
Representational Strengths and Limitations of Transformers

Clayton Sanford1, Daniel Hsu1, and Matus Telgarsky2

1Columbia University
2New York University

November 17, 2023

Abstract

Attention layers, as commonly used in transformers, form the backbone of modern deep
learning, yet there is no mathematical description of their benefits and deficiencies as compared
with other architectures. In this work we establish both positive and negative results on the
representation power of attention layers, with a focus on intrinsic complexity parameters such as
width, depth, and embedding dimension. On the positive side, we present a sparse averaging task,
where recurrent networks and feedforward networks all have complexity scaling polynomially in
the input size, whereas transformers scale merely logarithmically in the input size; furthermore,
we use the same construction to show the necessity and role of a large embedding dimension in a
transformer. On the negative side, we present a triple detection task, where attention layers in
turn have complexity scaling linearly in the input size; as this scenario seems rare in practice,
we also present natural variants that can be efficiently solved by attention layers. The proof
techniques emphasize the value of communication complexity in the analysis of transformers and
related models, and the role of sparse averaging as a prototypical attention task, which even
finds use in the analysis of triple detection.

1 Introduction

In recent years, transformer networks [Vaswani et al., 2017] have been established as a fundamen-
tal neural architecture powering state-of-the-art results in many applications, including language
modeling [OpenAI, 2023], computer vision [Dosovitskiy et al., 2021], and protein folding [Jumper
et al., 2021]. The key building block of transformer models is the self-attention unit, a primitive that
represents interactions among input elements as inner-products between low-dimensional embeddings
of these elements.

The success of transformer models is linked to their ability to scale their training and generaliza-
tion performance to larger datasets and sequence lengths. Their representational capacity, however,
underlies this scaling power, and is tied to the inductive biases of their learning algorithms. Empiri-
cally, transformer models trained with gradient-based learning algorithms exhibit biases towards
certain algorithmic primitives [Edelman et al., 2022, Liu et al., 2022] and learn representations that
may encode domain-specific information in the self-attention units [Clark et al., 2019, Hewitt and

E-mail: clayton@cs.columbia.edu, djhsu@cs.columbia.edu, mjt@illinois.edu

1

ar
X

iv
:2

30
6.

02
89

6v
2

 [
cs

.L
G

]
 1

6
N

ov
 2

02
3

Manning, 2019, Rogers et al., 2020, Chen et al., 2022]. These examples indicate that transformer
architectures not only provide computational benefits, but also have representational capabilities
that are particularly well-matched to practical tasks.

In this paper, we investigate these inductive biases by identifying “natural” computational tasks for
which transformers are well-suited, especially compared to other neural network architectures, as well
as tasks that highlight the limitations of transformers. The tasks—sparse averaging, pair-matching,
and triples-matching—represent primitive operations that aggregate structural information encoded
in embeddings. We use these tasks to elucidate the relationship between the embedding dimension
m of a self-attention unit and its expressivity, and to showcase the fundamental representational
limitations of self-attention layers.

In our model, the primary computational bottleneck faced by a transformer in computing
a “sequence-to-sequence”1 function f : XN → YN is the constrained processing of pairs of input
elements {xi, xj} ∈

(X
2

)
; we allow transformers unbounded computational power when processing

the individual elements xi ∈ X . This is motivated by modern scaling regimes where the context
length N has rapidly increased, the self-attention embedding dimension m remains much smaller
than N , and the parameterization of multi-layer perceptrons (MLPs) that operate on individual
elements is much larger than m. Indeed, the largest GPT-3 model [Brown et al., 2020] features a
context length N = 2048, an embedding dimension m = 128, and MLPs with a 12288-dimensional
parameterization; the context length of GPT-4 is as large as N = 32000. As such, we are interested
in the capabilities of transformers with No(1) total “size”, as opposed to NΩ(1). The nature of the
bottleneck in our model makes the tools of communication complexity indispensable for formalizing
computational limits.

1.1 Our contributions

Sparse averaging separations among atomic self-attention units. The q-sparse averaging
task qSA aims to capture the essential approximation-theoretic properties of self-attention units. In
qSA, the ith input xi is a pair (yi, zi), where zi ∈ Rd′ is the data part of xi, simply a vector in Rd′ ,
whereas and yi ∈

(
[N]
q

)
is the indexing part, which specifies q locations in the input sequence; the ith

output element in qSA is obtained by averaging the q data parts zj given by j ∈ yi, meaning

qSA ((y1, z1), . . . , (yN , zN)) =

1

q

∑
j∈y1

zj , . . . ,
1

q

∑
j∈yN

zj

 .

(See also Definition 4.) As summarized in the following informal theorem, our analysis of qSA
in Section 3 and Appendix A illustrates the ability of the self-attention primitive to associate
arbitrary subsets of input elements (as opposed to just “local” subsets, as specified by some sequen-
tial/topological structure), measures the expressive power accrued by increasing the embedding
dimension m of a self-attention unit, and indicates the representational limitations of “traditional”
neural architectures on basic computational tasks.

Informal Theorem 1. The task qSA for q ∈ Z+ satisfies the following properties (see Definition 4
for a formal definition and approximation metric).

1Note, however, that attention units are permutation equivariant, so the order of elements in the input “sequence”
X ∈ XN is irrelevant. In practice, positional encodings are used when the sequence order is relevant.

2

1. There exists a unit of self-attention f with an m-dimensional embedding that approximates qSA
if and only if m ≳ q (Theorems 2 and 4).

2. Any fully-connected neural network whose output approximates qSA requires its first hidden
layer to have width at least Ω(Nd) (Theorem 10).

3. Any recurrent neural network whose iterates approximate qSA requires a hidden state of at least
Ω(N) bits (Theorem 11).

We consider the qSA implementation in Item 1 efficient since the dimension of the model
parameters grows with poly(q, d, logN), whereas the latter two are inefficient since their parameter
(or state) dimension grows as poly(N). The proofs of the positive results employ embeddings for
each index j and each subset yi that have large inner products if and only if j ∈ yi. The negative
results involve communication complexity reductions and geometric arguments. These arguments
naturally introduce a dependence on bits of precision, which we suppress above within the notation
“≳”; we note that these bounded-precision results are arguably more relevant to modern networks,
which uses as few as 4 or even 2 bits of numerical precision.

Contrast between pairwise and triple-wise matching with self-attention layers. We
frame standard transformer architectures as being able to efficiently represent functions that are
decomposable into sparse pairwise interactions between inputs. To do so, we introduce two sequential
tasks and prove a collection of constructions and hardness results that characterize the abilities of
transformers to solve these tasks.

Given an input sequence X = (x1, . . . , xN) ∈ [M]N (for some M = poly(N)), we formalize the
problems of similar pair detection (Match2) and similar triple detection (Match3) as

Match2(X)i∈[N] = 1 {∃j s.t. xi + xj = 0 (mod M)} , (1)

Match3(X)i∈[N] = 1 {∃j1, j2 s.t. xi + xj1 + xj2 = 0 (mod M)} . (2)

For both tasks, note that the output is an N -dimensional vector whose ith element is 1 if and only if
the sequence X includes a pair or triple containing xi. In this sense, the problems differ from 2SUM
and 3SUM, which are not sequence-to-sequence tasks.

We believe these two tasks are intrinsically “pairwise” and “triple-wise”, respectively; moreover,
since we also believe self-attention performs a fundamentally “pairwise” operation, we will use Match2
and Match3 to show a sharp gap in the representation power of self-attention.

Informal Theorem 2.

1. A single unit of standard self-attention with input and output MLPs and an O(d)-dimensional
embedding can compute Match2 (Theorem 6).

2. A single layer of standard multi-headed self-attention cannot compute Match3 unless its number
of heads H or embedding dimension m grows polynomially in N (Theorem 7).

3. A standard transformer model can efficiently compute a modified version of Match3 that makes
assumptions about embedding structure or locality (Theorems 8 and 9).

4. Under a generalized notion of “third-order tensor self-attention” introduced in Appendix C.3,
Match3 is efficiently computable with a single unit of third-order attention (Theorem 18).

3

While the above result demonstrates the limitations of multi-headed self-attention and illustrates
the importance of learning embeddings with contextual clues, we believe that a stronger result
exists. Specifically, we conjecture that even multi-layer transformers are unable to efficiently compute
Match3 without hints or augmentation.

Informal Conjecture 1. Every multi-layer transformer that computes Match3 must have width,
depth, embedding dimension, or bit complexity at least NΩ(1).

In Appendices C.5 and C.6, we give a heuristic information-theoretic argument to support this
conjecture, prove a matching upper-bound, and finally prove analogous results for graph-augmented
transformers with respect to the problem of cycle detection in directed and undirected graphs.

1.2 Related work

Several computational and learning-theoretic aspects of transformers, distinct from but related to
the specific aims of the present paper, have been mathematically studied in previous works.

Universality and Turing-completeness. To demonstrate the power of transformers, universal
approximation results for transformers [Yun et al., 2020, Wei et al., 2022]—analogous to results for
feedforward networks [Hornik et al., 1989]—establish the capability for sufficiently large networks
to accurately approximate general classes of functions. Note, however, that the precise minimal
dependence of the required size (e.g., number of attention units, depth of the network) as a function
of the input size N does not directly follow from such results, and it is complicated by the interleaving
of other neural network elements between attention layers. (Approximate) Turing-completeness of
transformers demonstrates their power in a different manner, and such results have been established,
first assuming infinite precision weights [Pérez et al., 2019] and later also with finite-precision [Wei
et al., 2022]. Such results are more closely aligned with our aims, because Turing machines represent
a uniform model of computation on inputs of arbitrary size. Wei et al. [2022] showed that Turing
machines that run for T steps can be approximated by “encoder-decoder” transformers of depth
log(T) and size polynomial in log(T) and the number of states of the Turing machine (but the
decoder runs for T steps).

Formal language recognition. The ubiquity of transformers in natural language understanding
has motivated the theoretical study of their ability to recognize formal languages. On the positive
side, Bhattamishra et al. [2020] constructed transformers that recognize counter languages, and Yao
et al. [2021] showed that transformers of bounded size and depth can recognize Dyck languages that
have bounded stack depth. Liu et al. [2022] showed that the computations of finite-state automata
on sequences of length N can be performed by transformers of depth log(N) and size polynomial in
the number of states. On the negative side, Hahn [2020] showed limitations of modeling distributions
over formal languages (including Dyck) with fixed-size transformers (though this result does not
imply quantitative lower bounds on the size of the transformer). Hahn [2020], as well as Hao et al.
[2022], also establish the inability of “hard attention” Transformers to recognize various formal
languages and circuit classes by leveraging depth reduction techniques from circuit complexity [Furst
et al., 1984].

4

Learnability. The sample complexity of learning with low-weight transformers can be obtained
using techniques from statistical learning theory and, in turn, establish learnability of certain
boolean concept classes (e.g., sparse parity) [Edelman et al., 2022, Bhattamishra et al., 2022] using
transformer-based hypothesis classes. Our qSA function is inspired by these classes, and we establish
concrete size lower bounds for approximation (and hence also learnability) by transformers. We
note that our constructions use bounded-size weights, and hence, in principle, the aforementioned
sample complexity results can be combined with our results to analyze empirical risk minimization
for learning transformers. Prior work of Likhosherstov et al. [2021] also shows how sparse attention
patterns can be achieved by self-attention units (via random projection arguments); however, when
specialized to qSA, their construction is suboptimal in terms of the sparsity level q.

Related models. Graph neural networks (GNNs), like transformers, process very large inputs
(graphs) using neural networks that act only on small collections of the input parts (vertex neighbor-
hoods). Many classes of GNNs are universal approximators for classes of invariant and equivariant
functions [Maron et al., 2019, Keriven and Peyré, 2019]. At the same time, they are restricted by
the distinguishing power of certain graph isomorphism tests [Xu et al., 2018, Morris et al., 2019,
Chen et al., 2019], and lower bounds have been established on the network size to approximate
such tests [Aamand et al., 2022]. Loukas [2019] established a connection between GNNs and the
Local [Angluin, 1980] and Congest [Peleg, 2000] models for distributed computation, and hence
directly translates lower bounds for Congest—notably cycle detection problems—into size lower
bounds for GNNs. Our lower bounds for cycle detection using transformers also leverage a connection
to the Congest model. However, transformers do not have the same limitations as GNNs, since
the computational substrate of a transformer does not depend on the input graph in the way it is
with GNNs. Thus, we cannot directly import lower bounds for Congest to obtain lower bounds for
transformers.

