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ABSTRACT. Neural networks, a central tool in machine learning, have demonstrated remarkable,
high fidelity performance on image recognition and classification tasks. These successes evince
an ability to accurately represent high dimensional functions, but rigorous results about the ap-
proximation error of neural networks after training are few. Here we establish conditions for global
convergence of the standard optimization algorithm used in machine learning applications, sto-
chastic gradient descent (SGD), and quantify the scaling of its error with the size of the network.
This is done by reinterpreting SGD as the evolution of a particle system with interactions governed
by a potential related to the objective or “loss” function used to train the network. We show that,
when the number n of units is large, the empirical distribution of the particles descends on a con-
vex landscape towards the global minimum at a rate independent of n, with a resulting approxima-
tion error that universally scales as O(n−1). These properties are established in the form of a Law
of Large Numbers and a Central Limit Theorem for the empirical distribution. Our analysis also
quantifies the scale and nature of the noise introduced by SGD and provides guidelines for the step
size and batch size to use when training a neural network. We illustrate our findings on examples in
which we train neural networks to learn the energy function of the continuous 3-spin model on the
sphere. The approximation error scales as our analysis predicts in as high a dimension as d = 25.
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1. INTRODUCTION

While both speech recognition and image classification remain active areas of research, ex-
traordinary progress has been made on both problems—ones that appeared intractable only a
decade ago [LBH15]. By harvesting the power of neural networks while simultaneously benefit-
ing from advances in computational hardware, complex tasks such as automatic language trans-
lation are now routinely performed by computers with a high degree of reliability. The underlying
explanation for these significant advances seems to be related to the expressive power of neural
networks, and their ability to accurately represent high dimensional functions.

These successes open exciting possibilities in applied and computational mathematics that
are only beginning to be explored [BP07, SDT+17, KLY18, BN17, EHJ17, BEJ17, ZHW+18]. Any nu-
merical calculation that uses a given function begins with a finite-dimensional approximation
of that function. Because standard approximations, e.g., Galerkin truncations or finite element
decompositions, suffer from the curse of dimensionality, it is nearly impossible to scale such
methods to large dimensions d . Fundamentally, these representations are linear combinations
of basis functions. The issue arises because the dimensionality of the representation is equal to
that of the truncation. Neural networks, on the other hand, are highly nonlinear in their adjusting
parameters. As a result, the effective dimensionality of a neural network is much higher than its
total number of parameters, which may explain the impressive function approximation capabil-
ities observed in practice, even when d is large. Characterizing this observation with analysis is
non-trivial though, precisely because the representation of a function by a neural network is non-
linear in its parameters. This renders many of the standard tools of numerical analysis useless,
since they are in large part based on linear algebra.

The significant achievements of machine learning have inspired many efforts to provide theo-
retical justification to a vast and growing body of empirical knowledge. At the core of our under-
standing of the approximation properties of neural networks are the well-known “Universal Ap-
proximation Theorems” that specify the conditions under which a neural network can represent
a target function with arbitrary accuracy [Cyb89,Bar93,PS91]. Despite the power of these results,
they do not indicate how the network parameters should be optimized to achieve maximal accu-
racy in practice [BL04]. In particular, these theorems do not provide general guidance on how the
error of the network scales with its size at the end of training. Several recent papers have focused
on the analysis of the shape and properties of the objective or “loss” function landscape [SG-
BAL14, CHM+14, BSG+18]. These studies have mainly focused on the fine features of this land-
scape, trying to understand how non-convex it is and making analogies with glassy landscapes.
Additionally, some analysis has been performed in cases where the number of parameters vastly
exceeds the amount of training data, a setting that guarantees convexity and dramatically sim-
plifies the landscape. Further studies have examined the dynamics of the parameters on the loss
landscape to understand the properties of optimization procedures based on stochastic gradient
descent.
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In this paper, we adopt a different perspective which enables powerful tools for analysis. Sim-
ilar to what was recently proposed in [MMN18, SS18, CB18], we view the parameters in the net-
work as particles and the loss function as a potential that dictates the interaction between them.
Correspondingly, training the network can be interpreted as the evolution of the particles in this
interaction potential. Using the interchangeability of the n interacting particles / parameters
in the neural representation, we focus on their empirical distribution and analyze its properties
when n is large using standard limit theorems [KL13,Ser15,LS17,Ser17]. This viewpoint allows us
to bypass many of the difficulties that arise with approaches that attempt to study the dynamics
of the individual particles. In particular:

(1) We derive an evolution equation for the empirical distribution of the particles, and show
that it evolves by gradient descent in the 2-Wasserstein metric on a convex energy land-
scape. This observation allows us to assert that convergence towards equilibrium of the
empirical distribution occurs on a time scale that is independent of n to leading order—
similar results were obtained in [MMN18, SS18, CB18]. The results are obtained in the
form of Law of Large Numbers (LLN) for the empirical distribution of the parameters. As
a consequence, we rederive the Universal Approximation Theorem and establish that it
can be realized dynamically.

(2) We quantify the fluctuations of the empirical distribution at finite n above its limit. We
show that these fluctuations are of order O(n−1/2) and controlled at all t <∞. In addition,
we establish conditions under which these fluctuations heal and become O(n−1) as t →
∞. These results rely on a Central Limit Theorem (CLT) and indicate that the neural
network approximation error is universal and scales as O(n−1) as n →∞ in any d .

These results are established first in situations where gradient descent (GD) on the loss function
is used to optimize or “train” the parameters in the network, and then shown to also apply in
the context of stochastic gradient descent (SGD). In the latter case, our analysis sheds light on
the nature of the noise introduced in SGD, and indicates how the time step and the batch size
should be scaled to achieve the optimal error. We briefly elaborate on these statements below,
first precisely formulating the problem.

1.1. Problem set-up. Given a function f : Ω→ R defined on the closed manifold Ω ⊆ Rd , con-
sider its approximation by a neural network of the form

(1) f (n)(x) = 1

n

n∑
i=1

ci ϕ̂(x , z i )

where n ∈ N, (ci , z i ) ∈ D ≡ R× D̂ are parameters to be learned for i = 1, . . . ,n, and ϕ : Ω×D → R

is some function—we assume throughout this paper that D̂ is a closed manifold in RN . The
function ϕ̂ is usually referred to as the ‘nonlinearity’ or ‘unit’ and n as the width of the network.
To simplify notations, we use θ = (ci , z) ∈ D and ϕ(x ,θ) = cϕ̂(x , z), in terms of which (1) reads

(2) f (n)(x) = 1

n

n∑
i=1

ϕ(x ,θi )

Many models used in machine learning can be cast in the form (1)-(2):

• Radial basis function networks. In this case D̂ ≡Ω and ϕ̂(x , z) ≡φ(x−z) whereφ is some
kernel, for example that of a radial function such as

φ(x) = exp
(− 1

2κ|x |2
)

where κ> 0 is a fixed constant.
• Single hidden layer neural networks. In this case, D̂ ⊂ Sd and ϕ̂(x , z) = ϕ̂(x , a,b) with

e.g. a ∈Sd−1, b ∈ [−1,1], and

ϕ(x , a,b) = h(a · x +b)
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where h : R → R is e.g. a sigmoid function h(z) = 1/(1+ e−z ) or a rectified linear unit
(ReLU) h(z) = max(z,0).

• Iterated neural networks. These are structurally similar to single hidden layer neural
networks. For example, to construct a two-layer network we take h as above and for
m ∈N, m ≤ d define h(1) :Rm →Rm such that

h(1)
j (v ) = h(v j ), v = (v1, . . . , vm) ∈Rm , j = 1, . . . ,m

then set

f (n)(x) = 1

n

n∑
i=1

ci h
(

a(0)
i ·h(1)

(
A(1)

i x +b(1)
i

)
+b(0)

i

)
where a(0)

i ∈ Rm , b(0)
i ∈ R, A(1)

i ∈ Rm×d , b(1)
i ∈ Rm , i = 1, . . . ,n. Therefore here we have

z = (a(0),b(0), A(1),b(1)) ∈ D̂ ⊂ Rm+1+m×d+m (where with a slight abuse of notation we
view the matrix A(1) has a vector in Rm×d ). Three-layer networks, etc. can be constructed
similarly. Note that our results apply to deep neural networks when their final layer grows
large, with fixed depth.

To measure the discrepancy between the target function f and its neural network approximation
f (n), we need to introduce a distance, or loss function, between f and f (n). A natural candidate
often used in practice is

(3) L [ f (n)] = 1
2

∫
Ω

∣∣ f (x)− f (n)(x)
∣∣2
ν(d x) = 1

2Eν
∣∣ f − f (n)∣∣2

where ν, the data distribution, is some positive measure on Ω such that ν(Ω) <∞ (for example
the Hausdorff measure on Ω, which we will denote by d x). We can view L [ f (n)] as an objective
function for {θ}n

i=1:

(4) L [ f (n)] =C f −
1

n

n∑
i=1

F (θi )+ 1

2n2

n∑
i , j=1

K (θi ,θ j )

where C f = 1
2Eν

∣∣ f
∣∣2 and we defined

(5) F (θ) = cF̂ (z), K (θ,θ′) = cc ′K̂ (z , z ′)

with

(6)
F̂ (z) = Eν[ f ϕ̂(·, z)],

K̂ (z , z ′) = Eν[ϕ̂(·, z)ϕ̂(·, z ′)] ≡ K̂ (z ′, z).

Trying to minimize (4) over {θi }n
i=1 leads to difficulties, however, since this is potentially (and

presumably) a non-convex optimization problem, which typically has local minimizers. In par-
ticular, if we perform training by making {θi }n

i=1 evolve via gradient descent (GD) over the loss,
i.e. if we use

(7) θ̇i =∇F (θi )− 1

n

n∑
j=1

∇K (θi ,θj ),

there is no guarantee a priori that these parameters will reach the global minimum of the loss or
even a local minimum with a value for the loss that is close to that of the global minimum. As
a result determining the value of (3) after training (and its scaling with n, say) is nontrivial. It is
therefore natural to ask:

How accurate is the approximation (1)-(2) if we optimize {θi }n
i=1 by applying the

algorithms commonly used in machine learning?

This is the main question we investigate in the present paper.
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1.2. Main results and organization. We will consider the evolution in time of the representation

(8) f (n)
t = 1

n

n∑
i=1

ϕ(·,θi (t ))

and study the behavior of this function for large n and large t . To this end we use tools from inter-
acting particle systems, and also build on known results about the nature of the loss function (4)
in the limit as n →∞—these results are recalled in Sec. 2.

In Sec. 3 we consider the situation whereθi (t ) are the solution of the GD flow (7)—as explained
below, this is somewhat of an idealized situation since we typically must work with the empirical
loss rather than the exact one, but it is more easily amenable to analysis. By looking at the evolu-
tion of the empirical distribution of {θi (t )}n

i=1 rather than that of the parameters themselves, we

establish a Law of Large Numbers (LLN) for f (n)
t namely that limn→∞ f (n)

t = ft , where ft evolves
as

(9) ∂t ft (x) =−
∫
Ω

Mt (x , x ′)
(

ft (x ′)− f (x ′)
)
ν(d x ′).

where f is the target function and Mt (x , x ′) a positive semi-definite kernel whose form is explicit—
see Proposition 3.3. The evolution equation (9) can be interpreted as GD for ft over the loss in
some metric inherited from the 2-Wasserstein metric, and in Proposition 3.5 we show the flow
converges to the target function, i.e.,

(10) lim
t→∞ ft = lim

t→∞ lim
n→∞ f (n)

t = f .

We also establish that the limit in n and t commute. Regarding the scaling of the fluctuations
above ft when n is finite, in Proposition 3.7 we establish a Central Limit Theorem (CLT) that
asserts that these fluctuations are of size O(n−1/2), i.e. n1/2( f (n)

t − ft ) has a limit in law as n →∞.
In addition, in Proposition 3.8 we show that these fluctuations are controlled at all times, and in
Proposition 3.9 that under certain conditions they heal as t →∞, in the sense that

(11) f (n)
an

= f +O(n−1) as n →∞ with an/logn →∞.

In Sec. 4 we analyze the typical situation in which it is not possible to calculate (3) or (6) exactly.
Rather, we must approximate these expectations using a “training set”, i.e. a set of points {x p }P

p=1

distributed according to ν on which f is known, so that instead of L [ f (n)] we must use

(12) LP [ f (n)] = 1

P

P∑
p=1

| f (x p )− f (n)(x p )|2

and instead of F̂ and K̂

(13) F̂P (z) = 1

P

P∑
p=1

f (x p )ϕ̂(x p , z), K̂P (z , z ′) = 1

P

P∑
p=1

ϕ̂(x p , z)ϕ̂(x p , z ′).

