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Abstract

In this article we study high-dimensional approximation capacities of shallow and deep
artificial neural networks (ANNs) with the rectified linear unit (ReLU) activation. In par-
ticular, it is a key contribution of this work to reveal that for all a, b ∈ R with b−a ≥ 7 we
have that the functions [a, b]d ∋ x = (x1, . . . , xd) 7→

∏d
i=1 xi ∈ R for d ∈ N = {1, 2, 3, . . .}

as well as the functions [a, b]d ∋ x = (x1, . . . , xd) 7→ sin(
∏d

i=1 xi) ∈ R for d ∈ N can neither
be approximated without the curse of dimensionality by means of shallow ANNs nor in-
sufficiently deep ANNs with ReLU activation but can be approximated without the curse
of dimensionality by sufficiently deep ANNs with ReLU activation. More specifically, we
prove that in the case of shallow ReLU ANNs or deep ReLU ANNs with a fixed number
of hidden layers and with the size of scalar real parameters of the approximating ANNs
growing at most polynomially in the dimension d ∈ N we have that the number of ANN
parameters must grow at least exponentially in the dimension d ∈ N while in the case
of deep ReLU ANNs with the number of hidden layers growing in the dimension d ∈ N

we have that the number of scalar real parameters of the approximating ANNs grows at

most polynomially in both the inverse of the prescribed approximation accuracy ε > 0
and the dimension d ∈ N, even if the absolute values of the ANN parameters are assumed
to be uniformly bounded by one. We thus show that the product functions and the sine
of the product functions are polynomially tractable approximation problems among the
approximating class of deep ReLU ANNs with the number of hidden layers being allowed
to grow in the dimension d ∈ N. We establish the above outlined statement not only
for the product functions and the sine of the product functions but also for other classes
of target functions, in particular, for classes of uniformly globally bounded C∞-functions
with compact support on any [a, b]d with a ∈ R, b ∈ (a,∞). Roughly speaking, in this
work we lay open that simple approximation problems such as approximating the sine or
cosine of products cannot be solved in standard implementation frameworks by shallow
or insufficiently deep ANNs with ReLU activation in polynomial time, but can be approx-
imated by sufficiently deep ReLU ANNs with the number of parameters growing at most
polynomially.
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1 Introduction

Artificial neural network (ANN) approximations are ubiquitous in our digital world and appear
in diverse areas, whether language processing (cf., e.g., Devlin et al. [9]), image classification
(cf., e.g., Chen et al. [5]), predictive models for cancer diagnosis (cf., e.g., Sidey-Gibbons &
Sidey-Gibbons [29]), risk assessment (cf., e.g., Paltrinieri et al. [22]), or biomedical imaging and
signal processing (cf., e.g., Min et al. [19]) In such learning problems, ANNs are employed to
approximate the target function which, roughly speaking, describes the best relationship of the
input data to the output data in the considered learning problem. There are a large number
of numerical simulation results which indicate that ANNs are comparatively well suited to ap-
proximate the target functions in such learning problems. The success of ANN approximations
becomes even more remarkable if one takes into account that the target functions in the above
named learning problems are usually extremely high-dimensional functions.

For example, in an object recognition problem, the 10000-dimensional unit cube [0, 1]10000

can be employed to represent the set of all grey-scale images with 100 × 100 pixels and the
target function f : [0, 1]10000 → [0, 1] of the considered learning problem is then a function from
the 10000-dimensional unit cube [0, 1]10000 to the interval [0, 1] modelling for every image the
probability that it contains a certain object, say, a car. Losely speaking, it is impossible to
approximate such target functions by classical deterministic approximation methods (such as
finite differences or finite elements in the context of PDEs; cf., e.g., Jovanović & Süli [17] and
Tadmor [30]), as such classical approximations suffer under the curse of dimensionality in the
sense that the amount of parameters to describe such approximations grows at least exponen-
tially in the input dimension (cf., e.g., Bellman [2], Novak & Woźniakowski [20, Chapter 1],
and Novak & Woźniakowski [21, Section 9.7]).

In many cases numerical simulations for ANNs suggest that ANN approximations are ca-
pable of approximating such extremely high-dimensional input-output data relationships and,
in particular, numerical simulations suggest that ANN approximations for such problems seem
to overcome the curse of dimensionality in the sense that the amount of real numbers used
to describe those approximations seems to grow at most polynomially in the reciprocal ε−1

of the approximation precision ε > 0 and the dimension d ∈ N of the domain of the target
function of the considered learning problem. In the information based complexity (IBC) lit-
erature this polynomial growth estimate in both the reciprocal of the approximation precision
and the problem dimension is also often referred to as polynomial tractability (cf., e.g., Novak
& Woźniakowski [20, Chapter 1] and Novak & Woźniakowski [21, Section 9.7]).

In the most simple form, an ANN describes a function (the so-called realization function of
the ANN) which is given by iterated compositions of affine linear functions (with the entries of
the multiplicative matrix in the affine linear function and the entries of the additive vector in
the affine linear function described through a parameter vector of the ANN) and certain fixed
nonlinear functions (referred to as activation functions). Roughly speaking, the result of such
iterated composition after each nonlinear function represents a hidden layer of the ANN and
ANNs with one (or none) hidden layers are referred to as shallow ANNs while ANNs with two
or more hidden layers are called deep ANNs with the number of hidden layers representing the
depth of the ANN (see also Figure 1 below for a graphical illustration of the architecture of an
ANN).

Succesfull implementations in the above named learning problems usually employ deep
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ANNs with a large number of hidden layers. In particular, the modern language processing
framework BERT (Bidirectional Encoder Representations from Transformers) introduced in
Devlin et al. [9] set new benchmarks in several natural language processing tasks like GLUE
(standing for General Language Understanding Evaluation; see Wang et al. [34]) and MultiNLI
(standing for Multi-Genre Natural Language Inference; see Williams et al. [35]) using ANNs
with 11 and 23 hidden layers. The methods described in He et al. [15] won several image recogni-
tion competitions in 2015 like ILSVRC (standing for ImageNet Large Scale Visual Recognition
Challenge; see Russakovsky et al. [26]) and MS COCO (standing for Microsoft Common Ob-
jects in Context; see Tsung-Yiet et al. [18]) by successfully implementing and training residual
ANNs with 150 hidden layers and in 2017 the DenseNets in Huang et al. [16] consisting of 38
to 248 hidden layers outperformed state of the art techniques in visual object recognition.

The large number of numerical simulations in the above named learning problems also indi-
cate that shallow or insufficiently deep ANNs might not be able to approximate the considered
high-dimensional target functions without the curse of dimensionality. Taking this into ac-
count, a natural topic of research is to develop a mathematical theory which rigorosly explains
why (and for which classes of target functions) deep ANNs seem to be capable of overcoming
the curse of dimensionality while shallow or insufficiently deep ANNs seem to fail to do so in
many relevant learning problems. In the scientific literature there are also a few mathematical
research articles which contribute or have strong connections to this area of research.

In particular, we refer to Daniely [8] for a class of functions which can be approximated
without the curse of dimensionality by ANNs with two hidden layers but not by shallow ANNs
in a suitable class of non-standard ANNs with the multiplicative matrices in the affine lin-
ear transformations of the ANNs being suitable block matrices, we refer to Chui et al. [7] for
classes of radial-basis functions which can be approximated without the curse of dimensionality
by ANNs with certain smooth bounded sigmoidal activation functions if they have two hidden
layers but not if they are shallow, we refer to Eldan & Shamir [11] for a sequence of two hidden
layer ANNs (with the number of parameters growing at most polynomially in the input di-
mension) which cannot be approximated by shallow ANNs without the curse of dimensionality
(teacher-student setup; cf., e.g., Saad & Solla [27] and Riegler & Biel [25]), and we refer to Ven-
turi et al. [33] for a family of oscillating complex-valued functions which can be approximated
in the L2-sense with respect to a certain absolutely continuous probability measure without the
curse of dimensionality by ANNs with two hidden layers but not by shallow ANNs.

We refer to Telgarsky [31,32] and Yu et al. [36] for suitable families of deep ANNs indexed
over an external parameter with at most polynomially many ANN parameters (with respect
to the external parameter) which can only be approximated by insufficiently deep ANNs if the
number of ANN parameters in the insufficiently deep ANNs grows at least exponentially in the
external parameter (teacher-student setup; cf., e.g., Saad & Solla [27] and Riegler & Biel [25])
and we refer to Liang & Wu [4] for families of functions whose Fourier transformations can
be approximated on cubes by deep ANNs with the number of parameters growing at most
logarithmically in the length of the edges of the cubes but which can only be approximated on
cubes by insufficiently deep ANNs with the number of parameters growing at least linearly in
the length of the edges of the cubes. We refer to Safran & Shamir [28] for families of twice
continuously differentiable functions whose approximating ANNs with a fixed depth require an
amount of parameters which grows at least polynomially in the reciprocal of the approximation
precision while the same accuracy can be achieved by deep ANNs with the depth and the total
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amount of parameters growing at most polylogarithmically in the reciprocal of the approxi-
mation precision. We refer to Grohs et al. [13] for a family of continuous functions which can
be approximated by deep ANNs with the number of parameters growing at most cubically in
the input dimension while the approximation with insufficiently deep ANNs suffers from the
curse of dimensionality. Even though the results in Grohs et al. [13] show that certain target
functions can be approximated without the curse of dimensionality by deep ANNs but not by
insufficiently deep ANNs, the exponential growth of the amount of parameters in the insuffi-
ciently deep ANNs might not be very surprising as the target functions themselves in Grohs et
al. [13] grow exponentially in the input dimension. In addition, we note that the approxima-
tion error in Grohs et al. [13] is measured via the L2-norm with respect to the standard normal
distribution on the whole space (instead of, say, the L∞-norm with respect to the Lebesgue
measure on a d-dimensional cube). It remains an open problem to prove or disprove the con-
jecture that such phenomena also occur for target functions which are at most polynomially
growing in the input dimension of the considered learning problem as it is usually the case in
applications.