Transformers are also related to other families of invariant and equivariant networks. Our focus
on Match2 and Match3 (and related problems) was inspired by the separation results of Zweig and
Bruna [2022] between models for processing sets: Deep Sets [Qi et al., 2017, Zaheer et al., 2017],
which are “singleton symmetric”, and the more expressive Relational Pooling networks [Santoro et al.,
2017], which are only “pairwise symmetric”.

1.3 Conclusion and future work

Our primary contributions are to present a multi-faceted story about transformer approximation:
firstly, qSA separates transformer models approximation-theoretically from RNNs and MLPs, and
moreover the attention embedding dimension both necessary and sufficient for qSA scale directly with
q, meaning qSA also functions to characterize representation power amongst different transformers.
Secondly, while single units of self-attention can solve the Match2 task, even wide layers of self-
attention with high-dimensional embeddings cannot solve Match3, and we believe that deeper models
cannot as well. This question of deeper models is stated as a formal conjecture and addressed
heuristically in Appendix C.6, using both information- and communication-theoretic proof techniques,
both of which we feel are significant steps towards a complete proof.

While our investigation is purely approximation-theoretic, we also include in Appendix D a
preliminary empirical study, showing that attention can learn qSA with vastly fewer samples than
recurrent networks and MLPs; we feel this further emphasizes the fundamental value of qSA, and
constitutes an exciting direction for future work.

5

Beyond the explicit open question in Informal Conjecture 1, we anticipate that future research
could connect the separation results proved in this work to formal linguistic theory and empirical
work on attention matrix interpretation. This work examines Match2 and Match3 because we believe
that the former could represent a key primitive for language processing tasks such as co-referencing,
while the latter represents a natural extension of the former that likely is not necessary for language
modeling. Rather, it may be possible that language modeling performs triple-wise modeling for
tasks such as the identification of subject, verb, and object components by relying on pairwise
matching constructions and “clues” learned within an embedding, such as those encoded in the toy
problems Match3Bigram and Match3Local. That is, transformers serve as a useful foundational
model for language modeling because of their abilities to integrate contextual clues and pairwise
communication, and while they are not extensible to “purely triple-wise problems,” most practical
sequential problems have some efficient decomposition to pairwise structures that can be easily
exploited by these architectures. Future work by linguists, theoretical computer scientists, and
empirical NLP practitioners could assess how foundational our primitives are and study whether
there are any practical triple-wise problems that transformer models fail to solve.

2 Preliminaries

Let Bd = {x ∈ Rd : ∥x∥2 ≤ 1} denote the unit ball in Rd, and let [n] = {1, 2, . . . , n} denote the
first n positive integers. The expression 1 {P} equals 1 if predicate P is true and 0 otherwise. The
row-wise softmax operator applied to matrix A ∈ RN×M returns

softmax(A)i,j =
exp(Ai,j)∑M

j′=1 exp(Ai,j′)
.

2.1 Attention units and transformer architectures

We first introduce the concept of self-attention, which is used as the building block of all transformer
architectures included in this paper.

Definition 1. For input dimension d, output dimension d′, embedding dimension m, precision p, and
matrices Q,K ∈ Rd×m and V ∈ Rd×d′ (encoded using p-bit fixed-point numbers), a self-attention
unit is a function fQ,K,V : RN×d → RN×d′ with

fQ,K,V (X) = softmax(XQKTXT)XV.

Let Ad,m,d′,p = {fQ,K,V : Q,K, V } denote all such self-attention units.

Self-attention units can be computed in parallel to create multi-headed attention.

Definition 2. For head-count H and self-attention units f1, . . . , fH ∈ Ad,m,d′,p, a multi-headed at-
tention layer is a function Lf1,...,fH : RN×d → RN×m with Lf1,...,fH (X) =

∑H
h=1 fh(X). Let AH

d,m,d′,p
contain all such Lf1,...,fH .

Transformer models are composed of two components: multi-headed attention layers (as above)
and element-wise multi-layer perceptrons. Due to universal approximation results, we model multi-
layer perceptrons as arbitrary functions mapping fixed-precision vectors to themselves.

6

Definition 3. A multi-layer perceptron (MLP) layer is represented by some ϕ : Rd → Rd′ , whose real-
valued inputs and outputs can be represented using p-bit fixed-precision numbers. We apply ϕ to each
element (i.e., row) of an inputX ∈ RN×d, abusing notation to let ϕ(X) = (ϕ(x1), . . . , ϕ(xN)) ∈ RN×d′ .
Let Φd,d′,p denote all such MLPs.

We concatenate the notation of each class of functions to denote function composition. For
example, for output dimension d′, we use A′

d,m,d′,p := Am,m,d′,pΦd,m,p and AH′
d,m,d′,p := AH

m,m,d′,pΦd,m,p

to represent single-headed and multi-headed attention units with an input MLP respectively. (The
capabilities and limitations of these models are studied in Section 3.) For depth D, we let

T D,H
d,m,d′,p = Φm,d′,p(AH′

m,m,m,p)
D−1AH′

d,m,m,p

represent a full transformer model comprising D layers of H-headed self-attention with interspersed
MLPs.

While two key features of transformer architectures—the residual connection and the positional
embedding—are conspicuously missing from this formalism, the two can be implemented easily under
the framework. We can include a positional embedding by encoding the index as a coordinate of
the input, i.e. xi,1 = i. Then, the subsequent MLP transformation ϕ(X) can incorporate i suitably
into the embedding. A residual connection can be included additively as input to a multi-layer
perceptron layer (as is standard) by implementing an “approximate identity” attention head f with
Q,K and V = Im set to ensure that f(X) ≈ X.2

We periodically consider transformers implemented with real-valued arithmetic with infinite bit
complexity; in those cases, we omit the bit complexity p from the notation.

Finally, we assume for the proof of Theorem 3 that the model is permitted to append a single
<END> token at the end of a sequence. That is, we say that a model f ∈ T D,H

d,m,d′,p represents a target
h : RN×d → RN×d′ if f(X ′)1:N = g(X) when X ′ = (x1, . . . , xN , x

′) for constant-valued x′ ∈ Rd.

3 Sparse averaging with attention units

We present the sparse averaging task to highlight the ability of transformer architectures to simulate
a wide range of meaningful interactions between input elements. This task demonstrates how the
embedding dimension of a self-attention unit modulates the expressive capabilities of the architecture,
while showcasing the inabilities of fully-connected and recurrent neural networks to capture similar
interactions (see Appendix A).

Definition 4. For sparsity q, problem dimension d′, and input dimension d = d′ + q + 1, consider
an input X = (x1, . . . , xN) ∈ RN×d with xi = (zi; yi; i) for zi ∈ Bd′ and yi ∈

(
[N]
q

)
.3 Let the q-sparse

average be

qSA(X) =

1

q

q∑
j=1

zyi,j


i∈[N]

.

For accuracy ϵ > 0, a function f : RN×d → RN×d′ ϵ-approximates qSA if for all X,

max
i∈[N]

∥f(X)i − qSA(X)i∥2 ≤ ϵ.

2A simple construction involves letting XQ = XK with iid Gaussian columns fixed for every index i. Then, the
diagonals of XQKTXT are far larger than all other entries and its softmax is approximately IN .

3We may encode a q element subset of [N] as a vector in [N]q constrained to have distinct components.

7

(a) Bipartite graph relat-
ing yi and zi in qSA(X).

(b) Attention and value matrices used for the self-
attention construction of qSA(X) in Theorem 2.

(c) Key and query embeddings
that produce the self-attention
matrix in (b).

Figure 1: A visualization of the qSA function outputs given a sequence of inputs (zi; yi; i)i∈[N] as a
bipartite graph between subsets yi and vectors zi (a), and of the attention matrix (b) and underlying
embeddings (c) that produce the self-attention construction in Theorem 2.

Figure 1a visualizes the sparse averaging task as a bipartite graph between subsets yi and
elements zi with corresponding averages. Theorems 2 and 4 jointly show that the minimum
embedding dimension m of single self-attention units A′

d,m,d′,p that O(1q)-approximate qSA scales
linearly with q. We believe that the sparse averaging problem is thus a canonical problem establishing
the representational capabilities and inductive biases of self-attention units.

3.1 Self-attention can approximate qSA when m ≳ q

Our principle positive result shows that the sparse averaging task qSA can be approximately solved
using fixed-precision arithmetic self-attention units with embedding dimension m growing with
q logN .

Theorem 2 (Fixed-precision). For any N , any m ≥ Ω(d′ + q logN), any ϵ ∈ (0, 1), and p =
Ω(log(qϵ logN)), there exists some f ∈ A′

d,m,d′,p that ϵ-approximates qSA.

While the full proof appears in Appendix B.1, we briefly sketch the argument here. Because the
output of a self-attention unit is a convex combination of rows of the value matrix ϕ(X)V ∈ RN×d′ , a
natural way to approximate qSA with a unit of self-attention is to let each value be the corresponding
vector in the average (i.e. V Tϕ(xi) = zi) and choose the key and query functions in order to ensure
that the attention matrix satisfies

softmax(ϕ(X)QKTϕ(X)T)i,j ≈

{
1
q if j ∈ yi,
0 otherwise.

To do so, let each key KTϕ(xi) represent a fixed vertex on a convex polytope, which depends only on
index i and is constructed from random binary vectors. We select each query QTϕ(xi) to ensure that
ϕ(xi)

TQKTϕ(xj) is a fixed large value if j ∈ yi and a slightly smaller value otherwise. We obtain the

8

(a) T = 0. (b) T = 1000.

0.0

0.2

0.4

0.6

0.8

1.0

(c) T = 40000.

Figure 2: Attention matrix softmax(ϕ(X)QKTϕ(X)T) ∈ R20×20 for a fixed example after T epochs
of training a self-attention unit to solve qSA for q = 3. Each row i corresponds to subset yi, and
each cell j ∈ yi is outlined in red. See Appendix D for experimental details.

precise query, key, and value embeddings by employing tools from dual certificate analysis from the
theory of compressed sensing.

We visualize this construction in Figure 1b and 1c for q = 3 and d′ = 4, which presents the
associated attention and value matrices necessary for the construction, and plots a polytope of
keys (red dots) with each face corresponding to each subset yi (green dots). The construction is
empirically relevant; Figure 2 shows that a unit of self-attention trained on data generated by the
qSA task recovers a similar attention matrix to the one stipulated in our construction and visualized
in Figure 1b.

The logarithmic dependence of the embedding dimension m on the sequence length N can be
eliminated by considering self-attention units with real-valued arithmetic with infinite bit complexity.

Theorem 3 (Infinite-precision). For fixed N , m ≥ Ω(d′+q) and ϵ > 0, there exists some f ∈ A′
d,m,d′

that ϵ-approximates qSA.

The proof of Theorem 3 employs a similar polytope-based construction in Appendix B.2, relying
on a cyclic polytope rather than one drawn from discrete boolean vectors. Theorem 16 proves the
near-optimality of that bound by employing a geometric argument to show that a variant of qSA can
only be approximated by a restricted family of self-attention units with a sufficiently high-dimensional
embedding.

3.2 Self-attention cannot approximate qSA when m ≲ q

We show that the construction used to prove Theorem 2 is nearly optimal.

Theorem 4. For any sufficiently large q, any N ≥ 2q + 1, and any d′ ≥ 1, there exists a universal
constant c such that if mp ≤ cq, then no f ∈ T 1,1

d,m,d′,p exists that 1
2q -approximates qSA.

(By choosing p = O(log(q logN)), Theorem 2 is shown to be optimal up to logarithmic factors
of q and doubly-logarithmic factors of N .)

