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Abstract
One of the key issues in the analysis of machine learning models is to identify the
appropriate function space and norm for themodel. This is the set of functions endowed
with a quantity which can control the approximation and estimation errors by a partic-
ular machine learningmodel. In this paper, we address this issue for two representative
neural network models: the two-layer networks and the residual neural networks. We
define the Barron space and show that it is the right space for two-layer neural net-
work models in the sense that optimal direct and inverse approximation theorems hold
for functions in the Barron space. For residual neural network models, we construct
the so-called flow-induced function space and prove direct and inverse approximation
theorems for this space. In addition, we show that the Rademacher complexity for
bounded sets under these norms has the optimal upper bounds.
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1 Introduction

The task of supervised learning is to approximate a function using a given set of
data. This type of problem has been the subject of classical numerical analysis and
approximation theory for a long time. The theory of splines and the theory of finite
element methods are very successful examples of such classical results [8,9], both
are concerned with approximating functions using piecewise polynomials. In these
theories, one starts from a function in a particular function space, say a Sobolev or
Besov space and proceeds to derive optimal error estimates for this function. The
optimal error estimates depend on the function norm, and the regularity encoded in
the function space as well as the approximation scheme. They are the most important
pieces of information for understanding the underlying approximation scheme. When
discussing a particular function space, the associated norm is as crucial as the set of
functions it contains.

Identifying the right function space that one should use is the most crucial step in
this analysis. Sobolev/Besov type spaces are good function spaces for these classical
theories since:

1. One can prove direct and inverse approximation theorems for these spaces. Roughly
speaking, a function can be approximated by piecewise polynomials with certain
convergence rate if and only if the function is in certain Sobolev/Besov space.

2. The functions we are interested in, e.g., solutions of partial differential equations
(PDEs), are in these spaces. This is at the heart of the regularity theory for PDEs.

However, these spaces are tiedwith the piecewise polynomial basis used in the approxi-
mation scheme. These approximation schemes suffer from the curse of dimensionality,
i.e., the number of parameters needed to achieve certain level of accuracy grows expo-
nentially with dimension. Consequently, Sobolev/Besov type spaces are not the right
function spaces for studying machine learning models that can potentially address the
curse of dimensionality problem.

Another inspiration for this paper comes from kernel methods. It is well-known
that the right function space associated with a kernel method is the corresponding
reproducing kernel Hilbert space (RKHS) [1]. RKHS and kernel methods provide
one of the first examples for which dimension-independent error estimates can be
established.

The main purpose of this paper is to construct and identify the analog of these
spaces for two-layer and residual neural network models. For two-layer neural net-
work models, we show that the right function space is the so-called “Barron space.”
Roughly speaking, a function belongs to the Barron space if and only if it can be
approximated by “well-behaved” two-layer neural networks, and the approximation
error is controlled by the norm of the Barron space. The analog of the Barron space for
deep residual neural networks is the “flow-induced function space” that we construct
in the second part of this paper. With the “flow-induced norms,” we will establish
direct and inverse approximation theorems for these spaces as well as the optimal
Rademacher complexity estimates.

One important difference between approximation theory in low and high dimen-
sions is that in high dimensions, the best error rate (or order of convergence) that
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one can hope for is the Monte Carlo error rate. Therefore using the error rate as an
indicator to distinguish the quality of different approximation schemes or machine
learning models is not a good option. The function spaces or the associated norms
seem to be a better alternative. We take the viewpoint that a function space is defined
by its approximation property using a particular approximation scheme. In this sense,
Sobolev/Besov spaces are the result when we consider approximation by piecewise
polynomials or wavelets. Barron space is the analog when we consider approximation
by two-layer neural networks and the flow-induced function space is the analog when
we consider approximation by deep residual networks. The norms that are associated
with these new spaces may seem a bit unusual at a first sight, but they arise naturally in
the approximation process, as we will see from the direct and inverse approximation
theorems presented below.

It should be stressed that the terminologies “space” and “norm” in this paper are
used in a loose way. For example, flow-induced norms are a family of quantities that
control the approximation error. We do not take effort to investigate whether it is a
real norm.

Although this work was motivated by the problem of understanding approximation
theory for neural networkmodels inmachine learning,we believe that it should have an
implication for high dimensional analysis in general. One natural follow-up question is
whether one can show that solutions to high dimensional partial differential equations
(PDE) belong to the function spaces introduced here. At least for linear parabolic
PDEs, the work in [14] suggests that some close analog of the flow-induced spaces
should serve the purpose.

In Sect. 2, we introduce the Barron space for two-layer neural networks. Although
not all the results in this section are new (some have appeared in various forms in
[2,11,15]), they are useful for illustrating our angle of attack and they are also useful
for the work in Sect. 3 where we introduce the flow-induced function space for residual
networks.

Notations Let Sd = {w ∈ R
d+1 : ‖w‖1 = 1}. We define ŵ = w

‖w‖1 if w �= 0

otherwise ŵ = 0. For simplicity, we fix the domain of interest to be X = [0, 1]d .
We denote by x ∈ X the input variable, and let x̃ = (xT , 1)T . We sometimes abuse
notation and use f (x) (or some other analogs) to denote the function f in order to
signify the independent variable under consideration. We use ‖ f ‖ to denote the L2
norm of function f defined by

‖ f ‖ =
(∫

X
| f (x)|2μ(dx)

) 1
2

,

where μ(x) is a probability distribution on X . We do not specify μ in this paper.
One important point for working in high dimension is the dependence of the con-

stants on the dimension. We will use C to denote constants that are independent of the
dimension.

In Sect. 3, the absolute values and powers of matrices and vectors (| · | and (·)p)
are understood as being element-wise. The multiplication of two matrices is regular
matrix multiplication.
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2 The Barron Space

In this section, we define the Barron space and study its properties. The proofs of
theorems are postponed to the end of the section.

2.1 Definition of the Barron Space

We will consider functions f : X �→ R that admit the following representation

f (x) =
∫

�

aσ(bT x + c)ρ(da, db, dc), x ∈ X (1)

where � = R
1 ×R

d ×R
1, ρ is a probability distribution on (�, ��), with �� being

a Borel σ -algebra on �, and σ(x) = max{x, 0} is the ReLU activation function.
This representation can be considered as the continuum analog of two-layer neural
networks:

fm(x;�) := 1

m

m∑
j=1

a jσ(bTj x + c j ),

where� = (a1, b1, c1, . . . , am, bm, cm) denotes all the parameters. It should be noted
that in general, the ρ’s for which (1) holds are not unique.

To get some intuition about the representation (1), we write the Fourier represen-
tation of a function f as:

f (x) =
∫
Rd

f̂ (ω) cos(ωT x)dω =
∫
R1×Rd

a cos(ωT x)ρ(da, dω),

ρ(da, dω) = δ(a − f̂ (ω))dadω. (2)

This can be thought of as the analog of (1) for the case when σ(z) = cos(z) except
for the fact that the ρ defined in (2) is not normalizable.

For functions that admit the representation (1), we define its Barron norm:

‖ f ‖Bp = inf
ρ

(
Eρ[|a|p(‖b‖1 + |c|)p])1/p, 1 ≤ p ≤ +∞. (3)

Here the infimum is taken over all ρ for which (1) holds for all x ∈ X , and when
p = ∞ the norm (3) becomes

inf
ρ

max
(a,b,c)∈supp(ρ)

|a|(‖b‖1 + |c|).

Barron spacesBp are defined as the set of continuous functions that can be represented
by (1) with finite Barron norm. We name these spaces after Barron to honor his
contribution to the mathematical analysis of two-layer neural networks, in particular
the work in [4,5,15].
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Remark 1 It should be noted that the Barron norm defined here is different from the
spectral norm used in Barron’s original papers (see for example [4]).

As a consequence of the Hölder’s inequality, we trivially have

B∞ ⊂ · · ·B2 ⊂ B1.

However, the opposite is also true for the ReLU activation functionwe are considering.

Proposition 1 For any f ∈ B1, we have f ∈ B∞ and

‖ f ‖B1 = ‖ f ‖B∞ .

As a consequence, we have that for any 1 ≤ p ≤ ∞, Bp = B∞ and ‖ f ‖Bp =
‖ f ‖B∞ . Hence, we can use B and ‖ · ‖B to denote the Barron space and Barron norm.

A natural question is:What kind of functions are in theBarron space? The following
is a restatement of an important result proved in [15]. It is an extension of the Fourier
analysis of two-layer sigmoidal neural networks in Barron’s seminal work [4].

Proposition 2 (Theorem 6 in [15]) Let f ∈ C(X), the space of continuous functions
on X, and assume that f satisfies:

γ ( f ) := inf
f̂

∫
Rd

‖ω‖21| f̂ (ω)|dω < ∞,

where f̂ is the Fourier transform of an extension of f to R
d . Then f admits a repre-

sentation as in (1). Moreover,

‖ f ‖B ≤ 2γ ( f ) + 2‖∇ f (0)‖1 + 2| f (0)|. (4)

Remark 2 In Section 9 of [4], examples of functions with bounded γ ( f ) are given
(e.g., Gaussian, positive definite functions, etc.). [4] used the norm

∫
Rd ‖ω‖| f̂ (ω)|dω,

instead of γ ( f ), but the analysis also shows that Gaussian and positive definite func-
tions give rise to finite values of γ ( f ). By Proposition 2, these functions belong to the
Barron space.

