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Abstract--The starting point of  this article is the inversion fi)rmula o f  the Radon tran@)rm: the article aims to 
contribute to the theory o f  three-layered neural networks. Let H be the Heaviside /imction. Then,/?)r any fimction 
[ ~  ,,',(R"), there is a function g~ such that f can be represented on R" by an integral f H(x " c,J t)g~(t, r,J) dt 
d/~(o)), where /t is the uniform measure ott the unit sphere S" J, t C R and (,J ~ S" i. Further- 
more, ,f can be approximated untlfbrmly arbitrarily well on the whole space R" by a /hlite sum of  the 
[orm Yk a~ H(x " ~,J~ - t ~'). Let H, be a s~moid  function on R defined by H~(t) : f H(t - x . e)) do(x),  where 
c, is a spherically sytnmetric probability measttre. Suppose that c7 satiqYes a [?w further conditions. Then, for  
art)' f ¢ ,+(R'), there is a fimction gl,~, sttch that [ can be written f H,(x . ~,J - t)gf.~,(t, ~,~) dt d/l(~,~) with the 
anscaled sigmoid /unction H~ f ired b¢~lbrehand. This expression can also be approximated un![?)rmlv arbitrarih, 
,'ell on R" by a finite sum. 

Keywords--Three-layered neural network, Heaviside function, Sigmoid function, Radon transform, Inverse 
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1. INTRODUCTION 

The problem of representat ion of a function in sev- 
eral variables by a neural network has been studied 
by many authors. This article is concerned with the 
theory of three-layered neural networks. Hecht-Nie[- 
sen (1987) pointed out a possible connection between 
Kolmogorov 's  celebrated result (1957) and the pres- 
ent problem. Wieland and Leighton (1987) have 
dealt with networks consisting of one or two hidden 
layers, where the capability of networks of both 
threshold and sigmoid units are analysed. Irie and 
Miyake (1988) have obtained an integral represen- 
tation formula with an integrable kernel fixed be- 
forehand. This representation formula is the kind 
which would be realized by a three-layered neural 
network if infinitely many units could be used. In 
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1989, several papers related to the present topics 
appeared:  Carroll and Dickinson: Cybenko;  Funa- 
hashi: and Hornik,  Stinchcombe, and White (1989). 
They all have claimed that a three-layered neural 
network with sigmoid units on the hidden layer can 
approximate continuous or other kinds of functions 
defined on compact sets. However ,  their methods 
are different. Carroll and Dickinson used the inverse 
Radon transform, which consists of two successive 
operations. They first approximated the integration 
over the surface of the unit sphere (the second op- 
eration in the inversion transform: see Section 2.2 in 
this article) by a finite sum. Next, they approximated 
the respective terms in the sum by linear combina- 
tions of the scalings of a sigmoid function. Cybenko 's  
method is a handsome combination of the H a h n -  
Banach theorem and the Riesz representat ion theo- 
rem. His proof  is existential. Funahashi approxi- 
mated lrie and Miyake 's  integral representat ion by 
a finite sum, using a kernel which can be expressed 
as a difference of two sigmoid functions. Hornik et 
al. applied the Stone-Weierstrass theorem using 
trigonometric functions, where their approximations 
were not only in the uniform topology on a compact  
set but also in the p~,-topology, However ,  the latter 
can be attained if the uniform approximation can be 
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achieved on an arbitrary compact  set. Though their 
methods are thus different mutually, common fea- 
tures are observed among them: ( a ) t h e y  all have 
proved that their approximation formulae hold on 
compact  sets (though the ps topo logy  is slightly dif- 
ferent); and (b) scaled a sigmoid (or other)  func t ion  

We carry two policies throughout (except in the 
Section 5): (a) uniform approximation on the whole 
space R"; and (b) the use of a step or sigmoid func-. 
lion without scaling. It is obvious that every contin- 
uous function defined on R" cannot be approximated 
uniformly on the whole space by a finite sum of sig- 
moid functions, Hence,  a certain restriction on ~, 
function to be approximated  is unavoidable. We treat 
rapidly decreasing continuous functions in this arzi- 
cle. However ,  this restriction can be weakened to 
some extent as is remarked and illustrated by cx- 
amples. If a sigmoid function can be used without 
scaling, the optimal neural connection weights as a 
vector is on the surface of the unit sphere. This might 
be occasionally convenient,  though it could generally 
require more units. If a sigmoid function satisfies a 
few conditions, we can express any rapidly decreas- 
ing function as an integral over  the sigmoid function 
without scaling. 

Three exact integral representat ions of rapidly de- 
creasing C'-functions are obtained in Section 3. They 
arc respectively integrations over an unscaled step 
or sigmoid function. In Section 4, each of these in- 
tegral representat ions are approximated by a finite 
sum. Thus, three linear combinations of unsealed 
shifted rotations of a step or sigmoid function are 
obtained. Two of them can approximate  uniformly, 
any rapidly decreasing continuous function on the 
whole space R". Because a step or sigmoid function 
is used in this article, small deviations of the value 
caused by approximation could spread out far awa~ 
and pile up at a distance. It is essential in Section 4 
to prove that this pile-up can be avoided. When our 
policies are weakened or removed,  many other forms 
of approximat ion formulae can be obtained as cor- 
ollaries to our results. We have avoided mentioning 
all of them.  but two typical examples are illustrated 
in Section 5 in order to demonstra te  how to derive 
other approximat ion formulae from ours. The proofs 
described in this article are constructive. Hence.  
most of the results can be simulated by computer .  

The choice of the uniform approximation,  equiv- 
alently the supremum norm, is a necessity in this 
article. A norm defined by integration over R" such 
as U' (R")-norm is difficult to be managed in our the- 
ory because a small change of the value caused by 
approximation can spread out widely. As a result. 
norms such as LP(R")-norm become divergent. Con- 
versely, the supremum norm is satisfactorily useful 
in our theory as will be observed. Fur thermore ,  it is 
convenient because it is stronger on a compact  set 

than some other norms (see Example 5.2). t tence.  
the uniform topology is appropriate  in this article. 

Two theorems are used without proofs,  for the \  
are avai lab le  in t t e lgason  (19811) and Get ' land, .  
Graev,  and Vilenkin (1966). Accordingly, rigorousl 3 
treated in Section 3 is the space ;(R"'i  of rapidl? 
decreasing (":-functions defined on R" as in the case 
of the corresponding lemmas m both monographs.  
though this space can be extended to that ~f !c~s 
regular and less rapidly decreasing functiuns :~.s i~ 
described above. 