The proof of Theorem 4 employs a standard communication complexity argument based on a
reduction from the following set disjointness problem in the two-party communication model, in

9

Alice:

Bob:

bits

Figure 3: The mp-bit communication protocol used to reduce the hardness of computing qSA with
a single unit of self-attention to the hardness of solving the DISJ communication problem for the
proof of Theorem 4 for q = 4.

which each party possesses a subset of an n element domain (encoded as n-bit strings), and they
wish to jointly determine whether their subsets are disjoint. We note that communication complexity
is commonly-used technique for proving lower bounds on the representational power of circuits
and feedforward neural networks [see, e.g., Karchmer and Wigderson, 1988, Ben-David et al., 2002,
Martens et al., 2013, Vardi et al., 2021].

Fact 5 (Set disjointness communication lower bound [Yao, 1979]). Suppose Alice and Bob are
given inputs a, b ∈ {0, 1}n, respectively, with the goal of jointly computing DISJ(a, b) = maxi aibi by
alternately sending a single bit message to the other party over a sequence of communication rounds.
Any deterministic protocol for computing DISJ(a, b) requires at least n rounds of communication.

Our proof designs a communication protocol that Alice and Bob use to jointly compute DISJ(a, b)
when n = q in O(mp) rounds of communication, under the assumption that such an f exists that
closely approximates qSA.

• Alice encodes her input a in a single subset by letting y2q+1 = {2i+ ai − 1 : i ∈ [q]}.

• Bob uses his input b to assign z2i−1 to 2bi − 1 and z2i = −1 for all i ∈ [q].

• All other input components are set to constant values known by both parties.

Alice sends her mp-bit query embedding QTϕ(x2q+1) bit-by-bit to Bob, who approximately computes
qSA by determining the outcome of f . The crux of the reduction shows that qSA(X)2q+1 = −1 if
and only if aibi = 0 for all i ∈ [q], which allows Bob to determine DISJ(a, b).

We visualize the protocol in Figure 3 and give the proof in Appendix B.3. The proofs of
Theorems 7, 11, 21, and 23 employ similar communication complexity reductions to DISJ.

4 Standard transformer models can only efficiently represent intrin-
sically pairwise functions

In this section, we argue that the standard transformer architecture is unable to efficiently represent
functions that do not decompose into a small number of pairwise-symmetric functions. We do this

10

by contrasting the (in)approximability of intrinsically pairwise and triple-wise functions, respectively
Match2 and Match3 (defined in (1) and (2)), and their variants.

4.1 Efficient computation of Match2 with standard self-attention

We first show that Match2 can be efficiently approximated by a single standard (pairwise) self-
attention unit.

Theorem 6. For any input size N , input range M = NO(1), and fixed-precision bit complexity
p = O(logM), there exists a transformer architecture f ∈ T 1,1

1,m,1,p with a single self-attention unit
with embedding dimension m = 3 such that for all X ∈ [M]N , f(X) = Match2(X).

The proof, given in Appendix C.1 uses both a “blank token” and a trigonometric positional
embedding, which ensures that

ϕ(xi)
TQKTϕ(xj) = c

d∑
k=1

cos

(
2π(xi,k + xj,k)

M

)
for some sufficiently large constant c. This embedding ensures that a cell of the attention matrix
softmax(ϕ(X)QKTϕ(X)T)i,j is extremely close to zero, unless xi = −xj (mod M).

4.2 Hardness of computing Match3 with a multi-headed self-attention layer

Although Match2 can be efficiently represented using a single unit of standard self-attention,
representing Match3 using an entire layer of multi-headed attention units is impossible unless either
the number of heads H, the embedding dimension m, or the precision p grows as NΩ(1).

Theorem 7. There is universal constant c > 0 such that for sufficiently large N , and any M ≥
N + 1, if mpH ≤ cN/ log logN , then there is no f ∈ T 1,H

1,m,1,p satisfying f(X) = Match3(X) for all
X ∈ [M]N .

We give the proof in Appendix C.2. Like that of Theorem 4, the proof relies on a reduction from
set disjointness in two-party communication. The proof of the lower bound applies a domain-restricted
variant of Match3, which actually makes the problem substantially simpler to solve. In Remark 1,
we show how this variant of Match3 introduces a depth separation between the representational
powers of single-layer and two-layer transformer models.

As mentioned in the introduction, we also conjecture that multiple layers of multi-headed
attention are subject to the same impossibility (Conjecture 19). The impossibility is specific to
standard (pairwise) attention; in Appendix C.4, we show that Match3 can be efficiently computed
with a single unit of third-order self-attention.

4.3 More efficient constructions for simplified Match3 computations

While the previous sections suggests that no efficient construction exists to compute Match3 with
standard transformer models, practical examples of triple detection abound. For example, a
transformer-based language model will likely succeed in linking a subject/verb/object triple because
all three tokens likely inhabit the same local region and because the model could agglomerate the
triple by first identifying a pair and then adding the third. Here, we introduce two variants on

11

the Match3 problem that have additional structure to serve as hints. The first variant specifies
triple sums comprising the input element and a neighboring pair elsewhere in the sequence: for each
i ∈ [N],

Match3Bigram(X)i = 1 {∃j s.t. xi + xj + xj+1 = 0 (mod M)} .

The second focuses on localized sums, where are all components of a triple must be within a fixed
range of constant width K ≪ N : for each i ∈ [N],

Match3Local(X)i = 1 {∃j1, j2 s.t. xi + xj1 + xj2 = 0 (mod M), |i− j1| , |i− j2| ≤ K} .

We show that the two can be efficiently represented using compact standard transformer models.

Theorem 8. For any N , M = NO(1), and p = O(logM), there exists a transformer architecture
f ∈ T D,1

1,m,1,p with embedding dimension m = 3 and depth D = 2 such that for all X ∈ [M]N×d,
f(X) = Match3Bigram(X).

Informally, the first layer of the construction uses a sinusoidal positional encoding to compute
each bigram sum xj + xj+1 in the jth element of the sequence. The second layer applies the Match2
construction provided by Theorem 6 to determine whether there exists a j for each i such that
xi + xj + xj+1 = 0 (mod M).

Theorem 9. For any d, N , M = NO(1), p = O(logM), and K ≤ N , there exists a trans-
former architecture f ∈ T 1,1

1,m,1,p with embedding dimension m = O(K logN) and bit-complexity
p = O(log(K logN)) such that for all X ∈ [M]N×d, f(X) = Match3Local(X).

Proof. We implement the localized construction by using Theorem 2 to construct a specific sparse
simultaneous average of the inputs with q := 2K + 1 and d′ := 2K + 1. To do so, we use the input
MLP to convert xi to the embedding (zi; yi; i), for zero-padded input

zi = xieī ∈ R2K+1

for ī = i (mod 2K + 1) and subset

yi = {i−K, i−K + 1, . . . , i+K} ∈
(

[N]

2K + 1

)
.

This construction ensures that the ith element of self-attention output computes (a rotation of)
(xi−K , xi−K+1, . . . , xi+K). An output MLP can then verify whether any matching triples involving
xi exist among those vectors.

Acknowledgments

We are grateful for many discussions with and feedback from Navid Ardeshir, Peter Bartlett, Alberto
Bietti, Yuval Efron, Shivam Nadimpalli, Christos Papadimitriou, Rocco Servedio, Yusu Wang, and
Cyril Zhang. This work was supported in part by NSF grants CCF-1740833 and IIS-1563785, a JP
Morgan Faculty Award, and an NSF Graduate Research Fellowship.

12

References

Anders Aamand, Justin Chen, Piotr Indyk, Shyam Narayanan, Ronitt Rubinfeld, Nicholas Schiefer,
Sandeep Silwal, and Tal Wagner. Exponentially improving the complexity of simulating the
Weisfeiler-Lehman test with graph neural networks. In Advances in Neural Information Processing
Systems 35, 2022.

Dana Angluin. Local and global properties in networks of processors. In Proceedings of the Twelfth
Annual ACM Symposium on Theory of Computing, 1980.

Shai Ben-David, Nadav Eiron, and Hans Ulrich Simon. Limitations of learning via embeddings in
euclidean half spaces. Journal of Machine Learning Research, 3(Nov):441–461, 2002.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, 2020.

Satwik Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. Simplicity bias in transformers
and their ability to learn sparse boolean functions. arXiv preprint arXiv:2211.12316, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions on
information theory, 51(12):4203–4215, 2005.

Nuo Chen, Qiushi Sun, Renyu Zhu, Xiang Li, Xuesong Lu, and Ming Gao. Cat-probing: A
metric-based approach to interpret how pre-trained models for programming language attend code
structure. arXiv preprint arXiv:2210.04633, 2022.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with GNNs. In Advances in Neural Information
Processing Systems 32, 2019.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look
at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

Amit Daniely. Depth separation for neural networks. In Satyen Kale and Ohad Shamir, editors,
Proceedings of the 2017 Conference on Learning Theory, volume 65 of Proceedings of Machine
Learning Research, pages 690–696. PMLR, 07–10 Jul 2017. URL https://proceedings.mlr.
press/v65/daniely17a.html.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2021.

13

https://proceedings.mlr.press/v65/daniely17a.html
https://proceedings.mlr.press/v65/daniely17a.html

Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, and Cyril Zhang. Inductive biases and
variable creation in self-attention mechanisms. In International Conference on Machine Learning,
2022.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Vitaly
Feldman, Alexander Rakhlin, and Ohad Shamir, editors, 29th Annual Conference on Learning
Theory, volume 49 of Proceedings of Machine Learning Research, pages 907–940, Columbia
University, New York, New York, USA, 23–26 Jun 2016. PMLR. URL https://proceedings.
mlr.press/v49/eldan16.html.

Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierarchy.
Mathematical systems theory, 17(1):13–27, 1984.

David Gale. Neighborly and cyclic polytopes. In Proc. Sympos. Pure Math, volume 7, pages 225–232,
1963.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Trans. Assoc.
Comput. Linguistics, 8:156–171, 2020. doi: 10.1162/tacl_{a}{_{0}{0}{3}}{0}6. URL https:
//doi.org/10.1162/tacl_a_00306.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention
transformers: Perspectives from circuit complexity. Trans. Assoc. Comput. Linguistics, 10:800–810,
2022. URL https://transacl.org/ojs/index.php/tacl/article/view/3765.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2019.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Netw., 2(5):359–366, July 1989.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-logarithmic
depth. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, 1988.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In
Advances in Neural Information Processing Systems 32, 2019.

Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. On the expressive power of
self-attention matrices. arXiv preprint arXiv:2106.03764, 2021.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. CoRR, abs/2210.10749, 2022. doi: 10.48550/arXiv.2210.10749.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint
arXiv:1907.03199, 2019.

14

https://proceedings.mlr.press/v49/eldan16.html
https://proceedings.mlr.press/v49/eldan16.html
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
https://transacl.org/ojs/index.php/tacl/article/view/3765

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International Conference on Machine Learning, 2019.

James Martens, Arkadev Chattopadhya, Toni Pitassi, and Richard Zemel. On the representational
efficiency of restricted boltzmann machines. In Advances in Neural Information Processing Systems
26, 2013.

Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann. Reconstruction and subgaussian
operators in asymptotic geometric analysis. Geometric and Functional Analysis, 17(4):1248–1282,
2007.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI Conference on Artificial Intelligence, 2019.

OpenAI. Gpt-4 technical report, 2023.

David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
network architectures. arXiv preprint arXiv:1901.03429, 2019.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about how
bert works. Transactions of the Association for Computational Linguistics, 8:842–866, Dec 2020.
ISSN 2307-387X. doi: 10.1162/tacl_a_00349. URL http://dx.doi.org/10.1162/tacl_a_00349.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. In
Advances in Neural Information Processing Systems 30, 2017.

Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A, 13(1):
145–147, 1972.

Saharon Shelah. A combinatorial problem; stability and order for models and theories in infinitary
languages. Pacific Journal of Mathematics, 41(1):247–261, 1972.

Matus Telgarsky. Benefits of depth in neural networks. In Vitaly Feldman, Alexander Rakhlin, and
Ohad Shamir, editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings of
Machine Learning Research, pages 1517–1539, Columbia University, New York, New York, USA,
23–26 Jun 2016. PMLR. URL https://proceedings.mlr.press/v49/telgarsky16.html.