If in (7) we replace F (θ) and K (θ,θ′) by their empirical estimates over a subset of the training
points FP (θ) = cF̂P (z) and KP (θ,θ′) = cc ′K̂P (z , z ′), we arrive at what is referred to as stochastic
gradient descent (SGD)—the method of choice to train neural networks. We focus on situations
in which we can redraw the training set as often as we need, namely, at every step during the
learning process, an algorithm called online learning. In this case, in the limit as the optimization
time step∆t used in SGD tends to zero, SGD becomes asymptotically equivalent to an SDE whose
drift terms coincide with those of GD but with multiplicative noise terms added. In this context,
we establish that (9) and (10) also hold if we choose the size P of the batch used in (13) at every
SGD step such that as P = O(n2α) with α> 0. Regarding the scaling of the fluctuations, if we set
α ∈ (0,1), we lose accuracy and (11) is replaced by

(14) f (n)
an

= f +O(n−α) as n →∞ with an/logn →∞.
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However if α≥ 1, we get (11) back (meaning also that there is no advantage to take α bigger than
1). These results are stated in Propositions 4.3 and 4.4.

In Sec. 5 we illustrate these results, using a spherical p-spin model with p = 3 as test function
to represent with a neural network. We show that the network accurately approximates this func-
tion in up to d = 25 dimensions, with a scaling of the error consistent with the results established
in Secs. 3 and 4. These results are obtained using both a radial basis function network, and a
single hidden layer network using sigmoid functions.

Concluding remarks are made in Sec. 6 and in an Appendix we establish a finite-temperature
variant (Langevin dynamics) of (11) which applies when additive noise terms are added in the
GD equations (7). This result reads

(15) lim
T→−∞

f (n)
t = f +n−1 f̃t +o(n−1) with f̃t =β−1ε∗+β−1/2ε̃t

where T is the time at which we initiate the training. Here β> 0 is a parameter playing the role of
inverse temperature, ε∗ :Ω→R is some given (non-random) function and ε̃t :Ω→R is a Gaussian
process with mean zero and covariance E[ε̃t (x)ε̃t (x ′)] ∝ δ(x − x ′). Note that (15) gives (11) back
after quenching (i.e. by sending β→∞). The result in (15) is stated in Proposition A.5

As we have emphasized, our approach has strong ties with the statistical mechanics of systems
of large numbers of interacting particles. Our main aim here is to introduce a framework showing
how results and concepts developed in this context are useful to address questions in machine
learning. Conversely, we seek to illustrate that ML provides new mathematical questions about
an interesting class of particle systems. With this in mind, we adopt a presentation style that relies
on formal asymptotic arguments to derive our results, though we are confident that providing
rigorous proofs to our propositions is achievable. To a certain extent, this program was already
started in [MMN18, CB18, SS18].

2. FUNCTIONAL FORMULATION OF THE LEARNING PROBLEM

As discussed in Bach [Bac17], it is useful to give conditions under which (1) has a limit as
n →∞, for two main reasons: First it shows which functions can be represented as in (1) if we
allow the number of units n to grow to infinity, and second, while the loss function (3) may be
non-convex for {θi }n

i=1, the limiting functional for the parameter distribution is convex.

2.1. Universal Approximation Theorem. Consider the space F1 of all functions that can be rep-
resented as

(16) f =
∫

D̂
ϕ̂(·, z)γ(d z)

where γ is some (signed) Radon measure on D with finite total variation (L1-norm), |γ|TV =∫
D̂ |γ(d z)| < ∞: we will denote the space of these Radon measures by M (D̂) and that of prob-

ability measures by M+(D̂). The space F1 is important in our context, since any f ∈ F1 can be
realized as

(17) f = lim
n→∞

1

n

n∑
i=1

ci ϕ̂(·, z j )

by drawing {ci , z i }i∈N as follows. Start from the Jordan decomposition for γ [Bil99],

(18) γ= γ+−γ−,

where γ+ and γ− are positive measures with suppγ+∪suppγ− = suppγ and suppγ+∩suppγ− =
;. Using this decomposition, we can draw z i ’s independently from (γ+ +γ−)/|γ|TV ∈ M+(D̂),
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where |γ|TV = ∫
D̂ (γ+(d z)+γ−(d z)) < ∞ , and set ci = +|γ|TV if z i ∈ suppγ+ and ci = −|γ|TV if

z i ∈ suppγ−. By the Law of Large Numbers we then have

(19) γn = 1

n

n∑
i=1

ciδz i * γ as n →∞

which implies (17). We can also use the Central Limit Theorem to get an approximation error at
finite n, a calculation we carry out in Sec. 3.4.

Since the space F1 depends on the choice of unit ϕ̂, to characterize it we make:

Assumption 2.1. Both the input space Ω and the feature space D̂ are closed (i.e. compact with
no boundaries) smooth Riemannian manifolds. The unit is continuously differentiable in z , i.e.
∀x ∈Ω, ϕ̂(x , ·) ∈C 1(D̂).

Assumption 2.2 (Discriminating unit). The unit satisfies

(20)
∫
Ω

g (x)ϕ̂(x , ·)ν(d x) = 0 a.e. in D̂ ⇒ g = 0 a.e. in Ω

The differentiability of ϕ̂ in z is required to guarantee uniqueness of the GD flow.

Theorem 2.3 (Universal Approximation Theorem [Cyb89, Bar93, PS91]). Under Assumptions 2.1
and 2.2, F1 is a dense subspace of L2(Ω,ν), i.e. given any f ∈ L2(Ω,ν) and ε > 0, there exists γ∗ ∈
M (D̂) such that |γ∗|TV <∞ and

(21) f ∗ =
∫

D̂
ϕ̂(·, z)γ∗(d z) ∈F1

satisfies

(22) ‖ f − f ∗‖L2(Ω,ν) ≤ ε.

A similar theorem was originally stated in [Cyb89]. Since its proof is elementary let us reproduce
it here:

Proof. The space F1 is a linear subspace of L2(Ω,ν) since, if f = ∫
D̂ ϕ̂(·, z)γ(d z) ∈F1,

‖ f ‖2
L2(Ω,ν) =

∫
Ω

(∫
D̂
ϕ̂(x , z)γ(d z)

)2

ν(d x)

=
∫

D̂×D̂
K̂ (z , z ′)γ(d z)γ(d z ′)

≤ ‖K̂ ‖∞|γ|2TV <∞
where we used ‖K̂ ‖∞ = sup(z ,z ′)∈D̂×D̂ |K̂ (z , z ′)| <∞ which follows from Assumption 2.1. To show

that F1 is dense in L2(Ω,ν), we proceed by contradiction. Assuming that F1 is not dense, by the
Hahn-Banach theorem, there exists a nonzero linear functional L : L2(Ω,ν) →R such that L f = 0
for all f ∈ F1. By the Riesz representation theorem, the action of L on f can be represented as
the inner product in L2(Ω,ν) between f and some g ∈ L2(Ω,ν), i.e. there must exist g 6= 0 such
that for all f = ∫

D̂ ϕ̂(·, z)γ(d z) ∈F1 (i.e. all γ ∈M (D̂) with finite variation)

0 =
∫
Ω

g (x)

(∫
D̂
ϕ̂(x , z)γ(d z)

)
ν(d x)

=
∫

D̂

(∫
Ω

g (x)ϕ̂(x , z)ν(d x)

)
γ(d z),

This requires that

0 =
∫
Ω

g (x)ϕ̂(x , ·)ν(d x) a.e. in D̂ .

which, by Assumption 2.2, implies that g = 0 a.e. inΩ, a contradiction. �

From now on, we will make
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Assumption 2.4. The target function is representable by the network, i.e., f ∈F1.

This means that we can take f = f ∗ in Theorem 2.3.

2.2. Convexification at distributional level. Another advantage of taken the n →∞ limit of (1)
is that it turns (4) into a quadratic objective function for γ:

(23) L [
∫

D ϕ̂(·, z)γ(d z)] =C f −
∫

D̂
F̂ (z)γ(d z)+ 1

2

∫
D̂×D̂

K̂ (z , z ′)γ(d z)γ(d z ′)

This means that minimizing (23) over γ rather than (4) over {θi }n
i=1 is conceptually simpler. In

particular, any minimizer γ∗ of (23) solves the linear Euler-Lagrange equation:

(24) ∀z ∈ D̂ : F̂ (z) =
∫

D̂
K̂ (z , z ′)γ∗(d z ′)

and the loss evaluated on any γ∗ has value zero. Indeed, using the definitions of F̂ and K̂ in (6),
(24) can be written as

(25)
∫
Ω
ϕ̂(x , z)

(
f (x)−

∫
D̂
ϕ̂(x , z ′)γ∗(d z ′)

)
ν(d x) = 0

which, by Assumptions 2.2 and 2.4, has a solution such that f = ∫
D̂ ϕ̂(·, z)γ∗(d z) and, as a result,

the loss evaluated on
∫

D̂ ϕ̂(·, z)γ∗(d z) is zero.

Of course, the results above are not necessarily an assurance of convergence in practice. In-
deed, we do not know how to pick γ ∈ M (D̂) to represent an f ∈ F1 nor can we manipulate
these Radon measures explicitly: rather we will have to learn finite n approximations of the form
γ(n) = n−1 ∑n

i=1 ciδz i by adjusting the parameters {θi }n
i=1 = {ci , z i }n

i=1 dynamically. Furthermore,

even though the energy can be expressed in term of γ(n), as we will see the dynamics can only be
closed at the level of the empirical distribution

(26) µ(n)(dc,d z) = 1

n

n∑
i=1

δci (dc)δz i (d z) ≡ 1

n

n∑
i=1

δθi (dθ) =µ(n)(dθ)

with γ(n) given by

(27) γ(n) =
∫
R

cµ(n)(dc, ·).

Viewed as a functional of µ ∈ M+(D) such that
∫
R cµ(dc, ·) = γ ∈ M (D̂), the loss function (23)

becomes

(28)

E [µ] =C f −
∫

D
F (θ)µ(dθ)+ 1

2

∫
D×D

K (θ,θ′)µ(dθ)µ(dθ′)

= 1
2Eν

(
f −

∫
D
ϕ(·,θ)µ(dθ)

)2

≥ 0

3. TRAINING BY GRADIENT DESCENT ON THE EXACT LOSS

Here we assume that we train the network by evolving dynamically the parameters {θi (t )}n
i=1

according to the GD flow (7), which we recall is given by the coupled ODEs,

(29) θ̇i =∇F (θi )− 1

n

n∑
j=1

∇K (θi ,θj ),

for i = 1, . . . ,n. As we show in Sec. 4, (29) shares many properties with the stochastic gradient
descent (SGD) used in applications, though in SGD a multiplicative noise term persists in the
equations. The ODEs in (29) are the GD flow on the energy:

(30) E(θ1, · · · ,θn) = nC f −
n∑

i=1
F (θi )+ 1

2n

n∑
i , j=1

K (θi ,θ j )
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This energy is simply the loss function in (4) rescaled by n.

We consider (29) with initial conditions such that every θi (0) for i = 1, . . . ,n is drawn indepen-
dently from some probability distribution µin satisfying

Assumption 3.1. The distribution µin is such that: (i) its support contains a smooth manifold that
separates the regions in D =R× D̂ where c > c0 and c <−c0 for some large enough c0 > 0; (ii) γin =∫
R cµin(dc, ·) has finite total variation, |γin|TV <∞; and (iii) ∀b ∈R :

∫
R×D̂ ebcµin(dc,d z) <∞.

Note that property (i) guarantees that µ̂in = ∫
Rµin(dc, ·) has full support in D̂ , supp µ̂in = D̂—

we show below that this property is preserved by the dynamics. Distributions µin that satisfy
Assumption 3.1 include e.g.

δ0(dc) µ̂in(d z) and (2π)−1/2e−
1
2 c2

dc µ̂in(d z),

if supp µ̂in = D̂ in both. We denote the measure for the infinite set {θi (0)}i∈N constructed this way
by Pin. Initial conditions of this type are used in practice.

3.1. Empirical distribution and nonlinear Liouville equation. To proceed, we consider the em-
pirical distribution

(31) µ(n)
t = 1

n

n∑
i=1

δθi (t )

in terms of which we can express (8) as

(32) f (n)
t = 1

n

n∑
i=1

ϕ(·,θi (t )) =
∫

D×R
ϕ(·,θ)µ(n)

t (dθ).