2. P R E L I M I N A R I E S  

While summarizing the theory ~,q the Radon tran,- 
form that is the starting point of this article, it is also 
necessary to prepare several [cmmas to be used in 
this article. Most of  the notations ~re introduced in 
this section. 

We denote by H the Heaviside function, Any shfit 
o f  t t  is called a step function. A sigmoid function on 
R is that which is not a step function but monotonic 
increasing, and converges to 1 as t ...... ~-:~ and to (i 
as t . . . . .  ~,'-. We denote by S" ~ the unit sphere in the 
n-dimensional Euclidean space R", Any unit vector 
,) can be regarded as an element of S" ~. A step 
function can be extended to R" by H ( x  • , )  - ,',",, 

where ,  stands for the inner product. A sigmoid func-- 
tion can also be extended to R" in the same way, We 
call these extended functions by their original names,  
respectively. Denote by P,,, the hyperplane which is 
perpendicular to ~,) and has the point to,) E R" on it. 
We then have that P ..... = {x (5 R"}v'  ~,J -- t}. Also 
denote by m,.,, the uniform measure on P,.,., with den- 
sitv 1. The Radon transform of a function f is defined 

by 

[(t.,,~)) = I !(x) dm ,i~i. {2.1) 
] 

If f belongs to the space I.~(R"~ of integrable func- 
tions with respect to the Lebesgue measure ,  its Ra- 
don transform is defined for almost every t E R for 
any ~ E S "-~, If f is integrable with respect to m ..... 
of each hyperplane,  f is defined everywhere on 

R * S" 
Let us call a function u on R :~ S" ~ symmetric 

if u ( t ,  ~,)) = u ( - t ,  --o)), and antisymmetric i~ 
u(t, ~o) u( - t, --~,)). Then,  lhe Radon transform 
. [ ' is  symmetric because P ..... = P ~ , We cal la  func- 
tion .f on R × S" t homogeneous  if 

is a homogeneous  polynomial of the kth degree m 
the components  ~o~, . , . . .~,, of (.. 

We call a function f defined on R" rapidly de- 
creasing if 

lira x a~'; f(x) : ~t 
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for anv nonnegat ive  ki's.  Similarly,  a funct ion ~p de- 
fined on R × S" ~ is rapidly decreasing if 

lira ]P(p(t, e))l - 0 
t . ,  

for any k => 0. Note  that  rapidly decreasing funct ions 
are nei ther  different iable  nor  cont inuous  in this ar- 
ticle unless o therwise  s tated.  We use a differential  
ope ra to r  a,, in the direct ion (o for  a function on 
R": that  is, a,, - ¢,)~a~, + -.. + e),,0~,, where  O,~ = 
a / a , .  For a function ~/) def ined on R × S" ', we use 
differential  ope ra to r s  along the great  circles on S" 1 
besides iJ, = #~at: 

¢~(t, ~,J + so0 - (p(t, ,)) 
:),,(/~(t, e ) )  - lim 

,r) S 

where  ~ is a d i rected great  circle start ing f rom (,) and 
~,~ + ,v~ is the endpoin t  of  the initial section of ~x with 
length s. When  the different ia t ion is in the radial 
direction we use a charac te r  such as s or t for the 
suffix, and when it is a long a great  circle we use the 
first couple  of the G r e e k  characters .  

An infinitely cont inuously  different iable  func- 
tion is called a C~-function. The  spaces ,t,(R',) and 
>(R × S" 1) are def ined in Helgason  (1980). They  
are the Schwartz  spaces which consist of  rapidly de- 
creasing C~-functions on the respect ive spaces.  We 
denote  by 5,sn(R × S" ') a subspace  consisting of 
symmet r ic  h o m o g e n e o u s  e lements  of  ,-X(R × S" ~). 
In Helgason (1980) the t heo rem below is proved.  

THf OREM A. The  Radon  t ransform is a l inear one-  
to-one mapp ing  of >(R") onto  >sn(R × S" i), 

We denote  by/~ the uni form measure  with density 
1 on the unit sphere  S" ~ (i.e. dlz is the surface ele- 
ment) .  The  ope ra to r  ~ ,  is def ined by 

Ei:0(t) = aT(/)(t). 

The definit ion of the fractional  power  of  - L ] ,  and 
that  of  the principal value (v.p.)  are descr ibed in 
Appendix .  The  t h e o r e m  below is descr ibed in both 
Ge l ' f and  et al. (1966) and Helgason (1980). 

THEOREM B. Suppose  that  . / 'E ,~(R"). The  inversion 
formula  for  the Radon  t ransform of .[' is 

1 1 I]3 '>:](t, u2)] ...... d l , ( , 2 ) .  (2.2) f(x) 2"zr"' I ( - -  '" 

This inversion fo rmula  can be writ ten concre te ly  

/ 

) [0;' ~ J'(/, (9)] .... d/l(cr)) fo r  o d d  c,, /1, 
3 

f(x) =. 

d,,p.v, f [ f ~ f ( t ,  e,J)(t - x . ~9) " dt] d/L(oJ) 

for even n, (2.3) 

where  

( -1 ) " '  '): ( - 1 ) " 2 ( n - -  1)! 
c, - and d, = (2.4) 

2"rg" 1 2"rr" 

For convenience ,  we int roduce an o p e r a t o r  L with 
respect  to the var iable  t def ined bv 

1 
L(p(t) - 2"zr" ' ( - ~ J ) ' "  "M(t) .  (2.5) 

Then ,  

,t(x) f [L : ( t . . , ) l  ..... ,b ,( , , t .  (2.6) 

Now let us p repa re  several  l emmas .  We denote  
bv C : ( R  x S" ') a space of  funct ions def ined on 
R × S" ~ which are infinitely cont inuously  differ- 
ent iable with der ivat ives  converging to () as t ----, +~c. 
L e m m a s  2.1 and 2.2 are p roven  in Append ix .  

LEMMA 2,1. Let  n be even and :p E >(R x S" ~). 
Then:  

1. The  principal value 

/ 

I~(l, p.v. ] p "~p(t + p, (,)) dp (2.7) (.9) 
1 

is well def ined for each (t, ~,~). 
2. l~o(t, e)) E C,~(R x S" '). 
3. The  opera t ions  1, a, and :),, arc mutual ly  com-  

mutat ive .  
4. For all the differential  ope ra to r s  of  the fo rm a~0, 

• .. a/,, there exists a posit ive constant  M~.,. , /:  such 
that  

1:,~0.'" a:;(l~o)(t.(,))] < !t[,, ~ ÷ I (2.8) 

We int roduce an o p e r a t o r  L,, on R" def ined  by 

l,,,~,(x) = [Lq/(x + t<,J)] .... (2.9) 

More  concrete ly ,  we have that ,  for odd /z ,  

L.,~,(x) : c,,#::. ~r/:(x) 

and, for even n,  

L, //(x) = d,,p.v, f p "l//(.r + p(,:) dp. g 

LtzMMA 2.2. Let  ~, C ,~(R"). Then ,  we have that  

a,~(t, ,)) = (a,,~,)'(t, ,J). (2.10) 

L ~ ( t , u ~ )  - (L,,~/;) '(t ,  u;). (2 .11)  

The l emma  above  will be used in Proposi t ion  3.2 
to derive the funct ion & def ined by eqn (3.2) by the 
a l ternat ive way. 

