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Abstract
In this article, we study approximation properties of the variation spaces corresponding
to shallow neural networks with a variety of activation functions. We introduce two
main tools for estimating the metric entropy, approximation rates, and n-widths of
these spaces. First, we introduce the notion of a smoothly parameterized dictionary
and give upper bounds on the nonlinear approximation rates, metric entropy, and n-
widths of their absolute convex hull. The upper bounds depend upon the order of
smoothness of the parameterization. This result is applied to dictionaries of ridge
functions corresponding to shallow neural networks, and they improve upon existing
results inmany cases.Next,weprovide amethod for lower bounding themetric entropy
and n-widths of variation spaces which contain certain classes of ridge functions. This
result gives sharp lower bounds on the L2-approximation rates, metric entropy, and n-
widths for variation spaces corresponding to neural networks with a range of important
activation functions, including ReLUk activation functions and sigmoidal activation
functions with bounded variation.
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1 Introduction

1.1 Preliminaries

The class of shallow neural networks with activation function σ : R → R is a popular
function class used in supervised learning algorithms. This class of functions on R

d

is given by

�d
n (σ ) =

{
n∑

i=1

σ(ωi · x + bi ) : ωi ∈ R
d , bi ∈ R

}
, (1.1)

where σ is an activation function and n is the width of the network. There is a rich
literature on the approximation properties and statistical inference from this class of
functions [2, 4, 28, 29, 35], with a special focus on the case when σ is a sigmoidal
activation function or when σ = max(0, x)k is a power of the rectified linear unit.

In this work, we consider the approximation properties of shallow neural networks
from the point of view of nonlinear dictionary approximation [17]. Let X be Banach
space and D ⊂ X be a uniformly bounded dictionary, i.e., D is a subset such that
supd∈D ‖d‖X = KD < ∞. Nonlinear dictionary approximation considers approx-
imating a target function f by nonlinear n-term dictionary expansions, i.e., by an
element of the set

�n(D) =
⎧⎨
⎩

n∑
j=1

a j h j : h j ∈ D

⎫⎬
⎭ . (1.2)

The approximation is nonlinear since the elements h j in the expansion will depend
upon the target function f . It is often also important to have some control over the
coefficients a j which occur in the expansion (1.2). For this purpose, we introduce the
sets

�n,M (D) =
⎧⎨
⎩

n∑
j=1

a j h j : h j ∈ D,

n∑
i=1

|ai | ≤ M

⎫⎬
⎭

and �∞
n,M (D) =

{
n∑

i=1

ai gi , gi ∈ D, max
i=1,...,n

|ai | ≤ M

}
, (1.3)

which correspond to coefficients which are bounded in �1 and �∞, respectively.
The application of this framework to shallow neural networks comes by considering

the dictionary

D
d
σ = {σ(ω · x + b) : ω ∈ R

d , b ∈ R} ⊂ L p(�), (1.4)
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where σ is an appropriate activation function and � ⊂ R
d is a bounded domain. For

this dictionary, the set

�n(D
d
σ ) = �d

n (σ ) =
⎧⎨
⎩

n∑
j=1

a jσ(ω j · x + b j ) : ω j ∈ R
d , b j ∈ R

⎫⎬
⎭ (1.5)

is exactly the set of shallow neural networks with activation function σ and width
n. Note that we are suppressing the dependence on the underlying space L p(�) for
notational simplicity.

For activation functions σ which are bounded, the dictionary D
d
σ is uniformly

bounded in L p(�). This holds for the class of sigmoidal activation functions, i.e.,
activation functions which satisfy limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1, for
example. In this case, we will consider the dictionary D

d
σ given in (1.4).

However, when the activation function σ is not bounded, the dictionary D
d
σ will

not in general be uniformly bounded in L p(�). This is the case for the important
activation functions σk(x) = ReLUk(x) := max(x, 0)k when k > 0, for instance. In
this case, we modify the definition (1.4) appropriately in order to guarantee uniform
boundedness of the dictionary. When σk(x) = ReLUk(x) (here when k = 0, we
interpret σk(x) to be the Heaviside function), we constrain the weights ω and b and
consider the dictionary

P
d
k = {σk(ω · x + b) : ω ∈ Sd−1, b ∈ [c1, c2]} ⊂ L p(�), (1.6)

where Sd−1 = {ω ∈ R
d : |ω| = 1} is the unit sphere and the constants c1 and c2 are

chosen to satisfy

c1 < inf{x · ω, ω ∈ Sd−1, x ∈ �} < sup{x · ω, ω ∈ Sd−1, x ∈ �} < c2. (1.7)

We remark that any choice of c1 and c2 satisfying the above conditions leads to a
dictionary which is equivalent up to polynomials (see [56]). Due to the homogeneity of
the activation function σk , the set of nonlinear dictionary expansions�n(P

d
k ) coincides

with the set of shallow ReLUk neural networks with width n.
An important model class of functions which can be efficiently approximated by

nonlinear dictionary expansions is given by the variation norm of the dictionary D [2,
4, 5, 17, 31, 32]. Consider the set

B1(D) =
⎧⎨
⎩

n∑
j=1

a j h j : n ∈ N, h j ∈ D,

n∑
i=1

|ai | ≤ 1

⎫⎬
⎭, (1.8)

which is the closure of the convex, symmetric hull of D. Using this set, we define a
norm, ‖ · ‖K1(D), on X given by the gauge (see, for instance, [54]) of B1(D),

‖ f ‖K1(D) = inf{c > 0 : f ∈ cB1(D)}. (1.9)
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This norm is defined so that B1(D) is the unit ball of ‖ · ‖K1(D). We also consider the
subspace of X defined by the variation norm, which we denote

K1(D) := { f ∈ X : ‖ f ‖K1(D) < ∞}. (1.10)

As long as supd∈D ‖d‖X = KD < ∞, the space K1(D) is a Banach space (see [56],
for instance). The space K1(D) is typically called the variation space and the norm
‖ · ‖K1(D) is typically called the variation norm or the atomic norm with respect to the
dictionary D.

As shown in [56], for the dictionary P
d
1 corresponding to shallow neural networks

with ReLU activation function, the space K1(P
d
1) is equivalent to the Barron space

introduced and studied in [24, 25]. Further, the space K1(P
d
k ) for general k can be

characterized in terms of the Radon transform and is equivalent to the Radon BV space
introduced in the context of shallow neural networks in [44–46].

The first major problem we consider in this work is how efficiently functions from
the variation space K1(D) can be approximated by nonlinear dictionary expansions
from the sets�n(D),�n,M (D), or�∞

n,M (D). There is a rich literature on this problem,
which has significant applications to statistics and machine learning (see, for instance,
[2, 4, 5, 17, 28, 29, 31, 39, 52]), and the dictionaries D

d
σ and P

d
k corresponding to

shallow neural networks are of particular interest.
There is a close relationship between this problem and fundamental approximation

theoretic quantities such as the metric entropy and n-widths of the convex hull B1(D)

(whichwe recall is the unit ball ofK1(D)). Let us give a brief overviewof these notions,
for more details, see, for instance, [33, 37, 51, 59]. We remark that the notions of
entropy and n-widths can also be naturally defined for operators T : X → Y between
two Banach spaces [48, 49]. Here we will only discuss these notions for subsets of a
Banach space for simplicity.

The notion ofmetric entropywas first introduced byKolmogorov [30]. The (dyadic)
entropy numbers εn(A) of a set A ⊂ X are defined by

εn(A)X = inf{ε > 0 : A is covered by 2n balls of radius ε}. (1.11)

Roughly speaking, the entropy numbers indicate how precisely we can specify ele-
ments of A given n bits of information and are closely related to approximation by
stable nonlinear methods [16].

The Kolmogorov n-widths of a set A ⊂ X measure how accurately the set A can
be approximated by linear subspaces and are given by

dn(A)X = inf
Yn

sup
x∈A

inf
y∈Yn

‖x − y‖X , (1.12)

where the first infimum is over the collection of subspaces Yn of dimension n. The
Gelfand n-widths, which are important in compressed sensing [20], measure how
accurately elements from A can be recovered from linear measurements and are given
by
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dn(A)X = inf
Un

sup{‖x‖H : x ∈ Un ∩ A}, (1.13)

where the infimum is taken over all closed subspacesUn of codimension n. The linear
n-widths are closely related to theKolmogorov n-widths but require the approximation
to be given by a linear map and are defined by

δn(A)X = inf
Tn

sup
x∈A

‖x − Tn(x)‖X , (1.14)

where the infimum is taken over all linear operators of rank n. In a Hilbert space,
the linear n-widths and Kolmogorov n-widths coincide since Tn can be taken as the
orthogonal projection operator. Finally, the Bernstein widths are given by

bn(A)X = sup
Xn

inf
x∈∂(A∩Xn)

‖x‖X , (1.15)

where the supremum is takenover all subspaces Xn ⊂ X of dimensionn. TheBernstein
widths give a lower bound on the best possible continuous nonlinear approximation
of the set A using n-parameters [18].

The second main problem we consider is the determination of the asymptotics of
the metric entropy and the different types of n-widths mentioned above for the class
B1(D) ⊂ X for different dictionaries D ⊂ X . This problem has been studied in
functional analysis, probability theory, and approximation theory [3, 7, 10–13, 21,
22], and has important applications to statistical learning theory. For example, the
asymptotics of the metric entropy can be used to determine the minimax rates of
convergence for statistical estimators on a class of functions [63].

1.2 Prior Results

Let us begin with results concerning the approximation of the convex hull B1(D) by
nonlinear dictionary expansions. A classical result of Maurey [52] (see also [4, 17,
28]) states that if X is a type-2 Banach space, which includes all Hilbert spaces and
L p for 2 ≤ p < ∞, then for functions f ∈ B1(D) we have the approximation rate

inf
fn∈�n,1(D)

‖ f − fn‖X � KDn
− 1

2 , (1.16)

where the suppressed constant depends only upon the space X . An equivalent formu-
lation of this result, which is sometimes more convenient is that for f ∈ K1(D) we
have

inf
fn∈�n,M (D)

‖ f − fn‖X � KD‖ f ‖K1(D)n
− 1

2 , (1.17)

where the boundM can be taken asM = ‖ f ‖K1(D). In Sect. 2, we give the precise def-
inition of a type-2 Banach space and prove (1.16) using Maurey’s sampling argument,
which is a fundamental building block of the theory.
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Applying this result to the dictionariesD
d
σ and P

d
k immediately yields the following

dimension independent approximation rates in L p for 2 ≤ p < ∞:

inf
fn∈�d

n (σ )
‖ f − fn‖L p(�) � ‖ f ‖K1(Dd

σ )n
− 1

2 (1.18)

for shallow neural networks with bounded activation function σ on the variation space
K1(D

d
σ ), and

inf
fn∈�d

n (σk )
‖ f − fn‖L p(�) � ‖ f ‖K1(P

d
k )n

− 1
2 (1.19)

for shallow ReLUk neural networks on the variation spaceK1(P
d
k ). These results were

first obtained in the L2-norm by Jones [28] for the activation function σ(x) = cos(x)
and by Barron [4] for sigmoidal activation functions. To be precise, Barron obtained
approximation rates in terms of the spectral Barron semi-norm

| f |Bs (�) := inf
fe|�= f

∫
Rd

| f̂ (ξ)||ξ |sdξ, (1.20)

where the infimum is over all extensions fe ∈ L1(Rd) of f . Barron showed that
modulo constants the semi-norm (1.20) for s = 1 controls the variation normK1(D

d
σ )

for any sigmoidal activation function σ , from which his seminal result

inf
fn∈�d

n (σ )
‖ f − fn‖L2(�) � | f |B1(�)n

− 1
2 (1.21)

follows [4].
It will be more convenient for us in what follows to consider the spectral Barron

norm instead of the semi-norm (1.20), which is given by [55]

‖ f ‖Bs (�) := inf
fe|�= f

∫
Rd

| f̂ (ξ)|(1 + |ξ |)sdξ, (1.22)

and the corresponding spectral Barron space Bs . Barron’s results have been general-
ized to ReLUk activation functions in [29, 62]. It is shown that

‖ f ‖K1(P
d
k ) � ‖ f ‖Bk+1(�), (1.23)

from which it follows that the approximation rate (1.19) applies to the spectral Barron
space Bk+1(�). These results have also been extended to a very general class of
activation functions in [55]. Interestingly, (1.23) is not an equivalence and quantifying
the gap between K1(P

d
k ) and Bk+1(�) is an open problem.

An important result, first observed by Makovoz [39], is that for certain dictionaries
the rate in (1.16) can be improved. In particular, for the dictionary D

d
σ corresponding
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to neural networks with certain sigmoidal activation functions, Makovoz obtained the
approximation rate

inf
fn∈�n,M (Dd

σ )
‖ f − fn‖L2(�) � n− 1

2− 1
2d (1.24)

for f ∈ B1(D
d
σ ). (Note that here and in what follows the implied constant is

independent of n, and the �1-bound M is fixed and independent of n as well.) Fur-
thermore, improved rates have been obtained for other dictionaries. In particular, in
[29], the dictionaries P

d
k corresponding to neural networks with activation function

σ = [max(0, x)]k are studied for k = 1, 2 and it is shown that for f ∈ B1(P
d
k )

inf
fn∈�n,M (Pdk )

‖ f − fn‖L2(�) � n− 1
2− 1

d . (1.25)

We remark thatmore generally, it is shown that these rates hold in L∞ up to logarithmic
factors. This analysis is extended to k ≥ 3 in [62], where the same approximation rate
is attained.

In addition, when k = 1, i.e., for the ReLU activation function, the rate (1.25) can
be improved to

inf
fn∈�n,M (Pd1 )

‖ f − fn‖L2(�) � n− 1
2− 3

2d , (1.26)

and this result holds also in L∞ [2]. This result is proved using a different set of
combinatorial arguments from geometric discrepancy theory [41].

These results raise the natural question of what the optimal approximation rates for
�n,M (Pd

k ) on the set B1(P
d
k ) are. Specifically, for each k = 0, 1, 2, ... and dimension

d = 2, ... (the case d = 1 is comparatively trivial), what is the largest possible value
of α := α(k, d) such that for f ∈ B1(P

d
k ) we have

inf
fn∈�n,M (Pdk )

‖ f − fn‖L2(�) � n− 1
2−α(k,d). (1.27)

The results above imply that α(k, d) ≥ 1
2d for k = 0, α(k, d) ≥ 3

2d for k = 1, and
α(k, d) ≥ 1

d for k > 1. When d > 1, the best available upper bounds on α(k, d) are
α(k, d) ≤ k+1

d (see [29, 39]), except in the case k = 0, d = 2, whereMakovoz obtains
the sharp bound α(0, 2) = 1

4 [39].

1.3 Main Results

Our results can be divided into two categories. First, we consider upper bounds on
approximation rates, entropy, and n-widths. Previous approximation rates, such as
those obtained in [29, 39, 62], and entropy bounds on the convex hull B1(D), such as
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those obtained in [9, 12], rely upon covering the dictionary D by balls of radius ε and
using a stratified sampling argument.