Vladimir Naumovich Vapnik and Aleksei Yakovlevich Chervonenkis. The uniform convergence of
frequencies of the appearance of events to their probabilities. Doklady Akademii Nauk, 181(4):
781–783, 1968.

Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. Size and depth separation in
approximating benign functions with neural networks. In Conference on Learning Theory, 2021.

15

http://dx.doi.org/10.1162/tacl_a_00349
https://proceedings.mlr.press/v49/telgarsky16.html

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30, 2017.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
approximating turing machines with transformers. Advances in Neural Information Processing
Systems, 35:12071–12083, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (preliminary
report). In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, 1979.

Shunyu Yao, Binghui Peng, Christos H. Papadimitriou, and Karthik Narasimhan. Self-attention
networks can process bounded hierarchical languages. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing, 2021.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? In International
Conference on Learning Representations, 2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems 30, 2017.

Günter M Ziegler. Lectures on polytopes. Graduate Texts in Mathematics, 152, 2006.

Aaron Zweig and Joan Bruna. Exponential separations in symmetric neural networks. CoRR,
abs/2206.01266, 2022. doi: 10.48550/arXiv.2206.01266.

16

A Fully-connected neural networks and recurrent neural networks
cannot efficiently approximate qSA

A.1 Only wide fully-connected neural networks can approximate qSA

In this section, we show that any fully-connected neural network that approximates qSA : RNd → RNd′

must have width m = Ω(N).4 We consider networks of the form f(x) = g(Wx) for some weight
matrix W ∈ Rm×Nd (the first layer weights) and arbitrary function g : Rm → RNd′ (computed by
subsequent layers of a neural network).

Theorem 10. Suppose q ≤ N
2 . Any fully-connected neural network f defined as above that 1

2q -
approximates qSA satisfies m ≥ rank(W) ≥ Nd′

2 .

Proof. For simplicity, we arrange the input as

x = (1; . . . ;N ; y1; . . . ; yN ; z1; . . . ; zN)

and W = [W̃ ;V1; . . . ;VN] with z1, . . . , zN ∈ Bd′ , W̃ ∈ Rm×N(d−d′), and V1, . . . , VN ∈ Rm×d′ . If
rank(W) ≤ Nd′

2 − 1, then so too is rank([Vq; . . . ;VN]) ≤ Nd′

2 − 1, and [Vq; . . . ;VN] has a nontrivial
null space containing a nonzero vector u = (uq; . . . ;uN) ∈ R(N−q)d′ . Let

ξ =
1

maxj∈{q,...,N} ∥uj∥2
(uq; . . . ;uN),

z = (⃗0; . . . ; 0⃗; ξq; . . . ; ξN), and z′ = (⃗0; . . . ; 0⃗;−ξq; . . . ;−ξN). Then,

1. zj , z′j ∈ Bd′ for all j ∈ [N];

2. Vjzj = Vjz
′
j = 0 for all j ∈ [N]; and

3. ∥zj∗ − z′j∗∥2 = 2 for some j∗ ∈ {q, . . . , N}.

Therefore, for any y1, . . . , yN ∈
(
[N]
q

)
, respective x = (1; . . . ;N ; y1; . . . ; yN ; z1; . . . ; zN) and x′ =

(1; . . . ;N ; y1; . . . ; yN ; z′1; . . . ; z
′
N) satisfy f(x) = f(x′). Consider y with yj = (1, . . . , q − 1, j) for each

j ∈ {q, . . . , N}. Then,

qSA(x)j =
1

q
ξj and qSA(x′)j = −1

q
ξj .

Hence, ∥qSA(x)j∗ − qSA(x′)j∗∥2 ≥
2
q . Because f(x) = f(x′),

max
(
∥f(x)− qSA(x)j∗∥2 ,

∥∥f(x′)− qSA(x′)j∗
∥∥
2

)
≥ 1

q
,

so f can approximate qSA to accuracy no better than 1
q .

4We regard inputs as Nd-dimensional vectors rather than N × d matrices.

17

A.2 Only high-memory recurrent neural networks can approximate qSA

In this section, we show that any memory-bounded algorithm that approximates qSA : RN×d →
RN×d′ must use a large “hidden state” (memory) as it processes the input elements. This lower
bound applies to various recurrent neural network (RNN) architectures.

A memory-bounded algorithm with an m-bit memory processes input X ∈ RN×d sequentially as
follows. There is an initial memory state h0 ∈ {0, 1}m. For i = 1, 2, . . . , N , the algorithm computes
the i-th output f(X)i ∈ Rd′ and the updated memory state hi as a function of the input xi ∈ Rd

and previous memory state hi−1:

(f(X)i, hi) = gi(xi, hi−1),

where gi : Rd × {0, 1}m → Rd′ × {0, 1}m is permitted to be an arbitrary function, and f : RN×d →
RN×d′ is the function computed by the algorithm.

Our lower bound applies to algorithms that only need to solve the subclass of “causal” instances of
qSA in which the input X = ((zi, yi, i))i∈[N] ∈ RN×d is promised to satisfy yi = ∅ for all i ≤ N/2+1,
and yi ⊆ {1, . . . , N/2 + 1} for all i > N/2 + 1.

Theorem 11. For any ε ∈ (0, 1), any memory-bounded algorithm that ε-approximates qSA (for
q = 1 and d′ = 1) on the subclass of “causal” instances must have memory m ≥ (N − 1)/2.

Proof. Consider an m-bit memory-bounded algorithm computing a function f : RN×d → RN that
ε-approximates qSA (for q = 1 and d′ = 1). We construct, from this algorithm, a communication
protocol for DISJ (with N = 2n+ 1) that uses m bits of communication.

Let a, b ∈ {0, 1}n be the input for DISJ provided to Alice and Bob, respectively. The protocol is
as follows.

1. Alice constructs inputs xi = (zi, ∅, i) for i = 1, . . . , n+ 1, where for each i = 1, . . . , n,

zi =

{
+1 if ai = 0,

−1 if ai = 1,

and
zn+1 = +1.

Bob constructs inputs xn+1+i = (0, yn+1+i, n+ 1 + i) for i = 1, . . . , n, where

yn+1+i =

{
{n+ 1} if bi = 0,

{i} if bi = 1.

Observe that, for this input X = (x1, . . . , x2n+1), we have

qSA(X)n+1+i =

{
+1 if aibi = 0,

−1 if aibi = 1.

2. Alice simulates the memory-bounded algorithm on the first n+1 inputs x1, . . . , xn+1, and sends
Bob the m-bit memory state hn+1. This requires m bits of communication.

18

3. Starting with hn+1, Bob continues the simulation of the memory-bounded algorithm on these n
additional inputs xn+2, . . . , x2n+1.

4. If any output f(X)n+1+i for i = 1, . . . , n satisfies

f(X)n+1+i < 0,

then Bob outputs 1 (not disjoint); otherwise Bob outputs 0 (disjoint).

The approximation guarantee of f implies that sign(f(X)n+1+i) = qSA(X)n+1+i for all i = 1, . . . , n,
so Bob outputs 1 if and only if a and b are not disjoint. Because this protocol for DISJ uses m bits
of communication, by Fact 5, it must be that m ≥ n = (N − 1)/2.

We note that the proof of Theorem 11 can be simplified by reducing from the INDEX problem,
which has a 1-way communication lower bound of n bits. This suffices for “single pass” algorothms,
such as standard RNNs. However, the advantage of the above argument (and reducing from DISJ)
is that it easily extends to algorithms that make multiple passes over the input. Such algorithms are
able to capture bidirectional recurrent neural net and related models. A straightforward modification
of the protocol in the proof of Theorem 11 shows that Ω(N) memory is required for any algorithm
that makes O(1) passes over the input (and computes the outputs in a final pass).

B Supplementary results for Section 3

B.1 Proof of Theorem 2

Theorem 2 (Fixed-precision). For any N , any m ≥ Ω(d′ + q logN), any ϵ ∈ (0, 1), and p =
Ω(log(qϵ logN)), there exists some f ∈ A′

d,m,d′,p that ϵ-approximates qSA.

Proof. Before explaining how they are produced by the input MLP, we introduce the corresponding
key, value, and query inputs. The values will simply be ϕ(X)V = (z1, . . . , zN). For some m′ = m−d

2 ,
let ϕ(X)K = (u1, . . . , uN) ∈ RN×m′ be embedded key vectors, where u1, . . . , uN ∈ {±1/

√
m′}m′

are the columns of a m′ ×N matrix satisfying the (q, 1/4)-restricted isometry and orthogonality
property (Definition 5), as guaranteed to exist by Lemma 12 and the assumption on m′. Let
α := ⌈2 log(4N/ϵ)⌉. By Lemma 13, for each y ∈

(
[N]
q

)
, there exists wy ∈ Rm′ with ∥wy∥2 ≤ 2

√
q

satisfying

⟨ui′ , wy⟩ = 1 for all i′ ∈ y,

|⟨ui′ , wy⟩| ≤
1

2
for all i′ /∈ y.

Given the bounded precision of the model, we are not free to represent the vectors wy exactly.
Under p-bit precision for p sufficiently large, we there exists a vector of p-bit floating point numbers
w̃y ∈ Rm′ for every wy with ∥wy∥2 ≤ 2

√
q satisfying ∥w̃y − wy∥2 ≤

ϵ
4α . As an immediate consequence,

|⟨ui′ , w̃y⟩ − ⟨ui′ , wy⟩| ≤ ϵ
4α for all i′ and y (by Cauchy-Schwarz). The remainder of the proof

demonstrates that the necessary properties of the argument hold even with this approximation.
We now describe how to structure the neural network. We define an MLP ϕ : Rd → Rm as

ϕ(xi) = ϕ(zi; yi; i) = (zi;αw̃yi ;ui), which works simply by using a look-up table on the values of ui
and w̃yi from keys i and yi respectively. Then, we define Q,K, V as sparse boolean-valued matrices
that simply copy their respective elements from ϕ(X).

19

We analyze the output of the softmax. If i′ ∈ yi, then

softmax(ϕ(X)QKTϕ(X)T)i,i′ =
exp(α ⟨ui, w̃i′⟩)∑

i′′∈yi exp(α ⟨ui, w̃i′′⟩) +
∑

i′′ ̸∈yi exp(α ⟨ui, w̃i′′⟩)

≥
exp(α− ϵ

4)

q exp(α+ ϵ
4) +N exp(α2 + ϵ

4)
=

eα

qeα +Neα/2
· exp

(
− ϵ
2

)
≥

(
1

q
− Neα/2

qeα

)(
1− ϵ

2

)
≥
(
1− ϵ

4

) (
1− ϵ

4

)
q

≥ 1

q

(
1− ϵ

2

)
.

An analogous argument shows that

softmax(ϕ(X)QKTϕ(X)T)i,i′ ≤
1

q

(
1 +

ϵ

2

)
.

Likewise, if i′ ̸∈ yi, then

softmax(ϕ(X)QKTϕ(X)T)i,i′ ≤
exp(α2 + ϵ

4)

q exp(α− ϵ
4)

≤ exp
(
−α
2
+
ϵ

2

)
≤ ϵ

2N
.

We thus conclude that that we meet the desired degree of approximation for such m:

∥f(X)i − qSA(X)i∥2 =

∥∥∥∥∥∥
∑
i′∈yi

(
1

q
− softmax(ϕ(X)QKTϕ(X)T)i,i′

)
zi′

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑
i′ ̸∈yi

(
softmax(ϕ(X)QKTϕ(X)T)i,i′

)
zi′

∥∥∥∥∥∥
2

≤ q · ϵ
2q

+ (N − q) · ϵ

2N
≤ ϵ.

B.1.1 Restricted isometry and orthogonality property

The proof relies on the restricted isometry and orthogonality property from the compressed sensing
literature. For v ∈ RN , let supp(v) = {i ∈ [N] : vi ̸= 0}.