LEMMA 2.3. Suppose  that  a funct ion f is def ined on 
R" and cont inuously  di f ferent iable .  If f and its de- 
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rivatives O~,f,  k = 1, . . .  , n ,  are all integrable with 
respect to the Lebesgue measure ,  then we have that 

f .t•(,0 : . f uu  - -, .  (,,)<f(x) ,u  (2. 

for all (t, e)). 

P r o o f .  Without  loss of generality, we may suppose 
that ~,~ = (1, 0, ... , 0). Since f and 0, ,f  are intc- 
grable, 

lira .f(x~, ... , x,,) = 0 

for almost all (x2, "'" , x,,). Hence,  we have that 

• . f ( t ,  x2, ".. , x,,) dx2 ... dx ,  

By Fubini 's theorem,  the right hand side of eqn 
(2.11) is equal to 

f . . fH( t -  x , ) < , f ( x , ,  . . . .  x , , ) dx ,  dx2 "" dx,,. 

Hence,  we obtain the lemma.  ~} 
Let us denote  by E a set of measures defined on 

R" which are 

£0. Nonnegative,  spherically symmetric  and with to- 
tal mass 1. 

Then,  if a ~ £ is not the delta function 6~, at the 
origin, a convolution 

( 
H,(t )  = ] H( t  - x .u) )  da(x)  (2.14) 

is a sigmoid function. Obviously,  H ,  does not depend 
on {o. If  the Fourier  t ransform l~a of a ~ £ satisfies 
the following conditions, we call a ~ Et'  

Y.1. :ia ~ C*(R") (infinitely continuously differen- 
tiable on R~). 

E2. There are a positive integer N and a positive 
constant a for which 

a 
:fa(y) > ]y]~. + 1 for all v ¢ R". 

LEMMA 2.4. Suppose that a C 72~. Then,  for any 
arbitrary f ~ $(R"), there is a function v ~ $(R ") 
such that f = v * a. 

P r o o f .  Since :~a ~ C~(R"), any momen t  of a 

f lxd"' "" Ix°b, a ~ ( x ) ,  -> 0, .-. -> 0, O~ I O/,, 

is finite; namely,  any partial derivative of :~a is 
bounded.  Hence,  ~if/:ia ~ 5(R"). Set v = :~ ~(:t f /  
:ia). Then,  v is the function we look for. [ 7 

The delta function at the origin 6~, belongs to Z~. 
If ~0 E ,~(R") is spherically symmetric,  nonnegativc 
and f (p (x )  d x  = 1, then c~&~ ~ /@ dx((~ i /] i. 
a > / ;  ~ 0) belongs to EL. The sigmoid function de.- 
fined by eqn (214) ,  using this measure~ is not con- 
tinuous. However ,  there are many absolutely con- 
tinuous measures in £1. Set ~u(x) - A e  ,,i~r a -, 0, 
A ~ = f e d . <  dx .  Then,  the Fourier ~ransform :~-~,(y) 
is (1 + ly i2/ ,F)  u,~,12. Fur thermotc .  there are m a r e  
such measures with compact  support.  Let n .... ! and 
set q/,(x) ~ 3/2(1 -- ]xl) 2 for ixi :-- ! and ~q(x )  = ~3 
otherwise. Then,  :~u~(y) = 6v ( i  t :v  sin y). For 
n :- 1. q/,,(x) d x  .-~ 1I~ ~,J~(x~) d~, ~atisfies the con- 
ditions E1 and x,22. Hence,  if we ~.akc the spherical 
symmetrizat ion of ~,,, d x ,  then it ts an e lement  of E;. 
The sigmoid function defined by :.ttl absolutely con.. 
tinuous measure a is continuous. 

3. THE I N T E G R A L  R E P R E S E N T A T I O N  

Using the lemmas so far prepared,  Theorem 3. i (the 
first main theorem),  Proposition 3 .2 ,  and Corollaries 
3.3 and 3.4 are proven. The s ta tement  of the main 
theorem is that an integral over the step function 
with a weight gt exactly represents a function f 
5(R") on the whole space R'L The propert ies  of the 
function & is important  for obtaining an approximate  
representat ion formula in Sectio~a 4. It is shown in 
Proposition 3.2 that gr can be obtained by the alter- 
native way. As corollaries to Fhe~rem 3.1. it will be 
proven that a sigmoid ftmction can be used instead 
of the step function in the integral representation.  
In Corollary 3.3, the function t~ be approximated 
must be a convolution. We can easily remove this 
restriction by applying Lemma 2.4. Thus, obtained 
is Corollary 3.4. 

T H E O R E M  

represented as 

I H(x • t',) .... t ) g l t . . j )  d t  d~(cv), 
/ 

where gt is a function defined by 

g,(t, ~,~) = ;i ,Lf(t ,  ¢~), (t, o,) ~£ R × S" . 

'['he 

3.1. Suppose that J~_ >(R"). 'f 'hen, ,t is 

(3. l) 

function gt satisfies the c~mditions below: 

1. g t E  Ci~(R x S"-~). 
2. For any k > 0 and any directed arcs a,  - . . .  ]L 

there is a positive constant Mu,,. . /~ such that 

I r k "  o<~, ..~ ,3,,g,(t. ~o)1 < 
Mk.,,. .i, 

Itt,,+k+~ + i 
for all (t, ,)). 

3. f "  ~. gr( t ,  cu) dt  = 0 for all ,) 
4. gt is antisymmetric.  

Proo[ .  By Theo rem A, f E 5(R  x S" ~). For odd 
n.  L f  = c,,a7 ~ .( obviously bekmgs  to 5 (R  x S" ~). 
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For even n, L f ( t ,  ~,~) = d, , l f ( t ,  ~ )  is differentiable 
and both L f ( t ,  o)) and O, L f ( t ,  o~) are integrable by 
Lemma 2.1. Hence, for both odd and even n, 

[Lf'(t, (,))] . . . . .  = f H ( x .  co - t)a,L.f(t, u)) dt (3.3)  

by Lemma 2.3. From one of the forms of the inver- 
sion formula (2.6) of the Radon transform and (3.3) 
we have that 

f(x) = ~ f  H(x . ~o - t)O,Lf(t, o)) dt dlt(~o). (3.4) 

Hence, we obtain (3.1) with (3.2). 
Next, let us confirm that items 1, 2, 3, and 4 hold. 