In order to improve upon these results, the key idea is to use the smoothness of the
dictionary P

d
k . We obtain a higher-order generalization of these results by introducing

the notion of a smoothly parameterized dictionary. A dictionary D is smoothly param-
eterized to order s if there exists a parameterization map P : M → X , where M is
a smooth manifold, such that D ⊂ P(M ), and such that P is smooth to order s in
an appropriate sense. We give a detailed definition in Sect. 3, where we show that if D

is smoothly parameterized to order s by a compact d-dimensional manifold M and
X is a type-2 Banach space, then

inf
fn∈�n,M (D)

‖ f − fn‖X � n− 1
2− s

d , (1.28)

for some M < ∞. Here the implied constant depends upon the manifold M , the
parameterization P , and the type-2 constant of X . We apply this result to the dic-
tionaries P

d
k ⊂ L p(�), which we show are smoothly parameterized to order k + 1

p

by the compact, d-dimensional manifold Sd−1 × [c1, c2]. This allows us to improve
upon the approximation rates for ReLUk networks described above when k ≥ 2, and
in particular show that α(k, d) ≥ 2k+1

2d for all k ≥ 0.
We also give upper bounds on the metric entropy and n-widths of the convex hull

B1(D) when D is a smoothly parameterized dictionary. In particular, in Sect. 3 we
show that if D is smoothly parameterized to order s by a compact, d-dimensional
manifold, then we have

dn(B1(D))X � n− s
d . (1.29)

If in addition the space X is a type-2 Banach space, then we have the bound

εn(B1(D))X � n− 1
2− s

d . (1.30)

Finally, if X is a Hilbert space, we obtain an analogous bound on the Gelfand numbers
of the convex hull of D. The Gelfand numbers of a convex hull are introduced and
studied in [10, 12]. While closely related to the Gelfand widths dn(B1(D)), they are
subtly different [26].Wegive the precise definition of theGelfand numbers and provide
an example illustrating this difference in Sect. 3.5.

These results generalize the results from [9–12] by taking into account the smooth-
ness of the dictionary in addition to the compactness. The application to P

d
k gives the

bound

dn(B1(P
d
k ))L p(�) � n− pk+1

pd (1.31)

on the Kolmogorov n-widths for 1 < p < ∞, and the bound

εn(B1(P
d
k ))L p(�) � n− 1

2− pk+1
pd (1.32)
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on the metric entropy for 2 ≤ p < ∞. Based on the L∞ approximation rates which
can be derived using geometric discrepancy theory [2, 41] in the case k = 1, we only
expect the entropy upper bound to be sharp for p = 2, however.

Next, we consider lower bounds on approximation rates, metric entropy, and n-
widths of the spaces B1(D

d
σ ) and B1(P

d
k ). The key here is a generalization of a

construction of Makovoz [39], which enables us to find a large collection of nearly
orthogonal functions in B1(D) when the dictionary D contains a certain class of ridge
functions.As a consequence of this construction,we obtain the following lower bounds
on the entropy and n-widths in L2

dn
(
B1(P

d
k )
)
L2(�)

� n− 2k+1
2d , εn

(
B1(P

d
k )
)
L2(�)

� n− 1
2− 2k+1

2d , bn(B1(P
d
k ))L2(�) � n− 1

2− 2k+1
2d . (1.33)

This method is quite general, and one can also obtain lower bounds for B1(D
d
σ ) for

a variety of other activation functions σ , but we do not pursue this further here. Note
that this lower bound combined with the upper bound (1.32) for p = 2 gives the sharp
rate of decay for the metric entropy of B1(P

d
k )

εn(B1(P
d
k ))L2(�) � n− 1

2− 2k+1
2d . (1.34)

In addition, the lower bounds on the entropy enable us to obtain the sharp upper
bound α(k, d) ≤ 2k+1

2d on the exponent of approximation by shallowReLUk networks.
Further,weuse these lower bounds to show that the exponent in the approximation rates
(1.27) cannot be improved even when relaxing the �1-norm constraint on the weights
to an �∞-norm constraint, i.e., by using the set �∞

n,M (Pd
k ) instead of �n,M (Pd

k ).
Making use of a technical lemma proved in Sect. 4.1, these lower bounds also carry

over to sigmoidal activation functions σ which have bounded variation. This gener-
alizes previous results, which require more stringent assumptions on the activation
function σ in order to obtain lower bounds [38].

The entropy lower bounds also quantify the gap between the spaces K1(P
d
k ) and

Bk+1(�). Specifically, the unit ball in the spectral Barron space Bk+1(�) satisfies

εn log n({ f : ‖ f ‖Bk+1(�) ≤ 1})L2(�) � n− 1
2− k+1

d . (1.35)

This follows from the approximation results obtained in [58] combined with Theorem
10. Conversely, the metric entropy of B1(P

d
k ) decays at the rate (1.34), which is slower

by a factor of n1/2d .
Finally, the lower bounds on the metric entropy, Kolmogorov, and Bernstein n-

widths show that linear methods are dramatically worse that shallow neural networks,
and even nonlinear methods cannot improve upon shallow neural networks on the
class B1(P

d
k ) if either stability [16] or continuity [18] of the approximation method is

required.
The paper is organized as follows. In Sect. 3, we study smoothly parameterized

dictionaries in detail and derive approximation rates for the set B1(D) when D is
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smoothly parameterized by a compactmanifold. Herewe also extend existingmethods
to obtain upper bounds on the entropy and n-widths of B1(D) for such dictionaries D.
We apply these results to obtain an upper bound on the approximation rates, entropy
numbers and n-widths of B1(P

d
k ). Next, in Section, Finally, we give some concluding

remarks and further research directions.

2 Type-2 Spaces andMaurey’s Sampling Argument

In this section, we give the definition and basic properties of type-2 Banach spaces and
prove the approximation rate (1.16) using a sampling argument due to Maurey [52].
This sampling argument was first used in the context of neural network approximation
by Barron [4]. We refer to [34], Chapter 9 and [1], Chapter 6 for a detailed theory of
type-2 spaces (and the more general type-p spaces which we will not discuss further
here).

Definition 1 A Banach space X is a type-2 Banach space if there exists a constant
C2,X < ∞ such that for any n ≥ 1 and f1, ..., fn ∈ X we have

⎛
⎝E

∥∥∥∥∥
n∑

i=1

εi fi

∥∥∥∥∥
2

X

⎞
⎠

1/2

≤ C2,X

(
n∑

i=1

‖ fi‖2X
)1/2

, (2.1)

where the expectation is taken over independent Rademacher random variables
ε1, ..., εn , i.e.,

P(εi = 1) = P(εi = −1) = 1

2
.

The constant C2,X is called the type-2 constant of the space X .

It is clear that a Hilbert space X is a type-2 space with type-2 constant C2,X = 1,
since by expanding the inner product we have

E

∥∥∥∥∥
n∑

i=1

εi fi

∥∥∥∥∥
2

X

=
n∑

i=1

n∑
j=1

E(εiε j )〈 fi , f j 〉X =
n∑

i=1

‖ fi‖2X . (2.2)

Here independence of the Rademacher variables implies that E(εiε j ) = δi j .
Let (X ,A , μ) be a measure space. We also have that L p(μ) for 2 ≤ p < ∞ is a

type-2 Banach space. This follows from Khintchine’s inequality, which states that for
0 < p < ∞ there exists a constant Cp < ∞ such that for n ≥ 1 and real numbers
x1, ..., xn we have

(
E

∣∣∣∣∣
n∑

i=1

εi xi

∣∣∣∣∣
p) 1

p

≤ Cp

(
n∑

i=1

|xi |2
) 1

2

. (2.3)
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Letting f1, ..., fn ∈ L p(μ) and interchanging the expectation and integration, we
calculate

E

∥∥∥∥∥
n∑

i=1

εi fi

∥∥∥∥∥
p

L p(μ)

=
∫
X

E

∣∣∣∣∣
n∑

i=1

εi fi (x)

∣∣∣∣∣
p

dμ(x) ≤ C p
p

∫
X

(
n∑

i=1

fi (x)
2

)p/2

dμ(x)

= C p
p

∥∥∥∥∥
n∑

i=1

f 2i

∥∥∥∥∥
p/2

L p/2(μ)

. (2.4)

Taking both sides to the power 2/p and using the triangle inequality (valid since
p ≥ 2), we get

E

∥∥∥∥∥
n∑

i=1

εi fi

∥∥∥∥∥
2

L p(μ)

≤ C2
p

∥∥∥∥∥
n∑

i=1

f 2i

∥∥∥∥∥
L p/2(μ)

≤ C2
p

n∑
i=1

‖ f 2i ‖L p/2(μ) = C2
p

∥∥∥∥∥
n∑

i=1

fi

∥∥∥∥∥
2

L p(μ)

,

(2.5)

which proves that L p(dμ) is a type-2 Banach space with type-2 constant Cp. We
remark that the optimal constant Cp in Khintchine’s inequality is known [27] and
scales like

√
p.

Finally, we prove the approximation rate (1.16) in type-2 Banach spaces, which is
originally due to Maurey [52].

Theorem 1 Suppose that X is a type-2 Banach space and D ⊂ X is a dictionary with
KD := supd∈D ‖d‖X < ∞. Then for f ∈ B1(D), we have

inf
fn∈�n,1(D)

‖ f − fn‖X ≤ 4C2,X KDn
− 1

2 . (2.6)

Proof Let δ > 0 be arbitrary. Since f ∈ B1(D), for some integer N = N (δ), there
exists an fδ of the form

fδ =
N∑
i=1

aidi (2.7)

with di ∈ D and
∑N

i=1 |ai | = 1 such that ‖ f − fδ‖X < δ. We will show that there
exists an fn ∈ �n,1 with

‖ fδ − fn‖X ≤ 4C2,X KDn
−1/2
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which completes the proof since δ > 0 was arbitrary. To this end, define a random
variable Y with values in X by (recall that

∑N
i=1 |ai | = 1)

P(Y = sgn(ai )di ) = |ai |. (2.8)

Note that by construction we have E(Y ) = fδ . Let Y1, ..., Yn be independent copies
of Y and consider the empirical average

Zn = 1

n

n∑
i=1

Yi . (2.9)

We will show that

E‖Zn − fδ‖2X = E

∥∥∥∥∥1n
n∑

i=1

(Yn − fδ)

∥∥∥∥∥
2

X

≤ 16C2
2,X K

2
D
n−1. (2.10)

This implies that there must be a realization of the random variable Zn , i.e., a value
Zn(ω) for some ω ∈ � in the underlying probability space, such that ‖Zn(ω) −
fδ‖X ≤ 2C2,X KDn−1/2. Since the values of the random variable Zn lie in �n,1(D)

by construction, this completes the proof.
To prove (2.10), wewill show that if a sequence of i.i.d. randomvariables R1, ..., Rn

with values in X satisfies E(Ri ) = 0 and ‖Ri‖X ≤ M almost surely, then

E

∥∥∥∥∥
n∑

i=1

Ri

∥∥∥∥∥
2

X

≤ 4nC2
2,XM

2. (2.11)

Applying this to the sequence Ri = n−1(Yn − fδ) completes the proof since ‖Yn −
fδ‖X ≤ ‖Yn‖ + ‖ fδ‖X ≤ 2KD almost surely.
Finally, we prove (2.11) using a symmetrization argument and the type-2 property

of X . Let R′
1, ..., R

′
n denote a new set of independent copies of R1, ..., Rn and let E

′
denote the expectation over R′

1, ..., R
′
n and E denote the expectation over the original

R1, ..., Rn . Using the zero mean property of the Ri and Jensen’s inequality, we get

E

∥∥∥∥∥
n∑

i=1

Ri

∥∥∥∥∥
2

X

≤ EE
′
∥∥∥∥∥

n∑
i=1

Ri − R′
i

∥∥∥∥∥
2

X

. (2.12)

For any fixed choice of signs ε1, ..., εn , the distribution of
∑n

i=1 εi (Ri − R′
i ) is the

same. This is due the fact that Ri and R′
i are i.i.d. and switching the sign εi is the same

as swapping Ri and R′
i . This means that

EE
′
∥∥∥∥∥

n∑
i=1

Ri − R′
i

∥∥∥∥∥
2

X

= EεEE
′
∥∥∥∥∥

n∑
i=1

εi (Ri − R′
i )

∥∥∥∥∥
2

X

, (2.13)
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whereEε denotes an average over theRademacher randomvariables ε1, ..., εn . Switch-
ing the order of the expectation and using the type-2 property of X , we get

EE
′
Eε

∥∥∥∥∥
n∑

i=1

εi (Ri − R′
i )

∥∥∥∥∥
2

X

≤ C2
2,XEE

′
n∑

i=1

‖Ri − R′
i‖2X . (2.14)

Finally, since ‖Ri‖X ≤ M almost surely, we get that ‖Ri −R′
i‖X ≤ 2M almost surely

so that

E

∥∥∥∥∥
n∑

i=1

Ri

∥∥∥∥∥
2

X

≤ 4nC2
2,XM

2, (2.15)

which completes the proof. ��

3 Smoothly Parameterized Dictionaries

Let X be a Banach space and consider a dictionary D ⊂ X which is parameterized by
a smooth manifold M , i.e., for which there exists a surjection

P : M → D. (3.1)

In this section, we consider dictionaries D which are parameterized by a smooth
compact manifoldM and study how the approximation properties of the convex hull
B1(D) depend upon the smoothness of the parameterization mapP . Specifically, we
give upper bounds on the metric entropy and n-widths of B1(D), and upper bounds
on the approximation rates for B1(D) from sparse convex combinations �n,M (D), as
a function of the degree of smoothness of the parameterization map P .

Webeing by introducing the relevant notion of smoothness. Throughout this section,
M will denote a smooth manifold with a smooth boundary. For a given s > 0 and
domain � ⊂ R

d , we consider the Lipschitz space Lip(s, L∞(�)) (see [37] Chapter
2, for instance) with semi-norm given by

| f |Lip(s,L∞(�)) = sup
x,y∈�

|Dk f (x) − Dk f (y)|
|x − y|α . (3.2)

Here s = k + α, k is an integer, Dk represents the k-th derivative (tensor), and
0 < α ≤ 1. If s is not an integer, it is well known that the space Lip(s, L∞(�)) is
equivalent to the Besov space Bs∞,∞(�), but when s is an integer, the Lipschitz space
is slightly smaller [37]. The first step is to extend this definition to Banach space valued
functions f .

Definition 2 Let X be a Banach space, U ⊂ R
d an open set and s > 0. A function

F : U → X is of smoothness class s, which we write F ∈ Lip∞(s, X), if for every
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ξ ∈ X∗, the function fξ : U → R defined by

fξ (x) = 〈ξ,F (x)〉 (3.3)

satisfies

| fξ |Lip(s,L∞(�)) ≤ K‖ξ‖X∗ (3.4)

for a constant K < ∞. The smallest constant K above is the semi-norm |F |Lip∞(s,X).

In order to apply our method to more general dictionaries, we generalize this defi-
nition to allow the domain to be a smooth manifold.

Definition 3 Let X be a Banach space,M a smooth d-dimensional manifold, and s >

0. A map P : M → X is of smoothness class s, which we write P ∈ LipM∞ (s, X),
if for each coordinate chart (U , φ) we have P ◦ φ ∈ Lip∞(s, X).

To illustrate this definition, we consider the dictionary P
d
k with respect to X =

L p(�).

Lemma 1 LetM = Sd−1 × [c1, c2], 1 ≤ p < ∞, and consider the parameterization
map Pd

k : M → L p(�) given by

Pd
k (ω, b) = σk(ω · x + b) ∈ L p(�). (3.5)

Then Pd
k ∈ LipM∞

(
k + 1

p , L p(�)
)
.