Definition 5. We say a matrix U ∈ Rm×N satisfies the (q, δ)-restricted isometry and orthogonality
property if

∥Uv∥22 ∈ [(1− δ)∥v∥22, (1 + δ)∥v∥22] and |⟨Uv,Uv′⟩| ≤ δ∥v∥2∥v′∥2
for all vectors v, v′ ∈ RN with | supp(v)| ≤ q, | supp(v′)| ≤ 2q, and supp(v) ∩ supp(v′) = ∅.

The first result shows the existence of a sign-valued matrix U that satisfies the desired distance-
preserving property.

Lemma 12 (Consequence of Theorem 2.3 of Mendelson et al. [2007] and Lemma 1.2 of Candes
and Tao [2005]). There is an absolute constant C > 0 such that the following holds. Fix δ ∈ (0, 1/2)
and q ∈ N. Let U denote a random m ×N matrix of independent Rademacher random variables
scaled by 1/

√
m. If m ≥ C(q logN)/δ2, then with positive probability, U satisfies the (q, δ)-restricted

isometry and orthogonality property.

20

Sparse subsets of the columns of such a U can then be linearly separated from all other columns.

Lemma 13 (Consequence of Lemma 2.2 in Candes and Tao [2005]). Fix δ ∈ (0, 1/2) and q ∈ N.
Let matrix U = [u1, . . . , uN] ∈ Rm×N satisfy the (q, δ)-restricted isometry and orthogonality property.
For every vector v ∈ {0, 1}N with supp(v) ≤ q, there exists w ∈ Rm satisfying

∥w∥2 ≤
√
q/(1− 2δ),

⟨ui, w⟩ = 1 if vi = 1,

|⟨ui, w⟩| ≤ δ/(1− 2δ) if vi = 0.

B.2 Proof of Theorem 3

Theorem 3 (Infinite-precision). For fixed N , m ≥ Ω(d′+q) and ϵ > 0, there exists some f ∈ A′
d,m,d′

that ϵ-approximates qSA.

The proof relies on the properties of neighborly polytopes, which we define.

Definition 6 (Ziegler [2006]). A polytope P is q-neighborly if every subset of q′ ≤ q vertices forms
a (q′ − 1)-face.

We give a q-neighborly polytope below that we use for the construction. For vectors v1, . . . , vN ∈
Rm′ , let Conv(v1, . . . , vN) = {

∑N
i=1 αivi : α ∈ [0, 1]N ,

∑
i αi = 1} denote their convex hull.

Fact 14 (Theorem 1 of Gale [1963]). For t ∈ R, let θ(t) = (t, . . . , tm
′
) ∈ Rm′ . Then, for all distinct

t1, . . . , tN ∈ R, the cyclic polytope Conv(θ(t1), . . . , θ(tN)) is m′

2 -neighborly.

The proof of Theorem 3 is immediate from the aforementioned fact and the following lemma.

Lemma 15. Suppose there exists u1, . . . , uN ∈ Rm′ such that Conv(u1, . . . , uN) is q-neighborly.
Then, for any ϵ > 0, there exists some f ∈ A′

d,m,d′ with fixed key vectors ϕ(X)K = (u1, . . . , uN) that
ϵ-approximates qSA.

Proof. The construction employs a similar look-up table MLP ϕ to the one used in the proof of
Theorem 2. We let the key and value embeddings be

ϕ(X)K = ((u1, 1), . . . , (uN , 1)) ∈ RN×(m′+1), and ϕ(X)V = (z1, . . . , zN) ∈ RN×d.

To set the query vectors, observe that for any face F of a polytope P , there exists a hyperplane
HF such that F ⊂ HF and P \ F lies entirely on one side of HF . Thus, for every y ∈

(
[N]
q

)
, there

exists w′
y ∈ Rm′ and by ∈ R such that

w′T
y ui + by

{
= 1 if i ∈ y,
< 1 otherwise.

For α > 0, let ϕ(xi)TQ = αwy = α(w′
y, by).

We construct the MLP to satisfy ϕ(xi) = (zk;wyi ;ui; 1) ∈ Rm for m = 2m′+2 and set parameter
weights accordingly. Following the softmax analysis of Theorem 3, a sufficiently large choice of α
ensures that maxi∈[N] ∥f(X)i − qSA(X)i∥2 ≤ ϵ.

21

B.3 Proof of Theorem 4

Theorem 4. For any sufficiently large q, any N ≥ 2q + 1, and any d′ ≥ 1, there exists a universal
constant c such that if mp ≤ cq, then no f ∈ T 1,1

d,m,d′,p exists that 1
2q -approximates qSA.

Proof. We first embed every instance of DISJ with n = q into an instance of qSA and prove that
they correspond. We assume the existence of the a transformer f ∈ T 1,1

d,m,d′,p that 1
2q -approximates

qSA and implies the existence of an O(mp)-bit communication protocol that computes DISJ. An
application of Fact 5 concludes the proof.

Consider an instance of DISJ with a ∈ {0, 1}q and b ∈ {0, 1}q known by Alice and Bob respectively.
We design an instance X = (zi; yi; i)i∈[N] of qSA. For each j ∈ [2q], let y2q+1 = {2i+ai−1 : i ∈ [q]}.
Additionally, let

zj =

{
e1 if j is odd and b(j−1)/2 = 1,

−e1 otherwise.

All other inputs are set arbitrarily. Then,

qSA(X)2q+1 =
1

q

∣∣{j ∈ [2q] : j ∈ y2q+1, j is odd, and a(j−1)/2 = 1
}∣∣ e1

− 1

q

∣∣{j ∈ [2q] : j ∈ y2q+1 and (j is even or a(j−1)/2 = 0)
}∣∣ e1

=
|{i ∈ [q] : aibi = 1}| − |{i ∈ [q] : aibi = 0}|

q
e1.

Hence, qSA(X)2q+1 = −e1 if and only if DISJ(a, b) = 0.
It remains to show that this implies the existence of an efficient communication protocol that

computes DISJ(a, b). By the existence of f , there exist Q,K, V : Rd → Rm and ψ : Rm → Rd′ such
that

f(X)2q+1 = ψ

(∑N
i=1 exp (Q(x2q+1)

TK(xi))V (xi)∑N
i=1 exp (Q(x2q+1)TK(xi))

)
.

The protocol is as follows:

1. From a, Alice determines y2q+1 and then computes Q(x2q+1) ∈ Rm, which she sends to Bob.
This transmission uses O(mp) bits.

2. Bob determines z1, . . . , z2q from b. Using those and the information from Alice, he computes
f(X)2q+1. He returns 1 if and only if f(X)T2q+1e1 ≥ −1 + 1

q .

The protocol computes DISJ(a, b) because f is a 1
2q -approximation of qSA. Because any such protocol

requires sharing Ω(q) bits of information, we conclude that mp ≤ cq for some c.

B.4 Optimality of Theorem 3 under restricted architectures

While the near-optimality of the bounded-precision self-attention construction in Theorem 2 is
assured by the communication complexity argument of Theorem 4, it is not immediately apparent
whether Theorem 3 is similarly optimal among infinite-precision self-attention models. Theorem 16
proves that this is indeed the case for a restricted family of architectures that resembles cross-attention
rather than self-attention.

22

Theorem 16. For input x1, . . . , xN satisfying xi = (zi; yi; i), suppose ϕ(xi)TQ = w(yi, i), ϕ(xi)TK =
u(i), and ϕ(xi)

TV = zi. Then, for any q < N and m ≤ q(1 − C logN q) for some universal C,
there do not exist w : Rd × [N] → Rm and u : [N] → Rm such that the resulting self-attention unit
1
2q -approximates qSA.

The architectural assumptions of this statement are strong. For each element xi = (zi; yi; i),
its value embedding must reproduce its target zi; its key embedding depends exclusively on the
index i; and its query embedding only on the indices yi and i. Indeed this attention unit more
closely resembles cross-attention rather than self-attention, in which the problem is formulated as
two sequences ((z1, 1), . . . , (zN , N)) and (y1; 1), . . . , (yN ;N) that are passed to the key and value
inputs and the query inputs respectively. We leave open the problem of generalizing this result
to include all infinite-precision cross-attention or self-attention architectures, but we note that the
constructions in Theorems 2 and 3 can be implemented under such architectural assumptions.

The proof relies on a geometric argument about how the convex hull of fixed key embeddings
U = (u(1), . . . , u(N)) lacks neighborliness and hence cannot separate every size-q subsets of values
embeddings z1, . . . , zN from the other values.

Proof. It suffices to show that for any fixed key embedding U , there exists some yi and setting of
z1, . . . , zN such that ∥∥∥∥∥∥(softmax(w(X)UT)Z)i −

1

q

∑
i′∈yi

zi′

∥∥∥∥∥∥
2

≥ 1

2q
,

where w(X) = (w(y1, 1), . . . , w(yN , N)) ∈ RN×m and U = (u(1), . . . , u(N)) ∈ RN×m.
By Fact 17, for some y1 ∈

(
[N]
q

)
, there are no w and τ ∈ R satisfying w(y1, 1)

Tui′ ≥ τ if
and only if i′ ∈ y1. Hence, for any fixed w, there exists i1 ∈ y1 and i2 ∈ [N] \ y1 such that
w(y1, 1)

Tui2 > w(y1, 1)
Tui1 . Given the value embeddings zi1 = e1, zi2 = e2 and zi = e3 for all

i ̸∈ {i1, i2}, we have∥∥∥∥∥∥(softmax(w(X)UT)Z)1 −
1

q

∑
i′∈y1

zi′

∥∥∥∥∥∥
2

2

≥
(
softmax(w(X)UT)Z)1,i1 −

1

q

)2

+ (softmax(w(X)UT)Z)1,i2)
2

≥ max

((
softmax(w(X)UT)Z)1,i1 −

1

q

)2

, softmax(w(X)UT)Z)21,i1

)
≥ 1

4q2
.

Fact 17. If m′ < q(1 − logN Cq), then the columns of any U = (u1, . . . , uN) ∈ RN×m′ can be
partitioned into sets U1 and U2 with |U1| = q that are not linearly separable. Hence, Conv(u1, . . . , uN)
is not q-neighborly.

Proof. By the Sauer-Shelah Lemma [Sauer, 1972, Shelah, 1972, Vapnik and Chervonenkis, 1968] and
the fact that the VC dimension of m′-dimensional linear thresholds is m′ + 1, the maximum number
of partitions of the columns of U that can be linearly separated is at most

m′+1∑
k=0

(
N

i

)
≤ C ′Nm′+1 < C ′ · N q

(Cq)q
≤
(
N

q

)
,

23

for a sufficiently large choice of C given universal constant C ′. If the fact were to be false, then at
least

(
N
q

)
≥ (Nq)

q such partitions must exist, which contradicts the above bound.

C Supplementary results for Section 4

C.1 Proof of Theorem 6

Theorem 6. For any input size N , input range M = NO(1), and fixed-precision bit complexity
p = O(logM), there exists a transformer architecture f ∈ T 1,1

1,m,1,p with a single self-attention unit
with embedding dimension m = 3 such that for all X ∈ [M]N , f(X) = Match2(X).

Proof. As discussed in Section 2.1, we allow a single blank token to be appended to the end of
the sequence X and assume the existence of a positional encoding. That is, we consider input
X ′ = (x1, . . . , xN , x

′) with xi,0 = i and x′ = 0⃗ to be the input to the target attention model. We
define input MLP ϕ : R → R3 and parameterizations Q,K, V ∈ R3×3 such that

QTϕ(xi) = c

(
cos

(
2πxi
M

)
, sin

(
2πxi
M

)
, 1

)
,

KTϕ(xi) =

(
cos

(
2πxi
M

)
,− sin

(
2πxi
M

)
, 0

)
,

V Tϕ(xi) = 1⃗, QTϕ(x′) = 0⃗, KTϕ(x′) = e3, and V Tϕ(x′) = 0⃗. By elementary trigonometric identities,
the following is true about the corresponding inner products:

(QTϕ(xi))
TKTϕ(xj) = c cos

(
2π(xi + xj)

M

)
(QTϕ(xi))

TKTϕ(x′) = cd.

