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Chapter 1

Introduction

In practice, a family of functions F is called neural/deep network or neural/deep network
architecture if it has the following characteristics.

1. F is parameterized by p real numbers: F := {x 7→ F (x;w) : w ∈ Rp} for some
fixed function F and fixed parameter dimension p and input space x ∈ X ;

2. Bounded computation: the number of elementary operations on real numbers needed
to compute F is uniformly bounded over x and w.

3. Efficient hardware implementation: standard choices for the construction of F
co-evolve with hardware developments.

4. Convenient programming interface: libraries so simple that one hour suffices, with
no prior library or even ML experience.

5. Amenable to gradient descent: a single good parameter choice w ∈ Rp can be
found easily via a first-order descent method.

Items 1 and 2 are usually treated as the standard definition after some restrictions to
“elementary operations”. These conditions are satisfied when F is defined by a directed acyclic
graph with a single source corresponding to input x, a single sink corresponding to the output,
and graph nodes perform a bounded amount of computation parametrized by w ∈ Rp; this
graph-based perspective motivates the word “network”. Equivalently, code written in a
standard library such as pytorch meets these definitions if there are no loops, no unbounded
recursion, or equivalents.

It should also be noted that Items 1 and 2 are not sufficient to characterize deep networks,
as they are also satisfied by polynomial classifiers, SVMs, and many other choices. This
suggests the importance of further items, specifically Items 3 to 5, which aim to capture what
makes deep networks different and successful. This text will not address Items 3 and 4, but
will Item 5 as a central concern.

The magic of deep networks is that if we have some data and a corresponding performance
measure R̂(w) of our selected parameters w ∈ Rp, then by further tuning w with a simple
procedure such as gradient descent (Item 5 above), we can induce R(w) to also be small,
where R corresponds to our performance on data we have not seen. Here are two examples.
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6 CHAPTER 1. INTRODUCTION

Example 1.1 (Prompt-based image generation). The popular software DALL-E 2 takes
an english sentence (the x ∈ X ), passes it through a complicated x 7→ F (x;w) where
w ∈ Rp with p ≈ 232, and outputs a 1024× 1024 image with 3 color channels (Ramesh
et al., 2022). Even though there are almost 109 training examples, this seemingly
large number is dwarfed by the magnitude of joint input and output spaces: we have
a vanishingly sparse cover of all reasonable input/output pairs. But of even greater

concern, it is not clear how to even define R̂ and R, let alone minimize R̂ and show
that R is also small, and moreover analyze the full procedure. 3

Example 1.2 (Protein folding). AlphaFold uses similarly complicated F and huge
w ∈ Rp to convert the amino acid sequence of a protein (the x ∈ X ) into a three-
dimensional description of the protein (i.e., how the protein is “folded”) (Jumper et al.,

2021). In this case, R̂ and R can be defined in a variety of reasonable ways, but are
very costly: sometimes it requires a large amount of equipment and scientific expertise
to produce a few accurate input/output pairs. Due to this expense, the set of labeled
examples is not only small, it is biased (e.g., since analyzing certain proteins seems
more beneficial to humans), meaning it is not a uniform sampling of the collection of
proteins across all species. Despite this, AlphaFold happily outputs folding information
for all amino acid sequences it is fed, the shock being its accuracy on R (which can
then be checked) despite the seen and unseen data having different structure. 3

1.1 Scope of this book

The tools in this book are from being able to analyze ????; the focus is summarized as
follows.

1. This book will primarily analyze the simple feed-forward architectures in Definition 1.3.
A few other architectures will be discussed in [todo 1/93] .

2. The focus is on arguing why R can be made small, via a decomposition of R which has
small R̂ as a subproblem, given below in eq. (1.4).

3. The goal is to present mathematical material is tools with short proofs and flexible
usage, and hopefully to de-emphasize specific dogma. This also means some results are
omitted simply because the author could not produce a short proof.

4. Wherever possible, bounds are presented with data- and algorithm-sensitive quantities.

5. Bridging old and new: deep networks have been investigated many times in waves, each
time bringing new ideas, but often they are not connected across waves. An explicit
example is [todo 2/93] .

Standard feedforward architectures are as follows.
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1.1. SCOPE OF THIS BOOK 7

Definition 1.3 (Feedforward networks.). A feedforward architecture has w =
((W1, . . . ,WL), (b1, . . . , bL)), a tuple of matrices and vectors, the weights (Wi)

L
i=1 and

biases (bi)
L
i=1, and computes

F (x;w) := σL(WLσL−1(WL−1 · · ·σ1(W1x+ b1) · · ·+ bL−1) + bL),

where (σi)
L
i=1 are fixed nonlinear functions (also called activations or transfer functions).

A common example is for each σi to apply a single function coordinate-wise, popular
examples being the ReLU z 7→ max{0, z} and the sigmoid z 7→ 1/(1 + exp(−z)). The
gates can also be multi-variate, another common choice being the softmax mapping
v 7→ exp(v)/

∑
j exp(vj), where the numerator is applied coordinate-wise, but the

denominator needs information from each input.
A typical simplification is to remove the biases, and also consider only two layers,
written as

x 7→ aTσ(V x),

where a ∈ Rm and V ∈ Rm×d. 3

There is significant focus in these notes on this two-layer setup because the higher-layer
constructions often have strictly worse analysis (at present), in contrast with practice.

The decomposition of R is now given as follows. The starting point is that we would like
to minimize R, over data we have not seen, but only have access to R̂, which uses data we
have seen. For convenience define a mapping f̂ := F (·;w), where w ∈ Rp is chosen via some

algorithm aiming to minimize R̂ (for example, gradient descent). To get a better handle on
R, let f := F (·; w̄) denote an ideal mapping which does very well on R (and thus we can
only handle f mathematically, it is not something our algorithms can access). Using f , we

can decomposose R(f̂) as

R(f̂) = R(f̂)− R̂(f̂) (generalization, Part III)

+ R̂(f̂)− R̂(f) (optimization, Part II)

+ R̂(f)−R(f) (generalization, Part III)

+R(f) (approximation, Part I). (1.4)

The main content of this book is organized around this decomposition; the idea is that
we can show R(f̂) is small by showing the four terms in the right hand side are all small.
Unfortunately, there is evidence that this classical decomposition is in fact unable to analyze
deep learning; as follows is concrete obstruction.

Remark 1.5 (Standard setup and interpolation). A standard refinment to this setup is
statistical learning theory : suppose future and past data are drawn IID from a common
distribution, whereby R̂(f̂)→ R(f̂) and R̂(f)→ R(f) as n→∞ under a variety of
regularity conditions, as discussed in Part III.
By contrast, as revealed empirically (Neyshabur et al., 2014; Zhang et al., 2017), it is

often the case that R̂(f̂) = 0≪ R(f) ≈ R(f̂); ostensibly this is outside the purview
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8 CHAPTER 1. INTRODUCTION

of eq. (1.4), which seems to need R̂ ≈ R in order to be effective. This setting is
sometimes called interpolation and has attracted considerable recent attention (Belkin
et al., 2018). 3

Another standard criticism is that the various components of eq. (1.4) or simply that
concerns are too compartmentalized, and a tight analysis is impossible. [todo 3/93]

To circumvent these issues, the present perspective again focuses on data- and algorithimic-
sensitve complexity terms, and on treating bounds as tools. For instance, as will be seen in
[todo 4/93]

1.2 Status and purpose of deep learning theory

Bad news. The practical successes in ???? were not only produced without mathematical
understanding of their components, they moreover were evolutions of a sequence of prior
architectures and training practice which in turn were also produced without mathematical
understanding. As such, is mathematical understanding necessary, and is there any way for
this understanding to stop falling further and further behind?

One perspective is that theory must fundamentally change in its approach; this is already
evidence by the main volume of works being phenomenological : identifying an empirical
phenomenon and then producing mathematical analysis capturing some aspect, possibly
after simplification, and not attempt to analyze the full end-to-end training in generality
(i.e., showing R(f̂) is small under practical conditions). This is in fact the perspective of
Remark 1.5, which to date has only produced mathematical analyses for linear predictors
with simplified (usually Gaussian) data. This approach too is without pitfalls, since for

instance the applied community has stopped the practice of achiving R̂(f̂) ≈ 0 at all costs,

and now is again achieving something closer to R̂(f̂) ≈ R(f̂).

Good news? With the preceding in mind, why study deep learning theory?

1. Deep networks are deployed throughout the world now, and therefore it is essential
— for safety and sanity — to understand them and their weaknesses. Mathematical
analysis — even of the phenomological sort — can help with this, even without being a
complete characterization.

2. Analyzing deep learning requires new mathematical insights, and this insights can feed
back into other areas of machine learning and mathematics. [todo 5/93]

3. Math is fun.
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Approximation

9





Chapter 2

Constructive approximation with
shallow networks

Let’s start by trying to make the definition of approximation precise. As in the introduction
(and in particular eq. (1.4)), our goal is to select a predictor f̂ ∈ F so that R(f) is small,

where R measures performance on data we have not seen, whereas we only have access to R̂,
a performance criterion on data we have seen. Equation (1.4) decomposes R(f) into separate

concerns, where optimization and generalization ensure that f̂ satisfies R(f) ≈ R(f) for
some good choice f ∈ F — for instance, e.g., R(f) ≈ inff∈F R(f) ≈ R(f̄) — whereas the
goal of approximation is to argue that inff∈F R(f) can be made small.

What is R? There are many ways to proceed when trying to make this problem precise;
let’s consider two natural choices.

1. Perform well for some fixed future R. One possible goal is to show that certain
network architectures perform well for certain specific well-structured choices of R. For
instance, suppose that future examples (x, y) are sampled from some distribution ν
(not necessarily related to the distributiong of seen data!), and that performance on
individual examples is measured with a nonnegative pairwise function ℓ, meaning the
individual loss or error is ℓ(f(x), y), and overall R(f) = E(x,y)∼νℓ(f(x), y). The goal in
this setting would be to produce refined theorems that are as adapted to ℓ and ν as
possible.

2. Perform well given mere guidelines for the structure of R. Suppose that we
only know a little bit about R, for instance it is again an expectation, but we know
nothing about the distribution, and also no specifics about the loss ℓ, but instead that
it is merely Lipschitz (or satisfies some other basic regularity). In this situation, we
instead ask for inff∈F R(f) to be close to some other infg∈GR(g), for instance if G
denotes all continuous functions. As developed in the exercises [todo 6/93] , one can
prove a variety of theorems of the form

sup
g∈G

inf
f∈F
∥f − g∥ ≈ 0 =⇒ inf

f∈F
R(f) ≈ inf

g∈G
R(g)

for a variety of compatible regularity conditions on F , G, ∥ · ∥, and R.

11
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12CHAPTER 2. CONSTRUCTIVE APPROXIMATION WITH SHALLOW NETWORKS

Historically, the community mainly focused on guarantees of the second type. Unfortu-
nately, these guarantees intrinsically scale exponentially with dimension (von Luxburg and
Bousquet, 2004), which makes them completely ineffective at capturing the good properties
of deep networks, which shine in high-dimension settings. [todo 7/93]

What is F? In this chapter and the subsequent one, we will restrict to feedforward networks
and standard activations. But even beyond this, there are many important ways to restrict F ,
with major consequences on how the approximation component fits together with optimization
and generalization (and achieves the promised goal of an overall tight analysis).

1. Models reached by gradient descent (or some other standard training method).
These methods do not consider every possible network of a fixed architecture, they
consider a very complicated subset. Unfortunately, the community lacks refined under-
standing of this subset, though a few key properties are starting to emerge; e.g., it is
possible it can be captured via a complicated norm centered around initialization.

2. Models of low norm, the aforementioned surrogate for “reached by gradient descent”.
Here there are already many questions, based on sensitivity to initialization, how to
balance the norms of different layers, etc.

3. All models of some fixed architecture, meaning the weights can be arbitrary. This
is the classical setup, and we’ll cover it in parts of this chapter, but it can often seem
loose or insensitive to data, and was a key part of the criticisms against the general
learning-theoretic approach (Zhang et al., 2017).

2.1 Folklore elementary approximations

As a warm-up, we will establish two approximation results, one in R and one in Rd, both of
which are impractical but come with simple, intuitive proofs.

Proposition 2.1. Suppose g : R→ R is ρ-Lipschitz. For any ϵ > 0, there exists a 2-
layer network f with ⌈ρ

ϵ
⌉ threshold nodes z 7→ 1[z ≥ 0] so that supx∈[0,1] |f(x)−g(x)| ≤ ϵ.

The proof is intuitive: grid the space and stack bricks [todo 8/93] .

Proof. Define width m := ⌈ρ
ϵ
⌉, biases and bi := (i−1)ϵ/ρ for i ∈ {1, . . . ,m}, outer weights

a1 = g(b1), ai = g(bi)− g(bi−1),

and a 2-layer network f(x) :=
∑m

i=1 ai1[xi ≥ bi]. Then for any x ∈ [0, 1], letting k be the
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2.1. FOLKLORE ELEMENTARY APPROXIMATIONS 13

largest index so that bk ≤ x, then f is constant along [bk, x], and

|g(x)− f(x)| ≤ |g(x)− g(bk)|+ |g(bk)− f(bk)|+ |f(bk)− f(x)|

≤ ρ|x− bk|+

∣∣∣∣∣∣g(bk)−
k∑

i=0

ai

∣∣∣∣∣∣+ 0

≤ ρ(ϵ/ρ) +

∣∣∣∣∣∣g(bk)− g(b0)−
k∑

i=1

(g(bi)− g(bi−1))

∣∣∣∣∣∣
= ϵ.

2

Remark 2.2. This construction has already lost something special and important: the
gridding is non-adaptive, and in particular pays for flat regions. This is a weakness
of the proof, and not inherent to neural network approximation. Notably, polynomial
approximaton does pay for flat regions, and for instance approximating the absolute
value requires O(1/ϵ) degree polynomials but just two ReLUs [todo 9/93] . 3

Now let’s handle the multivariate case. We will replicate the univariate approach: we will
increment function values when the target function changes. In the univariate case, we could
“localize” function modifications, but in the multivariate case by default we will modify an
entire halfspace at once. To get around this, we use an additional layer.

Theorem 2.3. Let ρ-Lipschitz g : Rd → R and ϵ > 0 be given. Then there exists a

3-layer network f with Ω
([

ρ/ϵ
]d)

ReLU nodes so that
∫
[0,1]d
|f(x)− g(x)|dx ≤ 2ϵ.

Before giving the proof, a few remarks are in order.

Remark 2.4. • This proof suffers explicitly from the curse of dimension (expo-
nential dependence on d, which also appears in the aforementioned lower bounds
(Luxburg and Bousquet 2004)). Note CIFAR has d = 3072; not only is this
dependence catastrophic, but it makes the construction irrelevant in practice,
where deep networks seem to shine particularly when data has high dimension.
arbitrary continuous functions, and makes this irrelevant in practice.

• The construction uses three layers and not two. While a later proof will use only
two, three layers entail interesting consequences. In particular, this construction
has an inner construction with indicators on rectangles, and uses 4d+ 1 ReLUs
in this step, but repeating this with one fewer layer seems to require exponentiall
many ReLUs [todo 10/93] .

• The construction has not only large cardinality, but also large weight norm.
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14CHAPTER 2. CONSTRUCTIVE APPROXIMATION WITH SHALLOW NETWORKS

• The approximation is only on average (the L1 distance), whereas what we want,
in particular to approximate various distributions, is a supremum or uniform
norm, as in [todo 11/93] .