In addition, the Barron space is also closely related to a family of RKHS. Let
w = (b, c). Due to the scaling invariance of σ(·), we can assume w ∈ S

d . Then (1)
can be written as

f (x) =
∫
Sd

aσ(wT x̃)ρ(da, dw) =
∫
Sd

a(w)σ (wT x̃)π(dw),

a(w) =
∫
R
aρ(a,w)da

π(w)
, π(w) =

∫
R

ρ(a,w)da (5)

Moreover,

‖ f ‖2B2
= inf

π
Eπ [|a(w)|2],
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where the infimum is taken over all π that satisfies (5).
Given a fixed probability distribution π , we can define a kernel:

kπ (x, x′) = Ew∼π [σ(wT x̃)σ (wT x̃′)]

Let Hkπ denote the RKHS induced by kπ . Then we have the following proposition.

Proposition 3

B =
⋃

π∈P(Sd )

Hkπ .

2.2 Direct and Inverse Approximation Theorems

With (1), approximating f by two-layer networks becomes a Monte Carlo integration
problem.

Theorem 1 For any f ∈ B and m > 0, there exists a two-layer neural net-
work fm(·;�), fm(x;�) = 1

m

∑m
k=1 akσ(bTk x + ck) (� denotes the parameters

{(ak, bk, ck), k ∈ [m]} in the neural network), such that

‖ f (·) − fm(·;�)‖2 ≤ 3‖ f ‖2B
m

,

Furthermore, we have

‖�‖P := 1

m

m∑
j=1

|a j |(‖b j‖1 + |c j |) ≤ 2‖ f ‖B.

Remark 3 We call ‖�‖P the path norm of two-layer neural network. This is the analog
of the Barron norm of functions inB. Hence, when studying approximation properties,
it is natural to study two-layer neural networks with bounded path norm.

One can also prove an inverse approximation theorem. To state this result, we
define:

NQ =
{

1

m

m∑
k=1

akσ(bTk x + ck) : 1

m

m∑
k=1

|ak |(‖bk‖1 + |ck |) ≤ Q,m ∈ N
+
}

.

Theorem 2 Let f ∗ be a continuous function on X. Assume there exists a constant Q
and a sequence of functions ( fm) ⊂ NQ such that

fm(x) → f ∗(x)
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for all x ∈ X. Then there exists a probability distribution ρ∗ on (�,��), such that

f ∗(x) =
∫

aσ(bT x + c)ρ∗(da, db, dc),

for all x ∈ X. Furthermore, we have f ∗ ∈ B with

‖ f ∗‖B ≤ Q.

2.3 Estimates of the Rademacher Complexity

Next, we show that the Barron spaces we defined have low complexity. We show this
by bounding the Rademacher complexity of bounded sets in the Barron spaces.

Definition 1 (Rademacher complexity) Given a set of functions F and n data samples
S = {x1, x2, . . . , xn}, the Rademacher complexity of F with respect to S is defined
as

Radn(F) = 1

n
Eξ sup

f ∈F

n∑
i=1

ξi f (xi ),

where ξ = (ξ1, ξ2, . . . , ξn) is a vector of n i.i.d. random variables that satisfy P(ξ =
1) = P(ξ = −1) = 1

2 .

The following theorem gives an estimate of the Rademacher complexity of the
Barron space. Similar results can be found in [2]. We include the proof in the next
section for completeness.

Theorem 3 Let FQ = { f ∈ B : ‖ f ‖B ≤ Q}. Then we have

Radn(FQ) ≤ 2Q

√
2 ln(2d)

n

From Theorem 8 in [6], we see that the above result implies that functions in the
Barron spaces can be learned efficiently .

2.4 Barron Space for Non-ReLU Functions and the SpaceF1

The definition of the Barron space and Barron norm can be extended to representa-
tions (1) with σ(·) being a general activation function. Specifically, for any function
f with representation

f (x) =
∫

�

aσ̃ (bT x + c)ρ(da, db, dc), x ∈ X , (6)
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where σ̃ is an activation function not necessarily ReLU, we define the extended Barron
norm (which is denoted by ‖ · ‖B̃p

) as

‖ f ‖B̃p
: = inf

ρ
(Eρ

[|a|p(‖b‖1 + |c| + 1)p
]
)1/p, (7)

where p ∈ [1,∞], and the infimum is taken over all ρ for which (6) holds. The
extended Barron space B̃p is defined as the set of functions with finite B̃p norm. In
this case, since the homogeneity property does not hold for the activation function,
B̃p spaces with different p are not equal. The direct approximation theorem and
Rademacher complexity control can be proven for B̃p as long as σ̃ satisfies

∫
R

|σ̃ ′′(x)|(|x | + 1)dx < ∞.

See [18] for more details.
We deal with general activation functions by approximating them using two-layer

ReLU neural networks, and the “+1” term in (7) appears naturally during the approx-
imation process. It is worth mentioning that if σ̃ =ReLU the B̃p norms become
equivalent with the Barron norm ‖ · ‖B, because of the infimum and the homogeneity
property.

In [2], a similar function space F1 is defined by using the variation norm [16,19].
In [2], signed measures are used to represent the function as follows,

f (x) =
∫
V

σ(bT x + c)dμ(b, c), (8)

where V is the support of the signed measure μ. Let S f denote the set of signed
measures such that (8) holds. The F1 norm of f is given by

‖ f ‖F1 := inf
μ∈S f

|μ|(V),

where |μ|(V) denotes the total variation ofμ. The estimate of Rademacher complexity
of F1 is provided for the ReLU activation function.

For ReLU activation function, F1 is equivalent with B, and the norms are equal,
too [12]. However, for a general activation function (e.g., tanh, sigmoid), the Barron
space is different fromF1.F1 typically requires (b, c) to lie in a compact set, which is
generally not true.With (b, c) being in a compact set, the variation normonly considers
a and treat features with any (b, c) equivalently. Hence, a very simple feature will
have the same variation norm as a complicated feature, which leads to loose bounds
for simple functions. On the contrary, the B̃p norms consider (a, b, c) together, and
features with different (b, c) make different contributions to the norm.
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2.5 Proofs

2.5.1 Proof of Proposition 1

Take f ∈ B1. For any ε > 0, there exists a probability measure ρ that satisfies

f (x) =
∫

�

aσ(bT x + c)ρ(da, db, dc), ∀ x ∈ X ,

and

Eρ [|a|(‖b‖1 + |c|)] < ‖ f ‖B1 + ε.

Let 
 = {(b, c) : ‖b‖1 + |c| = 1}, and consider two measures ρ+ and ρ− on 


defined by

ρ+(A) =
∫

{(a,b,c): (b̂,ĉ)∈A,a>0}
|a|(‖b‖1 + |c|)ρ(da, db, dc),

ρ−(A) =
∫

{(a,b,c): (b̂,ĉ)∈A,a<0}
|a|(‖b‖1 + |c|)ρ(da, db, dc),

for any Borel set A ⊂ 
, where

b̂ = b
‖b‖1 + |c| , ĉ = c

‖b‖1 + |c| .

Obviously ρ+(
) + ρ−(
) = Eρ [|a|(‖b‖1 + |c|)], and

f (x) =
∫




σ(bT x + c)ρ+(db, dc) −
∫




σ(bT x + c)ρ−(db, dc).

Next, we define extensions of ρ+ and ρ− to {−1, 1} × 
 by

ρ̃+(A′) = ρ+({(b, c) : (1, b, c) ∈ A′}),
ρ̃−(A′) = ρ−({(b, c) : (−1, b, c) ∈ A′}),

for any Borel sets A′ ⊂ {−1, 1}×
, and let ρ̃ = ρ̃+ + ρ̃−. Then we have ρ̃({−1, 1}×

) = Eρ [|a|(‖b‖1 + |c|)] and

f (x) =
∫

{−1,1}×


aσ(bT x + c)ρ̃(da, db, dc).

Therefore, we can normalize ρ̃ to be a probability measure, and

‖ f ‖B∞ ≤ ρ̃({−1, 1} × 
)≤ ‖ f ‖B1 + ε.
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Taking the limit as ε → 0, we have ‖ f ‖B∞ ≤ ‖ f ‖B1 . Since ‖ f ‖B1 ≤ ‖ f ‖B∞ from
Hölder’s inequality, we conclude that ‖ f ‖B1 = ‖ f ‖B∞ . ��

2.5.2 Proof of Theorem 3

According to [21], we have the following characterization of Hkπ :

Hkπ =
{∫

Sd
a(w)σ (wT x̃)dπ(w) : Eπ [|a(w)|2] < ∞

}
.

In addition, for any h ∈ Hkπ , ‖h‖2Hkπ
= Eπ [|a(w)|2]. It is obvious that for any

π ∈ P(Sd),Hkπ ⊂ B2, which implies that∪πHkπ ⊂ B2. Conversely, for any f ∈ B2,
there exists a probability distribution π̃ that satisfies

f (x) =
∫
Sd

a(w)σ (wT x̃)π̃(dw) ∀x ∈ X ,

and Eπ̃ [|a(w)|2] ≤ 2‖ f ‖2B2
< ∞. Hence we have f ∈ Hkπ̃

, which implies B2 ⊂
∪πHkπ . ThereforeB2 = ∪πHkπ . Together with Proposition 1, we complete the proof.

