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Abstract

Several recent works have shown separation results between deep neural networks, and hypothesis
classes with inferior approximation capacity such as shallow networks or kernel classes. On the
other hand, the fact that deep networks can efficiently express a target function does not mean that
this target function can be learned efficiently by deep neural networks. In this work we study the
intricate connection between learnability and approximation capacity. We show that learnability
with deep networks of a target function depends on the ability of simpler classes to approximate
the target. Specifically, we show that a necessary condition for a function to be learnable by gradient
descent on deep neural networks is to be able to approximate the function, at least in a weak sense,
with shallow neural networks. We also show that a class of functions can be learned by an efficient
statistical query algorithm if and only if it can be approximated in a weak sense by some kernel
class. We give several examples of functions which demonstrate depth separation, and conclude
that they cannot be efficiently learned, even by a hypothesis class that can efficiently approximate
them.

1. Introduction

The empirical success of deep networks has inspired a large number of theoretical works trying to
understand what properties of deep neural networks make them so powerful. From a theoretical
perspective, the success of deep networks is often attributed to their approximation capacity. Deep
networks can efficiently implement arbitrary Boolean circuits, and thus can efficiently compute
anything that can be efficiently computed by Turing machines. Therefore, in terms of expressive
power, deep neural networks are the ultimate choice of hypothesis class.

In contrast, other hypothesis classes studied in the literature have inferior approximation capac-
ity. For example, Kernel methods (i.e., linear functions in RKHS space) can approximate arbitrary
functions, at the cost of having an exponential dimension or margin complexity (Rahimi and Recht,
2008; Sun et al., 2018). Shallow (two-layer) neural networks can also approximate almost any tar-
get function (e.g. Cybenko (1989); Leshno et al. (1993)), although possibly using an exponentially
large number of neurons.
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Indeed, several theoretical studies have demonstrated separation results: explicit constructions
of functions or function families that can be expressed using deep networks, but cannot be ap-
proximated using shallow networks or kernel predictors of reasonably bounded size. For example,
Eldan and Shamir (2016); Safran and Shamir (2017); Daniely (2017) showed separation results be-
tween depth-2 and depth-3 neural networks while Telgarsky (2016) showed separation between
depth n and depth n!/? neural networks when the input dimension is constant. The works of
Daniely and Malach (2020); Yehudai and Shamir (2019); Kamath et al. (2020); Allen-Zhu and Li
(2019) show separation results between neural networks and kernel methods.

With that said, all the above results only show an analysis of the approximation capacity of the
hypothesis classes. This is unsatisfactory, since the fact that a certain hypothesis class can express
some target class does not mean that there is an efficient algorithm that can learn it. Namely, given
access to limited computational resources, we would hope to use hypothesis classes for which we
have efficient algorithms that can recover the best hypothesis within the class.

In some sense, the point of depth separation results is to argue that depth is beneficial by showing
function classes that cannot be efficiently expressed without depth. In this work we show, perhaps
surprisingly, that essentially there are no target functions which are both efficiently learnable, and
“truly deep” in the sense that shallow networks (or kernel classes) cannot even weakly approximate
them. More concretely, we explore the intricate connection between approximation capacity and
efficient learnability. We first define the notion of weak approximation (Definition 3), namely, a
hypothesis class weakly approximates a target class if for every target function there exists some
hypothesis that approximates the target slightly better than the trivial predictor. We then show,
in different settings and for different learning algorithms, that there is a dependence between the
success of the algorithm in learning a target class, and having weak approximation using a “simple”
class. That is, we show that problems which are hard to weakly approximate using “simple” classes
(e.g. shallow neural networks) are also hard to learn using the more “complex” class (e.g. deep
neural network). The above is true, even for target classes that can be exactly represented by the
“complex” hypothesis class.

Our main contributions are as follows:

1. Gradient descent: A target class of functions cannot be learned by gradient descent on deep
neural networks, if 3-layer neural network cannot weakly approximate it.

2. SQ algorithms: A target class of functions can be learned by deep neural networks using any
statistical query algorithm if and only if they can be weakly approximated by a kernel class
of functions.

3. We consider two known examples of target classes which separate between hypothesis classes,
and as a corollary of the previous results, we get that these target classes cannot be learned,
even by hypothesis classes that can perfectly represent them. Namely, (1) Telgarski’s trian-
gle function Telgarsky (2016) cannot be learned using gradient descent; (2) Parity functions
cannot be learned by an efficient SQ-algorithm.

4. We show a specific target class that separates between 2-layer and 3-layer neural networks,
and prove that this target class cannot be efficiently learned by any SQ-algorithm.

These results show that the power of deep neural networks to approximate target functions is not
enough. In order for deep networks to learn some target function, simpler models such as shallow



networks or kernel classes should be able to approximate the target function, at least in a weak
sense.

In Malach and Shalev-Shwartz (2019a) it was conjectured that a target class which cannot be
approximated by a shallow neural network cannot be learned using gradient-based methods, even
when using deep neural networks. Here we give a partial positive answer to this conjecture, for
the specific case of learning with gradient descent, and for the approximation capabilities of 3-layer
neural networks.

1.1. Related Works

Hardness of learning with GD. Several recent works have shown specific scenarios where gradient-
based methods fails. In Shalev-Shwartz et al. (2017); Shamir (2018) several of failures of gradient
descent are shown, including distributions that are hard to learn, and certain hard target functions.
In Yehudai and Shamir (2020) it was shown that even for the case of learning the simplest neural
network, containing a single neuron, and in the realizable case, there are distributions and activation
functions which are hard to learn with gradient methods. In Malach and Shalev-Shwartz (2019a)
it was shown that for certain fractal distribution, learnability using gradient descent on deep neural
networks depends on whether the target can be approximated using shallow networks. Our work
can be seen as a generalization of this work to a much larger class of distributions, and to different
learning setups (i.e. SQ-algorithms).

Separation Results. In Telgarsky (2016), a family of target functions was introduced that can
be realized by depth-n neural networks with polynomial width, but cannot be realized by depth-n'/3
neural networks unless the width is exponential. This result was generalized in Chatziafratis et al.
(2019, 2020) to more families of target functions. Several works Yehudai and Shamir (2019);
Allen-Zhu and Li (2019); Kamath et al. (2020) have shown separation between kernel methods and
shallow neural networks. In particular, in Yehudai and Shamir (2019) it is shown that kernel meth-
ods (including NTK) cannot efficiently approximate a single ReLU neuron, while this problem can
be learned with gradient methods using 2-layer network (e.g. Yehudai and Shamir (2020); Frei et al.
(2020)).

Several works have shown target functions that can be well approximated by 3-layer neu-
ral networks, while they cannot be approximated by 2-layer networks unless their width is ex-
ponential. Such works include Eldan and Shamir (2016); Safran and Shamir (2017); Safran et al.
(2019) where isotropic functions are considered, Daniely (2017) where a composition of inner
product with complex function which cannot be approximated by low degree polynomials, and
Malach and Shalev-Shwartz (2019b) where boolean functions are considered. In Vardi and Shamir
(2020) it is shown that there are natural proof barriers for proving such depth separation results for
depth larger than 4.

SQ results. Since its introduction in a seminal work by Kearns Kearns (1998), the statistical-
query (SQ) framework has been extensively studied in various works. Unlike standard PAC learning,
where the learner has access to a set of sampled examples, in SQ learning the learner can use statis-
tical properties of the data, but not individual examples. These statistical properties are provided via
access to an oracle, which given some query on the distribution, returns an approximate evaluation
of the query. In his original work, Kearns demonstrated that an SQ algorithm can be easily adapted
to a noise-robust learning algorithm Kearns (1998). The work of Blum et al. (1994) introduced the
SQ-dimension, a statistical measure of the target class, that can be used to characterize weak learn-



ing with statistical-queries. Such characterization has been extended to other variants of the SQ
framework, including strong learning and distribution-free learning Feldman (2012); Simon (2007);
Szorényi (2009); Feldman and Kanade (2012). Importantly, the SQ framework has been used to de-
rive lower bounds on complexity of learning various problems, for example learning parities Kearns
(1998) and neural networks Goel et al. (2020).

2. Definitions and Notations
2.1. Preliminaries

We denote by X, the input space and by ) the label space. We denote vectors in bold. We denote
the sign function as sign(xz) = 1if 2 > 0 and —1 otherwise. We focus on binary classification
tasks, so ) = {£1}. We consider two classes of functions:

* The target class, denoted by F,,, which is a class of functions from X, to ) that labels the
underlying distribution, and which the learner needs to approximate.

* The hypothesis class, denoted by #,,, which is a class of functions from X, to R from which
the learner can choose its hypothesis.

We denote by £ : ) x R — R our loss function. Since we consider classification tasks, we assume
throughout the paper that ¢ is the hinge-loss, namely ¢(y, ) = max{1 — yg, 0}.