Proof Let ξ(x) ∈ Lq(�) with 1
p + 1

q = 1. Then we have

fξ (ω, b) =
∫

�

σk(ω · x + b)ξ(x)dx . (3.6)

We view M as embedded into R
d+1 and calculate the derivatives

∂k

∂ωi1 · · · ∂ωi j ∂b
k− j

fξ (ω, b) =
∫

�

∂k

∂ωi1 · · · ∂ωi j ∂b
k− j

σk(ω · x + b)ξ(x)dx

= k!
∫

�

⎛
⎝ j∏

l=1

xil

⎞
⎠ σ0(ω · x + b)ξ(x)dx,

(3.7)

since σ
(k)
k = k!σ0. Because � is a bounded domain,

(∏ j
l=1 xil

)
∈ L∞(�) and so

there exists a constant C(k,�) such that for all indices i1, .., i j we have∥∥∥∥∥∥k!
⎛
⎝ j∏

l=1

xil

⎞
⎠ ξ(x)

∥∥∥∥∥∥
Lq (�,dx)

≤ C(k,�)‖ξ‖Lq (�). (3.8)
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Then we have

∣∣∣∣∣ ∂k

∂ωi1 · · · ∂ωi j ∂b
k− j

fξ (ω, b) − ∂k

∂ωi1 · · · ∂ωi j ∂b
k− j

fξ (ω
′, b′)

∣∣∣∣∣
≤ k!

∫
�

⎛
⎝ j∏

l=1

xil

⎞
⎠ |σ0(ω · x + b) − σ0(ω

′ · x + b′)|ξ(x)dx

≤ C(k,�)‖ξ‖Lq (�)‖σ0(ω · x + b) − σ0(ω
′ · x + b′)‖L p(�),

(3.9)

which means that∣∣∣Dk fξ (ω, b) − Dk fξ (ω
′, b′)

∣∣∣ �k,� ‖ξ‖Lq (�)‖σ0(ω · x + b)

− σ0(ω
′ · x + b′)‖L p(�). (3.10)

The proof will be complete if we can show that

‖σ0(ω · x + b) − σ0(ω
′ · x + b′)‖L p(�) �p,� (|ω − ω′| + |b − b′|) 1

p . (3.11)

This follows since the function σ0(ω · x + b) − σ0(ω
′ · x + b′) is zero except on the

set

S = {x ∈ � : ω · x + b < 0 ≤ ω′ · x + b′} ∪ {x ∈ � : ω′ · x
+ b′ < 0 ≤ ω · x + b}, (3.12)

where it is ±1. The set S is a wedge or strip within � of width proportional to
|ω − ω′| + |b − b′| (see also [39]), and thus, we have

‖σ0(ω · x + b) − σ0(ω
′ · x + b′)‖p

L p(�) = |S| �� |ω − ω′| + |b − b′|, (3.13)

which completes the proof. ��

In the following analysis, it will be convenient to use the following technical lemma
which allows us to reduce to the case whereM is a d-dimensional cube.

Lemma 2 Suppose that M is a d-dimensional compact smooth manifold (poten-
tially with boundary) and we are given a parameterization P ∈ Lip∞(s, X). Then
there exist finitely many maps P j : [−1, 1]d → X, j = 1, ..., T , such that
P j ∈ Lip∞(s, X) for each j and

P(M ) =
T⋃
j=1

P j ([−1, 1]d). (3.14)
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Proof Let x ∈ M be an interior point. Take a chart φx : Ux → M containing x .
Here Ux may be homeomorphic to the upper half-plane with boundary if the chart
contains boundary points. Let Tx : C → Ux be a smooth injective map from the cube
C = [−1, 1]d toUx such thatφ−1

x (x) is in the interior of Tx (C). Such amap can clearly
always be found since φ−1

x (x) ∈ int(Ux ) as x ∈ int(M ). Define Vx = φx ◦ Tx (Co),
where Co is the interior of C .

For boundary points x ∈ M , we take a chart Ux → M containing x . In this case,
Ux is homeomorphic to the upper half-plane with boundary and φ−1

x (x) is a boundary
point ofUx . Since the boundary is smooth, we may in this case find a smooth injective
map Tx : C → Ux such that φ−1

x (x) ∈ {−1} × (−1, 1)d−1 ⊂ C . In this case, we
define Vx = φx ◦ Tx (Co ∪ {−1} × (−1, 1)d−1).

In either case, we have x ∈ Vx and that Vx is relatively open in M . Since M
is compact, it can be covered by Vx j for finitely many x1, ..., xT . The maps P j =
P ◦φx j ◦ Tx j satisfy the conclusion of the lemma. Indeed, since Txi is smooth and by
definitionP ◦ φi ∈ Lip∞(s, X), it is easy to see thatP j ∈ Lip∞(s, X). In addition,
by construction the images P j (C) cover the image P(M ). ��

3.1 Polynomial Interpolation Error Bounds

The significance of the smoothness Definition 2 lies in its relationshipwith approxima-
tion by polynomial interpolation. Let use briefly review some basic facts concerning
polynomial interpolation.

To set the stage, let U ⊂ R
d be an open domain, let d

k denote the space of

polynomials of degree at most k in d variables, set M = dimd
k = (k+d

d

)
, and let

x1, ..., xM ⊂ U be a set of points which is unisolvent for the space d
k , i.e., such that

no polynomial in d
k vanishes at all of the xi . In one dimension, it is well known that

any k distinct points are unisolvent for the space 1
k . It is also possible to explicitly

give sets of
(d+k

k

)
points which are unisolvent for the space d

k for d > 1 [14, 15, 43].
In this setting, we can find Lagrange polynomials l1, ..., lM ∈ d

k such that li (x j ) =
δi j . Given values y1, ..., yM ∈ R at the points x1, ..., xM the unique polynomial in d

k
interpolating these values is given by

M∑
i=1

yi li ∈ d
k . (3.15)

The norm of the interpolation map as a map from �∞
M to C(U ), called the Lesbesgue

constant, is given by

�d
k (U , {x1, ..., xM }) = sup

x∈U

M∑
i=1

|li (x)|. (3.16)

An elementary, yet critical fact about the Lesbesgue constant is its invariance under
invertible affine transformations, which is immediate since the space of polynomials
d

k is invariant under such transformations.
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Lemma 3 Let A be an invertible linear map on R
d and b ∈ R

d a fixed vector. Then
we have

�d
k (U , {x1, ..., xM }) = �d

k (AU + b, {Ax1 + b, ..., AxM + b}). (3.17)

Here AU + b = {Ax + b, x ∈ U }.
Next, we recall the classical Bramble–Hilbert lemma [6] (see also [60, 61]), which

bounds the polynomial interpolation error for functions f ∈ Lip(s, L∞(U )).

Lemma 4 Let s = k + α with k ∈ Z and α ∈ (0, 1] and suppose that f ∈
Lip(s, L∞(U )) for a convex domain U. Let

f I (x) =
M∑
i=1

f (xi )li (x) ∈ d
k (3.18)

denote the polynomial which interpolates the values of f at the points x1, ..., xM. Then
for any y ∈ U we have

| f (y) − f I (y)| ≤ C | f |Lip(s,L∞(�))[diam(U )]s�d
k (U , {x1, ..., xM }), (3.19)

where the constant C only depends upon k and d.

Proof For each i = 1, ..., M consider the function ri (t) = f (y + t(xi − y)). Taylor
expanding ri about t = 0, we obtain

ri (1) − ri (0) =
k∑
j=1

1

j !r
( j)
i (0) + 1

(k − 1)!
∫ 1

0
[r (k)
i (t) − r (k)

i (0)]tk−1dt . (3.20)

Next, note that by construction r ( j)
i (0) = D j f (y) ·(xi − y)⊗ j and r (k)

i (t) = Dk f (y+
t(xi − y)) · (xi − y)⊗k . Plugging this into equation (3.20), we get

f (xi ) − f (y) =
k∑
j=1

1

j !D
j f (y) · (xi − y)⊗ j

+
(

1

(k − 1)!
∫ 1

0
[Dk f (y + t(xi − y)) − Dk f (y)]tk−1dt

)
· (xi − y)⊗k . (3.21)

We now multiply this equation by li (y) and sum over y to obtain

f I (y) − f (y) =
M∑
i=1

li (y)

(∫ 1

0
[Dk f (y + t(xi − y)) − Dk f (y)]tk−1dt

)

·(xi − y)⊗k . (3.22)
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Here we have used the identities

M∑
i=1

li (y) = 1,
M∑
i=1

li (y)(xi − y)⊗ j = 0, (3.23)

for j = 1, ..., k. The first of these identities holds since left-hand side is the interpo-
lation of the constant function 1 evaluated at y. The second holds since the left-hand
side is the interpolation of the degree j polynomial p(x) = (x − y)⊗ j evaluated at y.
Since j ≤ k, this polynomial is reproduced exactly and so we get p(y) = 0.

Since f ∈ Lip(s, L∞(U )) andU is convex so that y+ t(xi − y) ∈ U for t ∈ [0, 1],
we get

|Dk f (y + t(xi − y)) − Dk f (y)| ≤ | f |Lip(s,L∞(�))(t |xi − y|)α. (3.24)

Since also |(xi − y)⊗k | ≤ C(k, d)|xi − y|k , we get
(∫ 1

0
[Dk f (y + t(xi − y)) − Dk f (y)]tk−1dt

)
· (xi − y)⊗k

≤ C(k, d)| f |Lip(s,L∞(�))|xi − y|k+α

≤ C(k, d)| f |Lip(s,L∞(�))[diam(U )]s .
(3.25)

for each i = 1, ...M . Plugging this into (3.22), finally get

| f I (y) − f (y)| ≤ C(k, d)| f |Lip(s,L∞(�))[diam(U )]s
M∑
i=1

|li (y)|

≤ C(k, d)| f |Lip(s,L∞(�))[diam(U )]s�d
k (U , {x1, ..., xM }),

(3.26)

as desired. ��
Given Banach space values y1, ..., yM ∈ X at the points x1, ..., xM , we can analo-

gously form the interpolating polynomial Pk : U → X by

Pk(x) =
M∑
i=1

yi li (x). (3.27)

The next lemma shows that if the yi = F (xi ) are the values of amapF ∈ Lip∞(s, X),
then the Bramble–Hilbert lemma holds in the Banach space setting.

Lemma 5 Let U ⊂ R
d be a convex domain and suppose that a map F : U → X

satisfies F ∈ Lip∞(s, X) where s = k + α with k an integer and α ∈ (0, 1]. Let

FI (x) =
M∑
i=1

F (xi )li (x) (3.28)
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denote the polynomial which interpolates the values of F at the points x1, ..., xM.
Then for any y ∈ U we have

‖F (y) − FI‖X ≤ C |F |Lip(s,X)[diam(U )]s�d
k (U , {x1, ..., xM }), (3.29)

where the constant C only depends upon k and d.

Proof The proof is by duality. Let ξ ∈ X∗ and note that by definition the function
fξ = 〈ξ,F (x)〉 satisfies

| fξ |Lip(s,L∞(�)) ≤ |F |Lip(s,X)‖ξ‖X∗ . (3.30)

We also have that

fξ,I := 〈ξ,FI 〉 =
M∑
i=1

〈ξ,F (xi )〉li (x) =
M∑
i=1

fξ (xi )li (x) (3.31)

is the interpolation of fξ at the points x1, ..., xM . Applying theBramble–Hilbert lemma
4 to the function fξ , we get

|〈ξ,FI (y) − F (y)〉| = | fξ,I (y)

− fξ (y)| ≤ C |F |Lip(s,X)‖ξ‖X∗ [diam(U )]s�d
k (U , {x1, ..., xM }) (3.32)

where the constant C only depends upon k and d. Since this is true for all ξ ∈ X∗, the
result follows. ��

3.2 Approximation Rates for Smoothly Parameterized Dictionaries

Next, we give upper bounds on the approximation rates of B1(D) from sparse convex
combinations �n,M (D) for smoothly parameterized dictionaries. We have the follow-
ing theorem.

Theorem 2 Let s > 0 and X be a type-2 Banach space. Suppose thatM is a compact
d-dimensional smooth manifold,P ∈ LipM∞ (s, X), and the dictionary D ⊂ P(M ).
Then there exists an M > 0 such that for f ∈ B1(D) we have

inf
fn∈�n,M (D)

‖ f − fn‖X � n− 1
2− s

d . (3.33)

Here both M and the implied constant depend only upon s, d, the parameterization
map P , and the type-2 constant of the space X.

We note that although the implied constants here are independent of n, they may
be quite large and accurately estimating them would require careful consideration of
the structure of the manifold M and the parameterization map P . The proof of this
theorem is a higher-order generalization of the stratified sampling argument [29, 39],
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which corresponds to the k = 0 case. Before proving this theorem, we note a corollary
obtained when applying it to the dictionary P

d
k .

Theorem 3 Let k ≥ 0 and 2 ≤ p < ∞. Then there exists an M = M(p, k, d) > 0
such that for all f ∈ B1(P

d
k ) we have

inf
fn∈�n,M (Pdk )

‖ f − fn‖L p(�) � n− 1
2− pk+1

pd . (3.34)

In the case p = 2, we obtain in particular that α(k, d) ≥ 2k+1
2d in (1.27). We will

show in Sect. 4 that this rate is sharp when p = 2. However, we expect that this rate
can be improved when 2 < p < ∞ using the techniques of geometric discrepancy
theory [2, 41, 42].

Proof This follows immediately from Theorem 2 given the smoothness condition of
the map Pd

k proven in Lemma 1 and the fact that Sd−1 × [c1, c2] is a compact d-
dimensional manifold. ��
Proof of Theorem 2 We apply lemma 2 to P and M to obtain a collection of maps
P j : C := [−1, 1]d → X such that D = ∪T

j=1P j (C) and P j ∈ Lip∞(s, X). We
remark that using cubes here is not strictly necessary, but we do this for convenience
since cubes can be easily subdivided in a straightforward manner.

It suffices to prove the result for D = D j := P j (C). This follows since B1(D) =
conv(∪T

j=1B1(D j )) and given a convex combination f = α1 f1 + · · · + αT fT with

f j ∈ B1(D j ) and
∑T

i=1 α j = 1, we get

inf
fn∈�Tn,M (D)

‖ f − fn‖H ≤
T∑
j=1

α j inf
fn, j∈�n,M (D j )

‖ f j − fn, j‖X , (3.35)

which easily follows by setting fn =∑T
j=1 α j fn, j and noting that D = ∪T

j=1D j .
So in what follows we consider D = D j , P = P j and M = C . In other words,

we assume without loss of generality that T = 1 (at the cost of introducing a constant
which depends upon T and thus upon P and M ).

Now let f ∈ B1(D) and δ > 0. Then there exists a convex combination (with
potentially very large N := Nδ)

fδ =
N∑
i=1

aidi , (3.36)

with di ∈ D,
∑ |ai | ≤ 1, and ‖ f − fδ‖X < δ. Since D = P(C), each di = P(zi )

for some zi ∈ C , so we get

fδ =
N∑
i=1

aiP(zi ). (3.37)
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We remark that in what follows all implied constants will be independent of n and δ.
Let n ≥ 1 be given and subdivide the cube C into n sub-cubes C1, ...,Cn such

that each Cr has diameter O(n− 1
d ). This can easily be done by considering a uni-

form subdivision in each direction. (This is also why we chose to use cubes in this
construction.)

We proceed to approximate the map P by a piecewise polynomial on the sub-
cubes C1, ...,Cn . To this end, let M = (d+k

k

)
and x1, ..., xM ∈ C a set of points

which is unisolvent for the space of polynomials of degree at most k in d variables
and let l1, ..., lM be the associated Lagrange interpolation polynomials, as discussed
in Sect. 3.1. Here the integer k is determined by s = k + α with α ∈ (0, 1].

