function H, fixed beforehand. This expression can also be approximated uniformly arbitrarily
well on R by a finite sum.

Keywords—Three-layered neural network, Heaviside function. Sigmoid function, Radon transform. Inverse

radon transform, Integral representation. Finite sum approximation.

1. INTRODUCTION

The problem of representation of a function in sev-
eral variables by a neural network has been studied
by many authors. This article is concerned with the
theory of three-layered neural networks. Hecht-Niel-
sen (1987) pointed out a possible connection between
Kolmogorov’s celebrated result (1957) and the pres-
ent problem. Wieland and Leighton (1987) have
dealt with networks consisting of one or two hidden
layers, where the capability of networks of both
threshold and sigmoid units are analysed. Irie and
Miyake (1988) have obtained an integral represen-
tation formula with an integrable kernel fixed be-
forehand. This representation formula is the kind
which would be realized by a three-layered neural
network if infinitely many units could be used. In
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1989, several papers related to the present topics
appeared; Carroll and Dickinson: Cybenko:; Funa-
hashi: and Hornik, Stinchcombe, and White (1989).
They all have claimed that a three-layered neural
network with sigmoid units on the hidden layer can
approximate continuous or other kinds of functions
defined on compact sets. However, their methods
are different. Carroll and Dickinson used the inverse
Radon transform, which consists of two successive
operations. They first approximated the integration
over the surface of the unit sphere (the second op-
eration in the inversion transform; see Section 2.2 in
this article) by a finite sum. Next, they approximated
the respective terms in the sum by linear combina-
tions of the scalings of a sigmoid function. Cybenko’s
method is a handsome combination of the Hahn-
Banach theorem and the Riesz representation theo-
rem. His proof is existential. Funahashi approxi-
mated Irie and Miyake's integral representation by
a finite sum, using a kernel which can be expressed
as a difference of two sigmoid functions. Hornik et
al. applied the Stone-Weierstrass theorem using
trigonometric functions, where their approximations
were not only in the uniform topology on a compact
set but also in the p,-topology. However, the latter
can be attained if the uniform approximation can be
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achieved on an arbitrary compact set. Though their
methods are thus different mutually, common fea-
tures are observed among them: (a) they all have
proved that their approximation formulae hold on
compact sets (though the p, -topology is slightly dif-
ferent); and (b) scaled a sigmoid (or other) function.

We carry two policies throughout (except in the
Section 5): (a) uniform approximation on the whole
space R”": and (b) the use of a step or sigmoid func-
tion without scaling. It is obvious that every contin-
uous tunction defined on R”* cannot be approximated
uniformly on the whole space by a finite sum of sig-
moid functions. Hence. a certain restriction on &
function to be approximated is unavoidable. We treat
rapidly decreasing continuous functions in this arti-
cle. However. this restriction can be weakened to
some extent as is remarked and illustrated by ex-
amples. If a sigmoid function can be used without
scaling, the optimal neural connection weights as a
vector is on the surface of the unit sphere. This might
be occasionally convenient, though it could generally
require more units. If a sigmoid function satisfies o
few conditions. we can express any rapidly decreas-
ing function as an integral over the sigmoid function
without scaling.

Three exact integral representations of rapidly de-
creasing C"-functions are obtained in Section 3. They
are respectively integrations over an unscaled step
or sigmoid function. In Section 4. each of thesc in-
tegral representations are approximated by a finite
sum. Thus. three linear combinations of unscaled
shifted rotations of a step or sigmoid function are
obtained. Two of them can approximate uniformiy
any rapidly decreasing continuous function on the
whole space R". Because a step or sigmoid function
is used in this article. small deviations of the value
caused by approximation could spread out far away
and pile up at a distance. It is essential in Section 4
to prove that this pile-up can be avoided. When our
policies are weakened or removed, many other forms
of approximation formulae can be obtained as cor-
ollaries to our results. We have avoided mentioning
all of them. but two typical examples are illustrated
in Section S in order to demonstrate how to derive
other approximation formulae from ours. The proofs
described in this article are constructive. Hence.
most of the results can be simulated by computer.

The choice of the uniform approximation, equiv-
alently the supremum norm. is a necessity in this
article. A norm defined by integration over R" such
as L"(R")-norm is difficult to be managed in our the-
ory because a small change of the value caused by
approximation can spread out widely. As a result.
norms such as L?(R")-norm become divergent. Con-
versely, the supremum norm is satisfactorily useful
in our theory as will be observed. Furthermore. it is
convenient because it is stronger on a compact sct

than some other norms (see Example 5.2). Hence.
the uniform topology is appropriate in this articie.

Two theorems are used without proofs. for they
are available in Helgason (1980) and Gel'tand.
Graev., and Vilenkin (1966). Accordingly, rigoroushy
treated in Section 3 is the space (R of rapidly
decreasing (*-functions defined on R” as in the case
of the corresponding lemmas in both monographs.
though this space can be extended 1o that of less
regular and less rapidly decrcasing functions us 1
described above,

2. PRELIMINARIES

While summarizing the theory ot the Radon trans-
form that is the starting point of this article. it is also
necessary to prepare several femmas to be used in
this article. Most of the notations are introduced 1n
this section.