For some distribution D over X, and some target function f : X, — Y (f € F;,) we denote by
f(D) the distribution over X,, x ) where x ~ D and y = f(x). For some hypothesis h : X;, — R
(h € H,,) we denote the loss of h on the distribution f(D) by:

Ly (h) (y, h(x)) = E_L(f(x), h(x))

= E
(x,y)~f (D) x~D
We say that a function  : N — N is super-polynomial if for every polynomial p we have lim,,_,~ p(n)/r(n) =

0. For xg € R% and 7 > 0 we define the ball of radius 7 around xq as B,(x¢) = {x € R? :
lx — x¢|| < r}. We denote by [n] the set {1,...,n} forn € N.

We will use the following definition of neural networks with bounded width:

Definition 1 Ler d € N be the data input dimension. We define a neural network of depth k and
width at most p as h : R — R with h(x) = h®) o ... o h()(x) where:

e h =4 (W(l)x + b(l)) for W) ¢ Rp1xd K1) ¢ Rp1
« h® = o (WO + bO) for WO € RPxPi-1 b) € RPi fori =2,... k-1
e h®) = WERED 4 bk for Wk ¢ RIxPr-1 pk) ¢ RI

where o : R — R is some non-linear function, and p; < p for all 1.



2.2. Weak Approximation and Weak Dependence

Consider the problem of learning a distribution labeled by some target class JF, using a learning al-
gorithm that can output a hypothesis in 4. The goal of the learning algorithm is to find a hypothesis
h € H that minimizes the loss L (p)(h), when given access to examples from a distribution f(D)
for some f € F.

We will consider in the paper two problems which are connected. First, we want to understand
whether the fact that the algorithm is forced to output a hypothesis in H limits its ability to approx-
imate . What we could hope for is that the hypothesis class can be expressive enough in order to
approximate the target up to some small accuracy:

Definition 2 Let H = {H, }nen be a sequence of hypothesis classes, let F = {F,}nen be a
sequence of target classes and let D = {D,, },.en be a sequence of distributions over { Xy, }nen. We
say that H € - approximates (F, D) if there exists € € [0, 1) such that for all n € N:

inf L h) <e.
s i Lioa(h) <€

We say (F, D) is realizable by H if H can 0-approximate it.

Note that in the above definition we did not require € to be small, just that it’s a constant which
does not depend on n. In some cases we cannot guarantee realizability, or even e-approximation for
a constant €. The minimal requirement in this case is that the hypothesis class can approximate the
target just a bit better than the trivial approximation:

Definition 3 Let H = {H., }nen be a sequence of hypothesis classes, let F = {F, }neN a sequence
of target classes and let D = {D,, },en be a sequence of distributions over { X, }nen. We say that
‘H weakly approximates F with respect to D, if there exists some polynomial p such that for all
n € N:

inf L M<1-1
fseu}l_i it Fon(h) < / |p(n)]

Since we use the hinge loss, the loss on the zero hypothesis (i.e. output O for every input) is
exactly 1. This means that the weak approximation requirement in this case is that the hypothesis
class can approximate the target better than the trivial classifier, at least up to an inverse polynomial.

The main goal of this paper is to explore the relation between learnability and approximation.
To do so, we define the notion of weak dependence between some algorithm A and a hypothesis
class H:

Definition 4 Let A be a learning algorithm and let H = {H,, }nen be a sequence of hypothesis
classes. We say that A weakly depends on H, if every class-distribution pair (F, D) that cannot be
weakly approximated by H, cannot be efficiently learned by A.

We leave the exact definition of efficient learnability for the next sections, as it depends on the
specific setting of learning that we consider. Note that the algorithm A does not necessarily output
a hypothesis from #. In general, A will output a hypothesis from a “more expressive” class than
H, e.g. where H consists of 3-layer neural networks while .A outputs a deep neural network.



Clearly, if some learning algorithm .4 outputs a hypothesis from some class #, then in order for
A to succeed in learning, it must hold that 7 can (weakly) approximate the target class F. So, any
algorithm A which outputs a hypothesis from a class H weakly depends on the hypothesis class of
its output. However, it turns out that some algorithms weakly depend on hypothesis classes that are
very different, and sometimes much “weaker”, than the class that is being learned by the algorithm.
We next show some notable examples of such dependencies.

We note that in all the above definitions we considered a sequence of target classes F param-
eterized by some parameter n. In the literature, there are several kinds of depth separation results,
where some parameter n tends to infinity, and this parameter corresponds to some property of the
problem. For example, in Eldan and Shamir (2016); Safran and Shamir (2017) n is the input dimen-
sion, while in Telgarsky (2016) n is the depth of the network. A major benefit of our terminology is
that we give a single definition for both kinds of depth separation.

3. Gradient Descent Weakly Depends on Shallow Neural-Networks

In this section we focus on the gradient descent algorithm. We show that under certain technical
assumptions, the gradient descent algorithm applied to deep neural networks weakly depends on
shallow 3-layer neural networks.

First, let us define the algorithm that is being used. Let gg(x) : R? — R be some function
parameterized by a vector § € R”, let f : R — R be a target function and D a distribution over
R?. Suppose we initialize the parameter vector at 6y € R”, for a learning rate 7 > 0 the gradient
descent algorithm iteratively computes 6, by the following rule:

0y =011 —nVe,_, Lyp)(96,_,)-

For example, we can think of gg(x) as a neural network with r parameters, taking as input d-
dimensional data. We define when a class of functions is not weakly learnable by gradient descent
in the following way:

Definition 5 Ler 7 = {f, : R — R},en a sequence of target classes, D a distributions over
X CR% g={gp(x): X = R}yen a sequence of functions parameterized by a vector 6 € R9(™)
where q(n) is some polynomial, and 6y = {6} € RY(M Y}, cn be a sequence of initialization points.
Let T(n),n(n) : N — R be two polynomials. We say that F is not weakly learnable by gradient
descent with respect to D using the functions g at initialization 0y, if there exists a super polynomial
function o : N — N such that for every n € N, running gradient descent on gg‘g for T(n) iterations,

and any learning rate 1 < n(n) we have that

n n 1
Ly, 0y(968,) — Ly.0)(98,) < ——=

a(n)
Here, for ease of notation we denote by gy, the function gy initialized at 6, and by 9. the function
gy after T iterations of gradient descent, initialized at 0

The definition contains many parameters, but it is actually quite intuitive. In simple words,
gradient descent is unable to learn a target class (and distribution) if after a polynomial number of
iterations, the loss stays very close to the loss at the initialization. We give this definition in negation
(’not weakly learnable”) because getting the loss away from its initialized value is a necessary



condition to learn (assuming the loss is not so good at initialization), but it is not sufficient. Note
that our only requirement of the learned function g is that the number of optimized parameters
is polynomial, as optimizing a super-polynomial number of parameters is practically intractable.
Although we give this definition with a constant learning rate, all the results can be readily extended
to GD with variable learning rates, as long as they are all smaller than 1.

Next, we focus on the initialization scheme that is being used, we consider the following initial-
ization of the parameter 6:

Definition 6 Let gy(x) : R? — R be some function parameterized by 6 € R". We say that 0y € R”
is an L-standard initialization if there is a p > 0 such that for every 0 € B,(0y):

* gp(x) is an L-Lipschitz function of 0

* Each coordinate of V(gg(x)) is an L-Lipschitz function of x with supxco 114 Vo (g5); (X) <
L for every i € [r].

In Appendix A we show that Xavier initialization for depth-k neural networks is w.h.p an L-
standard initialization, where L = O(d) (d being the input dimension) and p = %

Using the above definitions, we can show that gradient descent on a class of functions g weakly
depends on the hypothesis class of 3-layer neural networks with bounded width.

Theorem 7 Let o : N — N be a super-polynomial function, d € N the input dimension for the
data, and D the uniform distribution on [0,1]%. Let F = {f, : [0,1]* — R},en be a sequence
of functions, with | f,(x)| < C for all n for some constant C' > 0. Assume that the sequence of
hypothesis classes of 3-layer neural networks with ReLU activations and width at most o(n)? - 2d
cannot weakly approximate F in the sense that for any n € N, minpey,, Ly, (h) > 1—a(n)™!. Let
9 = {95 (x) }nen be a function sequence parameterized by a vector § € RP(™) with a polynomial p,
and assume we initialize at 0y € RP(™) vwhich is an L-standard initialization 0o with p > % Then,
running gradient descent for T' 4 1 iterations with learning rate n we have that:

21 L2C? max{1,n*}Vdp(n)
a(n)

Ly, (96,) — L. (96,,,) < T,

The full proof can be found in Appendix B. The proof intuition is as follows: We show that the
correlation between each coordinate of Vygy and f,, cannot be too large. We do that by using an
approximation of Lipschitz functions with 3-layer neural networks. Using an argument regarding
the optimization process of gradient descent and the Lipschitz initialization assumption on gy, we
show that even after a polynomial number of iterations, the correlation between gy and f,, must
remain small. This shows that the loss after a polynomial number of iterations cannot be too far
away from the loss at the initialization.