For each cubeCr , denote by xr1, ..., x
r
M and lr1, ..., l

r
M the image of the interpolation

points x1, ..., xM on the cube Cr and their associated Lagrange polynomials. We
rewrite fδ as

fδ =
n∑

r=1

∑
zi∈Cr

P(zi ) =
n∑

r=1

∑
zi∈Cr

aiPr ,I (zi ) +
n∑

l=1

∑
zi∈Cr

aiEr (zi ), (3.38)

where the polynomial interpolation in the cube Cr is given by

Pr ,I (z) =
M∑
i=1

P(xri )l
r
i (z), (3.39)

and the error in the approximation is given by

Er (z) = P(z) − Pr ,I (z). (3.40)

We use the Banach space Bramble–Hilbert Lemma 5 and Maurey’s sampling argu-
ment (Theorem 1) to bound the second term in (3.38). We apply Theorem 1 with the
dictionary DE = {Er (zi ), zi ∈ Cr } to the term

n∑
l=1

∑
zi∈Cr

aiEr (zi ) ∈ B1(DE ). (3.41)

This yields the existence of an n-term convex combination

f ′
n = 1

n

n∑
s=1

Ers (zis ) (3.42)

satisfying

∥∥∥∥∥∥ f ′
n −

n∑
l=1

∑
zi∈Cr

aiEr (zi )

∥∥∥∥∥∥
X

≤ CKDE n
− 1

2 , (3.43)
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where C only depends upon the space X . Lemma 5 implies that

KDE ≤ sup
z∈Cr

‖Er (z)‖X

≤ C(k, d)|P|Lip(s,X)[diam(Cr )]s�d
k (Cr , x

r
1, ..., x

r
M ) = Cn− s

d , (3.44)

where C is independent of n. This holds since by Lemma 3 the Lebesgue constant
satisfies

�d
k (Cr , x

r
1, ..., x

r
M ) = �d

k (C, x1, ..., xM )

and is thus independent of n. Setting

fn =
n∑

r=1

∑
zi∈Cr

aiPr ,I (zi ) + f ′
n, (3.45)

we thus obtain

‖ fn − fδ‖X =
∥∥∥∥∥∥ f ′

n −
n∑

l=1

∑
zi∈Cr

aiEr (zi )

∥∥∥∥∥∥
X

� n− 1
2− s

d , (3.46)

where the implied constant is independent of n. Finally, we observe that

fn =
n∑

r=1

∑
zi∈Cr

aiPr ,I (zi ) + 1

n

n∑
s=1

(P(zis )

−Prs ,I (zis )) ∈ �(M+1)n,2K+1(D), (3.47)

for K := supx∈Cr

∑M
i=1 |lri (x)| = �d

k (Cr , xr1, ..., x
r
M ) = �d

k (C, x1, ..., xM ). This
holds since the interpolating polynomial Pr ,I (zi ) only involves evaluations of the
mapP at the fixed interpolation points xr1, ..., x

r
M in the cube Cr and the coefficients

of those evaluations are bounded in �1 by the Lebesgue constant �d
k (C, x1, ..., xM ).

Since there are n cubes C1, ...,Cn which each contain M interpolation points, there
are Mn interpolation points in total, so we have

n∑
r=1

∑
zi∈Cr

aiPr ,I (zi ) − 1

n

n∑
s=1

Prs ,I (zis ) ∈ �Mn,2K (D), (3.48)

from which (3.47) follows. Since δ > 0 was arbitrary, this completes the proof. ��

3.3 Metric Entropy Bounds for Smoothly Parameterized Dictionaries

Next, we bound the metric entropy of B1(D) for smoothly parameterized dictionaries
D. We first observe that the approximation rate proven in Theorem 2 implies a bound
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on the metric entropy via Theorem 10 (see also the proofs of Theorem 4 in [39] and
in [29]). Specifically, under the assumptions of Theorem 2 we get

εn log n(B1(D)) � n− 1
2− s

d . (3.49)

The main result in this section is that the logarithmic factor in (3.49) can be removed.

Theorem 4 Let s > 0 and X be a type-2 Banach space. Suppose thatM is a compact
d-dimensional smooth manifold,P ∈ LipM∞ (s, X), and the dictionary D ⊂ P(M ).
Then

εn(B1(D))X � n− 1
2− s

d . (3.50)

Here the implied constant depends only upon s, d, the parameterization mapP , and
the type-2 constant of the space X.

We note that combined with the bounds in Lemma 1, Theorem 4 implies the fol-
lowing bound for the variation space corresponding to shallow ReLUk networks

εn(B1(P
d
k ))L2(�) � n− 1

2− 2k+1
2d . (3.51)

In Sect. 4, we will show that this rate is sharp up to a constant factor.
To prove Theorem 4 we will use the following two lemmas. The first is a triangle

inequality for the entropy numbers.

Lemma 6 (see [37] Section 15.7) Let A, B ⊂ X. Then for any 0 ≤ m ≤ n

εn(A + B) ≤ εm(A) + εn−m(B). (3.52)

Proof If balls of radius εm(S) around s1, ..., s2m ∈ X cover A and balls of radius
εn−m(T ) around t1, ..., t2n−m ∈ X cover B, then balls of radius εm(S) + εn−m(T )

around the 2n points si + t j cover A+ B. If the infimum in the entropy is not achieved,
then a simple limiting argument can be used to complete the proof. ��

The second, due to Carl (Proposition 1 in [8]), gives a bound on the metric entropy
of the convex hull of a finite dictionary D ⊂ X .

Lemma 7 Let X be a type-2 Banach space and D ⊂ X a dictionary with n elements,
i.e., D = {d1, ..., dn}. Set KD = maxi=1,...,n ‖di‖X . Then

εm(B1(D)) �

⎧⎪⎪⎨
⎪⎪⎩
KD m = 0√
1 + log n

mm
− 1

2 KD 1 ≤ m ≤ n

2−m
n n− 1

2 KD m > n,

(3.53)

where the implied constant only depends upon the type-2 constant of X.
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Proof of Theorem 4 As in the proof of Theorem 2, we begin by reducing to the case
where M = C := [−1, 1]d is the cube. Using Lemma 2, we see that there exists an
integer T and a collection of maps P j : C → X such that D ⊂ ∪T

j=1P j (C) and
P j ∈ Lip∞(s, X). Again, using the cube here is not strictly necessary, but simplifies
the argument somewhat.

Now B1(D) ⊂∑T
j=1 B1(P j (C)) and applying Lemma 6 implies that

εTn(B1(D)) ≤
T∑
j=1

εn(B1(P j (C))). (3.54)

Thus, at the cost of a constant factor it suffices to prove Theorem 3.82 forD = P j (C)

for each j . So we setP = P j and consider the case whereM = C and D = P(C).
Let s = k+αwith k and integer andα ∈ (0, 1]. SetM = (d+k

k

)
and chooseM points

x1, ..., xM ∈ C which are unisolvent for the space of polynomials of degree at most k
in d variables and let l1, ..., lM be the associated Lagrange interpolation polynomials.
For each integer i ≥ 0, we subdivide the cube into 2di sub-cubes C1, ...,C2di of side
length 2−i . We let Pi denote the piecewise degree k interpolation of the map P on
the sub-cubes Cr . Specifically, for z ∈ C , we denote by ri (z) ∈ {1, ..., 2di } the index
such that z ∈ Cri (z) (for points on the boundary of a sub-cube where this index may
not be unique we simply choose one) and define

Pi (z) =
M∑
j=1

lri (z)j (z)P(xri (z)j ) (3.55)

where lri (z)j and xri (z)j are the images of the Lagrange polynomials and interpolation
points on the sub-cube Cri (z) containing z at discretization level i .

Next, we define dictionaries Di for i ≥ 0 by

Di = {Pi (z) − Pi−1(z), z ∈ C}. (3.56)

Here we setP−1(z) = 0. Note that

B1(D) ⊂
∞∑
i=1

B1(Di ). (3.57)

Indeed, by definition B1(D) is the closure of elements of the form

N∑
l=1

alP(zl) =
∞∑
i=1

N∑
l=1

al(Pi (zl) − Pi−1(zl)) ∈
∞∑
i=1

B1(Di ), (3.58)
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where
∑N

i=1 |ai | ≤ 1. Using Lemma 6 inductively, this implies that for any sequence
of integers n1, n2, ... ≥ 0 such that

∑∞
i=1 ni = n we have the bound

εn(B1(D)) ≤
∞∑
i=1

εni (B1(Di )). (3.59)

Note that since the entropy is decreasing this also holds if
∑∞

i=1 ni ≤ n.
The next step is to bound εni (B1(Di )). For this, we note the following composition

property of interpolation

Pi−1(z) =
M∑
j=1

lri (z)j (z)Pi−1(x
ri (z)
j ), (3.60)

which follows since the functionPi−1 equals its interpolation on the finer grid at level
i . Thus, the dictionary Di can be rewritten as

Di =
⎧⎨
⎩

M∑
j=1

lri (z)j (z)[xri (z)j − Pi−1(x
ri (z)
j )], z ∈ C

⎫⎬
⎭ , (3.61)

from which it follows that

B1(Di ) ⊂
⎛
⎝max

z∈C

M∑
j=1

|lri (z)j (z)|
⎞
⎠ B1(Di ) = �d

k (C, {x1, ..., xM })B1(Di ), (3.62)

where Di is the finite dictionary given by

Di = {xrj − Pi−1(x
r
j ), j = 1, ..., M, r = 1, ..., 2di }.

We note that the number of elements in Di is M2di and the Banach space Bramble–
Hilbert Lemma 5 implies that K

Di
� 2−si . We now use Lemma 7 to get

εm(B1(Di )) ≤ �d
k (C, {x1, ..., xM })εm(B1(Di ))

�

⎧⎪⎪⎨
⎪⎪⎩
2−si m = 0

2−sim− 1
2
√
1 − logm + di + logM 1 ≤ m ≤ M2di

2
−
(
s+ d

2

)
i
2− m

M2di m > M2di ,

(3.63)

where the implied constant is independent of i and m (specifically it will only depend
upon k, d, the parameterization map P , and the type-2 constant of X ).

Finally, the proof is completed by substituting (3.63) into (3.59) and optimizing
over the choice of ni . This is a somewhat standard, but involved calculation (see [3,
9, 12, 40], for instance).
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It suffices to prove Theorem 4 for n of the form n = K2rd for a fixed integer K
which will be determined later. This follows since the entropy is a decreasing function
and our bound is polynomial in n, so extending to all values of n will only increase
the implied constant. For such a value of n, we wish to show that

εn(B1(D)) � 2
−
(
s+ d

2

)
r
, (3.64)

where the implied constant is independent of r . Let δ > 0 and choose the ni as

ni =

⎧⎪⎨
⎪⎩
M
(
s + d

2 + δ
)
(r − i + 1)2di 0 ≤ i < r

M2rd−δ(i−r) r ≤ i <
(
1 + d

2s

)
r

0 i ≥ (1 + d
2s

)
r .

(3.65)

For simplicity, we allow the ni to not necessarily be integers for now. We must show
two things. First, that

∞∑
i=0

ni � 2rd , (3.66)

which will ensure that
∑∞

i=1 ni ≤ n = K2rd for sufficiently large K . Second, we
must use the bound (3.63) to show that

∞∑
i=0

εni (B1(Di )) � 2
−
(
s+ d

2

)
r
. (3.67)

First, we calculate

∞∑
i=1

ni = M

⎛
⎜⎜⎝
(
s + d

2
+ δ

) r−1∑
i=1

(r − i + 1)2di + 2rd

(
1+ d

2s

)
r∑

i=r

2−δ(i−r)

⎞
⎟⎟⎠

≤ M2rd
((

s + d

2
+ δ

) ∞∑
i=1

(i + 1)2−di +
∞∑
i=0

2−δi

)

� 2rd .

(3.68)

Next, we note that if i < r , then (s + d
2 + δ)(r − i + 1) > d ≥ 1 and so for the first r

indices 0 ≤ i < r , the last branch of (3.63) is taken. This gives

r−1∑
i=0

εni (B1(Di )) � 2

(
s+ d

2

)
(r+1)

r−1∑
i=0

2−δ(r−i+1) ≤ 2

(
s+ d

2

)
(r+1)

∞∑
i=1

2−δi

� 2

(
s+ d

2

)
r
. (3.69)
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When r ≤ i <
(
1 + d

2s

)
r , the middle branch in (3.63) is taken, which gives

(
1+ d

2s

)
r∑

i=r

εni (B1(Di )) � 2
−
(
s+ d

2

)
r

(
1+ d

2s

)
r∑

i=r

2−(s−δ)(i−r)
√
1 + (d − δ)(i − r)

� 2
−
(
s+ d

2

)
r

∞∑
i=0

2−(s−δ)i
√
1 + i � 2

−
(
s+ d

2

)
r
,

(3.70)

as long as δ is chosen to be less than s. If i ≥ (1 + d
2s

)
r , then the first branch of (3.63)

is taken and we calculate

∞∑
i=
(
1+ d

2s

)
r

εni (B1(Di )) � 2
−s
(
1+ d

2s

)
r

∞∑
i=0

2−si � 2
−
(
s+ d

2

)
r
. (3.71)

Finally, since the ni must be chosen to be integers, we replace ni by �ni�. Since the
right-hand side of (3.63) is a decreasing function ofm, this can only reduce our bound
on
∑∞

i=0 εni (B1(Di )). Further, since at most
(
1 + d

2

)
r of the ni ’s are nonzero, the

sum
∑∞

i=0 ni can increase by at most
(
1 + d

2

)
r ≤ 2rd . Thus, after making this change

conditions (3.66) and (3.67) will still be satisfied, which completes the proof. ��

3.4 Kolmogorov n-Width Bounds for Smoothly Parameterized Dictionaries

Next, we bound the Kolmogorov n-widths of B1(D) for smoothly parameterized dic-
tionaries D. We have the following theorem.

Theorem 5 For s > 0 and X a Banach space, suppose that M is a compact d-
dimensional manifold,P : M → X is of smoothness class s, i.e.,P ∈ LipM∞ (s, X),
and D ⊂ P(M ). Then we have the bound

dn(B1(D))X � n− s
d . (3.72)

Here the implied constant depends only upon s, d, and the parameterization mapP .

As a corollary, we obtain an upper bound on the Kolmogorov widths of B1(P
d
k ) in

L p(�) of O(n− pk+1
pd ) for 1 ≤ p < ∞.