For odd n, gi(t ,  ~ )  = c,,a'/f(t, ~ ) .  Hence, 1, 2, and 
3 are obvious. Since )~ is symmetric, gt is antisym- 
metric for odd n. For even n, gt(t ,  o)) = d, ,Ofl f( t ,  c,)). 
Hence, 1, 2, and 3 are obvious by Lemma 2.1. Since 
I f  (t, ~o) is symmetric, gt is antisymmetric for even 
n, too. Hence, the theorem is proven. [~ 

Since there is the inversion formula (3.1), the 
mapping f ~ ~(R") ~ g~ is one-to-one. 

PROPOSITION 3.2. The function gt defined in Theo- 
rem 3.1 can also be obtained by 

~,J) = f L.,O,,f(x) dm,,,(x). g,(t. (3.5) 

P r o @  By Lemma 2.2, we can easily prove that the 
right-hand side of (3.2) is equal to that of 
(3.5). 

Let us obtain an integral representation formula 
for a convolution f~(x)  - .f*c~(x). 

COROLLARY 3.3. Suppose that a E ~. Then, for 
f ¢ ~(R"), the convolution .re is represented as 

@(,,~) .  (3.6) 

Proof .  This equation is straightforward: 

fo(x) = f f (y)  d a ( x  - y)  

) 

Hence, we obtain the corollary. [~ 
In other words, a can be released from f~ and 

synthesized with H. In Corollary 3.3, the sigmoid 
function H~ is not scaled, but the function to be ap- 
proximated must be a convolution. This restriction 
looks strong. Nevertheless, this corollary is useful. 
The counterpart of this corollary in Section 4 is 
closely related to the well-known approximate rep- 
resentation formula with a scalable sigmoid function 
(see Example 5.1). Moreover, the corollary below 
follows immediately from this corollary. 

COROLLARY 3.4. Let a E E~. Then, any function f 
E ~(R ") is represented as 

= f f  H,(x '¢ ,J  - t)g,~(t, ,,J) dt dlz(c'J), (3.7) f(x) 

where gt.~ is the function which can be obtained when 
f is replaced by a function ~ ~(:Lf/:~-a) in eqn (3.2). 

Proof .  Note that Lemma 2.4 guarantees the existence 
of a function v E ,,~(R") such that f = v * o-. Applying 
Corollary 3.3, we obtain 

v .  = f f . . ( , .  - t)g,(t, ,,J) d, d/,((o). (3.8) 

Since u -= ~ tCfJ'/:ra), we obtain the corollary. [] 
Thus, it is proven that any function f ~ ,,~(a n) can 

be expressed as an integral of a sigmoid function 
which is fixed beforehand and cannot be scaled. 

R e m a r k  3.1. By checking the proofs of Theorem 3.1, 
Proposition 3.2, Corollaries 3.3 and 3.4, it is almost 
clear that they can be extended to less regular func- 
tions. If the function f is n (resp. 1l + 1) times con- 
tinuously differentiable for odd (resp. even) n and 
the derivatives decrease sufficiently rapidly, then the 
assertions of the theorem, proposition, and corol- 
laries are all true. Furthermore, they hold in a sense 
even for discontinuous functions (see Examples). It 
is also clear that, in any case where the function gt 
is obtained, Theorem 3.1 and others hold. Hence, 
the function f can be less rapidly decreasing. In order 
to describe this fact rigorously, we need start with 
rewriting Theorems A, B and Lemmas giving long 
proofs. Though we avoid the details, examples below 
illustrate that less regular and less rapidly decreasing 
functions can be expressed as the integrations of the 
form (3.1). 

The method for obtaining the function gt is ex- 
plicit. This fact may be of significance in designing 
an actual neural networks. Several simple examples 
of g~ are illustrated below, in Example 3.1, a less 
regular function f defined on R is treated. When f 
is discontinuous, gt involves the delta function. In 
Example 3.2, it is shown that the function gt can be 
obtained by applying either Theorem 3.1 or Propo- 
sition 3.2. Example 3.3 is similar to Example 3.2. In 
Example 3.4, a less regular function on R 3 is treated, 
where both the delta function and its derivative are 
involved. 

E x a m p l e  3.1. Suppose ~p to be a function defined on 
R and differentiable. Set f ( x )  = Zi,.hl(x)~o(x), where 
Zl,.hl is the indicator function of the interval. Then, 

f(t, co) = Zl,,.t,l(tc,~)~o(t~,j), 

where ~o = _+ 1. Hence. 

gl(t, c,J) = ,J{Zl,,.,,l(tc,J)~'(t~o) 

+ ¢o(a)g(t~o - a) - ~(b)(5(tc,9 - b)}. (3.9) 
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It can be easily confirmed that  the equations below 
hold. 

H ( x  • - uJ) d t  6 ' )  t ) & ( t ,  a/,(,..,) 

t } + ) H ( - x  - t )g ( t ,  I) d t  
d 

, { f  = ~ Zl,,.,,l(x) ~o'(t) dt  + q)((1) 

1 
= Zl , .b l (x ) f (x )  - ~ {~0(a)a(x - (1) 

+ ¢ ( b ) 6 ( x  - b)},  (3.10) 

The value of eqn (3.10) does not coincide with that 
of f at x = a, b. General ly ,  this sort of exceptional 
points appear  if a discontinuous function is treated.  
If the support  of ~0 is contained in [a, b], g : ( t ,  u))  = 

f ' ( t ~ o )  and the r ight-hand side of eqn (3.10) is exactly 
equal to ~0(x). In this case, if f is n + 1 times con- 
t inuously differentiable,  then gr  is n times continu- 
ously differentiable in t ~ (a, b). If ~0 is not t runcated,  
it must  be integrable but does not need to be rapidly 
decreasing. Thus,  this simple example illustrates that 
a function to be approximated need neither  be in- 
finitely differentiable nor  rapidly decreasing. 