Remark 8 Some remarks on applying a similar analysis for other variants of gradient-descent:

1. Our result holds for “exact” gradient-descent, where the update of the weights is done using
the exact value of the population gradient. We note that, with some further assumptions on
the initialization procedure, this result can be extended to “noisy” gradient-descent, where



an i.i.d. noise is added to the weights at each iteration of gradient-descent. Indeed, we show
that in the area of the initialization, the gradients are extremely small. Adding noise at each
iteration is equivalent to re-initializing the model in a new (random) initialization, and then
applying the extremely small gradients observed so far. So, if such random initialization is
L-standard w.h.p., then a similar result can be derived for “noisy” gradient-descent.

2. We note that showing a similar result for SGD, where the gradients are calculated based on
examples sampled from the distribution, is far more tricky. In fact, in Abbe and Sandon (2020)
it is shown that neural networks trained using SGD with a batch size of 1 can implement any
poly-time PAC algorithm. Hence, showing hardness results in this setting is as complicated as
showing hardness results on PAC learning, which involves relying on unproved comptuational
hardness assumptions (e.g., cryptographic hardness).

We get the following as an immediate corollary from Thm. 7 by assuming that both 7 and 7" are
at most polynomial in n:

Corollary 9 Under the same assumptions as in Thm. 7, the function sequence F is not weakly
learnable by g with gradient descent that is initialized at any L-standard initialization with p > %
and run for a polynomial number of iterations, with a learning rate at most polynomial in n.

Remark 10 A couple of remarks about the assumptions of Thm. 7:

1. The notion of weak learnability in the theorem is the same as in Definition 3. Here we omitted
the max ez, since for any n, JF, contains only a single function. Also, in the theorem we
explicitly used the assumption that there is a super polynomial function which bounds the
approximation.

2. Definition 6 can be satisfied by neural networks with differentiable activations, but not with
the ReLU activation. To apply the theorem specifically to ReLU activation would require
revising Lemma 24 to the derivative of a neural network with ReLU activation. We believe
this can be done if we assume a uniform distribution on [0, 1]d, and leave it for future work.

3. The assumption that p > % is weaker than assuming that p is a constant, since here we

allowed the radius for which the initialization is well behaved to get smaller with n.

One caveat of the theorem is the exponential dependence of network width in the dimension.
This dependency is due to the approximation of high dimensional Lipschitz functions using shallow
networks. It can be seen that a target class of functions F which satisfies the requirement of the
theorem, has a Lipschitz constant which is exponential in d. The unlearnability itself comes from
the fact that the target function has a large Lipschitz constant, although in these results we treat the
input dimension d as a constant, while the depth n varies. In Vardi et al. (2021) it is shown that it
may not be possible to find a function with a similar depth separation property that has a polynomial
Lipschitz constant.

With that said, we immediately get from Thm. 7 and Thm. 22 the following:

Corollary 11 Let A be the following learning algorithm: For any n, initialize a neural network
with depth n and width p(n) (for p(n) polynomial) using standard Xavier initialization. Then, train
the neural network with gradient descent with step size n < 1. Then A weakly depends on the
hypothesis class of 3-layer neural networks with super-polynomial width.



In Sec. 5 we will use this corollary to give an example of a function that, although it can be
realized by depth n neural networks, it cannot be learned by them.

4. Statistical-Query Algorithms Weakly Depend on Kernel Classes

In this section we relate learnability using Statistical-Query (SQ) algorithms and approximation
using a kernel class. Specifically, we show that efficient learning in the SQ model weakly depends
on kernel classes. We start by defining weak learnability in the SQ model, following the definitions
of Kearns (1998). First, for some function f distribution D and tolerance parameter 7 > 0, we
define the statistical-query oracle SQ,(f, D) to be an oracle which accepts queries of the form
q: X xY — [—1,1] and returns some value v such that |[v — Ex.p ¢(x, f(x))| < 7.

Definition 12 Let F = {F, }nen be a sequence of target classes and let D = {D, }nen be a
sequence of distributions over {X, }nen. We say that F is weakly learnable with respect to D, if
there exists a sequence of algorithms A = {A,,}nen and polynomials p, q,r such that for every
f € F,, the algorithm A,, returns a hypothesis h such that:

Ly, (h) <1—1/|p(n)|

using at most q(n) queries t0 SQ1 /() (f, Dn).

Our main result in this section shows the weak dependence between SQ algorithms and the
class of functions over a polynomial-size kernel space. We define a polynomial-size kernel class as
follows:

Definition 13 A sequence of hypothesis classes H := {Hy, }nen is a polynomial-size kernel class
if there exist polynomials p, q, and a sequence of mappings V,, : X,, — [—1, 1]p(") such that:

Hin = {x = (Un(x),w) : [[wlls <g(n)}

Although this class is significantly less expressive than neural networks, here we show that it is
possible to weakly learn a target class of functions with any SQ algorithm if and only if it can be
weakly approximated by the kernel class:

Theorem 14 Let F = {F,, }nen a sequence of target classes and let D = {D,, }nen be a sequence
of distributions over {X, }nen. Then, there exists an efficient statistical-query algorithm A that
weakly learns F if and only if there exists a polynomial-size kernel class H that weakly approximates
F with respect to D.

The proof intuition is to show that a polynomial size kernel class can weakly approximate J if
and only if the SQ dimension of F is polynomial. We also use a modified form of a known result
which shows that the number of queries required for any SQ algorithm to learn a class of functions
depend polynomially on the SQ dimension of this class of functions. The full proof can be found in
Appendix C. The following corollary immediately follows from Thm. 14:

Corollary 15 Every SQ-algorithm A weakly depends on some kernel class H.



Note that SQ-algorithms are of course not limited to learning only kernel classes. In fact, almost
any learning algorithm that has been studied in the machine learning literature can be implemented
in the SQ framework. However, the above corollary states that although SQ-algorithms can po-
tentially learn very complex function classes, they are limited to learning only classes that can be
weakly approximated using a kernel class.

5. Strong Separation Between Hypothesis Classes

So far, we saw examples of weak dependence between algorithms and hypothesis classes. Our re-
sults suggest that in some cases, learning a complex hypothesis class (for example, deep neural net-
works) depends on having a weak approximation using a “simpler” class. So, from an optimization
perspective, there is no gap between weak learnability of the “complex” class and weak approxima-
tion of the “simpler” class - if the “simple” class cannot (weakly) approximate, the “complex” class
cannot be learned.

However, we can review the same question from an approximation perspective. Namely, we
can consider distributions that can be expressed by the “complex” class and cannot be weakly ap-
proximated by the “simple” class. In this section we show that when we disregard optimization
and consider only approximation capacity, we get such extreme gap between the “simple” and the
“complex” class. In this case we say that there is a strong separation between the two classes. We
define this formally as follows:

Definition 16 Let H = {H,}nen, H' = {H), }nen be two sequences of hypothesis classes, let
F = {Fp}nen a sequence of target classes and let D = {Dy, }nen be a sequence of distributions
over { X, }nen. We say that (F, D) strongly separates H from H', if H' can e-approximate it, but it
cannot be weakly approximated by H with respect to D.

The construction of a function which strongly separates two hypothesis classes suggests that
one class is significantly more expressive than the other. However, the fact that a hypothesis class
can express a target function does not imply that a learning algorithm which outputs a hypothesis
from this class can learn the target function.

Corollary 17 Let H = {Hn}nen, H' = {H), }nen be two sequences of hypothesis classes, let
F = {Fp}nen a sequence of target classes and let D = {Dy, }nen be a sequence of distributions
over { Xy, }nen. Assume that (F, D) strongly separates H from H', then:

o If H is the class of 3-layer neural networks with super-polynomial width, and X,, = |0, 1]d
for all n, then (F, D) is not learnable by gradient descent, even when it outputs a hypothesis

from H'.

 If H is some polynomial size kernel class, , and X,, = {£1}", then (F, D) is not learnable
by any SQ algorithm.

The proof follows directly from the assumption that (F, D) cannot be weakly approximated by
‘H, and using either Thm. 14 or Thm. 7.
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5.1. Examples of strong separation

In the following subsection we will consider known examples of functions which strongly sepa-
rates hypothesis classes. As a result from the previous subsection, we will get that although the
target functions can be realized by neural networks, they cannot be learned by standard learning
algorithms.

TELGARSKI’S FUNCTION

Here we assume the input space is &,, = [0,1]? for all n. We define the following family of
functions on d dimensional vectors:

fn(x) = o

1 3teN, x [, 2
—1 otherwise

Let the input distribution D to be the uniform distribution over X,,, and let F;, := {f,,}. This is the
sign of Telgarsky’s triangle function in d dimensions (see Telgarsky (2016)).

Telgarsky shows that the function above cannot be approximated using a neural network with
less than n'/3 layers up to a constant accuracy. This result can be extended using the same methods
to show that this function cannot be approximated using neural networks with less than n'/2 layers,
even up to polynomially non-trivial accuracy. This means that shallow neural network cannot ap-
proximate this function significantly better than the trivial predictor. Hence we have the following
strong separation between deep and shallow neural networks with constant input dimension:

Theorem 18 Let k1, ko : N — N some functions such that k1(n) = n and ko(n) < /n. Then
(F, D) strongly separates the sign of polynomial-size depth-ky dimension-d networks from the sign
of polynomial-size depth-ky networks. In particular, for any neural network N with depth ka(n)
and width p(n) we have that:

2/ (2p(n) V"

Lip)(N)>1~ on

This result is similar to the results from Telgarsky (2016). For completeness, we give here the
full proof in our terminology of strong separation. The full proofs are in Appendix D.1.