• Recall the discussion of flat regions following the proof of ??; unfortunately, in
this multivariate case, it is not clear how to make an adaptive construction. [todo
12/93]

3

Proof (Proof of Theorem 2.3). [todo 13/93] Pick k := ⌈ρ/(ϵ
√
d)⌉ and m := kd, and

let P = (R1, . . . , Rm) be a partition of [0, 1)d into half-open cubes of side length 1/k;
for concreteness, suppose cube Rj has corners uj ∈ Rd and vj ∈ Rd, meaning Rj is a
product of d intervals of the form ×d

i=1[uj,i, vj,i). Define aj := g(uj), and consider the
piecewise-constant function h : Rd → R defined as

h(x) :=
m∑
j=1

aj1[x ∈ Rj];

by construction, for any x ∈ [0, 1)d, letting Rs denote the unique partition element with
x ∈ Rs,

|h(x)− g(x)| = |as − g(x)| = |g(us)− g(x)| ≤ ρ∥us − x∥ ≤ ϵ.

As such, the proof is complete if for each Rj, we can construct a 3-layer ReLU network fj
with ∫

[0,1)d

∣∣fj(x)− 1[x ∈ Rj]
∣∣ dx ≤ τ :=

ϵ∑
j |as|

,

since the choice f(x) :=
∑

j ajfj(x) is also a 3-layer ReLU network, and satisfies∫
[0,1)d
|f(x)− g(x)| dx ≤

∫
[0,1)d
|f(x)− h(x)| dx+

∫
[0,1)d
|h(x)− g(x)| dx

≤
∫
[0,1)d

∣∣∣∣∣∣
∑
j

aj(fj(x)− 1[x ∈ Rj])

∣∣∣∣∣∣ dx+ ϵ

≤
∑
j

|aj|
∫
[0,1)d

∣∣fj(x)− 1[x ∈ Rj]
∣∣ dx+ ϵ

≤
∑
j

|aj|τ + ϵ ≤ 2ϵ.

(If
∑

j |aj| = 0, then the constant function network f(x) = 0σ(0Tx) suffices.) As such, the
remainder of the proof will show how to construct (fj)

m
j=1.

Fix any j, and corresponding fj and Rj = [uj, vj); since j is fixed, the rest of the proof
will drop j for convenience when unambiguous. Let γ > 0 be arbitrary, and for each
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i ∈ {1, . . . , d}, define

fγ,i(z) := σ

(
z − (ui − γ)

γ

)
− σ

(
z − ui

γ

)
− σ

(
z − vi
γ

)
+ σ

(
z − (vi + γ)

γ

)

∈


{1} z ∈ [ui, vi],

{0} z ̸∈ [aj − γ, bj + γ],

[0, 1] otherwise,

and additionally

fγ(x) := σ

∑
j

fγ,i(xi)− (d− 1)

 .

(Note that a second hidden layer is crucial in this construction, it is not clear how to
proceed without it, certainly with only O(d) nodes. Later proofs can use only a single
hidden layer, but they are not constructive, and need O(d) nodes.) Note that fγ ≈ 1Rj

as
desired, specifically

fγ(x) =


1 x ∈ Rj,

0 x ̸∈ ×i[ui − γ, vi + γ],

[0, 1] otherwise,

from which it follows that∫
[0,1)d

∣∣fγ(x)− 1Rj
(x)
∣∣ dx =

∫
Rj

|fγ − 1Rj
|+
∫
×i[ui−γ,vi+γ]\Rj

|fγ − 1Rj
|+
∫
Rd\×i[ui−γ,vi+γ]

|fγ − 1Rj
|

≤ 0 +
d∏

i=1

(vi − ui + 2γ)−
d∏

i=1

(vi − ui) + 0

≤ O(γ),

which means we can ensure ∥1Rj
− fγ∥1 ≤ ϵ∑

i |αi| by choosing sufficiently small γ, which

completes the proof. 2

2.2 Universal approximation with two layers

Theorem 2.3 had a few weaknesses: it used average distance (L1 and not supremum/uniform
norm), a specific activation, and three layers. This section will present a classical universal
approximation theorem which resolves all issues.

Recall that the proof of Theorem 2.3 constructed localized bumps via the product

x 7→
d∏

i=1

1[x ≥ ui] · 1[x < vi];

as such, it seems that multiplication is a useful operation. The proof scheme here, based
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on an idea from (Hornik et al., 1989), will invoke the Stone-Weierstrass theorem, which
establishes that polynomial-like classes of functions are universal approximators. [todo 14/93]

Theorem 2.5 (Universal approximation). Suppose σ : R→ R is continuous and not
a polynomial. Then for any continuous function g : Rd → R and any ϵ, there exists a
2-layer biased network f : Rd → R using σ nodes with |f(x)−g(x)| ≤ ϵ for all x ∈ [0, 1]d.

Before discussing the proof, a variety of remarks are in order.

Remark 2.6. • Necessity. We can only approximate along a compact set: for
instance, we need infinitely many ReLUs to approximate r 7→ sin(r) uniformly
over R. We need σ to be not a polynomial: if it is a polynomial of some fixed
degree k, then x 7→ aTσ(V x+b) is also a k-degree polynomial, which is inadequate
(e.g., it can’t uniformly approximate k + 1 degree polynomials). We need two
layers: if we have only x 7→ σ(vTx + b) and σ is a ReLU, then we can not
approximate a function which is not monotone along v.

• The name “universal approximation”. This goes back to our discussion at
the start of the chapter: as in exercises [todo 15/93] , by approximating continuous
functions uniformally, we can ensure inff∈F R(f) is small for a wide variety of
definitions of R.

3

The proof will proceed in two stages: first we will quickly check the claim for exponential
activations, and then reduce other activations to exponentials.

Lemma 2.7. Given any continuous g : Rd → R and ϵ > 0, there exists a 2-layer
network f : Rd → R with σ(r) = exp(r) so that |f(x)− g(x)| ≤ ϵ for all x ∈ [0, 1]d.

Proof. As mentioned above, the proof proceeds via opaque invocation of a heavyweight
tool: the Stone-Weierstrass theorem (Folland, 1999, Theorem 4.45). To this end, define
our function class F as

F :=
{
x 7→ aT exp(V x) : m ≥ 0, a ∈ Rm, V ∈ Rm×d

}
.

To apply Stone-Weierstrass, it suffices to check four conditions, which completes the proof.

1. Every f ∈ F is continuous: this is direct since exp is continuous, the linear mappings
are continuous, and composition preserves continuity.

2. For every x ∈ [0, 1]d, there exists f ∈ F with f(x) ̸= 0: for this one, it suffices to
pick

(
x 7→ exp(0Tx) = 1

)
∈ F .

3. F separates points, meaning for every x ̸= x′, there exists f ∈ F with f(x) ̸= f(x′);
for this it suffices to define

f(z) := exp(
〈
z − x′, x− x′〉) = exp(

〈
−x′, x− x′〉) exp(〈z, x− x′〉) ∈ F ,
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which satisfies f(x) = 1 ̸= exp(∥x− x′∥2) = f(x′).

4. F is closed under vector space operations and product: for this let b, c ∈ R and
f(x) = aT exp(V x) ∈ F and h(x) = uT exp(Wx) be given, and note

baT exp(V x) + cuT exp(Wx) =

[
ba
cu

]
exp

[V
W

]
x

 ∈ F ,
whereas for multiplication

(
aT exp(V x)

) (
uT exp(Wx)

)
=

 m∑
j=1

aj exp(v
T

jx)

 m∑
i=1

ui exp(w
T

i x)


=

m∑
j=1

n∑
i=1

ajui exp
(
(vj + wi)

Tx
)
∈ F .

2

Proof (Proof of Theorem 2.5). The proof proceeds in two steps.

1. Thanks to Lemma 2.7, there exists h(x) := aT exp(V x) such that |h(x)− g(x)| ≤ ϵ/2
for every x ∈ [0, 1]d.

2. Use [todo 16/93] to obtain p(r) :=
∑

i uiσ(wix + bi) with |p(r) − exp(r)| ≤ ϵ/(1 +
2
∑

j |aj|) for |r| ≤ maxj ∥vj∥1. Then

f(x) :=
m∑
j=1

ajp(v
T

jx) =
m∑
j=1

n∑
i=1

ajuiσ(wiv
T

jx+ bi)

is a 2-layer biased network with σ activations, and satisfies for any x ∈ [0, 1]d

|f(x)− h(x)| ≤
m∑
j=1

|aj| ·
∣∣∣exp(vT

jx)− p(vT

jx)
∣∣∣ ≤ ϵ

2
.

Combining the two steps, |f(x)− g(x)| ≤ |f(x)− h(x)|+ |h(x)− g(x)| ≤ ϵ. 2

2.3 Infinite-width networks, Fourier transforms, and

the Barron norm

This section studies infinite-width representations.

• They have become popular again recently, and thus should be taught.
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• They typically allow the approximated function to be written with equality, further
helping alleviate and study looseness in the approximation approaches.

• They can be converted to finite-width networks via sampling (cf. Section 2.4).

• They sometimes exhibit slight data adaptivity.

As a warm-up, let’s produce the infinite-width analog to Proposition 2.1

Proposition 2.8. Suppose g : R→ R is continuously differentiable, and g(0) = 0. If

x ∈ [0, 1], then g(x) =
∫ 1

0
g′(b)1[x ≥ b] db.

Proof. By FTC and g(0) = 0 and x ∈ [0, 1],

g(x) = g(0) +

∫ x

0

g′(b)db = 0 +

∫ 1

0

1[x ≥ b]g′(b) db.

2

Let’s compare this closely to the grid-based univariate approximation bound from Propo-
sition 2.1.

• It may seem Proposition 2.8 has a much shorter proof, but it invokes FTC, and in fact,
the construction of the Riemann integral is similar to the gridding in Proposition 2.1,
so they are in fact nearly the same proof.

• As will be argued shortly, the “complexity measure” corresponding to Proposition 2.8 is(∫ 1

0
|g′(b)| db

)2
/ϵ, and corresponds to ρ/ϵ, the number of nodes from Proposition 2.1.

The key difference between these two is that the integral is sensitive to flat regions, it
only pays for the variation of the function. [todo 17/93]

• Here is a quick calculation on how to do the sampling. Define a normalization constant
Z :=

∫ 1

0
|g′(b)| db, and note |g′(b)|/Z defines a probability density over [0, 1]. Sampling

bj from this distribution and defining aj := Zsgn(g′(bj))/m, we can define a network

f(x) :=
∑
j

aj1[x ≥ bj],

which is an unbiased estimate of g:

Ef(x) =
m∑
j=1

Ebjaj1[x ≥ bj] = m

∫ 1

0

Zsgn(g′(b))

m
1[x ≥ b]

|g′(b)|
Z

db =

∫ 1

0

g′(b)1[x ≥ b] = g(x).

Using the tools in Section 2.4 (cf. [todo 18/93]) gives the sampling estimate.

Now let’s handle the multivariate case, which we’ll do with Fourier transforms. As with
Proposition 2.8, our goal is to rewrite the network with equality, and give an estimate of its
mass (the integral of the absolute value of its weights).

Since this construction will be the only place in these notes where complex numbers and
Fourier transforms appear, the following lemma captures all properties that will be used.
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Lemma 2.9 (Basic Fourier and complex properties (Folland, 1999)). Throughout, let
g : Rd → R with

∫
Rd |g| <∞ be given (henceforth “g is integrable”), and let | · | denote

the absolute value of a complex number, meaning |b + ic| =
√
b2 + c2, and define the

Fourier transform g̃ : Rd → C of g as

g̃(w) =

∫
Rd

exp(−2πiwTx)g(x) dx.

1. (Inversion.) If
∫
Rd |g̃(w)| dw <∞, then

g(x) =

∫
Rd

exp(2πiwTx)g̃(w) dw.

2. (Derivatives.) Given w, then 2π∥w∥ · |g̃(w)| = ∥∇̃g∥.

3. (Euler formula.) If r ∈ R, then exp(ir) = cos(r) + i sin(r).

4. (Polar decomposition.) Given integrable h : Rd → C, there exists an integrable
function θg : Rd → C with |θg| ≤ 1 and g(x) = |g(x)| exp(2πiθg(x)) almost
everywhere.

5. (Real parts and integration.) Let Re(b+ ic) = b denote the real part of a complex
number. Then for a complex-valued function h : Rd → C which is integrable,

Re
[∫

Rd

h(x) dx
]
=

∫
Rd

Re
[
h(x)

]
dx.

Rather than giving the statement and continuing with its proof, it will be proved first. To
start, consider the Fourier inversion formula from Lemma 2.9: if g and g̃ are integrable, then

g(x) =

∫
exp(2πiwTx)g̃(w) dw;

this is already an infinite width network, albeit using non-standard, complex activations.
Our approach will simply be to rewrite these complex activations with thresholds (meaning
σ(z) := 1[z ≥ 0]).

1. Removing complex numbers. Since g is real-valued, we can make the integral
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real-valued, and use the polar decomposition of g̃ to isolate all complex terms:

g(x) = Re
[
g(x)

]
= Re

[∫
exp(2πiwTx)g̃(w) dw

]
=

∫
Re
[
exp(2πiwTx)|g̃(w)| exp

(
2πiθg̃(w)

)]
dw

=

∫
Re
[
exp

(
2πi(wTx+ θg̃(w)

)
|g̃(w)|

]
dw

=

∫
|g̃(w)|Re

[
cos(2π(wTx+ θg̃(w)) + i sin(2π(wTx+ θg̃(w))|g̃(w)|

]
dw

=

∫
|g̃(w)| cos

(
(2π(wTx+ θg̃(w)

)
dw, (2.10)

which is an infinite-width network with real activations and weights, but still using a
nonstandard activation, cos.

2. Introducing thresholds. Rewriting cos is now a univariate approximation question,
which we can handle as we did before with FTC in Proposition 2.8, albeit with some
extra effort since the integration domain is not necessarily nonnegative. Focusing on
the integrand within eq. (2.10),

cos
(
(2π(wTx+ θg̃(w)

)
− cos

(
2πθg̃(w)

)
= −2π

∫ wTx

0

sin
(
2π(b+ θg̃(w))

)
db

= −2π
∫ ∥w∥

0

sin
(
2π(b+ θg̃(w))

)
1[wTx ≥ b] db

+ 2π

∫ 0

−∥w∥
sin
(
2π(b+ θg̃(w))

)
1[wTx ≤ b] db

= 2π

∫ ∥w∥

0

[
sin
(
2π(−b+ θg̃(−w))

)
− sin

(
2π(b+ θg̃(w))

)]
1[wTx ≥ b] db.

(2.11)

We are done: combining the removal of complex numbers from eq. (2.10) with the
replacement of cos with threshold activations in σ gives a way to rewrite g as an infinite-width
threshold activation network, summarized as follows.

Theorem 2.12. Suppose g, g̃ ∈ L1 and g(0) = 0, and define a parameter density

q(w, b) := 2π|g̃(w)|
(
sin
(
2π(−b+ θg̃(−w)

)
− sin

(
2π(b+ θg̃(w))

))
1[0 ≤ b ≤ ∥w∥].

Then

g(x) =

∫∫
q(w, b)1[wTx ≥ b] db dw.
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and moreover
∫∫
|q(w, b)| db dw ≤ 2

∫
∥∇̃g∥ dw.

