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Abstract. Limitations of capabilities of one-hidden-layer networks are
investigated. It is shown that for networks with Heaviside perceptrons as
well as for networks with kernel units used in SVM, there exist large sets
of d-variable functions which cannot be tractably represented by these
networks, i.e., their representations require numbers of units or sizes of
weighs depending on d exponentially. Our results are derived using the
concept of variational norm from nonlinear approximation theory and
the concentration of measure property of high dimensional Euclidean
spaces.
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1 Introduction

Originally, biologically inspired neural networks were modeled as as multilayer
distributed computational systems. Later, one-hidden-layer architectures be-
came dominant in applications due to relatively simple optimization procedures
needed for adjustment of their parameters (see, e.g., [1, 2] and the references
therein). In some literature, one-hidden-layer networks are called shallow net-
works to distinguish them from deep ones containing more hidden layers.

In addition to a variety of successful applications of one-hidden-layer networks,
also theoretical confirmation of their capabilities has been obtained. Shallow net-
works with many types of computational units are known to be universal approx-
imators, i.e., they can approximate up to any desired accuracy all continuous
functions on compact subsets of Rd. In particular, the universal approximation
property holds for shallow networks with perceptrons having any non-polynomial
activation function [3, 4] and with radial and kernel units satisfying mild con-
ditions [5–7], [8, p.153]). Moreover, all functions defined on finite subsets of Rd

can be represented exactly by one-hidden-layer networks with either sigmoidal
perceptrons [9] or with Gaussian radial units [10].

Proofs of the universal approximation capability of shallow networks require
potentially unlimited numbers of hidden units. These numbers representing model
complexities are critical factors for practical implementations. Dependence of
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model complexities of shallow networks on their input dimensions, types of units,
functions to be approximated, and accuracies of approximation have been stud-
ied using tools from nonlinear approximation theory (see, e.g., [11] and refer-
ences therein). Inspection of upper bounds on rates of approximation by shallow
networks led to descriptions of various families of functions that can be well
approximated by shallow networks with reasonably small numbers of computa-
tional units of various types. On the other hand, cases when numbers of networks
units are untractably large are less understood. Only few lower bounds on rates
of approximations by shallow networks are known and the estimates are mostly
non constructive and hold for types of computational units that are not com-
monly used [12, 13]. Moreover, in some cases, sizes of weights can be more critical
factors for successful learning than numbers of network units [14].

Recently, new hybrid learning algorithms were developed for deep networks
[15, 16]. Training networks with more than one hidden layer involves compli-
cated nonlinear optimization procedures and thus generally it is more difficult
than training shallow ones. Hence, it is desirable to develop some theoretical
background for characterization of tasks whose computations by networks with
shallow architectures would require networks with considerably higher complex-
ities than computations by deep networks. Bengio et al. [17] suggested that a
cause of difficulties in representing functions by shallow networks tractably can
be their “amount of variations”. As a class of function with high-variations they
considered the parities on d-dimensional Boolean cubes {0, 1}d. They proved
that a classification of points in {0, 1}d according to their parities by support
vector machine (SVM) with Gaussian kernel units cannot accomplish this task
with less than 2d/2 units.

On the other hand, it is well-known and easy to verify that for any d, the
d-dimensional parity can be represented by a one-hidden-layer Heaviside per-
ceptron network with d units. Indeed, parity can be visualized as a plane wave
orthogonal to the diagonal of the cube in the direction of the vector (1, . . . , 1)
(see, e.g.,[18, 19]). So some functions are highly-varying with respect to one
type of computational units, while they are “varying” much less with respect to
another type of units. Thus it is reasonable to consider the notion of a highly-
varying function with respect to a type of computational units.