It is a key contribution of this article to answer this question affirmatively by explicitly
revealing a sequence of at most polynomially growing simple functions which can be approxi-
mated without the curse of dimensionality by deep ANNs but cannot be approximated without
the curse of dimensionality by shallow or insufficiently deep ANNs. In particular, we prove that
there exist classes of simple uniformly globally bounded infinitely often differentiable functions
which can be approximated without the curse of dimensionality by deep ANNs even if the
absolute values of the ANN parameters are bounded by 1, but which cannot be approximated
without the curse of dimensionality by shallow or insufficiently deep ANNs even if the ANN
parameters may be arbitrarily large (see Theorem 1.3 below and its extensions in Theorem 5.2,
Corollary 5.3, and Theorem 5.9 in Section 5 below). This is particularly relevant as the number
and the size of the real valued parameters in the approximating ANN are direct indicators
for the amount of memory needed to store the ANN on a computer and are, thereby, directly
linked to the amount of memory needed on a computer to store a solution of the approximation
problem.

To illustrate the findings of this work in more details, we now depict in this introductory
section three representative key ANN approximation results of this article in a precise and self-
contained way (see Theorem 1.2, Theorem 1.3, and Theorem 1.4 below). Each of these three
ANN approximation results employs the mathematical description of standard fully-connected
feedforward ANNs with the rectified linear unit (ReLU) activation which is the subject of the
following mathematical framework; see (1.1), (1.2), and (1.3) in Setting 1.1 below. We also
refer to Figure 1 for a graphical illustration of the architecture of the ANNs formulated in
Setting 1.1.
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xL−1,1
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R(W1x0 + B1)x0 R(W2x1 + B2) R(WL−1xL−2 + BL−1) WLxL−1 + BL

Figure 1: Graphical illustration of the architecture of the ANNs used in (1.1) and (1.2) in Set-
ting 1.1: ANNs with L+1 layers (with L affine linear transformations) with an l0-dimensional
input layer (l0 neurons on the input layer), an l1-dimensional 1st hidden layer (l1 neurons on
the 1st hidden layer), an l2-dimensional 2nd hidden layer (l2 neurons on the 2nd hidden layer),
. . . , an lL−1-dimensional (L − 1)th hidden layer (lL−1 neurons on the (L − 1)th hidden layer),
and an lL-dimensional output layer (lL neurons on the output layer). The realization function
in (1.2) in Setting 1.1 assignes the l0-dimensional input vector x0 = (x0,1, . . . , x0,l0) ∈ Rl0 to
the l1-dimensional vector x1 = (x1,1, . . . , x1,l1) ∈ Rl1 with x1 = R(W1x0+B1) on the 1st hidden
layer, assignes the vector x1 = (x1,1, . . . , x1,l1) ∈ Rl1 on the 1st hidden layer to the vector
x2 = (x2,1, . . . , x2,l2) ∈ R

l2 with x2 = R(W2x1 + B2) on the 2nd hidden layer, . . . , assignes
the vector xL−2 = (xL−2,1, . . . , xL−2,lL−2

) ∈ RlL−2 on the (L − 2)th hidden layer to the vector
xL−1 = (xL−1,1, . . . , xL−1,lL−1

) ∈ RlL−1 with xL−1 = R(WL−1xL−2 + BL−1) on the (L − 1)th

hidden layer, and assignes the vector xL−1 = (xL−1,1, . . . , xL−1,lL−1
) ∈ RlL−1 on the (L−1)th hid-

den layer to the vector xL = (xL,1, . . . , xL,lL) ∈ RlL with xL = WLxL−1+BL on the output layer.
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Setting 1.1. Let R : (∪k∈NR
k) → (∪k∈NR

k) and · : (∪k,l∈N(R
k×l × Rk)) → R satisfy for all

k, l ∈ N, x = (x1, . . . , xk) ∈ Rk, W = (Wi,j)(i,j)∈{1,...,k}×{1,...,l} ∈ Rk×l that

R(x) = (max{x1, 0}, . . . ,max{xk, 0}) and (W,x) = max1≤i≤k max1≤j≤l max{|Wi,j|, |xi|},
(1.1)

let N = ∪L∈N ∪l0,l1,...,lL∈N (×L
k=1(R

lk×lk−1 × Rlk)), let R : N → (∪k,l∈NC(Rk,Rl)), L : N → N,
P : N → N, and ‖·‖ : N → R satisfy for all L ∈ N, l0, l1, . . . , lL ∈ N, f = ((W1, B1), . . . ,
(WL, BL)) ∈ (×L

k=1(R
lk×lk−1×Rlk)), x0 ∈ Rl0 , x1 ∈ Rl1 , . . . , xL−1 ∈ RlL−1 with ∀ k ∈ N∩(0, L) :

xk = R(Wkxk−1 +Bk) that

R(f) ∈ C(Rl0,RlL), (R(f))(x0) = WLxL−1 +BL, L(f) = L, (1.2)

P(f) =
∑L

k=1 lk(lk−1 + 1), and ‖f‖ = max1≤k≤L (Wk, Bk) , (1.3)

let a ∈ R, b ∈ (a,∞), and let Cost : (∪d∈NC(Rd,R)) × [0,∞]3 → [0,∞] satisfy for all d ∈ N,
f ∈ C(Rd,R), L, S, ε ∈ [0,∞] that

Cost(f, L, S, ε) =min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(‖f‖ ≤ S) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− f(x)| ≤ ε)











∪ {∞}



. (1.4)

In Setting 1.1 we also introduce the cost-functional which we employ to state our ANN
approximation results in Theorem 1.2, Theorem 1.3, and Theorem 1.4. Specifically, we note
that (1.4) in Setting 1.1 ensures that for every dimension d ∈ N, every continuous function
f : Rd → R, every upper bound L ∈ [0,∞] for the depths of the ANNs, every upper bound
S ∈ [0,∞] for the size of the absolute values of the ANN parameters, and every approximation
precision ε ∈ [0,∞] we have that Cost(f, L, S, ε) represents the minimal amount of ANN
parameters needed to approximate the target function f : Rd → R with the error tolerance ε
among the class of ANNs with at most L affine linear transformations and the absolute values
of the ANN parameters beeing at most S. Using Setting 1.1 we now formulate the above
mentioned three representative key ANN approximation results.

Theorem 1.2. Assume Setting 1.1. Then there exist c ∈ (0,∞) and infinitely often differen-
tiable fd : R

d → R, d ∈ N, with compact support and supd∈N supx∈Rd|fd(x)| ≤ 1 such that for all
d, L ∈ N, ε ∈ (0, 1) it holds that

Cost(fd, L,∞, ε) ≥ 2
d
L and Cost(fd, cd, 1, ε) ≤ cd2ε−2. (1.5)

Theorem 1.2 above is an immediate consequence of Corollary 5.10 in Section 5 below and
Corollary 5.10, in turn, follows from Theorem 5.9 in Section 5. Roughly speaking, Theo-
rem 1.2 reveals that there exists a sequence of smooth and uniformly globally bounded func-
tions fd : R

d → R for d ∈ N with compact support which can neither be approximated without
the curse of dimensionality by means of shallow ANNs nor insufficiently deep ANNs even if the
ANN parameters may be arbitrarily large (see the first inequality in (1.5)) but which can be
approximated without the curse of dimensionality by sufficiently deep ANNs even if the abso-
lute values of the ANN parameters are assumed to be uniformly bounded by 1 (see the second
inequality in (1.5)). Theorem 1.2 only asserts the existence of suitable smooth and uniformly
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globally bounded target functions which can be approximated without the curse of dimension-
ality by deep ANNs but not by insufficiently deep ANNs but it does not explicitly specify the
employed target functions. However, in the more general approximation result in Theorem 5.9
in Section 5 we also explicitly specify a class of simple target functions which we use to prove
Theorem 1.2. In addition, in this work we also reveal that the sine of the product functions
serve as one possible sequence of smooth and uniformly globally bounded target functions for
which the conclusion of Theorem 1.2 essentially applies and this is precisely the subject of our
next representative key ANN approximation result.