We denote by A the Heaviside function, Any shift
of H is called a step function. A sigmoid function on
R is that which is not a step function but monotonic
increasing, and converges to 1 as ¢ - +% and to U
as t— = We denote by 8 ' the unit sphere in the
n-dimensional Euclidean space R”. Any unit vector
o can be regarded as an clement of § . A step
function can be extended to R" by H(x - v — 13,
where - stands for the inner product. A sigmoid func-
tion can also be extended to R in the same way. We
call these extended functions by their original names,
respectively. Denote by P, the hyperplane which is
perpendicular to @ and has the point 1o € R” on 1t
We then have that P, = {x & Ry - o0 = 1. Also
denote by m,, the uniform measurc on P, with den-
sity 1. The Radon transform of a function f is detined
by

[ ) = J flxy dm, qxy. (2.0
If [ belongs to the space L'(R"} of integrable tunc-
tions with respect to the Lebesgue measure. its Ra-
don transform is defined for almost every ¢ € R tor
any @ € §" ' If f is integrable with respect to m, .
of each hyperplane. f is defined everywhere on
R x § "

Let us call a function « on R x 8" ' symmetric

if w(t, @) = w(—t. —w), and antisymmetric if
w(t.w) = ~ul -1, —w). Then. the Radon transtorm
f is symmetric because P,,, = P, . We call a tunc-

tion f on R x 8"~ ! homogeneous if

f plt, o)t di

is a homogeneous polynomial ot the kth degree i
the components w,, . . . . @, of ¢

We call a function f defined on R" rapidly de-
creasing if

Hm oixds oxk ) =
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for any nonnegative £;'s. Similarly, a function ¢ de-
fined on R x 8" !is rapidly decreasing if

= {

lim |r*p(r. @)

for any & = (. Note that rapidly decreasing functions
are neither differentiable nor continuous in this ar-
ticle unless otherwise stated. We use a differential
opcrator d,, in the direction « for a function on
R’ thatis. 0, = @, + - + ©,0,, where 9, =
d/a, . For a function ¢ defined on R X 87", we use
differential operators along the great circles on §" !
besides o, = a/or:

oplt. o+ sa) ~— ot )

m .

d.o(t, ) = 1
(H{ﬂ( ) - s

where « is a directed great circle starting from o and
« + sais the endpoint of the initial section of « with
length 5. When the differentiation is in the radial
direction we use a character such as s or ¢ for the
suffix. and when it is along a great circle we use the
first couple of the Greek characters.

An infinitely continuously differentiable func-
tion is called a C*-function. The spaces s(R") and
S(R x 8§"7') are defined in Helgason (1980). They
are the Schwartz spaces which consist of rapidly de-
creasing C”-functions on the respective spaces. We
denote by s (R x 8"} a subspace consisting of
symmetric homogeneous elements of S(R x §"").
In Helgason (1980) the theorem below is proved.

THeOREM A. The Radon transform is a linear one-
to-one mapping of »(R") onto 5¢,(R x §"°1),

We denote by ¢ the uniform measure with density
1 on the unit sphere 8" ' (i.e. du is the surface ele-
ment). The operator [], is defined by

Liglt) = aip(t).

The definition of the fractional power of —[], and
that of the principal value (v.p.) are described in
Appendix. The theorem below is described in both
Gel'fand et al. (1966) and Helgason (1980).

THEOREM B. Suppose that f € 5(R”). The inversion
formula for the Radon transform of f is

flx) =

1 i ~ L
(Y ’ (=L 2 f(e, w)], ., dulw).  (2.2)

This inversion formula can be written concretely
c, J [07 V(. )] .., du(w)  for odd .

flxy =
dp.v. J [ f TR o) = x - w) a’r] due)

for even n, (2.3)
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where
_ no 02 1y - !
e g g = e = DY

2”7[” 1 2”7[”

(2.4)

"

For convenience, we introduce an operator L with
respect to the variable r defined by

Lop(t) =

S () e, (2.5)
e

Then.
flx) = J[L(f(t. N, o du(om). (2.6)

Now let us prepare several lemmas. We denote
by Ci(R x §"7') a space of functions defined on
R X S8"°! which are infinitely continuously differ-
entiable with derivatives converging to 0 as t — *=x.
Lemmas 2.1 and 2.2 are proven in Appendix.

LEMMA 2.1. Let # be even and ¢ € (R x §"°1).
Then:

1. The principal valuc

lop(t. ) = p.v. p et + pooydp  (2.7)

is well defined for each (1. o).

lo(t. ) € CHR x 8§ ).

. The operations /, d, and 9, are mutually com-

mutative.

4. For all the differential operators of the form %9,
*+ dy there exists a positive constant M, .., such
that

(OSI \]

M. s

RS

lata, - alp)(t. )| <

We introduce an operator L,, on R" defined by
L) = [Ly(x + )] (2.9)
More concretely, we have that. for odd n,
Lyx) = ¢! "w(x)

and, for even .

Ly(x) = dp.v. jp “wix + pw)dp.