Proof For any subspace V ∈ X , the distance map d(x, V ) = inf y∈V ‖x − y‖X is a
convex function of x . This means that the Kolmogorov n-widths are invariant under
taking convex hulls, i.e.,

dn(B1(D))X = dn(D)X . (3.73)

Thus, it suffices to bound the n-widths of the dictionary D.
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We use Lemma 2 to obtain a collection of maps P1, ...,PT : C → X , where
C = [0, 1]d is the unit cube, such that D = ∪T

i=1Pi (C). Set Di = Pi (C).
Now let n ≥ 1 be a fixed integer. We proceed to subdivide the cube C into n

sub-cubes C1, ...,Cn of diameter O(n− 1
d ). Further, let s = k + α with k an integer

and α ∈ (0, 1]. Let M = (d+k
k

)
and choose interpolation points x1, ..., xM which are

unisolvent for the space of polynomials of degree at most k. Denote by xr1, ..., x
r
M the

images of these interpolation points in the cubeCr and by lr1, ..., l
r
M the corresponding

Lagrange polynomials. Consider the space

Vn = span{Pi (x
r
j ), i = 1, ..., T , j = 1, ..., M, r = 1, ..., n}, (3.74)

which satisfies dim(Vn) ≤ T Mn. Given any d ∈ D, by definition d = Pi (z) for some
1 ≤ i ≤ T and z ∈ Cr for some 1 ≤ r ≤ n. Consider the interpolated value

Pi,r ,I (z) =
M∑
i=1

Pi (x
r
i )l

r
i (z) ∈ Vn . (3.75)

The Banach space Bramble–Hilbert Lemma 5 implies that

‖d − Pi,r ,I (z)‖X ≤ C(k, d)|P|Lip(s,X)[diam(Cr )]s�d
k (Cr , x

r
1, ..., x

r
M )

� n− s
d , (3.76)

where the implied constant is independent of n since by Lemma 3 the Lebesgue
constant �d

k (Cr , xr1, ..., x
r
M ) = �d

k (C, x1, ..., xM ) is independent of n. This means
that

dT Mn(D)X ≤ sup
d∈D)

inf
y∈Vn

‖d − y‖X � n− s
d , (3.77)

which completes the proof since T and M are fixed constants independent of n. ��

3.5 Gelfand Numbers of Smoothly Parameterized Dictionaries

Finally, we consider the Gelfand numbers of smoothly parameterized dictionaries D.
Denote by �1(D) the Banach space of absolutely summable functions on the dictionary
D, i.e.,

�1(D) = { f : D → R, ‖ f ‖�1(D) < ∞}, (3.78)

where the norm ‖ f ‖�1(D) is given by

‖ f ‖�1(D) = sup
Dn⊂D

∑
d∈Dn

| f (d)|. (3.79)
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Here the supremum Dn is over all finite subsets of the dictionary D. Define the evalu-
ation map TD : �1(D) → X by

TD =
∑
d∈D

f (d)d. (3.80)

It is easy to see that if ‖ f ‖�1(D) < ∞ and the dictionary D is uniformly bounded, then
f is nonzero for at most countably many dictionary elements d and the sum in (3.80)
converges absolutely.

For an operator T : X → Y between two Banach spaces X and Y , we define the
Gelfand numbers of the operator T by

cn(T ) = inf
Un⊂X

‖T |Un‖, (3.81)

where the infimum is taken over all closed subspaces of codimension n (see [47],
Section 11.5). The Gelfand numbers of the convex hull of a dictionary D are defined
to be cn(TD) [10, 12, 13].

We have the following result, which generalizes the results from [10, 12] to the
case to smoothly parameterized dictionaries.

Theorem 6 Let s > 0 and X a Hilbert space. Suppose that M is a compact d-
dimensional smooth manifold, P ∈ LipM∞ (s, X), and the dictionary D ⊂ P(M ).
Then

cn(TD) � n− 1
2− s

d , (3.82)

where the implied constants are independent of n.

The proof of Theorem 6 is analogous to the proof of the entropy bound Theorem 4,
and for the sake of brevity, we leave these details to the reader. The main difference is
that Lemmas 6 and 7 are replaced by the following three results concerning Gelfand
numbers of operators. The last result, Theorem 7 is a rather deep theorem of Carl and
Pajor [13].

Lemma 8 (Theorem 11.8.2 in [47]) Let S, T : X → Y . Then for any 0 ≤ m ≤ n we
have

cn(S + T ) ≤ cm(S) + cn−m(T ). (3.83)

Proof LetUm,Un−m ⊂ X be codimensionm and n−m subspaces of X , respectively,
such that

‖S|Um‖ ≤ cm(S), ‖T |Un−m‖ ≤ cn−m(T ). (3.84)

If the infimum in the definition of the Gelfand numbers is not achieved, a standard
limiting argument can be used here. Set Un = Um ∩ Un−m , which is a subspace of

123



510 Foundations of Computational Mathematics (2024) 24:481–537

codimension at most n. Then we have

‖(S + T )|Un‖ ≤ ‖S|Un‖ + ‖T |Un‖ ≤ ‖S|Um‖
+‖T |Un−m‖ = cm(S) + cn−m(T ). (3.85)

��
Lemma 9 Let S : X → Y and T : Y → Z. Then we have

cn(ST ) = ‖S‖cn(T ). (3.86)

Proof Let Un ⊂ Y be a subspace of codimension n. Then Vn := S−1(Un) ⊂ X
is a subspace of codimension at most n. Then ‖ST |Vn‖ ≤ ‖S‖‖TUn‖ and the result
follows. ��
Theorem 7 (Theorem 2.2 in [13]) Let T : �n1 → H be a bounded linear operator
where H is a Hilbert space. Then we have

cm(T ) �

⎧⎪⎪⎨
⎪⎪⎩

‖T ‖ m = 0√
1 + log n

mm
− 1

2 ‖T ‖ 1 ≤ m < n

0 m ≥ n.

(3.87)

Note the implied constant here is absolute.

Given the bound in Theorem 6, a natural question is how the Gelfand numbers of
the dictionary D are related to the Gelfand widths dn(B1(D) of the convex hull of D,
which measure how efficiently functions from B1(D) can be recovered from linear
measurements. By definition,

B1(D) = TD(B�1(D)), (3.88)

where B�1(D) denote the unit ball in �1(D). Thus, this question is a special case of the
general question of how the Gelfand numbers cn(T ) are related to the Gelfand widths
dn(T (BX )) for a general operator T : X → Y between two Banach spaces X and Y ,
where BX is the unit ball of X .

Expanding out the definitions, we have

cn(T ) = inf
ξ1,...,ξn∈X∗ sup{‖T (x)‖Y : x ∈ BX , ξi (x) = 0, i = 1, ..., n}, (3.89)

and on the other hand,

dn(T (BX )) = inf
ξ1,...,ξn∈Y ∗ sup{‖T (x)‖y : x ∈ BX ,

ξi (T (x)) = 0, i = 1, ..., n}. (3.90)
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Since ξi (T (x)) = (T ∗ξi )(x) and T ∗ξi ∈ X∗, we see that the infimum in (3.89) is
over a larger set, so that cn(T ) ≤ dn(BX ). However, if T is not injective, the map T ∗
will not be surjective and the infimum in (3.89) is over a strictly larger set. In such a
situation it is possible that strict inequality holds [26, 50], i.e., that cn(T ) < dn(BX ).

Equality of the Gelfand numbers and widths has been established under certain
conditions on the operator T , see [26], for instance. However, these conditions all
suppose the injectivity of the operator T . In fact, when T is not injective the typical
situation is that cn(T ) < dn(BX ). To illustrate this, we give the following example
of a small finite dictionary D for which cn(TD) < dn(B1(D)). This shows that in
general there is not much hope to bound the Gelfand widths dn(D) using Theorem 6
and leaves open the problem of developing techniques for bounding dn(B1(D)) in the
case where the evaluation map TD is not injective.

Proposition 1 Consider the following dictionary D ⊂ R
3

D =
⎧⎨
⎩
⎛
⎝10
0

⎞
⎠ ,

⎛
⎝ 1/2√

3/2
0

⎞
⎠ ,

⎛
⎝−1/2√

3/2
0

⎞
⎠ ,

⎛
⎝ 0

0√
3

⎞
⎠
⎫⎬
⎭ . (3.91)

Then c1(TD) < d1(B1(D)).

Proof Note that for this dictionary the map TD : �41 → �32 is given by the following
matrix

⎛
⎝1 1/2 −1/2 0
0

√
3/2

√
3/2 0

0 0 0
√
3

⎞
⎠ . (3.92)

Consider the subspace U1 ⊂ �41 defined by ξ · x = 0 where

ξ =

⎛
⎜⎜⎝

1
−1
1
3

⎞
⎟⎟⎠ . (3.93)

In order to calculate ‖TD|U1‖, we determine the extreme points of the intersection

U1 ∩ B�41
= {x ∈ R

4, ξ · x = 0, |ξ |1 ≤ 1}. (3.94)

The unit ball of �41 is the convex hull of {±e1, ...,±e4} and the extreme points of
U1 ∩ B�41

must be a linear combinations of at most two of these vectors. Using the
form of ξ , these extreme points are

E :=
{
1

2
(±e1 ± e2),

1

2
(±e1 ∓ e3),±3

4
e1 ∓ 1

4
e4,

1

2
(±e2 ± e3),
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±3

4
e2 ± 1

4
e4,±3

4
e3 ∓ 1

4
e4

}
. (3.95)

The norm ‖TD|U1‖ is equal to the maximum value of ‖TD(x)‖2 for e ∈ E and a
straightforward calculation yields

‖TD|U1‖ =
√
3

2
. (3.96)

Thus, we get c1(TD) ≤ √
3/2.

Next, we will show that d1(B1(D)) >
√
3/2. Note that the shape of B1(D) is a

hexagonal bipyramid. Suppose that there exists a plane U ⊂ R
3 such that U ∩ B1(D)

is contained in a ball of radius
√
3/2. Consider U ∩ span(e1, e2). This intersection

cannot contain points of the hexagonal base of B1(D) which are longer than
√
3/2.

Thus, U ∩ span(e1, e2) must be a line connecting the midpoints of two opposite side
of this hexagon. So we can assume without loss of generality that

U ∩ span(e1, e2) = span

⎧⎨
⎩
⎛
⎝

√
3/2

−1/2
0

⎞
⎠
⎫⎬
⎭ . (3.97)

This in turn implies that U must intersect the line segments connecting

⎛
⎝10
0

⎞
⎠ ,

⎛
⎝ 1/2√

3/2
0

⎞
⎠ ,

⎛
⎝−1/2√

3/2
0

⎞
⎠ to either

⎛
⎝ 0

0√
3

⎞
⎠ or

⎛
⎝ 0

0
−√

3

⎞
⎠ . (3.98)

By reflecting, we may assume without loss of generality that the former occurs. How-
ever, each of these line segments contains a unique point with length at most

√
3/2,

which are given by

⎛
⎝ 3/4

0√
4/4

⎞
⎠ ,

⎛
⎝ 3/8
3
√
3/8√
4/4

⎞
⎠ ,

⎛
⎝ −3/8
3
√
3/8√
4/4

⎞
⎠ , (3.99)

respectively. Since B1(D) contains each of the line segments in (3.98) andU ∩ B1(D)

is contained in a ball of radius
√
3/2, this implies that U must contain each of the

points in (3.99). Finally, we note that the points in (3.99) are linearly independent and
thus cannot all be contained in the two-dimensional subspace U . This contradiction
shows that d1(B1(D)) >

√
3/2 and completes the proof. ��

4 Lower Bounds for Dictionaries of Ridge Functions

In this section, we consider lower bounds on the metric entropy, Kolmogorov, and
Bernstein n-widths of convex subsets A of L2(�). We show that if A contains a
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certain class of ridge functions, then these quantities must be bounded below. We
will apply this result to lower bound the entropy and n-widths of variation spaces
corresponding to shallow neural networks.

Our method works by constructing a large collection of nearly orthogonal vectors
in A and then obtaining lower bounds by noting that Amust contain the convex hull of
these vectors. We begin with some Lemmas lower bounding the entropy, Kolmogorov,
and Bernstein n-widths of such a convex hull. This idea has been used to lower bound
the entropy in [29, 39], yet these authors did not find as large a collection of nearly
orthogonal vectors and obtained suboptimal bounds as a result.

Lemma 10 Let H be a Hilbert space and A ⊂ H a convex and symmetric set. Suppose
that g1, ..., gn ⊂ A. Then

εn(A) ≥ 1

2

√
λmin

n
, bn(A) ≥

√
λmin

n
(4.1)

where λmin is the smallest eigenvalue of the Gram matrix G defined by Gi j =
〈gi , g j 〉H .
Proof Consider a maximal set of points x1, ..., xN ∈ bn1(0, 1) := {x ∈ R

n : |x |1 ≤ 1}
in the �1-unit ball satisfying |xi − x j | ≥ 1

2 for each i �= j . We claim that N ≥ 2n .
Indeed, if the set {xi }Ni=1 is maximal, then the balls

bn1(xi , 1/2) =
{
x ∈ R

n : |x − xi |1 ≤ 1

2

}

must cover the ball bn1(0, 1). This implies that

N∑
i=1

|bn1(xi , 1/2)| ≥ |bn1(0, 1)|. (4.2)

Since we obviously have |bn1(xi , 1/2)| = (1/2)n|bn1(0, 1)| for each i , it follows that
N ≥ 2n .

Consider the collection of elements f1, ..., fN ∈ H defined by

fi =
n∑

k=1

xki gk . (4.3)

Since A is symmetric and convex, we have fi ∈ A for each i = 1, ..., N . Moreover,
if i �= j , then

‖ fi − f j‖2H = vTi jGvi j , (4.4)

where vi j = xi − x j . Since |xi − x j |1 ≥ 1
2 , it follows from Hölder’s inequality that

|vi j |22 ≥ 1
4n . From the eigenvalues of G, we then see that ‖ fi − f j‖2H ≥ λmin

4n for all
i �= j . This gives the entropy lower bound (4.1).
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To lower bound the Bernstein widths, we note that if g1, ..., gn are linearly depen-
dent, then λmin = 0 and there is noting to prove. On the other hand, consider the linear
subspace Vn spanned by the gi . Then Vn ∩ A contains the convex hull of g1, ...gn and
so for every x ∈ ∂(A ∩ Vn) we have

‖x‖2H ≥ inf‖a‖1=1

∥∥∥∥∥
n∑

i=1

ai gi

∥∥∥∥∥
2

H

≥ λminn
−1, (4.5)

since ‖a‖1 = 1 implies that ‖a‖22 ≥ n−1. This completes the bound on the Bernstein
widths. ��

This lemma can be applied to sequences of almost orthogonal vectors to obtain
Lemma 3 from [39], which we state here as a corollary for completeness.

Corollary 1 Let H be aHilbert space and A ⊂ H a convex and symmetric set. Suppose
that g1, ..., gn ⊂ A and the gi are almost orthogonal in the sense that for all i =
1, ..., n,

∑
j �=i

|〈gi , g j 〉H | ≤ 1

2
‖gi‖2H . (4.6)

Then

εn(A) ≥ mini ‖gi‖H√
8n

, bn(A) ≥ mini ‖gi‖H√
2n

(4.7)

Proof This follows from Lemma 10 if we can show that the Gram matrix G satisfies

λmin(G) ≥ 1

2
min
i

‖gi‖2H . (4.8)

This follows immediately from the diagonal dominance condition 4.6 and the Ger-
schgorin circle theorem (see the proof in [39] for details). ��

In order to lower bound the Kolmogorov n-widths, we will need the following
Lemma, which generalizes Lemma 6 in [4] to almost orthogonal sets, which satisfy a
stronger notion of almost orthogonality than that in Corollary 1.

Lemma 11 Let H be a Hilbert space and A ⊂ H a convex and symmetric set. Suppose
that g1, ..., g2n ⊂ A and the gi are almost orthogonal in the sense that for all i =
1, ..., 2n,

∑
j �=i

|〈gi , g j 〉H | ≤ 1

2
min
j

‖g j‖2H . (4.9)

Then

dn(A) ≥ 1

2
min
j

‖g j‖H . (4.10)
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Proof By scaling down the g j if necessary, we may assume that ‖g j‖H = mini ‖gi‖H
for all j . This follows since the rescaled vectors will clearly be in A (due to symmetry)
and condition (4.9) will still be satisfied (since the left-hand side can only decrease
while the right-hand side is unchanged). We can further assume without loss of gen-
erality that ‖g j‖H = 1 for all j = 1, ..., 2n.