Note that in the above separation results the dimension is constant, and the separation is between
varying depth neural networks. Also, we use the sign function of the network for ease of the proofs.
It is possible to drop this assumption and show hardness of approximating f, using the same proof
techniques as in Telgarsky (2016).

Combining Thm. 18 and Corollary 17 we have shown that Telgarski’s function is not weakly
learnable by gradient descent with standard initialization. This is true even if the algorithm is
performed over deep neural networks which can represent Telgarski’s function.

We note that in our proofs we formally show that the gradient of the objective is exponentially
small. One might consider normalized gradient descent, where the norm of the gradient at each
iteration is normalized to some fixed value, hence avoiding the problem of small gradients. This
solution is impractical, since for finite precision machines which are used in practice, the gradient
is so small that it virtually equal to zero.

1. To be more precise, let g(x) be Telgarski’s triangle function with 2™ jumps, defined using composition of ReLUs
(Lemma 3.10(1) from Telgarsky (2016)). Then f,(x) = sign(g(z) — 0.5).

11



PARITY FUNCTIONS

Assume the input space is X;, = {£1}". The separation here will be with respect to the input
dimension, as opposed to the previous example where the input dimension was fixed.

We will use parity functions over n-bits: For some subset I C [n], denote by f7(x) = [ [, =i,
the parity over the bits of I, let 7, = {fr : I C [n]} and D,, the uniform distribution on &;,. The
following result was shown in several previous works (e.g. see Daniely and Malach (2020)):

Theorem 19 Let H be the class of depth-two networks with ReLU activation with polynomial
width and weight magnitude, and let F = {F, }nen be the class of parity functions and {D, } nen
the uniform distribution of X,,.. Then, (F,D) strongly separates any polynomial-size kernel class

from H.

For completeness, we give the full proof in Appendix D.2. Combining Thm. 19 and Corollary 17
shows that parity functions are not learnable by any efficient SQ algorithm.

6. Depth-2 and Depth-3 Neural Networks

Many previous works showed separation between depth-2 and depth-3 neural networks (e.g. Eldan and Shamir
(2016); Safran and Shamir (2017); Daniely (2017); Safran et al. (2019)). These results usually con-

struct a function that can be approximated up to very small accuracy with a 3-layer network and
polynomial width, while it cannot be approximated by a 2-layer network, unless its width is expo-

nential.

We believe that a necessary condition for a target class to be learned by an SQ-algorithm is to be
weakly approximated by the class of 2-layer neural networks. That is, we conjecture that any rich
enough 2 class of functions that cannot be approximated by shallow neural networks of polynomial
width, cannot be learned by any SQ algorithm. If this conjecture is true, then any “rich” target class
that strongly separates 2-layer from 3-layer neural networks, cannot be learned by an SQ-algorithm.
This is true, even if the SQ-algorithm outputs a 3-layer (or deeper) neural network.

In what follows we will show a specific family of functions that strongly separates 2-layer from
3-layer neural networks, and is not weakly learnable by any SQ-algorithm.

6.1. An Example of Unlearnability and Separation For 2-layer and 3-layer Networks

Let X,, = {£1}", in this section the input space will be X, x X,,, and the output space is J = {+1}.
Fix some z’ € X,,, we define the following function’:

n

Fz/(X, Z) = H(ﬂfz Vzi V Zz/) = H (3:2 \ Zi) )

i=1 i€I(z')

where I(z') C [n] is the set of coordinates for which z; = 1. Define the following family of
functions: F := {F, : 7’ € X} Cc Yy¥*¥,

2. Note that in general, any single function f can be trivially “learned” by the SQ algorithm that always returns the
function f. Therefore, for some class to be hard to learn using SQ algorithms, it needs to be “rich enough”, i.e.
contain a large and diverse set of functions.

3. If the input space is {0, 1}™ this function would be equivalent to (x,z) mod 2, where the inner products is taken over
the coordinates for which z; = 1. We keep the input space as {£1}" to be consistent with the previous sections.
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Theorem 20 Let D,, be a uniform distribution over X,, X X,,. Then the family of function F defined
above is not weakly learnable by any SQ-algorithm.

The proof intuition is to show that class F has large SQdim, and hence cannot be learned using
SQ-algorithms, regardless of the chosen hypothesis class. We show this by defining the following
inner-product: (Fy, Fpn) = Ex , [Fp (x,2)Fy(x,2)], and explicitly finding the vectors in A&}, that
realize the SQ-dimension. The full proof can be found in Appendix E.1.

Suppose we fix some z’ such that its number of coordinates that equal to +1 is £2(n). In this case,
we can show that the function F, (x, z) cannot be weakly approximated by 2-layer neural networks
with polynomial width. On the other hand, for any z’, the function F),(x,z) can be realized by a
3-layer network with polynomial width and ReL U activation (see e.g. Malach and Shalev-Shwartz
(2019b)). This is summed up in the following:

Theorem 21 Let H be a polynomial-size depth-three network class with ReLU activation. Let
F, : X, x Xy, with Fy(x,2z) = [[I_1(x; V 2;) and let D,, be the uniform distribution over X,, X X,.
Then ({F,},{Dy,}) strongly separates any polynomial-size depth-two network class from H.

The full proof can be found in Appendix E.2. Although, for simplicity, we proved the theorem
for z’ which equal to 41 in all the coordinates, the proof is the same for any z’ with ©(n) coordinates
which equal to +1.

To conclude, we have shown an example of a family of functions which strongly separates
depth-2 from depth-3 neural networks, which cannot be learned by any SQ-algorithm, even if it
outputs a 3-layer network which can represent the function.

7. Discussion and Future Work

In this work we have shown that there is an intricate connection between the approximation capabil-
ities of “simple” hypotheses classes, and learning capabilities of certain algorithms, even when used
on a "complex” hypothesis class that can perfectly represent the target. We have shown this connec-
tion appears in two learning setups: The first is that being able to successfully weakly approximate
using a 3-layer neural is a necessary condition to successful learning with gradient descent. The
second is that to be able to weakly learn a target class (even in a weak sense) by any SQ-algorithm
is possible if and only if this target class can be weakly approximated by some kernel class.

We have also discussed two known examples of target classes which strongly separates hy-
pothesis classes. As a consequence of the dependence between approximation and learnability,
these target classes (namely, Telgarski’s triangle function and parity functions) cannot be efficiently
learned, even when a “complex” architecture which can represent the functions is used. Finally,
we have shown a specific example for a target class which separates between 2-layer and 3-layer
networks, that cannot be learned by any SQ-algorithm.

We note that our work does not cover the separation results from Eldan and Shamir (2016);
Safran and Shamir (2017); Daniely (2017). This is because the target functions that are introduced
seem to be weakly approximable by 2-layer networks (e.g. see Figure 1 in Safran and Shamir
(2017)). It is an open question whether these function can be learned up to arbitrary accuracy
using 3-layer (or deeper) neural networks.

Another interesting future direction is find more learning setups for which there is a dependence
between approximation with a ”’simple” hypothesis class, and learning with a more “complex” hy-
pothesis class. Such setups include other gradient methods, e.g. stochastic gradient descent, or
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momentum, and separation between shallow and deep neural networks where the input dimension
is not constant.
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Appendix A. Discussion on L-standard initializations

The assumption of an L-standard initialization is required, although sometimes implicitly, in order
to learn with gradient methods. The intuition for the first part of the definition is that moving the
parameters of the functions by a small amount (e.g. doing a single gradient step) doesn’t change the
value of the function too drastically. Without this requirement, it will be hard to predict the outcome
of even a single gradient step with a small step size. The second part of the definition is that the
gradient is well behaved with respect to the data. This means that the gradient w.r.t two close data
points is similar, without this requirement small perturbations of the data could also change the
gradient direction too significantly. The boundness requirement is technical and can be obtained by
bounding the data domain.

All of the requirements of L-standard initialization are satisfied by using standard Xavier ini-
tialization Glorot and Bengio (2010). We get a bound on the Lipschitz constant that depends on the
norm of x (which in our case can be bounded by d), and in a radius that depends on the depth of the
network.

Theorem 22 Let o be a 1-Lipschitz activation function and let d > 0 be the data dimension.
Suppose we initialize a neural network of depth k and width m using Xavier initialization, and
assume that m > k2. Then wp>1-— e—Sm/ k), this is an 1.1d-standard initialization with radius

p=1

In Xavier initialization, each weight entry in a weight matrix of width m is drawn from N (0, %)
(up to a constant factor). For a depth £ width m network it will be easier to view this initialization
as if each weight is drawn from a standard Gaussian distribution, and the network is multiplied by
the normalization term # (which is also done in Du and Hu (2019)).