E x a m p l e  3 . 2 .  Set 

[<1 R, ,f(x) =- exp - s l x l -  , x E (3.11) 

First, let us apply Theorem 3.1. Then,  

. :(t)  2rr [ (1: ] = - -  exp --~- F . (3.12) 
a 2 

Hence,  we obtain 

1 
g , ( t ,  ~o) = O,Lf(t) -- - - ~  off(t) 

(3.13) 

l l a a t '  l. l = - -  - 3a=t}exp --4-t: . 
47r 

Next,  let us apply Proposit ion 3.2. Then 

o2 , f ( x )  = { - a 6 ( x  • u~) 3 + 3a4(x " <,J)} 
(12  ~ . , 

From this equat ion,  we have 

o)) = ( ( L , , o , , f ) ( x )  dm, . . , (x)  g , ( t ,  
J (3.15) 

= l { a 4 t  3 _ 3a2t}exp -2-t2 . 
4n 

Thus,  we have obtained the same g¢ in both cases. 
We can confirm that the function f can be recovered 

from the function &: 

i H L v .  ~,~ - t )g; ( t ,  c,~) di  du(uJ i  

: cxp - ~ t :  dt  

/ 

] {(a.v " ,,,1 

l a' 
× exp --Tlx 

:: cxp --~',-i: 1. 

E x a m p l e  3 . 3 .  Set 

~,)I { d/l(,,)) 

(3. l~i 

f(x) ix]: exp[ - . v ~ R .  (3.17) 

Then,  by either eqn (3.2) or eqn (L5) .  

• 1 1 1 a-: g ( t ,  t,,) = -4~ {a't~ + 7a:t~ .... ¢~t}exp --~-t" . (3.18) 

Hence,  

f(a) = 74-£ ia~t~ + 7a,'t' ~ t i  

t"  [ cxp - ~ t 2 H ( x  " ,~ :) d t  d/~((o). (3.19) 

E x a m p l e  3 . 4 .  Suppose that f is a characteristic func- 
tion of a sphere in R ~ with centre at the origin and 
radius a: 

V{ ~t. 
/(x) .... 11)i )ri (3.2(1) • (i. 

Then 

f(t) - -  / i  . . . .  )(t)~,(a - :). (3.21) 

Hence,  

g~tt.-~) = <o: ,((t) 
! 

::4~{60 + a ) - ~ , ( :  a) 
-- a<5'(t - - a )  a 6 ' ( t  + (1)~ (322) 

Hence,  

.I "(" ' - v, .,) ,o,i,.> 

I I =: 4--~ {ZI ..... i(x' (o) -- a i i ( x . c o  -- a) 

- a d ( x . u ~  + a)} d/t(u)). (3,23) 

For ix[ <-- a, this quanti ty is equal to 1. For lxl > a, 
let us divide the integral on the r ight-hand :side of 
eqn (3.23): 

J ...... + J,,,, + 
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The first and third integrals are equal to 4~za/]x[ and 
ft, respectively. The second integral is equal to 

4rr. sin thJ([xJcos 0 - a) d0 - !.v[' 

Hence,  eqn (3.23) is equal to 0 for Ix] > 0. There  is 
a reason that we may define the value of  

2;~a (~{.v • (,; - a) d/&,O 

to be 1/2 for Ix] a. If we use this definition, the 
valuc of  eqn (3.23) is 1/2 for Ixl = a. 

If the dimension is higher than 1 and the function 
f (x)  is not spherically symmetric ,  then the calculation 
for obtaining g/ is too lengthy to be given in full in 
this article, which is intended to present  the theory.  

4. APPROXIMATION OF 
THE REPRESENTATIONS 

Let us approximate  the integral representat ions in 
Theorem 3.1 and Corollaries 3.3 and 3.4 by finite 
sums of a step or  sigmoid function,  respectively. In 
the present theory,  replacement  of  the respective 
integrals in eqns (3.1), (3.(0, and (3.7) by finite sums 
must be per formed very carefully. A deviation of the 
value of  the representa t ion caused by such replace- 
ment can spread out widely and accumulate  some- 
where,  because a step or  sigmoid functions is used. 
Hence,  even if a good  approximat ion  is at tained on 
a compact  set, it could be violated tit a distance be- 
cause of  accumulat ion of  the deviations. In order  to 
guarantee  that our  approximat ion  holds on the whole 
space R", we have to prove that such accumulat ion 
does not take place anywhere .  This is tin essential 
difference which exists between an approximat ion on 
R" and that on a compact  set. The proof  of  the theo- 
rem below includes the method  of avoiding accu- 
mulation of  the deviat ions caused by approximat ion.  

Let Q, be a sphere having the line segment  Ox 
between the origin O and a point x ¢ R" as one 
of its diameters.  Note that the point (x • ¢0)¢,) is on 
the sphere Q,.  However ,  since (x • ~,))~,~ - (x • 
( - c ) ) ) ( - , ) ) ,  the set {(x • (v){ol(~) ~ S" '} covers the 
sphere Q, twice. We denote  by lto, the uniform mea- 
sures with density 1 on Q,.  Let u be a symmetr ic  
function defined on R × S" ~. Then ,  the integration 
o f  u ( x  • ~v. ~v) over  the unit sphere S" a is conver ted 
into that over  Q, by a cor respondence  ~,)--, (x • ¢~)(v. 

Let us approximate  a rapidly decreasing contin- 
uous function (not necessarily differentiable) defined 
on R" by a finite sum of a step or  sigmoid function. 

THEORI~M 4.1. Let f be a rapidly decreasing contin- 
uous function defined on R". Then,  for an arbitrary 
positive number  ~:, there are finite sets of  numbers  
{a~}~ ~ and {t'~'}~'=,, and a finite set of  unit vectors 

J,t,,,-~*~t~, ~ such that a finite sum 

satisfies 

f ( x )  = ~ aaH(v . ~,/~ t ~') (4.1) 
A I 

If(x) - f(x)i < ~; for all x ~ R". (4.2) 

Proo ( .  For an arbitrary ~; > 0, there is a function 
f C ,+(R") such that If(x) - f (x) l  < ~:/3. In order  
to approximate  f ,  let us in t roduce parti t ions of  R 
and S" ~. We denote  by A = /-X,}[ ~ a parti t ion of  R, 
where A~ = [r, ~, r,], r~.~ < r,. and bv (') = {(')i}~ L 
a partit ion of S" ~. In these partit ions, 1 and J are 
finite positive integers. Set E ,  = {t¢,~ ¢ R " l t  ~ A,  
~,) ~ (0,} and define a set A, by 

.~, ~ {Ii,  j ) IE , ,  < Q, . ~}. 14.3) 

Since g7 satisfies condit ion 2 in Theo rem 3.1, g z ( t ,  
~,)) ~ L~(dt  d/ i ) .  Hence,  therc tire finite part i t ions A 
and (~) for which 

I,~7(t, *9)ldt d/t(,,O . for all x. (4.4) 
< ,  ), x ,  - . ~.~ D 

Let t ~'~ be an arbitrary point  of  the interval & and 
(,/'~ be an arbitrary unit vector  in 0),. Set 

I £  gr(t, ~,,) dt d/,(~,,). (4.5) l l , ,  ~ 

Thus,  we have obta ined three sets {u,,}, {1'"} and J(v*'~}. 
We can prove that,  for these sets. 

f,(x) = "~" a.,H(x - ,~ .... /'") (4.6) . d . . a  

satisfies 

91) ~ 
1 . 1 ( ~ )  - 7,(:o{ < ~ ~; f,,~ ,,ll .,- ~ a". 