��

2.5.3 Proof of Theorem 1

Let ε be a positive number such that ε < 1/5. Let ρ be a probability distribution
such that f (x) = Eρ[aσ(bT x + c)] and Eρ[|a|2(‖b‖1 + |c|)2] ≤ (1 + ε)‖ f ‖2B2

. Let

φ(x; θ) = aσ(bT x + c) with θ = (a, b, c) ∼ ρ. Then we have Eθ∼ρ[φ(x; θ)] =
f (x). Let � = {θ j }mj=1 be i.i.d. random variables drawn from ρ(·), and consider the
following empirical average,

f̂m(x;�) = 1

m

m∑
j=1

φ(x; θ j ).

Let E(�) = Ex[| f̂m(x;�) − f (x)|2] be the approximation error. Then we have

E�[E(�)] = E�Ex| f̂m(x;�) − f (x)|2

= ExE�| 1
m

m∑
j=1

φ(x; θ j ) − f (x)|2

= 1

m2Ex

m∑
j,k=1

Eθ j ,θk [(φ(x; θ j ) − f (x))(φ(x; θk) − f (x))]

≤ 1

m2

m∑
j=1

ExEθ j [(φ(x; θ j ) − f (x))2]
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≤ 1

m
ExEθ∼ρ[φ2(x; θ)]

≤ (1 + ε)‖ f ‖2B2

m
.

In addition,

E�[‖�‖P ] = 1

m

m∑
j=1

E�[‖a j‖(‖b j‖1 + |c j |)] ≤ (1 + ε)‖ f ‖B2 .

Define the event E1 = {E(�) <
3‖ f ‖2B2

m }, and E2 = {‖�‖P < 2‖ f ‖B2}. By
Markov inequality, we have

P{E1} = 1 − P{Ec
1} ≥ 1 − E�[E(�)]

3‖ f ‖2B2
/m

≥ 2 − ε

3

P{E2} = 1 − P{Ec
2} ≥ 1 − E�[‖�‖P ]

2‖ f ‖B2

≥ 1 − ε

2
.

Therefore we have

P{E1 ∩ E2} = P{E1} + P{E2} − 1 ≥ 2 − ε

3
+ 1 − ε

2
− 1 = 1 − 5ε

6
> 0.

Choose any � in E1 ∩ E2. The two-layer neural network model defined by this �

satisfies both requirements in the theorem. ��

2.5.4 Proof of Theorem 2

Without loss of generality, we assume that ‖b‖1+|c| = 1, otherwise due to the scaling
invariance of σ(·) we can redefine the parameters as follows,

a ← a(‖b‖1 + |c|), b ← b
‖b‖1 + |c| , c ← c

‖b‖1 + |c| .

Let �m = {(a(m)
k , b(m)

k , c(m)
k )}mk=1 be the parameters in the two-layer neural network

model fm and let A = ∑m
k=1 |ak | and αk = |ak |

A . Then we can define a probability
measure:

ρm =
m∑

k=1

αkδ

(
a − sign(a(m)

k )A

m

)
δ(b − b(m)

k )δ(c − c(m)
k ),

which satisfies

fm(x;�m) =
∫

aσ(bT x + c)ρm(da, db, dc).
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Let

KQ = {(a, b, c) : |a| ≤ Q, ‖b‖1 + |c| ≤ 1}.

It is obvious that supp(ρm) ⊂ KQ for all m. Since KQ is compact, the sequence of
probabilitymeasure (ρm) is tight. By Prokhorov’s Theorem, there exists a subsequence
(ρmk ) and a probability measure ρ∗ such that ρmk converges weakly to ρ∗.

The fact that supp(ρm) ⊂ KQ implies supp(ρ∗) ⊂ KQ . Therefore, we have

‖ f ∗‖B = ‖ f ∗‖B∞ ≤ Q.

For any x ∈ X , aσ(bT x+ c) is continuous with respect to (a, b, c) and bounded from
above by Q. Since ρ∗ is the weak limit of ρmk , we have

f ∗(x) = lim
k→∞

∫
aσ(bT x + c)dρmk =

∫
aσ(bT x + c)dρ∗(da, db, dc).

��

2.5.5 Proof of Theorem 3

Let w = (bT , c)T and x̃ = (xT , 1)T . For any ε > 0 and f ∈ B, let ρε
f (a,w) be a

distribution such that f (x) = Eρε
f
[aσ(bT x + c)] and Eρε

f
[|a|‖w‖1] < (1 + ε)‖ f ‖B.

Then,

n Radn(FQ) = Eξ [ sup
f ∈FQ

n∑
i=1

ξiEρε
f
[aσ(wT xi )]]

= Eξ [ sup
f ∈FQ

Eρε
f
[

n∑
i=1

ξi aσ(wT xi )]]

= Eξ [ sup
f ∈FQ

Eρε
f
[|a|‖w‖1|

n∑
i=1

ξiσ(ŵ
T xi )|]]

≤ (1 + ε)QEξ [ sup
‖w‖≤1

|
n∑

i=1

ξiσ(wT xi )|]. (9)

Due to the symmetry, we have

Eξ [ sup
‖w‖≤1

|
n∑

i=1

ξiσ(wT xi )|] ≤ Eξ [ sup
‖w‖≤1

n∑
i=1

ξiσ(wT xi )] + Eξ [ sup
‖w‖≤1

−
n∑

i=1

ξiσ(wT xi )]

= 2Eξ [ sup
‖w‖≤1

n∑
i=1

ξiσ(wT xi )]
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≤ 2Eξ [ sup
‖w‖≤1

n∑
i=1

ξiw
T xi ], (10)

where the last inequality follows from the contraction property of Rademacher com-
plexity (see Lemma 26.9 in [22]) and the fact that σ(·) is Lipschitz continuous with
Lipschitz constant 1. Applying Lemma 26.11 in [22] and plugging (10) into (9), we
obtain

Radn(FQ) ≤ 2(1 + ε)Q

√
2 ln(2d)

n
.

Taking ε → 0, we complete the proof. ��

3 Flow-Induced Function Spaces

In this section, we carry out a similar program for residual neural networks. Since
the limit of these networks give rise to continuous in time flows, the natural function
spaces and norms associatedwith the residual neural networks are also flow-based. For
this reason, we call them flow-induced spaces and flow-induced norms, respectively.
Similar to what was done in the last section, we establish a natural connection between
these function spaces and residual neural networks, by proving direct and inverse
approximation theorems. We also prove a complexity bound for the flow-induced
space.

We postpone all the proofs to the end of this section.

3.1 The Compositional Law of Large Numbers

We consider residual neural networks defined by

z0,L(x) = Vx,

zl+1,L(x) = zl,L(x) + 1

L
Ulσ ◦ (W l zl,L(x)),

fL(x;�) = αT zL,L(x), (11)

where x ∈ R
d is the input, V ∈ R

D×d ,W l ∈ R
m×D , Ul ∈ R

D×m,α ∈ R
D and we

use� := {V,U1, . . . ,UL ,W l , . . . ,W L ,α} to denote all the parameters to be learned
from data. Without loss of generality, we will fix V to be

V =
[
Id×d

0(D−d)×d

]
. (12)

We will fix D andm throughout this paper, and when there is no danger for confusion,
we will omit � in the notation and use fL(x) to denote the residual network for
simplicity.
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For two-layer neural networks, if the parameters {ak, bk, ck} are i.i.d sampled from
a probability distribution ρ, then we have

1

m

m∑
k=1

akσ(bTk x + ck) →
∫

aσ(bT x + c)ρ(da, db, dc),

when m → ∞ as a consequence of the law of large numbers. To get some intuition in
the current situation, we will first study a similar setting for residual networks in which
Ul and W l are i.i.d sampled from a probability distribution ρ on R

D×m × R
m×D . To

this end, we will study the behavior of zL,L(·) as L → ∞. The sequence of mappings
we obtain is the repeated composition of many i.i.d. random near-identity maps.

The following theorem can be viewed as a compositional version of the law of large
numbers. The “compositional mean” is defined with the help of the following ordinary
differential equation (ODE) system:

z(x, 0) = Vx,
d

dt
z(x, t) = E(U,W)∼ρUσ(Wz(x, t)). (13)

Theorem 4 Assume that σ is Lipschitz continuous and

Eρ‖|U||W |‖2F < ∞. (14)

Then, the ODE (13) has a unique solution. For any x ∈ X, we have

zL,L(x) → z(x, 1)

in probability as L → +∞. Moreover, we have

lim
L→∞ sup

x∈X
E‖zL,L(x) − z(x, 1)‖2 = 0,

i.e., the convergence is uniform with respect to x ∈ X.

This result can be extended to situations when the distribution ρ is time-dependent,
which is the right setting in applications.