As a result, (QTϕ(xi))
TKTϕ(xj) = cd if and only if xi+xj = 0(mod M). Otherwise, (QTϕ(xi))

TKTϕ(xj) ≤
c(1− 1

M2). (Here, the O(logM)-bit fixed-precision arithmetic is sufficient to numerically distinguish
the two cases.) For each i ∈ [N] let

βi = |{j ∈ [N] : xi + xj = 0 (mod M)}|

represent the total number of matches the input belongs to. If we take c =M2 log(6N), then

(softmax(ϕ(X)QKTϕ(X)T))i,j ∈


[0, 1

6N] if xi + xj ̸= 0 (mod M) and i, j ∈ [N];

[1
βi+1 ± 1

6N] if xi + xj = 0 (mod M) and i, j ∈ [N];

[1
βi+1 ± 1

6N] if i ∈ [N], j = N + 1.

We conclude that for any i ∈ [N],

(softmax(ϕ(X)QKTϕ(X)T)V ϕ(X))i

{
≤ 1

6 · 1⃗ if ̸ ∃j s.t. xi + xj = 0 (mod M)

≥
(

βi

βi+1 − 1
6

)
· 1⃗ if ∃j s.t. xi + xj = 0 (mod M),

where ≤ is a partial ordering with v ≤ v′ if vi ≤ v′i for all i. Since the latter case holds only when
βi ≥ 1, the final step of the proof is design an output MLP ψ such that ψ(z) = 1 if z ≥ 1

3 and
ψ(z) = 0 if z ≤ 1

6 , which can be crafted using two ReLU gates.

24

C.2 Proof of Theorem 7

Theorem 7. There is universal constant c > 0 such that for sufficiently large N , and any M ≥
N + 1, if mpH ≤ cN/ log logN , then there is no f ∈ T 1,H

1,m,1,p satisfying f(X) = Match3(X) for all
X ∈ [M]N .

Proof. The proof relies on a reduction to Fact 5 that embeds inputs to the set-disjointness problem
of cardinality n = N−1

2 into a subset of instances passed to Match3. For the sake of simplicity, we
assume in the construction that N is odd; if it were not, we could replace it with N − 1 and set the
final element such that it never belongs to a triple.

We consider the following family of inputs to Match3:

xi ∈


{0} if i = 1,

{1, i} if i ∈ {2, . . . , N+1
2 },

{1, (M − i+ N−1
2)} if i ∈ {N+3

2 , . . . , N}.
(3)

Note that Match3(X)1 = 1 if and only if there exists i ∈ {2, . . . , N+1
2 } such that xi = i and

xi+N−1
2

= (M − i). Given input (a, b) ∈ {0, 1}n × {0, 1}n to DISJ, let xi+1 = 1 if and only if ai = 0,
and let xi+N+1

2
= 1 if and only if bi = 0. Then, Match3(X)1 = 1 iff DISJ(a, b) = 1.

Suppose f(X) = Match3(X) for all X ∈ [M]N for some f ∈ T 1,H
1,m,1,p. We show that f simulates

an O(mpH)-bit communication protocol for testing DISJ. By definition of the standard self-
attention unit with multi-layer perceptrons, note that f(X)1 = ψ(

∑H
h=1 fh(ϕ(X))) for ϕ : R → Rm,

ψ : Rm → {0, 1}, and

fh(X) =

∑N
i=1 exp(Qh(x1)

TKh(xi))Vh(xi)∑N
i=1 exp(Qh(x1)TKh(xi))

,

for Qh,Kh, Vh : Rm×m.
If we assume that this construction exists and is known explicitly by both Alice and Bob, we

design a communication protocol for Alice and Bob to solve DISJ by sharing O(mpH) bits with one
another. Let Alice possess a ∈ {0, 1}n and Bob b ∈ {0, 1}n, with n = N−1

2 .

1. Alice and Bob compute (x2, . . . , xN+1
2

) and (xN+3
2
, . . . , xN) from a and b respectively.

2. Alice computes an O(p log logN)-bit approximation of the logarithm of the first half of the
softmax normalization term for each attention head and sends the result to Bob. That is, she
sends Bob

Lh,a = log

N+1
2∑

i=1

exp(Qh(ϕ(x1))
TKh(ϕ(xi)))


for each h ∈ [H]. This requires transmitting O(pH log logN) bits.

3. Bob finishes the computation of normalization terms

Lh = log

exp(Lh,a) +

N∑
i=N+3

2

exp(Qh(ϕ(x1))
TKh(ϕ(xi)))


for each h and sends the result back to Alice (up to O(p log logN)-bits of precision). This again
requires transmitting O(pH log logN) bits.

25

4. Alice computes the partial convex combination of the first N+1
2 value vectors stipulated by the

attention matrix

Sh,a =

∑N+1
2

i=1 exp(Qh(ϕ(x1))
⊤Kh(ϕ(xi)))Vh(ϕ(xi))

exp(Lh)
∈ Rm

for each h and sends the partial combinations to Bob. This requires transmittingO(mpH log logN)
bits (using the same precision as above).

5. Bob finishes the computation of the convex combinations

fh(X) = Sh,a +

∑N
i=N+3

2
exp(Qh(ϕ(x1))

⊤Kh(ϕ(xi)))Vh(ϕ(xi))

exp(Lh)
∈ Rm.

Bob concludes the protocol by computing and outputting f(X)1, using his knowledge of each
fh(X) and of ψ.

By the equivalences previously established, Bob returns 1 if and only if DISJ(a, b) = 1. Because
the protocol requires O(mpH log logN) bits of communication, we can only avoid contradicting
Fact 5 if mpH ≥ Ω(n/ log logN) = Ω(N/ log logN).

Remark 1. The domain restrictions to Match3 stipulated in Equation (3) make the Match3 problem
substantially easier to solve than the full-domain case. Indeed, under the domain restrictions,

Match3(X)1 = max
i∈{2,...,N+1

2
}
Match2(X)i,

which is computable by a two-layer single-headed transformer network with constant embedding
dimension. The first layer computes each Match2(X)i with the construction in the proof of Theorem 6,
and the second computes the maximum of the previous outputs by using those outputs as key vectors.

While Informal Conjecture 1 suggests that two layers are insufficient to compute the full-domain
version of Match3, this restricted variant introduces a concise depth separation (see Eldan and
Shamir [2016], Telgarsky [2016], Daniely [2017]) between one- and two-layer transformer models.

C.3 Higher-order tensor attention

We introduce a novel category of higher-order tensor-based transformer models in order to show
that problems like Match3 that are hard to compute with standard transformer models can be made
solvable. An s-order transformer is designed to efficiently compute dense s-wise interactions among
input elements in an analogous manner to how standard transformers compute pairwise interactions.
(We think of a standard transformer as second-order.) Before defining the new type of attention, we
introduce notation to express the needed tensor products.

For vectors v1 ∈ RN1 and v2 ∈ RN2 , let v1 ⊗ v2 ∈ RN1N2 denote their Kronecker product by
(v1 ⊗ v2)(i1−1)N2+i2 = v1i1v

2
i2

. The column-wise Kronecker product of matrices A1 ∈ RN1×m and
A2 ∈ RN2×m is

A1 ⋆ A2 = [A1
1 | · · · | A1

m] ⋆ [A2
1 | · · · | A2

m] = [A1
1 ⊗A2

1 | · · · | A1
m ⊗A2

m] ∈ RN1N2×m.

The following generalizes the definition of self-attention.

26

Definition 7. For order s ≥ 2, input dimension d, output dimension d′, embedding dimension m,
bit complexity p, and matrices Q,K1, . . . ,Ks−1 ∈ Rd×m and V 1, . . . , V s−1 ∈ Rd×d′ (encoded with
p-bit fixed-point numbers), an s-order self-attention unit is a function fQ,K,V : RN×d → RN×d′ with

fQ,K,V (X) = softmax(XQ︸︷︷︸
∈RN×m

((XK1) ⋆ · · · ⋆ (XKs−1))T︸ ︷︷ ︸
∈Rm×Ns−1

) ((XV 1) ⋆ · · · ⋆ (XV s−1))︸ ︷︷ ︸
∈RNs−1×d′

.

The input to the row-wise softmax is an N ×N s−1 matrix. Let A⊗s
d,m,d′,p denote the set containing

all such attention units.

Note that A⊗2
d,m,d′,p = Ad,m,d′,p. Because s-order self-attention units have the same domain and

codomain as standard self-attention, multiple units can be analogous combined to construct multi-
headed attention units and full transformer models. We define AM,⊗s

d,m,d′,p and T D,H,⊗s
d,m,d′,p accordingly.

The purpose of the s-order transformer model as a theoretical construct is to posit how strictly
generalizing the architecture in order to permit higher order outer products transfers the expressive
powers of standard transformer architectures to more sophisticated interactions among elements
of the input sequence X. The model is not defined to be immediately practical, due to its steep
computational cost of evaluation.

However, the trade-offs involved in using such architectures resemble those already made by using
transformer models instead of fully-connected networks. Transformers are already computationally
wasteful relative to the number of the parameters, and these models likely succeed only because
extremely efficient factorized parameterization exist. Likewise, third-order transformers could indeed
be practical if even more factorization proves useful, since the computational costs may prove mild
if the embedding dimension m, number of heads H, and depth D necessary to succeed on a task
exceed the sequence length N for standard second-order transformers.

C.4 Efficient representation of Match3 with third-order self-attention

Theorem 18 (Match3 construction with third-order self-attention). For any sequence length N ,
input range M = NO(1), and fixed-precision bit complexity p = O(logM), there exists a third-order
transformer architecture f ∈ T 1,1,⊗3

1,m,1,p with a single self-attention unit with embedding dimension
m = 5 such that for all X ∈ [M]N , f(X) = Match3(X).

Proof of Theorem 18. The proof is almost identical to that of Theorem 6, except that we instead
use a different key and query transforms to express a different trigonometric function:

Qϕ(xi) = c

(
cos

(
2πxi
M

)
,− cos

(
2πxi
M

)
, sin

(
2πxi
M

)
, sin

(
2πxi
M

)
, 1

)
,

K1ϕ(xi) =

(
cos

(
2πxi
M

)
, sin

(
2πxi
M

)
,− cos

(
2πxi
M

)
, sin

(
2πxi
M

)
, 0

)
,

K2ϕ(xi) =

(
cos

(
2πxi
M

)
, sin

(
2πxi
M

)
, sin

(
2πxi
M

)
,− cos

(
2πxi
M

)
, 0

)
.

Together, these ensure that the resulting tensor products reduce to a trigonometric expression that
is maximized when xi + xj1 + xj2 = 0 (mod M). That is,

(ϕ(X)Q((ϕ(X)K1) ⋆ (ϕ(X)K2))T)i,(j1−1)+j2 = c cos

(
2π(xi + xj1 + xj2)

M

)
.

27

We similarly let V 1ϕ(xi) = V 2ϕ(xi) = 1⃗ and V 1ϕ(x′) = V 2ϕ(x′) = 0⃗. The remaining choice of c and
the output MLP, and the analysis of the softmax proceeds identically to the previous proof.

C.5 Heuristic argument for Informal Conjecture 1

Conjecture 19 (Formal version of Informal Conjecture 1). For sufficiently large N and any d ≥ 1,
for all M ≥ N + 1 and mpHD ≤ NΩ(1), there is no f ∈ T D,H

1,m,1,p satisfying f(X) = Match3(X) for
all X ∈ [M]N .

We believe that the conjecture holds due to a heuristic information-theoretic argument. Define
the distribution D over inputs X ∈ RN that will be used to show that the model cannot compute
Match3 for M = N4 with high probability. We draw X from D as follows:

(E1) With probability 1
2 , draw each xi iid from Unif([M]).

(E2) With probability 1
2 , draw j1, j2, j3 iid from Unif(

(
[N]
3

)
). For all i ̸= j3, draw each xi iid from

Unif([M]). Let xj3 = −xj1 − xj2 (mod M).

Note that under event E1, a three matching elements exist with probability at most 1
N , and

Pr
[
Match3(X) = 0⃗ | E1

]
≥ 1− 1

N
.