For simplicity of the proof we assume the network doesn’t have bias terms, and that the width of
all the weight matrices is the same. The main technical part of the proof is using Lemma 6.1 from
Du and Hu (2019) which uses tail bounds on certain random variables to bound the norm of the
multiplication of random matrices where each entry is drawn from a standard Gaussian initialization.

Proof We can write the network as:

N(x) = Wio(Wi_1---o(Wix)---),
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where x € R%, W, € R™ 4 W, € R™™ for i = 2,...,k — 1 and Wi, € R™*!. For the
first part of the definition, recall that the Lipschitz constant of a composition of functions can be
bounded by the multiplication of the Lipschitz constants of the functions. Since o is 1-Lipschitz,
and a neural network is a composition of matrix multiplication with the activation, it is enough to
show the Lipschitzness for the linear network function:

N'(x) =Wy Wix.

Let Wy, ..., W} be the weight matrices at initialization, and A1, ..., Ax be some perturbation ma-
trices with max; || 4;|| < k. Suppose for this part of the proof that ||x|| = 1 (we will deal with x
with other norms later). Denote by W(_;, . ;) for iy, ... iy € {1,...,k} the multiplication of
the matrices W4, ..., W7 without the i1, ..., i, matrices. Then we have:

(Wi + Ap) - (W1 + Ag)x — Wy - Wix]| (1)

k

S T NAW x|+ > AAW x| + .
i=1 i#j

where at each sum there are ¢ indices for £ = 1, ..., k for matrices which are left out of the multi-

plication. For a single sum we have:

Z [Aiy - Aiy - Wy emiX]| < max | Al - Z Wiy i Xl
17 Flp 1. Fig

We use Lemma 6.1 from Du and Hu (2019) to get that w.p > 1—e~("/*) we have that || Wiy il <

—ip

L1m" 74, Hence, we can bound the above term by:
o [k 1 —
1.1 - max || 4;]|° - m'z <€> <1.1- z m'r o k
7

<£mk/2 K £<1'1mk/2
~ k vm) —  k

where we used the assumption that m > k? Since there are k such sums we have that the above can
be bounded by 1.1m*/2, dividing by the normalization term, we get that a Lipschitz constant of 1.1
with probability > 1 — e=¥"™/k)_If ||| # 1 then we can divide Eq. (1) by ||x|| to get a Lipschitz
and follow the proof in the same manner to get a Lipschitz constant of 1.1||x||. This finishes the
first part of the definition.

For the second part, the Lipschitzness condition follows from the fact that

ON'
oW,

(W Wigr) ' (Wimy - Wix) T,

from Lemma 6.1 from Du and Hu (2019) and the same reasoning as in the proof of the first part. In
this manner we get a Lipschitz constant of 1.1 w.h.p. For boundness condition, using the assumption
that x € [0,1]¢ we get that maXyco,1]¢ ||X|| = d, hence we have that the supremum over x of the
gradient will be bounded by 1.1d for every coordinate of the gradient. |

4. Although the matrix W, is of a different dimension, the proof can be easily extended to deal with this case.
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Appendix B. Proof of Thm. 7

The following two lemmas will be necessary in order to approximate a Lipschitz function using a
shallow neural network.

Lemma 23 Lety > 0and A := [ay,b1] X - X [ag, bg] € R% Then there exists a 3 -layer neural
network N (x) with depth 2 and width 2d such that N(x) = 1 forx € [a; +7,b1 —7] X -+ X [ag+
¥, ba — 7, N(x) = 0forx ¢ Aand |N(x)| < 1forall x € R

Proof We define:

d d
1
N(x) = < g aaz—l—v—azz——g o(x —b—|—7>,
=1 =1

it is a 3-layer neural network with width 2d. Note that for every i € [d], if z; < a; or x; > b; then
N(x) = 0. Also, if x € [a1 +v,b1 — 7] X -++ X [ag + 7,bg — 7] then N(x) = 1, and finally for
values of x not specified above, IV (x) interpolates between 0 and 1, hence |N(x)| < 1 for these
values. |

qw
2

Lemma 24 Let h : [0,1]? — R an L-Lipschitz function with SUpxelo,1)¢ [h(x)| < C, and n € N.
Then there is a 3-layer neural network N (x) with width n® - 2d such that f[o 1) |N(x)—h(x)|dx <
2C+LvVd

nd

Proof First, we split the hypercube [0, 1] into n¢ smaller and equally sized hypercubes, in the

: . ; ; i1 i1+l
following form: for every i1,...,iq € {0,...,n — 1} we define the hypercube [%, a ] X

- X [Z;f, ’dH} there are n? such hypercubes, each with volume n~%. Denote these hypercubes

as Ay,..., Ay for M = n? For each A;, pick any x; € A; and let ¢; = h(x;). For each

n’> n n’

N;(x) such that N;(x) = 0 for x ¢ A;, N;(x)=1 for x € |2 4 p=2d atl _ n‘2d} X oo X

A; = [i—l @] X e X [“ ZdH] we use Lemma 23 with v = n~2?¢ to get a neural network

n

[“ + =24 tatl n_2d}, and |N;(x)| < 1 for every x € [0, 1]%. Then we have that:

n

/ |h(x) — ¢; - Nij(x)|dx < 2Cn~2¢ 4+ LVdn™2?
A;

where we used that inside A;, if N;(x) = ¢; then |h(x) — ¢; - N;j(x)| < Lﬁ since h(x) is L-
Lipschitz, otherwise |h(x) — ¢; - N;(x)| < 2C but the area for which this happens is at most n %<,
Define N (x) := S"M ¢;N;(x), then N (x) is a 3-layer neural network with width n® - 2d, and we

get that:
M 2C + Lv/d

/ IN(x) — h(x)|dx < Z/Ai|Ni(x) ~ h(x)]dx < nd- <2C’n_2d + L\/En—m) <=
[Ovl}d =1 n

n
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We are now ready to prove the main theorem:
Proof [Proof of Thm. 7] Fix n € N, in the proof we denote 6y := 6 and ¢; to be ¢ after ¢ iterations

of gradient descent, and denote V1 = Vg, (L fn (ggT)). We have that:

10741 — 0ol = |07 — 0V — b0 = 107 — 6ol|* + n*|IV7|1> — 21 (V7,07 — 00)
<167 — 6ol* + 7?1V 7|1 + 201V || - 167 — 6ol

IN

T
<Y PVl 4 20) Vel - 116: — ol )
t=0

We will first bound the norm of the gradient at each iteration. Suppose that [|6; — || < 1, then,
by the assumption on the initialization, each coordinate of Vg, (gglt (x)) is an L-Lipschitz function
from [0,1]¢ to R with SUPxefo,1]¢ (Va, (95, (x)))z < L fori € [p(n)]. By Lemma 24 there is a
3-layer neural network N; : [0, 1] — R with width a(n)?2d such that

AL +2LV/d  6LVd

1300 = (Vg (), e < e < T

For every ¢ € [p(n)] (each coordinate of Vy, (ggt (x))) we have that:

Ets(t0.0) [(V0u5, (%)), fa)]

< EXNU([Q,l]d)[Ni(X)fn(x)] + EXNU([Q,l]d) H (Vetggt (X))Z - NZ(X)‘ : |fn(x)|]
1 6LCVd _7TLCVd
“a(n)  aln)? = a(n) - ©)

Here we used the assumption that ReLU neural networks with at most o(n)?2d cannot weakly
approximate f;, in the sense stated in the theorem, which for the case of hinge loss, means that the
correlation between the two functions is bounded by a/(n)~!.

Using Eq. (3) we can now bound the norm of the gradient at each iteration, under the assumption

that [|6; — 6| < L:

2

8 n
HVt|’2 = 8_EXNU([0,1]d) [max{O, 1-— 9o, (X)fn(x)}]
p(n)
n 2 _ TLCOVd-p(n
<Y [Bovon (Vogs, (%), fa(x)]” < W() : @)
i=1
7TLCVd-p(n)

Denote a :=

~n and assume w.l.0.g that a < 1 (otherwise, take a larger n), combining
Eq. (2) and Eq. (4) we get:

T T
10741 — 60l1* < TPa +2nv/a > 16, — ol < max{L, 1} (Ta NN 90H> .

t=0 t=0
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We will show using induction that |71 — 6| < max{1,7?}3aT?. For T = 0itis clear. Assume
for all ¢t < T, then we have:

T T
1 —
m"‘eT+1—90”2 STG+2\/&Z 3at2 STG+2\/§CLZt
1 t=0 t=0
2v/3aT?
< Ta+ *[Ta < T2 + V3aT? < 3aT? . (5)

Hence, if max{1,n?}3aT? < % then the above applies since the function gy (x) is Lipschitz and

bounded, this applies for all 7' < \/ IO maxi(:?)ﬁ} Nk Let T be bounded as above, then:

Ly, (98,) = Epr(o,1]e) [max{0,1 — g (x) fn(x)}]
= Eaeroe) [max{0,1 = g, (0 fu(X) + (ghy.,, (%) — g5, () fa ()}

(95, (%) = g8y, () Fu(3) |

< Ex v (o114 [max{(), 1- gngH(X)fn(X)] + Exv(0,19) [
< Ly, (97,,) + LllOr+1 — 00l - Exrr(0,1)2) [ (%)]