Theorem 5 Let {ρt , t ∈ [0, 1]} be a family of probability distributions on R
D×m ×

R
m×D with the property that there exist constants c1 and c2 such that

Eρt ‖|U||W |‖2F < c1

and

∣∣Eρt Uσ(W z) − EρsUσ(W z)
∣∣ ≤ c2|t − s||z|
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for all s, t ∈ [0, 1]. Let z be the solution of the following ODE,

z(x, 0) = Vx,
d

dt
z(x, t) = E(U,W)∼ρtUσ(Wz(x, t)).

Then, for any fixed x ∈ X, we have

zL,L(x) → z(x, 1)

in probability as L → +∞. Moreover, the convergence is uniform in x.

Similar results have been proved in the context of stochastic approximations, for
example in [7,17].

3.2 The Flow-Induced Function Spaces

Motivated by the previous results, we consider the set of functions fα,{ρt } defined by:

z(x, 0) = Vx,

ż(x, t) = E(U,W)∼ρtUσ(Wz(x, t)),

fα,{ρt }(x) = αT z(x, 1), (15)

where V ∈ R
D×d is given in (12), U ∈ R

D×m , W ∈ R
m×D , and α ∈ R

D . To define a
norm for these functions, we consider the following linear ODEs (p ≥ 1)

Np(0) = e,

Ṅp(t) = (Eρt (|U||W |)p)1/p Np(t), (16)

where e is the all-one vector in R
D . Note that in (16), |A| and |A|q are defined

element-wise for matrixA, and the multiplication of |U| and |W | is the regular matrix
multiplication. This linear system of equations has a unique solution as long as the
expected value is integrable as a function of t . If f admits a representation as in (15),
we can define the Dp norm of f .

Definition 2 Let f be a function that satisfies f = fα,{ρt } for a pair of (α, {ρt }), then
we define

‖ f ‖Dp(α,{ρt }) = |α|T Np(1),

to be the Dp norm of f with respect to the pair (α, {ρt }). We define

‖ f ‖Dp = inf
f = fα,{ρt }

|α|T Np(1). (17)

to be the Dp norm of f .
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As an example, if ρ is constant in t , then the Dp norm becomes

‖ f ‖Dp = inf
f = fα,ρ

|α|T e(Eρ(|U||W |)p)1/pe.

Given this definition, the flow-induced function spaces on X are defined as the set of
continuous functions that can be represented as fα,{ρt } in (15) with finite Dp norm.
Here we assume that for any t ∈ [0, 1], ρt is a probability distribution defined on
(�,��),� = R

D×m ×R
m×D ,�� is the Borel σ -algebra on�. We useDp to denote

these function spaces. It is easy to see Dp ⊂ Dq for p ≥ q.
Note that in the definitions above, the only condition on {ρt } is the existence and

uniqueness of z defined by (15). Hence, {ρt } can be discontinuous as a function
t . However, the compositional law of large numbers, which is the underlying reason
behind the approximation theorem that wewill discuss next (Theorem 5), requires {ρt }
to satisfy some continuity condition. To that end, we define the following “Lipschitz
coefficient” and “Lipschitz norm” for {ρt }
Definition 3 Given a family of probability distribution {ρt , t ∈ [0, 1]}, the “Lipschitz
coefficient” of {ρt }, which is denoted by Lip{ρt }, is defined as the infimum of all the
number L that satisfies

∣∣EρtUσ(Wz) − EρsUσ(Wz)
∣∣ ≤ Lip{ρt }|t − s||z|,

and
∣∣∣∥∥Eρt |U||W |∥∥1,1 − ∥∥Eρs |U||W |∥∥1,1

∣∣∣ ≤ Lip{ρt }|t − s|,

for any t, s ∈ [0, 1], where ‖ · ‖1,1 is the sum of the absolute values of all the entries
in a matrix. The “Lipschitz norm” of {ρt } is defined as

‖{ρt }‖Lip = ∥∥Eρ0 |U||W |∥∥1,1 + Lip{ρt }.

With the Lipschitz norm of {ρt } defined above, we can introduce another class of
function spaces D̃p, which independently controls Np(1) and ‖{ρt }‖Lip.
Definition 4 Let f be a function that satisfies f = fα,{ρt } for a pair of (α, {ρt }), then
we define

‖ f ‖D̃p(α,{ρt }) = |α|T Np(1) + ‖Np(1)‖1 − D + ‖{ρt }‖Lip,

to be the D̃p norm of f with respect to the pair (α, {ρt }). We define

‖ f ‖D̃p
= inf

f= fα,{ρt }
‖ f ‖D̃p(α,{ρt }).

to be the D̃p norm of f . The space D̃p is defined as the set of all the continuous
functions that admit the representation fα,{ρt } in (15) with finite D̃p norm.
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Remark 4 We add a “−D” term in the definition of D̃p norm because ‖Np(1)‖1 ≥
D and we want the norm of the zero function to be 0. As was stressed earlier, we
use the terminology “norm” loosely, and we do not care whether these are really
norms. Strictly speaking, they are just some quantities that can be used to bound
approximation/estimation errors.

Next, for residual networks (11), we define a parameter-based norm as a discrete
analog of (17). This is similar to the l1 path norm of the residual network, which is
studied in [10,20]

Definition 5 For a residual networkdefinedby (11)with parameters� = {α,Ul ,W l , l =
0, 1, . . . , L − 1}, we define the l1 path norm of � to be

‖�‖P = |α|T
L∏

l=1

(
I + 1

L
|Ul ||W l |

)
e.

We can also define the analog of the p-norms for p > 1 for residual networks. But in
this paper, we will only use the l1 norm defined above.

It is easy to see that D̃p ⊂ Dp, and for any f ∈ D̃p we have ‖ f ‖Dp ≤ ‖ f ‖D̃p
.

Moreover, for any 1 ≤ q ≤ p, if f ∈ D̃p, then we have f ∈ D̃q and ‖ f ‖D̃q
≤ ‖ f ‖D̃p

.

The next proposition states that Barron space is embedded in D̃1.

Proposition 4 Assume that D ≥ d + 2 and m ≥ 1. For any function f ∈ B, we have
f ∈ D̃1, and

‖ f ‖D̃1
≤ 2‖ f ‖B + 1.

Moreover, for any ε > 0, there exists (α, {ρt }) such thatρt is fixed for all t , f = fα,{ρt },
and

‖ f ‖D̃1(α,{ρt }) ≤ 2‖ f ‖B + 1 + ε.

Similar to the results of Proposition 4, we can prove that the composition of two
Barron functions belongs to the flow-induced function space, and the norm is bounded
by a polynomial of the norms of the two Barron functions.

Proposition 5 Assume that D ≥ d+3 and m ≥ 1. Assume that g : [0, 1]d → [0, 1] ∈
B, h : [0, 1] → R

1 ∈ B1. Let f = h ◦ g be the composition of g and h. Then we have
f ∈ D1 and

‖ f ‖D1 ≤ (‖h‖B + 1)(‖g‖B + 1).

In [13], the authors constructed a sequence of functions { fd : R
d → R} whose

spectral norms (4) grow exponentially with respect to d. They also showed that these
functions can be expressed as the composition of two functions (one from R

d to R

and the other from R to R) whose spectral norms depend only polynomially on the
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dimension d. By Proposition 5, the D1 norms of fd are bounded by a polynomial of
d. This shows that in the high dimensions, the flow-induced norm can be significantly
smaller than the spectral norm. Combined with the direct approximation theorem
below, this implies that residual networks can better approximate some functions than
two-layer networks.

3.3 Direct and Inverse Approximation Theorems

We first prove the direct approximation theorem, which states that functions in D̃2 can
be approximated by a sequence of residual networks with a 1/L1−δ error rate for any
δ ∈ (0, 1), and the networks have uniformly bounded path norm.

Theorem 6 Let f ∈ D̃2, δ ∈ (0, 1). Then, there exists an absolute constant C, such
that for any

L ≥ C
(
m4D6‖ f ‖5D̃2

(‖ f ‖D̃2
+ D)2

) 3
δ
,

there is an L-layer residual network fL(·;�) that satisfies

‖ f − fL(·;�)‖2 ≤
‖ f ‖2D̃2

L1−δ
,

and

‖�‖P ≤ 9‖ f ‖D̃1
.

We can also prove an inverse approximation theorem, which states that any function
that can be approximated by a sequence of well-behaved residual networks has to
belong to the flow-induced space.

Theorem 7 Let f be a function defined on X. Assume that there is a sequence of
residual networks { fL(·;�L)}∞L=1 such that fL(x;�) → f (x) for every x ∈ X
as L → ∞. Assume further that the parameters in { fL(·;�)}∞L=1 are (entry-wise)
bounded by c0. Then, we have f ∈ D∞, and

‖ f ‖D∞ ≤ 2em(c20+1)D2c0
m

Moreover, if for some constant c1, ‖ fL‖D1 ≤ c1 holds for all L > 0, then we have

‖ f ‖D1 ≤ c1
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3.4 Bounds for the Rademacher Complexity

Our final result is an upper bound for the Rademacher complexity involving the flow-
inducednorm.Due to technical difficulties, in this partwe consider a family ofmodified
flow-induced function norms ‖ · ‖D̂p

, which is defined as

‖ f ‖D̂p
= inf

f = fα,{ρt }
|α|T N̂p(1) + ‖N̂p(1)‖1 − D + ‖{ρt }‖Lip,

where N̂p(t) is given by

N̂p(0) = 2e,
˙̂Np(t) = 2

(
Eρt (|U||W |)p)1/p N̂p(t).