In fact, suppose that E,i (q Q, 0. Then,  

f £  H ( x ' ( ' , -  t )gr ( t ,~ ,Odtd /d~, , )  

a,H(.~ .¢,~ t,), (4.7) 

because H ( x  • ~,~ t) = H ( x  • % -- t,) = (t or  1 on  
such a set A, × (% and a,, is defined by eqn (4.5). 
Hence,  we have that 

f J HIx  . ¢,) - t)g,r(t, ¢, ,)dt d/tO,J) 

- ~ < H ( x . ( , ~  . . . . .  r") 
, t  

l )~17(l ,  ( 9 )  d l  d / l ( ( O )  
q, llc \, J J A ,  % 

- a , H ( x . o J  . . . .  t")) 

5_ 2 ~,  Igr(t, {'))ldt dld, 'O <'- - ~: ,,.,~,, .,-, 3 {4.8) 
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H ence ,  eqn (4.6) is smal ler  than  t:. By r e n u m b e r i n g  
the suffixes and  the superf ixes  in eqn (4.6), we obta in  
eqn (4. I) .  This  concludes  the proof ,  iii~ 

R e m a r k  4 . 1 .  It is obvious  that  we can take the par-  
titions in a way that  the equali t ies  A , = .... 5 ,  
- 1  < i < I and ® / = -(~)~, -- J < ] < J hold: 
that  is, the par t i t ions  can be symmet r ic .  Such parti-  
t ions must  be  conven ien t  because  the function g? is 
asymmetr ic .  

The  corol lary  be low is s t ra ight forward  f rom Theo-  
rem 4.1. We use a s igmoid funct ion H ,  without  scal- 
ing. 

COROLLARY 4.2. Le t  a C ?2 and suppose  that  .f is a 
rapidly decreas ing  con t inuous  funct ion def ined on 
R". Then ,  for  an a rb i t ra ry  posi t ive n u m b e r  t:, there  
are finite sets of  n u m b e r s  {ak})':, and ~,J'~k~t'~'j~: ~, and a 
finite set of  unit  vec tors  {~o(kl}~"= ~. such that  a finite 
s u m  

.f~,.,(x) = ~'~ a~H~(.r" ,,,'~ ..... t '~') (4.!)t 

satisfies 

I,f,(x) - .f~.,(x)l < ~: for all x ~ R". (4.10) 

P r o o f .  Let  j,: be the app rox ima t ion  ob t a ined  in Theo -  
rem 4.1. Then ,  f rom eqn (4.2), 

i f , ( x )  - f * a ( x ) l < c  for all x ~  R", (4.11) 

Rewr i te  the convolu t ion  as 

.(, * a ( x )  = a~ H ( y  . (,~'~' - t '~) d a ( x  - y}  
k I 

2 = a~Ho(x • ~,~" - #~'). (4.12) 
k 1 

Thence ,  by set t ing J'o.,: -: .f~: * a ,  we obta in  the cor- 
ollary. [ i  

It might  be a d v a n t a g e o u s  that  the sets {a~}, {t¢~t, 
and {~o I~} in T h e o r e m  4.1 and Coro l la ry  4.2 do not  
depend  on a.  We  can choose  a conven ien t  a even 
af ter  r, and these  th ree  sets are decided.  

Because  a cont inuous  funct ion def ined  on a com- 
pact  set can be un i formly  a p p r o x i m a t e d  by a rapidly 
decreas ing  funct ion,  this result  includes the well- 
known a p p r o x i m a t i o n  theory  with a scalable s igmoid 
funct ion.  Deta i l s  will be  descr ibed  in Sect ion 5. 

T h e  corol la ry  be low is i m m e d i a t e  f rom Corol la ry  
4.2. 

COROLLARY 4.3. Le t  a ~ ~,1 and suppose  that  f is 
a rapidly  decreas ing  con t inuous  funct ion def ined on 
R". Then ,  for  an arb i t ra ry  posi t ive n u m b e r  ~:, there  
are finite sets of  n u m b e r s  {a~}~= ~ and  {t~)}N= ~, and a 
finite set  of  unit  fectors  {m(~)}~=~ such tha t  a finite 
s u m  

N 

f~:(x) = ~ a~H, (x  • ~,/~ - t ¢~) (4.13~ 

satisfies 

]f(x) -- .fAx)l < c for all ~ ~ R". I4.i4~ 

P r o o f .  Similarly to Corol la ry  3.4. wc can obta in  this 
result. 

Thus ,  it is p roven  that  a finite sum of unsealed 
shifted ro ta t ions  of  a s igmoid funct ion can approxi-  
mate  any rapidly decreas ing  cont inuous  (not  neces- 
sarily d i f ferent iable)  funct ion on the whole  space  R" 
if the s igmoid funct ion satisfies a few condit ions.  

5. O T H E R  E X A M P L E S  

This section is annexed  to show that  we can derive 
several  o the r  results if our  policies are w e a k e n e d .  
Avoiding  to men t ion  each of t h e m  tediously,  we de-- 
scribe here two typical examples .  In E x a m p l e  5 . / .  
the policy of  use of  a s igmoid funct ion wi thout  scaling 
is a b a n d o n e d ,  but  the un i form a p p r o x i m a t i o n  holds 
on the whole  space  R". In E x a m p l e  5.2, the policy 
of approx ima t ion  on the whole space is a b a n d o n e d  
and a norm w e a k e r  on a compac t  set is adop ted ,  but  
the s igmoid funct ion is not scaled. 

Let a C Y. For h > 0. we define a scaling o l :a  b? 
¢ 

This scaling may be written symbolically h "a(x/h) .  
The  s igmoid funct ion H,~ is scaled if the measu re  a 
is scaled. T h e  result  be low is der ived f rom Corol la ry  
4.2 under  the condi t ion that  H~ can be scaled. 