Remark 2.13. [todo 19/93]
[todo 20/93] 3

Proof. Let g, g̃, q be as in the statement. The key equality g(x) =
∫∫

q(w, b)1[wTx ≥
b] db dw is simply the combination of eqs. (2.10) and (2.11) after unpacking the definition
of q. Lastly, to calculate the mass of q, using Lemma 2.9 and | sin | ≤ 1,∫∫

|q(w, b)| db dw ≤ 2π

∫ ∫ ∥w∥

0

2|g̃(w)| db dw

= 4π

∫
∥w∥ · |g̃(w)| dw

= 2

∫
∥∇̃g∥ dw.

2

To close, here are a few estimates for
∫
∥∇̃g(w)∥ dw.

• Gaussians. Using standard Fourier transform calculations (Folland, 1999, e.g., Propo-
sition 8.24)

g(x) = (2πσ2)d/2 exp(−∥x∥
2

2σ2
) =⇒ g̃(w) = exp(−2π2σ2∥w∥2),

meaning tg is an unnormalized Gaussian with variance (4π2σ2)−1. Using normalization
Z := (2πσ2)−d/2 and Holder gives∫

∥w∥ · |g̃(w)| dw = Z

∫
Z−1∥w∥ · |g̃(w)| dw

≤ Z

(∫
Z−1∥w∥2|g̃(w)| dw

)1/2

= Z

(
d

4π2σ2

)1/2

=

√
d√

2π(2πσ2)(d+1)/2
.

Consequently, if 2πσ2 ≥ 1, then
∫ ∥∥∥∇̃g(w)∥∥∥ dw = O(

√
d). On the other hand, general

radial functions have exponential ∥∇̃g(w)∥ (Barron, 1993, Comment IX.9); this is
circumvented here since ∥x∥ ≤ 1 and hence the Gaussian is quite flat.

• Further brief example
∫ ∥∥∥∇̂f(w)∥∥∥ dw calculations:

– A few more from (Barron, 1993, Section IX): radial functions (IX.9), compositions
with polynomials (IX.12) and analytic functions (IX.13), functions with O(d)
bounded derivatives (IX.15).
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– Barron also gives a lower bound for a specific set of functions which is exponential
in dimension.

– Further comments on Barron’s constructions can be found in (Lee et al., 2017).

– General continuous functions can fail to satisfy
∫ ∥∥∥∇̃g(w)∥∥∥ dw <∞, but we can

first convolve them with Gaussians and sample the resulting nearby function; this
approach, along with a Barron theorem using ReLUs, can be found in (Ji et al.,
2020). [todo 21/93]

2.4 Sampling from infinite-width networks

To close this chapter, this section gives a rather technical approach to sampling a finite-width
network from an infinite-width one. Though Section 2.3 made the task sound like sampling
from a continuous density, in general the densities will not be continuous; for instance, if we
do not require g(0), then we should account for g(0) within the weight distribution. Lastly,
as a further technical point, the tools in this section will not yield uniform norms, but rather
squared L2 norms, but similar techniques can also yield uniform norm guarantees [todo 22/93]

[todo 23/93]
Now we will show how to obtain a finite-width representation from an infinite-width

representation. Coarsely, given a representation
∫
σ(wTx)g(w)dw, we can form an estimate

m∑
j=1

sjσ̃(w
T

jx), where sj ∈ ±1, σ̃(z) = σ(z)

∫
|g(w)|dw,

by sampling wj ∼ |g(w)|/
∫
|g(w)|dw, and letting sj := sgn(g(wj)), meaning the sign corre-

sponding to whether w fell in a negative or positive region of g. In expectation, this estimate
is equal to the original function.

Here we will give a more general construction where the integral is not necessarily over
the Lebesgue measure, which is useful when it has discrete parts and low-dimensional sets.
This section will follow the same approach as (?), namely using Maurey’s sampling method
Lemma 2.16, which gives an L2 error; it is possible to use these techniques to obtain an
L∞ error via the “co-VC dimension technique” (Gurvits and Koiran, 1995), but this is not
pursued here.

To build this up, first let us formally define these infinite-width networks and their mass.

Definition 2.14. n infinite-width shallow network is characterized by a signed measure
ν over weight vectors in Rp:

x 7→
∫

σ(wTx)dν(w).

The mass of ν is the total positive and negative weight mass assigned by ν: |ν|(Rp) =
ν−(Rp) + ν+(Rp). 3
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Remark 2.15. We can connect this to the initial discussion of
∫
σ(wTx)g(w)dw by

defining a signed measure ν via dν = g, and the mass is once again |ν|(Rp) =
∫
|g(w)|dw,

and the positive and negative parts ν− and ν+ are simply the regions where g is
respectively negative (or just non-positive) and positive.
In the case of general measures, a decomposition into ν− and ν+ is guaranteed to exist
(Jordan decomposition, Folland 1999), and is unique up to null sets.
The notation here uses Rp not Rd since we might bake in biases and other feature
mappings. 3

To develop sampling bounds, first we give the classical general Maurey sampling technique,
which is stated as sampling in Hilbert spaces.

Suppose X = EV , where r.v. V is supported on a set S. A natural way to “simplify” X
is to instead consider X̂ := 1

k

∑k
i=1 Vi, where (V1, . . . , Vk) are sampled iid. We want to argue

X̂ ≈ X; since we’re in a Hilbert space, we’ll try to make the Hilbert norm ∥X − X̂∥ small.

[todo 24/93]

Lemma 2.16 (Maurey). Let X = EV be given, with V supported on S, and let
(V1, . . . , Vk) be iid draws from the same distribution. Then

E
V1,...,Vk

∥∥∥∥∥∥X − 1

k

∑
i

Vi

∥∥∥∥∥∥
2

≤ E ∥V ∥2

k
≤ supU∈S ∥U∥2

k
,

and moreover there exist (U1, . . . , Uk) in S so that∥∥∥∥∥∥X − 1

k

∑
i

Ui

∥∥∥∥∥∥
2

≤ E
V1,...,Vk

∥∥∥∥∥∥X − 1

k

∑
i

Vi

∥∥∥∥∥∥
2

.

After proving this, we’ll get a corollary for sampling from networks. This lemma is widely
applicable; e.g., we’ll use it for generalization too. It was first used used for neural networks
by (Barron, 1993) and (Jones, 1992), and attributed to Maurey by (Pisier, 1980).
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Proof. Let (V1, . . . , Vk) be IID as stated. Then

E
V1,...,Vk

∥∥∥∥∥∥X − 1

k

∑
i

Vi

∥∥∥∥∥∥
2

= E
V1,...,Vk

∥∥∥∥∥∥1k
∑
i

(Vi −X)

∥∥∥∥∥∥
2

= E
V1,...,Vk

1

k2

∑
i

∥Vi −X∥2 +
∑
i ̸=j

〈
Vi −X, Vj −X

〉
= E

V

1

k
∥V −X∥2

= E
V

1

k

(
∥V ∥2 − ∥X∥2

)
≤ E

V

1

k
∥V ∥2 ≤ sup

U∈S

1

k
∥U∥2 .

To conclude, there must exist (U1, . . . , Uk) in S so that
∥∥X − k−1

∑
i Ui

∥∥2 ≤
EV1,...,Vk

∥∥X − k−1
∑

i Vi

∥∥2. (“Probabilistic method”.) 2

Now let’s apply this to infinite-width networks in the generality of Definition 2.14. We
have two issues to resolve.

• Issue 1: what is the appropriate Hilbert space?

– Answer: We’ll use ⟨f, g⟩ =
∫
f(x)g(x)dP (x) for some probability measure P on

x, so ∥f∥2L2(P ) =
∫
f(x)2dP (x).

• Issue 2: our “distribution” on weights is not a probability!

– Example: consider x ∈ [0, 1] and sin(2πx) =
∫ 1

0
1[x ≥ b]2π cos(2πb)db. There are

two issues:
∫ 1

0
|2π cos(2πb)|db ̸= 1, and cos(2πb) takes on negative and positive

values.

– Answer: we’ll correct this in detail shortly, but here is a sketch; recall also the
discussion in Definition 2.14 of splitting a measure into positive and negative
parts. First, we introduce a fake parameter s ∈ {±1} and multiply 1[x ≥ b]
with it, simulating positive and negative weights with only positive weights;
now our distribution is on pairs (s, b). Secondly, we’ll normalize everything by∫ 1

0
|2π cos(2πb)|db.

Let’s write a generalized shallow network as x 7→
∫
g(x;w)dµ(w), where µ is a nonzero

signed measure over some abstract parameter space Rp. E.g., w = (a, b, v) and g(x;w) =
aσ(vTx+ b).
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• Decompose µ = µ+ − µ− into nonnegative measures µ± with disjoint support (this is
the Jordan decomposition (Folland, 1999), which was mentioned in Definition 2.14.

• For nonnegative measures, define total mass ∥µ±∥1 = µ±(Rp), and otherwise ∥µ∥1 =
∥µ+∥1 + ∥µ−∥1.

• Define µ̃ to sample s ∈ {±1} with Pr[s = +1] = ∥µ+∥1
∥µ∥1 , and then sample g ∼ µs

∥µs∥1 =: µ̃s,

and output g̃(·;w, s) = s∥µ∥1g(·;w).

This sampling procedure has the correct mean:

∫
g(x;w)dµ(w) =

∫
g(x;w)dµ+(w)−

∫
g(x;w)dµ−(w)

= ∥µ+∥1 Ẽ
µ+

g(x;w)− ∥µ−∥1 Ẽ
µ−

g(x;w)

= ∥µ∥1

[
Pr
µ̃
[s = +1] Ẽ

µ+

g(x;w)− Pr
µ̃
[s = −1] Ẽ

µ−
g(x;w)

]
= Ẽ

µ
g̃(x;w, s).

Lemma 2.17 (Maurey for signed measures). Let µ denote a nonzero signed measure
supported on S ⊆ Rp, and write g(x) :=

∫
g(x;w)dµ(w). Let (w̃1, . . . , w̃k) be IID draws

from the corresponding µ̃, and let P be a probability measure on x. Then

E
w̃1,...,w̃k

∥∥∥∥∥∥g − 1

k

∑
i

g̃(·; w̃i)

∥∥∥∥∥∥
2

L2(P )

≤
E ∥g̃(·; w̃)∥2L2(P )

k

≤
∥µ∥21 supw∈S ∥g(·;w)∥2L2(P )

k
,

and moreover there exist (w1, . . . , wk) in S and s ∈ {±1}m with∥∥∥∥∥∥g − 1

k

∑
i

g̃(·;wi, si)

∥∥∥∥∥∥
2

L2(P )

≤ E
w̃1,...,w̃k

∥∥∥∥∥∥g − 1

k

∑
i

g̃(·; w̃i)

∥∥∥∥∥∥
2

L2(P )

.

Proof. By the mean calculation we did earlier, g = Eµ̃ ∥µ∥sgw = Eµ̃ g̃, so by the regular
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Maurey applied to µ̃ and Hilbert space L2(P ) (i.e., writing V := g̃ and g = EV ),

E
w̃1,...,w̃k

∥∥∥∥∥∥g − 1

k

∑
i

g̃(·; w̃i)

∥∥∥∥∥∥
2

L2(P )

≤
E ∥g̃(·; w̃)∥2L2(P )

k

≤
sups∈{±1} supw∈W

{
∥µ∥1sg(·;w)

}2

L2(P )

k
.

≤
∥µ∥21 supw∈S ∥g(·;w)∥2L2(P )

k
,

and the existence of the fixed (wi, si) is also from Maurey. 2

Example 2.18 (Various infinite-width sampling bounds). 1. Suppose x ∈ [0, 1]
and f is differentiable. Using our old univariate calculation,

f(x)− f(0) =

∫ 1

0

1[x ≥ b]f ′(b)db.

Let µ denote f ′(b)db; then a sample ((bi, si))
k
i=1 from µ̃ satisfies∥∥∥∥∥∥f(·)− f(0)− ∥µ∥1

k

∑
i

si1[· ≥ bi]

∥∥∥∥∥∥
2

L2(P )

≤
∥µ∥21 supb∈[0,1] ∥1[· ≥ b]∥2L2(P )

k

=
1

k

(∫ 1

0

|f ′(b)|db

)2

.

2. Now consider the Fourier representation via Barron’s theorem:

f(x)− f(0) = −2π
∫ ∫ ∥w∥

0

1[wTx− b ≥ 0]
[
sin(2πb+ 2πθ(w))|f̂(w)|

]
dbdw

+ 2π

∫ ∫ 0

−∥w∥
1[−wTx+ b ≥ 0]

[
sin(2πb+ 2πθ(w))|f̂(w)|

]
dbdw,

and also our calculation that the corresponding measure µ on thresholds has
∥µ∥1 ≤ 2∥∇̂f(w)∥. Then Maurey’s lemma implies that there exist ((wi, bi, si))

m
i=1

such that, for any probability measure P support on ∥x∥ ≤ 1,∥∥∥∥∥∥f(·)− f(0)− ∥µ∥1
k

∑
i

si1[⟨wi, ·⟩ ≥ bi]

∥∥∥∥∥∥
2

L2(P )

≤
∥µ∥21 supw,b ∥1[⟨w, ·⟩ ≥ b]∥2L2(P )

k

≤ 4∥∇̂f(w)∥2

k
.

3
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2.5 Bibliographic notes

[todo 25/93]
[todo 26/93]
[todo 27/93]
[todo 28/93]
[todo 29/93]
[todo 30/93]
[todo 31/93]
[todo 32/93]

2.6 Exercises

2.6.1 Problems

[todo 33/93]
[todo 34/93]
[todo 35/93]
[todo 36/93]

2.6.2 Research questions

Research question 2.1 (Data adaptivity). [todo 37/93]
The results of this chapter typically need a network size scaling exponentially with dimension,
and for a few of the upper bounds, there is a matching lower bound (e.g., when approximating
continuous functions (von Luxburg and Bousquet, 2004). By contrast, deep networks seem
to flourish (especially when compared to other methods) in settings where the dimension is in
the thousands or millions. This research question is about building an approximation theory
which addresses this gap; it has both an applied component and a theoretical component.
Here are a variety of uncoordinated remarks.

• Firstly, there is an applied and theoretical component since, due to the lower bounds,
necessarily the approximated functions must be restricted in some way which as a
subset contains networks similar to those appearing in practice.

• It may seem that moving from a worst-case derivative bound (the Lipschitz constant)
in Proposition 2.1 to an average-case derivative bound (bounded variation) in Propo-
sition 2.8 constitutes a nice appearance of adaptivity; unfortunately, the issue is
obscured since this case is univariate. For instance, a generalization of this allows one
to consider functions whose various higher-order partial derivatives satisfy some norm
bound; unfortunately, this setting is insufficient to remove exponential dependence on
dimension (see for instance (Yarotsky, 2016) and things which cite it).

Matthew Buchholz
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Matthew Buchholz


Matthew Buchholz
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• Noting that approximating the indicator on a rectangle already potentially requires
exponential width with two layers (Eldan and Shamir, 2015) but polynomial width
with three layers, perhaps increasing depth (or changing the architecture in other
ways) is crucial; unfortunately, that is the approach in the previous bullet and it is
not enough, as the choice of target function class is still critical.

• There exist fixed small (even discrete) classes of functions (for instance, k-sparse
parity, as discussed later in [todo 38/93]), for which it is already interesting and
difficult to produce approximation bounds, and moreover these bounds suffice to further
imply sample complexity bounds. While more modest than the goals of this section,
perhaps they constitute a better starting point.

• Another approach is to be sensitive to the behavior of gradient descent, as in the next
chapter.