Denote by D̂p the space of functions with finite D̂p norm. Then, we have

Theorem 8 Let D̂Q
p = { f ∈ D̂p : ‖ f ‖D̂p

≤ Q}, then we have

Radn(D̂Q
2 ) ≤ 18Q

√
2 log(2d)

n
.

The difference between the definitions of the spaces D̂p andDp lies in the factor 2
that appears in N̂p . At this stage,we are not able to remove this factor. It should be noted
that this factor of 2 is also present in the “weighted path norm” introduced in [10]. If
U,W and N̂p(t) are scalars, then N̂p(t) can be upper bounded by (Np(t))2. However,
in the vectorial case this bound does not always hold. Hence, it is unclear how the two
spaces D̂p and Dp are related. Clearly we can also develop an approximation theory
for the space D̂p, but we feel it is worthwhile to show that the space D̃p is sufficient for
that purpose. We also point out here at this stage, we allow to use different quantities
(norms) to control the approximation and estimation errors.

3.5 Proofs

3.5.1 Proof of Theorem 4

To prove convergence, let tl,L = l/L , and consider el,L (x) = √
L(zl,L(x)−z(x, tl,L)).

Wewill focus on fixed x and from now onwe omit the dependence on x in the notations
and write instead el,L , zl,L and z(t), for example. From the definition of z(t), we have

z(tl+1,L) = z(tl,L) +
∫ tl+1,L

tl,L
EUσ(Wz(t))dt

= z(tl,L) + 1

L
Ulσ(W l z(tl,L)) + 1

L

(
Ulσ(W l z(tl,L)) − EUσ(Wz(tl,L))

)
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+
(
1

L
EUσ(Wz(tl,L)) −

∫ tl+1,L

tl,L
EUσ(Wz(t))dt

)
. (18)

Since

zl+1,L = zl,L + 1

L
Ulσ(W l zl,L), (19)

subtract (18) from (19) gives

el+1,L = el,L + 1√
L

(
Ulσ(W l zl,L) − Ulσ(W l z(tl,L))

)

+ 1√
L

(
Ulσ(W l z(tl,L)) − EUσ(Wz(tl,L))

)

+ 1√
L

(
EUσ(Wz(tl,L)) − L

∫ tl+1,L

tl,L
EUσ(Wz(t))dt

)
.

Define

Il,L = 1√
L

(
Ulσ(W l zl,L) − Ulσ(W l z(tl,L))

)
,

Jl,L = 1√
L

(
Ulσ(W l z(tl,L)) − EUσ(Wz(tl,L))

)
,

Kl,L = 1√
L

(
EUσ(Wz(tl,L)) − L

∫ tl+1,L

tl,L
EUσ(Wz(t))dt

)
.

Then, we have

el+1,L = el,L + Il,L + Jl,L + Kl,L . (20)

Next, we consider ‖el,L‖2. From (20), we get

‖el+1,L‖2 = ‖el,L‖2 + ‖Il,L‖2 + ‖Jl,L‖2 + ‖Kl,L‖2
+2eTl,L Il,L + 2eTl,L Jl,L + 2eTl,L Kl,L

+2I Tl,L Jl,L + 2I Tl,L Kl,L + 2J Tl,L Kl,L

≤ ‖el,L‖2 + 3‖Il,L‖2 + 3‖Jl,L‖2 + 3‖Kl,L‖2
+2eTl,L Il,L + 2eTl,L Jl,L + 2eTl,L Kl,L . (21)

We are going to estimate the expectation of the right hand side of (21) term by term.
First, note thatE‖|U||W |‖2F < ∞, which means z(t) is bounded for t ∈ [0, 1]. Hence,
we can find a constant C > 0 that satisfies

E‖|U||W |‖F ≤ C, E‖|U||W |‖2F ≤ C,
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and ‖z(t)‖ ≤ C . In addition, note that for any l, Ul and W l are independent with el,L .
Therefore, for ‖Il,L‖2, we have

E‖Il,L‖2 = 1

L
E
∥∥Uσ(Wzl,L) − Uσ(Wz(tl,L))

∥∥2

≤ 1

L2E‖|Ul ||W l ||el,L |‖2

≤ C

L2E‖el,L‖2.

For the term ‖Jl,L‖2, we have

E‖Jl,L‖2 ≤ 1

L
E‖|Ul ||W l ||z(tl,L)|‖2 ≤ C2

L
.

For the term ‖Kl,L‖, sinceE‖|U||W |‖F ≤ C and ‖z‖ ≤ C , we know that the Lipschitz
constant of z(t) is bounded by C2. Hence, we have

‖Kl,L‖ ≤ √
L

∥∥∥∥∥
∫ tl+1,L

tl,L
E(Uσ(Wz(tl,L)) − Uσ(Wz(t)))dt

∥∥∥∥∥
≤ C2

√
L

∫ tl+1,L

tl,L
(t − tl,L)E‖|U||W |‖dt

≤ C3

L
√
L

,

which implies that

E‖Kl,L‖2 ≤ C6

L3 .

Next, we consider eTl,L Il,L . We easily have

EeTl,L Il,L ≤ 1

L
E‖|U||W |‖F‖el,L‖2 ≤ C

L
E‖el,L‖2.

For eTl,L Jl,L , by the independence of Ul , W l and el,L , we have

EeTl,L Jl,L = 0.

Finally, for eTl,L Kl,L , we have

EeTl,L Kl,L ≤ C3

L
√
L

√
E‖el,L‖2 ≤ C3

L
√
L

(E‖el,L‖2 + 1).
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Plugging all the estimates above into (21), we obtain

E‖el+1,L‖2 ≤
(
1 + 2C

L
+ 3C

L2 + 2C3

L
√
L

)
E‖el,L‖2 + 3C2

L
+ 3C6

L3 + 2C3

L
√
L

.

Hence there is an L0 depending only on C , such that if L > L0, we have

E‖el+1,L‖2 ≤
(
1 + 3C

L

)
E‖el,L‖2 + 4C2

L
.

Since e0,L = 0, by induction we obtain

E‖eL,L‖2 ≤ 4C2e3C ,

which means

E‖zL,L − z(1)‖2 ≤ 4C2e3C

L
→ 0,

when L → ∞. This implies that zL,L → z(1) in probability. ��

3.5.2 Proof of Theorem 5

The only modification required for the proof of Theorem 5 is in the estimate of Kl,L .
Now Kl,L becomes

Kl,L = 1√
L

(
Eρtl,L

Uσ(Wz(tl,L)) − L
∫ tl+1,L

tl,L
EρtUσ(Wz(t))dt

)
.

The conditions of the theorem still guarantee that z(t) is Lipschtiz continuous. Hence,
we can find a constant C ′ such that z(t) is C ′-Lipschitz and

Eρt ‖|U||W |‖ ≤ C ′,

for any t ∈ [0, 1]. Hence,

‖Kl,L‖ ≤ √
L
∫ tl+1,L

tl,L

∥∥∥Eρtl,L
Uσ(Wz(tl,L)) − EρtUσ(Wz(t))

∥∥∥ dt
≤ √

L
∫ tl+1,L

tl,L

∥∥∥Eρtl,L
Uσ(Wz(tl,L)) − EρtUσ(Wz(tl,L))

∥∥∥ dt
+√

L
∫ tl+1,L

tl,L

∥∥EρtUσ(Wz(tl,L)) − EρtUσ(Wz(t))
∥∥ dt

≤ c2C ′

L
√
L

+ C ′2

L
√
L

. (22)
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From (22), we know that in this case Kl,L is of the same order as that in Theorem 4.
We can then complete the proof following the same arguments as in the proof of
Theorem 4. ��

3.5.3 Proof of Proposition 4

Since f ∈ B, for any ε > 0, there exists a distribution ρε that satisfies

f (x) =
∫

�

aσ(bT x + c)ρε(da, db, dc)

Eρε [|a|(‖b‖1 + |c|)] ≤ ‖ f ‖B + ε.

Define f̂ by

z(x, 0) =
⎡
⎣x
1
0

⎤
⎦

d

dt
z(x, t) = E(a,b,c)∼ρε

⎡
⎣ 0
0
a

⎤
⎦ σ([bT , c, 0]z(x, t))

f̂ (x) = eTd+2z(x, 1) (23)

Then, we can easily verify that f̂ = f . Using ρε, we can define probability distribution
ρ̃ε onRD×m ×R

m×D: ρ̃ε is concentrated on matrices of the form that appears in (23).
Consider ‖ f ‖D̃1(ed+2,{ρ̃ε}), we have

‖ f ‖D̃1(ed+2,{ρ̃ε}) = eTd+2 exp

⎛
⎝Eρ

⎡
⎣ 0 0 0

0 0 0
|abT | |ac| 0

⎤
⎦
⎞
⎠ e

+
∥∥∥∥∥∥exp

⎛
⎝Eρ

⎡
⎣ 0 0 0

0 0 0
|abT | |ac| 0

⎤
⎦
⎞
⎠
∥∥∥∥∥∥
1

− D

= eTd+2

⎡
⎣ I 0 0

0 1 0
Eρ |abT | Eρ |ac| 1

⎤
⎦ e +

∥∥∥∥∥∥
⎡
⎣ I 0 0

0 1 0
Eρ |abT | Eρ |ac| 1

⎤
⎦
∥∥∥∥∥∥
1

− D

= 2Eρε |a|(‖b‖1 + |c|) + 1

≤ 2‖ f ‖B + 2ε + 1.