LEMMA 2.2. Let w € 5(R"). Then. we have that
A (t. W) = (a.u) (1. o). (2.10)
Ly(t. o) = (L) (1. o). (2.11)

The lemma above will be used in Proposition 3.2
to derive the function g; defined by eqn (3.2) by the
alternative way.

LEMMA 2.3. Suppose that a function f is defined on
R" and continuously differentiable. If f and its de-
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rivatives 9, f, k = . n, are all integrable with
respect to the Lebesgue measure, then we have that

4 f(x) dm, (x) = J‘H(t - x i, flx)dx (2.12)
for all (1, w).

Proof. Without loss of generality, we may suppose
that v = (1, 0. . 0). Since f and 4, f are inte-
grable,

lim f(x,,

vy e

LX) =0

for almost all (x,, -+,

J' . I f(t, xa, o
= f J dx, - dx, J a, flr.

By Fubini’s theorem, the right hand side of eqn
(2.11) is equal to

x,). Hence, we have that

» xrz) dxl dx,,

L x) dxy. (2.13)

’ . f H(t — x)3, f(x,, - . x,) dx, dx; - dx
Hence, we obtain the lemma. .

Let us denote by X a set of measures defined on
R” which are

20. Nonnegative, spherically symmetric and with to-
tal mass 1.

Then, if ¢ € 3 is not the delta function o, at the
origin, a convolution

H1) = JH(t -t w) dolx) (2.14)

1s a sigmoid function. Obviously, H, does not depend
on w. If the Fourier transform ¢ of ¢ € X satisfies
the following conditions, we call 0 € X

1. 56 € C*(R") (infinitely continuously differen-
tiable on R").

32. There are a positive integer N and a positive
constant a for which

Ya(y) > |T|~—a+—7 forall v € R

LEMMA 2.4. Suppose that ¢ € X;. Then, for any
arbitrary f € S(R"), there is a function v € S(R")
such that f = v * o.

Proof. Since 56 € C*(R"), any moment of ¢
j ‘x!i“l ‘xn\(l" dﬂ(x)' a, = 0* Y an = 0‘
is finite; namely, any partial derivative of %o is

bounded. Hence, 5f/56 € S(R"). Set v = 1 (v f/
o). Then, v is the function we look for. o

Yot

The delta function at the origin 9, belongs to 2.
If o € S(R") is spherically symmetric, nonnegative
and Jo(x) dx = 1, then ad, + fo dx(c + f = 1.
a > f} = 0) belongs to %,. The sigmoid function de-
fined by eqn (2.14), using this measure. is not con-
tinuous. However, there are manv absolutely con-
tinuous measures in %;. Set w{x) = Ae¢ ¥ g - i)
A V= fe ““dx. Then, the Fourier transform sy ( v}
is (I + |yl/a’)y »* 172 Furthermorc. there are many
such measures with compact support. Let n = 1 and
set y(x) = 3/2(1 — Ix|)* for lxl = 1 and y{x) = 0
otherwise. Then, sy (y) = 6y ‘(i - /vsiny). For
o bow(x) dyo= AL oy (x,) dy satisfies the con-
ditions 1 and X2. Hence, if we take the sphernical
symmetrization of w, dx, then it s an clement of ;.
The sigmoid function defined by an absolutely con-
tinuous Measure ¢ Is continuous.

3. THE INTEGRAL REPRESENTATION

Using the lemmas so tar prepared, Theorem 3.1 (the
first main theorem), Proposition 3.2, and C()rollancs
3.3 and 3.4 are proven. The statement of the main
theorem is that an integral over the step function
with a weight g, exactly represents a function [ €
S(R") on the whole space R". The properties of the
function g 1s important for obtaining an approximate
representation formula in Section 4. It is shown in
Proposition 3.2 that g, can be obtained by the alter-
native way. As corollaries to Theorem 3.1, it will be
proven that a sigmoid function can be used instead
of the step function in the integral representation.
In Corollary 3.3. the function to be approximated
must be a convolution. We can casily remove this
restriction by applying Lemma 2.4. Thus, obtained
is Corollary 3.4.

THEOREM 3.1. Suppose that | € >(R"*). Then. f is
represented as

Hx) = ' ‘ H(x - w — Ogli. w) dr du(e), {3.1)

where g, is a function defined by

gt w) = a,Lf(t, ), (o) ERXS$ L (32

The function g; satisfies the conditions below:

1. g € Ci(R x 8" ).

2. For any k = 0 and any directed arcs a, - . f,
there is a positive constant M, ,, .., such that
M. ,
%9, - a,g,(1, w)| < Wl—ruj—*l for all {1, o).

3. 04, g(t, w) dr = 0 for all w
4. g,is antisymmetric.

Proof. By Theorem A. f € 5(R x §"'). For odd
n, Lf = ¢,d7 ' f obviously belongs to S(R x 8" 1.
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For even n, Lf(t, w) = d,If(t, w) is differentiable
and both Lf(r. w) and 8,Lf(t, w) are integrable by
Lemma 2.1. Hence, for both odd and even #,

(Li(t. )] 0 = f Hix- o — 00,Lf(L o) di - (3.3)

by Lemma 2.3. From one of the forms of the inver-
sion formula (2.6) of the Radon transform and (3.3)
we have that

flx) = JJ H(x - w — 0a,Lf(t. ») dt du(w). (3.4)

Hence, we obtain (3.1) with (3.2).