Theorem 1.3. Assume Setting 1.1, assume b − a ≥ 7, and for every d ∈ N let fd : R
d → R

satisfy for all x = (x1, . . . , xd) ∈ Rd that fd(x) = sin
(
∏d

i=1 xi

)

. Then there exists c ∈ (0,∞)
such that for all d, L ∈ N, ε ∈ (0, 1) it holds that

Cost(fd, L,∞, ε) ≥ 2
d
L and Cost(fd, cd

2ε−1, 1, ε) ≤ cd3ε−2. (1.6)

Theorem 1.3 above is an immediate consequence of Theorem 5.2 in Section 5 below. The-
orem 1.3 shows that the sine of the product functions can neither be approximated without
the curse of dimensionality by means of shallow ANNs nor insufficiently deep ANNs even if
the ANN parameters may be arbitrarily large (see the first inequality in (1.6)) but can be ap-
proximated without the curse of dimensionality by sufficiently deep ANNs even if the absolute
values of the ANN parameters are assumed to be uniformly bounded by 1 (see the second
inequality in (1.6)). Actually, a bit modified and somehow weakened variant of the conclusion
of Theorem 1.3 applies also to the product functions themselves. This is precisely the subject
of our final representative key ANN approximation result in this introductory section.

Theorem 1.4. Assume Setting 1.1, assume b − a ≥ 4, and for every d ∈ N let fd : R
d → R

satisfy for all x = (x1, . . . , xd) ∈ Rd that fd(x) =
∏d

i=1 xi. Then there exists c ∈ (0,∞) such
that for all c ∈ [c,∞), d, L ∈ N, ε ∈ (0, 1) it holds that

Cost(fd, L, cd
c, ε) ≥

[

(4cL)−3c
]

2
d
2L and Cost(fd, cd

2ε−1, 1, ε) ≤ cd3ε−1. (1.7)

Theorem 1.4 above is an immediate consequence of Theorem 5.1 in Section 5 below. Loosely
speaking, Theorem 1.4 proves that the plane vanilla product functions can neither be approx-
imated without the curse of dimensionality by means of shallow ANNs nor insufficiently deep
ANNs if the absolute values of the ANN parameters are polynomially bounded in the input
dimension d ∈ N (see the first inequality in (1.7)) but can be approximated without the curse
of dimensionality by sufficiently deep ANNs even if the absolute values of the ANN parameters
are assumed to be uniformly bounded by 1 (see the second inequality in (1.7)).

The remainder of this article is organized as follows. In Section 2 we present the concepts,
operations, and elementary preparatory results regarding ANNs that we frequently employ in
Sections 3, 4, and 5. In Section 3 we establish suitable lower bounds for the minimal number
of parameters of shallow or insufficiently deep ANNs to approximate certain high-dimensional
target functions. In Section 4 we establish suitable upper bounds for the minimal number
of parameters of ANNs to approximate the product functions and certain highly oscillating
functions in the case where the absolute values of the parameters of the ANNs are assumed
to be uniformly bounded by 1. In Section 5 we combine the main results from Section 3 and
Section 4 to obtain that the product functions and certain highly oscillating functions can
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be approximated without the curse of dimensionality by deep ANNs but not by insufficiently
deep ANNs and, thereby, we prove our three representative key ANN approximation results in
Theorem 1.2, Theorem 1.3, and Theorem 1.4 above.
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2 Artificial neural network (ANN) calculus

The purpose of this section is to introduce the concepts, operations, and elementary preparatory
results regarding ANNs that we frequently employ in the later sections of this article.

In particular, in Definition 2.1 in Section 2.1 we recall the notion of the set of ANNs N in the
structured description as well as several basic functions acting on this set of ANNs such as the
parameter function P : N → N for ANNs (counting the number of parameters of an ANN), the
length function L : N → N for ANNs (measuring the number of affine linear transformations
of an ANN), the input dimension function I : N → N for ANNs (specifying the number of
neurons on the input layer of an ANN), the output dimension function O : N → N for ANNs
(specifying the number of neurons on the output layer of an ANN), the hidden layer function
H : N → N0 for ANNs (counting the number of hidden layers of an ANN), the layer dimension
vector function D : N → (∪L∈NN

L) for ANNs (representing the numbers of neurons on the
layers of an ANN as a vector), and the layer dimension functions Dn : N → N0, n ∈ N0, for
ANNs (counting the numbers of neurons on the layers of an ANN).

In Section 2.2 we recall the concept of realization functions of ANNs, in Section 2.3 we
recall the concept of parallelizations of ANNs, in Section 2.4 we recall suitable ANNs whose
realization functions exactly coincide with the real identity functions, in Section 2.5 we recall
the concept of compositions of ANNs, and in Section 2.6 we present elementary concepts and
results regarding the sizes of the absolute values of the parameters of ANNs.

Most of the concepts and results in this section are well known and have appeared, often
in a bit different form, in previous works in the literature (cf., e.g., [1, 3, 6, 10, 12–14, 23]). In
particular, Definition 2.1 is a slightly extended version of, e.g., Grohs et al. [12, Definition 2.1],
Definition 2.2 corresponds to, e.g., Grohs et al. [13, Definition 2.1], Definition 2.3 is a reformu-
lated variant of, e.g., Grohs et al. [12, Definition 2.3], Definition 2.4 is a reformulated variant of,
e.g., Grohs et al. [12, Definition 2.17], Proposition 2.5 is a slightly differently presented variant
of, e.g., Grohs et al. [12, Lemma 2.18 and Proposition 2.19], Definition 2.6 corresponds to, e.g.,
Grohs et al. [13, Definition 2.13], Proposition 2.7 corresponds to, e.g., Grohs et al. [13, Propo-
sition 2.14], Definition 2.8 is a reformulated variant of, e.g., Grohs et al. [12, Definition 2.5],
Lemma 2.9 corresponds to, e.g., Grohs et al. [12, Lemma 2.8], Proposition 2.10 corresponds
to, e.g., Beneventano et al. [3, Lemma 2.16], Lemma 2.11 corresponds to, e.g., Beneventano
et al. [3, Lemma 2.17], (2.15) in Definition 2.13 is a slightly differently presented variant of,
e.g., Grohs et al. [13, Definitions 2.21 and 2.22], and item (i) in Lemma 2.16 is a reformulated
special case of, e.g., Grohs et al. [13, Lemma 2.23].

2.1 Set of ANNs

Definition 2.1 (Set of ANNs). We denote by N the set given by

N =
⋃

L∈N

⋃

l0,l1,...,lL∈N

(×L

k=1
(Rlk×lk−1 × R

lk)
)

, (2.1)

we denote by P : N → N, L : N → N, I : N → N, O : N → N, H : N → N0, and D : N →
(∪L∈NN

L) the functions which satisfy for all L ∈ N, l0, l1, . . . , lL ∈ N, f ∈ (×L
k=1(R

lk×lk−1×Rlk))
that

P(f) =
∑L

k=1 lk(lk−1 + 1), L(f) = L, I(f) = l0, O(f) = lL, H(f) = L− 1, (2.2)
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and D(f) = (l0, l1, . . . , lL), for every n ∈ N0 we denote by Dn : N → N0 the function which
satisfies for all L ∈ N, l0, l1, . . . , lL ∈ N, f ∈ (×L

k=1(R
lk×lk−1 × Rlk)) that

Dn(f) =

{

ln : n ≤ L

0 : n > L,
(2.3)

and for every L ∈ N, l0, l1, . . . , lL ∈ N, f = ((W1, B1), . . . , (WL, BL)) ∈ (×L
k=1(R

lk×lk−1 ×
Rlk)) we denote by W(·),f = (Wn,f)n∈{1,2,...,L} : {1, 2, . . . , L} → (∪k,m∈NR

k×m) and B(·),f =
(Bn,f)n∈{1,2,...,L} : {1, 2, . . . , L} → (∪k∈NR

k) the functions which satisfy for all n ∈ {1, 2, . . . , L}
that Wn,f = Wn and Bn,f = Bn.

2.2 Realization functions of ANNs

Definition 2.2 (Multidimensional ReLU). We denote by R : (∪d∈NR
d) → (∪d∈NR

d) the func-
tion which satisfies for all d ∈ N, x = (x1, . . . , xd) ∈ Rd that

R(x) = (max{x1, 0},max{x2, 0}, . . . ,max{xd, 0}). (2.4)

Definition 2.3 (Realization functions of ANNs). We denote by R : N → (∪k,l∈NC(Rk,Rl))
the function which satisfies for all f ∈ N, x0 ∈ RD0(f), x1 ∈ RD1(f), . . . , xH(f) ∈ R

DH(f)(f) with
∀ k ∈ N ∩ [0,H(f)] : xk = R(Wk,fxk−1 + Bk,f) that

R(f) ∈ C(RI(f),RO(f)) and (R(f))(x0) = WL(f),fxH(f) + BL(f),f (2.5)

(cf. Definitions 2.1 and 2.2).

2.3 Parallelizations of ANNs

Definition 2.4 (Parallelization of ANNs). Let n ∈ N. Then we denote by

Pn :
{

f = (f1, . . . ,fn) ∈ Nn : L(f1) = L(f2) = . . . = L(fn)
}

→ N (2.6)

the function which satisfies for all f = (f1, . . . ,fn) ∈ Nn, k ∈ {1, 2, . . . ,L(f1)} with L(f1) =
L(f2) = . . . = L(fn) that

L(Pn(f)) = L(f1), Wk,Pn(f) =











Wk,f1 0 · · · 0
0 Wk,f2 · · · 0
...