In this paper, we propose to formalize this concept in terms of a norm called
variation with respect to a set of functions. This norm has been studied in non-
linear approximation theory and plays an important role in estimates of rates
of approximation by neural networks (see, e.g., [11] and the references therein).
We show that the size of the variational norm of a function with respect to a
dictionary of computational units reflects both the number of hidden units and
sizes of output weights in a shallow network with units from the dictionary repre-
senting such function. Using the concept of variational norm, we describe classes
of d-variable functions whose representations by networks with a given type of
units with increasing numbers of inputs d are not tractable in the sense that rep-
resentations of such functions by these network require numbers of units or some
of sizes of output weights to grow exponentially with d. Using concentration of
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measure property in high-dimensional Euclidean spaces we estimate probability
distributions of sizes of variations. We show that for popular dictionaries (such
as dictionaries formed by SVM and by Heaviside perceptrons) with increasing
dimension d almost any randomly chosen Boolean function has large variational
norm (depending on d exponentially). Our results imply that for large d, in sets
of functions with constant Euclidean norms most Boolean real valued functions
cannot be tractably represented by Heaviside perceptron networks or by SVMs.
We illustrate general existential results by an example of a concrete class of non
tractable functions. Some preliminary results from this paper appeared as work
in progress in local conference proceedings [20].

The paper is organized as follows. Section 2 contains basic concepts on shal-
low networks, dictionaries of computational units and Boolean functions. Sec-
tion 3 presents a mathematical formalization of the concept of a “highly-varying
function”, shows that it is related to large sizes of networks representing such
functions or large output weights of these networks. In Section 4 estimates of
probabilistic measures of sets of functions with variations depending on d expo-
nentially are derived and illustrated by an example of a class of functions which
cannot be tractably represented by one-hidden-layer Heaviside perceptron net-
works. Section 5 is a brief disussion.

2 Preliminaries

One-hidden-layer networks with single linear outputs, compute input-output
functions from sets of the form

spann G :=

{
n∑

i=1

wigi |wi ∈ R, gi ∈ G

}
,

where G, called a dictionary, is a set of functions computable by a given type
of units, the coefficients wi are output weights, and n is the number of hidden
units. This number can be interpreted as a measure of model complexity. In this
paper we use the term shallow network meaning one-hidden-layer network with
a single linear output. By

spanG :=
⋃
n∈N

spann G

is denoted the set of functions computable by one-hidden-layer networks with
units from the dictionary G with any number of hidden units.

We investigate growth of complexities of networks representing functions of
increasing numbers of variables d. Let D be an infinite subset of the set of
positive integers, F = {fd | d ∈ D} a class of functions and {Gd | d ∈ D} a class
of dictionaries, such that for every d ∈ D, fd is a function of d variables and
Gd is formed by functions of d variables. We call the problem of representing
the set F by networks from {spanGd | d ∈ D} tractable if for every d ∈ D,
there exists a network in spannd

G representing fd as its input-output function
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such that nd and absolute values of all output weights in the network grow with
d polynomially. Note that different concepts of tractability were used in other
contexts (see, e.g., [11]).

In this paper, we focus on representations of real-valued functions on finite
subsets of Rd by shallow networks with units from several dictionaries. We denote
by Hd(X) the dictionary of functions on X ⊂ R

d computable by Heaviside
perceptrons, i.e.,

Hd(X) := {ϑ(v · .+ b) : X → {0, 1} | v ∈ R
d, b ∈ R} ,

where ϑ denotes the Heaviside activation function defined as

ϑ(t) := 0 for t < 0 and ϑ(t) := 1 for t ≥ 0.

Note that Hd is the set of characteristic functions of half-spaces. The dictionary
Sd(X) is formed by functions on X computable by perceptrons with signum
activation function sgn : R → {−1, 1} defined as

sgn(t) := −1 for t < 0 and sign(t) := 1 for t ≥ 0.

We denote

Pd(X) := {sgn(v · .+ b) : X → {−1, 1} | v ∈ R
d, b ∈ R} .

For a kernel Kd : Rd × R
d → R, we denote by FKd

(X) the dictionary of kernel
units, i.e.,

FKd
(X) := {Kd(., x) : X → R |x ∈ X}.