Next, let us confirm that items 1, 2, 3, and 4 hold.
For odd n, g/(t, w) = ¢, f(t, w). Hence, 1, 2, and
3 are obvious. Since f is symmetric. g is antisym-
metric for odd n. For even n, g,(t. w) = d,aIf(t. ).
Hence, 1, 2, and 3 are obvious by Lemma 2.1. Since
If (1. w) is symmetric, g, is antisymmetric for even
n, too. Hence, the theorem is proven. il

Since there is the inversion formula (3.1), the
mapping f € >(R") — g, is one-to-one.

PROPOSITION 3.2. The function g, defined in Theo-
rem 3.1 can also be obtained by

(1. ) = f Loa.f(x) dm, (x). (3.5)

Proof. By Lemma 2.2, we can easily prove that the
right-hand side of (3.2) is equal to that of
(3.5). U

Let us obtain an integral representation formula
for a convolution f,(x) = f*a(x).

CoRroOLLARY 3.3. Suppose that ¢ € . Then. for
f € 3(R"). the convolution f, is represented as

fx) = f f Hx - o — gt ) di du(w).  (3.6)
Proof. This equation is straightforward:

.00 = f f(v) do(x — v)

= f (f H(y o — 1)ds(x — y))g,(t, ) dt du(w)
= jf H.(x - w — t)g(t. ) dt du(w).

Hence, we obtain the corollary. O

In other words, o can be released from f, and
synthesized with H. In Corollary 3.3, the sigmoid
function H, is not scaled, but the function to be ap-
proximated must be a convolution. This restriction
looks strong. Nevertheless, this corollary is useful.
The counterpart of this corollary in Section 4 is
closely related to the well-known approximate rep-
resentation formula with a scalable sigmoid function
(see Example 5.1). Moreover, the corollary below
follows immediately from this corollary.
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COROLLARY 3.4. Let ¢ € X,. Then, any function f
€ 5(R") is represented as

fx) = f f Hox - o — gt o) di du(e).  (3.7)

where g;, is the function which can be obtained when
f is replaced by a function v "'(!+f/5a) in eqn (3.2).

Proof. Note that Lemma 2.4 guarantees the existence
of a function v € 5(R") such that f = v * g. Applying
Corollary 3.3, we obtain

v*alx) = Jj H(x - w — tglt. m) dt du(w). (3.8)

Since v = 57'(*f/%g), we obtain the corollary. [
Thus, it is proven that any function f € S(R") can

be expressed as an integral of a sigmoid function

which is fixed beforehand and cannot be scaled.

Remark 3.1. By checking the proofs of Theorem 3.1,
Proposition 3.2, Corollaries 3.3 and 3.4, it is almost
clear that they can be extended to less regular func-
tions. If the function f is # (resp. # + 1) times con-
tinuously differentiable for odd (resp. even) n and
the derivatives decrease sufficiently rapidly, then the
assertions of the theorem, proposition, and corol-
laries are all true. Furthermore, they hold in a sense
even for discontinuous functions (see Examples). It
is also clear that, in any case where the function g,
is obtained, Theorem 3.1 and others hold. Hence,
the function f can be less rapidly decreasing. In order
to describe this fact rigorously, we need start with
rewriting Theorems A, B and Lemmas giving long
proofs. Though we avoid the details, examples below
illustrate that less regular and less rapidly decreasing
functions can be expressed as the integrations of the
form (3.1).

The method for obtaining the function g; is ex-
plicit. This fact may be of significance in designing
an actual neural networks. Several simple examples
of g, are illustrated below. In Example 3.1, a less
regular function f defined on R is treated. When f
is discontinuous, g, involves the delta function. In
Example 3.2, it is shown that the function g, can be
obtained by applying either Theorem 3.1 or Propo-
sition 3.2. Example 3.3 is similar to Example 3.2. In
Example 3.4, a less regular function on R? is treated,
where both the delta function and its derivative are
involved.

Example 3.1. Suppose ¢ 1o be a function defined on
R and differentiable. Set f(x) = y.»(x)p(x), where
X« 18 the indicator function of the interval. Then,

flt. ) = pto)p(iw),
where «w = +1. Hence,

&t w) = oy (1) (lw)
+ @(a)o(rw — a) — p(b)d(tr — b)}). (3.9)
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It can be easily confirmed that the equations below
hold.

’ H(x -« — t)g (1. w) dt du(w)
S
= E{"H(x ~ 1)g(t. 1) dr

+ J H(~x — t)glt. - 1) dt}

1 . .
= El“"”'(x) ” @'(t) di + ¢la)

- J o' (—t)dr + (/)(b)}

!
= Laa(X)@lx) — i{fﬂ(a)é(x ~ a)
+ p(b)d(x - b)l. (3.10)

The value of eqn (3.10) does not coincide with that
of f at x = a, b. Generally, this sort of exceptional
points appear if a discontinuous function is treated.
If the support of ¢ is contained in [a, b], gi(t, ) =
f'(tw) and the right-hand side of eqn (3.10) is exactly
equal to ¢(x). In this case, if f is # + 1 times con-
tinuously differentiable, then g; is n times continu-
ously differentiable in ¢ € (a, b). If ¢ is not truncated,
it must be integrable but does not need to be rapidly
decreasing. Thus, this simple example illustrates that
a function to be approximated need neither be in-
finitely differentiable nor rapidly decreasing.