Therefore, we have

‖ f ‖D̃1
≤ ‖ f ‖D̃1(α,ρ̃ε)

≤ 2‖ f ‖B + 2ε + 1.
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Taking ε → 0, we get

‖ f ‖D̃1
≤ 2‖ f ‖B + 1.

Besides, since {ρ̃ε} gives the same probability distribution for all t ∈ [0, 1], we
have Lip{ρ̃ε} = 0. ��

3.5.4 Proof of Theorem 6

For any ε > 0, let

σε(x) =
∫
R

1√
2πε2

e
− (x−y)2

2ε2 σ(y)dy.

Then we have

|σε(x) − σ(x)| < ε, |(σ ε(x))′| ≤ 1, |(σ ε(x))′′| ≤ 1

ε
,

for all x ∈ R. For a function f ∈ D̃2, we are going to show that for sufficiently large
L there exists an L-layer residual network fL such that

‖ f − fL‖2 ≤
‖ f ‖2D̃2

L1−δ
,

.
To do this, assume that α and {ρt } satisfy f = fα,{ρt } and ‖ f ‖D̃2(α,{ρt }) ≤ 2‖ f ‖D̃1

.
Let fL be a residual network in the form (11), and the weights Ul , W l are sampled
from ρl/L . Let f ε and f ε

L be generated in the same way as f and fL using instead the
activation function σε. Then we have

‖ f − fL‖2 ≤ 3
(
‖ f − f ε‖2 + ‖ f ε − f ε

L‖2 + ‖ f ε
L − fL‖2

)
. (24)

Before dealing with (24), we first prove the following lemma, which shows that we
can pick the family of distributions ρ̃t to have compact support.

Lemma 1 For any f ∈ D̃1 that satisfies the conditions of Theorem 6, and any ε > 0,
there exists α and {ρt }, such that f = fα,{ρt } and ‖ f ‖D̃2(α,{ρt }) ≤ (1 + ε)‖ f ‖D̃2

.
Moreover, for any t ∈ [0, 1], we have

max
(U,W)∼ρt

(‖|U||W |‖1) ≤ (1 + ε)‖ f ‖D̃2
.

Proof of Lemma 1 The proof of Lemma 1 is similar to the proof of Proposition 1. By
the definition of D̃2, for any f ∈ D̃2 and ε > 0, there exists α and {ρt } such that
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f = fα,{ρt }, ‖ f ‖D̃2(α,{ρt }) ≤ (1 + ε)‖ f ‖D̃2
, and hence ‖{ρt }‖Lip ≤ (1 + ε)‖ f ‖D̃2

.
This means that for any t ∈ [0, 1], we have

∥∥Eρt |U||W |∥∥1 ≤ (1 + ε)‖ f ‖D̃2
.

Let 
 = {(U,W) : ‖W‖1 = 1, ‖|U||W |‖1 = 1}, and consider a family of measures
{ρ


t } defined by

ρ

t (A) =

∫
(U,W): (Ū,W̄)∈


‖|U||W |‖1ρt (dU, dW),

for any Borel set A ⊂ 
, where

Ū = ‖W‖1
‖|U||W |‖1U, W̄ = W

‖W‖1 .

It is easy to verify that ρ

t (
) = Eρt ‖|U||W |‖1 and

Eρ

t
Ūσ(W̄ z) = EρtUσ(Wz)

hold for any t ∈ [0, 1] and z ∈ R
D . After normalizing {ρ


t }, we obtain a family of
probability distributions {ρ̃


t } on

{(U,W) : ‖W‖1 = 1, ‖|U||W |‖ = Eρt ‖|U||W |‖1}.

Finally, it is easy to verify that f = fα,{ρ̃

t }, ‖ f ‖D̃2(α,{ρt }) ≤ (1 + ε)‖ f ‖D̃2

, as well
as

max
(U,W)∼ρ̃


t

(‖|U||W |‖1) ≤ (1 + ε)‖ f ‖D̃2
.

��
From Lemma 1, without loss of generality we can assume that ρt has compact

support, and the entries of (U,W) sampled from ρt for any t are bounded by 2‖ f ‖D̃2
.

Nextwe proceed to control the three terms on the right-hand side of (24). The following
two lemmas give the bounds for the first and third terms.

Lemma 2 ‖ f − f ε‖2 ≤ 4m2ε2‖ f ‖4D̃2
.

Proof of Lemma 2 Let z(t) be defined by (15) for fixed x, and zε(t) be the solution of
the same ODE after replacing σ by σε. Then, we have z(0) − zε(0) = 0, and

|z(t) − zε(t)| ≤
∫ t

0

∣∣∣∣ ddt (z(s) − zε(s))

∣∣∣∣ ds
=
∫ t

0

∣∣EρsUσ(Wz(s)) − EρsUσε(Wzε(s))
∣∣ ds
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≤
∫ t

0

∣∣EρsUσ(Wz(s)) − EρsUσ(Wzε(s))
∣∣ ds

+
∫ t

0

∣∣EρsUσ(Wzε(s)) − EρsUσε(Wzε(s))
∣∣ ds

≤
∫ t

0

(
Eρs |U||W ||z(s) − zε(s)| + 2‖ f ‖D̃2

mε
)
ds.

Hence, we have

|z(1) − zε(1)| ≤ 2‖ f ‖D̃2
mεN1(1)e,

where e is an all-one vector. This gives that

‖ f − f ε‖2 ≤
∫
D0

(
|α|T |z(x, 1) − zε(x, 1)|

)2
dρ(x) ≤ 4m2ε2‖ f ‖4D̃2

.

��
Lemma 3

E‖ fL − f ε
L‖2 ≤ 4m2ε2‖ f ‖4D̃2

,

where the expectation is taken over the random choice of weights {(Ul ,W l)}.
Proof of Lemma 3 Let zl,L be defined by (11) for a fixed x, and zεl,L be defined similarly
with σ replaced by σε. Then, we have z0,L − zε0,L = 0, and

zl+1,L − zεl+1,L = zl,L − zεl,L + 1

L

[
Ulσ(W l zl,L) − Ulσ(W l zεl,L)

]

+ 1

L

[
Ulσ(W l zεl,L) − Ulσ

ε(W l zεl,L)
]
.

Taking absolute value gives

|zl+1,L − zεl+1,L | ≤
(
I + 1

L
|U||W |

)
|zl,L − zεl,L | + 2‖ f ‖D̃2

mε

L
e,

which implies that

|zL,L − zεL,L | ≤ 2‖ f ‖D̃2
mε

L−1∏
l=0

(
I + 1

L
|U||W |

)
e.

By Theorem 5, we have

E| fL(x) − f ε
L (x)|2 ≤ 4‖ f ‖2D̃2

m2ε2E

(
|α|T

L−1∏
l=0

(
I + 1

L
|U||W |

)
e

)2
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≤ 4m2ε2‖ f ‖4D̃2
. (25)

Integrating (25) over x gives the results. ��
Proof of Theorem 6 (Continued) With Lemmas 2 and 3, we have

E‖ f − fL‖2 ≤ 24m2ε2‖ f ‖4D̃2
+ 3E‖ f ε − f ε

L‖2. (26)

To bound E‖ f ε − f ε
L‖2, let el,L = √

L(zεl,L − zεtl,L ), and recall that we can write

el+1,L = el,L + Il,L + Jl,L + Kl,L , (27)

with

Il,L = 1√
L

[
Ulσ

ε(W l zεl,L) − Ulσ
ε(W l zε(tl,L))

]
,

Jl,L = 1√
L

[
Ulσ

ε(W l zε(tl,L)) − Eρtl,L
Uσε(Wzε(tl,L))

]

Kl,L = 1√
L

[
Eρtl,L

Uσε(Wzε(tl,L)) − L
∫ tl+1,L

tl,L
EρtUσε(Wzε(t))dt

]
.

For Il,L , by the Taylor expansion of Ulσ
ε(W l zεl,L) at zε(tl,L), we get

Il,L = 1

L
Ul(σ

ε(W l zε(tl,L)))′W lel,L

+Ul(σ
ε(W l zε(tl,L)))′′(W lel,L) ◦ (W lel,L)

L
√
L

, (28)

where for two vectors α and β, α ◦ β means element-wise product. For the second
term on the right-hand side of (28), we have

∣∣Ul(σ
ε(W l zε(tl,L)))′′(W lel,L) ◦ (W lel,L)

∣∣ ≤ 8‖ f ‖3D̃2
mD‖el,L‖2
ε

e.

On the other hand, for Kl,L we have

|Kl,L | ≤ C2

L
√
L
e,

for some constant C2. Hence, we can write (27) as

el+1,L = el,L + 1

L
Ul(σ

ε(W l zε(tl,L)))′W lel,L + Jl,L + rl,L

L
√
L

, (29)
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with

|rl,L | ≤ (8‖ f ‖3D̃2
mDε−1‖el,L‖2 + C2)e.