The empirical distribution (31) is useful to work with because it satisfies a nonlinear Liouville
type equation

(33) ∂tµ
(n)
t =∇·

(
∇V (θ, [µ(n)

t ])µ(n)
t

)
where we defined

(34) V (θ, [µ]) =−F (θ)+
∫

D
K (θ,θ′)µ(dθ′)

Throughout, we will interpret (33) in the standard weak sense, as in (36) below. When there is a
Laplacian term in (33) this equation is called the McKean-Vlasov equation [McK66, DG87, Gär88,
Szn91]; with an additional noise term added it is often referred to as Dean’s equation [Dea99]. To
prove asymptotic trainability results, we analyze the properties of the solution to this equation as
n →∞ and t →∞.
Derivation of (33). Let χ : D →R be a test function, and consider

(35)
∫

D
χ(θ)µ(n)

t (dθ) = 1

n

n∑
i=1

χ(θi (t ))

Taking the time derivative of this equation and using (29) we deduce

(36)

∫
D
χ(θ)∂tµ

(n)
t (dθ)

= 1

n

n∑
i=1

∇χ(θi (t )) · θ̇i (t )

= 1

n

n∑
i=1

∇χ(θi (t )) ·
(
∇F (θi (t ))− 1

n

n∑
j=1

∇K (θi (t ),θ j (t ))

)

=
∫

D
∇χ(θ) ·

(
∇F (θ)−

∫
D
∇K (θ,θ′)µ(n)

t (dθ′)
)
µ(n)

t (dθ)

This is the weak form of (33).
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3.2. Law of Large Numbers (LLN)—mean field limit. Since we know that, Pin-almost surely as
n →∞,µ(n)

0 *µin by the Law of Large Numbers, we can take the limit as n →∞ of (33) to formally
deduce:

Proposition 3.2. Let µ(n)
t be given by (31) with {θi (t )}n

i=1 the solution of (29) with initial condition

drawn from Pin. Then, as n →∞, µ(n)
t *µt a.s. where µt satisfies

(37) ∂tµt =∇· (∇V (θ, [µt ])µt
)

µ0 =µin,

interpreted in the weak sense.

Note that (37) is the same as (33) but with a different initial condition. Note also that (37) is
the GD flow in the Wasserstein metric [Vil09, AGS05]. Indeed this equation can be written as the
τ→ 0 limit of the Jordan-Kinderlehrer-Otto (JKO) proximal scheme [JKO98]

(38) µt+τ ∈ argmin
(
E [µ]+ 1

2τ
−1W 2

2 (µ,µt )
)

, µ0 =µin

where W2(µ,µt ) is the 2-Wasserstein distance between µ and µt and E [µ] is defined in (28). Fi-
nally, note that the weak solutions of (37) satisfy: for any test function χ : D →R,

(39)
∫

D
χ(θ)µt (dθ) =

∫
D
χ(Θt (θ))µin(dθ)

whereΘt (θ) solves is given in terms of characteristics

(40) Θ̇t (θ) =−∇V (Θt (θ), [µt ]), Θ0(θ) = θ.

Of course, (39) is not explicit since (40) depends on µt , but this representation formula is useful
in the sequel. In particular, notice that it implies that: (i) µt ∈ M+(D) for all t < ∞ since the
velocity field in (40) is globally Lipschitz on R× D̂ by Assumption 2.1 and hence the solutions to
this equation exist for all t <∞; and (ii) supp µ̂t = D̂ with µ̂t =

∫
Rµt (dc, ·) by Assumption 3.1, and

suppµt = D if suppµin = D .
The dynamics of ft = limn→∞ f (n)

t . We now discuss the implications of the limiting PDE for the
evolution of

(41) lim
n→∞ f (n)

t = lim
n→∞

∫
D
ϕ(·,θ)µ(n)

t (dθ) =
∫

D
ϕ(·,θ)µt (dθ) ≡ ft

To begin, note that from (34) we can express V (θ, [µt ]) as

(42) V (θ, [µt ]) =
∫
Ω

(
ft (x)− f (x)

)
ϕ(x ,θ)ν(d x)

As a result (37) can be written as

(43) ∂tµt =∇·
(∫
Ω
∇θϕ(x ,θ)

(
ft (x)− f (x)

)
ν(d x)µt

)
and we deduce, using (41),

(44)

∂t ft =
∫

D
ϕ(·,θ)∂tµt (dθ)

=−
∫

D
∇θϕ(·,θ) ·

(∫
Ω
∇θϕ(x ′,θ)

(
ft (x ′)− f (x ′)

)
ν(d x ′)µt (dθ)

)
Interchanging the order of integration gives:

Proposition 3.3 (LLN). Let f (n)
t be given by (32) with {θi (t )}n

i=1 solution of (29) with initial con-

dition drawn from Pin. Then, as n →∞, f (n)
t → ft a.s. pointwise, where ft satisfies

(45) ∂t ft (x) =−
∫
Ω

M([µt ], x , x ′)
(

ft (x ′)− f (x ′)
)
ν(d x ′)
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where we defined the kernel

(46)
M([µ], x , x ′) =

∫
D
∇θϕ(x ,θ) ·∇θϕ(x ′,θ)µ(dθ)

=
∫
R×D̂

(
c2∇z ϕ̂(x , z) ·∇z ϕ̂(x ′, z)+ ϕ̂(x , z)ϕ̂(x ′, z)

)
µ(dc,d z).

The kernel (46) is symmetric in x and x ′ for any µ ∈M (D) and positive semidefinite if µ ∈M+(D)
since, given any r ∈ L2(Ω,ν), we then have

(47)

∫
Ω2

r (x)r (x ′)M([µ], x , x ′)ν(d x)ν(d x ′)

=
∫
R×D̂

(
c2|∇z R(z)|2 +|R(z)|2)µ(dc,d z) ≥ 0

where

(48) R(z) =
∫
Ω

r (x)ϕ̂(x , z)ν(d x).

Equation (45) also confirms that ft evolves on a quadratic landscape, namely the loss function (3)
itself: Indeed this equation can be written as

(49) ∂t ft (x) =−
∫
Ω

M([µt ], x , x ′)D ft (x ′)L [ ft ]ν(d x ′)

where D f (x) denotes the gradient with respect to f (x) in the L2(Ω,ν)-norm, i.e. given a functional
F [ f ],

(50) ∀h :Ω→R : lim
z→0

d

d z
F [ f + zh] = 〈h,D f F [ f ]〉L2(Ω,ν) =

∫
Ω

h(x)D f (x)F [ f ]ν(d x).

That is, D f (x) reduces to δ/δ f (x) if ν(d x) = d x .

3.3. Long time behavior—global convergence. Let us now analyze the long-time solutions of (37)
for the weak limit µt of µ(n)

t and (45) for the limit ft of f (n)
t . As is well-known, (37) has more sta-

tionary points than E [µ] has minimizers. Since (37) is the Wasserstein GD flow on E [µ], a direct
calculation shows that Et = E [µt ] satisfies

(51)
dEt

d t
=−

∫
D
|∇V (θ, [µt ])|2µt (dθ)

This equation implies that the stationary points µs of (37) are the solutions of

(52) ∇V (θ, [µs ]) = 0 for θ ∈ suppµs .

This should be contrasted with the minimizers of E [µ], which satisfy:

(53)

{
V (θ, [µ∗]) ≥ V̄ [µ∗] for θ ∈ D

V (θ, [µ∗]) = V̄ [µ∗] for θ ∈ suppµ∗

where V̄ [µ] = ∫
D V (θ, [µ])µ(dθ). In general, we cannot guarantee that the solutions to (52) also

solve (53). However, due to the specific form of the unit, ϕ(x ,θ) = cϕ̂(x , z), the rate of decay of
the energy (51) reads

(54)

dE

d t
=−

∫
R×D̂

(
c2|∇V̂ (z , [µt ])|2 +|V̂ (z , [µt ])|2)µt (dc,d z)

=−
∫
R×D̂

c2|∇V̂ (z , [µt ])|2µt (dc,d z)−
∫

D̂
|V̂ (z , [µt ])|2µ̂t (d z)

where µ̂t =
∫
Rµt (dc, ·) and

(55) V̂ (z , [µ]) =−F̂ (z)+
∫
R×D̂

c ′K̂ (z , z ′)µ(dc ′,d z ′)
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(54) implies that the stationary points µs of (37) satisfy

(56) V̂ (z , [µs ]) = 0 for z ∈ supp µ̂s =
∫
R
µs (dc, ·)

As a result V (θ, [µs ]) = cV̂ (z , [µs ]) = 0 for θ = (c, z) ∈ suppµs , and this shows that the second
equation in (53) is automatically satisfied, noting that V̄ = 0 for a global minimizer.

To show that the first equation of (56) also holds, we establish that V̂ (z , [µs ]) = 0 everywhere in
D̂ . We proceed by contradiction: Suppose that µt converges to some µs such that V̂ (z , [µs ]) 6= 0
for z = D̂c

s where D̂c
s is the complement in D̂ of D̂s = supp µ̂s —the relevant case is when D̂c

s has
nonzero Hausdorff measure in D̂ . Looking at the characteristic equations (40) written in terms
ofΘt = (Ct , Z t ) as

(57)

{
Ċt (c, z) =−V̂ (Z t (c, z), [µt ]), C0(c, z) = c

Ż t (c, z) =−Ct (c, z)∇V̂ (Z t (c, z), [µt ]), Z 0(c, z) = z

Since we know that supp µ̂t = D̂ at all positive time t <∞, in order that µt → µs as t →∞, all the
mass must be expelled from D̂c

s . That is, all the solutions to (57) must leave this domain, or at
least accumulate at its boundary, while at the same time we must have limt→∞ V̂ (z , [µt ]) 6= 0. To
show that this scenario is impossible, note that (using the fact that D̂ is compact)

(58) ∀δ> 0 ∃tc > 0 : sup
z

|V̂ (z , [µt ])− V̂ (z , [µs ])| ≤ δ if t ≥ tc .

This means that, for t ≥ tc , to leading order in δ (57) reads

(59)

{
Ċt (c, z) =−V̂ (Z t (c, z), [µs ]), C0(c, z) = c

Ż t (c, z) =−Ct (c, z)∇V̂ (Z t (c, z), [µs ]), Z 0(c, z) = z

which is the GD flow on

(60) cV̂ (z , [µs ])

Suppose that V̂ (z , [µs ]) > 0 somewhere in D̂c
s —the case when V̂ (z , [µs ]) < 0 somewhere in D̂c

s can
be treated similarly. Since D̂c

s is compact, V̂ (z , [µs ]) must then have a maximum in D̂c
s , i.e. (using

the differentiability of the unit) there exists z1 ∈ D̂c
s with z1 6∈ ∂D̂c

s and such that ∇V̂ (z1, [µs ]) = 0,
V̂ (z1, [µs ]) = V̂1 > 0, and and V̂ (z1, [µs ]) > V̂ (z , [µs ]) for z ∈ D̂c

s . Consider the solutions to (59)
for initial (c, z) such that Z t (c, z) is very close to z1 at t = tc —these solutions must exist since
suppµt = D̂ for all t <∞. If among these solutions there are some such that Ct (c, z) is negative
at time t = tc (which is always the case if suppµin = D since suppµt = D for all t < ∞ in that
case), then by (59) Ct (c, z) becomes more negative and Z t (c, z) gets closer to z1 for t > tc . If all
Ct+τ(c, z) are positive at time t = tc (δ), then the corresponding Z t (c, z) go away from z1 for as
long as their Ct (c, z) remains positive; however, eventually some Ct (c, z) become negative (since
Ct+τ(c, z1) = Ct (c, z1)− τV̂ (z1, [µs ]) = Ct (c, z1)− τV̂1 under (59)), at which point we go back to
the first case and Z t (c, z) gets closer to z1. Either way, we can always find solutions with Z t (c, z)
sufficiently close to z1 at time tc (δ) that will eventually converge to z1 rather than exiting D̂c

s , a
contradiction with our assumption that all solutions must either exit this domain or accumulate
at its boundary. This argument is based on (59) rather than the original (57), but by setting δ
small enough (and tc large enough) we can make the terms left over in (59) arbitrarily small so
that they do not affect the result.

This concludes the justification that the stationary points µs of (37) are such that V̂ (z , [µs ]) = 0
everywhere in D̂ , i.e. they are minimizers of E [µ], which from (56) implies

(61) ∀z ∈ D̂ : 0 =
∫
Ω
ϕ̂(x , z)

(
f (x)−

∫
D̂
ϕ̂(x , z ′)γs (d z ′)

)
ν(d x)

where γs = ∫
R cµs (dc, ·). As a result, by Assumptions 2.2 and 2.4,

(62) f =
∫

D̂
ϕ̂(·, z)γs (d z),
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In other other words, we have established:

Proposition 3.4 (Global convergence). Let µt be the solution to (37) for the initial condition µ0 =
µin that satisfy Assumption 3.1. If µt →µ∗ ∈M+(D) as t →∞, then under Assumptions 2.2 and 2.4
µ∗ is a minimizer of E [µ] and we have

(63) lim
t→∞

∫
D
ϕ(·,θ)µt (dθ) =

∫
D
ϕ(·,θ)µ∗(dθ) = f .