Example 3.2. Set

f(x) = exp[—%lx\l , YER. (3.1

First, let us apply Theorem 3.1. Then,
5 s
) = ;—?exp[—% tf]‘ (3.12)

Hence, we obtain

i

gt ) = ALF0) = = aif)

a
—zt.

Next, let us apply Proposition 3.2. Then

(3.13)

)

ﬁ {a'r® — 3a’tlexp

B fx) = {~a'(x * w) + 3a'(x - v)}
X exp[ ~a;:lx!3]. (3.14)

From this equation, we have

[

gl'(tv (l)) f (L(uauuf)(x) dml.w(x)

(3.15)

I

Loy - 3p _Z
4n{at 3at}expr 2t :

Thus, we have obtained the same g; in both cases.
We can confirm that the function f can be recovered

} 1]!:'
from the function g,
‘ Hix - o0 = Dg e o) di du(om)
|- -
- i ; dpe) ; la'y Sai}
a .
< exp| om0 |t
.
- 1;{ ! Hax - 1) [
a@ ; ‘
Xoexpy (v ) ‘ du(en)
= exp __Ei“,‘,] {3,169

Example 3.3. Set

a o,
=5

f(x) = |xI' exp x € R (3.17)

Then, by either eqn (3.2) or eqn (3.5).

-5 zf‘. (3.1%)

| " '
gt w) = i fa'r + Ta'tt -~ orfexp
i

Hence,

. U N .
Hxy = — H {a't + Ta’t — 6t}
an |

X exp

r l H{x - e iy dt dpfowd. (3.19)

ST

Example 3.4. Suppose that f is « characteristic func-
tion of a sphere in R? with centre at the origin and
radius a:

flx) = ’;(1,: K (3.20)
Then
f() = 7 (0 fa” = 1) (3.21)
Hence,
gl m) = cdl f(o)
417;{6(1 +oa) o -oa)
- ad'(t - a) - ad{t + a).  {3.22)
Hence,

” H(x - w — g, w) di dutw)
= 11-7; , {2 walx » @) — adlx - 0 ~ a)

— ad(x - & + a)} du(w}. (3.23)

For | x| = a, this quantity is equal to 1. For |x| > a,
let us divide the integral on the right-hand side of

eqn (3.23):
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The first and third integrals are equal to 4za/|x| and
0. respectively. The second integral is equal to

<2 4

—dn I sin 06(|xlcos 0 — a) dO) = ——‘7:_—“1.
Hence. eqn (3.23) is equal to 0 for |x| > 0. There is
a reason that we may definc the value of

Qnu J Colx - — a) du(w)

to be 1/2 for |x| = a. If we use this definition. the
value of eqn (3.23) is 1/2 for |x| = a.

If the dimension is higher than 1 and the function
f(x)is not spherically symmetric. then the calculation
for obtaining g, is too lengthy to be given in full in
this article, which is intended to present the theory.

4. APPROXIMATION OF
THE REPRESENTATIONS

Let us approximate the integral representations in
Theorem 3.1 and Corollaries 3.3 and 3.4 by finite
sums of a step or sigmoid function, respectively. In
the present theory, replacement of the respective
integrals in egns (3.1). (3.6), and (3.7) by finite sums
must be performed very carefully. A deviation of the
value of the representation caused by such replace-
ment can spread out widely and accumulate some-
where, because a step or sigmoid functions is used.
Hence. even if a good approximation is attained on
a compact set. it could be violated at a distance be-
cause of accumulation of the deviations. In order to
guarantee that our approximation holds on the whole
space R", we have to prove that such accumulation
docs not take placc anywhere. This is an essential
difference which exists between an approximation on
R and that on a compact set. The proof of the theo-
rem below includes the method of avoiding accu-
mulation of the deviations caused by approximation.

Let Q, be a sphere having the line segment Ox
between the origin O and a point x € R" as one
of its diameters. Note that the point (x - w)w is on
the sphere Q.. However, since (x - @) = (x -
(—oN(—w). the set {(x - w)wlw € §" '} covers the
sphere Q, twice. We denote by 4, the uniform mea-
sures with density 1 on Q,. Let u be a symmetric
function detined on R x 8" "', Then, the integration
of u(x - . w) over the unit sphere §" ' is converted
into that over Q, by a correspondence ¢ — (x - w)w.

Let us approximate a rapidly decreasing contin-
uous function (not necessarily differentiable) defined
on R" by a finite sum of a step or sigmoid function.