...
. . .

...
0 0 · · · Wk,fn











, and Bk,Pn(f) =











Bk,f1

Bk,f2

...
Bk,fn











(2.7)

(cf. Definition 2.1).

Proposition 2.5. Let n ∈ N, f = (f1, . . . ,fn) ∈ Nn satisfy L(f1) = L(f2) = . . . = L(fn)
(cf. Definition 2.1). Then

(i) it holds for all k ∈ N0 that Dk(Pn(f)) =
∑n

j=1Dk(fj),

(ii) it holds that R(Pn(f)) ∈ C
(

R
[
∑n

j=1 I(fj)],R[
∑n

j=1 O(fj)]
)

, and
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(iii) it holds for all x1 ∈ RI(f1), x2 ∈ RI(f2), . . . , xn ∈ RI(fn) that

(

R
(

Pn(f)
))

(x1, x2, . . . , xn) =
(

(R(f1))(x1), (R(f2))(x2), . . . , (R(fn))(xn)
)

(2.8)

(cf. Definitions 2.3 and 2.4).

Proof of Proposition 2.5. Observe that, e.g., Grohs et al. [12, Lemma 2.18] establishes item (i).
Note that, e.g., Grohs et al. [12, Proposition 2.19] demonstrates items (ii) and (iii). The proof
of Proposition 2.5 is thus complete.

2.4 Identity ANNs

Definition 2.6 (Identity ANNs). We denote by (Id)d∈N ⊆ N the ANNs which satisfy for all
d ∈ N ∩ [2,∞) that

I1 =

(((

1
−1

)

,

(

0
0

))

,
(

(

1 −1
)

, 0
)

)

∈
(

(R2×1 × R
2)× (R1×2 × R

1)
)

(2.9)

and Id = Pd(I1, I1, . . . , I1) (cf. Definitions 2.1 and 2.4).

Proposition 2.7. Let d ∈ N. Then

(i) it holds that R(Id) = idRd,

(ii) it holds that D(Id) = (d, 2d, d), and

(iii) it holds that P(Id) = 4d2 + 3d

(cf. Definitions 2.1, 2.3, and 2.6).

Proof of Proposition 2.7. Observe that, e.g., Grohs et al. [13, Proposition 2.14] establishes
items (i), (ii), and (iii). The proof of Proposition 2.7 is thus complete.

2.5 Compositions of ANNs

Definition 2.8 (Compositions of ANNs). We denote by (·) • (·) : {f = (f1,f2) ∈ N ×
N : I(f1) = O(f2)} → N the function which satisfies for all L,L ∈ N, f1,f2 ∈ N, k ∈
N ∩ (0, L+ L) with I(f1) = O(f2), L(f2) = L, and L(f1) = L that L(f1 • f2) = L + L− 1
and

(

Wk,f1•f2 ,Bk,f1•f2

)

=











(

Wk,f2,Bk,f2

)

: k < L
(

W1,f1WL,f2 ,W1,f1BL,f2 + B1,f1

)

: k = L
(

Wk−L+1,f1,Bk−L+1,f1

)

: k > L

(2.10)

(cf. Definition 2.1).

Lemma 2.9. Let f1,f2,f3 ∈ N satisfy I(f1) = O(f2) and I(f2) = O(f3) (cf. Defini-
tion 2.1). Then (f1 • f2) • f3 = f1 • (f2 • f3) (cf. Definition 2.8).
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Proof of Lemma 2.9. Note that, e.g., Grohs et al. [12, Lemma 2.8] shows (f1 • f2) • f3 =
f1 • (f2 • f3). The proof of Lemma 2.9 is thus complete.

Proposition 2.10. Let n ∈ N ∩ (1,∞), f1,f2, . . . ,fn ∈ N satisfy for all k ∈ N ∩ (1, n] that
I(fk−1) = O(fk) (cf. Definition 2.1). Then

(i) it holds that R(f1 • f2 • . . . • fn) = [R(f1)] ◦ [R(f2)] ◦ . . . ◦ [R(fn)] and

(ii) it holds that H(f1 • f2 • . . . • fn) =
∑n

k=1H(fk)

(cf. Definitions 2.3 and 2.8 and Lemma 2.9).

Proof of Proposition 2.10. Note that, e.g., Beneventano et al. [3, Proposition 2.16] (see, e.g.,
also Grohs et al. [12, Proposition 2.6]) establishes items (i) and (ii). The proof of Proposi-
tion 2.10 is thus complete.

Lemma 2.11. Let f,ℊ ∈ N satisfy I(f) = O(ℊ) (cf. Definition 2.1). Then

(i) it holds that

D(f • ℊ) = (D0(ℊ),D1(ℊ), . . . ,DH(ℊ)(ℊ),D1(f),D2(f), . . . ,DL(f)(f)) (2.11)

and

(ii) it holds that

D(f • IO(ℊ) •ℊ)
= (D0(ℊ),D1(ℊ), . . . ,DH(ℊ)(ℊ), 2DL(ℊ)(ℊ),D1(f),D2(f), . . . ,DL(f)(f))

(2.12)

(cf. Definitions 2.6 and 2.8).

Proof of Lemma 2.11. Note that, e.g., Beneventano et al. [3, Lemma 2.17] (see, e.g., also Grohs
et al. [12, Proposition 2.6]) establishes items (i) and (ii). The proof of Lemma 2.11 is thus
complete.

2.6 Sizes of parameters of ANNs

Definition 2.12 (Supremum norm). We denote by ‖·‖∞ : (∪k,l∈NR
k×l) → R the function which

satisfies for all k, l ∈ N, W = (Wi,j)(i,j)∈{1,2,...,k}×{1,2,...,l} ∈ Rk×l that

‖W‖∞ = max
i∈{1,2,...,k}

max
j∈{1,2,...,l}

|Wi,j|. (2.13)

Definition 2.13 (Sizes of parameters of ANNs). We denote by Sr : N → R, r ∈ {0, 1}, the
functions which satisfies for all r ∈ {0, 1}, f ∈ N that

Sr(f) = max{‖WrH(f)+1,f‖∞, ‖BrH(f)+1,f‖∞} (2.14)

and we denote by S : N → R the function which satisfies for all f ∈ N that

S(f) = max
k∈{1,2,...,L(f)}

max{‖Wk,f‖∞, ‖Bk,f‖∞} (2.15)

(cf. Definition 2.12).

14



Lemma 2.14 (Sizes of ANN parameters of parallelizations). Let n ∈ N, f1,f2, . . . ,fn ∈ N
satisfy L(f1) = L(f2) = . . . = L(fn) (cf. Definition 2.1). Then

(i) it holds that S(Pn(f1,f2, . . . ,fn)) = max{S(f1),S(f2), . . . ,S(fn)} and

(ii) it holds for all r ∈ {0, 1} that Sr(Pn(f1,f2, . . . ,fn)) = max{Sr(f1), Sr(f2), . . . , Sr(fn)}

(cf. Definitions 2.4 and 2.13).

Proof of Lemma 2.14. Observe that (2.7) establishes items (i) and (ii). The proof of Lemma 2.14
is thus complete.

Corollary 2.15 (Sizes of identity ANNs). Let d ∈ N. Then S(Id) = S0(Id) = S1(Id) = 1 (cf.
Definitions 2.6 and 2.13).

Proof of Corollary 2.15. Note that (2.9) and Lemma 2.14 establish S(Id) = S0(Id) = S1(Id) = 1.
The proof of Corollary 2.15 is thus complete.

Lemma 2.16 (Sizes of ANN parameters of compositions). Let d ∈ N. Then

(i) it holds for all f,ℊ ∈ N with I(f) = O(ℊ) that

S(f • ℊ) ≤ max{S(f),S(ℊ), S0(f)S1(ℊ)d+ S0(f)} (2.16)

and

(ii) it holds for all r ∈ {0, 1}, f0,f1 ∈ N with I(f1) = O(f0) and L(fr) > 1 that

Sr(f1 • f0) = Sr(fr) (2.17)

(cf. Definitions 2.1, 2.8, and 2.13).

Proof of Lemma 2.16. Observe (2.13) implies that for all m,n ∈ N, W ∈ Rm×d, B ∈ Rm,
W ∈ Rd×n, B ∈ Rd it holds that

‖WW‖∞ ≤ d‖W‖∞‖W‖∞ and ‖WB+B‖∞ ≤ d‖W‖∞‖B‖∞ + ‖B‖∞ (2.18)

(cf. Definition 2.12). Combining this with (2.10) and (2.15) shows that for all f,ℊ ∈ N with
I(f) = O(ℊ) it holds that

S(f • ℊ) ≤ max{S(f),S(ℊ), S0(f)S1(ℊ)d+ S0(f)} (2.19)

(cf. Definitions 2.1, 2.8, and 2.13). This establishes item (i). Note that (2.10) and (2.14) imply
that for all r ∈ {0, 1}, f0,f1 ∈ N with I(f1) = O(f0) and L(fr) > 1 that

Sr(f1 • f0) = Sr(fr) (2.20)

This establishes item (ii). The proof of Lemma 2.16 is thus complete.