Let Vn be an n-dimensional subspace of H with orthonormal basis e1, ..., en . For
each index i = 1, ..., n, we will have

2n∑
j=1

|〈ei , g j 〉|2 ≤ λmax (G), (4.11)

where G is the Gram matrix of the g j . Using the Gerschgorin circle theorem and
condition (4.9), we get λmax (G) ≤ 3

2 . Summing over i and switching the order of
summation, we get

2n∑
j=1

n∑
i=1

|〈ei , g j 〉|2 =
n∑

i=1

2n∑
j=1

|〈ei , g j 〉|2 ≤ 3

2
n. (4.12)

From this, we see that there must exist an index j , such that

n∑
i=1

|〈ei , g j 〉|2 ≤ 3

4
. (4.13)

But thismeans that the projection of g j onto Vn has norm atmost 34 , so that d(g j , Vn) ≥
1
2 . Since this bound holds for some j for any subspace Vn of dimension n, we get the
desired lower bound. ��

Using the relationship between the K1(P
d
k )-norm and the spectral Barron norm

(1.23), we obtain that

‖ fξ‖K1(P
d
k ) � 1, (4.14)

where fξ (x) = (1 + |ξ |)−(k+1)e2π iξ ·x . In other words, the space K1(P
d
k ) contains

appropriately rescaled frequencies.
By considering the collection of functions fξ for ξ ∈ Z

d with |ξ |∞ ≤ R, we
can make the fξ orthogonal on [0, 1]d . Applying Lemmas 1 and 4.9 with this set of
functions yields the bounds

εn(B1(P
d
k ))L2([0,1]d ) �k,d n− 1

2− k+1
d , bn(B1(P

d
k ))L2([0,1]d )

�k,d n− 1
2− k+1

d , dn(B1(P
d
k ))L2([0,1]d ) �k,d n− k+1

d . (4.15)

This argument, which is essentially using the fact that the spectral Barron norm bounds
theK1(P

d
k )-norm, was used in [29, 39] to obtain a lower bound on the metric entropy

εn(B1(P
d
k ))L2([0,1]d ).
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However, it is known thatBk+1 � K1(P
d
k ), in other words that the spectral Barron

space is strictly smaller than the variation space K1(P
d
k ) [23, 24]. Consequently it

should be possible to obtain a better lower bound on εn(B1(P
d
k ))L2 , bn(B1(P

d
k ))L2 ,

anddn(B1(P
d
k ))L2 ,whichwould precisely quantify the gapbetween the spectralBarron

space and K1(P
d
k ).

The first such improved lower bound on εn(B1(P
d
k ))L2 was obtained by Makovoz

[39] in the case k = 0, d = 2, and it was conjectured that an improved lower bound
holds more generally. We settle this conjecture by deriving an improved lower bound
for all k ≥ 0 and d ≥ 2 and removing a logarithm from Makovoz’s original bound.
In addition, we also derive an improved lower bound on the Kolmogorov n-widths
dn(B1(P

d
k ))L2 and a bound on the Bernstein widths bn(B1(P

d
k ))L2 .

Theorem 8 Let d ≥ 2, k ≥ 0, and denote the unit ball in R
d by

Bd
1 = {x ∈ R

d , |x |2 ≤ 1}. (4.16)

Let A ⊂ L2(Bd
1 ) be a convex and symmetric set. Suppose that for every profile φ ∈

C∞
c ([−2, 2]) such that ‖φ(k+1)‖L1(R) ≤ 1, and any direction ω ∈ Sd−1, the ridge

function φ(ω · x) ∈ L2(Bd
1 ) satisfies

φ(ω · x) ∈ A. (4.17)

Then

εn(A)L2(Bd
1 ) �k,d n− 1

2− 2k+1
2d , bn(A)L2(Bd

1 )

�k,d n− 1
2− 2k+1

2d , dn(A)L2(Bd
1 ) �k,d n− 2k+1

2d . (4.18)

The argument we give here adapts the argument in the proof of Theorem 4 in [39].
A careful analysis allows us extend the result to higher dimensions and remove a
logarithmic factor. The key is to consider profiles φ whose higher-order moments
vanish in combination with a weighted L2-norm with a Bochner–Riesz type weight.

Before we give the proof, we observe that the Peano kernel formula

φ(x) = 1

k!
∫ 2

−2
φ(k+1)(t)[max(0, x − t)]kdt

= 1

k!
∫ 2

−2
φ(k+1)(t)σk(0, x − t)dt, (4.19)

which holds for all φ ∈ C∞
c ([−2, 2]), implies that for a constant C = C(k, d), the

unit ball CB1(P
d
k ) satisfies the conditions of Theorem 8. Combining this with the fact

that any bounded domain � is contained in a large enough ball yields the result given
in the introduction:

123



Foundations of Computational Mathematics (2024) 24:481–537 517

Theorem 9 Let d ≥ 2 and � ⊂ R
d a bounded domain. Then

εn(B1(P
d
k ))L2(�) �k,d n− 1

2− 2k+1
2d , bn(B1(P

d
k ))L2(�)

�k,d n− 1
2− 2k+1

2d , dn(B1(P
d
k ))L2(�) �k,d n− 2k+1

2d . (4.20)

Note that the lower bound for k = 0 also applies to the variation spaces for networks
with more general sigmoidal activation functions as well. This follows by a standard
argument which scales the sigmoidal function to approximate a Heaviside activation
function [4]. In addition, Theorem8 can be applied tomore general activation functions
as well, for instance the B-spline activation functions σk,B , but we do not give the
details here.

Proof of Theorem 8 We introduce the weight

dμ = (1 − |x |2)
d
2+dx

of Bochner–Riesz type on Bd
1 and consider the space H = L2(Bd

1 , dμ). Since 1 −
|x |2 ≤ 1, it follows that ‖ f ‖H ≤ ‖ f ‖L2(�), and so it suffices to lower bound the
entropy and n-widths of A with respect to the weighted space H .

Choose 0 �= ψ ∈ C∞
c ([−1, 1]) such that 2d − 1 of its moments vanish, i.e., such

that

∫ 1

−1
xrψ(x)dx = 0, (4.21)

for r = 0, ..., 2d − 2. Such a function ψ can easily be obtained by convolving an
arbitrary compactly supported function whose moments vanish (such as a Legendre
polynomial) with a C∞ bump function.

Our assumptions on the set A imply that by scaling ψ appropriately, we can ensure
that for 0 < δ < 1

δkψ(δ−1ω · x + b) ∈ A, (4.22)

for any ω ∈ Sd−1 and b ∈ [−δ−1, δ−1]. Note that ψ , which will be fixed in what
follows, depends upon both d and k.

Let N ≥ 1 be an integer and fix n = Nd−1 directions ω1, ..., ωn ∈ Sd−1 with
min(|ωi−ω j |2, |ωi+ω j |2) �d N−1. This can certainly be done since projective space
Pd−1 = Sd−1/{±} has dimension d − 1. In particular, if ω1, ..., ωn is a maximal set
satisfying min(|ωi − ω j |2, |ωi + ω j |2) ≥ cN−1, then balls of radius cN−1 centered
at the ωi must cover Pd−1. So we must have n = �(Nd−1), and by choosing c
appropriately, we can arrange n = Nd−1.
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Further, let a ≤ 1
4 be a sufficiently small constant to be specified later and consider

for δ = aN−1 the collection of functions

gp,l(x) = δkψ(δ−1ωp · x + 2l) ∈ A, (4.23)

for p = 1, ..., n and l = − N
2 , ..., N

2 .
The intuition here is that gp.l is a ridge function which varies in the direction

ωp and has the compactly supported profile ψ dilated to have width δ (and scaled
appropriately to remain in A). The different values of l give different non-overlapping
shifts of these functions. The proof proceeds by checking that the gp,l can be made
‘nearly orthogonal’ by choosing a sufficiently small.

Indeed,we claim that if a is chosen small enough, then the gp,l satisfy the conditions
of Lemma 11, i.e., for each (p, l)

∑
(p′,l ′) �=(p,l)

|〈gp,l , gp′,l ′ 〉H | ≤ 1

2
min
(p′,l ′)

‖gp′,l ′ ‖2H . (4.24)

Thiswill of course also imply that theweaker conditions ofCorollary 1will be satisfied.
Before giving the detailed calculation, we describe the key ideas.
If we consider two different directions ωp and ωp′ , functions gp,l and gp′,l will be

constant along the (d−2)-dimensional subspace orthogonal to bothωp andωp′ . Thus,
the inner product 〈gp,l , gp′,l ′ 〉H corresponds to an integral over a circle in the plane
spanned by ωp and ωp′ . The integrand is given by a product of the profileψ supported
in two intersecting strips multiplied by the integral of the Bochner–Riesz weight dμ
along the (d −2)-dimensional subspace orthogonal to ωp and ωp′ . The weight dμ has
been chosen so that when we integrate out this (d −2)-dimensional subspace, we will
obtain a polynomial which vanishes to a high degree at the boundary of the circle (and
is zero outside). This, combined with the high-order vanishing of the profileψ , results
in the functions gp,l and gp′,l satisfying the required ‘near orthogonality’ bounds. We
give the detailed calculations in the following.

We begin by estimating ‖gp,l‖2H , as follows

‖gp,l‖2H = δ2k
∫
Bd
1

|ψ(δ−1ωp · x + 2l)|2(1 − |x |2) d
2 dx . (4.25)

We proceed to complete ωp to an orthonormal basis of R
d , b1 = ωp, b2, ..., bd and

denote the coordinates of x with respect to this basis by yi = x · bi . Rewriting the
above integral in this new orthonormal basis, we get

‖gp,l‖2H = δ2k
∫
Bd
1

|ψ(δ−1y1 + 2l)|2
(
1 −

d∑
i=1

y2i

) d
2

dy1 · · · dyd

= δ2k
∫ 1

−1
|ψ(δ−1y1 + 2l)|2ρd(y1)dy1,

(4.26)
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where

ρd(y) =
∫ √

1−y2

0
(1 − y2 − r2)

d
2 rd−2dr

= (1 − y2)d− 1
2

∫ 1

0
(1 − r2)

d
2 rd−2dr = Kd(1 − y2)d− 1

2 ,

(4.27)

for a dimension dependent constant Kd .
Further, we change variables, setting y = δ−1y1 + 2l and use the fact that ψ is

supported in [−1, 1], to get

‖gp,l‖2H = Kdδ
2k+1

∫ 1

−1
|ψ(y)|2(1 − [δ(y − 2l)]2)d− 1

2 dy. (4.28)

Since |y| ≤ 1 and |2 l| ≤ N , as long as δ(N + 1) ≤ 1/2, which is guaranteed by
a ≤ 1

4 , the coordinate y1 = δ(y − 2l) will satisfy |y1| ≤ 1/2. This means that

(1 − [δ(y − 2l)]2)d− 1
2 = (1 − y21 )

d− 1
2 ≥ (3/4)d− 1

2

uniformly in p, l, N and δ, and thus,

‖gp,l‖2H ≥ Kd(3/4)
d− 1

2 δ2k+1
∫ 1

−1
|ψ(y)|2dy �k,d δ2k+1. (4.29)

Next consider |〈gp,l , gp′,l ′ 〉H | for (p, l) �= (p′, l ′).
If p = p′, then ωp = ωp′ , but l �= l ′. In this case, we easily see that the supports

of gp,l and gp,l ′ are disjoint and so the inner product 〈gp,l , gp′,l ′ 〉H = 0.
On the other hand, if p �= p′ we get

〈gp,l , gp′,l ′ 〉H = δ2k
∫
Bd
1

ψ(δ−1ωp · x

+ 2l)ψ(δ−1ωp′ · x + 2l ′)(1 − |x |2) d
2 dx . (4.30)

Since p �= p′, the vectors ωp and ωp′ are linearly independent and we complete them
to a basis b1 = ωp, b2 = ωp′ , b3, ..., bd , where b3, ..., bd is an orthonormal basis for
the subspace orthogonal to ωp and ωp′ .

Letting b′
1, b

′
2, b

′
3 = b3, ..., b′

d = bd be a dual basis (i.e., satisfying b′
i · b j = δi j )

and making the change of variables x = y1b′
1 + · · · + ydb′

d in the above integral, we
get

〈gp,l , gp′,l ′ 〉H = δ2k det(Dp,p′)−
1
2

∫ ∞

−∞

∫ ∞

−∞
ψ(δ−1y1 + 2l)ψ

(δ−1y2 + 2l ′)γd(|y1b′
1 + y2b

′
2|)dy1dy2, (4.31)
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where Dp,p′ is the Graham matrix of ω1 and ω2 (notice that then D−1
p,p′ is the Graham

matrix of b′
1 and b′

2) and

γd(y) =
∫ √

1−y2

0
(1 − y2 − r2)

d
2 rd−3dr

= (1 − y2)d−1+
∫ 1

0
(1 − r2)

d
2 rd−3dr = K ′

d(1 − y2)d−1+ ,

(4.32)

for a second dimension dependent constant K ′
d . (Note that if d = 2, then the above

calculation is not correct, but we still have γd(y) = (1 − y2)
d
2+ = (1 − y2)d−1+ .) We

remark that the choice of Bochner–Riesz weight dμ = (1−|x |2)
d
2+ wasmade precisely

so that γd is a piecewise polynomial with continuous derivatives of order d−2, which
will be important in what follows.

Next, we fix y1 and analyze, as a function of z,

τp,p′(y1, z) = γd(|y1b′
1 + zb′

2|) = K ′
d(1 − qp,p′(y1, z))

d−1+ ,

where qp,p′ is the quadratic

qp,p′(y1, z) = (b′
1 · b′

1)y
2
1 − 2(b′

1 · b′
2)y1z − (b′

2 · b′
2)z

2, (4.33)

We observe that, depending upon the value of y1, τp,p′(y1, z) is either identically 0
or is a piecewise polynomial function of degree 2d − 2 with exactly two break points
at the roots z1, z2 of qp,p′(y1, z) = 1. Furthermore, utilizing Faà di Bruno’s formula
[19] and the fact that qp,p′(y1, ·) is quadratic, we see that

dk

dzk
τp,p′(y1, z)

∣∣∣∣
zi

=
∑

m1+2m2=k

k!
m1!m2!2m2

f (m1+m2)
d (1)

[
d

dz
qp,p′(y1, z)|zi

]m1

[
d2

dz2
qp,p′(y1, z)|zi

]m2

, (4.34)

where fd(x) = (1 − x)d−1.
Since f (m)

d (1) = 0 for all m ≤ d − 2, we see that the derivative in (4.34) is equal
to 0 for 0 ≤ k ≤ d − 2. Thus, the function τp,p(y1, ·) has continuous derivatives up
to order d − 2 at the break points z1 and z2. Moreover, if we consider the derivative
of order k = d − 1, then only the term with m2 = 0 in (4.34) survives and we get

dd−1

dzd−1 τp,p′(y1, z)

∣∣∣∣
zi

= f (d−1)
d (1)

[
d

dz
qp,p′(y1, z)|zi

]d−1

= (−1)d−1(d − 1)!
[
d

dz
qp,p′(y1, z)|zi

]d−1

. (4.35)
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Utilizing the fact that the derivative of a quadratic q(x) = ax2 + bx + c at its roots is
given by ±√

b2 − 4ac combined with the formula for qp,p′ (4.33), we get

d

dz
qp,p′(y1, z)|zi = ±2

√
(b′

1 · b′
1)(b

′
1 · b′

2)
2 − (b′

2 · b′
2)(b

′
1 · b′

1)

= ±2 det(Dp,p′)−
1
2 . (4.36)

Taken together, this shows that the jump in the d − 1-st derivative of τp,p′(y1, z) at
the break points z1 and z2 has magnitude

∣∣∣∣∣ d
d−1

dzd−1 τp,p′(y1, z)

∣∣∣∣
zi

∣∣∣∣∣ �d det(Dp,p′)−
d−1
2 . (4.37)

Going back to equation (4.31), we see that due to the compact support of ψ , the
integral in (4.31) is supported on a square with side length 2δ in y1 and y2. To clarify
this, we make the change of variables s = δ−1y1+2l, t = δ−1y2+2 l ′, and use thatψ
is supported on [−1, 1], to get (for notational convenience we let y(s, l) = δ(s − 2l))

〈gp,l , gp′,l ′ 〉H
= δ2k+2 det(Dp,p′)−

1
2

∫ 1

−1

∫ 1

−1
ψ(s)ψ(t)τp,p′(y(s, l), y(t, l ′))dsdt . (4.38)

We now estimate the sum over l ′ as

N
2∑

l ′=− N
2

|〈gp,l , gp′,l ′ 〉H |

= δ2k+2 det(Dp,p′)−
1
2

N
2∑

l ′=− N
2

∣∣∣∣
∫ 1

−1

∫ 1

−1
ψ(s)ψ(t)τp,p′(y(s, l), y(t, l ′))dsdt

∣∣∣∣

≤ δ2k+2 det(Dp,p′)−
1
2

N
2∑

l ′=− N
2

∫ 1

−1

∣∣∣∣
∫ 1

−1
ψ(s)ψ(t)τp,p′(y(s, l), y(t, l ′))dt

∣∣∣∣ ds

= δ2k+2 det(Dp,p′)−
1
2

∫ 1

−1
|ψ(s)|

N
2∑

l ′=− N
2

∣∣∣∣
∫ 1

−1
ψ(t)τp,p′(y(s, l), y(t, l ′))dt

∣∣∣∣ ds.