The set of real-valued functions on the d-dimensional Boolean cube {0, 1}d is
denoted

B({0, 1}d) := {f | f : {0, 1}d → R}.
It is a linear space isomorphic to the Euclidean space R

2d . Thus on B({0, 1}d)
we have the Euclidean inner product defined as

〈f, g〉 :=
∑

u∈{0,1}d

f(u)g(u)

and the Euclidean norm ‖f‖2 :=
√〈f, f〉. By · is denoted the inner product on

{0, 1}d, defined as u · v :=
∑d

i=1 uivi.

3 Highly-Varying Functions

In this section, we investigate a mathematical formalization of the observation of
Bengio et al. [17] that representations of highly-varying functions might require
large networks. We show that the concept of a variational norm from approxi-
mation theory can play a role of a measure of tractability of representations of
classes of functions by shallow networks.
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For a subset G of a normed linear space (X , ‖.‖X ), G-variation (variation with
respect to the set G), denoted by ‖.‖G, is defined as

‖f‖G := inf {c ∈ R+ | f/c ∈ clX conv (G ∪ −G)} ,

where −G := {− g | g ∈ G}, clX denotes the closure with respect to the norm

‖ · ‖X on X , and convG :=
{∑k

i=1 aigi | ai ∈ [0, 1],
∑k

i=1 ai = 1, gi ∈ G, k ∈ N

}
is the convex hull of G.

Variation with respect to a set of functions was introduced by Kůrková [21]
as an extension of Barron’s [22] concept of variation with respect to sets of
characteristic functions. Barron investigated the set of characteristic functions
of half-spaces, which corresponds to the dictionary of functions computable by
Heaviside perceptrons. For d = 1, variation with respect to half-spaces coincides
up to a constant with the concept of total variation from integration theory.
Variational norms play an important role in estimates of approximation rates by
one-hidden-layer networks (see, e.g., [11, 23, 24] and the references therein).

The following straightforward consequence of the definition of G-variation
shows that in all representations of a function with large G-variation by networks
with units from the dictionary G, the number of units must be large or some
absolute values of output weights must be large.

Proposition 1. Let G be a bounded subset of a normed linear space (X , ‖.‖),
then for every f ∈ X ,

(i) ‖f‖G ≤
{∑k

i=1 |wi|
∣∣∣ f =

∑k
i=1 wi gi , wi ∈ R, gi ∈ G, k ∈ N

}
;

(ii) for G finite with cardG = k,

‖f‖G = min
{∑k

i=1 |wi|
∣∣∣ f =

∑k
i=1 wi gi , wi ∈ R, gi ∈ G

}
.

Proposition 1 implies that families of sets of d-variable functions {Fd |d ∈ D}
with Gd-variations growing with d exponentially cannot be tractably represented
by networks with units from Gd.

Note that G-variation is a norm and thus by multiplying f by suitable con-
stants we can obtain functions with arbitrarily large or small variations. How-
ever, in neurocomputing we are interested in computation of functions with
similar sizes as computational units. For example, in dictionaries Hd(X) and
Pd(X) FKd

(X) formed by functions on a finite subset X of Rd, the supremum
of l2-norms of their elements is 2cardX/2. Thus we explore variational norms of
functions in the spheres of radii 2card(X)/2 in the Euclidean spaces B(X).

To describe classes of functions with large variations, we use the following
lower bound on variational norm from [19] (see also [25, 26]). By G⊥ is denoted
the orthogonal complement of G.

Theorem 1. Let (X , ‖.‖X ) be a Hilbert space and G its bounded subset. Then

for every f ∈ X \G⊥, ‖f‖G ≥ ‖f‖2

supg∈G |g·f | .

Theorem 1 implies that functions which are “almost orthogonal” to G have
large variations. To take advantage of this theorem, we use the angular pseudo-
metrics δ on the unit sphere Sm−1 in R

m defined as
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δ(f, g) = arccos |f · g|.
Note that this pseudometrics defines the distance as the minimum of the two
angles between f and g and between f and −g (it is a pseudometrics as the
distance of antipodal vectors is zero).

The next corollary of Theorem 1 states that functions which have large dis-
tances measured by an angular pseudometrics δ from the set G have large G-
variations.