Note that we assume thatµt converges to some probability measure to establish this proposition.
This is because we cannot exclude a priori that the dynamics eventually loses mass at infinity, e.g.
if some of the solutions of the characteristic equation (40) eventually diverge as t →∞. We do
not expect this scenario to occur for most initial conditions and one way to preclude it altogether
is to add regularizing terms in the loss function.

The argument that leads to (63) would be simple if it were the case that µ̂∗ = ∫
Rµ

∗(dc, ·) has
full support in D̂ . Indeed this would imply that the kernel (46) evaluated on µt is positive definite
not only for all t ≥ 0 but also in the limit as t → ∞ and hence the only fixed point of (45) is f .
It is reasonable to assume that supp µ̂∗ = D̂ because: (i) supp µ̂t = D̂ for all t <∞ as mentioned
before and (ii) there is no energetic incentive to shrink the support, even when t →∞. This see
why, note that ifµ∗ is an energy minimizer such that supp µ̂∗ 6= D̂ , then a direct calculation shows
that for any α ∈ (0,1) and any µ̂ ∈M+(D̂) with supp µ̂= D̂ ,

(64) µ∗∗(dc,d z) = (1−α)2µ∗((1−α)dc,d z)+αδ0(dc)µ̂(d z)

is also a energy minimizer in M+(D) such that µ̂∗∗ = ∫
Rµ

∗∗(dc, ·) has support D̂ .
In Appendix, we analyze the behavior of µt on a longer timescale and show that, with noise

and certain regularizing terms added in (29), µt reaches a unique fixed point µ∗ ∈ M+(D) such
that

∫
D log(dµ∗/dµ0)dµ∗ <∞, where µ0 is some prior measure used for regularization.

We can summarize the results of Secs. 3.2 and 3.3 into:

Proposition 3.5 (LLN & global convergence). Let f (n)
t be given by (32) with {θi (t )}n

i=1 solution
of (29) with initial condition drawn from Pin. Then under the conditions of Proposition 3.4 we
have

(65) lim
n→∞ f (n)

t = ft pointwise, Pin-almost surely

where ft solves (45) and satisfies

(66) lim
t→∞ ft = f a.e. in Ω.

The convergence in (66) is equivalent to the statement in Proposition 3.4. Notice that, since the
evolution of ft occurs via (45), which is independent of n, for any δ > 0 we can find tc indepen-
dent of n such that for t > tc , Eν| ft − f |2 < δ. Since for any δ> 0 and t > 0 we can also find nc such
that for n > nc , Eν| f (n)

t − ft |2 < δ, we can interchange the limits in n and t in Theorem 3.5, i.e. we
also have

(67) lim
n→∞ lim

t→∞ f (n)
t = f .

3.4. Central Limit Theorem (CLT). Let us now consider the fluctuations of µ(n)
t around its limit

µt . To this end, we define ω(n)
t via:

(68) ω(n)
t = n1/2

(
µ(n)

t −µt

)
,

Explicitly, (68) means:

(69) ω(n)
t = n−1/2

n∑
i=1

(
δθi (t ) −µt

)
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The scaling factor n1/2 is set by the fluctuations in the initial conditions: if we pick a test function
χ : D →R the CLT tells us that under Pin

(70)

∫
D
χ(θ)ω(n)

0 (dθ) = n−1/2
n∑

i=1
χ̃(θi (0)) → N (0,Cχ) in law as n →∞

where χ̃(θ) = χ(θ) − ∫
D χ(θ)µin(dθ) and N (0,Cχ) denotes the Gaussian random variable with

mean zero and variance

(71) Cχ =
∫

D

∣∣χ̃(θ)
∣∣2
µin(dθ),

To see what happens at later times, we derive an equation for ω(n)
t by subtracting (37) from (33)

and using (68)

(72) ∂tω
(n)
t =∇·

(
ω(n)

t ∇V (θ, [µt ])+
(
µt +n−1/2ω(n)

t

)
∇F (θ, [ω(n)

t ])
)

where we defined

(73) F (θ, [µ]) =
∫

D
K (θ,θ′)µ(dθ′)

If we take the limit as n →∞, the term involving n−1/2ω(n)
t at the right hand side of (72) disappears

(we quantify its rate of convergence to zero in more detail in Sec. 3.5) and we formally deduce that

Proposition 3.6. Let ω(n)
t be given by (69) with {θi (t )}n

i=1 solution of (29) with initial conditions
draw from Pin and µt solution to (43). Then

(74) ω(n)
t *ωt in law as n →∞

where ωt satisfies

(75) ∂tωt =∇· (ωt∇V (θ, [µt ])+µt∇F (θ, [ωt ])
)

to be solved in the weak sense with the Gaussian initial conditions read from (70):

(76)
∫

D
χ(θ)ω0(dθ) = N (0,Cχ)

Note that since the mean ofω0 is zero initially and (75) is linear, this mean remains zero for all
times, and we can focus on the evolution of its covariance:

(77) Σt (dθ,dθ′) = Ein[ωt (dθ)ωt (dθ′)]

From (75) it satisfies

(78)
∂tΣt =∇· (Σt∇V (θ, [µt ])+µt (dθ)∇G(θ,dθ′, [Σt ])

)
+∇′ · (Σt∇V (θ′, [µt ])+µt (dθ′)∇G(θ′,dθ, [Σt ])

)
where we defined

(79) G(θ, ·, [Σ])) =
∫

D
K (θ,θ′′)Σ(dθ′′, ·)

Equation (78) should be interpreted in the weak sense and solved for the initial condition

(80) Σ0(dθ,dθ′) =µin(dθ)δθ(dθ′)
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The dynamics of g t = limn→∞ n1/2( f (n)
t − ft ). We can also test these equations against the unit, to

deduce that, as n →∞,

(81)

g (n)
t =

∫
D
ϕ(·,θ)ω(n)

t (dθ) = n1/2( f (n)
t − ft

)
= n−1/2

n∑
i=1

(
ϕ(·,θi (t ))− ft

)
converges in law, g (n)

t → g t , where g t is a Gaussian process satisfying

(82)
∂t g t =−

∫
Ω

M(x , x ′, [ωt ])
(

ft (x ′)− f (x ′)
)
ν(d x ′)

−
∫
Ω

M(x , x ′, [µt ])g t (x ′)ν(d x ′)

This equation should be solved with Gaussian initial conditions with mean zero and covariance

(83)
C0(x , x ′) = Ein[g0(x)g0(x ′)] =

∫
D
ϕ(x ,θ)ϕ(x ′,θ)µin(dθ)

−
∫

D×D
ϕ(x ,θ)ϕ(x ′,θ′)µin(dθ)µin(dθ′)

Since (82) is linear the mean of g t remains zero at all times and we can again focus on the evolu-
tion of its covariance:

(84) Ct (x , x ′) = Ein[g t (x)g t (x ′)]

We obtain

(85)

∂t Ct =−
∫
Ω

N (x , x ′, x ′′, [Σt ])
(

ft (x ′′)− f (x ′′)
)
ν(d x ′′)

−
∫
Ω

M(x , x ′′, [µt ])Ct (x ′′, x)ν(d x ′′)

−
∫
Ω

M(x ′, x ′′, [µt ])Ct (x ′′, x ′)ν(d x ′′)

where Σt solves (78) and

(86)
N (x , x ′x ′′, [Σ]) =

∫
D×D

∇θϕ(x ,θ) ·∇θϕ(x ′′,θ)ϕ(x ′,θ′)Σ(dθ,dθ′)

+
∫

D×D
∇θϕ(x ′,θ) ·∇θϕ(x ′′,θ)ϕ(x ,θ′)Σ(dθ,dθ′)

Summarizing, we have established:

Proposition 3.7 (CLT). Let g (n)
t be given by (81) with {θi (t )}n

i=1 solution of (29) with initial condi-

tions draw from Pin and µt solution to (43). Then, as n →∞, g (n)
t → g t in law, where g t is the zero

mean Gaussian process whose covariance solves to (85) for the initial condition (83).

3.5. Scaling of the fluctuations at long and very long times. To analyze the behavior of the fluc-
tuations as t →∞, we revisit the results from the last section from a different perspective. Sup-
pose that, instead of (69) and (81), we would consider

(87) ω̄(n)
t = n−1/2

n∑
i=1

(
δΘi (t ) −µt

)
and

(88) ḡ (n)
t = n−1/2

n∑
i=1

(
ϕ(·,Θi (t ))−

∫
D
ϕ(·,θ)µt (dθ)

)



16 GRANT M. ROTSKOFF AND ERIC VANDEN-EIJNDEN

where Θi (t ) are independent copies of the mean-field characteristic equation (40). Then, direct
calculations show that ω̄(n)

t * ω̄t and ḡ (n)
t → ḡ t in law as n →∞, where ω̄t and ḡ t are Gaussian

processes with mean zero and covariance given explicitly by

(89) Σ̄t (dθ,dθ′) = Ein[ω̄t (dθ)ω̄t (dθ′)] =µt (dθ)δθ(dθ′)−µt (dθ)µt (dθ′)

and

(90) C̄t (x , x ′) = Ein[ḡ t (x)ḡ t (x ′)] =
∫

D
ϕ(x ,θ)ϕ(x ′,θ)µt (dθ)− ft (x) ft (x ′)

We can also easily write down evolution equations for ω̄t and ḡ t : they read

(91) ∂t ω̄t =∇· (ω̄t∇V (θ, [µt ])
)

and

(92) ∂t ḡ t =−
∫
Ω

M(x , x ′, [ω̄t ])
(

ft (x ′)− f (x ′)
)
ν(d x ′)

Let us focus on this last equation: it is similar to (82), but without the last term, −∫
ΩM(x , x ′, [µt ])g t (x ′)ν(d x ′).

Since the kernel M is positive semi-definite, we know that the solutions to (82) are controlled by
those of (92). In particular,

(93) Ein

∫
Ω
|g t (x)|2ν(d x) =

∫
Ω

Ct (x , x)ν(d x) ≤
∫
Ω

C̄t (x , x)ν(d x)

If we assume that µt →µ∗ ∈M+(D) as t →∞, from (90) we have

(94) lim
t→∞

∫
Ω

C̄t (x , x)ν(d x) =
∫

D
K (θ,θ)µ∗(dθ)−

∫
Ω
| f (x)|2ν(d x)

and therefore

(95) lim
t→∞

∫
Ω

Ct (x , x)ν(d x) ≤
∫

D
K (θ,θ)µ∗(dθ)−

∫
Ω
| f (x)|2ν(x).

Because

(96)
∫
Ω

Ct (x , x)ν(d x) = lim
n→∞nEin

∫
Ω
| f (n)

t (x)− ft (x)|2ν(d x)

the previous result gives a Monte-Carlo type error bound on the loss. Note that this bound is only
nontrivial if

(97)

∫
D

K (θ,θ)µ∗(dθ) =
∫
R×D̂

c2K̂ (z , z)µ∗(dc,d z)

≤ ‖K̂ ‖∞
∫
R×D̂

c2µ∗(dc,d z) <∞

During training, we have
∫
R×D̂ c2µt (dc,d z) <∞ for all t <∞, and to guarantee that this moment

does not blow up as t →∞, or more generally to control its value in that limit, we may need to
add a regularizing term to the loss function. If (97) holds, there is a situation in which we can
even deduce a better bound: if supp µ̂∗ = D̂ and , then M(x , x , [µt ]) is positive definite for all t ≥ 0
and in the limit t →∞, indicating that the last term in (82) is always dissipative. In this case the
argument above shows that

(98) lim
t→∞

∫
Ω

Ct (x , x)ν(d x) = 0.

Summarizing:
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Proposition 3.8 (Fluctuations at long times). Let f (n)
t be given by with {θi (t )}n

i=1 solution of (32)
with initial conditions draw from Pin and ft solution to (45). Then, under the conditions of Propo-
sition 3.4 and assuming that (97) holds, we have

(99)
lim

t→∞ lim
n→∞nEin

∫
Ω
| f (n)

t (x)− ft (x)|2ν(d x)

≤
∫

D
K (θ,θ)µ∗(dθ)−

∫
Ω
| f (x)|2ν(d x)

In addition, if supp µ̂∗ = D̂, we have

(100) lim
t→∞ lim

n→∞nEin

∫
Ω
| f (n)

t (x)− ft (x)|2ν(d x) = 0.