Matthew Buchholz


Matthew Buchholz




Chapter 3

Initialization and overparameterization

In Chapter 2, it was shown that various architectures can approximate continuous functions,
where the approximation complexity was always related to the number of nodes which were
needed (often exponential). The number of nodes is a poor way to measure approximation
difficulty; for instance, the goal of approximating a single ReLU by another ReLU may
seem silly from an approximation perspective, however it is an active area of research in
optimization (??), with a variety of negative results (?).

What did the perspective in Chapter 2 miss? Though it is still too early to say definitively,
it seems that standard gradient-based optimization methods prefer functions which satisfy
two competing concerns:

• the chosen network has small norm;

• the chosen network is close to initialization.

The relationship of these two objectives is delicate: the first norm is implicitly measured
against the origin, whereas the segment is measured against random initialization, which
is large and not fully cleared out in standard initialization and training setups. Further
differences between these two will be discussed in ??.

The purpose of this chapter is to investigate the second point above, meaning properties
of networks near initialization, an area which has seen immense research activity over the
past few years. While the analyses in this section are generally falsified in practice — that
is, the closeness needed far exceeds what is observed in experiments — still this perspective
captures many phenomena which were missing in classical analyses , and also predict other
interesting behaviors, for instance the benefits of large width (that is, overparameterization).
The central new object introduced in this chapter is F0, the Taylor expansion of the network
around initialization, defined as follows.

Definition 3.1. Given a prediction mapping x 7→ F (x;w) and initial parameters w0,
define the Taylor approximation at initialization as

F0(x;w) := F (x;w0) +
〈
∂̄wF (x;w0), w − w0

〉
,

where ∂̄ is the minimum norm element of the Clarke differential, and at this point in
the text can be treated as a gradient. In this chapter, the choice of derivative at 0 for
the ReLU will make no difference. [todo 39/93] 3

29
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Conventions on the initial point w0 will be discussed shortly. First, with F0 defined, the
organization of this chapter is as follows.

• Section 3.1 first shows if norm is fixed and width is increased, then networks becomes
closer and closer to their Taylor expansion F0 at initialization.

• Since networks become close to their Taylor expansions, what can these Taylor ex-
pansions approximate? Section 3.2 shows that holding Frobenius norm fixed and
increasing width is enough to approximate all continuous functions, and moreover that
this suggests the study of a corresponding family of infinite-width networks.

• Rather than studying these Taylor expansions themselves, Section 3.3 studies pairwise
inner products of the Taylor expansions on individual data points, what is normally
called the gram matrix of a kernel, and gives rise to the neural tangent kernel.

• Lastly, ?? will briefly give some estimates for the norm in a more refined way than
Section 3.2.

Remark 3.2 (Choice of initialization). The theoretical literature uses many con-
ventions, the most standard being aj ∼ Discrete(±1/

√
m), a discrete uniform dis-

tribution on −1 and +1, and vj ∼ N (0, Id/d), a continuous multivariate Gaussian
with independent coordinates and per-coordinate variance 1/d; by contrast, pytorch
defaults to aj ∼ Uniform([−1/

√
m,+1/

√
m]), meaning the continuous uniform distri-

bution over the interval [−1/
√
m, 1/

√
m], and vj has independent coordinates with

vj,i ∼ Uniform([−1/
√
d,+1/

√
d]). While the statistics of these two options are of the

same order, and while both appear interchangeably in many aspects of probability
theorem [todo 40/93] , they are not the same.
In this chapter, we will typically use aj ∼ Discrete(±1) and vj ∼ N (0, Id).
[todo 41/93] 3

Throughout this chapter, the networks will have only two layers, and moreover only the
first layer V will vary; the first choice is since, as mentioned, the corresponding bounds
only degrade with more layers, and the second is so that the prediction mapping F is still
nonlinear in the parameters. [todo 42/93]

Remark 3.3 (Random feature models). [todo 43/93] 3

A side story throughout this chapter will be the choice of scaling, meaning how to choose
the scale of the various layers, and the consequence of this choice. This topic is somewhat hard
to follow in the literature, as different choices are introduced with complicated consequences
on the setting, and the reasons are rarely given. This chapter will only introduce scaling in
Section 3.2, and attempt to justify the given choice.

[todo 44/93]
[todo 45/93]
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3.1 Near initialization means near Taylor expansion

[todo 46/93]
This section shows that the quality of approximation given by the Taylor expansion

degrades smoothly with the Frobenius norm to initialization. A key point is that this
degradation never has a factor

√
m, which will be essential to the scaling selection in

Section 3.2.
As a warm-up, consider a network with smooth activations σ.

Proposition 3.4. If σ : R→ R is β-smooth (meaning |σ′(b)− σ′(c)| ≤ β|b− c|), and
∥x∥2 ≤ 1, then for any parameters V, V0 ∈ Rm×d,

∣∣F (x; (a0, V )))− F0(x; (a0, V ))
∣∣ ≤ β∥a∥∞

2
∥V − V0∥2F .

Proof. By β-smoothness, for any r, s,

∣∣σ(r)− σ(s)− σ′(s)(r − s)
∣∣ = ∣∣∣∣∫ s

r

(
σ′(t)− σ′(s)

)
dt

∣∣∣∣ ≤ β(r − s)2

2
.

Therefore ∣∣∣F (x;V )− F (x;V0)−
〈
∇F (x;V0), V − V0

〉∣∣∣
≤
∑
j

|aj| ·
∣∣∣σ(vT

jx)− σ(vT

0,jx)− σ′(vT

0,jx)x
T(vj − v0,j)

∣∣∣
≤ ∥a∥∞

∑
j

β(vT
jx− vT

0,jx)
2

2

≤ β∥a∥∞
2
∥V − V0∥2.

2

As mentioned, a key property in Proposition 3.4 is that it scales only with ∥V − V0∥2,
and not with m. Notice that if we try to brute-force a similar argument for the ReLU, we
get a bad dependence on m.

Remark 3.5 (Incorrect ReLU brute-forcing). Let’s see how badly things go awry if we
try to brute-force the proof, even in the simplifying situation that W = V0. By similar
reasoning to the earlier ReLU simplification, [todo 47/93]∣∣F (x;V )− F0(x;V )

∣∣ = ∣∣∣〈∂̄F (x;V ), V
〉
−
〈
∂̄F (x;V0), V

〉∣∣∣
=

∣∣∣∣∣∣
∑
j

aj

(
1[vT

jx ≥ 0]− 1[vT

0,jx ≥ 0]
)
vT

jx

∣∣∣∣∣∣ . (3.6)
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A direct brute-forcing with no sensitivity to random initialization gives∣∣F (x;V )− F0(x;V )
∣∣ ≤ ∥a∥∞∑

j

∥vj∥ ≤ ∥a∥∞
√
m∥V ∥F.

We can try to save a bit by using the randomness of (aj)
m
j=1, but since Proposition 3.7

is claimed to hold for every ∥W − V0∥F ≤ B, the argument might be complicated. Our
eventual proof will only use randomness of V0. 3

Now we show how a careful study of 1[vT
jx ≥ 0]− 1[vT

0,jx ≥ 0] via concentration can get
us a bound closer to Proposition 3.4. This bound is stated with an extra degree of freedom,
namely two matrices, a form we will use later with optimization.

Proposition 3.7. For any radius B ≥ 0, for any fixed x ∈ Rd with ∥x∥ ≤ 1, with
probability at least 1−δ over the draw of V0, for any W,V ∈ Rm×d with ∥W −V0∥F ≤ B
and ∥V − V0∥F ≤ B, then∣∣∣∣F (x;V )−

(
F (x;W ) +

〈
∂̄WF (x;W ), V −W

〉)∣∣∣∣ ≤ ∥a∥∞m1/3
(
4B4/3 + 2B ln(1/δ)1/4

)
.

Before giving the proof, a few interesting differences with Proposition 3.4 are worth
mentioning. First, there is a dependence on m, namely m1/3; this is not great, but sufficient
for the scaling discussion in Section 3.2, where anything below

√
m suffices. Secondly, note

that Proposition 3.7 will make crucial use of the Gaussian random initialization of V0, whereas
probability made no appearance in Proposition 3.4.

Proceeding with the proof, the first step is a convenient concentration inequality.

Lemma 3.8. For any τ > 0 and x ∈ Rd with ∥x∥ > 0, with probability at least 1− δ
over (vj)

m
j=1 with v ∼ N (0, Id),

m∑
j=1

1
[
|vT

jx| ≤ τ∥x∥
]
≤ mτ +

√
m

2
ln

1

δ
.

Proof. For any row j, define an indicator random variable

Pj := 1[|vT

jx| ≤ τ∥x∥].

By rotational invariance, Pj is equivalent in distribution to Qj := 1[|gj| ≤ τ ], where
gj ∼ N (0, 1), which by the form of the Gaussian density gives

Pr[Pj = 1] = Pr[Qj = 1] =

∫ +τ

−τ

1√
2π

e−g2/2 dg ≤ 2τ√
2π
≤ τ.



3.1. NEAR INITIALIZATION MEANS NEAR TAYLOR EXPANSION 33

By Hoeffding’s inequality, with probability at least 1− δ,

m∑
j=1

Pj ≤ mPr[P1 = 1] +

√
m

2
ln

1

δ
≤ mτ +

√
m

2
ln

1

δ
.

2

Proof (Proof of Proposition 3.7). Fix x ∈ Rd. If ∥x∥ = 0, then for any W ∈ Rd,
f(x;W ) = 0 = f0(x;W ), and the proof is complete; henceforth consider the case ∥x∥ > 0.
The proof idea is roughly as follows. The Gaussian initialization of V0 concentrates around
a rather large shell, and this implies |vT

0,jx| is large with reasonably high probability. If
∥W − V0∥F is not too large, then ∥wj − v0,j∥ must be small for most coordinates; this
means that wT

jx and vT
0,jx must have the same sign for most j, which controls the sum

which was unclear in the earlier brute-forcing in eq. (3.6).
Proceeding in detail, fix a parameter τ > 0 which will be optimized shortly. Let ∥W−V0∥ ≤
B amd ∥V − V0∥ ≤ B be given, and define the sets

S1 :=
{
j ∈ [m] : |vT

0,jx| ≤ τ∥x∥
}
,

S2 :=
{
j ∈ [m] : ∥wj − v0,j∥ ≥ τ

}
,

S3 :=
{
j ∈ [m] : ∥vj − v0,j∥ ≥ τ

}
,

S := S1 ∪ S2 ∪ S3.

By Lemma 3.8, with probability at least 1− δ,

|S1| ≤ τm+
√
m ln(1/δ).

On the other hand,

B2 ≥ ∥W − V0∥2 ≥
∑
j∈S2

∥wj − v0,j∥2 ≥ |S2|τ 2,

meaning |S2| ≤ B2/τ 2, and similarly |S3| ≤ B2/τ 2. For any j ̸∈ S, if wT
jx > 0, then

vT

0,jx ≥ wT

jx− ∥wj − w0,j∥ · ∥x∥ > ∥x∥ (τ − τ) = 0,

meaning 1[wT
jx ≥ 0] = 1[wT

0,jx ≥ 0]; the case that j ̸∈ S and wT
jx < 0 is analogous, as are

inequalities for vT
jx > 0 and vT

jx < 0. Together,

|S| ≤ τm+
√
m ln(1/δ) +

2B2

τ 2
,

j ̸∈ S =⇒ 1[wT

jx ≥ 0] = 1[wT

0,jx ≥ 0] = 1[vT

jx ≥ 0]. (3.9)

Lastly, we can finally choose τ to balance terms in |S|: picking τ := B2/3/m1/3 gives

|S| ≤ (Bm)2/3 +
√
m ln(1/δ) + 2(Bm)2/3 ≤ m2/3

(
3B2/3 +

√
ln(1/δ)

)
.
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Now that we can control the set S (in particular, via eq. (3.9)), we can proceed essentially
as in eq. (3.6). The derivation will also critically use an interesting pieces of algebra: if
1[wT

jx ≥ 0] ̸= 1[vT
jx ≥ 0], then wT

jx and vT
jx have different signs, and therefor |vT

jx| ≤
|vT

jx− wT
jx|. Combining all these pieces,∣∣∣∣F (x;V )−

(
F (x;W ) +

〈
∂̄WF (x;W ), V −W

〉)∣∣∣∣
=
∣∣∣〈∂̄WF (x;V )− ∂̄WF (x;W ), V

〉∣∣∣
=

∣∣∣∣∣∣
∑
j

aj

(
1[wT

jx ≥ 0]− 1[vT

jx ≥ 0]
)
vT

jx

∣∣∣∣∣∣
≤
∑
j

|aj| ·
∣∣∣1[wT

jx ≥ 0]− 1[vT

jx ≥ 0]
∣∣∣ ·∣∣∣wT

jx− vT

jx
∣∣∣

≤ ∥a∥∞
∑
j

∣∣∣1[wT

jx ≥ 0]− 1[vT

jx ≥ 0]
∣∣∣ · ∥wj − vj∥

≤ ∥a∥∞
∑
j∈S

∥wj − vj∥

≤ ∥a∥∞∥W − V ∥F
√
|S|

≤ 2∥a∥∞Bm1/3

√
3B2/3 +

√
ln(1/δ)

≤ ∥a∥∞m1/3
(
4B4/3 + 2B ln(1/δ)1/4

)
.

2

3.2 Scaling and universal approximation near initializa-

tion

[todo 48/93]

[todo 49/93]

[todo 50/93]

[todo 51/93]

[todo 52/93]

Research question 3.1. [todo 53/93]

The previous section showed that F ≈ F0 near initialization, but left open any charac-
terization of F0 itself; in particular, since F0 is near random initialization, is F0 essentially
dominated by this randomness, and effectively a random function?

This section will show that in fact F0 is a universal approximator, and moreover, that this
universal approximation property comes from a signal to noise ratio that arises with large
width. This signal to noise property will give rise to a choice of scaling in the networks, and
taking the most reasonable choice will lead to the standard scaling. Moreover, this choice of
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scaling allows for a natural infinite-width limiting object as m→∞.
To start, the signal to noise property is effectively a consequence of Frobenius norm

geometry, described as follows. Suppose we pick a single pair (a, v) ∈ R× Rd with |a| = 1
and ∥v∥ = 1 and copy it m times; the corresponding network has magnitude m in some
directions, since

F (v; (a, V )) =
m∑
j=1

aσ(vTv) = maσ(∥v∥2).

By contrast, this is unlikely to occur with random initialization: as provided rigorously below
in Lemma 3.15 (but also as a direct consequence of standard Gaussian concentration, as in
[todo 54/93]), |F (x;w0)| ≤ 4

√
md ln(m/δ) with probability at least 1− δ for every ∥x∥ ≤ 1.

As such, planting many copies of certain directions means we can, with small Frobenius norm,
easily dominate the noise and adjust the predictor into anything we want, all while staying
close to initialization. This is formalized in the following statement.

Theorem 3.10. [todo 55/93] Let a reference network g(x) :=
∑k

i=1 αiσ(β
T
i x) be

given with ∥βi∥ = 1 for all i, along with a signal-to-noise parameter τ satisfying
τ < mini ̸=j ∥βi − βj∥/2. Then, with probability at least 1− δ over the draw of V0 with
m ≥ 4d+2 ln(1/δ)/τ 2d−2, there exists a choice of parameters V ∈ Rm×d satisfying

max
j
∥vj − v0,j∥ ≤

2d+1∥α∥∞
τ d−1
√
m

, and ∥V − V0∥ ≤
2d+1∥α∥2
τ d−1

,

so that for any ∥x∥ ≤ 1, then F (x;V ) = F0(x;V ) and∣∣∣∣∣F (x;V )− 2d+1
√
m

τ d−1
g(x)

∣∣∣∣∣ ≤ √m (16d ln(m/δ) + ∥α∥1
)
.