E x a m p l e  5 . 1 .  Suppose  that  a measu re  a ~ "~ is ab- 
solutely cont inuous  and the densi ty  of  a is an e l emen t  
of  ~(R").  Then ,  any rapidly decreas ing  cont inuous  
funct ion f can be a p p r o x i m a t e d  un i formly  arbi trar i ly 
well on R" by a finite sum 

f . ( x )  =: ~ a~H~,,(x • c,? . . . .  r ~' . h ;> (I. (5.2) 

In fact ,  for  any e > 0. there  is a scaling of a such 
that  

!f(x) J,7,,(x)] < ~ tor atl x ~_ R". 

Furthermore,  by Corol la ry  4.2. there  is a finite sum 
of the fo rm (5.2) which satisfies 

f,,,.(x) - L(x)[ < ~ for all ~ e R". 

Hence ,  we obta in  the result ,  i_: 
Set W ~k~ = coIk) /h  and T t~' = t~k~/h, k = 1; 

. . . .  n. Then ,  

H,,,,(.~ ' ~"~' - t ~ )  = H~(x  " W 'k~ -- T'~'). 

Hence ,  the r igh t -hand  side of  eqn  (5.2) is wri t ten 

\ 
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This is the well-known form of the approximation 
formula. 

The supremum norm is stronger on a compact set, 
say K. than some other norms such as U'(K)-norm. 
Let X be a function space defined on K and endowed 
with a norm [1"11. Suppose that a set of infinitely con- 
tinuously differentiable functions is dense in X and 
the supremum norm is stronger than [['H, Then. ap- 
plying the standard functional-analytical discussion, 
we can prove that any function of X can be approx- 
imated arbitrarily well in I['ll-norm by a finite sum of 
the form (4.1), (4.9), (4.13), or (5.2). The following 
is an example, where the standard discussion is ap- 
plied to cqn (4.13): 

Example 5.2. Let a C xL~. Then, any function f C 
I£'(K), p ~_ 1, can be approximated arbitrarily well 
in 1J'(K)-norm by a finite sum 

~d~H.( .v '  ~v '~ -tik>). (5.3) 

To confirm this, note that the supremum norm is 
stronger than LP(K)-norm and a set of infinitely con- 
tinuously diffcrentiable functions is dense in U'(K). 
Thcn, apply the standard discussion to Corollary 4.3 
and we obtain this result. F ~ 

Except that the sigmoid function H,  is not scaled 
m eqn (5.3), this result is similar to Theorem 3 of 
Carroll and Dickinson (1989). 

6. S U M M A R Y  

1. Two policies are carried throughout except the 
annexed part: (a) uniform approximation on the 
whole space R": and (b) the use of a step or sig- 
mold function without scaling. 

2. The main tool in this article is the inverse Radon 
transform, 

3. First, it is proven that an integration over a step 
function with weight g~ can exactly represent f 
>(R") on the whole space R" (Theorem 3.1). 

4. Then, two other exact integral representations on 
R" were derived, in each of which a nonstep sig- 
moid function was used instead of the step func- 
tion without scaling. In the former the function 
to be represented must be a convolution f * o- 
(Corollary 3.3). 

5. This restriction is removed in the latter; it was 
proven that any .f 6 ,~,(R") can be exactly repre- 
sented on the whole space as an integral of a 
sigmoid function without scaling (Corollary 3.4). 

6. Examples of the weight & are illustrated (Ex- 
amples 3.1 ~ 4). 

7. These three integral representations are approx- 
imated by finite sums respectively (Theorem 4, 1, 
Corollaries 4.2 and 4.3). The approximations hold 
uniformly on the whole space R". 

8. In the annexed part (Section 5), two typical ex- 
amples are illustrated in order to demonstrate 
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how other results are obtained when our policies 
are weakened (Examples 5.1 and 5.2). 
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A P P E N D I X  

In ordcr to avoid theoretical complications m the text, the deft- 
nition of the fractional power of the operator ~,  and related mat- 
ters and the proofs of Lemmas 2.1 and 2.2 are described here. 

In order to treat tile inverse Radon transform, we need 
the fractional power of the operator f], which is defined by 
A,~o(t) (;d,'at:)!a(t). ]h is  notation is used in Hclgason (1980). 
The fractional power is defined by 

( 5])",r(t) = 4"~ " I '(a + 1,'2) t I'( - < ) ~  v .p . .  Ip - t[ " ',p(p) dp, 

(A.I)  

where ~, > 0 is not an integer and v.p. stands R)r the principal 
wfluc. For even ~z, wc have 

1 
(-[~,,)~" ~'e~o(l) ( - l ) " ~ Z ( n  - l)!v.p. ] p "~p(p + l) dp, 

] 

(A.2) 

Thc principal value at t = {) on the right-hand side of eqn (A.2) 
is written 

/ /i [ p.v..!  p "(p(p) dp = ~ " p q)(p) + i,o I p) 

- ~ e(()) + 2[ p -~"(0)  + '" + (n - 2)! e'" ~)((/) @ (A.3) 

(Geffand et al.. 1966). If ~o ~ >(R), the principal wdue is well- 
defined. 

P r o o [ q f  Lemma 2.1. Though item 1 can be proved straightfor- 
wardly, we briefly illustrate the proof of this part of the lemma 
because the equations (A.4a), (A.4b) and (A,4c) below are useful. 
Writing ~0'", = O~'(p, let us divide the principal value into three 
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parts: 

Ira(t, +'J) : " )  l,m(t, c';). (A.4) 

where  

l,m(t, c,,) = .,, , (,: p " l m(t + l, ,  ,,,) + m(t p ,  ,,)) 2 ~p(t.v,) 

P'- m"(l. ~')) + "'" + - -  
+ 2! (n 2)! 4o' : ' ( t ,¢ '~) dp .  (A.4a)  

Ii I/,o(I. ¢,)) = p "{¢)(t * p.  ¢'~) + !p(/ p.  c'))l dp.  (A.4b)  

I < Lm(t.c'D = 2 p " m(t. <u) + ~ <p (t. <')) 

[/' 
+ "'" + - - ¢ / '  : '(t ,c'))i dp.  (A.4c)  

(n 2)! 

Put 

RAm, t. p .  ¢,~) ~ p "{<p(t + 15. <u) + !p{t p ,  c,)) 

[ < II m(#, +u) + ~ m"(t. +',) . . . .  + (n 2)? <'+ .... :(t. r,)) . 

B~, Tavlor ' s  t h e o r e m ,  there exists  H, Iol. 1, such that  

R , ( e ,  t, p .  ¢u) n! +l/"'(t + Hlt, c,)). (A.5)  

The re fo re ,  we have im express ion  

j++ f '  2 ¢p,,,(l + , ,p,c,J) dlt. Lm(t.  c,~) = R,,(~n. l. p .  ~,~) dp = n! 