In situations where supp µ̂∗ = D̂ and (100) holds, we see that the fluctuations, initially de-
tectable on the scale n−1/2, become higher order as time increases. To understand the scale at
which the fluctuations eventually settle, consider

(101) ω̃(n)
t (dθ) = nξ(t )

n∑
i=1

(
δθi (t )(θ)−µt (dθ)

)
where ξ(t ) is some time-dependent exponent to be specified. By proceeding as we did to de-
rive (72), we have that ω̃(n)

t satisfies

(102)
∂t ω̃

(n)
t =∇·

(
ω̃(n)

t ∇V (θ, [µt ])+µt∇F (θ, [ω̃(n)
t ])

)
+n−ξ(t )∇·

(
ω(n)

t ∇F (θ, [ω̃(n)
t ])

)
+ ξ̇(t ) logn ω̃(n)

t .

In order to take the limit as n →∞ of this equation, we need to consider carefully the behavior of
the factors in (102) that contain n explicitly, that is,ω(n)

t ∇F (θ, [ω̃(n)
t ]) and ξ̇(t ) logn ω̃(n)

t . Regarding
the former, for any p ∈N and ξ ∈R,

(103) Ein

(
n−ξ

∫
D×D

χ(θ)χ(θ′)ω̃(n)
0 (dθ)ω̃(n)

0 (dθ′)
)p

=O
(
n(ξ−1)p

)
,

which can be verified by a direct calculation. For example if p = 1, this expectation is n(ξ−1)Cχ

where Cχ is given in (71). Equation (103) implies that n−ξω̃(n)
0 (dθ)ω̃(n)

0 (dθ)* 0 weakly in L2p at
t = 0 for any ξ< 1. To see whether we can bring the fluctuations to that scale, notice that if we set

(104) ξ̇(t ) logn = o(1)

the last term at the right hand side of (102) is also higher order—(104) means that we can vary
ξ(t ), but only slowly. (104) can be achieved by choosing e.g.

(105) ξ(t ) = ξ̄(t/an)

with ξ̄(0) = 1
2 , ξ̄′(u) > 0, limu→∞ ξ̄(u) =< 1, and an growing with n and such that limn→∞ an/logn =

∞. With this choice, both the last two terms at the right hand of (102) are a small perturbation
that vanishes as n →∞. Therefore, if we test ω̃(n)

t against the unit, and define

(106) g̃ (n)
t = nξ(t )( f (n)

t − ft
)= ∫

D
ϕ(·,θ)ω̃(n)

t (dθ)

we know that, if ξ(t ) is as in (105) and supp µ̂∗ = D̂ , this field will be controlled and go to zero
eventually. Summarizing we have established:

Proposition 3.9 (Fluctuations at very long times). Assume that the conditions of Proposition 3.8
hold and supp µ̂∗ = D̂. Then

(107) ∀ξ< 1 : lim
n→∞n2ξEin

∫
Ω
| f (n)

an
(x)− f (x)|2ν(d x) = 0

if an grows with n and is such that limn→∞ an/logn =∞.
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This proposition can be stated as (11). It shows a remarkable self-healing property of the dy-
namics: the fluctuations at scale O(n−1/2) of f (n)

t around ft that were present initially decrease in
amplitude as time progresses, and become O(n−1) or smaller as t →∞.

4. TRAINING BY ONLINE STOCHASTIC GRADIENT DESCENT

In most applications, it is not possible to evaluate the expectation over the data in (6) defining
F̂ (z) and K̂ (z , z ′). This is especially true for F̂ (z), since we typically have limited access to f (x):
often, we can only evaluate it pointwise or only know its value on a discrete set of points. In these
cases, we typically need to approximate the expectation in (6) by a sum over a finite subset of x ’s
obtained by sampling from the measure ν.

If we were to fix this training data set, {x p }P
p=1, and denote by νP = P−1 ∑P

p=1δx p the corre-
sponding empirical measure, then all the results in Sec. 3 apply at empirical level if we replace
everywhere ν by νP . This, however, is not the question we are typically interested in, which is
rather:

How does the test error (that is, the error obtained using the exact loss defined with
the original ν) scale if we train the network on the empirical loss associated to νP ?

Here we will address this question in the specific setting of “online” learning algorithms, in
which we can draw a training data set of batch size P at every step of the learning. This effectively
assumes that we have access to infinite data, but cannot use it all at the same time, and the
finite size of the batch introduces noise into the learning algorithm. The algorithm in which the
gradient is estimated from a subset of training data at each step is known as stochastic gradient
descent. It reads

(108) θ̂i (t +∆t ) = θ̂i (t )+∇FP (t , θ̂
P
i (t ))∆t − 1

n

n∑
j=1

∇KP (t , θ̂i (t ), θ̂ j (t ))∆t

where i = 1, . . . ,n, ∆t > 0 is some time-step, and we defined

(109)

FP (t ,θ) = 1

P

P∑
p=1

f (x p (t ))ϕ(x p (t ),θ),

KP (t ,θ,θ′) = 1

P

P∑
p=1

ϕ(x p (t ),θ)ϕ(x p (t ),θ′)

in which {x p (t )}P
p=1 are P iid variables which are redrawn from ν independently at every time

step t . Next we analyze how the result from Sec. 3 must be modified when we use (109) rather
than (29) to perform the training.

4.1. Limiting stochastic differential equation. To analyze the properties of (108), we start start
by noticing that the term

(110) R i (~θ) =∇FP (t ,θi )− 1

n

n∑
j=1

∇KP (t ,θi ,θ j ), ~θ = (θ1, . . . ,θn)

is an unbiased estimator of the right hand side of the GD equation (29). Indeed, conditional on
{θi }n

i=1 fixed, we have

(111) EνR i (~θ) =∇F (θi )− 1

n

n∑
j=1

∇K (θi ,θ j )

This means that, if we split the right hand side of (108) into its expectation plus a zero-mean
fluctuation, the expression resembles an Euler-Maruyama scheme for a stochastic differential
equation (SDE), except that the scaling of the noise term involves ∆t rather than

p
∆t . To write

this SDE explicitly, we compute the covariance of R(~θ) conditional on {θi }n
i=1 fixed,

(112) covν[R i (~θ),R j (~θ
′
)] = A([ f − f (n)],θi ,θ′

j )
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where f (n) = n−1 ∑n
i=1ϕ(·,θi ) and we defined

(113)
A([ f ],θ,θ′) = Eν[| f |2∇θϕ(·,θ)⊗∇θ′ϕ(·,θ′)]

−Eν[ f ∇θϕ(·,θ)]⊗Eν[ f ∇θ′ϕ(·,θ′)]

The SDE capturing the behavior of the solution to (108) is

(114) dθi =∇F (θi )d t − 1

n

n∑
j=1

∇K (θi ,θ j )d t +p
σdB i ,

where σ=∆t/P and {dB i }n
i=1 is a white-noise process with quadratic variation

(115) 〈dB i ,dB j 〉 = A([ f − f (n)],θi ,θ j )d t .

More precisely [LTE15, HLLL17],

Lemma 4.1. Given given any test functions χ : D →R and any T > 0, there is a constant C > 0 such
that

(116) sup
0≤k∆t≤T

∣∣∣ 1

n

n∑
i=1

(
Eχ(θ̂i (k∆t ))−Eχ(θi (k∆t ))

)∣∣∣≤C∆t .

where θ̂i (t ) and θi (t ) denote the solutions to (108) and (120), respectively.

This lemma is a direct consequence of the fact that (108) can be viewed as the Euler-Maruyama
discretization scheme for (114), and this scheme has weak order of accuracy 1. Note that if we
let ∆t → 0, (114) reduces to the ODEs in (29) since σ = ∆t/P → 0 in that limit. We should stress,
however, that this limit is not reached in practice since the scheme (108) is used at small but finite
∆t . We analyze next what happens when we adjust the size ofσ by changing∆t and/or the batch
size P .

4.2. Dean’s equation for particles with correlated noise. Lemma 4.1 indicates that we can an-
alyze the properties of (114) instead of those of (108). To this end, we derive an equation for the
empirical distribution µ(n)

t in (31) when {θi (t )}n
i=1 satisfy the SDE (114); this calculation is opera-

tionally similar to the derivation of (33) but takes into account the extra drift term and the noise
term in (114). By applying Itô’s formula to (35) we deduce

(117)

d
∫

D
χ(θ)µ(n)

t (dθ) = 1

n

n∑
i=1

∇χ(θi (t )) ·dθi (t )

+ σ

2n

n∑
i=1

∇∇χ(θi (t )) : A([ f − f (n)
t ],θi (t ),θi (t ))d t

where f (n)
t = n−1 ∑n

i=1ϕ(·,θi (t )) = ∫
D ϕ(·,θ)µ(n)

t (dθ). Using (114) and the definition of µ(n)
t , this

relation can be written as

(118)

d
∫

D
χ(θ)µ(n)

t (dθ) =
∫

D
∇χ(θ) ·∇V (θ, [µ(n)

t ])µ(n)
t (dθ)d t

+ σ

2

∫
D
∇∇χ(θ) : A([ f − f (n)

t ],θ,θ)µ(n)
t (dθ)d t

+
p
σ

n

n∑
i=1

∇χ(θi (t )) ·dB i (t )

The drift terms in this equation are expressed in term of µ(n)
t ; for the noise term, notice that its

quadratic variation is

(119)

〈p
σ

n

n∑
i=1

∇χ(θi (t )) ·dB i (t ),

p
σ

n

n∑
i=1

∇χ(θi (t )) ·dB i (t )
〉

=σ
∫

D×D
∇χ(θ)∇χ(θ′) : A([ f − f (n)

t ],θ,θ′)µ(n)
t (dθ)µ(n)

t (dθ′)d t
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This means that, in law, (118) is equivalent to

(120)

d
∫

D
χ(θ)µ(n)

t (dθ) =
∫

D
∇χ(θ) ·∇V (θ, [µ(n)

t ])µ(n)
t (dθ)d t

+ σ

2

∫
D
∇∇χ(θ) : A([ f − f (n)

t ],θ,θ)µ(n)
t (dθ)d t

+p
σ

∫
D
∇χ(θ) ·dη(n)

t (dθ)

where dη(n)
t (dθ) is vector-valued random measure, white in time, and with quadratic variation

(121) 〈dη(n)
t (dθ),dη(n)

t (dθ′)〉 = A([ f − f (n)
t ],θ,θ′)µ(n)

t (dθ)µ(n)
t (dθ′)d t

The first term at the right hand side of (120) is the same as in the weak form of (33). This is
because these terms come from the drift terms in (114), which also coincide with those in (29).
However, (120) also contains additional terms that were absent in (33)—note that these terms are
different from those in the standard Dean’s equation, because the noise term in (114) is correlated
between the particles, instead of being independent.

4.3. LLN for SGD. If we want the result established in Proposition 3.5 to apply and also for the
approximation error to vanish as n →∞, we need to make the additional terms in (120) compared
to (33) higher order. This can be done by scaling σ with some inverse power of n. Specifically, we
will set

(122) σ= an−2α for some a > 0 and α> 0

This scaling can be achieved by choosing, e.g., P = O(n2α), which amounts to increasing the
batch size with n. The choice (122) implies that the last two terms in (120) disappear in the
limit as n →∞. Therefore, we formally conclude that µ(n)

t * µt as n →∞, where µt solves the

same deterministic equation (37) as before. This implies that limn→∞ f (n)
t = ft =

∫
D ϕ(·,θ)µt (dθ)

satisfies (45) and is such that ft → f as t →∞. In particular, both the LLN and the global con-
vergence result in Proposition 3.5 still hold if the assumption in this proposition are met and we
use the solution of (127) in (32). In turn, we can also conclude that this proposition holds up
to discretization errors in ∆t if we use the solution of (108) in (32). Importantly, the covariance
associated with the estimator for the gradient, defined in (113), satisfies

(123) ∀(θ,θ′) ∈ D ×D : lim
t→∞ A([ ft − f ],θ,θ′) = 0.

This property will be useful later.

4.4. CLT for SGD. Turning our attention to the fluctuations of µ(n)
t around µt , notice that there

are two sources of them: some are intrinsic to the discrete nature of the particles apparent inµ(n)
t ,

and scale as O(n−1/2) for all t <∞ and possibly as O(n−ξ) for any ξ< 1 as t →∞, as discussed in
Sec. 3.5. Other fluctuations come from the noise term in (120), and scale as O(n−α) when (122)
holds. The Itô drift terms proportional to σ= an−2α in (120) always make higher order contribu-
tions.