Next, we consider el,LeTl,L . By (29), we have

el+1,LeTl+1,L = el,LeTl,L + 1

L

(
Ul (σ

ε(W l zε(tl,L )))′W lel,LeTl,L

+el,LeTl,LUl (σ
ε(W l zε(tl,L )))′W l

)

+Jl,L J
T
l,L + 1

L2Ul (σ
ε(W l zε(tl,L )))′W lel,L (Ul (σ

ε(W l zε(tl,L )))′W lel,L )T

+el,L J Tl,L + Jl,LeTl,L + 1

L
√
L

(
el,LrTl,L + rl,Lel,L

)
+ 1

L3 rl,Lr
T
l,L

+ 1

L
Ul (σ

ε(W l zε(tl,L )))′W lel,L J Tl,L + 1

L
Jl,L (Ul (σ

ε(W l zε(tl,L )))′W lel,L )T

+ 1

L2
√
L
Ul (σ

ε(W l zε(tl,L )))′W lel,LrTl,L

+ 1

L2
√
L
rl,L (Ul (σ

ε(W l zε(tl,L )))′W lel,L )T

+ 1

L
√
L

(
Jl,Lr

T
l,L + rl,L J

T
l,L

)
.

Taking expectation over the equation above, noting that Jl,L is independent with el,L ,
and using the bound of rl,L we derived above, we get

|Eel+1,LeTl+1,L | ≤ |Eel,LeTl,L | + 1

L

(
Al,L |Eel,LeTl,L | + |Eel,LeTl,L |AT

l,L

)
+ 1

L
�l,L

+
C‖ f ‖3D̃2

L

(
mDE‖el,L‖3√

Lε
+ m2D2

E‖el,L‖4
L2ε2

)
E, (30)

where

Al,L = Eρtl,L
|U||W |, �l,L =

∣∣∣Covρtl,L
Ulσ

ε(W l zε(tl,L))

∣∣∣ ,
E is an all-one matrix and C is a constant.

Next, we bound the third and fourth order moments of ‖el,L‖ using its second order
moment. This is done by the following lemma.

Lemma 4 For any L and 1 ≤ l ≤ L, there exists a constant C such that

E‖el,L‖3 ≤ CmD3/2‖ f ‖D̃2

(√
log L + D√

Lε

)
E‖el,L‖2,
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and

E‖el,L‖4 ≤ C2m2D3‖ f ‖2D̃2

(√
log L + D√

Lε

)2

E‖el,L‖2.

Proof of Lemma 4 Let Sl,L =
l−1∑
k=0

Jk,L . Then, ESl,L = 0. Since Jl,L are independent

for different l, and

|Jl,L | ≤ C ′mD√
L

e

holds for all l and some constant C ′, by Hoeffding’s inequality, for any t > 0 and
1 ≤ i ≤ D, we have

P(|Sl,L,i | ≥ t) ≤ 2 exp(− t2

2C ′2m2D2 ).

Here, Sl,L,i denotes the i-th entry of the vector Sl,L . Taking t = 2C ′mD
√
log L , we

obtain

P

(
|Sl,L,i | ≥ 2C ′mD

√
log L

)
≤ 2

L2 .

This implies

P

(
‖Sl,L‖ ≥ 2C ′mD3/2

√
log L

)
= 1 − P

(
‖Sl,L‖ < 2C ′mD3/2

√
log L

)

≤ 1 − P

(⋃
i

{
|Sl,L,i | < 2C ′mD

√
log L

})

≤ 1 −
(
1 − 2

L2

)D

≤ 2D

L2 . (31)

Define the event A by

A =
{
‖Sl,L‖ ≤ 2C ′mD3/2

√
log L, i = 1, 2, . . . , L

}
.

Then by (31) we have

P (A) ≥ 1 − 2D

L
.
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Using (29), we have

el,L =
l−1∑
k=0

1

L
Uk(σ

ε(W k zε(tk,L)))′W kek,L + Sl,L +
l−1∑
k=0

rk,L

L
√
L

.

Hence, using the bounds of Sl,L and rk,L , we obtain that there is a constant C such
that

‖el,L‖ ≤ CmD3/2‖ f ‖D̃2

(√
L + 1√

Lε

)
.

On the other hand, under event A, using the sharper bound of Sl,L , we have

‖el,L‖ ≤ CmD3/2‖ f ‖D̃2

(√
log L + 1√

Lε

)
.

For third-order moment of ‖el,L‖, we have

E‖el,L‖3 ≤ CmD3/2‖ f ‖D̃2

((√
log L + 1√

Lε

)
P(A)

+
(√

L + 1√
Lε

)
P(Ac)

)
E‖el,L‖2

≤ CmD3/2‖ f ‖D̃2

(√
log L + D√

Lε

)
E‖el,L‖2.

Similarly, for fourth-order moment we have

E‖el,L‖4 ≤ C2m2D3‖ f ‖2D̃2

(√
log L + D√

Lε

)2

E‖el,L‖2.

��
Proof of Theorem 6 (Continued) Applying the results of Lemma 4 to (30) gives

|Eel+1,LeTl+1,L | ≤ |Eel,LeTl,L | + 1

L

(
Al,L |Eel,LeTl,L | + |Eel,LeTl,L |AT

l,L

)
+ 1

L
�l,L

+C

L

(
m4D5‖ f ‖5D̃2

(√
log L√
Lε

+ D

Lε2

)
E‖el,L‖2

)
E . (32)

Since ‖ f ‖D̃2
< ∞, �l,L is uniformly bounded. Without loss of generality, we can

assume �l,L ≤ CE . Furthermore, assume L is sufficiently large such that

m4D6‖ f ‖5D̃2
E‖el,L‖2

Lδ/3 ≤ 1. (33)
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Then, from (32) we have

|Eel+1,LeTl+1,L | ≤ |Eel,LeTl,L | + 1

L

(
Al,L |Eel,LeTl,L | + |Eel,LeTl,L |AT

l,L

)

+C

L

(
1 +

√
log L

L1/2−δ/3ε
+ D

L1−δ/3ε2

)
E,

which implies that

|Eel+1,LeTl+1,L | ≤ C

(
1 +

√
log L

L1/2−δ/3ε
+ D

L1−δ/3ε2

)
N1(1)N1(1)

T , (34)

and thus

E‖el,L‖2 ≤ eT |Eel+1,LeTl+1,L |e ≤ C

(
1 +

√
log L

L1/2−δ/3ε
+ D

L1−δ/3ε2

)
(eT N1(1))

2.(35)

Note that eT N1(1) = ‖N1(1)‖1 ≤ ‖ f ‖D̃2
+ D. By (33) and (35), (34) happens if

Cm4D6‖ f ‖5D̃2

(
1 +

√
log L

L1/2−δ/3ε
+ D

L1−δ/3ε2

)
(‖ f ‖D̃2

+ D)2 ≤ Lδ/3.

Taking ε = L−1/2+δ/3, it suffices to have

Cm4D6‖ f ‖5D̃2

(
1 + D +√log L

)
(‖ f ‖D̃2

+ D)2 ≤ Lδ/3.

In this case, we have

E‖ f ε − f ε
L‖2 ≤ C

L

(
1 + D +√log L

)
‖ f ‖2D̃2

.

Plugging into (26) gives

E‖ f − fL‖2 ≤ 24m2

L1−2δ/3 ‖ f ‖4D̃2
+ 3C

L

(
1 + D +√log L

)
‖ f ‖2D̃2

.

When L sufficiently large (larger than polynomial of m, D, log L), we have

E‖ f − fL‖2 ≤
‖ f ‖2D̃2

3L1−δ
.

Note that the bound above holds for any fixed x ∈ X. Now, integrating over x, we
have

E‖ f − fL‖2 =
∫

E| f (x) − fL(x)|2dμ(x) ≤
‖ f ‖2D̃2

3L1−δ
.
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By Markov’s inequality, with probability no less than 2
3 , the distance between f and

fL can be controlled by

‖ f − fL‖2 ≤
‖ f ‖2D̃2

L1−δ
. (36)

Next, consider the path norm of fL , which is defined as

‖ fL‖P =
∥∥∥∥∥|α|

L∏
l=1

(
I + 1

L
|Ul ||W l |

)
|V|
∥∥∥∥∥
1

.

Define a recurrent scheme,

y0,L = V,

yl+1,L = yl,L + 1

L
|Ul ||W l |yl,L .