THEOREM 4.1. Let f be a rapidly decreasing contin-
uous function defined on R". Then. for an arbitrary
positive number ¢, there are finite sets of numbers
{a d ) and {1, and a finite set of unit vectors
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{1y, such that a finite sum

kY

flx) = E aH(x - o —

[

) (4.1)

satisfies
Ifx) — f(x) <« for all x € R, (4.2)

Proof. For an arbitrary ¢ > (). there is a function
1 € s(R") such that [f(x) — f(x)] < &/3. In order
to approximate f. let us introduce partitions of R
and 8" '. We denote by A = {A} | a partition of R,
where A, = |7, . t]. 7,y < 7.and by ® = (O},
a partition of § '. In these partitions, / and J are
finite positive integers. Set £, = {tn € R* |1 € A,,
w € )} and define a set A, by

\ =G DIE, N QL ~ (4.3)

Since g7 satisfies condition 2 in Theorem 3.1, g7(1,
) € L'(dt di). Hence. there are finite partitions A
and ® for which

5
Rl

> ” lgz(r. en|dr dp{en)y << - forall x. (4.4)
Gapoy, Y A0,

Let 1 be an arbitrary point of the interval A; and
' be an arbitrary unit vector in ©,. Set

a, = ” gt o) dt du(om). (4.5)
JJa e

Thus. we have obtained three sets {a,}, {*'} and {1}
We can prove that. for these sets.

fi0) = Y a,Hx - o — (4.6)
satisties
90 o 2
lf(v) = fix0)) < 3¢ for all x € R

In tact. suppose that £, N Q, = ¥. Then,
f[ H(x o = ngrlt. o) dr dufo)
Ao,

= a,Hx - — 1), (4.7)

because H(x -« — 1) = H(x - @, — 1) = 0or 1l on
such a set 4, X 0, and g, is defined by eqn (4.5).
Hence, we have that

UJ Hi{x -~ — Dgrt, w) dr du(ew)

- Z a;H(x - o' — r“’)l
o

iA

}: UJ H(x -« — Hgi(t. m) dt du(w)
INICAN K

= a,Hx - o - I“))‘

.
2

22 f f
[TN2IERY A0

1A

grlt, w)ldr du(m)y < = ¢ (4.8)

[SER RN
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Hence, eqn (4.6) is smaller than ¢. By renumbering
the suffixes and the superfixesin eqn (4.6). we obtain
eqn (4.1). This concludes the proof. ]

Remark 4.1. 1t is obvious that we can take the par-
titions in a way that the equalities A, = ~A,.
-l <i<land ®_;, = -0, -J < 1«\Jhold
that is, the partitions can be symmetric. Such parti-
tions must be convenient because the function g7 is
asymmetric.

The corollary below is straightforward from Theo-
rem 4.1. We use a sigmoid function H, without scal-
ing.

COROLLARY 4.2. Let ¢ € X and suppose that f is a
rapidly decreasing continuous function defined on
R". Then, for an arbitrary positive number ¢, there
are finite sets of numbers {a}Y_, and {{¥}Y. |, and a
finite set of unit vectors {w'®}¥_,. such that a finite
sum

N

For) = S aH(x - o~ %) (4.9)

Aot
satisfies
[f.(x) — f.(x) <« forall x € R~ (4.10)

Proof. Let f, be the approximation obtained in Theo-
rem 4.1. Then, from eqn (4.2),

Ay = f o+ o(x)] <¢ forall x&€ Ry, (4.1}

Rewrite the convolution as

N

forol) =2

k=l

akJ H(y - w® — ")y do(x — v}

N
= X aH(x - w* — ). (4.12)
kol

Thence, by setting f,, = f, * ¢, we obtain the cor-
ollary. [

It might be advantageous that the sets {a,}, {t*'}.
and {®'¥} in Theorem 4.1 and Corollary 4.2 do not
depend on ¢. We can choose a convenient ¢ even
after ¢ and these three sets are decided.

Because a continuous function defined on a com-
pact set can be uniformly approximated by a rapidly
decreasing function, this result includes the well-
known approximation theory with a scalable sigmoid
function. Details will be described in Section 5.

The corollary below is immediate from Corollary
4.2,

COROLLARY 4.3. Let ¢ € X, and suppose that f is
a rapidly decreasing continuous function defined on
R*. Then, for an arbitrary positive number &, there
are finite sets of numbers {a}Y_, and {9} . and a
finite set of unit fectors {w™}¥.; such that a finite
sum
N
fix) = E a H (x - % — %) (4.13)

[

Voo

satisties
)y — f)) <e for all x € R, (4.1

Proof. Similarly to Corollary 3.4. we can obtain thls
result.

Thus, it is proven that a tinite sum of unscaled
shifted rotations of a sigmoid function can approxi-
mate any rapidly decreasing continuous (not neces-
sarily differentiable) function on the whole space R”.
if the sigmoid function satisfies a few conditions.

5. OTHER EXAMPLES

This section s annexed to show that we can derive
several other results if our policies are weakened.
Avoiding to mention each of them tediously, we de-
scribe here two typical examples. In Example 5.1,
the policy of use of a sigmoid function without scaling
is abandoned, but the uniform approximation holds
on the whole space R". In Example 5.2, the policy
of approximation on the whole space i1s abandoned
and a norm weaker on a compact set is adopted. but
the sigmoid function is not scaled.
Let o € X. For h > 0, we define a scaling of ¢ by
Fx) doy(x) = | flhyydoix). (5.1
This scaling may be written symbolically £ "a{x/h).
The sigmoid function H, is scaled if the measure o
is scaled. The result below is derived from Corollary
4.2 under the condition that H, can be scaled.