We first consider t <∞ and subsequently examine the limit t →∞ in Sec. 4.5. In the present
case, we first observe that if α ≥ 1

2 , then for all t < ∞ the fluctuations due to the noise in (120)
are negligible compared to the intrinsic ones from discreteness, and we are back to the GD sit-
uation studied in Sec. 3. In contrast, if α ∈ (0, 1

2 ), for all t <∞ the fluctuations due to the noise
in (120) dominate the intrinsic ones from discreteness, so let us focus on this case from now on.
To quantify these fluctuations, we can introduce nα(µ(n)

t −µt ), write an equation for this scaled
discrepancy, and take the limit as n →∞. The derivation proceeds akin to the derivation of (75)
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and leads to the conclusion that, as n →∞, nα(µ(n)
t −µt )*ω(α)

t in law which satisfies

(124)

d
∫

D
χ(θ)ω(α)

t (dθ) =
∫

D
∇χ(θ) ·∇V (θ, [µt ])ω(α)

t (dθ)d t

+
∫

D
∇χ(θ) ·∇F (θ, [ω(α)

t ])µt (dθ)d t

+p
a

∫
D
∇χ(θ) ·dηt (dθ)

in which dηt (dθ) is vector valued random measure, white in time, and with quadratic variation
(compare (121))

(125) 〈dηt (dθ),dηt (dθ′)〉 = A([ f − ft ],θ,θ′)µt (dθ)µt (dθ′)d t

Equation (124) should be solved with zero initial condition, since the O(n−1/2) fluctuations aris-
ing from the initial condition are higher order compared to scaling O(n−α) we picked to ob-
tain (124). Since (124) is linear in ω(α)

t with additive noise, it indicates that ω(α)
t a Gaussian pro-

cess with mean zero and thereby fully characterized by its covariance (we omit the equation for
brevity). This also implies that

(126) nα( f (n)
t − f ) → g (α)

t in law as n →∞

where g (α)
t is a Gaussian process whose evolution equation (cf. the derivation of (82)) gives,

(127)
d g (α)

t =−
∫
Ω

M([ωαt ], x , x ′)
(

ft (x)− f (x ′)
)
ν(d x ′)d t

−
∫
Ω

M([µt ], x , x ′)g (α)
t (x ′)ν(d x ′)d t +p

a dζt (x)

where M([µ], x , x ′) is given in (46), and the quadratic variation of dζt is that of
∫

D ϕ(·,θ)dηt (dθ).
Explicitly,

(128)

〈dζt (x),dζt (x ′)〉

=
∫
Ω

M([µt ], x , x ′′)M([µt ], x ′, x ′′)
∣∣ ft (x ′′)− f (x ′′)

∣∣2 dν(x ′′)d t

−
∫
Ω

M([µt ], x , x ′′)
(

ft (x ′′)− f (x ′′)
)

dν(x ′′)

×
∫
Ω

M([µt ], x ′, x ′′)
(

ft (x ′′)− f (x ′′)
)

dν(x ′′)d t .

The SDE (127) should be solved with zero initial condition, g (α)
0 = 0. Since it is linear in g (α)

t with
additive noise, it defines a Gaussian process with mean zero and is specified by its covariance

(129) C (α)
t (x , x ′) = E[g (α)

t (x)g (α)
t (x)]

where E denotes expectation over the noise dζt (that is, over the data in the batches used in SGD).
With this calculation, we have established

Proposition 4.2 (CLT for SGD). Consider

(130) g (α,n)
t = nα−1

n∑
i=1

(
ϕ(·,θi (t ))− ft

)= nα
(

f (n)
t − ft

)
with {θi (t )}n

i=1 solution to the SDE (114) with σ= an−2α, α ∈ (0, 1
2 ), and ft solution to (45). Then,

as n →∞, g (α,n)
t converges in law towards the Gaussian process g (α)

t solution of (127) for g (α)
0 = 0.
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4.5. Fluctuations in SGD at long and very long times. The noise dζt in (127) has the remarkable
property that it self-quenches as t →∞ if the conditions of Proposition 3.5 are met and ft → f as
t →∞ and therefore, from (128):

(131) ∀x , x ′ ∈Ω : lim
t→∞〈dζt (x),dζt (x ′)〉 = 0.

Since the first drift term in (127) also goes to zero when ft → f and the second drift term is a
damping term because M([µt ], x , x ′) is positive definite for all t <∞, we know that g (α)

t will be

controlled as t → ∞, i.e. C (α)
t as a limit. In addition, if supp µ̂∗ = D̂ where µ̂∗ = ∫

Rµ
∗(dc, ·) =

limt→∞
∫
Rµ

∗(dc, ·), then M([µt ], x , x ′) is positive definite for all t < 0 and in the limit as t →∞,

and the solution to (127) goes to zero. Using the definition the Gaussian process g (n,α)
t defined

in (130), we can summarize this result into:

Proposition 4.3 (Fluctuations in SGD at long time). Under the conditions of Proposition 3.5, if
f (n)

t is given by by (32) with {θi (t )}n
i=1 solution of (114) with σ = an−2α, α ∈ (0, 1

2 ), and initial
condition drawn from Pin, and ft solves (45), then

(132) lim
t→∞ lim

n→∞n2αE

∫
Ω
| f (n)

t (x)− ft (x)|2ν(d x) = lim
t→∞C (α)

t (x , x ′) exists

In addition, if supp µ̂∗ = D̂, then this limit is zero.

If supp µ̂∗ = D̂ where µ̂∗ = ∫
Rµ

∗(dc, ·) = limt→∞
∫
Rµ

∗(dc, ·), then M([µt ], x , x ′) is positive defi-
nite for all t < 0 and in the limit as t →∞. In that case, the only fixed point of (127) is zero. Since in
this case we also know that the fluctuations from the initial conditions disappear on scale O(nξ)
for any ξ< 0, we can proceed as in Sec. 3.5 and adjust α all the way up to 1 instead of 1

2 . That is,
we can generalize Proposition 3.9 into

Proposition 4.4 (Fluctuations in SGD at very long times). Under the conditions of Proposition 4.3,
if supp µ̂∗ = D̂, then for any α ∈ (0,1),

(133) lim
n→∞n2αE

∫
Ω
| f (n)

an
(x)− f (x)|2ν(d x) = 0

if an grows with n and is such that limn→∞ an/logn =∞—here E denotes expectation over both
the initial condition, Pin, and the noise in (114).

5. ILLUSTRATIVE EXAMPLE: 3-SPIN MODEL ON THE HIGH-DIMENSIONAL SPHERE

To test our results, we use a function known for its complex features in high-dimensions: the
spherical 3-spin model, f : Sd−1(

p
d) →R, given by

(134) f (x) = 1

d

d∑
p,q,r=1

ap,q,r xp xq xr , x ∈ Sd−1(
p

d) ⊂Rd

where the coefficients {ap,q,r }d
p,q,r=1 are independent Gaussian random variables with mean zero

and variance one. The function (134) is known to have a number of critical points that grows ex-
ponentially with the dimensionality d [ABA13, SGBAL14, ABAČ12]. We note that previous works
have sought to draw a parallel between the glassy 3-spin function and generic loss functions [CHM+14],
but we are not exploring such an analogy here. Rather, we simply use the function (134) as a dif-
ficult target for approximation by neural networks. That is, throughout this section, we train
networks to learn f with a particular realization of ap,q,r and study the accuracy of that represen-
tation as a function of the number of particles n.



TRAINABILITY AND ACCURACY OF NEURAL NETWORKS: AN INTERACTING PARTICLE SYSTEM APPROACH 23

5.1. Learning with Gaussian kernels. We first consider the case when D = Sd−1(
p

d) and we use

(135) ϕ(x , z) = e−
1
2α|x−z |2

for some fixed α > 0. In this case, the parameters are elements of the domain of the function
(here the d-dimensional sphere). Note that, since |x | = |z | =p

d , up to an irrelevant constant that
can be absorbed in the weights c, we can also write (135) as

(136) ϕ(x , z) = e−αx ·z

This setting allow us to simplify the problem. Using

(137) f (n)(x) = 1

n

n∑
i=1

ciϕ(x , z i ) = 1

n

n∑
i=1

ci e−αx ·z i ,

we can use as alternative loss

(138) L [ f (n)] =− 1

n

n∑
i=1

ci f (z i )+ 1

2n2

n∑
i , j=1

ci c jϕ(z i , z j )

i.e. eliminate the need for data beside the set {z i }n
i=1. In terms of the empirical distribution, the

loss can be represented as

(139) L [ f (n)] =−
∫

D̂
f (z)γ(n)(d z)+ 1

2

∫
D̂×D̂

ϕ(z , z ′)γ(n)(d z)γ(n)(d z ′)

where γ(n) = ∫
R cµ(n)(dc, ·). Viewed as an integral kernel, ϕ is positive definite, as a result the loss

is a convex functional of γ(n) (or µ(n)). Hence, the results established above apply to this special
case, as well. The GD flow on the loss (138) can now be written explicitly as

(140)


ż i = ci∇ f (z i )+ α

n

n∑
j=1

ci c j z j e−αz i ·z j −λi z i

ċi = f (z i )− 1

n

n∑
j=1

c j e−αz i ·z j

where −λi z i is a Lagrange multiplier term added to enforce |z i | =
p

d for all i = 1, . . . ,n, f (x) is
given by (134), and ∇ f (z) is given componentwise by

(141)
∂ f

∂zp
= 1

d

d∑
q,r=1

(
ap,q,r +ar,p,q +aq,r,p

)
zq zr ,

As is apparent from (140) the advantage of using radial basis function networks (or, in fact, any
unit φ̂ which is (i) such that D̂ =Ω and (ii) positive definite) is that we can use f (x) and the unit
ϕ(x , z) directly, and do not need to evaluate F̂ (z) and K̂ (z , z ′) (that is, we need no batch). In
other words, the cost of running (140) scales like (dn)2, instead of P (N n)2 in the case of a general
network optimized by SGD with a batch of size P and z ∈ D̂ ⊂RN . If we make P scale with n, like
P = C n2α for some C > 0, as we need to do to obtain the scalings discussed in Sec. 4, the cost of
SGD becomes N 2n2+2α, which is quickly becomes much worse than (dn)2 as n grows.

We tested the representation (137) in d = 5 using n = 16, 32, 64, 128, and 256 and setting
α= 5/d = 1. The training was done by running a time-discretized version of (140) with time step
∆t = 103 for 2×105 steps: during the first 105 we added thermal noise to (140), which we then
remove during the second half of the run. The representation (137) proves to be accurate even at
rather low value of n: for example, the right panel of Fig. 1 shows a contour plot of the original
function f and its representation f (n) with n = 128 through a slice of the sphere defined as

(142) x(θ) =
p

d
(
sin(θ)cos(φ),sin(θ)sin(φ),cos(θ),0,0

)
,

with θ ∈ [0,π] and φ ∈ [0,2π). The level sets of both functions are in good agreement. Also shown
on this figure is the projection on the slice of the position of the 64 particles on the sphere. In this
result, the parameters ci take values that are initially uniformly distributed by about −40d 2 =
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FIGURE 1. Left panel: Comparison between the level sets of the original func-
tion f in (134) (black dotted curves) and its approximation by the neural net-
work in (137) with n = 128 and d = 5 in the slice defined by (142). Also shown
are the projection in the slice of the particle position. Right panel: empirical
loss in (143) vs n at the end of the calculation. The stars show the empirical loss
for 10 independent realizations of the coefficients ap,q,r in (134).
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FIGURE 2. The log of the empirical loss in (143) as a function of training time
by SGD for the sigmoid neural network in d = 10 (left panel) and d = 25 (right
panel). At time t = 2×106, the batch size is increased to initiate a quench. The
insets show the log of the empirical loss as a function of time during the final
105 time steps of training.

−103 and 40d 2 = 103. To test the accuracy of the representation, we used the following Monte
Carlo estimate of the loss function

(143) LP [ f (n)
t ] = 1

2P

P∑
p=1

∣∣∣ f (x p )− f (n)
t (x p )

∣∣∣2
.

This empirical loss function was computed with a batch of 106 points x p uniformly distributed
on the sphere. The value (143) calculated at the end of the calculation is shown as a function
of n in the right panel of Fig. 1: the empty circles show (143) for 4 individual realizations of the
coefficient ap,q,r in (134), the full circle shows the average of (143) over these 4 realizations. The
blue line scale as n−1, the red one as n−2: as can be seen, the empirical loss decays with n faster
than n−1, which is as expected.

5.2. Learning with single layer networks with sigmoid nonlinearity. To further test our predic-
tions and also assess the learnability of high dimensional functions, we used 3-spin models in
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FIGURE 3. Error scaling for single layer neural network with sigmoid nonlin-
earities. Upper row: d = 10; lower row: d = 25. The first column shows the
empirical loss in (143), the second column shows (146), and the third column
shows (146) with Θ( f ) replaced by Θ(− f ). The stars show the results for 10 dif-
ferent realizations of the coefficients ap,q,r in (134): the dashed lines decay as
n−1, consistent with the predictions in (133) and 3.7 .

d = 10 and 25 dimensions, which we approximated with a single-layer neural network with sig-
moid nonlinearity parameterized by z = (a,b) ∈ D =Rd+1, with a ∈Rd , b ∈R, and

(144) ϕ(x , z) = h(a · x +b).