(4.39)

For fixed s and l, consider the inner sum

N
2∑

l ′=− N
2

∣∣∣∣
∫ 1

−1
ψ(t)τp,p′(y(s, l), y(t, l ′))dt

∣∣∣∣
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=
N
2∑

l ′=− N
2

∣∣∣∣
∫ 1

−1
ψ(t)τp,p′(y(s, l), δ(t − 2l ′))dt

∣∣∣∣ . (4.40)

In the integrals appearing in this sum, the variable z = δ(t − 2l ′) runs over the line
segment [δ(2l ′ − 1), δ(2l ′ + 1)]. These segments are disjoint for distinct l ′ and are
each of length 2δ.

Further, recall that for fixed y1 = y(s, l), the function τp,p′(y1, z) is a piecewise
polynomial of degree 2d − 2 with at most two break points z1 and z2. Combined with
the fact that 2d − 1 moments of ψ vanish, this implies that at most two terms in the
above sum are nonzero, namely those where the corresponding integral contains a
break point.

Furthermore, the bound on the jump in the d − 1st-order derivatives at the break
points (4.37) implies that in the intervals (of length 2δ) which contain a break point,
there exists a polynomial qi of degree d − 2 for which

|τp,p′(y1, z) − qi (z)| ≤ (2δ)d−1

(d − 1)!Md det(Dp,p′)−
d−1
2 �d δd−1 det(Dp,p′)−

d−1
2

(4.41)

on the given interval. Using again the vanishingmoments ofψ , we see that the nonzero
integrals in the sum (4.40) (of which there are at most 2) satisfy

∣∣∣∣
∫ 1

−1
ψ(t)τp,p′(y(s, l), δ(t − 2l ′))dt

∣∣∣∣ �k,d δd−1 det(Dp,p′)−
d−1
2 .

So for each fixed s and l, we get the bound

N
2∑

l ′=− N
2

∣∣∣∣
∫ 1

−1
ψ(t)τp,p′(y(s, l), y(t, l ′))dt

∣∣∣∣ �k,d δd−1 det(Dp,p′)−
d−1
2 . (4.42)

Plugging this into equation (4.39), we get

N
2∑

l ′=− N
2

|〈gp,l , gp′,l ′ 〉H |

�k,d δ2k+d+1 det(Dp,p′)−
d
2

∫ 1

−1
|ψ(s)|ds �k,d δ2k+d+1 det(Dp,p′)−

d
2 .

(4.43)
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We analyze the det(Dp,p′)− d
2 term using that ωp and ωp′ are on the sphere to get

det(Dp,p′)−
d
2 = (1 − 〈ωp, ωp′ 〉2)− d

2 = 1

sin(θp,p′)d
, (4.44)

where θp,p′ represents the angle between ωp and ωp′ .
Summing over p′ �= p, we get

∑
(p′,l ′) �=(p,l)

|〈gp,l , gp′,l ′ 〉H | �k,d δ2k+d+1
∑
p′ �=p

1

sin(θp,p′)d
. (4.45)

The final step is to bound the above sum. This is done in a relatively straightforward
manner by noting that this sum is comparable to the following integral

∑
p′ �=p

1

sin(θp,p′)d
�d Nd−1

∫
Pd−1−B(p,r)

|x − p|−ddx, (4.46)

wherewe are integrating over projective spaceminus a ball of radius r �d N−1 around
p. Integrating around this pole of order d in the d − 1-dimensional Pd−1, this gives

∑
p′ �=p

1

sin(θp,p′)d
�d Nd . (4.47)

To be more precise, we present the detailed estimates in what follows.
We bound the sum over one hemisphere

∑
0<θp,p′≤ π

2

1

sin(θp,p′)d
, (4.48)

and note that the sum over the other hemisphere can be handled in an analogous
manner. To this end, we decompose this sum as

∑
0<θp,p′≤ π

2

1

sin(θp,p′)d
=

∑
0<θp,p′≤ π

4

1

sin(θp,p′)d
+

∑
π
4 <θp,p′≤ π

2

1

sin(θp,p′)d
. (4.49)

For the second sum, we note that sin(θp,p′) ≥ 1√
2
, and the number of terms is at most

n = Nd−1, so that the second sum is � Nd−1.
To bound the first sum in (4.49), we rotate the sphere so thatωp = (0, ..., 0, 1) is the

north pole.We then take theωp′ for which θp,p′ ≤ π
4 and project them onto the tangent

plane atωp . Specifically, this corresponds to themapωp′ = (x1, ...xd−1, xd) → xp′ =
(x1, ...xd−1), which removes the last coordinate.
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It is now elementary to check that this maps distorts distances by at most a constant
(since the ωp′ are all contained in a spherical cap of radius π

4 ), i.e., that for p
′
1 �= p′

2,
we have

|xp′
1
− xp′

2
| ≤ |ωp′

1
− ωp′

2
| � |xp′

1
− xp′

2
|, (4.50)

and also that sin(θp,p′) = |xp′ |.
This allows us to write the first sum in (4.49) as

∑
0<θp,p′≤ π

4

1

sin(θp,p′)d
=

∑
0<|xp′ |≤ 1√

2

1

|xp′ |d , (4.51)

where by construction we have |ωp′
1
− ωp′

2
| �d N−1 for p′

1 �= p′
2, and thus, |xp′

1
−

xp′
2
| �d N−1 as well. In addition, |ωp − ωp′ | �d N−1, and thus, also |xp′ | �d N−1.

Now let r �d N−1 be such that the balls of radius r around each of the xp′ , and
around 0, are disjoint. Notice that since |x |−d is a subharmonic function on R

d−1/{0},
we have

1

|xp′ |d ≤ 1

|B(xp′ , r)|
∫
B(xp′ ,r)

|y|−ddy �d Nd−1
∫
B(xp′ ,r)

|y|−ddy. (4.52)

Since all of the balls B(xp′ , r) are disjoint and are disjoint from B(0, r), we get (note
that these integrals are in R

d−1)

∑
0<|xp′ |≤ 1√

2

1

|xp′ |d �d Nd−1
∫
r≤|y|≤ π

2 +r
|y|−ddy ≤ Nd−1

∫
r≤|y|

|y|−ddy

�d Nd−1r−1 �d Nd . (4.53)

Plugging this into equation (4.49) and bounding the sum over the other hemisphere in
a similar manner, we get

∑
p′ �=p

1

sin(θp,p′)d
�d Nd . (4.54)

Using equation (4.45), we finally obtain

∑
(p′,l ′) �=(p,l)

|〈gp,l , gp′,l ′ 〉H | �k,d δ2k+d+1Nd . (4.55)

Combined with the lower bound (4.29), which gives ‖gp,l‖2H �k,d δ2k+1 for all (p, l),
we see that by choosing the factor a in δ = aN−1 small enough (independently of N ,
of course), we can guarantee that the conditions of Lemma 11 (and thus also Corollary
1) are satisfied.
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Applying Corollary 1, we see that

εn(A) ≥ min(p,l) ‖gp,l‖H√
8n

�k,d n− 1
2 δ

2k+1
2 �k,d,a n− 1

2 N− 2k+1
2 , (4.56)

where n = Nd is the total number of functions gp,l . We obtain a completely analogous
result for the Bernstein widths as well. This finally gives (since a is fixed depending
only upon k and d)

εn(A) �k,d n− 1
2− 2k+1

2d , bn(A) �k,d n− 1
2− 2k+1

2d . (4.57)

Applying Lemma 11, we get

dn(A) ≥ 1

2
min
(p,l)

‖gp,l‖H �k,d δ
2k+1
2 �k,d,a N− 2k+1

2 . (4.58)

Since n = Nd is the total number of functions gp,l , we get as before

dn(A) �k,d n− 2k+1
2d . (4.59)

The monotonicity of the entropy and n-widths extends this bound to all n. This com-
pletes the proof. ��

We remark that in the case of ReLUk activation functions on the sphere, the high
degree of symmetry allows the Kolmogorov n-widths to be determined exactly in
terms of the spectrum of a kernel operator [2, 36], which we briefly describe in an
abstract form here.

Specifically, the abstract situation here consists of the convex hull of a dictionary
D = {g · fe : g ∈ G} ⊂ H , where H is a Hilbert space, G is a compact Hausdorff
topological group of isometries on the space H , and fe ∈ H is a fixed element. One
simple example of this framework is the case where H = R

d , fe = e1 is the first unit
basis vector, and G = Zn is the cyclic group on d elements. The action of G on R

n is
given by cyclically shifting the indices. For this example, B1(D) is the unit ball of the
�1-norm in R

n and this approach can be used to calculate its Kolmogorov n-widths
with respect to �2 (see [37], chapter 14, for instance).

Another example, which we are primarily interested in here, is where H =
L2(Sd−1), fe(x) = σ(x1) ∈ L2(Sd−1) for an activation function σ , and the group
G = Od is the group of orthogonal transformations on R

d . The action of g ∈ G,
(g · f )(x) = f (g−1x) is given by rotating the function f . In this case, the dictionary
D is given by {σ(ω · x) : ω ∈ Sd−1} ⊂ L2(Sd−1). This is the situation which has
been studied in [2, 36].

In this situation, we can lower bound the Kolmogorov n-widths by averaging over
the group G. Let x1, ..., xn be an orthonormal basis of a subspace Xn , and let dμ
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denote the normalized Haar measure on G. Consider the average distance to Xn

Eg∼dμd( fg, Xn)
2 = Eg∼dμ

(
‖ fg‖2H −

n∑
i=1

〈 fg, xi 〉2H
)

, (4.60)

where to simplify notation we have written fg for g · fe. Using the assumption that G
consists of isometries, we get

Eg∼dμd( fg, Xn)
2 = ‖ fe‖2H −

n∑
i=1

Eg∼dμ〈 fg, xi 〉2H = ‖ fe‖2H

−
n∑

i=1

〈xi , TG(xi )〉H , (4.61)

where the operator TG : H → H is given by the average of rank 1 operators:

TG(x) = Eg∼dμ〈 fg, x〉H fg. (4.62)

From this formula, it is clear that TG is a self-adjoint, compact,G-invariant operator on
H with trace Tr(TG) = ‖ fe‖2H . If we let λ1 ≥ λ2 ≥ · · · denote the eigenvalues of the
operator TG , we get from (4.61) and the minimax characterization of the eigenvalues
that for any n-dimensional subspace Xn ⊂ H

Eg∼dμd( fg, Xn)
2 ≥ ‖ fe‖2H −

n∑
i=1

λi =
∞∑

i=n+1

λi , (4.63)

with equality if Xn is the space spannedbyφ1, ..., φn , the eigenfunctions corresponding
to the n largest eigenvectors. Since a maximum bounds an average, this gives the
following lower bound on the Kolmogorov n-widths

dn(B1(D)) ≥
√√√√ ∞∑

i=n+1

λi . (4.64)

Furthermore, suppose that λn > λn+1 and Xn is taken to be the space spanned by
φ1, ..., φn . Since λn > λn+1 and TG is G-invariant, we have that Xn must be a G-
invariant subspace. This means that d( fg, Xn) does not depend upon g and so the
average and maximum coincide. Thus, if λn > λn+1, we actually have equality above
and so

dn(B1(D)) =
√√√√ ∞∑

i=n+1

λi . (4.65)

123



Foundations of Computational Mathematics (2024) 24:481–537 527

In the case of shallow neural networks on the sphere considered in [2, 36], the
operator TG is given by integration against an appropriate kernel and the eigenvalues
λi can be explicitly calculated in the case where σ = ReLUk . (This is done in [2]
and the result used to bound the Kolmogorov widths in [36].) This method allows an
accurate determination of the constants in the n-width rates as well.

Finally, we will prove the following general result, from which a bound on the
Kolmogorov n-widths leads to a lower bound on the metric entropy (see also [57] for
a version of this argument, which we call the skewed simplex argument since we find
a skewed image of the �1-unit ball in our space).

Proposition 2 Let H be a Hilbert space and A ⊂ H a symmetric, convex set. Then

εn(A)H ≥ Cdn(A)Hn
− 1

2 , (4.66)

for an absolute constant C.

Proof Let δ > 0 and define a collection of elements g1, ..., gn ∈ A recursively as
follows:

‖gi − Pi−1gi‖H ≥ (1 − δ) sup
g∈A

‖g − Pi−1g‖H , (4.67)

where Pi−1 is the orthogonal projection onto the span of g1, ..., gi−1. By definition of
the n-widths, we have

‖gi − Pi−1gi‖H ≥ (1 − δ)di (A)H ≥ (1 − δ)dn(A)H . (4.68)

Let g̃1, ..., g̃n be the Gram–Schmidt orthogonalization of g1, ..., gn . Since the change
of basis between g1, ..., gn and g̃1, ..., g̃n is upper triangular with ones on the diagonal,
the volume (viewed in the n-dimensional Euclidean space spanned by g1, ..., gn) of
the convex hull of g1, ..., gn and g̃1, ..., g̃n is the same. Since g̃1, ..., g̃n are orthogonal
with length at least (1 − δ)dn(A)H , we get (from the volume of the �1-unit ball)

|co(g1, ..., gn)| ≥ ((1 − δ)dn(A)H )n
2n

n! . (4.69)

Using the covering definition of the entropy and comparing this with the volume of
2n balls of radius ε := εn(A)H , we get

((1 − δ)dn(A)H )n
2n

n! ≤ |co(g1, ..., gn)| ≤ (2ε)n
πn/2

�
( n
2 + 1

) . (4.70)

Utilizing Sterling’s formula, we get

ε ≥ C(1 − δ)dn(A)Hn
− 1

2 , (4.71)

for an absolute constant C . Letting δ → 0 completes the proof. ��
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Although the preceding method is simpler and allows a more precise estimate of
the constants in the n-width and entropy rates for B1(D), we note that Theorem 8 is
more general. Specifically, it does not require the high degree of symmetry that the
preceding argument does and thus applies to more general domains� and dictionaries
D. In addition, Theorem 8 finds a collection of nearly orthogonal vectors as opposed to
a (potentially highly) skewed image of the simplex within the set B1(D). This stronger
condition enables us to obtain a lower bound on the Bernstein widths as well.