Corollary 1. Let m be a positive integer, G ⊂ Sm−1, and f ∈ Sm−1 such that
has for some α ∈ (0, π/2) and all g ∈ G, the angular distance δ(f, g) ≥ α. Then
‖f‖G ≥ 1

cos α .

4 Sets of Functions with Large Variations

In this section we show that for reasonably “small” dictionaries G formed by
functions on finite subsets X of Rd with cardX = m there exist “large subsets”
of spheres in R

m consisting of functions with “large” G-variations. The following
theorem estimates probability that a randomly chosen vector f ∈ Sm−1 has G-
variation larger than 1

cos α . Its proof is based on a geometrical property of high-
dimensional Euclidean spaces called “concentration of measure”. This property
implies that for large dimensions m, most of the areas of spheres Sm−1 in m-
dimensional spaces R

m lie “close” to the equators of these spheres (see, e.g.,
[27]).

Theorem 2. Let m be a positive integer, μ a uniform measure on Sm−1 such
that μ(Sm−1) = 1, G a finite subset of Sm−1 with cardG = k, α ∈ (0, π/2), and

Vα = {f ∈ Sm | ‖f‖G ≥ 1
cos α}. Then μ(Vα) ≥ 1− k e−

m(cos α)2

2 .

Proof. By Corollary 1, Vα contains all f ∈ Sm−1 satisfying for all g ∈ G, |f ·
g| ≤ cosα, i.e., all f with δ(f, g) = arccos |f · g| ≥ α. Let C(g, ε) denotes
the spherical cap with a center g ∈ G and the angle α = arccos ε defined as
C(g, ε) = {h ∈ Sm−1 |h · g ≥ ε}. So f is not contained in any of the spherical
caps C(g, ε) with a center g ∈ G. With d increasing, the normalized measures

of the spherical caps are decreasing exponentially fast: μ(C(g, ε)) ≤ e−
mε2

2 (see,

e.g., [28, p.11]). Thus μ(Vα) ≥ 1− k e−
m(cos α)2

2 .

Combining Theorem 2 with “relatively small”sizes of the dictionaries
Hd({0, 1}d), Pd({0, 1}d), and FKd

({0, 1}d), induced by a bounded kernel Kd :
{0, 1}d×{0, 1}d → R (such as the Gaussian), we obtain an estimate of the frac-

tion of the area of the sphere of radius 2d/2 in the space B({0, 1}d) � R
2d which

contains functions with variations depending on d exponentially. By Sm−1
r we

denote the sphere of radius r in R
m.
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Theorem 3. Let d be a positive integer, μ a uniform measure on S2d−1
2d/2

such

that μ(S2d−1
2d/2

) = 1, G a dictionary formed by functions on {0, 1}d such that for

all g ∈ G, ‖g‖2 ≤ 2d/2, α ∈ (0, π/2), and Vα(G) = {f ∈ S2d−1 | ‖f‖G ≥ 1
cos α}.

(i) If G = Hd({0, 1}d), then μ(Vα(Hd({0, 1}d))) ≥ 1− 2d
2

e−
2d(cos α)2

2 ;

(ii) if G = Pd({0, 1}d), then μ(Vα(Hd({0, 1}d))) ≥ 1− 2d
2

e−
2d(cos α)2

2 ;
(iii) if GKd

({0, 1}d), where K : {0, 1}d × {0, 1}d is a kernel such that

supx∈{0,1}d |K(x, x) ≤ 1, then μ(Vα(GKd
({0, 1}d))) ≥ 1− 2d e−

2d(cos α)2

2 .

Proof. (i) and (ii) follow from Theorem 2 and an upper bound 2d
2−d log2 d+O(d)

on the dictionary cardHd({0, 1}d) [29, 30]. Thus cardinalities of both dictionaries

Hd({0, 1}d) and Pd({0, 1}d) are smaller than 2d
2

, which is much smaller than

the cardinality 22
d

of the whole space B({0, 1}d). The Euclidean norm of all
elements of Pd({0, 1}d) is 2d/2, which is the maximal value of the Euclidean
norms of elements of Hd({0, 1}d).
(iii) follows from Theorem 2 and the cardinality 2d of the dictionaryGKd

({0, 1}d)
formed by kernel units centered at the vertices of the Boolean cube {0, 1}d.