For sake of discussion, the proofs are deferred to the end of the section.
In words, Theorem 3.10 says we can start with the random initialization parameters w0

and some other network g, and spread g across many different nodes in F (·;w0), obtaining
another set of parameters w which are close in Frobenius norm to w0, but now F is close to
a rescaled copy of g.

Consider instead F by ρ/
√
m where ρ := τ d−1/2d+1, whereby theorem 3.10 becomes∣∣∣∣ ρ√

m
F (x;V )− g(x)

∣∣∣∣ ≤ τ d−1

2d+1

(
16d ln(m/δ) + ∥α∥1

)
,

meaning g and the rescaling ρF/
√
m are now close. Furthermore, since τ > 0 is arbitrary,

taking τ → 0 makes the right hand side of the preceding inequality equal to zero; while
this also means the Frobenius norm in Lemma 3.15 will explode, on the other hand, τ can
be taken to 0 slower than, say, 1/m1/6, in which case the the moral “close to initialization”
yardstick provided by Proposition 3.7 is satisfied.

Summarizing, this discussion justifies scaling the network F by ρ/
√
m, which is standard

practice, the 1/
√
m typically being absorbed in the initialization of aj , and ρ being a common

temperature parameter.
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Remark 3.11. [todo 56/93] 3

Remark 3.12 (Universal approximation). Note that Theorem 3.10 implies F0 is also a
universal approximator: given a continuous function h : Rd → R, use the techniques of
Chapter 2 to obtain an approximating network g, and use Theorem 3.10 to embed it near
initialization. While Theorem 3.10 introduces an exponential dependence on dimension,
this dependence was already present due to the techniques in Chapter 2. Additionally,
although the results of Chapter 2 were presented as though non-algorithmic, thanks
to this remark, they in fact can directly relate to behavior of gradient descent near
initialization. 3

This choice of scaling has another consequence: it allows us to ensure F has a well-defined
limit as m→∞. To construct this limit, consider the following

The limiting object will be formalized as follows. Let T : Rd → Rd be a transport mapping
of the weights at initialization: specifically, given a Gaussian vector v0,j ∼ N (0, Id), we
construct our new weight vj via T (v0,j) as

vj := v0,j +
ajρ√
m
T (v0,j). (3.13)

This mapping T is thus an unambiguous way to define network weights (vj)
m
j=1 given any

initial random weights (v0,j)
m
j=1. Alternatively, T itself can be used to define an infinite-width

network:

F∞(x; T ) :=
∫ 〈
T (v), ∂̄vσ(vTx)

〉
dN (v);

while this looks complicated it is similar to the definition of F0, and in fact they are the same
as m→∞ with a bit more work.

Specifically, recall in the discussion after Theorem 3.10 that for the approximation error
to go to 0, the scaling term ρ must also go to zero with m. The following equivalence between
F∞ and F0 thus works with a sequence of temperatures (ρm)m≥1.

Theorem 3.14. Let transport mapping T : Rd → Rd, activation σ, and temperature
sequence (ρm)m≥1 be given satisfying the following properties:

1. B := supv∈Rd |T (v)| <∞;

2. F0 satisfies a sub-exponential tail inequality, meaning there exists c ≥ 0 so that for
any ∥x∥ ≤ 1, with probability at least 1− δ, then |F0(x)| ≤ c

√
m ln(m/δ);

3. there exists C > 0 so that ρm ≤ C/ ln(1 +m)2.

Then, for any ∥x∥ ≤ 1, with probability 1 over the random sampling of (v0,j)j≥1 and
(aj)j≥1, letting V (m) denote the matrix obtained by stacking rows (vT

j )
m
j=1 where vj is

given by eq. (3.13), then

lim
m→∞

ρ√
m
F0(x;V

(m)) = F∞(x; T ).
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The conditions of the bound are rather permissive; e.g., ρ need only decay inverse
logarithmically, and the sub-gaussianity condition on σ is met for all standard activations
(e.g., for the ReLU and for sigmoids). [todo 57/93]

Summarizing the material of this section: due to a signal-to-noise phenomenon, F0 is
close to any target function; rescaling the resulting bound gives the standard notion of scale;
this notion of scale also leads to a limiting infinite-width network.

The rest of the section provides the deferred proofs. First, the claim that the initial
prediction mapping (pure noise) has small magnitude (in particular, sublinear in m).

[todo 58/93]

Lemma 3.15. Consider w0 at initialization. [todo 59/93]

1. For any fixed x ∈ Rd, with probability at least 1 − δ, then |F (x;w0)| ≤
4∥x∥

√
m ln(2m/δ).

2. With probability at least 1 − 2δ, for any ∥x∥ ≤ 1, then |F (x;w0)| ≤
32d
√
m ln(m/δ).

[todo 60/93]

Remark 3.16. [todo 61/93] 3

Proof. Throughout this proof, write w = w0 for convenience.

1. Define fj := ajσ(w
T
jx), whereby F (x;w) =

∑
j fj , and moreover each fj is equivalent

in distribution (via rotational invariance) to qj := ajσ(gj)∥x∥, where gj ∼ N (0, 1).
By standard Gaussian concentration and a union bound, with probability at least
1 − δ/2, then maxj gj ≤ 1 +

√
2 ln(2m/δ). Conditionining away this event, qj is a

zero-mean random variable with range ∥x∥ · [−1−
√
2 ln(m/δ),+1 +

√
2 ln(2m/δ)],

whereby Hoeffding’s inequality grants, with probability at least 1− δ/2,∑
j

qj ≤ ∥x∥
√

2m(1 +
√

2 ln(2m/δ))2 ln(2/δ) ≤ 4∥x∥
√
m ln(2m/δ).

Unioning the two failure events together gives the final bound. [todo 62/93]

2. Let ϵ > 0 be a parameter which is optimized at the end of the proof. Let Sϵ

denote a discretization of S := {x ∈ Rd : ∥x∥ ≤ 1}, meaning for any ∥x∥ ≤ 1,
there exists xϵ ∈ Sϵ with ∥x − xϵ∥ ≤ ϵ; as a lazy estimate, |Sϵ| ≤ (2/ϵ)d. By
a union bound over the preceding part, with probability at least 1 − δ0, then
maxx∈Sϵ |F (x;w)| ≤ 4

√
m ln(2m|Sϵ|/δ0).

Next, by standard Gaussian concentration and a union bound, with probability at
least 1− δ1, then maxj ∥vj∥ ≤ 1 +

√
2 ln(m/δ1). Together, with probablity at least
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1− δ1 + δ0, for any ∥x∥ ≤ 1, choosing xϵ ∈ Sϵ with ∥x− xϵ∥ ≤ ϵ, then∣∣F (x;w0)
∣∣ ≤ ∣∣F (xϵ;w)

∣∣+∣∣F (x;w)− F (xϵ;w)
∣∣

≤ 4
√
m ln(2m|Sϵ|/δ0) +

∑
j

∣∣∣σ(vT

jx)− σ(vT

jxϵ)
∣∣∣

≤ 4
√
m ln(2m|Sϵ|/δ0) +m∥x− xϵ∥max

j
∥vj∥

≤ 4
√
m ln(2m|Sϵ|/δ0) +mϵ

(
1 +

√
2 ln(m/δ1)

)
.

The claim now follows by choosing ϵ := 1/m and δ0 := δ1 := δ and combining terms.

2

Now comes the proof of Theorem 3.10. As mentioned above, the method of proof is
effectively to split up g and add it as tiny increments to the weights of w0, whereby, despite
a small change in Frobenius norm, the lining-up of these increments causes a signal-to-noise
phenomenon. The proof is a little cautious, and only introduces changes in weights which are
very close to those of the target network; this caution is what introduces the exponential
dependence on dimension.
Proof (Proof of Theorem 3.10). The method of proof is to argue that thanks to this large
width, we can pick set of nodes Ui clustered around each βi, meaning ∥βi − ṽj∥ ≤ τ where
ṽj := v0,j/∥v0,j∥ (the denominator is positive almost surely); if we then slightly amplify
the norm of all these good nodes, it is easy to satisfy all conditions, and the main work is
in arguing that these sets Ui are quite large.
The first step is to union together and discard a few probability events on V0.

1. First, thanks to Lemma 3.15, with probability at least 1 − 2δ, then |F (x;w0)| ≤
16d
√
m ln(m/δ) for all ∥x∥ ≤ 1.

2. For each i ∈ {1, . . . , k}, let Si ⊂ {1, . . . ,m} denote the subset of weights close to
βi, with the signs of aj and αi matching, and the norm of ∥vj∥ is not too small:
specifically,

Si :=
{
j ∈ {1, . . . ,m} : ∥βi − ṽj∥ ≤ τ, sgn(aj) = sgn(αi)

}
.

By standard cap estimates for spheres (Ball, 1997, Lemma 2.3), the probability of
any j satisfying ∥βi − vj/∥vj∥∥ ≤ τ is at least (τ/2)d−1/2, and the probability of
sgn(aj) = sgn(αi) is 1/2. Together, defining τd := τ d−1/2d+2, then

E|Si| =
m∑
j=1

Pr[j ∈ Si] ≥
mτ d−1

2d+1
= 2mτd,

and by Hoeffding’s inequality, a union bound, and the lower bound on m, it holds
with probability at least 1− δ that

min
i
|Si| ≥ 2mτd −

√
m ln(1/δ) ≥ mτd.

Lastly, note that each (Si)
k
i=1 are disjoint since mini ̸=j ∥βi − βj∥ > 2τ .
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Henceforth discard the preceding failure events (and the null event that minj ∥vj∥ = 0),
for convenience define

c :=
1

ττd
√
m
, and c0 := cτdm =

√
m

τ
,

and construct the network as follows. For each Si, let Ui denote the first mτd vectors in Si

(which is well-defined since |Si| ≥ mτd as above), and define

vj :=

v0,j +
c|αi|v0,j
∥v0,j∥ ∃i � v0,j ∈ Ui,

v0,j otherwise.

By construction, ∥vj − v0,j∥ ≤ c∥α∥∞ and

∥V − V0∥2 =
k∑

i=1

∑
j∈Ui

c2α2
i = mτdc

2∥α∥22 =
∥α∥22
τ 2τd

.

Furthermore, for any x ∈ Rd, since vj and v0,j have the same direction, setting ṽj :=
v0,j/∥v0,j∥ for convenience,

F (x; (a0, V )) =
∑
j

ajσ(v
T

jx) =
∑
j

ajσ(v
T

0,jx) +
∑
j

aj
∑
i

1[j ∈ Ui]|αi|cσ(ṽT

jx),

= F (x;w0) + c
∑
i

αi

∑
j∈Ui

σ(ṽT

jx),

whereby

∣∣F (x; (a0, V ))− c0g(x)
∣∣ ≤ ∣∣F (x;w0)

∣∣+
∣∣∣∣∣∣c0g(x)− c

∑
i

αi

∑
j∈Ui

σ(ṽT

jx)

∣∣∣∣∣∣
≤ 16d

√
m ln(m/δ) + c

∑
i

|αi|
∑
j∈Ui

∣∣∣σ(βT

i x)− σ(ṽT

jx)
∣∣∣

≤ 16d
√
m ln(m/δ) + cττdm∥α∥1

=
√
m
(
16d ln(m/δ) + ∥α∥1

)
.

Furthermore, for any x,

〈
∂̄F (x;V0), V − V0

〉
=

k∑
i=1

∑
j∈Ui

〈
ajxσ

′(vT

0,jx), c|αi|ṽ0,j
〉
= c

k∑
i=1

αi

∑
j∈Ui

σ(ṽT

jx),

and therefore F (x;V ) = F0(x;V0). 2

Lastly, the proof of the limit property F0
m→∞−−−→ F∞. While at first it may seem the strong

law of large numbers suffices, the permissive conditions on ρm necessitate a more technical
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proof.
Proof (Proof of Theorem 3.14). Note

ρm√
m
F0(x;V

(m)) =
ρm√
m

∑
j

aj

(
σ(vT

0,jx) + σ′(vT

0,jx)
〈
x, v

(m)
j − v0,j

〉)
=

ρm√
m

∑
j

ajσ(v
T

0,jx) +
1

m

∑
j

T (v0,j)Txσ′(vT

0,jx),

and consider both terms separately. The second is easier: it is in the form of a standard
law of large numbers, and is equal to its expected value EvT (v)Txσ′(vTx) almost surely.
For the first term, fix any ϵ > 0, and for each m define the event

Em :=


∣∣∣∣∣∣ ρm√m

m∑
j=1

ajσ(v
T

0,jx)

∣∣∣∣∣∣ ≥ ϵ

 .

[todo 63/93] By the conditions on ρm, it follows that if m ≥ m0 := exp(6C/ϵ), then
Pr[Em] ≤ 1/(1 +m)2, since with probability at least 1− 1/(1 +m)2,∣∣∣∣ ρm√mF (x;V

(m)
0 )

∣∣∣∣ ≤ ρm ln(m(1 +m)2) ≤ 3C ln(1 +m)

ln(1 +m)2
≤ ϵ.

Therefore
∞∑

m=1

Pr(Em) ≤ m0 +
∑

m>m0

2

(1 +m)2
≤ m0 +

2π2

6
<∞,

which by the Borel-Cantelli lemma implies

lim sup
m→∞

∣∣∣∣∣∣ ρm√m
m∑
j=1

ajσ(v
T

0,jx)

∣∣∣∣∣∣ ≤ ϵ.

Since ϵ > 0 was arbitrary, the proof is complete. [todo 64/93] 2

3.3 The neural tangent kernel

[todo 65/93]

[todo 66/93]

The word “kernel” is used in many places, but one is as an abstraction of inner products;
e.g., we can replace xTx′ with a function k(x, x′) = xTx′; in certain special circumstances,
given a function k : X ×X → R satisfying conditions, we can reverse engineer a Hilbert space
induced by k.

Let’s see how this naturally arises in our setup. Let’s take F ≈ F0 to hard and sim-
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ply predict with F0(x;w) = F (x;w0) +
〈
∂̄F (x;w0), w − w0

〉
. Here are a few elementary

observations.

1. Our prediction mapping is affine in w; note that it is still nonlinear in x for general
choices of w0 (though this fails if w0 = 0!).

2. Since we’ve said that we like low norm predictors, we may as well force w − w0 ∈
span({∂̄F (x1;w0), . . . , F (xn;w0)}). We can achieve this by picking v ∈ Rn, and writing

w := w0 + ∂̄F (X;w0)
Tv, where ∂̄F (X;w0) =

← ∂̄F (x1;w0)
T →

...
← ∂̄F (xm;w0)

T →

 ∈ Rn×p.

As such, a prediction time, we compute

F0(x;w) = F (x;w0) +
〈
∂̄F (x;w0), w − w0

〉
= F (x;w0) +

n∑
i=1

vi∂̄F (x;w0)
T∂̄F (xi;w0),

meaning we only rely upon inner products, and can replace the last term with

km(x, xi) := ∂̄F (x;w0)
T∂̄F (xi;w0),

the neural tangent kernel. [todo 67/93]

3. Even more explicitly, consider trying to achieve low error in a standard least squares
regression setup: we wish to pick w ∈ Rp to minimize

R̂0(w) =
n∑

i=1

1

2

(
F0(xi;w)− yi

)2
=

n∑
i=1

1

2

(〈
∂̄F (xi;w0), w − w0

〉
− (yi − F (xi;w0))

)2
.