4.1 Lower Bounds on Approximation Rates for Shallow Neural Networks

In this section, we use Theorem 8 to obtain lower bounds on the approximation rates
of shallow neural networks. The key is the following relationship between metric
entropy and nonlinear approximation rates, which can be viewed as an analogue of
Carl’s inequality [7].

Theorem 10 Let X be a Banach space and D ⊂ X a dictionary with KD :=
suph∈D ‖h‖X < ∞. Suppose that for some constants 0 < l < ∞, C < ∞, the
dictionary D can be covered by Cε−l sets of diameter ε for any ε > 0. If there exists
an M, K < ∞ and α > 0 such that for all f ∈ B1(D)

inf
fn∈�∞

n,M (D)
‖ f − fn‖X ≤ Kn−α, (4.72)

then the entropy numbers of B1(D) are bounded by

εn log n(B1(D))X � n−α, (4.73)

where the implied constant is independent of n.

Thus, a given approximation rate from the set �∞
n,M (D) implies a corresponding

bound on the metric entropy.
Note that we are considering approximation by the set �∞

n,M (D), defined in (1.3),
which corresponds to expansions with coefficients bounded in �∞. This is in contrast
to previous results [29, 39] which obtained lower bounds when the coefficients were
bounded in �1.

For the dictionaries P
d
k , i.e., for ReLU

k networks, the set �∞
n,M (Pd

k ) corresponds
to shallow neural networks with n neurons, inner coefficients bounded, and outer
coefficients bounded in �∞. For the dictionary Dσ := {σ(ω · x + b) ω ∈ R

d , b ∈ R}
where σ is a sigmoidal activation function, the set �∞

n,M (Dσ ) corresponds to shallow
neural networks with n neurons and outer coefficients bounded in �∞, with no bound
on the inner coefficients.

Proof In what follows, all implied constants will be independent of n.
Let n ≥ 1 be an integer. We use our assumption on D and set ε = n−α−1. Then

that there is a subset Dn ⊂ D such that |Dn| ≤ Cn(α+1)l and

sup
d∈D

inf
s∈Dn

‖d − s‖H ≤ ε = n−α−1. (4.74)
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The next step, in which the argument differs from that in [29, 39], is to cover the
unit ball in �n∞ by unit balls in �n1 of radius δ. Indeed, denoting a ball of radius R in a
Banach space Y by BR(Y ) = {x ∈ Y : |x |Y ≤ R}, we see that

B1(�
n∞) ⊂ Bn(�

n
1). (4.75)

Furthermore, we can cover the unit ball in a space Y by (1+ 2
δ
)n balls in Y of radius

δ (see [53], page 63). Applying this to Y = �n1 and scaling the unit ball appropriately,
we see that we can cover

BM (�n∞) ⊂ BMn(�
n
1) (4.76)

by (1 + 2Mn
δ

)n �n1-balls of radius δ. Now we set δ = 2Mn−α , so the number of balls
will be at most

(1 + nα+1)n = n(α+1)n(1 + n−(α+1))n � n(α+1)n,

where the last inequality is due to α > 0. Denote by Ln the centers of these balls.
Denote bySn the set of all linear combinations of n elements ofDn with coefficients

inLn . Then clearly

|Sn| ≤ |Dn|n|Ln| � Cnn(α+1)lnn(α+1)n = Cnn(α+1)(l+1)n . (4.77)

By (4.72), we have for every f ∈ B1(D) an fn ∈ �n,M (D) such that

fn =
n∑
j=1

a j h j (4.78)

and ‖ f − fn‖X � n−α , h j ∈ D and |a j | ≤ M for each j .
We now replace the h j by their closest elements in Dn and the coefficients a j by

their closest point inLn . Since ‖h j‖H ≤ KD and |a j | ≤ M for each j , this results in
a point f̃n ∈ Sn with

‖ fn − f̃n‖H ≤ Mnε + KDδ = Mn−α + 2KDMn−α � n−α.

Thus, ‖ f − f̃n‖H � n−α and so

εlog |Sn | � n−α. (4.79)

By equation (4.77), we see that log |Sn| � n log n, which completes the proof. ��
Using Theorem 10 and Theorem 8, we can immediately conclude the following

lower bound on the approximation rates by neural networks with ReLUk activation
function.
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Corollary 2 Let k ≥ 0 and M < ∞ be fixed and suppose that α > 1
2 + 2k+1

2d . Then

sup
n≥1

nα

⎡
⎣ sup

f ∈B1(Pdk )

inf
fn∈�∞

n,M (Pdk )

‖ f − fn‖L2(�)

⎤
⎦ = ∞. (4.80)

This corollary shows that the exponent in the approximation rates for shallow
ReLUk neural networks with respect to the variation norm cannot be improved beyond
− 1

2 − 2k+1
2d , even if the �1 bound on the outer coefficients is relaxed to an �∞ bound.

Proof From the theory developed in Sect. 3, it is clear that the dictionaries P
d
k satisfy

the assumptions of Theorem 10 since they are smoothly parameterized by compact
manifolds. If the supremum in (4.80) were finite, then by Theorem 10 we would
have εn log n(B1(P

d
k )) � n−α . This contradicts the lower bound from Theorem 8 since

α > 1
2 + 2k+1

2d . ��
Next,we extend this result to sigmoidal activation functionswith bounded variation.

For this, we need the following technical lemma.

Lemma 12 Let � ⊂ R
d be a bounded domain and suppose that σ is a sigmoidal

function with bounded variation. Then there exist C, l < ∞ such that the dictionary

Dσ :=
{
σ(ω · x + b), ω ∈ R

d , b ∈ R

}
(4.81)

can be covered by Cε−l balls of radius ε in L2(�). In particular, Dσ satisfies the
assumptions of Theorem 10.

This result generalizes Lemma 2 in [39] by relaxing the assumption on σ . Instead
of requiring a Lipschitz condition and the assumption that σ approaches the Heaviside
σ0 at a polynomial rate, we only require the activation function σ to have bounded
variation.

Proof Consider the Jordan decomposition of the function σ = σ+ − σ−, where σ+
and σ− are non-decreasing functions and

‖σ‖BV = lim
x→∞(σ+(x) + σ−(x)) − lim

x→−∞(σ+(x) + σ−(x)) < ∞. (4.82)

Denote by a+ := limx→−∞ σ+(x) and b+ := limx→∞ σ+(x) and likewise for σ−.
By (4.82) a+, b+, a− and b− are all finite. Further, [a+, b+] is the closure of the range
of σ+ and [a−, b−] is the closure of the range of σ−.

We proceed to divide the intervals [a+, b+] and [a−, b−] into intervals of length at
most ε

2 . Denote these intervals by [xi−1, xi ) and [yi−1, yi ) where we have

a+ = x0 < · · · < xn1 = b+ (4.83)
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and

a− = y0 < · · · < yn2 = b−. (4.84)

This partitions the domain R into two sets of disjoint intervals: σ−1([xi−1, xi )) for
i = 1, ..., n1 and σ−1([yi−1, yi )) for i = 1, ..., n2. Take the common refinement of
these intervals, i.e., consider non-empty all intervals of the form σ−1([xi−1, xi )) ∩
σ−1([y j−1, y j )) and define a piecewise constant function σε by

σε(x) = xi−1 + y j−1 if x ∈ σ−1([xi−1, xi )) ∩ σ−1([y j−1, y j )). (4.85)

By construction, we have for any x that

|σε(x) − σ(x)| ≤ |xi−1 − σ+(x)| + |y j−1 − σ−(x)| ≤ ε

2
+ ε

2
= ε, (4.86)

since σ+(x) ∈ [xi−1, xi ) and σ−(x) ∈ [y j−1, y j ). Thus, we have

‖σε(ω · x + b) − σ(ω · x + b)‖L2(�,dx) ≤ |�| 12 ε (4.87)

uniformly in ω, b ∈ R
d × R.

In addition, it is easy to see that there are points z0 < z1 < · · · < zn with
n = n1 + n2 � ε−1 such that σε is constant on (zi , zi+1) and on (−∞, z0) and
(zn,∞).

Next, choose an ε3-net for the slightly enlarged domain

�ε = {x : dist(x,�) ≤ ε3}, (4.88)

which will contain at most N � ε−3d points x1, ..., xN ∈ �ε. For each xi and each
z j , consider the hyperplane in the parameter space R

d × R given by

Hi j = {(ω, b) ∈ R
d × R : ω · xi + b = z j }. (4.89)

It is well known that K hyperplanes in R
d+1 cut the space R

d+1 into at most

d+1∑
i=0

(
K

i

)
≤ Kd+1 (4.90)

regions. Thus, the hyperplanes Hi j cut the parameter space R
d × R into at most

M = (nN )d+1 � ε−(3d+1)(d+2) (4.91)

regions R1, ..., RM .
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We claim that for each i = 1, ..., M , the set

Si := {σ(ω · x + b) : (ω, b) ∈ Ri } (4.92)

is contained in a ball of radius r � ε in L2(�, dx). Setting l = (3d + 1)(d + 2) and
choosing C appropriately large, we obtain the desired result.

Fix (ω, b), (ω′, b′) ∈ Ri . From the triangle inequality and equation (4.87), we see
that

‖σ(ω · x + b) − σ(ω′ · x + b′)‖L2(�,dx) ≤ ‖σ(ω · x + b)

− σε(ω · x + b)‖L2(�,dx)

+ ‖σε(ω · x + b) − σε(ω
′ · x + b′)‖L2(�,dx)

+ ‖σε(ω
′ · x + b′) − σ(ω′ · x + b′)‖L2(�,dx)

≤ 2|�| 12 ε + ‖σε(ω · x + b) − σε(ω
′ · x + b′)‖L2(�,dx).

(4.93)

To conclude the proof, we bound the difference

‖σε(ω · x + b) − σε(ω
′ · x + b′)‖2L2(�,dx)

=
∫

�

(σε(ω · x + b) − σε(ω
′ · x + b′))2dx . (4.94)

For this, we consider the set

D = {x ∈ � : σε(ω · x + b) �= σε(ω
′ · x + b′)}. (4.95)

From the definition of σε, we see that x ∈ D only if there exists a z j such that

ω · x + b ≤ z j ≤ ω′ · x + b′, (4.96)

or vice versa (i.e., with the order reversed). Thus, we have

D ⊂
n⋃
j=0

D+
j ∪

n⋃
j=0

D−
j , (4.97)

where

D+
j = {ω · x + b ≤ z j } ∩ {z j ≤ ω′ · x + b′} (4.98)

and

D−
j = {ω · x + b ≥ z j } ∩ {z j ≥ ω′ · x + b′}. (4.99)

By construction, none of the sets D±
j contain any of the points x1, ..., xN since (ω, b)

and (ω′, b′) are both in the same region Ri . Since x1, ..., xN forms an ε3-net for �ε,
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this implies that none of the D±
j ∩ �ε can contain a ball of radius ε3. Consider the

sets

� j := {x ∈ � : dist(x, {y : ω · y + b = z j }) ≤ ε3}
and �′

j := {x ∈ � : dist(x, {y : ω′ · y + b′ = z j }) ≤ ε3}, (4.100)

which are strips of width ε3 around the hyperplanes defined by ω · y + b = z j and
ω′ · y + b′ = z j intersected with �, respectively. We claim that

D±
j ∩ � ⊂ � j ∪ �′

j , (4.101)

for each j and choice of sign ±. Suppose to the contrary that for some j there exists
an x ∈ D+

j ∩ � (the case of negative sign is exactly the same) such that

dist(x, {y : ω · y + b = z j }) > ε3 and

dist(x, {y : ω′ · y + b′ = z j }) > ε3. (4.102)

These two conditions imply that the ball of radius ε3 about x is contained in D+
j .

Further, since x ∈ �, this ball is also contained in �ε. But D
+
j ∩ �ε cannot contain a

ball of radius ε3. This contradiction shows that (4.101) holds. From this, we deduce
that

|D+
j ∩ �| ≤ |� j | + |�′

j | � ε3, (4.103)

since � j and �′
j are strips of width ε3 and � is a bounded domain. Using (4.97) and

a union bound, we obtain

|D| � nε3 � ε2. (4.104)

Finally, the difference σε(ω · x + b) − σε(ω
′ · x + b′) is equal to 0 outside of D and

on D it is bounded by supx σ(x) − infx σ(x) ≤ ‖σ‖BV � 1. This implies that

∫
�

(σε(ω · x + b) − σε(ω
′ · x + b′))2dx � ε2, (4.105)

and finally that

‖σε(ω · x + b) − σε(ω
′ · x + b′)‖L2(�,dx) � ε. (4.106)

Using (4.93) and that (ω, b), (ω′, b′) ∈ Si were arbitrary, we see that the diameter of
the sets Si is � ε, which completes the proof. ��

Using Lemma 12, we show that the lower bound on the approximation rates holds
even for a sigmoidal activation function with bounded variation.
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Corollary 3 Let � ⊂ R
d be a bounded domain and σ be a sigmoidal activation

function with bounded variation. Consider the dictionary D
d
σ ⊂ L2(Bd

1 ) defined in
(1.4). Then for any M < ∞ and α > 1

2 + 1
2d we have

sup
n≥1

nα

[
sup

f ∈B1(Dσ )

inf
fn∈�∞

n,M (Dσ )
‖ f − fn‖L2(Bd

1 )

]
= ∞. (4.107)

This shows that the exponent in the approximation rate derived by Makovoz [39]
is optimal, even if the outer coefficients of the network are only bounded in �∞ and
the activation function is a general sigmoidal function with bounded variation.

Proof We observe that since σ is a sigmoidal activation function and � is a bounded
domain, we have

lim
a→∞ ‖σ(a(ω · x + b)) − σ0(ω · x + b)‖L2(�) = 0, (4.108)

where we recall that σ0 is the Heaviside activation function. Since

σ(a(ω · x + b)) ∈ Dσ (4.109)

for every a ∈ R, this implies that B1(Dσ ) ⊃ B1(P
d
0). By Lemma 12 and Theorem 10,

if the supremum in (4.107) were finite, then the metric entropy would satisfy

εn log n(B1(P
d
k )) ≤ εn log n(B1(Dσ )) � n−α.

This contradicts the lower bound from Theorem 8 since α > 1
2 + 1

2d . ��

5 Conclusion

We have introduced the notion of a smoothly parameterized dictionary and have
bounded both approximation rates and fundamental quantities such as the metric
entropy and n-widths for convex hulls of such dictionaries. Further, we have devel-
oped a method for lower bounding n-widths and metric entropy of convex hulls of
certain classes of ridge functions. Applying these results to shallow neural networks,
we obtain sharp approximation rates for neural networks with ReLUk activation func-
tions, improving upon several results in the literature. In addition, this allows us to
compare ReLUk networks with other methods and to show that they are optimal on
their corresponding variation space.

There are a few further questions we would like to propose. First, it is unclear how
to compute entropy or n-width bounds on B1(D), and specifically B1(P

d
k ), in L p for

p �= 2. For this problem, partial results appear in [2, 29, 38], but a complete solution
seems to require significant new ideas. Second, we have been primarily interested in
the rates for fixed dimension in thiswork and have not taken care to precisely determine
the implied constants. As such, our work it mainly interesting for problems in a fix
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dimension which is not too large. Obtaining tighter bounds on the constants will be
important in quantifying the curse of dimensionality. Finally, we would like to extend
this theory to approximation by deeper neural networks.
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