Under event E2, a triple of matching elements is always planted, so Match3(X) ̸= 0⃗. It would
suffice to prove that—unless a transformer is sufficiently large—it is impossible to determine whether
Match3(X) = 0⃗ with probability at least 0.9.

Under D, any subset of {x1, . . . ,xN} consists of iid integers drawn uniformly from [M], unless
all of xj1 ,xj2 ,xj3 appear in the subset. Consider a transformer architecture with p-bit precision, m-
dimensional embeddings, H heads per layer, and D layers. We argue informally that a single-element
output of a self-attention unit can take into account information about mp more inputs x1, . . . ,xN

than that it had in the previous layer. By induction, after D layers of H-headed self-attention with
interleaved MLPs, each element is a function of at most mpHD inputs. Until an element exists that
is a function of at least two of the three of xj1 ,xj2 ,xj3 , we assume that the elements “known” by
each output are chosen independently of the indices j1, j2, j3. (Given two elements of the triple, the
third element can be identified with a single self-attention unit.) Hence, we argue that it suffices to
show that the probability any two elements of the triple j1, j2, j3 occurring within any of the N sets
of mpHD inputs is vanishingly small for sufficiently large transformer parameters. The probability
of single collection having any of two of the three inputs is at most

3
(
mpHD

2

)(
N
2

) ≤ 3

(
empHD

N

)2

.

Thus, the probability that any collection has all three inputs is no more than 3(empHD)2/N . If
mpHD = O(

√
N), then the randomly chosen triple will not jointly appear as the outcome of a single

element of a self-attention unit with probability at least 0.9, and the transformer will be unexpected
to successfully distinguish between the two cases.

Should the conjecture hold, it would represented a tight lower bound on the size of the smallest
standard transformer architecture necessary to compute Match3.

28

Theorem 20 (Tightness of Conjecture 19). For any sequence length N , if the input range satisfies
M = NO(1) and the transformer size parameters satisfy p ≥ log(M), H = 1, m ≥ 4, and mD ≥ CN2

for some universal constant C, then there exists a transformer architecture f ∈ T D,H
1,m,1,p such that

f(X) = Match3(X).

Proof. We construct an architecture that collects a group of candidate pairs in each layer of single-
headed self-attention and verifies whether there exists a triple incorporating each pair that satisfies
the summation property. Then, all candidate triples are disposed of, and the subsequent layer
collects a new family of candidates.

To do so, we first let ℓ :=
⌊
m
2

⌋
− 1 ≥ 1 represent the total number of pairs shared in each layer of

attention. We let P =
(
[N]
2

)
represent a collection of all pairs of indices and partition it into D subsets

P1, . . . , PD, each containing ℓ distinct pairs. (Since |P | = N(N+1)
2 , any D satisfying the theorem’s

preconditions is sufficiently large for this to be a proper partition.) Our construction ensures that
there exist xi + xj1 + xj2 = 0 (mod M) for (j1, j2) ∈ Pk, then the kth layer of self attention will
verify its existence and mark xi as belonging to the match. Throughout the network, we maintain
that the first two dimensions of any embedding of the ith element correspond to xi ∈ [M] and a bit
indicating whether a match has been found yet containing xi.

Consider the first layer of self-attention, and let P1 = {(i1, j1), . . . , (iℓ, jℓ)}. We set the input
MLP ϕ1 : Rd → Rm and respective matrices Q1,K1 ∈ Rm×m such that

Q1ϕ1(xi) = ce1 and K1ϕ1(xi) =

{
e1 if i ∈ P1

0⃗ otherwise,

for sufficiently large c. We additionally let

V 1ϕ1(xi) =


(2ℓ+ 1) · (xi; 0; 0⃗) i ̸∈ P1,

(2ℓ+ 1) · (xi; 0;xie2ι−1) i = iι,

(2ℓ+ 1) · (xi; 0;xie2ι) i = jι.

By making use of a residual connection, we ensure that the ith outcome of the self-attention is
(xi, 0, xi1 , xj1 , . . . , xiℓ , xjℓ). We encode an MLP to compute

(xi, 0, xi1 , xj1 , . . . , xiℓ , xjℓ) 7→
(
xi,1

{
∃ι ∈ [ℓ] s.t. xi + xiι + xjι = 0⃗ (mod M)

}
; 0⃗
)
.

We repeat this construction D times, with the only modifications being the replacement of P1

and the fact that the second dimension of the embedding remains 1 after being set to that value.
After D layers, the final MLP outputs the value of the second dimension, which will be 1 if and only
if the respective xi belongs to a three-way match.

C.6 Sharper separations for embedded subgraph detection problems

In pursuit of proving separations analogous to the one between Theorem 18 and Conjecture 19, we
draw techniques for proving lower bounds for graph problems in the Congest model of distributed
computation with restricted bandwidth [Peleg, 2000].5

5At a high level, the Congest model features N players that communicate in synchronous rounds over a network
(an undirected graph with [N] as its vertices) to solve a computational problem Peleg [2000]. In each round, each player

29

The problems we consider take, as input, the adjacency matrix X ∈ {0, 1}N×N of an N -vertex
graph G = (V, E) with V = [N], so xi,j = 1 {(i, j) ∈ E}. We may regard each row of X as a high-
dimensional (d = N) embedding of the i-th vertex containing information about which (outgoing)
edges are incident to the i-th vertex. We consider the following problems:

DirectedCycle3(X) = (1 {∃j1, j2 ∈ [N] s.t. xi,j1xj1,j2xj2,i = 1})i∈[N] ;

Cycle5(X) = (1 {∃j1, j2, j3, j4 ∈ [N] s.t. xi,j1xj1,j2xj2,j3xj3,j4xj4,i = 1})i∈[N] ,

with dom(Cycle5) = {X : X = XT}.

The former treats X as a directed graph (where X need not be symmetric) and asks whether each
input belongs to a directed 3-cycle. The latter insists that X be an undirected graph by enforcing
symmetry and determines membership in (undirected) 5-cycles.

However, solving these problems with any transformer model of constant order trivially requires
having the product of the precision p, embedding dimension m, heads per layer H, and depth D
grow polynomially with N , since each attention unit is limited to considering at most pm bits of
information from each input. Such a lower bound is not interesting for dense graphs, where every
vertex may have Ω(N) incident edges; the bottleneck is not due to any feature of standard attention
units (and would persist with higher-order attention).

To circumvent this issue, we consider an augmented self-attention unit, which permits each
element of the self-attention tensor to depend on both its respective inner product and on the
presence of edges among corresponding inputs.

Definition 8. For order s ≥ 2, input dimension d, output dimension d′, embedding dimension m,
bit complexity p, matrices Q,K1, . . . ,Ks−1 ∈ Rd×m and V 1, . . . , V s−1 ∈ Rd×d′ (encoded with p-bit
fixed-point numbers), and cell-wise attention tensor function κ : {0, 1}s(s−1) × R → R, an s-order
graph self-attention unit is a function fQ,K,V : RN×d → RN×d′ with

fQ,K,V (X) = softmax(κ(X,XQ((XK1) ⋆ · · · ⋆ (XKs−1))T))((XV 1) ⋆ · · · ⋆ (XV s−1)).

For attention tensor A ∈ RN⊗s , we abuse notation by writing κ(X,A) as short-hand for the particular
cell-wise application of a fixed function, incorporating information about all relevant edges:

κ(X,A)i1,...,is = κ(xi1,i2 , xi1,i3 , . . . , xis,is−1 , xis,is−2 , Ai1,...,is).

Let AG⊗s
d,m,d′,p and T GD,H,⊗s

d,m,d′,p denote all such attention units and all such transformers respectively.

Now, we provide four results that exhibit separations between orders of graph self-attention.

Theorem 21 (Hardness of representing Cycle5 with standard graph transformer). For sufficiently
large N , any f ∈ T GD,H

N,m,1,p satisfying f(X) = Cycle5(X) for all X ∈ {0, 1}N×N with X = XT

requires mpHD = Ω(N/ log2N).

Theorem 22 (Efficient construction of Cycle5 with fifth-order graph transformer). For sequence
length N and bit-complexity p = O(logN), there exists a fourth-order graph transformer architecture
f ∈ T G1,1,⊗5

N,1,1,p with a single graph self-attention unit such that for all X ∈ {0, 1}N×N with X = XT,
f(X) = Cycle5(X).
can send a message to each of its neighbors. The computation that each player does with the messages received from
its neighbors is unrestricted; the primary resources considered in Congest is the number of rounds of communication
and the message sizes. Although Congest is often studied for solving computational problems on input graphs with
vertices [N], the input graph need not be the same as the communication network.

30

Theorem 23 (Hardness of representing DirectedCycle3 with standard graph transformer). For
sufficiently large N , any f ∈ T GD,H

N,m,1,p satisfying f(X) = DirectedCycle3(X) for all X ∈ {0, 1}N×N

requires mpHD = Ω(N/ log2N).

Theorem 24 (Efficient construction of DirectedCycle3 with fourth-order graph transformer). For
sequence length N and bit-complexity p = O(logN), there exists a third-order graph transformer
architecture f ∈ T G1,1,⊗3

N,1,1,p with a single graph self-attention unit such that for all X ∈ {0, 1}N×N ,
f(X) = DirectedCycle3(X).

The proofs of Theorems 22 and 24 are immediate from the construction. Because each cell of the
self-attention tensor has explicit access the the existence of all relevant edges, κ can be configured
to ensure that cell’s value is large if and only if the requisite edges for the desired structure all
exist. Taking a softmax with a blank element (like in Theorem 6) ensures that the outcome of the
self-attention unit for a given element distinguishes between whether or not it belongs to a 5-cycle
or a directed 3-cycle. The output MLP ensure that the proper output is returned.

We prove Theorems 21 and 23 by introducing a particular Congest communication graph
that can be used to simulate any model in T GD,H

d,m,d′,p (and hence, also any model in T D,H
d,m,d′,p) in

O(mHD logN) rounds of communication. Then, we show for each problem that we can encode each
instance of the set disjointness communication problem as an instance of Cycle5 (or DirectedCycle3)
and derive a contradiction from the communication graph.

C.6.1 A Congest communication graph that generalizes standard graph transformer
computation

The key principle of our analysis is that the predominant limitation of a transformer model is in its
communication bandwidth and not its computational abilities. We model transformers as having
element-wise multi-layer perceptron units with unbounded computational ability (but bounded
precision inputs and outputs) and self-attention units, which compute linear combinations of inputs
in a carefully regimented way that limits the ability of individual elements to share information with
one another. Here, we introduce a specific Congest graph for each sequence length N and show
that every transformer has a communication protocol that simulates its computation in this graph.

For fixed N , we design an undirected Congest graph GN = (V N , EN) with O(N2) nodes, each
having degree at most 3. (Note that this graph is not the same as the graph provided as input
X to a transformer; this graph is consistent across all transformers taking input of sequence size
N .) Let u1, . . . , uN be nodes in V N corresponding to each input. For every pair i, j ∈ [N], let vi,j
be a node as well. For each i ∈ [N], let Bi = (Vi, Ei) be a balanced binary trees having root ui
and leaves vi,1, . . . , vi,N , v1,i, . . . , vN,i. Hence, each Bi has O(N) vertices of degree 3 and is of depth
O(logN). Let V N = V1 ∪ · · · ∪ VN and EN = E1 ∪ · · · ∪ EN . Noting that E1, . . . , EN are disjoint
and that V1, . . . , VN are disjoint, except for leaves vi,j , we ascertain that GN contains O(N2) vertices
of degree at most 3 and has diameter O(logN). We visualize the graph GN with a highlighted tree
B1 in Figure 4.

Lemma 25. For any transformer f ∈ T GD,H
d,m,d′,p and any X ∈ RN×d with p-bit fixed-precision

numbers, there exists a Congest communication protocol on the graph GN that shares p bits of
information between adjacent vertices per round satisfying the following characteristics:

• Before any communication begins, each node ui is provided with xi and each node vi,j is provided
with xi,j and xj,i.