Proposition 2.17 (Sizes of ANN parameters of compositions). Let d ∈ N, f,ℊ ∈ N satisfy
I(f) = d = O(ℊ) (cf. Definition 2.1). Then
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(i) it holds that S(Id • ℊ) = max{1,S(ℊ)},

(ii) it holds that S0(Id • ℊ) = max{1, S0(ℊ)},

(iii) it holds that S(f • Id) = max{1,S(f)},

(iv) it holds that S1(f • Id) = max{1, S1(f)},

(v) it holds that S0(f • Id) = S1(Id • ℊ) = 1, and

(vi) it holds that S(f • Id • ℊ) = max{S(f),S(ℊ)}

(cf. Definitions 2.6, 2.8, and 2.13).

Proof of Proposition 2.17. Throughout this proof let A ∈ R2d×d satisfy

A =























1 0 · · · 0
−1 0 · · · 0
0 1 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · −1























. (2.21)

Observe that (2.21) demonstrates that

‖AWL(ℊ),ℊ‖∞ = ‖WL(ℊ),ℊ‖∞ and ‖ABL(ℊ),ℊ + B1,Id‖∞ = ‖BL(ℊ),ℊ‖∞ (2.22)

(cf. Definitions 2.6 and 2.12). Furthermore, note that (2.9) and (2.21) show that

Id =
((

A, 0
)

,
(

A∗, 0
))

∈
(

(R2d×d × R
2d)× (Rd×2d × R

d)
)

. (2.23)

Combining this and (2.22) with (2.10) establishes items (i) and (ii). Observe that Proposi-
tion 2.7 and (2.21) imply that

‖W1,f(A
∗)‖∞ = ‖W1,f‖∞. (2.24)

Combining this, (2.10), and (2.23) with the fact that ‖W1,fB2,Id+B1,f‖∞ = ‖B1,f‖∞ establishes
items (iii) and (iv). Note that Lemma 2.16, Corollary 2.15, (2.21), and (2.23) show that

S0(f • Id) = S0(Id) = 1 = S1(Id) = S1(Id • ℊ). (2.25)

This establishes item (v). Observe that (2.22), (2.23), (2.24), and (2.10) imply that

S(f • Id • ℊ) = max{S(f),S(ℊ)}. (2.26)

This establishes item (vi). The proof of Proposition 2.17 is thus complete.
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Proposition 2.18 (Sizes of ANN parameters of iterated compositions). Let d ∈ N, a1, a2, . . . , ad ∈
N, h0,h1, . . . ,hd ∈ N satisfy for all i ∈ {1, 2, . . . , d} that I(hi) = ai = O(hi−1) and let f ∈ N
satisfy

f = hd • Iad •hd−1 • Iad−1
• . . . •h1 • Ia1 •h0 (2.27)

(cf. Definitions 2.1, 2.6, and 2.8). Then S(f) ≤ max{S(h0),S(h1), . . . ,S(hd)} (cf. Defini-
tion 2.13).

Proof of Proposition 2.18. Note that Proposition 2.17 and induction ensure that

S(f) ≤ max{S(h0),S(h1), . . . ,S(hd)} (2.28)

(cf. Definition 2.13). The proof of Proposition 2.18 is thus complete.

3 Lower bounds for the minimal number of ANN param-

eters in the approximation of certain high-dimensional

functions

In this section we establish in Corollary 3.4, Proposition 3.21, and Proposition 3.22 below
suitable lower bounds for the minimal number of parameters of shallow or insufficiently deep
ANNs to approximate certain high-dimensional target functions.

Our proof of Corollary 3.4 uses appropiate lower bounds for the minimal number of ANN
parameters to approximate the product functions in Lemma 3.2 and Lemma 3.3. We derrive
Lemma 3.2 and Lemma 3.3 from the well known upper bounds for the absolute values of
realization functions of ANNs in Lemma 3.1. Lemma 3.1 is a slightly modified variant of, e.g.,
Grohs et al. [13, Corollary 4.3].

Our proofs of Proposition 3.21 and Proposition 3.22 employ the lower bound result for cer-
tain families of oscillating functions in Proposition 3.17. A result similar to Proposition 3.17
can be found, e.g., in Telgarsky [31, Theorem 1.1]. Our proof of Proposition 3.17 uses the
essentially well known upper bound result for the number of certain linear regions of realization
functions of ANNs in Proposition 3.13. In the scientific literature results related to Proposi-
tion 3.13 can be found, e.g., in Raghu et al. [24, Theorem 1]. Our proof of Proposition 3.13,
in turn, utilizes the elementary ANN representation result in Lemma 3.12. Lemma 3.12 builds
up on the elementary concepts and results regarding intersections of half-spaces in Section 3.2.

3.1 Lower bounds for approximations of product functions

Lemma 3.1. Let a ∈ R, b ∈ [a,∞), f ∈ N (cf. Definition 2.1). Then it holds for all
x ∈ [a, b]I(f) that

‖(R(f))(x)‖∞ ≤ I(f)
[

P(f)max{S(f), 1}
]L(f)

max{|a|, |b|, 1} (3.1)

(cf. Definitions 2.3, 2.12, and 2.13).
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Proof of Lemma 3.1. Throughout this proof assume w.l.o.g. that O(f) = 1 and let d, L ∈ N,
l0, l1, . . . , lL ∈ N, x0 ∈ [a, b]I(f), x1 ∈ Rl1, x2 ∈ Rl2 , . . . , xL ∈ RlL satisfy for all k ∈ {1, 2, . . . , L}
that

I(f) = d, L(f) = L, and xk = R(Wk,fxk−1 + Bk,f) (3.2)

(cf. Definition 2.2). Observe that (3.2) shows that for all k ∈ {1, 2, . . . , L} it holds that

‖xk‖∞ = ‖R(Wk,fxk−1 + Bk,f)‖∞ ≤ lk−1‖Wk,f‖∞‖xk−1‖∞ + ‖Bk,f‖∞
≤ lk−1S(f)‖xk−1‖∞ + S(f)
≤ lk−1S(f)(‖xk−1‖∞ + 1)

≤ lk−1max{S(f), 1}2max{‖xk−1‖∞, 1}.

(3.3)

(cf. Definitions 2.12 and 2.13). Combining this and (3.2) with induction demonstrates that

|(R(f))(x0)| = |WL,fxL−1 +WL,f| ≤ lL−1S(f)2max{‖xL−1‖∞, 1}

≤
(

L−1
∏

k=0

lk

)

max{S(f), 1}L2Lmax{‖x0‖∞, 1}

≤
(

L−1
∏

k=0

2lk

)

max{S(f), 1}L max{|a|, |b|, 1}.

(3.4)

This, the inequality of arithmetic and geometric means, and the fact that l0 = d and lL = 1
imply that

|(R(f))(x0)| ≤
(

L−1
∏

k=0

2lk

)

max{S(f), 1}Lmax{|a|, |b|, 1}

= d

(

L
∏

k=1

2lk

)

max{S(f), 1}L max{|a|, |b|, 1}

≤ d

(

L−1
L
∑

k=1

2lk

)L

max{S(f), 1}L max{|a|, |b|, 1}

≤ d

(

L
∑

k=1

lk(lk−1 + 1)

)L

max{S(f), 1}L max{|a|, |b|, 1}

= dP(f)L max{S(f), 1}Lmax{|a|, |b|, 1}.

(3.5)

Hence we obtain (3.1). The proof of Lemma 3.1 is thus complete.

Lemma 3.2. Let a ∈ R, b ∈ [a,∞), f ∈ N, d, L ∈ N, ε ∈ (0, 2d) satisfy

L(f) ≤ L, R(f) ∈ C(Rd,R), and supx=(x1,...,xd)∈[a,b]d
|(R(f))(x)−

∏d
i=1 xi| ≤ ε (3.6)

and max{|a|, |b|} ≥ 2 (cf. Definitions 2.1 and 2.3). Then

P(f)max{S(f), 1} ≥
(

2d − ε

2d

)1/L

. (3.7)

(cf. Definition 2.13).
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Proof of Lemma 3.2. Throughout this proof let x ∈ [a, b]d satisfy |f(x)| = max{|a|, |b|}d. Note
that Lemma 3.1 (applied with a x a, b x b, f x f in the notation of Lemma 3.1) shows that

max{|a|, |b|}d = |f(x)| ≤ |(R(f))(x)|+ ε

≤ d[P(f)max{S(f), 1}]L(f) max{|a|, |b|, 1}+ ε

≤ d[P(f)max{S(f), 1}]L max{|a|, |b|}+ ε

≤
(

d[P(f)max{S(f), 1}]L + ε
2

)

max{|a|, |b|}

(3.8)

(cf. Definition 2.13). This and the assumption that max{|a|, |b|} ≥ 2 imply that

2d−1 ≤ max{|a|, |b|}d−1 ≤ d[P(f)max{S(f), 1}]L + ε
2
. (3.9)

Hence we obtain (3.7). The proof of Lemma 3.2 is thus complete.