The standard ordinary least squares solution is

wols :=
[
∂̄F (X;w0)

T∂̄F (X;w0)
]+

∂̄F (X;w0)
(
y − F (X;w0)

)
.

To perform well here, it seems natural to invoke the standard theory of least squares,
e.g., requiring the kernel gram matrix ∂̄F (X;w0)

T∂̄F (X;w0), and this motivates the
appearance of these eigenvalues in a variety of works.

Remark 3.17. [todo 68/93] 3

Remark 3.18. [todo 69/93] 3

[todo 70/93]
[todo 71/93]
[todo 72/93]
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To make things concrete, let’s resume our consideration of shallow networks with only
the inner layer trained. The first consideration will be the limiting kernel, which will have a
simple form with the ReLU. To start, given two data points x and x′, consider

lim
m→∞

ρ2

m
∂̄F (x;w0)

T∂̄F (x;w0) = ρ2 lim
m→∞

1

m

∑
j

xTx′σ′(vT

0,jx)σ
′(vT

0,jx
′),

where our scaling choice from the previous section was again crucial in controlling the limit:
we can simply apply the SLLN once more.

Theorem 3.19. Fix any measurable selection σ′ of ∂̄σ. Then, for any inputs x and x′,

k∞(x, x′) = lim
m→∞

km(x, x
′)

= lim
m→∞

〈
ρ√
m
∂̄F (x;w0),

ρ√
m
∂̄F (x′;w0)

〉
= ρ2

∫ 〈
x, x′〉σ′(vTx)σ′(vTx′) dN (v) almost surely.

Proof. For each v0,j ∼ N (0, Id), define a scalar random variable zj :=
ρ2 ⟨x, x′⟩σ′(vT

0,jx)σ
′(vT

0,jx
′), whereby

Ezj = ρ2
∫ 〈

x, x′〉σ′(vT

0,jx)σ
′(vT

0,jx
′) dN (v0,j) = k∞(x, x′).

As such, by the strong law of large numbers, almost surely

lim
m→∞

km(x, x
′) = lim

m→∞

1

m

∑
j

zj = k∞(x, x′).

Closing the loop with the previous section, another way to k∞ is

k∞(x, x′) =

∫ 〈
xσ′(vTx), x′σ′(vTx′)

〉
dN (v),

where the feature mapping is the same as the one used in F∞ (for instance, as in Theorem 3.14.
Similarly to the preceding discussion, if we only care about some finite training set (xi)

n
i=1,

then we may as well pick T ∈ span
(
(v 7→ xiσ

′(vTxi))
n
i=1

)
, meaning selecting some α ∈ Rn

and then defining

T (v) :=
∑
i

αixiσ
′(vTxi),
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and thereby

F∞(xj; T ) =
∫ 〈
T (v), xjσ

′(vTxj)
〉
dN (v)

=

∫ ∑
i

αi

〈
xiσ

′(vTxi), xjσ
′(vTxj)

〉
dN (v)

=
∑
i

αik∞(xi, xj). (3.20)

Remark 3.21. [todo 73/93] 3

Remark 3.22. Once again let’s revisit the issue of the choice of σ′(0). In k∞, this is a
measure zero set, so once again the choice does not matter. 3

[todo 74/93]
An attractive property of k∞ is that its explicit form is often both easy to compute and

has a simple expression.

Proposition 3.23. Consider temperature ρ = 1, the ReLU σ(z) := max{0, z}, and
any x, x′ with ∥x∥ = 1 = ∥x′∥. Then

k∞(x, x′) =
〈
x, x′〉Ev∼N1[v

Tx ≥ 0] · 1[wTx ≥ 0] =
〈
x, x′〉(π − arccos(⟨x, x′⟩)

2π

)
.

Remark 3.24. One way to relax ∥x∥ = 1 is to start with ∥x∥ ≤ 1 and work with
(xT,

√
1− ∥x∥2) ∈ Rd+1; the convenience of ∥x∥ = 1 and this padding trick are common

in the literature. As in the results of the previous section, however, this trick is not
necessary. 3

Proof. To start, by definition of k∞,

k∞(x, x′) =
〈
x, x′〉Ev∼Nσ′(vTx)σ′(vTx′) =

〈
x, x′〉Ev∼N1[v

Tx ≥ 0] · 1[vTx′ ≥ 0],

where the second equality used the fact that the two sets {v : vTx = 0} and {v : vTx′ = 0}
are N -null.
Next note that this expression does not depend on ∥v∥, meaning we can replace v by ∥v∥
(throwing out the N -null event ∥v∥ = 0), and consider z ∼ U , the uniform probability
distribution on the surface of the sphere:

k∞(x, x′) =
〈
x, x′〉Ez∼U1[z

Tx ≥ 0] · 1[zTx′ ≥ 0].

Note that if x = x′, then k∞(x, x′) = 1/2 and the proof is complete, thus consider the case
x ̸= x′.
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To simplify further, it seems that all that should matter is the plane spanned by {x, x′},
explicitly, by rotational invariance of N (e.g., by substituting v with Mv where M is the
fixed rotation matrix whose first column is x, second column is (I − xxT)x′/∥(I − xxT)x′∥,
and the remaining are arbitrary but orthogonal), then

k∞(x, x′) =
〈
x, x′〉Ev∼N1[v

TMx ≥ 0] · 1[vTMx′ ≥ 0]

=
〈
x, x′〉Ev∼N1[v1 ≥ 0] · 1[v1

〈
x, x′〉+ v2

√
1− ⟨x, x′⟩2 ≥ 0].

We can now consider this geometrically: v is sampled uniformly on the circle in R2, we

have one data point at (1, 0), and another at (⟨x, x′⟩ ,
√

1− ⟨x, x′⟩2), and we’d like to know

the probablity that v has positive inner product with both. Letting θ = arccos(⟨x, x′⟩)
denote the angle between the two points, the region of the circle which we can fall within
has arc length π − θ, and thus probability mass (π − θ)/(2π), completing the proof. [todo
75/93] 2

To close are a few observations. Firstly, consider the multi-layer case; here we have
parameters w = (WL, . . . ,W1), and we can organize ∂̄wF (x;w0) by layers as (∂̄Wi

F (x0;w0))
L
i=1,

whereby 〈
∂̄wF (x;w0), ∂̄wF (x′;w0)

〉
=
〈(

∂̄Wi
F (x;w0)

)L
i=1

,
(
∂̄Wi

F (x′;w0)
)L
i=1

〉
=

L∑
i=1

〈
∂̄Wi

F (x;w0), ∂̄Wi
F (x′;w0)

〉
.

On the one hand, this is a nicely clean expression, which decomposes over layers. On the
other hand, this highlights that this perspective near initialization is perhaps insufficiently
sensitive to the benefits of composing layers together; indeed, there is evidence that the kernel
view exhibits no great strenghtening in representation as depth increases (Bietti and Bach,
2020).

Lastly, to close with another tangential comment, rather than indirectly proving F∞ is a
universal approximator via taking m→∞ within the signal-to-noise bound Theorem 3.10
and then applying universal approximation of finite-width networks from Chapter 2, we can
directly establish universal approximation properties of the infinite-width ReLU kernel from
Proposition 3.23.

Proceeding in detail, define a subset of interest X ⊆ Rd as

X :=
{
x ∈ Rd : ∥x∥ = 1, xd = 1/

√
2
}
,

which corresponds to baking in padding as in Remark 3.24. Additionally, define a family of
predictors corresponding to F∞ written in terms of kernels as in eq. (3.20), namely

H :=
(
x 7→

m∑
j=1

αjk(x, xj) : m ≥ 0, αj ∈ R, xj ∈ X
)
.

We now show H is a universal approximator.
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Proposition 3.25. H is a universal approximator over X : for every continuous
g : Rd → R and every ϵ > 0, there exists h ∈ H with supx∈X |g(x)− h(x)| ≤ ϵ.

Remark 3.26. Following on the padding comments in Remark 3.24, the use of bias
and padding here is simply to reduce more quickly to existing lemmas for universal
approximation; a direct proof should also be fairly easy. 3

Proof. Consider the set U := {u ∈ Rd−1 : ∥u∥2 ≤ 1/2}, and the kernel function

k(u, u′) := f(uTu′), f(z) :=
(z + 1/2)

2
− (z + 1/2) arccos(z + 1/2)

2π
.

We will show that this kernel is a universal approximator over U , which means it is also a
universal approximator on its boundary {u ∈ Rd−1 : ∥u∥2 = 1/2}, and thus the kernel

(x, x′) 7→ xTx′

π
− xTx′ arccos(xTx′)

2π

is a universal approximator over X .
Going back to the original claim, first note that arccos has the Maclaurin series

arccos(z) =
π

2
−
∑
k≥0

(2k)!

22k(k!)2

(
z2k+1

2k + 1

)
,

which is convergent for z ∈ [−1,+1]. From here, it can be checked that f has a Maclaurin
series where every term is not only nonzero, but positive (adding the bias ensured this).
This suffices to ensure that k is a universal approximator (Steinwart and Christmann, 2008,
Corollary 4.57). 2

3.4 Bibliographic notes

[todo 76/93]

3.5 Exercises

3.5.1 Research questions

Research question 3.2. Improve Proposition 3.7 to reduce or entirely drop m1/3, perhaps
via careful use of a second layer. [todo 77/93] [todo 78/93]

[todo 79/93]
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Chapter 4

Benefits of other architectures

This section is unfortunately incomplete, and for now will only include boiled-down information
needed for lecture. The sections are as follows:

• Section 4.1 will define and provide some approximation properties of the triangle
mapping ∆; this construction is the basis for all results giving the power of many-
layered networks (see bibliographic remarks in ?? for details, in particular a different
separation technique between depths 2 and 3).

• Section 4.2 formally proves a few separation guarantees, showing in a strong sense
that the iterated triangle map is easily-approximable with a dep network, and hard to
approximate byu a shallow network, even with exponential width.

Results I will eventualyl add: Sobolev space approximation, other architectures, other
settings, other types of layers, and other ways of measuring benefits (e.g., norms in function
spaces).

4.1 Multi-layer benefits via the triangle mapping ∆Benefits

of depth

[todo 80/93]
Consider the ∆ function:

∆(x) = 2σr(x)− 4σr(x− 1/2) + 2σr(x− 1) =


2x x ∈ [0, 1/2),

2− 2x x ∈ [1/2, 1),

0 otherwise.

How does ∆ look? And how about ∆2 := ∆ ◦∆? And ∆3? [todo 81/93]
The pattern is that ∆L has 2L−1 copies of it self, uniformly shrunk down. In a sense,

complexity has increased exponentially as a function of the the number of nodes and layers
(both O(L)). Later, it will matter that we not only have many copies, but that they
are identical (giving uniform spacing). There are a few ways to capture this “fractal” or
“exponential” power, as follows is one way which we will use later.

47
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Proposition 4.1 (Fractal property of ∆). Let ⟨x⟩ := x − ⌊x⌋ denote the fractional
part of x ∈ R. Then

∆L(x) = ∆(
〈
2L−1x

〉
) = ∆(2L−1x− ⌊2L−1x⌋).

Proof. The proof proceeds by induction on L = i.
For the base case i = 1, if x ∈ [0, 1) then directly

∆1(x) = ∆(x) = ∆(⟨x⟩) = ∆(
〈
20x
〉
),

whereas x = 1 means ∆1(x) = ∆(0) = ∆(
〈
20x
〉
).

For the inductive step, consider ∆i+1. The proof can proceed by peeling individual ∆ from
the left or from the right; the choice here is to peel from the right. Consider two cases.

• If x ∈ [0, 1/2],

∆i+1(x) = ∆i(∆(x)) = ∆i(2x) = ∆(
〈
2i−12x

〉
) = ∆(

〈
2ix
〉
).

• If x ∈ (1/2, 1], now additionally using a reflection property of ∆ (namely ∆(z) =
∆(1− z) for z ∈ [0, 1]),

∆i+1(x) = ∆i(∆(x)) = ∆i(2− 2x)

= ∆i−1(∆(2− 2x)) = ∆i−1(∆(1− (2− 2x))) = ∆i(2x− 1)

= ∆(
〈
2ix− 2i−1

〉
) = ∆(

〈
2ix
〉
).

(If i = 1, use ∆1−1(x) = x.)

2

We’ve established that ∆L has exponentially many copies of itself. But does this yield
anything useful? Here are a few applications, one of which we will investigate in detail for
the rest of the section.

1. As in Theorem 4.2, we can use ∆ to approximate x 7→ x2 with to accuracy ϵ > 0 with
ln(1/ϵ) nodes, whereas the shallow approaches of Chapter 2 required O(1/ϵ) nodes. As
will be discussed there, this also implies efficient approximation of polynomials and
smooth functions.

2. We can efficiently write the parity function on the hypercube in d = 2L dimensions:

given x ∈ {±1}d, then
∏d

i=1 xi = ∆L−1
(

d+
∑

i xi

2d

)
.

3. (”Viral fractal property”.) If f : [0, 1]→ R is symmetric about 1/2 (meaning f(x) =
f(1− x) for x ∈ [0, 1])m then f ◦∆L also creates 2L copies of f ; as such, the fractal
property from Proposition 4.1 can be inherited by other functions!
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Figure 4.1: Affine interpolation of x2 at different scales.

Figure 4.2: The difference hi+1 − hi.

4. We can use ∆L to extract bits: this is direct from Proposition 4.1, and used in a variety
of works.

The rest of the section now turns to motivating and proving Theorem 4.2, namely the
ability to efficiently approximate squaring, which will also give us multiplication via the
polarization identity xy = 1

2

(
(x+ y)2 − x2 − y2

)
.

To start, let’s recall one of the perspectives on univariate approximation from Chapter 2:
using an exact integral remainder form of Taylor’s theorem, we can write x2 as an infinite-width
network:

x2 =

∫ ∞

0

2σ(x− b) db;

in particular, we need to place ReLU nodes uniformly. While univariate approximation could
not take advantage of this, this uniformity will allow us to use the “copying” structure of ∆L

as in Proposition 4.1.
Now let’s proceed in detail, indeed with a brute-force approach which will happen to

work: namely, we will simply produce a uniform affine interpolation of x2, and then show we
can write it efficiently using ∆L. First define a set of interpolation points Si at resolution i as

Si :=

{
0

2i
,
1

2i
, . . . ,

2i

2i

}
,

and let hi be the affine interpolation of x2 along Si, meaning hi(x) = x2 for x ∈ Si, with
affine interpolation otherwise, as in Figure 4.1.

To write hi in terms of ∆i, we will consider differences hi+1 − hi, and complete the
construction with the telescoping sum

hi(x) = h0(x) +
∑
j<i

(
hj+1(x)− hj(x)

)
= x+

∑
j<i

(
hj+1(x)− hj(x)

)
.
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In detail, since Si ⊂ Si+1, we know that hi+1(x) = hi(x) for x ∈ Si ∩ Si+1 = Si, therefore the
interesting case is to choose any integer k{0, 1, . . . , 2i − 1} and consider x = (2k + 1)/2i+1 ∈
Si+1 \ Si: in this situation,

hi(x)− hi+1(x) =
1

2

[
hi(x− 2−i−1) + hi(x+ 2−i−1)

]
− hi+1(x)

=
1

2

[(
2k

2i+1

)2

+

(
2k + 2

2i+1

)2
]
−
(
2k + 1

2i+1

)2

=
1

4i+1

[
2k2 +

(
2k2 + 4k + 2

)
−
(
4k2 + 4k − 1

)]
=

1

4i+1
.