31

Figure 4: The Congest graph GN visualized for N = 6 with root nodes {ui}i∈[N] in blue, leaf nodes
{vi,j}i,j∈[N] in green, and the nodes V1 of the binary tree B1 shaded red and edges E1 colored red.

• After T = O(HD(m+ logN)) rounds of communication, each node ui outputs f(X)i.

Proof. It suffices to give a protocol that computes the outcome of a single-headed unit of graph
self-attention with parameters Q,K, V ∈ Rm×m and κ : {−1, 1}2 × R → R and transmits its ith
output back to ui in O(m logN) rounds of p-bit communication. The remainder of the argument
involves computing the outcomes of all element-wise MLPs within respective vertices u1, . . . , uN
(since we assume each node to have unbounded computational power in the Congest model) and
to repeat variants of the protocol HD times for every individual self-attention unit. Because the
protocol is designed for a particular transformer architecture f , we can assume that every node in
the Congest graph has knows every parameter of f .

We give the protocol in stages. We assume inductively that every input to f , y1, . . . , yN ∈ Rm,
is known by its respective vertex u1, . . . , uN .

1. Every vertex ui computes QTyi ∈ Rm and propagates it to every vertex vi,1, . . . , vi,N . This can
be done in O(m + logN) rounds by transferring one p-bit fixed-precision number per round
from an element of the binary tree Bi to each of its children per round. Because the respective
edges E1, . . . , EN are disjoint, this operation can be carried out in parallel.

2. Each ui computes KTyi, V
Tyi ∈ Rm and propages them to v1,i, . . . , vN,i in O(m+ logN) rounds.

3. Each vi,j , using their knowledge of xi,j and xj,i, computes αi,j := exp(κ(xi,j , xj,i, y
T
iQK

Tyj)).
This takes zero rounds.

4. Each ui computes
∑N

j=1 αi,j by propagating each αi,j in vi,j up Bi to ui, iteratively summing
terms passed up. This takes O(logN) rounds.

32

Figure 5: The Congest graph GN with vertices partitioned into sets V N
a (violet) and V N

b (orange)
for N = 6. The six edges cut by the partition are colored red.

5. Similarly, ui computes
∑N

j=1 αi,jV
Tyj in O(m logN) rounds. Then, it computes∑N

j=1 αi,jV
Tyj∑N

j=1 αi,j

,

which is the target output of the self-attention unit.

Because all steps are achievable in parallel with O(m+ logN) rounds, the claim follows.

C.6.2 Reduction from set disjointness

Before proving Theorems 21 and 23 by embedding an instance of a transformer model into an
instance of each subgraph identification problem, we first introduce a partition of the vertices V N of
the Congest graph into those possessed by Alice and Bob for use in a two-party communication
protocol. We call those two sets V N

a and V N
b .

Note that the previous section made no assumptions about the organization of edges in the
binary tree. We thus add an additional condition: that each binary tree Bi can be oriented to respect
the left-to-right ordering vi,1, v1,i, . . . , vi,N , vN,i. Let ui ∈ V N

a if and only if i ≤ N
2 , and vi,j ∈ V N

a if
and only if min(i, j) ≤ N

2 . We label are remaining nodes in Bi by labeling a parent node wp as a
function of its child nodes wℓ and wr using the following rules:

(a) If wℓ, wr ∈ V N
a , then let wp ∈ V N

a .

(b) If wℓ, wr ∈ V N
b , then let wp ∈ V N

b .

33

(c) Otherwise, let wp ∈ V N
a if and only if root ui ∈ V N

a .

This partition, which we visualize in Figure 5, bounds the number of bits Alice and Bob can exchange
by simulating a protocol on Congest graph GN .

Lemma 26. Suppose Alice and Bob simulate an R-round p-bit protocol on Congest communication
graph GN where Alice has access to all vertices V N

a and Bob V N
b . No other communication is

permitted besides sharing bits as permitted by the Congest protocol between neighboring vertices.
Then, Alice and Bob exchange at most O(pRN logN) bits.

Proof. It suffices to show that the partition V N
a , V N

b induces a cut of size at most O(N logN); this
ensures that each can send no more than O(pN logN) bits per round.

Per the rules defined above, an edge in (wp, wℓ) and (wp, wr) is cut if and only if they are
described by case (c). Within each tree Bi under the orientation described above, an inductive
argument shows that in every layer, all elements in V N

a are to the left of all elements in V N
b . Thus,

there exists at most one parent of that layer that belongs to case (c), and thus, no more than one cut
edge per layer. Because each tree has O(logN) layers and because there are N trees, the partition
cuts at most O(N logN) edges.

It remains to embed an instance of DISJ in V N
a , V N

b for each problem such that its output
corresponds identically with that of DISJ.

Proof of Theorem 21. Assume for the sake of simplicity that N is divisible by 5. Let a, b ∈ {0, 1}n

for n = N2

25 be an input to DISJ, and let Alice and Bob possess a and b respectively. We index those
vectors as a = (a1,1, a1,2, . . . , aN/5,N/5−1, aN/5,N/5) and b = (b1,1, . . . , bN/5,N/5) for ease of analysis.
We design input matrix X ∈ {0, 1}N×N as follows:

• If i ∈ (0, N5] and j ∈ (N5 ,
2N
5], then xi,j = xj,i = ai,j−N/5.

• If i ∈ (N5 ,
3N
5] and j ∈ (2N5 ,

4N
5], then xi,j = xj,i = δi,j−N/5.

• If i ∈ (3N5 ,
4N
5] and j ∈ (4N5 , N], then xi,j = xj,i = bj−4N/5,i−3N/5.

• If i ∈ (4N5 , N] and j ∈ (0, N5], then xi,j = xj,i = δi,j+4N/5.

• Otherwise, xi,j = 0.

This ensures that X has a 5-cycle if and only there exist i, j ∈ (0, N5] such that ai,jbi,j = 16. In
addition, note that under the protocol in Lemma 25, Alice’s and Bob’s inputs a and b are known
exclusively by nodes belonging to V N

a and V N
b respectively.

Consider any transformer architecture f ∈ T GD,H
N,m,1,p that computes Cycle5. By Lemma 25, there

exists a protocol on the Congest graph GN that computes Cycle5 after O(HD(m+ logN)) rounds
of communication of p-bits each. If Alice and Bob simulate this protocol, and output 1 if and only if
at least one of their outputs indicates the existence of a Cycle5, then they successfully decide DISJ.
By Lemma 26, this communication algorithm solves DISJ after exchanging O(mpHDN log2N) bits
of communication. However, Fact 5 implies that no communication algorithm can do so without
exchanging Ω(n) = Ω(N2) bits, which concludes the proof.

6We consider 5-cycles rather than 4-cycles because a spurious 4-cycle could exist among edges {xi,j : i ∈ (0, N
5
], j ∈

(N
5
, 2N

5
]}.

34

Proof of Theorem 23. The proof is identical to its predecessor, but uses a different embedding of an
instance a, b ∈ {0, 1}n to DISJ. Let n = N2

16 . Then:

• If i ∈ (0, N4] and j ∈ (N2 ,
3N
4], then xi,j = ai,j−N/2.

• If i ∈ (N2 ,
3N
4] and j ∈ (3N4 , N], then xi,j = bj−3N/4,i−N/2.

• If i ∈ (3N4 , N] and j ∈ (0, N4], then xi,j = δi,j+3N/4.

• Otherwise, xi,j = 0.

This construction ensures that a directed 3-cycle exists if and only if a corresponding pair of elements
in a and b are both 1.

D Experiment details

This section describes the experimental setup behind Figure 2, and provides further experiments
suggesting an implicit bias of transformers for qSA, in particular when compared with MLPs and
RNNs.

Experimental setup. Experiments used synthetic data, generated for qSA with n = 1000 training
and testing examples, a sequence length N = 20, q = 3, with the individual inputs described in more
detail as follows.

• The positional encoding of element i is a random vector sampled uniformly from the sphere in
Rd0 with d0 := ⌈1 + 2 ln(N)⌉, a quantity which agrees with the theory but was not tuned.

• A sequence element then consists of the data portion z ∈ Rd1 where d1 = 4, also sampled
from the unit sphere, then the positional encoding of this sequence element, and then q further
positional encodings identifying elements to average to produce the output; this differs from
(and is more tractable than) the presentation in Section 3, where the positional encoding is
provided as an integer and the MLP layer input to our attention layers is expected to choose a
sufficient positional encoding.

As such, the total dimension of a sequence element is d1 + (q + 1)d0 = 32. The architectures are
detailed as follows.

• The attention is identical to the description in the paper body, with the additional detail of the
width and embedding dimension m being fixed to 100.

• Figure 6 also contains an MLP, which first flattens the input, then has a single hidden ReLU
layer of width 256, before a final linear layer and an output reshaping to match the desired
output sequence shapes.

• Figure 6 also contains an LSTM, which is a standard pytorch LSTM with 2 layers and a hidden
state size 800, which is 200 times larger than the target output dimension 4.

Experiments fit the regression loss using Adam and a minibatch size of 32, with default precision,
and take a few minutes to run on an NVIDIA TITAN XP, and would be much faster on standard
modern hardware.

35

0 5 10 15 20 25 30 35 40

0

1

2

3

4

5

6

Attention (training)
Attention (testing)
LSTM (training)
LSTM (testing)
MLP (training)
MLP (testing)

Figure 6: Test and train error curves of fitting various architectures to qSA, where the horizontal
axis denotes thousands of training iterations, and the vertical axis denotes the regression objective;
see Section D for further details.

Further discussion of Figure 2 and Figure 7. In Figure 2 and Figure 7, we plot (post-softmax)
alignment matrices after T ∈ {0, 1000, 40000} iterations of Adam. The alignment matrices in Figure 2
are taken from the training example whose loss is the median loss across all examples. Figure 7 is
similar, but additionally shows the examples of minimal and maximal loss.

Further discussion of Figure 6. Figure 6 plots training and testing error curves for the same
attention architecture as in Figure 2, but with further MLP and LSTM architectures as described
above. but also an MLP trained on flattened (vectorized) error bars reflect 5 separate training runs
from random initialization. A few variations of these architectures were attempted, however curves
did not qualitatively change, and in particular, only the attention layer achieves good generalization
across all attempts.

36

(a) Min loss, T = 0. (b) Min loss, T = 1000.

0.0

0.2

0.4

0.6

0.8

1.0

(c) Min loss, T = 40000.

(d) Median loss, T = 0. (e) Median loss, T = 1000.

0.0

0.2

0.4

0.6

0.8

1.0

(f) Median loss, T = 40000.

(g) Max loss, T = 0. (h) Max loss, T = 1000.

0.0

0.2

0.4

0.6

0.8

1.0

(i) Max loss, T = 40000.

Figure 7: Alignment plots as in Figure 2, but using examples with minimum, median, and maximum
loss, whereas Figure 2 only uses the example with median loss.

37

	Introduction
	Our contributions
	Related work
	Conclusion and future work

	Preliminaries
	Attention units and transformer architectures

	Sparse averaging with attention units
	Self-attention can approximate qSA when m q
	Self-attention cannot approximate qSA when m q

	Standard transformer models can only efficiently represent intrinsically pairwise functions
	Efficient computation of Match2 with standard self-attention
	Hardness of computing Match3 with a multi-headed self-attention layer
	More efficient constructions for simplified Match3 computations

	Fully-connected neural networks and recurrent neural networks cannot efficiently approximate qSA
	Only wide fully-connected neural networks can approximate qSA
	Only high-memory recurrent neural networks can approximate qSA

	Supplementary results for Section 3
	Proof of Theorem 2
	Restricted isometry and orthogonality property

	Proof of Theorem 3
	Proof of thm:qsa-lb-bound-prec
	Optimality of thm:qsa-ub-inf-prec under restricted architectures

	Supplementary results for Section 4
	Proof of thm:2attn-pairid
	Proof of thm:2heads-triid
	Higher-order tensor attention
	Efficient representation of Match3 with third-order self-attention
	Heuristic argument for Informal Conjecture 1
	Sharper separations for embedded subgraph detection problems
	A Congest communication graph that generalizes standard graph transformer computation
	Reduction from set disjointness

	Experiment details