This gives

(145) f (n)(x) = 1

n

n∑
i=1

ci h(ai · x +bi )

where h(z) = 1/(1+ e−z ). Simple networks like these, as opposed to deep neural with many pa-
rameters, provide greater assurance that we have trained sufficiently to test the scaling.

We trained the model in (145) using SGD with an initial batch size of P = bn/5c points uni-
formly sampled on the sphere for 2×106 time steps, resampling a new batch at every time step:
this corresponds to choosing α= 1/2 in the notation of Sec. 4. Towards the end of the trajectory,
we initiated a partial quench by increasing the batch size to P = b(n/5)2c (i.e α= 1) which we run
for an additional 2×105 time steps. Fig. 2 shows the empirical loss in (143) calculated over the
batch as a function of training time during the optimization with n = 256 particles and d = 10
(left panel) and d = 25 (right panel). Note that the lack of intermediate plateaus in the loss during
training is consistent with our conclusion that the dynamics effectively descends on a quadratic
energy landscape (i.e. the loss function itself) at the level of the empirical distribution of the
particles. After the quench the empirical loss shows substantially smaller fluctuations as a func-
tion of time which helps to reduce the fluctuating error. The inset shows the final 105 time steps
in which there is negligible downward drift, indicating convergence towards stationarity at this
batch size.
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FIGURE 4. One dimensional slices through the d = 10 (upper row) and d = 25
(lower row) neural net representation f (n) are shown below a yellow curve with
the target function f . In d = 10, the function representations clearly capture
the main features of the target function, with only small scale deviations. In
d = 25 there is remarkably good signal when n = 1024 while the smaller neural
network is less able to faithfully represent the target function.

In these higher dimensional examples, we tested the scaling with three different observables.
First, we considered the empirical loss function in (143) which we computed over a batch of size
P̂ = 105 larger than P . As shown in the two right panels Fig. 3, LP̂ [ f (n)

t ] scales as n−1, as expected.
We also tested the estimate in (133) using

(146)
1

P̂

P̂∑
p=1

Θ
(

f (x p )
)(

f (x p )− f (n)
t (x p )

)
,

and similarly with Θ
(− f (x p )

)
: here Θ denotes the Heaviside function. The result is shown in the

four right panels in Fig. 3: (146) scales as n−1, consistent with (133) and our choice of α= 1.
To provide further confidence in the quality of the representations, we also made a visual com-

parison by plotting f and f (n) along great circles of the sphere. We do so by picking i 6= j in
{1, · · · ,d} and setting x = x(θ) = (x1(θ), . . . xd (θ)) with

(147) xi (θ) =
p

d cos(θ), x j (θ) =
p

d sin(θ), xk (θ) = 0 ∀k 6= i , j .

In Fig. 4 we plot f (x(θ) and f (n)(x(θ)) along three great circles for d = 10 and d = 25. As can
be seen, the agreement is quite good and confirms the quality of the final fit. A strong signal is
present in d = 25 with n = 1024, a remarkable fact when considering that if we had only two grid
points per dimension, the total number of points in the grid would be 225 = 33,554,432.

6. CONCLUDING REMARKS

Viewing parameters as particles with the loss function as interaction potential enables us to
leverage a powerful theoretical apparatus developed to analyze problems from statistical physics.
Using these ideas, we can analyze the approximation quality and the trainability of neural net-
work representations of high-dimensional functions. Several insights emerge from our analysis
based on this viewpoint: First, these tools show the dynamical realizability of the Universal Ap-
proximation Theorems, a direct consequence of the Law of Large Numbers for the empirical dis-
tribution of the parameters. Specifically, we conclude that the empirical distribution effectively
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descends on the quadratic loss function landscape when the number n of parameters in the net-
work is large. This confirms the empirical observation that wide neural networks are trainable
despite the non-convexity of the loss function viewed from the individual particles perspective
(as opposed to that of their empirical distribution). Secondly, we have derived a Central Limit
Theorem for the empirical distribution of the parameters, specifying the approximation error of
the neural network representation and showing that it is universal.

We derived these results first in the context of gradient descent dynamics; however, our con-
clusions also apply to stochastic gradient descent. The analysis indicates how the parameters in
SGD should be chosen, in particular how the batch size should be scaled with n given the time
step used in the scheme, which can be done towards the end of training.

These results were derived for a quadratic loss, L [ f (n)] = 1
2Eν| f − f (n)|2. However, they do

generalize to other losses as long as they are convex in f (n).
We also worked in the limit of an infinite amount of training data, an idealized setting that

does not address the error incurred from a finite data set. For a neural network trained on a
dataset of P points, {x p }P

p=1, we can decompose the “generalization” error into components that
involve the approximation error and the error from the finiteness of the data,

(148) Eν| f − f (n)
P |2 ≤ Eν| f − fP |2 +Eν| fP − f (n)

P |2

where fP and f (n)
P are the approximations of f we can get if we train the network on the empirical

loss build on {x p }P
p=1 with finitely (n < ∞) or infinitely (n → ∞) many units, respectively. Our

results give direct insight on the second term at the right hand side of (148). We leave assessments
of the first term for future work.

Our numerical results not only confirm our predictions, they emphasize the capability of neu-
ral networks to represent high-dimensional function accurately with a relatively modest number
of adjustable parameters. Needless to say, the computational achievements of neural networks
open the door to developments in scientific computing that we are only beginning to grasp. Such
applications may benefit from better understanding how the specific architecture of the neural
networks affects the approximation error and trainability, not in the general terms of their scaling
with n that we analyzed here, but in the details of the constant involved.

APPENDIX A. TRAINING AT FINITE (BUT SMALL) TEMPERATURE

For completeness, let us consider here the case when noise-terms are added in (29) and the
ODEs become stochastic differential equations (SDEs). Additive noise addresses the non-uniqueness
issues encountered in Sec. 3. To formulate the resulting SDEs, we need a distributionµ0 ∈M+(D),
used to regularize the dynamics. We specify its properties via:

Assumption A.1. The distribution µ0 (i) has a density ρ0 that is continuously differentiable, ρ0 ∈
C 1(D); (ii) is such that supp(µ0) = D; and (iii) satisfies

(149) ∀b ∈R :
∫
R

ebcµ0(dc, ·) <∞ and
∫
R

cµ0(dc, ·) = 0.

We then replace (29) with the SDEs

(150)
dθi =∇F (θi )d t − 1

n

n∑
j=1

∇K (θi ,θ j )d t

+ (βn)−1∇ logρ0(θi )d t +p
2(βn)−1/2dW i ,

for i = 1, . . . ,n. Here W i are n independent Wiener processes, taking values in D , andβ> 0 is a pa-
rameter playing the role of inverse temperature and controlling the amplitude of a noise added to
the dynamics. Note the specific scale on which the regularizing and the noise terms act in (150):
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they are higher order perturbations. We comment on the choice of this scaling in Remark A.2
below. The SDEs (150) are overdamped Langevin equations associated with the energy:

(151)

Eβ(θ1, . . . ,θn) = nC f −
n∑

i=1
F (θi )+ 1

2n

n∑
i , j=1

K (θi ,θ j )

− (βn)−1
n∑

i=1
logρ(θi ),

This energy is (30) plus a regularizing term (the one involving − logρ0). Under Assumption A.1
this term guarantees that, for any β> 0, the following integral is finite

(152) Zn =
∫

Dn
e−nβEβ(θ1,...,θn )dθ1 · · ·dθn <∞

which in turns implies that

(153) Z−1
n exp

(−nβEβ(θ1, . . . ,θn)
)

is a normalized probability density on Dn . As a result, the solutions to (29) are ergodic with
respect to the equilibrium distribution with density (153) for any β> 0.

A.1. Dean’s equation. Letχ : D →Rbe a test function. Applying Itô’s formula to n−1 ∑n
i=1χ(θi (t )) =∫

D χ(θ)µ(n)
t (dθ) and using (150) gives

(154)

d
∫

D
χ(θ)µ(n)

t (dθ)

= 1

n

n∑
i=1

∇χ(θi (t )) ·dθi (t )+β−1
n∑

i=1
∆χ(θi (t ))d t

=
∫

D
∇χ(θ) ·

(
∇F (θ)µ(n)

t (θ)−
∫

D
∇K (θ,θ′)µ(n)

t (dθ′)µ(n)
t (dθ)

)
d t

+ (βn)−1
∫

D
∇χ(θ) ·

(
∇ logρ0(θ)µ(n)

t (dθ)
)

d t

+ (βn)−1
∫

D
∆χ(θ)µ(n)

t (dθ)d t

+p
2(βn3)−1/2

n∑
i=1

∇χ(θi (t )) ·dW i (t )

The drift terms in this equation are closed in terms of µ(n)
t ; the noise term has a quadratic varia-

tion given by:

(155)

〈
(βn3)−1/2

n∑
i=1

∇χ(θi (t )) ·dW i (t ), (βn3)−1/2
n∑

i=1
∇χ(θi (t )) ·dW i (t )

〉

=β−1n−3
n∑

i=1
|∇χ(θi (t ))|2d t

=β−1n−2
∫

D
|∇χ(θ)|2µ(n)

t (dθ)d t

As a result, (154) is sometimes written formally as the stochastic partial differential equation
(SPDE)

(156)

∂tµ
(n)
t =∇·

(
∇Fµ(n)

t +
∫

D
∇K (θ,θ′)µ(n)(dθ′)µ(n)

t

)
− (βn)−1∇·

(
∇ logρ0µ

(n)
t

)
+ (βn)−1∆µ(n)

t +p
2β−1/2n−1∇· (√µ(n)

t η̇t

)
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where η̇t = η̇t (θ) is a spatio-temporal white-noise so that the quadratic variation of the noise
term in (156) is formally given by (155). This equation is referred to as Dean’s equation. It is
difficult to give (33) a precise meaning because it is not clear how to interpret the noise term. It
remains useful to analyze the properties ofµ(n)

t as n →∞, however, which is what we will do next.

Remark A.2. We could also consider situations where in (150) n−1 is replaced by n−α with α ∈
[0,1). The case α= 0 is treated in [MMN18]: with this scaling, the diffusive and regularizing terms
in (156) are replaced by

β−1∆µ(n)
t −β−1∇·

(
∇ logρ0µ

(n)
t

)
,

and the noise terms by p
2(βn)−1/2∇· (√µ(n)

t η̇t

)
.

This means that these diffusive and regularizing terms affect the mean field limit equation for
µt , whereas the noise terms remain higher order. In particular, in that case one can prove that
µ(n)

t *µt with µt that converges to a unique fixed point µβ such that µβ > 0 a.e. in D but for which∫
D ϕ(·,θ)µβ(dθ) 6= f (there is a correction proportional to β−1). When α ∈ (0,1), the diffusive and

regularizing terms in (156) are replaced by

β−1n−α∆µ(n)
t −β−1n−α∇·

(
∇ logρ0µ

(n)
t

)
,

and the noise terms by p
2(βn1+α)−1/2∇· (√µ(n) η̇t

)
.

This means that none of these terms affect the mean field limit equation, but at next order, O(n−α),
the diffusive and regularizing terms dominate whereas the noise terms remain higher order. In the
case when α = 1, on which we focus here, the diffusive, regularizing, and noise terms are pertur-
bations on the O(n−1) same scale, the same scale as the errors introduced by discretization effects
(finite n) also present in GD.

A.2. Multiple-scale expansion. The advantage of adding noise terms in (150) is that it guaran-
tees ergodicity of the solution to these SDEs with respect to the equilibrium distribution with
density (153). Correspondingly, we focus on analyzing the long-time ergodicity properties of the
empirical distribution satisfying (156). On long timescales, the memory of the initial conditions
is lost, and we can directly pick the right scaling to analyze the fluctuations ofµ(n)

t around its limit
µt : as discussed in Remark A.2 and confirmed below, this scale is O(n−1), consistent with what
we reach at long times with GD as discussed in Sec. 3.

We analyze (156) by formal asymptotic, using a two-timescale expansion. Consistent with the
expected O(n−1) scaling of the fluctuations, we look for a solution of this equation of the form

(157) µ(n)
t =µt ,τ+n−1ωt ,τ+o(n−1), τ= t/n.