Remarkably, this error does not depend on k, meaning it follows exactly the same fractal
structure we get with ∆i+1 (cf. Figure 4.2), and therefore for any x ∈ Si+1 this ddifference
across the two cases can be written compactly as

hi(x)− hi+1(x) =
1

4k+1
∆i+1(x).

Moreover, since hi+1 and hi are affine interpolants on a refining grid, then hi − hi+1 is itself
an affine interpolation between the points of Si+1, and therefore the preceding equality holds
for x ∈ [0, 1] \ Si+1 as well. Concluding by telescoping,

hi(x) = x+
∑
j<i

(
hj+1(x)− hj(x)

)
= x−

∑
j<i

∆j+1(x)

4j+1
.

Summarizing this construction and analyzing a few more of its properties gives the following.

Theorem 4.2. Let hi denote the piecewise-affine interpolation of x2 along Si.

1. hi can be written as a ReLU network consisting of 2i layers and 3i nodes using
“skip connections”, or a pure ReLU network with 2i layers and 5i nodes.

2. supx∈[0,1] |hi(x)− x2| ≤ 4−i−1.

To interpret the statement, we can say that to achieve a desired accuracy ϵ, it suffices
to use O(ln(1/ϵ)) layers and nodes. We have not yet formally stated that this is impossible
with a shallow network, we only have a bad O(1/ϵ) upper bound from Chapter 2; a formal
separation will be given in Section 4.2.
Proof. 1. Since hi = x−

∑i
j=1

∆j

4j
and since ∆j requires 3 nodes and 2 layers for each

new power, a worst case construction would need 2i layers and 3
∑

j≤i j = O(i2) nodes,
but we can reuse individual ∆ elements across the powers, and thus need only 3i,
though the network has “skip connections” (in the ResNet sense); alternatively we can
replace the skip connections with a single extra node per layer which accumulates the
output, or rather after layer j outputs hj , which suffices since hj+1− hj = ∆j+1/4j+1.
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[todo 82/93]

2. Fix i, let any x ∈ [0, 1] be given, and choose k ∈ {0, 1, . . . , 2i − 1} and τ ∈ [0, 1] so
that x = (k + τ)/2i. Then the error between x2 and hi(x) is bounded above by

|x2 − hi(x)| =

∣∣∣∣∣
(
k + τ

2i

)2

− (1− τ)

(
k

2i

)2

− τ

(
k + 1

2i

)2
∣∣∣∣∣

=
1

4i
∣∣k2 + 2kτ + τ 2 − (1− τ)k2 − τ(k2 + 2k + 1)

∣∣
=

1

4i
∣∣t2 − τ

∣∣
≤ 1

4i+1
.

[todo 83/93]
2

To conclude this section, we note as above that approximate squaring implies approximate
products; this fact will be strengthened in ?? to approximate functions with well-behaved
derivatives by approximating their Taylor expansions.

Corollary 4.3. Given any i, there exists g : R2 → R written as a ReLU network with
16i nodes and 3i layers so that, for any (x, x′) ∈ [0, 1]2,

|gi(x, x′)− xx′| ≤ 1

4i
,

and moreover g(x, x′) = 0 if x = 0 or x′ = 0.

Proof. It suffices to choose

gi(x, x
′) =

1

2

(
4hi((x+ x′)/2)− hi(x)− hi(x

′)
)
,

, which can be written as a ReLU network with 16i nodes and 6i layers (by running three
networks for hi in parallel, combining their outputs, and using the size estimates from
Theorem 4.2). By construction, since hi(x) = 0 when x = 0 and hi(x

′) = 0 when x′ = 0,
then gi(x, x

′) = 0 when either x = 0 or x′ = 0 (or both). Moreover, via the polarization
identity, the error in the general case can be upper bounded via the error estimate for hi

from Theorem 4.2 as∣∣gi(x, x′)− xx′∣∣ = 1

2

∣∣∣4hi((x+ x′)/2)− hi(x)− hi(x
′)−

(
4((x+ x′)/2)2 − x2 − (x′)2

)∣∣∣
≤ 1

2

(
4
∣∣hi((x+ x′)/2)− ((x+ x′)/2)2

∣∣+∣∣hi(x)− x2
∣∣+∣∣hi(x

′)− (x′)2
∣∣)

≤ 1

2

(
4

4i+1
+

1

4i+1
+

1

4i+1

)
≤ 1

4i
,
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where dividing by two in hi((x+ x′)/2) was necessary to invoke the error estimate for hi,
which only holds over [0, 1], not [0, 2]. 2

4.2 Depth separations

This section will establish two different depth separation theorems using essentially the same
proof technique (ReLU affine piece counting).

• ?? shows that ∆L2+2 is hard to approximate up to constant accuracy by shallow networks
of subexponential depth.

• Theorem 4.6 shows that x2 is hard to approximate up to ϵ > 0 accuracy by networks of
depth much lower than ln(1/ϵ).

The reason the second statement has a much weaker goal (ϵ > 0 accuracy and not a constant)
is because the approximated functoin x2 is much simpler; e.g., it is 2-Lipschitz and monotone
over [0, 1], whereas ∆L2+2 is 2L

2+2-Lipschitz and changes monotonicity 2L
2+2 − 1 times.

Theorem 4.4. Let L ≥ 2 be given. Then f = ∆L2+2 can be written as a ReLU network
with 3L2 + 6 nodes and 2L2 + 4 layers, but any ReLU network g with ≤ 2L nodes and
≤ L layers can not approximate it:∫

[0,1]

∣∣f(x)− g(x)
∣∣ dx ≥ 1

32
.

Remark 4.5 (Why L1 metric?). Previously, we used L2 and L∞ to state good upper
bounds on approximation; for bad approximation, we want to argue there is a large
region where we fail, not just a few points, and that’s why we use an L1 norm.
To be able to argue that such a large region exists, we don’t just need the hard function
f = ∆L2+2 to have many regions, we need them to be regularly spaced, and not bunch
up. In particular, if we replaced ∆ with the similar function 4x(1− x), then this proof
would need to replace 1

32
with something decreasing with L. All of these considerations

are much simpler if we use the L∞ norm. 3

[todo 84/93]
[todo 85/93]

Theorem 4.6. Any ReLU network f with ≤ L layers and ≤ N nodes satisfies∫
[0,1]

(f(x)− x2)2dx ≥ 1

5760(2N/L)4L
.

[todo 86/93]
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Remark 4.7 (Explicit ln(1/ϵ) conversion). [todo 87/93]
for apples-to-apples, use quadratic depth sep? so say L <

√
ln(1/ϵ)? Then want to

pick upper bond on N satisfying

1

5760(2N/L)4L
> ϵ,

equvalently

ln 5760(2N/L)4L ≤ ln
1

ϵ
,

and thus

ln 5760(2N/L)4L = ln 5760 + 4L ln 2N − 4L lnL ≤ ln 5760 + 4

√
ln

1

ϵ
ln 2N − 4L lnL,

So that means if N ≤ 1

2ϵ1/
√

ln(1/ϵ)
, then√

ln
1

ϵ
ln 2N ≤

√
ln

1

ϵ

ln(1/ϵ)√
ln(1/ϵ)

= ln(1/ϵ).

This sort of means N is exponential in ln(1/ϵ), sort of. Need to do this carefully to
make it sound compelling.

3

[todo 88/93]

Proof plan for Theorem 5.1 ((Telgarsky 2015, 2016)):

1. (Shallow networks have low complexity.) First we will upper bound the number of
oscillations in ReLU networks. The key part of the story is that oscillations will grow
polynomially in width, but exponentially in depth. [ mjt : give explicit lemma ref]

2. (There exists a regular, high complexity deep network.) Then we will show there exists
a function, realized by a slightly deeper network, which has many oscillations, which
are moreover regularly spaced. The need for regular spacing will be clear at the end of
the proof. We have already handled this part of the proof: the hard function is ∆L2+2.

3. Lastly, we will use a region-counting argument to combine the preceding two facts to
prove the theorem. This step would be easy for the L∞ norm, and takes a bit more
effort for the L1 norm.

Proceeding with the proof, first we want to argue that shallow networks have low complexity.
Our notion of complexity is simply the number of affine pieces.
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Definition 4.8 (Affine complexity). For any univariate function f : R→ R, let NA(f)
denote the number of affine pieces of f : the minimum cardinality (or ∞) of a partition
of R so that f is affine when restricted to each piece. 3

Lemma 4.9. Let f : R→ R be a ReLU network with L layers of widths (m1, . . . ,mL)
with m =

∑
i mi.

• Let g : R → R denote the output of some node in layer i as a function of the
input. Then the number of affine pieces NA(g) satisfies

NA(g) ≤ 2i
∏
j<i

mj.

• NA(f) ≤
(
2m
L

)L
.

Remark 4.10. Working with the ReLU really simplifies this reasoning! 3

Our proof will proceed by induction, using the following combination rules for piecewise
affine functions.

Lemma 4.11. Let functions f, g, (g1, . . . , gk), and scalars (a1, . . . , ak, b) be given.

1. NA(f + g) ≤ NA(f) +NA(g).

2. NA(
∑

i aigi + b) ≤
∑

i NA(gi).

3. NA(f ◦ g) ≤ NA(f) ·NA(g).

4. NA

(
x 7→ f(

∑
i aigi(x) + b)

)
≤ NA(f)

∑
i NA(gi).

This immediately hints a “power of composition”: we increase the “complexity” multi-
plicatively rather than additively!
Proof (Proof of Lemma 4.11). 1. Draw f and g, with vertical bars at the right bound-

aries of affine pieces. There are ≤ NA(f) + NA(g) − 1 distinct bars, and f + g is
affine between each adjacent pair of bars.

2. NA(aigi) ≤ NA(gi) (equality if ai ̸= 0), thus induction with the preceding gives
NA(

∑
i aigi) =

∑
i NA(gi), and NA doesn’t change with addition of constants.

3. Let PA(g) denote the pieces of g, and fix some U ∈ PA(g); g is a fixed affine function
along U . U is an interval, and consider the pieces of f|g(U); for each T ∈ PA(f|g(U)),
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f is affine, thus f ◦ g is affine (along U ∩ g−1
|U (T )), and the total number of pieces is∑

U∈PA(g)

NA(f|g(U)) ≤
∑

U∈PA(g)

NA(f) ≤ NA(g) ·NA(f).

4. Combine the preceding two.
2

Remark 5.9 The composition rule is hard to make tight: the image of each piece of g
must hit all intervals of f ! This is part of the motivation for the function ∆, which
essentially meets this bound with every composition.

Proof (Proof of Lemma 4.9). To prove the second from the first, NA(f) ≤ 2L
∏

j≤L mj,

∏
j≤L

mj = exp
∑
j≤L

lnmj = exp
1

L

∑
j≤L

L lnmj ≤ expL ln
1

L

∑
j≤L

mj =

(
m

L

)L

.

For the first, proceed by induction on layers. Base case: layer 0 mapping the data with
identity, thus NA(g) = 1. For the inductive step, given g in layer i + 1 which takes
(g1, . . . , gmi

) from the previous layer as input,

NA(g) = NA(σ(b+
∑
j

ajgj)) ≤ 2

mi∑
j=1

NA(gj)

≤ 2

mi∑
j=1

2i
∏
k<i

mk = 2i+1mi ·
∏
k<i

mk.

2

This completes part 1 of our proof plan, upper bounding the number of affine pieces
polynomially in width and exponentially in depth.

The second part of the proof was to argue that ∆L gives a high complexity, regular
function: we already provided this in Proposition 5.1, which showed that ∆L gives exactly
2L−1 copies of ∆, each shrunken uniformly by a factor of 2L−1.

The third part is a counting argument which ensures the preceding two imply the claimed
separation in L1 distance; details are as folllows.
Proof (Proof of ??). The proof proceeds by “counting triangles”.

• Draw the line x 7→ 1/2 (as in the figure). The “triangles” are formed by seeing how
this line intersects f = ∆L2+2. There are 2L

2+1 copies of ∆, which means 2L
2+2 − 1

(half-)triangles since we get two (half-)triangles for each ∆ but one is lost on the
boundary of [0, 1]. Each (half-)triangle has area 1

4
· 1

2L2+2
= 2−L2−4.

• We will keep track of when g passes above and below this line; when it is above,
we will count the triangles below; when it is above, we’ll count the triangles below.
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Summing the area of these triangles forms a lower bound on
∫
[0,1]
|f − g|.

• Using the earlier lemma, g has NA(g) ≤ (2 · 2L/L)L ≤ 2L
2
.

• For each piece, we shouldn’t count the triangles at its right endpoint, or if it crosses
the line, and we also need to divide by two since we’re only counting triangles on
one side; together∫

[0,1]

|f − g| ≥ [number surviving triangles] · [area of triangle]

≥ 1

2

[
2L

2+2 − 1− 2 · 2L2
]
·
[
2−L2−4

]
=

1

2

[
2L

2+1 − 1
]
·
[
2−L2−4

]
≥ 1

32
.

2

Proof (Proof of Theorem 4.6). By a bound from last lecture, NA(f) ≤ (2N/L)L. Using a
symbolic package to differentiate, for any interval [a, b],

min
(c,d)

∫
[a,b]

(x2 − (cx+ d))2dx =
(b− a)5

180
.

Let S index the subintervals of length at least 1/(2N) with N := NA(f), and restrict
attention to [0, 1]. Then∑

[a,b]∈S

(b− a) = 1−
∑

[a,b] ̸∈S

(b− a) ≥ 1−N/(2N) = 1/2.

Consequently, ∫
[0,1]

(x2 − f(x))2dx =
∑

[a,b]∈PA(f)

∫
[a,b]∩[0,1]

(x2 − f(x))2dx

≥
∑

[a,b]∈S

(b− a)5

180

≥
∑

[a,b]∈S

(b− a)

2880N4
≥ 1

5760N4
.

2
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4.2.1 Sobolev balls

Here we will continue and give a version of Yarotsky’s main consequence to the approximation
of x2: approximating functions with many bounded derivatives (by approximating their
Taylor expansions), formally an approximation result against a Sobolev ball in function space.

Remark 5.14 (bibliographic notes) This is an active area of work; in addition to the

original work by (Yarotsky 2016), it’s also worth highlighting the re-proof by (Schmidt-
Hieber 2017), which then gives an interesting regression consequence. There are many
other works in many directions, for instance adjusting the function class to lessen the
(still bad) dependence on dimension (Montanelli, Yang, and Du 2020). These approaches
all work with polynomials, but it’s not clear this accurately reflects approximation
power of ReLU networks (Telgarsky 2017).

Theorem 5.4 Suppose g : Rd → R satisfies g(x) ∈ [0, 1] and all partial derivatives of all
orders up to r are at most M . Then there exists a ReLU network with O(k(r + d))
layers and O((kd+ d2 + r2dr + krdr)sd) nodes such that∣∣f(x)− g(x)

∣∣ ≤Mrdr
(
s−r + 4d2d · 4−k

)
+ 3d2d · 4−k. ∀x ∈ [0, 1]d.

[ mjt : This isn’t quite right; yarotsky claims a width c(d, r)/ϵd/r ln(1/ϵ) suffices for
error ϵ; need to check what I missed.]

Remark 5.15 (not quite right) Matus note from Matus to Matus: Yarotsky gets width

c(d, r) ln(1/ϵ)/ϵd/r and mine is worse, need to track down the discrepancy.