21L2C? max{1,n*}vdp(n)

2

é Lfn (ggT+1) +

where we used Eq. (5) and that | f,,(x)| < C for all x € [0, 1]%. This proves that:

21 L2C? max{1,n*}Vdp(n)
a(n)

Ly, (99,) — Ly, (g9g,) < T,

and in particular, if 7" is polynomial in n, then F is not weakly learnable with gradient descent.
|

Appendix C. Proof of Thm. 14

To prove the theorem, we first need the following technical lemma (due to Szorényi (2009)):

Lemma 25 Let f1,..., fq such that |(f;, f;)| < %for every i # j. Fix some h : X — [—1,1],
and some T > 0. Then, the number of functions from f1,..., fq for which |(f;, h)| > T is at most
2(r2 = )7L

[{Geld « [(fjm] =7} <27 = 1/d)~
Proof We define A = {j € [d] : (f;,h) > 7}, and note that:
TIAL <) (b f) = <h,§jfj>
JjeEA jeEA
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We also have:

<h,2fj>2 <[RIB1D fillp < <ij,2fj> => {1+ X s

JEA D JEA JEA  jeA JEA J'EAG'#]

Al Kl

<A1+ —= ) = A+ —

<ial(1+ D) = a5
So, we have |[A| < (72 — 1/d)~L. Similarly, for A’ = {j € [d] : (f;,¥;) < —7} we get
|A’| < (172 — 1/d)~'. Therefore, the required follows. |

We use the following Theorem, which is an extension of the result in Blum et al. (1994):

Theorem 26 Let F be a class of functions over X and let D be a distribution such that SQdim(F, D) >
d > 16. Let { be the hinge-loss. Then any statistical-query algorithm with tolerance at least 1/ d'/s3,

needs at least %dl/ 3 queries to learn F with loss less that 1 — -%=.

Vd

Proof Let fi,..., fq be the maximal set of functions with |(fz, fj>D| < d%' Now, let g : {1} x
{#£1} — [-1,1] be some statistical-query, and denote Cy = Exp y(+1} [9(X,y)]. We say that
some function f; is consistent with C if:

1

Lo i) = G| < o5

Denote ¢, g— such that g4 (x) = g(x, 1) and g_ (x) = g(x, —1). Now, observe that:

1 1

E b £ = €y = B (110409 + Lpixm-1040) ~ 3040~ 59 (0)

1 1 1 1

= B |50 A0 (0 + 50~ £60)g- (0~ 5.0 ~ 5a-(0)]

1
D) E_[fi(x)g+(x) — fi(x)g-(x)]

x~D

1 1 1
=5 fig+r) =5 {fig-) = <fi, 59+ —9—)>

Denote § = (g4 — g—) and since g(x) € [—1, 1] we get from 25 that the number of functions
from fy,. .., fq that are not consistent with C,, is at most 2(1/d*? — 1/d)~" < 4d*/3. Now, let
A be some statistical-query algorithm, and let g1, ..., gr be k queries made by .4, upon receiving
responses Cy, ,...,Cy, ., and let h be the hypothesis returned by A after these queries. Now, the
number of functions f; that are consistent with all the responses Cy,, ..., Cy, , is at most 4kd?/3.
So, if A makes at most %dl/ 3 queries, then at least 1/2 of the functions f1, ..., f4 are consistent
with the responses, and assume w.l.o.g. that f1,..., fq/ are consistent with the responses. Now,

let . be the clipping of A to [—1, 1], so:

-1 hx)<-1
h(x) =4 h(x) h(x)e[-1,1]
1 h(x) > 1
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Notice that for the hinge-loss £ we have for every x and y € {£1} that {(h(x),y) = max{l —
h(x)y,0} > 1 — yh(x). Indeed, we have the following cases:

« If h(x) € [~1,1] then max{1 — h(x)y,0} = 1 — h(x)y = 1 — h(x)y.

« If h(x)y > 1 then max{1 — h(x)y,0} =0 = 1 — yh(x).

o If h(x)y < —1 then max{l — h(x)y,0} =1 — h(x)y > 1 — h(x)y.

Therefore, the hinge-loss of h with respect to some function f; is:

Lyoy(h) = E_[6(h(x), £:0)]

:1—<fl-,l~z>

From Lemma 25, there are at most (4/d — 1/d)~ = d/3 < d/2 functions in fi,..., f4 with
< fi iz> > %. So, there exists a function f; that is consistent with all the responses of the oracle

and has < fis i~z> < %. For this function we get:

Lyy(h) > 1— <f2-,/}> >1- %

Proof of Theorem 14. Assume F can be weakly approximated with respect to D by a polynomial-
size kernel class H. Then, from Theorem 31, there exists a polynomial p(n) such that SQdim(F,,, D,,) <
p(n). Then, the algorithm that returns f; with i = arg max;c(q |(f;, f*)| is an efficient statistical-
query algorithm that weakly learns F with respect to D and the hinge-loss (since the returned
function is a binary function, the hinge-loss and the zero-one loss are equivalent).

In the other direction, assume that F is efficiently weakly learnable from statistical-queries.
So, there exists some polynomial p and a statistical-query algorithm that returns a loss with error
<1- Wlnﬂ for every f € JF,,, using a polynomial number of queries and polynomial tolerance.
Therefore, from Theorem 26, there exists a (positive) polynomial ¢ such that SQdim(F,,, D,,) <
q(n). So, let f1,..., fqn) be the maximal set such that [(f;, f;)| < ﬁ for every ¢ # j. Denote
Un(x) = (f1(x),- -, fqm)(x)), and so we have f; € ’H\ll,n for every i. So, for every f € F we
have:

min Lyp)(h) < min Lp)(f;) = min EL(fi(x), f(x))

heHy, i€lq(n)] i€[q(n)] D
1
= min E|1 — f;(x)f(x)] = Lp(0) — max |{f;, < Lp(0) —
min B[l = {6/ (x)] = Lo(0) — max [{f;. /)| < Lp(0) = g
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Appendix D. Proofs from Sec. 5
D.1. Telgarski’s Function

Recall we consider approximating the following function for n € N:

1 JteN, z e [Z, 2L
fn(x) = .
—1 otherwise

In words, we split the interval [0, 1] to 2" intervals each of length 5, on even intervals f,(z) = 1

and on odd intervals f,(x) = —1. For the rest of the proof we consider the distribution family
F = {Fn}, ey defined by the functions f,,. We have that:

Lemma 27 Let H = {H,} be the hypothesis classes defined by the sign function of ReLU neural
networks with depth 2n and width 2, and F as above. Then F is realizable by H.

Proof Following Lemma 3.10 from Telgarsky (2016), we define b’ : R — R by h/(z) = (20 (z) —
4o(x — 1/2) — 1/2) where o is the ReLU function. Note that 4’ interpolates between (0, —1/2),
(1/2,1/2) and (1, —1/2). We define h : R? — R by h(x) = sign(h/ o --- o h/(x1)) where the
composition is done n times. Note that i(x) is a 2n-layer neural network and that h(x) = f,(x)
(the first and last interval might be cut in half, in this case we can shift 21 — x; — 1/ ontly, |

In order to show that the functions above cannot be weakly approximated with a shallow neural
network, we show that a 1-dimensional ReLU network is a piecewise linear function, and bound the
number of pieces.

Lemma 28 Let N(z) : [0,1] — R be a ReLU network with depth L and width k. Then N (x) is a
piecewise linear function with at most 2"~k pieces.

Proof First, let g1,¢g2 : [0,1] — R be two piecewise linear functions with corresponding k1, ko
pieces. Denote h(z) = g1(z) + g2(x), we show that h(x) is also a piecewise linear function with at
most k1 + ko pieces. Let Ay (resp. Aj) be a partition of [0, 1] such that on each interval in A; (resp.
Ay) the function gy (resp. go) is linear. Take B to be a partition which is a refinement of A; and As
in the following way: Denote A1 = {[ag, a1], ..., [ak—1,ax|} and Ay = {[af, d], ..., [a)_,al]}
We construct B = {[bg, b1], ..., [bm—1,bm]} such that by = ap = 0 (note that also a, = 0),
b1 = min{a,a;} and inductively for every i > 1 take b; = min{ay,a),} where j and j are
the smallest index for which there is no [,!’ < ¢ with b = a; and by = a/,. Note that B has at
most k1 + ko intervals, since each boundary point of an interval in B contains exactly one unique
boundary point from an interval in either A; or Ay. Also, in each interval of B the function h(x) is
linear, because it is linear in both g; and go. Hence h(z) is piecewise linear with at most k; + ko
pieces.