Lemma 3.3. Let a ∈ R, b ∈ [a,∞), c ∈ [1,∞), ε ∈ (0, 1], d, L ∈ N satisfy max{|a|, |b|} ≥ 2,
let f : [a, b]d → R satisfy for all x = (x1, . . . , xd) ∈ [a, b]d that f(x) =

∏d
i=1 xi, and let f ∈ N

satisfy S(f) ≤ cdc, R(f) ∈ C(Rd,R), L(f) ≤ L, and supx∈[a,b]d|(R(f))(x) − f(x)| ≤ ε (cf.
Definitions 2.1, 2.3, and 2.13). Then

P(f) ≥ 2
d−2
L c−1d−c−1. (3.10)

Proof of Lemma 3.3. Throughout this proof assume w.l.o.g. that d > 1. Observe that Lemma 3.2
(applied with a x a, b x b, f x f, d x d, L x L, ε x ε, f x f in the notation of Lemma 3.2)
shows that

P(f) ≥
(

2d − ε

2d

)1/L

S(f)−1 ≥ (2d−1 − 1
2
)

1
Ld−

1
L c−1d−c ≥ 2

d−2
L c−1d−c−1. (3.11)

Hence we obtain (3.10). The proof of Lemma 3.3 is thus complete.

Corollary 3.4. Let a ∈ R, b ∈ [a,∞), c ∈ [1,∞), ε ∈ (0, 1], d, L ∈ N satisfy max{|a|, |b|} ≥ 2
and let f : [a, b]d → R satisfy for all x = (x1, . . . , xd) ∈ [a, b]d that f(x) =

∏d
i=1 xi. Then

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(S(f) ≤ cdc) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− f(x)| ≤ ε)











∪ {∞}



 ≥ 2
d
2L (4cL)−3c (3.12)

Proof of Corollary 3.4. Throughout this proof let g : R → R satisfy for all x ∈ R that

g(x) = 2
x
2Lx−c−1. (3.13)

Note that (3.13) implies that for all x ∈ R it holds that

g′(x) = ln
(

2
1
2L

)

2
x
2Lx−c−1 + 2

x
2L (−c− 1)x−c−2 = 2

x
2Lx−c−2

(x ln(2)
2L

− (c+ 1)
)

. (3.14)

This shows that for all x ∈
(

−∞, 2L(c+1)
ln(2)

)

, y ∈
(2L(c+1)

ln(2)
,∞

)

it holds that

g′(x) < 0, g′
(2L(c+1)

ln(2)

)

= 0, and g′(y) > 0. (3.15)
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Combining this and (3.13) with the fact that 2
e ln(2)

≤ 2 ensures that

inf
x∈R

g(x) = g
(2L(c+1)

ln(2)

)

= 2
c+1
ln(2)

(2L(c+1)
ln(2)

)−c−1
=

(2L(c+1)
e ln(2)

)−c−1 ≥ (2L(c+ 1))−c−1. (3.16)

This and (3.13) show that

2
d−2
L c−1d−c−1 = 2

d
2L2

−2
L c−12

d
2Ld−c−1 = 2

d
2L2

−2
L c−1g(d) ≥ 2

d
2L (4c)−1g(d)

≥ 2
d
2L (4c)−1(2L(c+ 1))−c−1

≥ 2
d
2L (4cL)−c−2

≥ 2
d
2L (4cL)−3c.

(3.17)

Observe that Lemma 3.3 (applied with a x a, b x b, c x c, ε x ε, d x d, L x L, f x f in
the notation of Lemma 3.3) hence demonstrates that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(S(f) ≤ cdc) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− f(x)| ≤ ε)











∪ {∞}



 ≥ 2
d−2
L c−1d−c−1

≥ 2
d
2L (4cL)−3c.

(3.18)

This establishes (3.12). The proof of Corollary 3.4 is thus complete..

3.2 Intersections of half-spaces

Definition 3.5 (Spaces of affine linear functions). Let d ∈ N and let D ⊆ Rd be a non-empty
set. Then we denote by L(D) the set given by

L(D) =







f ∈ C(D,R) :





∃ a0, a1, . . . , ad ∈ R

∀ x = (x1, x2, . . . , xd) ∈ D :

f(x) = a0 +
∑d

j=1 ajxj











. (3.19)

Lemma 3.6. Let f ∈ N satisfy L(f) = 1 (cf. Definition 2.1). Then it holds that R(f) ∈
L(RI(f)) (cf. Definitions 2.3 and 3.5).

Proof of Lemma 3.6. Note that (2.5) and (3.19) show that R(f) ∈ L
(

R
I(f)

)

. The proof of
Lemma 3.6 is thus complete.

Definition 3.7 (Intersections of half-spaces). Let d, k ∈ N, h = (h1, . . . , hk) ∈ (L(Rd))k,
i = (i1, . . . , ik) ∈ {0, 1}k (cf. Definitions 2.3 and 3.5). Then we denote by Hyp(h, i) ⊆ R

d the
set given by

Hyp(h, i) = ∩k
j=1{x ∈ R

d : (−1)ijhj(x) ≤ 0}. (3.20)

Corollary 3.8. Let d, k ∈ N, h = (h1, . . . , hk) ∈ (L(Rd))k, i = (i1, . . . , ik) ∈ {0, 1}k and let
x ∈ Hyp(h, i) (cf. Definitions 3.5 and 3.7). Then

R((h1(x), h2(x), . . . , hk(x))) = (i1h1(x), i2h2(x), . . . , ikhk(x)) (3.21)

(cf. Definition 2.2).
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Proof of Corollary 3.8. Observe that (3.20) shows that for all j ∈ {1, 2, . . . , k} it holds that

R(hj(x)) = ij(hj(x)) (3.22)

(cf. Definition 2.2). Hence we obtain (3.21). The proof of Corollary 3.8 is thus complete.

Corollary 3.9. Let d, k ∈ N, h = (h1, . . . , hk) ∈ (L(Rd))k, v ∈ Rd\{0}, w ∈ Rd, A =
∪λ∈R{w + λv} (cf. Definition 3.5). Then there exist i0, i1, . . . , ik ∈ {0, 1}k such that

A ⊆
(

∪k
j=0Hyp(h, ij)

)

(3.23)

(cf. Definition 3.7).

Proof of Corollary 3.9. Throughout this proof assume w.l.o.g. that there exist λ1, λ2, . . . , λk ∈
R which satisfy for all j ∈ {1, 2, . . . , k} that {w + λjv} = {x ∈ Rd : hj(x) = 0} ∩ A and
λj ≤ λmin{j+1,k}, let λ1, λ2, . . . , λk+1 ∈ (−∞,∞] satisfy for all j ∈ {1, 2, . . . , k} that

λj ≤ λmin{j+1,k} < λk+1 = ∞ and {w + λjv} = {x ∈ R
d : hj(x) = 0} ∩ A, (3.24)

and let B0, B1, . . . , Bk ⊆ A satisfy for all j ∈ {1, 2, . . . , k} that

B0 = {w + µv ∈ R
n : µ ∈ (−∞, λ1)} and Bj = {w + µv ∈ R

n : µ ∈ [λj , λj+1)}. (3.25)

Note that (3.24) and the fact that for all j ∈ {1, 2, . . . , k} it holds that {x ∈ Rd : hj(x) =
0} = Hyp(hj , 0) ∩ Hyp(hj, 1) imply that for all j ∈ {0, 1, . . . , k}, j ∈ {1, 2, . . . , k} there exists
i ∈ {0, 1} such that

Bj ⊆ Hyp(hj, i) (3.26)

(cf. Definition 3.7). Hence we obtain that for all j ∈ {0, 1, . . . , k} there exists i ∈ {0, 1}k such
that

Bj ⊆ Hyp(h, i). (3.27)

Combining this with the fact that A = ∪k
j=0Bj demonstrates (3.23). The proof of Corollary 3.9

is thus complete.

Definition 3.10 (Convex sets). Let d ∈ N and let A ⊆ Rd be a set. Then we denote by C(A)
the set given by

C(A) = {C ⊆ A : ∀ x, y ∈ C, λ ∈ [0, 1] : x+ λ(y − x) ∈ C}. (3.28)

Corollary 3.11. Let d, k ∈ N and let A ⊆ Rd be a set. Then

(i) it holds for all C1, C2, . . . , Ck ∈ C(A) that (∩k
i=1Ci) ∈ C(A),

(ii) it holds for all B ∈ C(A), C ∈ C(Rd) that (B ∩ C) ∈ C(A), and

(iii) it holds for all h ∈ L(Rd), i ∈ {0, 1} that Hyp(h, i) ∈ C(Rd)

(cf. Definitions 3.5, 3.7, and 3.10).