The proof consists of the following pieces:

1. Functions in Sobolev space are locally well-approximated by their Taylor expansions;
therefore we will expand the approximation of x2 to give approximation of general
monomials in Lemma 5.4.

2. These Taylor approximations really only work locally. Therefore we need a nice way to
switch between different Taylor expansions in different parts of [0, 1]d. This leads to
the construction of a partition of unity, and is one of the other very interesting ideas in
(Yarotsky 2016) (in addition to the construction of x2; this is done below in Lemma 5.5.

First we use squaring to obtain multiplication.

Lemma 5.3 For any integers k, l, there exists a ReLU network prodk,l : Rl → R which
requires O(kl) layers and O(kl + l2) nodes such that for any x ∈ [0, 1]l,∣∣∣∣∣∣prodk,l(x)−

l∏
j=1

xj

∣∣∣∣∣∣ ≤ l · 4−k,

and prodk,l(x) ∈ [0, 1], and prodk,l(x) = 0 if any xj is 0.
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Proof. The proof first handles the case l = 2 directly, and uses l − 1 copies of prodk,2 for
the general case.
As such, for (a, b) ∈ R2, define

prodk,2(a, b) :=
1

2

(
4hk((a+ b)/2)− hk(a)− hk(b)

)
.

The size of this network follows from the size of hk given in Theorem 5.2 (roughly following
(Yarotsky 2016)), and prodk,2(a, b) = 0 when either argument is 0 since hk(0) = 0. For the
approximation guarantee, since every argument to each hk is within [0, 1], then Theorem
5.2 (roughly following (Yarotsky 2016)) holds, and using the polarization identity to rewrite
a · b gives

2|prodk,l(a, b)− ab| = 2|prodk,l(a, b)−
1

2
((a+ b)2 − a2 − b2)|

≤ 4|hk((a+ b)/2)− ((a+ b)/2)2|+ |hk(a)− a2|+ |hk(b)− b2|
≤ 4 · 4−k−1 + 4−k−1 + 4−k−1 ≤ 2 · 4−k.

Now consider the case prodk,i for i > 2: this network is defined via

prodk,i(x1, . . . , xi) := prodk,2(prodk,i−1(x1, . . . , xi−1), xi).

It is now shown by induction that this network has O(ki+ i2) nodes and O(ki) layers, that
it evaluates to 0 when any argument is zero, and lastly satisfies the error guarantee∣∣∣∣∣∣prodk,i(x1:i)−

i∏
j=1

xj

∣∣∣∣∣∣ ≤ i4−k.

The base case i = 2 uses the explicit prodk,2 network and gaurantees above, thus consider
i > 2. The network embeds prodk,i−1 and another copy of prodk,2 as subnetworks, but
additionally must pass the input xi forward, thus requires O(ki) layers and O(ki+i2) nodes,
and evaluates to 0 if any argument is 0 by the guarantees on prodk,2 and the inductive
hypothesis. For the error estimate,∣∣∣∣∣∣prodk,i(x1, . . . , xi)−

i∏
j=1

xj

∣∣∣∣∣∣ ≤
∣∣∣prodk,2(prodk,i−1(x1, . . . , xi−1), xi)− xiprodk,i−1(x1, . . . , xi−1)

∣∣∣
+

∣∣∣∣∣∣xiprodk,i−1(x1, . . . , xi−1)− xi

i−1∏
j=1

xj

∣∣∣∣∣∣
≤ 4−k + |xi| ·

∣∣∣∣∣∣prodk,i−1(x1, . . . , xi−1)−
i−1∏
j=1

xj

∣∣∣∣∣∣
≤ 4−k + |xi| ·

(
(i− 1)4−k

)
≤ i4−k.
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From multiplication we get monomials.

Lemma 5.4 Let degree r and input dimension d be given, and let N denote the number of
monomials of degree at most r. Then there exists a ReLU network monok,r : Rd → RN

with O(kr) layers and O(dr(kr + r2)) nodes so that for any vector of exponents α⃗
corresponding to a monomial of degree at most r, meaning α⃗ ≥ 0,

∑
i αi ≤ r, and

xα⃗ :=
∏d

i=1 x
αi
i , then the output coordinate of monok,r corresponding to α⃗, written

monok,r(x)α⃗ for convenience, satisfies∣∣∣monok,r(x)α⃗ − xα⃗
∣∣∣ ≤ r4−k ∀x ∈ [0, 1]d.

Proof. monok,r consists of N parallel networks, one for each monomial. As such, given
any α⃗ of degree q ≤ r, to define coordinate α⃗ of monok,r, first rewrite α as a vector
v ∈ {1, . . . , d}q, whereby

xα⃗ :=

q∏
i=1

xvi .

Define
monok,r(x)α⃗ := prodk,q(xv1 , . . . , xvq),

whereby the error estimate follows from Lemma 5.3, and the size estimate follows by
multiplying the size estimate from Lemma 5.3 by N , and noting N ≤ dr.

Next we construct the approximate partition of unity.

Lemma 5.5 For any s ≥ 1, let partk,s : Rd → R(s+1)d denote an approximate partition of
unity implemented by a ReLU network, detailed as follows.

1. For any vector v ∈ S := {0, 1/s, . . . , s/s}d, there is a corresponding coordinate
partk,s(·)v, and this coordinate is only supported locally around v, meaning con-

cretely that partk,s(x)v is zero for x ̸∈
∏d

j=1[vj − 1/s, vj + 1/s].

2. For any x ∈ [0, 1]d, |
∑

v∈S partk,s(x)v − 1| ≤ d2d4−k.
3. partk,s can be implemented by a ReLU network with O(kd) layers and O((kd+

d2)sd) nodes.

Proof. Set N := (s + 1)d, and let S be any enumeration of the vectors in the grid
{0, 1/s, . . . , s/s}d. Define first a univariate bump function

h(a) := σ(sa+ 1)− 2σ(sa) + σ(sa− 1) =


1 + sa a ∈ [−1/s, 0),
1− sa a ∈ [0, 1/s]

0 o.w..

For any v ∈ S, define

fv(x) := prodk,d(h(x1 − v1), . . . , h(xd − vd)).
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By Lemma 5.3,

sup
x∈[0,1]d

|fv(x)−
d∏

j=1

h(xj − vj)| ≤ d4−k.

Each coordinate of the output of partk,s corresponds to some v ∈ S; in particular, define

partk,s(x)v := fv(x).

As such, by the definition of fv, and Lemma 5.3, and since |S| ≤ (s+ 1)d, then partk,s can
be written with kd layers and O((kd+ d2)sd) nodes. The local support claim for partk,s(·)v
follows by construction. For the claim of approximate partition of unity, using U ⊆ S to
denote the local set of coordinates corresponding to nonzero coordinates of partk,s (which
has |U | ≤ 2d by the local support claim),

|
∑
v∈S

partk,s(x)v − 1| = |
∑
v∈U

(partk,s(x)v −
d∏

j=1

h(xj − vj) +
d∏

j=1

h(xj − vj)− 1|

≤
∑
v∈U

|partk,s(x)v −
d∏

j=1

h(xj − vj) + |
∑
v∈U

d∏
j=1

h(xj − vj)− 1|

≤ 2dd4−k + |
∑
v∈U

d∏
j=1

h(xj − vj)− 1|.

It turns out the last term of the sum is 0, which completes the proof: letting u denote the
lexicographically smallest element in U (i.e., the “bottom left corner”),

|
∑
v∈U

d∏
j=1

h(xj − vj)− 1| = |
∑

w∈{0,1/s}d

d∏
j=1

h((x− u+ w)j)− 1|

= |
d∏

j=1

∑
wj∈{0,1/s}

h((x− u+ w)j)− 1|

= |
d∏

j=1

(h(xj − uj) + h(xj − uj + 1/s))− 1|,

which is 0 because z := x− u ∈ [0, 1/s]d by construction, and using the case analysis of h
gives

h(zj) + h(zj + 1/s) = (1 + szj) + (1− s(zj + 1/s)) = 1

as desired.

Finally we are in shape to prove Theorem 5.4.

Proof of Theorem 5.4. The ReLU network for f will combine partk,s from Lemma
5.5 with monok,r from Lemma 5.4 via approximate multiplication, meaning prodk,2 from
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Lemma 5.3.
In detail, let the grid S := {0, 1/s, . . . , s/s}d be given as in the statement of Lemma 5.5.
For each v ∈ S, let pv : Rd → R denote the Taylor expansion of degree r at v; by a standard
form of the Taylor error, for any x ∈ [0, 1]d with ∥x− v∥∞ ≤ 1/s,

|pv(x)− g(x)| ≤ Mdr

r!
∥v − x∥r∞ ≤

Mdr

r!sr
.

Next, let wv denote the Taylor coefficients forming pv, and define fv : Rd → R as
x 7→ wT

vmonok,r(x − v), meaning approximate pv by taking the linear combination with
weights wv of the approximate monomials in x 7→ monok,r(x− v). By Lemma 5.4, since
there are at most dr terms, the error is at most

|fv(x)− pv(x)| = |
∑
α⃗

(wv)α⃗(monok,r(x− v)α⃗ − (x− v)α⃗)| ≤
∑
α⃗

|(wv)α⃗|r4−k ≤Mrdr4−k.

[ mjt : just realized a small issue that negative inputs might occur; can do some shifts or
reflections or whatever to fix.]
The final network is now obtained by using prodk,2 to approximately multiply each approx-
imate Taylor expansion fv by the corresponding locally-supported approximate partition
of unity element partk,s(x)v; in particular, define

f(x) :=
∑
v∈S

prodk,2(fv(x), partk,s(x)v).

Then, using the above properties and the fact that the partition of unity is locally supported,
letting U ⊆ S denote the set of at most 2d active elements,

∣∣f(x)− g(x)
∣∣ ≤

∣∣∣∣∣∣
∑
v∈S

prodk,2(fv(x), partk,s(x)v)−
∑
v∈S

fv(x)partk,s(x)v

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
v∈S

fv(x)partk,s(x)v −
∑
v∈S

pv(x)partk,s(x)v

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
v∈S

pv(x)partk,s(x)v −
∑
v∈S

g(x)partk,s(x)v

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
v∈S

g(x)partk,s(x)v − g(x)

∣∣∣∣∣∣
≤ 2|U |4−k +Mrdr4−k(1 + d2d4−k) +

Mdr

r!sr
(1 + d2d4−k) + |f(x)|d2d4−k

≤Mrdr
(
s−r + 4d2d · 4−k

)
+ 3d2d · 4−k.

[ mjt : The input to prodk,2 can exceed 1. for a maximally lazy fix, I should just clip its
input.]
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4.3 Bibliographic notes

[todo 89/93]
From squaring we can get many other things (still with O(ln(1/ϵ)) depth and size.

• Multiplication (via “polarization”):

(x, y) 7→ xy =
1

2

(
(x+ y)2 − x2 − y2

)
.

• Multiplications gives polynomials.

• 1
x
and rational functions (Telgarsky 2017).

• Functions with “nice Taylor expansions” (Sobolev spaces) (Yarotsky 2016); though now
we’ll need size bigger than ln 1

ϵ
:

– First we approximate each function locally with a polynomial.

– We multiply each local polynomial by a bump ((Yarotsky 2016) calls the family of
bumps a “partition of unity”).

– This was also reproved and connected to statistics questions by (Schmidt-Hieber
2017).

Remark 5.5 (bibliographic notes) Theorem 5.1 ((Telgarsky 2015, 2016)) was the ear-
liest proof showing that a deep network can not be approximated by a reasonably-sized
shallow network, however prior work showed a separation for exact representation
of deep sum-product networks as compared with shallow ones (Bengio and Delalleau
2011). A sum-product network has nodes which compute affine transformations or
multiplications, and thus a multi-layer sum-product network is a polynomial, and this
result, while interesting, does not imply a ReLU separation.
As above, step 1 of the proof upper bounds the total possible number of affine pieces in
a univariate network of some depth and width, and step 2 constructs a deep function
which roughly meets this bound. Step 1 can be generalized to the multivariate case,
with reasoning similar to the VC-dimension bounds in +(sec:vc?). A version of step 2
appeared in prior work but for the multivariate case, specifically giving a multivariate-
input network with exponentially many affine pieces, using a similar construction
(Montúfar et al. 2014). A version of step 2 also appeared previous as a step in a proof
that recurrent networks are Turing complete, specifically a step used to perform digit
extraction (Siegelmann and Sontag 1994, fig. 3).

It is natural and important to wonder if this exponential increase is realized in practice.
Preliminary work reveals that, at least near initialization, the effective number of pieces is
much smaller (Hanin and Rolnick 2019).

Remark 4.12 (Other depth separations). • Our construction was univariate.
Over Rd, there exist ReLU networks with poly(d) notes in 2 hidden layers which
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can not be approximated by 1-hidden-layer networks unless they have ≥ 2d nodes
(Eldan and Shamir 2015).

– The 2-hidden-layer function is approximately radial; we also mentioned that
these functions are difficult in the Fourier material; the quantity

∫
∥w∥ ·

|f̂(w)|dw is generally exponential in dimension for radial functions.

– The proof by (Eldan and Shamir 2015) is very intricate; if one adds the
condition that weights have subexponential size, then a clean proof is known
(Daniely 2017).

– Other variants of this problem are open; indeed, there is recent evidence
that separating constant depth separations is hard, in the sense of reducing
to certain complexity theoretic questions (Vardi and Shamir 2020).

3

• A variety of works consider connections to tensor approximation and sum product
networks (Cohen and Shashua 2016; Cohen, Sharir, and Shashua 2016).

• Next we will discuss the approximation of x2.

• Last one can be beefed up to a lower bound against strongly convex functions. [todo
90/93]

From squaring we can get many other things (still with O(ln(1/ϵ)) depth and size.

• Multiplication (via “polarization”):

(x, y) 7→ xy =
1

2

(
(x+ y)2 − x2 − y2

)
.

• Multiplications gives polynomials.

• 1
x
and rational functions (Telgarsky 2017).

• Functions with “nice Taylor expansions” (Sobolev spaces) (Yarotsky 2016); though now
we’ll need size bigger than ln 1

ϵ
:

– First we approximate each function locally with a polynomial.

– We multiply each local polynomial by a bump ((Yarotsky 2016) calls the family of
bumps a “partition of unity”).

– This was also reproved and connected to statistics questions by (Schmidt-Hieber
2017).
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Theorem 5.3 (sketch, from (Yarotsky 2016; Schmidt-Hieber 2017)) Suppose f :

Rd → R has all coordinates of all partial derivatives of order up to r within [−1,+1]

and let ϵ > 0 be given. Then there exists a Õ(ln(1/ϵ) layer and Õ(ϵ−d/r) width network
so that

sup
x∈[0,1]d

|f(x)− g(x)| ≤ ϵ.

[ mjt : gross and vague, i should clean]
Remark 5.13 There are many papers following up on these; e.g., crawl the citation graph

outwards from (Yarotsky 2016).

4.4 Bibliographic notes

can say essentially three categories for separations: multi-layer, 2-to-3, and polynomial.

4.5 Exercises

4.5.1 Research questions

Research question 4.1. signal-to-noise in multi-layer case

Research question 4.2. norm-based repr results

Research question 4.3. other arch

Research question 4.4. characterize multi-layer multi-variate easy-to-repr fucntions.

Research question 4.5. proper depth sep (L vs L+ 1)
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Appendix A

Technical background

A.1 Convexity

A.2 Miscellaneous inequalities

A.3 Probability

[todo 91/93]

A.4 Clarke differentials

[todo 92/93]
[todo 93/93]

A.5 Mirror descent and the perceptron algorithm
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