We use the rescaled time τ= t/n to look at the solution to (156) on O(n) timescales. Not only does
this fix the behavior of µt ,τ on long timescales but also guarantees solvability of the equation for
ωt ,τ. Treating t and τ as independent variables, (157) implies that

(158) ∂tµ
(n)
t = ∂tµt ,τ+n−1(∂τµt ,τ+∂tωt ,τ)

Inserting (157) and (158) in (156) and collecting terms of the same order in n−1, we arrive at the
following two equations at order O(1) and O(n−1), respectively

(159) ∂tµt ,τ =∇· (∇V (θ, [µt ,τ])µt ,τ
)

and

(160)

∂τµt ,τ+∂tωt ,τ =∇· (∇V (θ, [µt ,τ])ωt ,τ+∇F (θ, [ωt ,τ])µt ,τ
)

+β−1∆µt ,τ−β−1∇· (∇ logρ0µt ,τ
)

+p
2β−1/2∇· (pµt ,τη̇t

)



30 GRANT M. ROTSKOFF AND ERIC VANDEN-EIJNDEN

A.3. Law of Large Numbers at finite temperature. Since (159) is identical to (37), the results we
established in Sec. 3.3 still hold at finite temperature. In particular, Proposition 3.5 applies. As we
see below, we can obtain more information about µt by looking at the evolution of this function
on longer timescales, and we will be able to deduce that suppµt ,τ = D . This guarantees that (25)
holds, so it can be removed from the assumptions needed in Proposition 3.5.

A.4. Global convergence on O(n) timescales. An equation governing the evolution ofµt ,τ on the
rescaled time τ= t/n can be derived by time averaging (160) over t . This equation guarantees the
solvability of (160). Since µt ,τ→µτ as t →∞, where µτ is a stationary point of (159), we have

(161) lim
T→∞

1

T

∫ T

0
µt ,τωt ,τd t =µτω̄τ

where

(162) ω̄τ =: lim
T→∞

1

T

∫ T

0
ωt ,τd t

in which we assume that the time-average ofωt ,τ exists (which we check a posteriori). Using (161)
and the fact that the white-noise terms time-average to zero almost surely, we deduce that the
time-average of (160) is

(163)
∂τµτ =∇· (∇V (θ, [µτ])ω̄τ+∇F (θ, [ω̄τ])µτ

)
+β−1∆µτ−β−1∇· (∇ logρ0µτ

)
Because of the presence of the diffusive term β−1∆µτ in (163), we can therefore conclude that on
the timescales where this equation holds we must have µτ > 0 a.e. on D . This means that (25)
holds and so V (θ, [µτ]) = 0 since

∫
D ϕ(·,θ)µτ(dθ) = f by Proposition 3.5. As a result (163) reduces

to

(164) ∂τµτ =∇· (∇F (θ, [ω̄τ])µτ
)+β−1∆µτ−β−1∇· (∇ logρ0µτ

)
.

Since V (θ, [µτ]) = 0 needs to be satisfied, in (164) we can treat the term involving the factor
F (θ, [ω̄τ]) as a Lagrange multiplier used to enforce this constraint. It is also easy to see that (164)
is the Wasserstein GD flow on

(165)
∫

D

(
β−1 log(dµ/dµ0)+F (θ, [ω̄τ])

)
µ(dθ)

Since this energy is strictly convex, a direct consequence of these observations is that the sta-
ble fixed points of (164) are the minimizers of the energy (165) subject to the constraints that
V (θ, [µτ]) = 0 and µτ ∈ M+(D). These fixed points are reached on a timescale that is large com-
pared the O(n) timescale τ= t/n.

Recalling that µt ,τ is the weak limit of µ(n)
t as n →∞ and V (θ, [µ]) =−F (θ)+∫

D K (θ,θ′)µ(dθ′),
we can summarize these considerations into:

Proposition A.3. If µ(n)
t be the empirical distribution defined in (31) with {θi (t )}n

i=1 the solution
to (156). Then given any bn > 0 such that bn/n →∞ as n →∞, we have

(166) µ(n)
bn
*µ∗ as n →∞

where µ∗ is the minimizer in M+(D) of

(167) β−1
∫

D
log(dµ/dµ0)µ(dθ)

subject to

(168) F (θ) =
∫

D
K (θ,θ′)µ∗(dθ′) a.e. in D
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It is easy to see that the solution to the minimization problem in Proposition A.3 is such that

(169)
∫

D
log(dµ∗/dµ0)µ∗(dθ) <∞ and suppµ∗ = D.

The first condition says that the minimizer exists, which is clear since we can find test distribu-
tions µ ∈ M+(D) such that (i)

∫
R cµ(dc, ·) = γ∗ where γ∗ solves (21) (i.e. such that µ satisfies the

constraint in (168)), and (ii) µ has finite entropy with respect to µ0. One such µ is

(170) µ(dc,d z) = |γ∗|−1
TV

(
δ|γ∗|TV (dc)γ∗+(d z)+δ−|γ∗|TV (dc)γ∗−(d z)

)
To prove that suppµ∗ = D , suppose by contradiction that the minimizer is such that µ∗ = 0 if
θ ∈ B with

∫
B µ0(dθ) > 0. For s ∈ [0,1], consider µs = (1− s)µ∗+ sµ0. A direct calculation shows

that

(171)

∫
D

log(dµs /dµ0)µs (dθ) =
∫

B
log(dµ∗/dµ0)µ∗(dθ)

+ s log s
∫

B c
µ0(dθ)+O(s)

Since s log s
∫

B c µ0(dθ) < 0 for s ∈ (0,1), (171) implies that for s > 0 small enough

(172)
∫

D
log(dµs /dµ0)µs (dθ) <

∫
B

log(dµ∗/dµ0)µ∗(dθ),

a contradiction with our assumption that µ∗ is the minimizer.
Let us also analyze in some more detail the constrained optimization problem in Proposi-

tion A.3 since this will be useful in the next section. If we denote by µ∗ the minimizer of (167)
subject to (168) and by λ∗ the Lagrange multiplier used to satisfy the first constraint in (168), this
Lagrange multiplier is given by

(173) λ∗(θ) =β−1 δ

δF (θ)

∫
D

log(dµ∗/dµ0)µ∗(dθ′)

It is easy to see that µ∗ is independent of β: indeed, we can drop the factor β−1 in front of (167)
without affecting the minimization problem. This also means that the dependency of λ∗ in β is
explicit: Indeed from (173)

(174) λ∗(θ) =β−1δ∗(θ)

where δ∗(θ) is given by

(175) δ∗(θ) = δ

δF (θ)

∫
D

log(dµ∗/dµ0)µ∗(dθ′)

This factor is independent of β since µ∗ is. It will be useful later to work with the function ε∗(x)
defined via the equation

(176)
∫

D
ϕ(x ,θ)δ∗(θ)dθ =

∫
D

∫
Ω
ϕ(x ,θ)ϕ(x ′,θ)ε∗(x ′)ν(d x ′)dθ

This is the Euler-Lagrange equation for the minimizer of

(177) 1
2

∫
D

∣∣∣∣δ∗(θ)−
∫
Ω
ε(x)ϕ(x ,θ)ν(d x)

∣∣∣∣2

dθ

over ε. Therefore, (176) is also the equation for the least square solution of

(178) δ∗(θ) =
∫
Ω
ε∗(x)ϕ(x ,θ)ν(d x)

and such a least square solution exists for a modification of δ∗(θ) which is arbitrarily close to it in
L2(D): any such solution for a modification of δ∗(θ) that is O(n−1) away from it is good enough
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for our purpose since the discrepancy can be absorbed in higher order terms in our expansion in
n−1. This solution is also unique by Assumption 2.2 and it can be expressed as

(179) ε∗(x) = D f (x)

∫
D

log(dµ∗/dµ0)µ∗(dθ)

where µ∗ is viewed as a functional of f (x) by using F (θ) = ∫
Ω f (x)ϕ(x ,θ)ν(d x), and D f (x) denotes

the gradient with respect to f (x) in the L2(Ω,ν)-norm defined in (50). The equality (179) follows
from (175) and the fact that D f (x)F (θ) =ϕ(x ,θ).

Remark A.4. Compared to the case treated in [MMN18] where the noise and regularizing terms
in (150) are scaled as β−1 (high temperature) rather than (βn)−1 (low temperature), we see that we
can also conclude that µt converges as t →∞ to a distribution µ∗ with suppµ∗ = D; however, the
fixed point µ∗ we obtain satisfies

∫
D ϕ(·,θ)µ∗(dθ) = f , whereas the one obtained at high temper-

ature introduces a correction proportional to β−1 in this relation. The price we pay by working at
low temperature is that convergence in time may be slower if the initial condition µ0 = µin is such
that (25) is not satisfied by the GD flow without noise: specifically, this convergence should occur
on timescales that are intermediate between O(1) and O(n).

A.5. Central Limit Theorem at finite temperature. Now that we have determined the behavior
of limn→∞µ(n)

t =µt at all times, we can stop distinguishing τ from t , and focus onωt . We already
know that (168) constrain the average value of ωt on long timescales, but we would also like to
quantify this average value beyond what (168) implies, and also analyze the fluctuations around
this average. To this end, let us use (164) in (160) and look at the resulting equation on timescales
where µt has converged to µ∗, the minimizer specified in Proposition A.3, so that V (θ, [µ∗]) =
0 and λ has converged to λ∗ = β−1δ∗. This can be achieved by considering (160) with initial
condition at t = T and pushing back T →−∞. The resulting equation is

(180)
∂tωt =∇·

(
−β−1∇δ∗µ∗+

∫
D
∇K (θ,θ′)ωt (dθ′)µ∗

)
+p

2β−1/2∇·
(√

µ∗η̇t

)
Even though we derived it formally, the SPDE (186) can be given a precise meaning: since its drift
is linear in ωt and its noise is additive (recall that µ∗ is a given, non-random, distribution), (186)
defines ωt as a Gaussian process. This also means that

(181) g t =
∫

D
ϕ(·,dθ)ωt (dθ)

is a Gaussian process. This is an important quantity since gives the error on f made in f (n)
t at

order O(n−1):

(182) f (n)
t = f +n−1g t +o(n−1)

Let us derive a closed equation for g t from (180). To this end, notice first that we can use

(183)
∫

D
K (θ,θ′)ωt (dθ′) =

∫
Ω
ϕ(x ,θ)g t (x)ν(d x)
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to express the integral terms in (180) in terms of g t . By taking the time derivative of (181) and
using (180) together with (183) and (176) we derive:

(184)

∂t g t =
∫

D
ϕ(·,θ)∂tωt (dθ)

=
∫

D
∇θϕ(·,θ) ·

∫
Ω
∇θϕ(x ′,θ)

(
g t (x ′)−β−1ε∗(x ′)

)
ν(d x ′)µ∗(dθ)

−p
2β−1/2

∫
D
∇θϕ(·,θ) ·√µ∗η̇t

=
∫
Ω

M([µ∗], x , x ′)
(
g t (x ′)−β−1ε∗(x ′)

)
ν(d x ′)

−p
2β−1/2

∫
D
∇θϕ(·,θ) ·√µ∗η̇t

where M([µ], x , x ′) is the kernel defined in (46). Since the quadratic variation of the noise term in
this equation is

(185) 2β−1M([µ∗], x , x ′)d t

in law it is equivalent to

(186)
∂t g t =−

∫
Ω

M([µ∗], x , x ′)
(
g t (x ′)−β−1ε∗(x)

)
ν(d x ′)

+p
2β−1/2

∫
Ω
σ([µ∗], x , x ′)η̇t (x ′)d x ′

where η̇t (x) is a spatio-temporal white-noise, and σ([µ∗], x , x ′) is such that

(187)
∫
Ω
σ([µ∗], x , x ′′)σ([µ∗], x ′, x ′′)d x ′′ = M([µ∗], x , x ′)

Note that this decomposition exists since µ∗ ∈M+(D) with suppµ∗ = D and hence M([µ∗], x , x ′)
is positive-definite. The asymptotic mean and variance of g t can be readily deduced from (186)
by noting that this Ornstein-Uhlenbeck equation is in detailed-balance with respect to the Gibbs
distribution associated with the energy

(188)
1

2

∫
Ω

∣∣g t (x ′)−β−1ε∗(x)
∣∣2
ν(d x).

We can state this as

Proposition A.5 (CLT at finite temperature). Let f (n)
t be given by (32) with {θi (t )}n

i=1 solution
to (156) with initial conditions specified at t = T . Then

(189) lim
T→−∞

lim
n→∞n

(
f (n)

t − f
)= g t in law

where g t is the stationary Gaussian process specified by (186) and whose mean an covariance sat-
isfy: for any test function χ :Ω→R

(190)

E

∫
Ω
χ(x)g t (x)ν(d x) =β−1

∫
Ω
χ(x)ε∗(x)ν(d x)

E

(∫
Ω
χ(x)

(
g t (x)−β−1ε∗(x)

)
ν(d x)

)2

=β−1
∫
Ω
|χ(x)|2ν(d x)

where ε∗ is given by (179)

Notice that if we quench the result in (190) (i.e. send β→ ∞), we arrive at the conclusion that
g t → 0 as t →∞ in that case. This is consistent with what happens at zero-temperature, in the
limit as ξ→ 1, see Proposition 3.9.
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