Next, we can write N (z) in the following way: Let ag = x, a1 = o(Ujag + by) where U; €
R¥*1 b € R¥, and for 1 < i < L a; = o(Uja;_1 + b;) where U; € R¥*F b, ¢ RF, finally
ar, = Urar_1 + by, for Uy, € R™L b, € R. We show that each coordinate of a; for 1 < i < L is
a piecewise linear function of z using induction, and bound the amount of pieces by k. Fori = 0 it
is clear, assume it is true for ¢ — 1. Because a; = o(U;a;—1 +b;), the j — th coordinate of a; is equal

to o <Zf:1(Ui)jl(ai_1)l + (bz-)l>, by the induction hypothesis for every [, (a;,—1); is a piecewise
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linear function of x with at most k*~! pieces. By the previous claim, Zle (Ui)ji(ai—1); + (bi)i is
a sum of k piecewise linear functions, each with (2k)i~! pieces hence it has at most 2° 1 k% pieces.

Finally note that since the ReLU function is a piecewise linear function with two pieces, com-
posing it with a linear function is a piecewise linear function with at most two pieces. Hence,
composing ReLU with a piecewise linear function with k pieces can turn every linear segment into
at most two linear segments, meaning that the composition is a piecewise linear function with at

most 2k pieces. This means that o (Zle(Ui) jilai—1) + (bi)l) is a piecewise linear function with
(2k) pieces.

Using the above for i = L we have that N (z) is a piecewise linear function with at most 25~ 1k
pieces (note that the last layer does not contain ReLLU activation). |

We can now prove that the functions above cannot be weakly approximated by neural networks
with depth less than /n:

Theorem 29 Let k : N — N some function such that k(n) < \/n. Then the sign function of every
polynomial-size depth-k(n) dimension-d network cannot weakly approximate F := {F, } nen.

Proof Letg : [0,1] — {—1,1} be a function with at most k jumps (i.e. change of output from

—1to 1 or from 1 to —1), and let n € N with 2"~! > k. We split the interval [0, 1] into intervals

[%, 2(2;7:1)] fori =0,...,2" 1 —1, there are 2" ! such intervals. Since g(z) changes sign at most

k times there are at least 2" ~! — k intervals on which g(z) is constant. Hence, we have that:

-l k k 2" —k
L7 (9) = Baason Imax(0.1 — fu(e) g} 2 1- &8 g K 2O H)

(7

For any y € R%! we define py : R — R? by py(z) = (y,z). Let N(x) be a depth-L
dimension-d network with width p(n) for some polynomial p, and note that if we fix y € R then
Nopy : R — Ris adepth-L dimension-1 network with width at most 2p(n). Hence, by Lemma 28
N o py is a piecewise linear function with at most 2L=1(2k)F pieces, which shows that the number
of jumps of its sign has the same bound. Since we assume the dimension is constant and the width
is polynomial in n, we can assume that for large enough n, p(n) > d. Now, using Eq. (7) we get:

Ly, (0, (N) = Ext(jo,1)ey max{0,1 — fn(x) - N(x)}]

= / (/ max{0,1 — f, opy(x) - N Opy(:n)}daz> dy
y~U([0,1]4=1) \ Jz~U([0,1])

S @72 @)Yy 2 Em) Y
= on—1 o on :
In particular, for any polynomial g(n) we have that Ly, (p,)(N) > 1 —1/q(n) [ |

The proof of Thm. 18 now directly follows from Lemma 27 and Thm. 29.
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D.2. Parity Functions

For the following result we use the notion of the statistical-query (SQ) dimension (first introduced
in Blum et al. (1994)). This notions is a measure of complexity of a target class with respect to a
given distribution, which counts the number of ”almost-orthogonal” function in the target class with
respect to the inner product induces by the distribution:

Definition 30 Let F,, be some target class and let D,, be some distribution over X,,. We define the
statistical-query dimension of (Fy,, Dy,), denoted SQdim(F,,, Dy,), to be the largest number d € N

for which there exist functions f1, ..., fqg € Fn such that for every i # j we have:
1
(s fi), | = | B G050 < 5

While the SQ-dimension was introduced as a measure of bounding the complexity of statistical-
query algorithms, we show that this measure can also directly bound the approximation power of
kernel classes. In particular, we show that if the SQ-dimension of some target class and distribution
is super-polynomial, then they cannot be weakly approximated by a polynomial-size kernel class.
In the following results we assume that X,, = {+1}".

Theorem 31 Let H be some polynomial-size kernel class, let F = {F, }nen a sequence of target
classes and let D = {D, }nen be a sequence of distributions over {X, }nen. Denote d(n) =
SQdim(F,,,Dy,). Then, if d(n) is super-polynomial, H cannot weakly approximate F with respect
to D.

The theorem directly connects between the ability of kernel classes to approximate a target class,
and its SQ-dimension. The proof relies on the fact that for a fixed mapping ¥,, : X, — ), and
a set of “almost-orthogonal” functions f1, ..., fq(n), it cannot happen that the correlation between
between ¥,, and all of the f;’s is large. Hence, given many such f;’s, it is possible to find one
which W,, cannot approximate well, in other words, the more f;’s there are, it is harder for ¥,, to
approximate them all at once.

The proof of Theorem 31 is largely based on the following key lemma:

Lemma 32 Fix some U : X — [—1,1]", and define:
Hy = {x = (¥(x),w) : |wl < B}

Then, if d(n) > 3, there exist f1, ..., fymn) € Fn such that:

VONDB

z1- d(n)1/12

E min L. h
jld(m)] [he?—tﬁ $i@0) ()

Proof Let f1,..., fyn) € Fn be the set of functions realizing SQdim(F,, D), and we denote
d := d(n). For some j € [d], let Lj(w) := Ly (p,)((¥(x), w)) and define the objective G (w) :=
L;(w) + 5| /w]|?. Observe that for every i € [N] we have:

igj(o): E [fj(x)¥;(x)]

Z?w,- x~Dy,
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And so:

271
E [IVG;0)?] =

= E | [fj(X)‘I’i(X)]QI ®)

We define A = {j € [d] : |(fj,¥;)p| > 7}, and from Lemma 25 we have |A| < 2(72 — -1
Therefore, for 7 = d~/3 we get:

Y. E W) =) (f Tap+ ) (f W)

j=1 jEA j¢A
<22 = 1/d) 4 dr <2(d7?P —1/d)"t + d*/® < 5d*3

And plugging into (8) we get:

1 d
[IVG;(0 p [£;(x)Ws(x)]* < e
€[N]  J=

x~D

Ha -

Using Jensen inequality we get:

SN

IVG;O)I < B [IVG;0)IP] < 75

®)

[d]
Note that G; is A-strongly convex, and therefore, for every w, u we have:
(VG,(w) — VGj(w),w — u) > Alw — ul?
Let w} := arg miny, Gj(w), and so VG;(w7}) = 0. Using the above we get:
MWwiI? < (VGj(w)) = VG;(0), wyx) < [IVG;0)][[wll = [[w]]| < HVG]'(O)H
Now, notice that £; is VN -Lipschitz, since:
IVLi(w)ll = IVE [€(y, (¥ (x), w)] | < E[|¢][(x)[l] < VN

Therefore, we get that:

1= L5(w)) = £;(0) = £;(w}) < VN|[wj]| < @HVGJ(O)H (10)

J
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Denote W; = arg minw<p £;(w), and by optimality of W we have:

* * )‘ * (12 A )‘ A 2 A )\Bz
Li(wj) < Li(wj) + 5 Iwj17 < L (W) + S w1 < L5(w5) + = (11)
From 10 and 11 we get:
VN . . A\B?
1= E2IVG 0] < £i(w)) < £5(5;) + 2 (12
Taking an expectation and plugging in 9 we get:
VN AB? VBN AB?
E in Lepy(h)| = E [£i(w)] >1——— E [|VG,0)|| -—>1—-—7+——
. .. . _ V25N .
Since this is true for all A, taking A = 55 we get:

E | min L (h)| >1— M
jold) | newy TP | = di/12

Given the above Lemma, the proof of the Theorem 31 is immediate:
Proof of Thm. 31.

Fix some polynomial-size kernel class H := {H,, } nen, with mappings ¥,, : X,, — [—1, 1]1’(”)
and H,, = H?I,(jl) for some polynomials p, gq. Then, from Lemma 32, for every n we have:

1

_ _ , 5p(n)q(n)
L h)> E L. h)= E Lipy(h)| 21— F———
max min Lyp,)(h) = B min Ly, (h) = B et L1 () >] = d(n) /12
Since for every D we have Lp(0) = 1 (we use the hinge-loss), we get that:
. 5p(n)q(n)
L 0)-L h)y < +———~~
max min Ly, (0) = Lyon (W) < =057
And so, for every polynomial r we have:
: Sp(n)q(n) |r(n)]
sup max min [r(n)| (Lyp)(0) — Ly (h)) < sup a2 0
Which proves the theorem. |

Now, we can use Theorem 31 to show a strong separation between any polynomial-size kernel
class and the class of polynomial-size shallow neural-network. All we need is to find a target class
of functions which have super polynomial SQ-dimension, but can be realized by 2-layer neural
networks.