Example 5.1. Suppose that a measure o € 2 1S ab-
solutely continuous and the density of g is an element
of $(R"). Then, any rapidly decreasing continuous
function f can be approximated uniformly arbitrarily
well on R" by a finite sum
0 = D aH, (x ot - k=00 (3.2)
In fact, for any ¢ > 0. there is a scaling of ¢ such
that

o — £l < ; forall x & R

Furthermore, by Corollary 4.2. there is a finite sum
of the form (5.2) which satisfies

o) — fI<S torall reR.

Hence, we obtain the result.
Set WW = o®/h apd T® = r/h, k = 1,
. 1. Then,

H,(x - a® — (®) = = Ho(x - WR - Ty

Hence, the right-hand side of eqn (5.2) is written

N

Fax) = Y aH o WO T e
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This is the well-known form of the approximation
formula.

The supremum norm is stronger on a compact set,
say K. than some other norms such as L”(K)-norm.
Let X be a function space defined on K and endowed
with a norm |-{|. Suppose that a set of infinitely con-
tinuously differentiable functions is dense in X and
the supremum norm is stronger than [|-f. Then. ap-
plying the standard functional-analytical discussion.
we can prove that any function of X can be approx-
imated arbitrarily well in ||-norm by a finite sum of
the form (4.1), (4.9). (4.13). or (5.2). The following
1s an example, where the standard discussion is ap-
plied to eqn (4.13):

Exumple 5.2. Let ¢ € Y. Then, any function f €
LP(K). p = 1. can be approximated arbitrarily well
in L"(K)-norm by a finite sum

o

S H (xo ot = gy, (5.3)

To confirm this. note that the supremum norm is
stronger than L”(K)-norm and a set of infinitely con-
tinuously differentiable functions is dense in L7(K).
Then, apply the standard discussion to Corollary 4
and we obtain this result.

Except that the sigmoid function H, is not scaled
in eqn (5.3). this result is similar to Theorem 3 of
Carroll and Dickinson (1989).

VS

|

6. SUMMARY

I. Two policies are carried throughout except the
annexed part: (a) uniform approximation on the
whole space R": and (b) the use of a step or sig-
moid function without scaling.

2. The main tool in this article is the inverse Radon

transtorm.

. First, it is proven that an integration over a step
function with weight g, can exactly represent { €
>(R") on the whole space R" (Theorem 3.1).

4. Then. two other exact integral representations on
R" were derived, in each of which a nonstep sig-
moid function was used instead of the step func-
tion without scaling. In the former the function
to be represented must be a convolution f * ¢
(Corollary 3.3).

5. This restriction is removed in the latter; it was
proven that any f € 5(R") can be exactly repre-
sented on the whole space as an integral of a
sigmoid function without scaling (Corollary 3.4).

6. Examples of the weight g, are illustrated (Ex-
amples 3.1 ~ 4).

7. These three integral representations are approx-
imated by finite sums respectively (Theorem 4.1,
Corollaries 4.2 and 4.3). The approximations hold
uniformly on the whole space R".

8. In the annexed part (Section 5), two typical ex-
amples are illustrated in order to demonstrate

o
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how other results are obtained when our policies
are weakened (Examples 5.1 and 5.2).
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APPENDIX

In order to avoid theoretical complications in the text. the defi-
nition of the fractional power of the operator L] and related mat-
ters and the proofs of Lemmas 2.1 and 2.2 are described here.

In order to treat the inverse Radon transform. we need
the fractional power of the operator —'J| which is defined by
() = (877ar)e(r). This notation is used in Helgason (1980).
The fractional power is defined by

e + 172)

~ T g = ey 02
(= _J)ale) s o

v.p. ‘ [p =10 > il p) dp,
» (A1)

where a > (is not an integer and v.p. stands for the principal
value. For ¢ven n, we have

. i 0
(=L ") = (=1y 5 — Divp. J P e(p + 1) dp.
’ (A2)

The principal value at ¢ = 0 on the right-hand side of eqn (A.2)
is written

p-v. ’ P ielp)dp = ’ P {w(m + ool -p)

i Pt ) -
m ' () }(lp (A3)

(Gelfand et al.. 1960). Il ¢ € S(R). the principal value is well-
defined.

~ 2

o)+ Lpro) + 4

Proof of Lemma 2.1. Though item 1 can be proved straightfor-
wardly, we briefly illustrate the proof of this part of the lemma
because the cquations (A.4a).(A.4b)and (A 4¢) below are useful.
Writing 9" = /¢, let us divide the principal value into three
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parts:
Ip(r. ) = Y Lp(i, ). (A.4)

where

ot )

Lt o) = “p " {(/:(l +opoo) - el p.oem) — 2

P o o l
oyt e) + o ——’)' o (L. w)] f dp. (Ada)

R (n — 2)!