Proof of Corollary 3.11. Observe that (3.28) implies items (i) and (ii). Note that (3.20) and
(3.28) establish item (iii). The proof of Corollary 3.11 is thus complete.
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3.3 Lower bounds for approximations of certain classes of oscillating

functions

Lemma 3.12. Let d, L, l0, l1, . . . , lL ∈ N, k0, k1, . . . , kL ∈ N0 satisfy for all s ∈ N0 ∩ [0, L]
that L ≥ 2, l0 = d, lL = 1, ks =

∑s
j=1 lj, let f ∈ (×L

k=1(R
lk×lk−1 × Rlk)) ⊆ N, for every

j ∈ {1, 2, . . . , L} let pj : (∪L
s=jR

ks) → Rkj satisfy for all s ∈ N ∩ [j, L], i = (i1, . . . , iks) ∈ Rks

that pj(i) = (i1, i2, . . . , ikj ), for every k ∈ {1, 2, . . . , L} let

(Wk,i,j)(i,j)∈{1,2,...,lk}×{1,2,...,lk−1} = Wk,f and (Bk,i)i∈{1,2,...,lk} = Bk,f, (3.29)

and let Gi
s = (gi1, . . . , g

i
ks
) ∈ (L(Rd))ks, s ∈ {1, 2, . . . , L}, i ∈ {0, 1}kL−1, satisfy for all i ∈

{0, 1}kL−1, j ∈ {1, 2, . . . , l1}, x = (x1, . . . , xd) ∈ Rd that

gij(x) = B1,j +

d
∑

p=1

W1,j,pxp (3.30)

and assume for all i = (i1, . . . , ikL−1
) ∈ {0, 1}kL−1, s ∈ {1, 2, . . . , L − 1}, j ∈ {1, 2, . . . , ls+1},

x ∈ R
d that

giks+j(x) = Bs+1,j +
ls
∑

p=1

Ws+1,j,piks−1+p

(

giks−1+p(x)
)

(3.31)

(cf. Definitions 2.1 and 3.5). Then

(i) it holds for all i, j ∈ {0, 1}kL−1 that Gi
1 = Gj

1,

(ii) it holds for all s ∈ {1, 2, . . . , L− 1}, i, j ∈ {0, 1}kL−1 with ps(i) = ps(j) that

Gi
s+1 = Gj

s+1, (3.32)

(iii) it holds for all x ∈ Rd that there exists i ∈ {0, 1}kL−1 such that for all j ∈ {0, 1}kL−1 with
pL−2(i) = pL−2(j) it holds that

x ∈ Hyp
(

Gj
L−1, i

)

= Hyp
(

Gi
L−1, i

)

, (3.33)

and

(iv) it holds for all i ∈ {0, 1}kL−1 that

R(f)|Hyp(Gi
L−1,i)

= gikL|Hyp(Gi
L−1,i)

∈ L
(

Hyp
(

Gi
L−1, i

))

(3.34)

(cf. Definitions 2.3 and 3.7).

Proof of Lemma 3.12. Throughout this proof let x ∈ Rd. Observe that (3.30) and the assump-
tion that l1 = k1 ensure that for all i, j ∈ {0, 1}kL−1 it holds that

Gi
1 = Gj

1. (3.35)
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This establishes item (i). Combining (3.31) and (3.35) ensures that for all i, j ∈ {0, 1}kL−1 with
p1(i) = p1(j) it holds that

Gi
2 = Gj

2. (3.36)

Furthermore, note that (3.31) implies that for all s ∈ N ∩ (0, L − 1) with ∀ i, j ∈ {0, 1}kL−1 :
[ps(i) = ps(j)] ⇒ [Gi

s+1 = Gj
s+1] it holds that for all i, j ∈ {0, 1}kL−1 with ps+1(i) = ps+1(j)

it holds that Gi
s+2 = Gj

s+2. Combining this and (3.36) with induction shows that for all
s ∈ {1, 2, . . . , L− 1}, i, j ∈ {0, 1}kL−1 with ps(i) = ps(j) it holds that

Gi
s+1 = Gj

s+1. (3.37)

This establishes item (ii). Observe that (3.35) and the fact that l1 = k1 ensure that there exists
i ∈ {0, 1}l1 such that for all j ∈ {0, 1}kL−1 it holds that

x ∈ Hyp
(

Gj
1, i

)

(3.38)

(cf. Definition 3.7). This, (3.36), and the fact that l1+ l2 = k1+ l2 = k2 demonstrate that there
exists i ∈ {0, 1}k2 such that for all j ∈ {0, 1}kL−1 with p1(i) = p1(j) it holds that

x ∈ Hyp
(

Gj
2, i

)

. (3.39)

Moreover, note that (3.31) and (3.37) imply that for all s ∈ N ∩ (1, L − 1), i ∈ {0, 1}ks with
∀ j ∈ {0, 1}kL−1 : [ps−1(i) = ps−1(j)] ⇒ [x ∈ Hyp

(

Gj
s, i

)

] there exists i ∈ {0, 1}ks+1 with ps(i) = i
such that for all j ∈ {0, 1}kL−1 with ps(i) = i = ps(j) it holds that

x ∈ Hyp
(

Gj
s+1, i

)

. (3.40)

Combining this, (3.37), (3.38), and (3.39) with (3.30) and induction ensures that there exists
i ∈ {0, 1}kL−1 such that for all j ∈ {0, 1}kL−1 with pL−2(i) = pL−2(j) it holds that

x ∈ Hyp(Gj
L−1, i) = Hyp(Gi

L−1, i). (3.41)

This establishes item (iii). Next, let i = (i1, . . . , ikL−1
) ∈ {0, 1}kL−1 and ys ∈ Rls , s ∈

{0, 1, . . . , L}, satisfy for all s ∈ {1, 2, . . . , L} that

y0 ∈ Hyp(Gi
L−1, i) and ys = R(Ws,fys−1 + Bs,f) (3.42)

(cf. Definition 2.2). Observe that (3.29), (3.30), (3.42), and Corollary 3.8 imply that

y1 = R(W1,fy0 + B1,f) = R(gi1(y0), g
i
2(y0), . . . , g

i
l1
(y0))

= (i1(g
i
1(y0)), i2(g

i
2(y0)), . . . , il1(g

i
l1(y0))).

(3.43)

In addition, note that (3.31), (3.42), and Corollary 3.8 demonstrate that for all s ∈ {1, 2, . . . , L−
2} with ys = (iks−1+1(g

i
ks−1+1(y0)), iks−1+2(g

i
ks−1+2(y0)), . . . , iks(g

i
ks
(y0))) it holds that

ys+1 = R(Ws+1,fys + Bs+1,f) = R(giks+1(y0), g
i
ks+2(y0), . . . , g

i
ks+1

(y0))

= (iks+1(g
i
ks+1(y0)), iks+2(g

i
ks+2(y0)), . . . , iks+1(g

i
ks+1

(y0))).
(3.44)
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Combining this and (3.43) with induction ensures that

yL−1 = (ikL−2+1(g
i
kL−2+1(y0)), ikL−2+2(g

i
kL−2+2(y0)), . . . , ikL−1

(gikL−1
(y0))). (3.45)

This, (3.31), (3.42), and the fact that (R(f))(y0) = WLyL−1 +BL imply that

gikL(y0) = gikL−1+1(y0) = BL,1 +

lL−1
∑

p=1

WL,1,pikL−2+p

(

gikL−2+p(y0)
)

= WL,fyL−1 + BL,f = (R(f))(y0).

(3.46)

This establishes item (iv). The proof of Lemma 3.12 is thus complete.

Proposition 3.13. Let a ∈ [−∞,∞), b ∈ [a,∞], d ∈ N, f ∈ N, µ ∈ Rd, ν ∈ Rd\{0} satisfy
R(f) ∈ C(Rd,R) and let A = [a, b]d ∩ (∪λ∈R{µ+ λν}) (cf. Definitions 2.1 and 2.3). Then

min

({

k ∈ N :

[

∃B1, B2, . . . , Bk ∈ C(A) :
[

(A = ∪k
j=1Bj) ∧

(∀ j ∈ {1, 2, . . . , k} : R(f)|Bj
∈ L(Bj))

]

]}

∪ {∞}
)

≤
[ P(f)

max{1,H(f)}

]max{1,H(f)}

(3.47)

(cf. Definitions 3.5 and 3.10).