We will use parity functions over n-bits: For some subset I C [n], denote by f7(x) = [[;c; =i,
the parity over the bits of I, let 7,, = {f; : I C [n]} and D,, the uniform distribution on A;,.
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Proof [Proof of Thm. 19] By Lemma 5 from Shalev-Shwartz et al. (2017) parity functions are real-
izable by 2-layer neural networks with width and weight magnitude linear in the input dimension.
On the other hand, it is easy to see that every two parity functions on a different subset on X, are
orthogonal, and there are 2" such functions. Hence, by Thm. 31 parity functions are not weakly
approximated by a polynomial-size kernel class. |

Appendix E. Proofs from Sec. 6
E.1. Proof of Thm. 20

We first show use a concentration inequality to find a large set of vectors with pairwise small inner
product.

Lemma 33 There exists a set of vectors 20 2D e X, of size d = 2"/'2 such that for every
i # jwe have Yop_y 1{z" # 2} > 2.

Proof Fix some d, draw d vectors uniformly from X, and denote them Z := (z("), ..., z(™). Fix
some ¢ # j, and denote S; ; = > )" | l{zt(l) # zt(])}. Notice that: Ez [S; ;] = >, P [zt(l) # zt(y)] =
5, and by Hoeffding’s inequality:

Pls<2] <on(-2)

2 . C . .
There are % choices for ¢ # j, and so using the union bound we get:

P[VZ#] Si7j>%
Since 24/3 < e, choosing d = 2"/12 < /16 we get that with probability at least % over the choice
of Z, for every i # j we have S; ; > 7. Therefore, the required follows. |

Proof of Theorem 20. Fix z(V, ..., z(9 e X, with d = 2"/12 such that oy 1{th‘) # zt(j)} >4
for all ¢ # j. Fix some i # j and observe that:

(Fuon Fyod) = |E | I @vaz) J[ (@va)

X,z . .
tel(z™) tel(z())

1
—n/4 __
=2 =

N | —

= H E(.Z't vV Zt) =

tel(zM)AI(z(9) tel(zM)AI(z(9)

Where IAJ = I\ JUJ\ I, and using the fact that !I(z(i))AI(z(j))| = ‘{t € [n] : zt(i) # zt(j)} >
%. This shows that SQdim(F, D) > 2/12 combining with Thm. 26 finishes the proof. [
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E.2. Proof of Thm. 21

We will prove the theorem in a more generalized setting. We start by showing that any target class
with large SQ-dimension can be used to construct a target distribution that is hard to approximate
using a 2-layer network. This construction is very natural: given a class of functions F,, from X, to
{£1}, we consider a function from X,, X Z,, to {1}, for some space Z,,, where we identify every
function in f’ € F,, with an element ¢,,(f') € Z,,. Then, the new function f(x,z) is just applying
¢ 1(z) on the input x. We call this the induced function:

Definition 34 Let X,,, Z,, be two input spaces. Let F,, be some target class of functions from X,
to Y, with |F,| = |2,| and let ¢, : Z, — F,, be some bijection. The tuple (F,, py) naturally
induces a function f : X, X Z,, — ), where f(x,2z) = ¢n(z)(x). We denote by F(F,,pyn) = f
the induced function.

A simple example is where X,, = Z,, = {£1}", we can think of all the functions of the form
[z X, — {£1} defined by f,(x) = [];(x; V 2;). It is natural to identify each function f,
with a vector z € Z,, hence the induced function f : &,, x Z,, — {£1} is defined similarly by
f(x,2z) =[1i,(z; V z), where z is an input vector instead of a constant.

We define a depth-two neural network g : X x Z — R to be any function of the form:

g(x,z) = Zk:uia <<W(i),x> + <V(i),z> + b,-)
i=1

where ¢ is some 1-Lipschitz activation. Note that this is the exact same definition of depth-2 neural
network we had before, only here we explicitly split the weights to accommodate the two input
vectors x and z.

We show that the induced function can be used to generate a distribution that is hard to weakly
approximate using any depth-two network g:

Theorem 35 Let F = {F,}nen be a sequence of target classes and let D = {Dy}nen be a
sequence of distributions over { X, }nen, and denote d(n) = SQdim(F,,D,). For every n, let
Z, C {£1}" be some input space with with |Z,| = |F,|, and fix a bijection @, : Z, — Fp.
Then, if d(n) is super-polynomial, there exists a sequence of distributions D' over X,, X Z, such
that the sequence of induced target functions {F (Fy, ¢n) tnen cannot be weakly approximated by
any polynomial-size depth-two networks class with respect to D’

Proof [Proof of Thm. 21] The proof that {,,} cannot be weakly approximated by 2-layer neural
networks follows immediately from Thm. 35. We just need to take Z,, = &, = {£1}", and ¢, to
be the natural bijection z — F),(z,x), and using the fact that parity over n-bits w.r.t the uniform
distribution has an exponential SQ-dimension.
The proof that { %, } can be realized by depth-3 neural networks is known, e.g. see Malach and Shalev-Shwartz
(2019b). |

We move on to proving Thm. 35. Fix some target class F,, and some distribution D,, such that
d(n) = SQdim(F,,, Dy,). Fix some ¢y, : Z,, — Fy andlet f 1= F'(Fy, n). Let f1,..., fam) € Fun
be functions that realize the SQdim. We define a distribution D/, over X,, X Z,, such that
ﬁpn(x) ‘;Dn(z) € {fla"'afd(n)} )

0 otherwise

D (x,z) = {
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That is, we sample x ~ D,, and sample uniformly z ~ {1 (f1),..., cp;l(fd(n))}.
As a first step for proving the Theorem, we show that such distribution cannot be approximated
by a polynomial-size depth-two neural network, where the weights v take integer values:

Lemma 36 Assume that there exists A > 0 such that fuj(-i) €EAZ:={A-z : z€Z}foreveryi,j
and |[u® |, w1, |[v@ ], b]| < R.

3vV10k R%/2p3/4
VAd(n)1/12

Loy (9) =E[l(g(x,2), f(x,2))] > 1 -

Proof For every z € X denote j(z) = (v(V),z), and since vj(-i) € [-R,R| N AZ, we get that
j(z) € [-Ry/n, R\/n] N AZ. Indeed, fix some i and we have +v(?) € Z", and since z € Z" we
have %j(z) = <%v(i),z> € Z. Define ¥, ;(x) = mr0 (<W(i),X> +j + b;) for every i € [k]

3R\/n
and j € [-R\/n, R\/n] N AZ, and note that:

1 , 1 ,
o < - (@) ; N« = () ; 1) <
145601 < g [(wO) 34| < 2 (Iw Ol + 151+ ) < 1

Notice that |[—R\/n, R\/n] N AZ| < 2 LRT‘/EJ, and so there are at most 2 LRT\/EJ choices for j.

Denote N := 2]{:L%ﬁj and let U : X — [—1,1]" defined as ¥(x) = [¥; j(x)]; ; (in vector form).
Denote B = 3R?/n, and from Lemma 32 we have:

E | min (@, 900) fox2)] = B | min 600 %60) 50|

|[al|<B j~ldn)] |lall<B
VBNB
- E in Lo (h)]| >1— X222
B [m 2 >] 2 1= G

Notice that g(x, z) = 3| 3R\/nu; ¥, j((x) = (u(z), ¥(x)) where u(z); ; =

3R\/ﬁui ] = ](z)
0 J#J(z)
Since ||u(z)|| < 3R+v/n||lu|| < B we get that:

Elt(9(x,2), f(x,2))] = E[{((u(z), ¥(x)), f(x,2))] = E [”frfllling((ﬁ,‘I’(X)) (%, Z))] 2 1—%
]

Now, we can extend this result to general polynomial-size depth-two networks. This is done by
correctly rounding the weights to get integer values, and use the previous lemma.

Lemma 37 Assume |[u® ||, ||[w@|],|v®], [|b|| < R. Then:

6\/ER2TLS/6

Lympy(9) 21 d(n)1/18
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Proof Fix some A € (0,1), and let V() = A | Xv()| € AZ", where |-] is taken element-wise.
Notice that for every j we have:

Observe the following neural network:

k
p — . (4) (@) .
9(x,2) ;ula <<W ,x> + <V ,z> + bl>

For every x,z € X, using Cauchy-Schwartz inequality, and the fact that o is 1-Lipchitz:

k
l9(x,2) — §(x,2)| < ||u Z lo ({(w),x) + (v, z) + b;) — 0 (W, x) + (¥(),z) +b;) ‘2

i=1

< Bl 3 19, — (505

k
< Jully| 37 VO - ¢ 2]12]2 < RVEAR
=1

Now, by Lemma 36 we have:

3v/10k R%/2p3/4
VAd(n)1/12

Lypry(g) 21—

And using the fact that £ is 1-Lipschitz we get:

Ly, (9) = El(9(x,2), f(x,2))]
> El(9(x,2), f(x,2))] — E[lt(9(x,2), f(x,2)) - £(3(x,2), f(x,2))[]
> Ly, (9) — Ellg(x,2) — §(x, 2)|]

310k R/ 2n3/4

>1 — RVEkAn
- \/Zd(n)l/lz
3/
This is true for any A > 0, so we choose A = ﬁﬁﬁm and we get:
V180VER?n>/
>1_
Lymy(9) 21 d(n)1/18
|
Proof of Theorem 35. Immediate from Lemma 37. |
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