Since el) ~ , ' (R × S" '), this inteoral~ is integrable and rapidly 
decreas ing  in t. Since 

IR (cp, t, p .  c,)) I " - s u p {  ~ m<"~ls, <.)) : 
/ 

R, ,,~ ~ S" ' [  < 7_ (A.6)  
1 

by cqn (A.5)  and since R,,(+p, t. p .  c,)) is co n t i n uo us  in (t. cv), Lq)(l, 
,J) is con t inuous  in (t, ,J). T h e  second  integral  l /p( t ,  c,), a) is 
in tcgrable ,  con t i nuou s  in (t, ,~) lind b o u n d e d  bv M(ltl '  + 1) 
with M > 0. The  third one  l,,p(t. ~,~) is also in tcgrablc  and rapidly 
decreas ing  in t. H e n c e ,  the principal  value (2.7) is wel l -def ined 
and con t inuous  in (t, ,~), lind (2.8) holds  for k = (). 

Set 

A,,mU. ~,~) ~ o( t  + II, cu) re(t, c,~). 

Thcn ,  

I 
~(l,m)(t + h,  <,)) ( l im)( t ,  +u)} 

1 L(.X,,cp)(t, c,~) R ,  ~ A,,m t. p .  ¢,~ dp.  
h . ' , 

Obvious ly ,  we have  that ,  by cqn (A.5)  and the mcan  value theo-  
r C n l ,  

(' ) lira R,, ~ &,m, t, p ,  c,t = R,,((/)', t, p ,  c,)) 

and 

As,p, t. p ,  e,. n! 7l (Ahm)'"'(l + ()p, ~,J) 

2 
,++1¢ ..... i t +  0p + 0,h.c.))l 

"1 
sup --!<~ . . . . . .  ( s ,  c , ) ) l ,  
, ,~ i t! 

where  10l < 1 lind 0 < 0~ < 1. H en ce ,  wc can apply L e b e s g u e ' s  
where  101 < 1 and  (I < 0~ < 1. t t ence ,  we can apply L e b e s g u c ' s  
d o m i n a t e d  conve rgence  t h e o r e m  and obtain  

1 
,,.L~(t. +.+) : l!m 77, IL~,(, + h. <,~) S,<~(,. c'~)l : S,<~'(t. c,)). 

(A.7)  

for i - 1. We can fur ther  show that  eqn (A.7)  holds  f o r i  - 2, 
3. T h u s ,  we obtain  

#,h/~(l, c ,J)  l~ ' ( t ,  ~,~). (A.8)  

which m e a n s  the commuta t iv i ty  be tween  the opcra t ion  I and ,%. 
Similarly we can provc thc commuta t iv i ty  a m o n g  l, iJ, lind #, 's .  
Since a,~a, "-- oi:q~ is again in ~ (R  × S" ~), the principal  value l(~p, 
l, c,;) is infinitely dif ferent iable  and  each dcr ivat ive  is con t inuous  
in (1, c,~). Bv the commuta t iv i ty  (A.7) .  we obta in  the express ion  
below: 

Ii i)~l,¢~(t ¢'~) = p " O~'(l + p.  c'?) ~ (p'~(t .... p,  c'J)l dp 

~, (n + j 2)! 
/m ~ "(t + 1, c,)) 

( ,  11! 

+ ( l)',p . . . .  (t 1, CJ)} 

( n + k  2)! [ 
( 7 , -  i-)! . P .... 

× {m(t + p , ( ' ) )  ~ ( lym(t  15 .~ ,J)}dp .  
(A.9)  

In thc last m c m b c r ,  the integral  is bouridcd by M,(I t i  + 1) " ' 
M~ ::> 0. and  o ther  t e rms  are rapMly decreas ing .  Since O,l/p(t, ~,t), 
i - 1. 3. arc rapidly decreas ing ,  eqn  (2.8) holds.  This  conc ludes  
the proof.  [ ]  

Proof  o f  L e m m a  2.2: The  lef t -hand side (51 the first equa t ion  
is equal  to 

 ,l{f i } I}'!? J, t , ,  ,,,,,(,) ( , )  

I 

= lira ~ ,:),)/)(x + 01,,)) dm,, ,(x) (A.10)  
J 

with 0 <- O < I. Hence ,  we obta in  cqn (2.10) hv thc d o m i n a t e d  
convergence  t heo rem.  For odd  n,  cqn  (2. I I ) can be easily ob ta ined  
by applying i tem 1 repeatedly .  Now supposc  that  n is cvcn.  " lhcn,  
the r igh t -hand  sidc of thc sccond  cqua t ion  in this l e m m a  is wri t ten 

<") ( I) '- '(n 1)! "1 f l  JHi]( >" P <llt 
f 

2"zr" j <'~) 
(L,.,u)'(t. 

i 

tl I: ] + d?l,'(x, p,  c,t) d 1) + .l:q;(.t. p ,  c,)) dp dm, , , ( x ) ,  

( A . I I )  

where  

[ 
J~l/s(.r. p,  (,)) = p "~ ~u(a + pe)) + i/,,(x p , ) )  

t 

I < '<: ,.,1/ 2 ~J(.r) + ~ -a !~ /J ( . r )  + ... + (n 2)~ a::, 

(A.12a) 

J :~(x ,  p, e)) = p "{~/z(x + pc,;)+ ¢;(x - p~v)}, (A.12b) 

i /  J~l/J(x, p,  c,,) = 2p " qs(x) + ~ 0~l/s(r) 

P" : / 
+ "'" + ( n - 2 ) !  iC h/,,(x) . (A.12c)  

By Taylor ' s  t h e o r e m ,  there  exists 0, 1Ol < 1, such that  

2 
J~ , ( x ,  p.  c,)) ~ #:f.~(x + Opcu). 

Hence ,  the r igh t -hand  side of  (A.  12a) is in tegrable  with respect  
to dpdm, , ,  on [0, 1] x P ...... Bo th  J,_v,'(x. p, cu) and  J,qs(x,  p ,  c,J) 
are also in tegrable  with respect  to dpdm, , ,  on [1, z]  x P,,,. H en ce ,  
by Fubini ' s  t h e o r e m ,  we can change  the o rder  of  the in tegra t ions  
on the right-hand side of  (A .11)  and obtain 

2"~" p " q.,(x + po)) 
p: 

+ W(x - p~u) - 2 W(a) + .~-aL~/J(.r) 

+ "'" + (n - 2)! D:' -'lff(x) dm, , . ( x )  dp.  

[ ]  There fo re ,  the sccond  equa t ion  in this l e m m a  also holds.  