Using Theorem 5 with σ being the identity function andU andW replaced by |U| and
|W | respectively, we know that ‖|α|T yL,L‖1 → ‖ f ‖D1(ρt ) almost surely. Hence, by
taking ρt such that ‖ f ‖D1(ρt ) ≤ 2‖ f ‖D1 , we have

E‖ fL‖P ≤ 3‖ f ‖D1 ,

when L is sufficiently large. Again usingMarkov’s inequality, with probability no less
than 2

3 , we have

E‖ fL‖P ≤ 9‖ f ‖D1 . (37)

Combining the result above with (36), we know that with probability no less than
1
3 , we have both (36) and (37). Therefore, we can find an fL that satisfies both (36)
and (37). This completes the proof. ��

3.5.5 Proof of Theorem 7

For any L , let fL(·) be the residual network represented by the parameters αL ,
{UL

l ,W L
l }L−1

l=0 and V. Let zl,L(x) be the function represented by the l-th layer of
network fL , then fL(x) = αT

L zL,L(x) for all x ∈ X. Since αL uniformly bounded for
all L , there exists a subsequence Lk and α such that

αLk → α,

when k → ∞. Without loss of generality, we assume αL → α.
Let UL

t : [0, 1] → R
D×m be a piecewise constant function defined by

UL
t = UL

l , f or t ∈ [ l
L

,
l + 1

L
),
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and UL
1 = UL

L−1. Similarly we can define W L
t . Then, {UL

t } and {W L
t } are uniformly

bounded. Hence, by the fundamental theorem for Young measures [3,23], there exists
a subsequence {Lk} and a family of probability measure {ρt , t ∈ [0, 1]}, such that for
every Caratheodory function F ,

lim
k→∞

∫ 1

0
F(ULk

t ,W Lk
t , t)dt =

∫ 1

0
Eρt F(U,W , t)dt .

Let f̃ = fα,{ρt }.We are going to show f̃ = f . Let zY (·, t)be defined by zY (x, 0) = Vx
and

zY (x, t) = zY (x, 0) +
∫ t

0
Eρt Uσ(W zY (x, s))ds.

Then it suffices to show that

lim
k→∞ zLk ,Lk (x) → zY (x, 1), (38)

for any fixed x ∈ D0.
To prove (38), we first consider the following continuous version of zl,L ,

zL(x, 0) = z0,L(x),
d

dt
zL(x, t) = UL

t σ(W L
t zL(x, t)),

and show that |zL(x, 1) − zL,L(x)| → 0. To see this, note that

zL(x, tl+1,L) = zL(x, tl,L) +
∫ tl+1,L

tl,L
UL
t σ(W L

t zL(x, s))ds, (39)

zl+1,L(x) = zl,L(x) +
∫ tl+1,L

tl,L
UL
t σ(W L

t zl,L(x))ds. (40)

Subtracting (39) from (40), and let el,L = zl,L(x) − zL(x, tl,L), we have

el+1,L = el,L +
∫ tl+1,L

tl,L

(
UL
t σ(W L

t zl,L(x)) − UL
t σ(W L

t zL(x, s))
)
ds

= el,L +
∫ tl+1,L

tl,L

(
UL
t σ(W L

t zl,L(x)) − UL
t σ(W L

t zL(x, tl,L))
)
ds

+
∫ tl+1,L

tl,L

(
UL
t σ(W L

t zL(x, tl,L)) − UL
t σ(W L

t zL(x, s))
)
ds. (41)
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Since {UL
t } and {W L

t } are bounded, we know that {zL(x, t)} is bounded, and
{ d
dt zL(x, t)} is also bounded. Hence, there exists a uniform constant C such that

∥∥∥UL
t σ(W L

t zl,L(x)) − UL
t σ(W L

t zL(x, tl,L))

∥∥∥ ≤ C‖el,L‖, (42)∥∥∥UL
t σ(W L

t zL(x, tl,L)) − UL
t σ(W L

t zL(x, s))
∥∥∥ ≤ C |s − tl,L |.. (43)

Plugging (42) and (43) into (41), we obtain

‖el+1,L‖ ≤
(
1 + C

L

)
‖el,L‖ + C

L2 .

Therefore, by Gronwall’s inequality, ‖eL,L‖ ≤ O(1/L), which gives

|zL(x, 1) − zL,L(x)| → 0. (44)

Now with (44), we only need to show

lim
k→∞ zLk (x, 1) → zY (x, 1),

which is equivalent to showing that for any ε, there exists K > 0 such that for any
k > K , we have

‖zLk (x, 1) − zY (x, 1)‖ ≤ ε.

For a large integer N , let ti,N = i/N . By the definition of zY and zLk , we have

zLk (x, ti+1,N ) = zLk (x, ti,N ) +
∫ ti+1,N

ti,N
ULk
s σ(W Lk

s zLk (x, s))ds,

and

zY (x, ti+1,N ) = zY (x, ti,N ) +
∫ ti+1,N

ti,N
EρtUσ(WzY (x, s))ds.

Let ri,N (x) = zY (x, ti,N )− zLk (x, ti,N ), and note that {ULk
t } and {W Lk

t } are bounded,
we have

‖ri+1,N (x)‖ ≤
(
1 + C

N

)
‖ri,N‖ + C

N 2

+
∥∥∥∥∥
∫ ti+1,N

ti,N

[
ULk
s σ(W Lk

s zY (x, s)) − EρtUσ(WzY (x, s))
]
ds

∥∥∥∥∥ ,
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for some constant C . Using the theorem for Young measures [3,23], there exists a
sufficiently large K , such that for all k > K , we have

∥∥∥∥∥
∫ ti+1,N

ti,N

[
ULk
s σ(W Lk

s zY (x, s)) − EρtUσ(WzY (x, s))
]
ds

∥∥∥∥∥ ≤ 1

N 2 ,

for all 0 ≤ i ≤ N − 1. By Gronwall’s inequality, there exists a constant C̃ such that

‖rN ,N (x)‖ ≤ C̃

N
.

If we take N = ε/C̃ , we have

‖zLk (x, 1) − zY (x, 1)‖ ≤ ε,

for sufficiently large k. This shows that f = fα,{ρt }.
To bound the D∞ norm of f , take F as the indicator function of {|U| ≤ c0, |W | ≤

c0}c and apply the theorem for Young measures, we obtain that for any t ∈ [0, 1], the
support of ρt lies in {|U| ≤ c0, |W | ≤ c0}. Hence, f ∈ D∞. To estimate ‖ f ‖D∞ ,
consider N∞(t) defined by (16), since the elements of U and W are bounded by c0,
we have

Ṅ∞(t) ≤ mc20EN∞(t),

where E is an all-one D × D matrix. Therefore, we have

N∞(1) ≤ emc20Ee ≤ 2Dem(c20+1)

m
e.

Since the elements of α are also bounded by c0, we get

‖ f ‖D∞ ≤ |α|T N∞(1) ≤ 2D2em(c20+1)c0
m

.

Finally, if ‖ fL‖D1 ≤ c1 holds for all L > 0, then using the technique of treating
zY (x, t) on N1(t), we obtain ‖ f ‖D1 ≤ c1. ��

3.5.6 Proof of Theorem 8

Similar to the proof of Theorem 6, we can define a discrete analogy of the D̂1 norm
for residual network

‖�‖WP = |α|T
L∏

l=1

(
I + 2

L
|Ul ||W l |

)
e.
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Using the same techniques as for the direct approximation theorem, we can show that
any functions in D̂Q

2 can be approximated by a series of residual networks fL(·;�L)

with depth L tends to infinity and ‖�L‖WP ≤ 9Q. Here we useWP (weighted path) to
denote the discrete norm because this norm is a weighted version of the original path
norm and assigns larger weights for those paths going through more non-linearities.
Let FQ be the set of all residual networks whose weighted path norms are bounded
by Q, i.e.,

FQ = { f (·;�) : f (·;�) is a residual network and ‖�‖WP ≤ Q},

and let FQ
be the closure of FQ . Then, by the direct approximation results, D̂Q

2 ⊂
D̂Q

1 ⊂ FQ
. Hence, Radn(D̂Q

2 ) ≤ Radn(F9Q
). On the other hand, in [10] it is proven

that

Radn(FQ
) ≤ 2Q

√
2 log(2d)

n
.

Therefore,

Radn(D̂Q
2 ) ≤ 18Q

√
2 log(2d)

n

��

4 Concluding Remarks

As far as the high-dimensional approximation theory is concerned, we are interested
in approximation schemes (or machine learning models) that satisfy

‖ f − fm‖2 ≤ C0
γ ( f )2

m

for f is a certain function space F defined by the particular approximation scheme
or machine learning model. Here γ is a functional defined on F , typically a norm
for the function space. It plays the role of the variance in the context of Monte Carlo
integration. A machine learning model is preferred if its associated function space F
is large and the functional γ is small.

However, practical machine learning models can only work with a finite dataset on
which the values of the target function are known. This results in an additional error,
the estimation error, in the total error of the machine learning model. The estimation
error is controlled by the Rademacher complexity of the hypothesis space, which can
be thought of as a truncated version of the space F . It just so happens that for the
spaces identified here the Rademacher complexity has the optimal estimates:

Radn(FQ) ≤ C0
Q√
n
.
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This is also true for the RKHS. It is not clear whether this is a coincidence, or there
are some more fundamental reasons behind.

Whatever the reason, the combination of these two results imply that the general-
ization error (also called population risk) should have the optimal scaling O(1/m) +
O(1/

√
n) for all three methods: the kernel method, the two-layer neural networks and

residual networks. The difference lies in the coefficients hidden in the above expres-
sion. These coefficients are the norms of the target function in the corresponding
function spaces. In this sense, going from the kernel method to two-layer neural net-
works and to deep residual neural networks is like a variance reduction process since
the value of the norms decreases in this process. In addition, the function space F
expands substantially from some RKHS to the Barron space and to the flow-induced
function space.
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