Theorem 3 holds for any kernel with supx∈{0,1}d |K(x, x)| = 1 and implies that

representations of most functions from B({0, 1}d) having their Euclidean norms
equal to 2d/2 by SVM induced by the kernel K are not tractable, i.e., their
representations require exponentially large numbers of units or exponentially
large sizes of output weights.

Setting cos α = 2−d/4, we obtain from Theorem 3 the lower bound

1− e−
2d/2−2d2

2

on the relative size of the subset of the ball of radius 2d/2 in B({0, 1}d) containing
functions with variations with respect to half-spaces larger or equal to 2d/4. So by
Proposition 1, for large d almost any randomly chosen real-valued Boolean func-
tion with the norm 2d/2 cannot be tractably represented by a shallow Heaviside
perceptron network.

Theorem 3 showing that for large d, almost any function on the sphere of
radius 2cardX has variation depending on d exponentially is existential. However,
to construct concrete examples of such functions is not easy. The only example
of which we are aware is the function “inner product mod 2” which serves in
theory of circuit complexity as ana example of a function which does not belong
to the class L̂T2 of depth-2 polynomial-size threshold gate circuits with weights
being polynomially bounded integers (see, e.g., [18]). For every even positive
integer d, let βd : {0, 1}d → {−1, 1} be defined for all x ∈ {0, 1}d as

βd := (−1)l(x)·r(x)

where l(x), r(x) ∈ {0, 1}d/2 are defined for every i = 1, . . . d2 as l(x)i := xi

and r(x)i := x d
2+i. When the range {−1, 1} is replaced with {1, 0}, functions

computing inner products of l(x) with r(x) mod 2 are obtained.
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The following theorem is a corollary of a lower bound on the variational norm
from [19, Theorem 3.7]. Recall the h = Ω (g(d)) for two functions g, h : N → R

meaning that there exist a positive constant c and n0 ∈ N such that for all
n ≥ no one has h(n) ≥ c g(n) [31].

Theorem 4. Let d be an even integer, then ‖βd‖Hd({0,1}d) ≥ ‖f‖Pd({0,1}d) =

Ω(2d/6).

By Theorem 4 and Proposition 1 we get the following corollary.

Corollary 2. Let d be an even integer and βd(x) =
∑m

i=1 wiϑ(vi · x + bi) be
a representations of the function βd : {0, 1}d → {−1, 1} by a one-hidden-layer
Heaviside perceptron network. Then

∑m
i=1 |wi| = Ω(22d/6) .

Corollary 2 implies that a representation of a class of d-variable Boolean func-
tions {βd | d even } by one-hidden-layer Heaviside perceptron networks is not
tractable. These functions cannot be represented by Heaviside perceptron net-
works with both numbers of units and sums of absolute values of output weights
polynomially bounded.

5 Discussion

We investigated model complexities of one-hidden-layer networks representing
high-dimensional functions. We showed that the concept of variational norm with
respect to a dictionary studied on approximation theory reflects both numbers
of units and sizes of output weights in representing networks with units from
the dictionary. Using properties of high-dimensional spaces, we proved that for
networks with common units (such as perceptrons and SVM kernel units) with
increasing input dimension dmost of the functions require networks with number
of units or sizes of output weights depending on d exponentially. An essential
condition in our arguments is a relatively small size of these dictionaries. The
upper bound 2d

2−d log2 d+O(d) on the dictionary of Heaviside perceptrons on the
Boolean cube was derived already in 19th century by one of the founders of
high-dimensional geometry [29].

Our results hold for functions of comparable norms as network units. Note that
also in theory of circuit complexity (see, e.g., [18]), there are studied represen-
tations of functions of fixed Euclidean norms by networks with gates computing
functions with the same norms by networks with constrains on both numbers
of units and their output weights. In particular, in this theory there are studied
representations of Boolean functions with values in {−1, 1} by networks com-
posed from signum perceptrons. All these functions have Euclidean norms equal
to 2d/2.
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