Lot o)) = J p olt = poey + ot — poo)bdp. (Adb)

N )
Lo(t.aoy) = =2 ’] P "{ ot m) + %(/)”(1. )
+ o+ [7— o e dp. (Ade)
(n — 23

Put

Rip.t.p.c)y=p ”{rp(l + pow) +oplt - poe)

P P
= Joel, o) + 5(# ({o) = = 4 m«p (. o).
By Taylor’s theorem. there exists ¢, 0] < 1, such that
al
Rip. 1, p.o) - ;' "+ Up. ). (AS)
n!

Therefore, we have an expression
-

N >
Lot w) = J Rio.t.p.w)dp = J - 0+ Upoo) dp.
B on!

Since ¢ € (R x 8§ "), this integral is integrable and rapidly
decreasing in . Since

[Rip.t.p. o)) = supl

5
— "5, @)
n!

sER.weES ‘} < %~ (A.6)

by eqn (A.S) and since R (o, 1. p. ) is continuous in (1. ). Lp(i,
m) 15 continuous in (4, m). The second integral Lot o, a) is
integrable, continuous in (1. ) and bounded by M(jf* + 1) !
with M > (. The third one Lg(t. ) is also integrable and rapidly
decreasing in ¢. Hence. the principal value (2.7) is well-defined
and continuous 1n (1. ). and (2.8) holds for & = 0.

Set

At ) = ot + I, ) — ot wm).

Then,

!
E{(llw)(! + hoo) - (et ent

1 M 1
= =1 ()t ) = ‘ R, (— Aot p. m) dp.

h N i
Obviously, we have that, by eqn (A.5) and the mean value theo-
rem,

1
lim R, (I_ Aot p, (u) = Rlp . t.p.w)
o {4 K
and
1 2
R, (— Ao, 1o p. m) = — | = {A)"(1 + Up. @)
h J ! | h

,
= =lp" " + Op + O o)
H.

)
= sup :—' lp' (s )],
R H.

where J0] < 1 and 0 < (), < 1. Hence. we can apply Lebesgue’s
where || < 1 and 0 < (), < 1. Hence. we can apply Lebesgue’s
dominated convergence theorem and obtain

1
adp(t, ) = lim}—{l,w(l + how) — Lol o)} = Le'li. ).
wo h

(A7)

Y. lo

for i = 1. We can further show that eqn (A.7) holds fori = 2,
3. Thus, we obtain

ddo(r, ) = Ip'(1, ). (A.8)

which means the commutativity between the operation f and a,.
Similarly we can prove the commutativity among /. d, and a,s.
Since dfd, -+ d.p is again in S(R x §" '), the principal value I(g.
(. w) is infinitely differentiable and cach derivative is continuous
in (¢, ). By the commutativity (A.7). we obtain the expression
below:

(. @) = J poe¥ (i + opoe) + R - poo)tdp
|

S+ =2
=N =t o+ 1o
//_1 o — 1) 1o ( )

S AR
(n+ k-2
-—
(n — 1)! ,

X ot + poo) + (= 1Felt — poo)} dp.
(A.9)
In the last member, the integral is bounded by M| + 1) %,
M, > 0. and other terms are rapidly decreasing. Since a./0(1. ).
i = 1. 3. are rapidly decreasing, eqn (2.8) holds. This concludes
the proof. :

Proof of Lemma 2.2: The left-hand side of the first cquation
is equal to

| X
hm — {f wi(x)dm, ., (x) - ‘ wix) dmn,, ‘(,\‘)}

noh

v b

= lim J awlx + the) dm, () (A 10)
with () < () <2 1. Hence, we obtain egn (2.10) by the dominated
convergence theorem. For odd i, eqn (2.11) can be casily obtained
by applying item 1 repeatedly. Now supposc that nis even. Then,
the right-hand side of the second equation in this lemma is written

_ wl — [—
(L.w) (1. 1) = (e - 11 (”” l)'J

} I Juwr(x.poo) dp

2'n

+ Jwx.poo)ydp + ‘ Ty (x. p.w) u’p] dm,, (x),
J S

(A.11)

where
Jw(x.p.ow)y=p "‘{u/(.x‘ + pw) + w(x — pw)

-2 (u/(.\') + % ap(x) + -+ h 0 1(//(.\')]}.

(A 124)
Ja(aopow) = p Hwx + po)+ wix — po)t, (A12b)
Jw(x.p,w) = =2p " {u/(/\‘) + i—)’ oty (x)
)l! 2 . |
+ -+ Y ar *z//(x)}. (A.12¢)

By Taylor’s theorem, there exists ¢, || < 1. such that

5
Jw(x, p.ow) = l' dtw(x + Opw).
n!

Hence, the right-hand side of {A.12a) is integrable with respect
to dpdm,,, on [0, 1] x P,,,. Both J.w(x. p. @) and Ja{x, p. &)
are also integrable with respect to dpdm,, on [1, x| x P,,.. Hence,
by Fubini’s theorem, we can change the order of the integrations
on the right-hand side of (A.11) and obtain

(L) (1. 0) = %1—) J p “{w(.\‘ + pw)

Diigpn

+ yx - po) -2 {y/(x) + i—)' d7y(x)

+ o 4 (—"% ar Zu/(.r)]} (Im[_,,(x)‘l dp.

Therefore, the sccond equation in this lemma also holds. O