Proof of Proposition 3.13. Throughout this proof assume w.l.o.g. that L(f) > 1 (cf. Lemma 3.6),
let P, L, l0, l1, . . . , lL ∈ N, k0, k1, . . . , kL ∈ N0 satisfy for all s ∈ N0 ∩ [0, L] that D(f) =
(l0, l1, . . . , lL), ks =

∑s
j=1 lj, and P =

∏L−1
n=1(ln+1), for every j ∈ {1, 2, . . . , L} let pj : (∪L

s=jR
ks) →

Rkj satisfy for all s ∈ N ∩ [j, L], i = (i1, . . . , iks) ∈ Rks that pj(i) = (i1, i2, . . . , ikj), and let
Gi

s = (gi1, g
i
2, . . . , g

i
ks
) ∈ (L(Rd))ks, s ∈ {1, 2, . . . , L}, i ∈ {0, 1}kL−1, satisfy that

(I) it holds for all i, j ∈ {0, 1}kL−1 that Gi
1 = Gj

1,

(II) it holds for all s ∈ {1, 2, . . . , L− 1}, i, j ∈ {0, 1}kL−1 with ps(i) = ps(j) that

Gi
s+1 = Gj

s+1, (3.48)

and

(III) it holds for all i ∈ {0, 1}kL−1 that

R(f)|Hyp(Gi
L−1,i)

= gikL|Hyp(Gi
L−1,i)

∈ L
(

Hyp
(

Gi
L−1, i

))

(3.49)

(cf. Definitions 3.5 and 3.7 and Lemma 3.12). Observe that item (I) and Corollary 3.9 (applied
with d x d, k x l1, h x Gi

1, v x ν, w x µ for i ∈ {0, 1}kL−1 in the notation of Corollary 3.9)
ensure that there exist jm = (jm,1, . . . , jm,l1) ∈ {0, 1}l1, m ∈ N0 ∩ [0, l1], such that for all
i ∈ {0, 1}kL−1 it holds that

A ⊆
(

∪l1
m=0 Hyp

(

Gi
1, jm

))

=
(

∪l1
m=0

(

∩l1
p=1Hyp

(

gip, jm,p

)))

. (3.50)
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Furthermore, note that item (II) and Corollary 3.9 (applied with d x d, k x ls+1, (h1, h2, . . . , hk) x
(giks+1, g

i
ks+2, . . . , g

i
ks+1

), v x ν, w x µ for s ∈ {1, 2, . . . , L − 2}, i ∈ {0, 1}kL−1 in the no-

tation of Corollary 3.9) show that for all s ∈ {1, 2, . . . , L − 2}, j ∈ {0, 1}ks there exist
jm = (jm,1, . . . , jm,ls+1) ∈ {0, 1}ls+1, m ∈ N0 ∩ [0, ls+1], such that for all i ∈ {0, 1}kL−1 with
ps(i) = j it holds that

A ⊆
(

∪ls+1

m=0

(

∩ls+1

p=1 Hyp
(

giks+p, jm,p

)))

. (3.51)

Combining this, (3.50), and the assumption that for all s ∈ {1, 2, . . . , L} it holds that ks =
∑s

j=1 lj and P =
∏L−1

n=1(ln+1) with induction implies that there exist jm = (jm,1, . . . , jm,kL−1
) ∈

{0, 1}kL−1, m ∈ {1, 2, . . . , P}, such that

A = ∪P
m=1

(

A ∩ Hyp
(

Gjm
L−1, jm

))

= ∪P
m=1

(

A ∩
(

∩kL−1

p=1 Hyp
(

gjmp , jm,p

)))

. (3.52)

This, item (III), Corollary 3.11, and the fact that A ∈ C(A) show that

min

({

k ∈ N :

[

∃B1, B2, . . . , Bk ∈ C(A) :
[

(A = ∪k
b=1Bb) ∧

(∀ b ∈ {1, 2, . . . , k} : R(f)|Bb
∈ L(Bb))

]

]}

∪ {∞}
)

≤ P. (3.53)

Moreover, observe that the inequality of arithmetic and geometric means implies that

P =
L−1
∏

k=1

(lk + 1) ≤
[

∑L−1
k=1 (lk + 1)

L− 1

]L−1

≤
[

∑L
k=1 lk(lk−1 + 1)

L− 1

]L−1

=

[P(f)

L− 1

]L−1

. (3.54)

This and (3.53) establish (3.47). The proof of Proposition 3.13 is thus complete.

Definition 3.14 (Euclidean norm). We denote by ‖·‖2 : (∪d∈NR
d) → R the function which

satisfies for all d ∈ N, x = (x1, . . . , xd) ∈ Rd that ‖x‖2 =
[
∑d

j=1|xj |2
]1/2

.

Lemma 3.15. Let a ∈ R, b ∈ [a,∞), d ∈ N ∩ [3,∞), κ ∈ (0,∞), let (vk)k∈N ⊆ Rd satisfy
for all k ∈ N that vk+1 − vk = v2 − v1, let A = [a, b]d ∩ (∪λ∈R{λv1 + (1 − λ)v2}), assume
{v1, v2d+1+1} ⊆ A, and let f : Rd → R and g : Rd → R satisfy for all x ∈ [a, b]d, k ∈ N∩ (1, 2d+1]
that f(vk)− f(vk−1) = f(vk)− f(vk+1) ∈ {−2κ, 2κ} and |f(x)− g(x)| < κ. Then

min

({

k ∈ N :

[

∃B1, B2, . . . , Bk ∈ C(A) :
[

(A = ∪k
i=1Bi) ∧

(∀ i ∈ {1, 2, . . . , k} : g|Bi
∈ L(Bi))

]

]}

∪ {∞}
)

≥ 2d (3.55)

(cf. Definitions 3.5 and 3.10).

Proof of Lemma 3.15. Throughout this proof assume w.l.o.g. that

min

({

k ∈ N :

[

∃B1, B2, . . . , Bk ∈ C(A) :
[

(A = ∪k
i=1Bi) ∧

(∀ i ∈ {1, 2, . . . , k} : g|Bi
∈ L(Bi))

]

]}

∪ {∞}
)

< ∞, (3.56)

let N ∈ N, B1, B2, . . . , BN ∈ C(A) satisfy for all j ∈ {1, 2, . . . , N} that A = ∪N
i=1Bi and g|Bj

∈
L(Bj) (cf. Definitions 3.5 and 3.10). Note that the assumption that for all k ∈ N ∩ (1, 2d+1],
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x ∈ [a, b]d it holds that vk − vk−1 = vk+1 − vk, f(vk)− f(vk−1) = f(vk)− f(vk+1) ∈ {−2κ, 2κ},
and |f(x)− g(x)| < κ implies that for all k ∈ N ∩ (1, 2d+1] it holds that

∣

∣

∣

∣

g(vk) +

(

g(vk)− g(vk−1)

‖vk − vk−1‖2

)

‖vk+1 − vk‖2 − f(vk+1)

∣

∣

∣

∣

= |2g(vk)− g(vk−1)− f(vk+1)|

= |2g(vk)− g(vk−1)− f(vk−1)|
> |2f(vk)− f(vk−1)− f(vk−1)| − 3κ

= 2|f(vk)− f(vk−1)| − 3κ

= 4κ− 3κ = κ

(3.57)

(cf. Definition 3.14). Combining this with the fact that for all j ∈ {1, 2, . . . , N} it holds that
Bj ∈ C(A) and g|Bj

∈ L(Bj) ensures that for all j ∈ {1, 2, . . . , N}, k ∈ N ∩ (1, 2d+1] with
vk−1, vk ∈ Bj it holds that

vk+1 /∈ Bj . (3.58)

Furthermore, observe that the fact that for all for all j ∈ {1, 2, . . . , N} it holds that Bj ∈ C(A)
ensures that for all j ∈ {1, 2, . . . , N}, k ∈ N ∩ (1, 2d+1] with vk−1 ∈ Bj , vk /∈ Bj it holds that

vk+1 /∈ Bj . (3.59)

Combining this and (3.58) with the fact that A = ∪N
j=1Bj ensures that for all k ∈ {1, 2, . . . , 2d}

there exists j ∈ {1, 2, . . . , N} such that

v2k−1 ∈ Bj and v2k+1 /∈ Bj . (3.60)

This, the fact that for all for all j ∈ {1, 2, . . . , N} it holds that Bj ∈ C(A) ensure that N ≥ 2d.
The proof of Lemma 3.15 is thus complete.

Proposition 3.16. For every k ∈ {1, 2} let fk ∈ N satisfy R(f) ∈ C(Rk,R), let a ∈ R,
b ∈ [a,∞), ν ∈ R2\{0}, κ ∈ (0,∞), ε ∈ [0, κ), v1, v2, v3 ∈ [a, b]2 satisfy v3 = v2 + ν = v1 + 2ν,
and let f : R2 → R satisfy for all x ∈ [a, b]2 that

f(v2)− f(v1) = f(v2)− f(v3) ∈ {−2κ, 2κ} and |f(x)−R(f2)(x)| ≤ ε (3.61)

(cf. Definitions 2.1 and 2.3). Then it holds for all k ∈ {1, 2} that

P(fk) ≥ max{1,H(fk)}2
k

max{1,H(fk)} . (3.62)

Proof of Proposition 3.16. Note that (2.2) implies that

P(f1) =

L(f1)
∑

k=1

Dk(f1)(Dk−1(f1) + 1) ≥ 2max{1,H(f1)} ≥ max{1,H(f1)}2
1

max{1,H(f1)} . (3.63)

Furthermore, observe that the assumption that f(v2) − f(v1) = f(v2) − f(v3) ∈ {−2κ, 2κ}
shows that for all g ∈ L(R2) with |g(v1)− f(v1)| ≤ ε and |g(v2)− f(v2)| ≤ ε it holds that

|g(v3)− f(v3)| =
∣

∣

∣

∣

g(v2) +

(

g(v2)− g(v1)

‖v2 − v1‖2

)

‖v3 − v2‖2 − f(v1)

∣

∣

∣

∣

= |2g(v2)− g(v1)− f(v1)|
≥ |2f(v2)− f(v1)− f(v1)| − 3ε

= 2|f(v2)− f(v1)| − 3ε

= 4κ− 3ε > κ > ε.

(3.64)
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Combining this with Lemma 3.6 implies that for all ℊ ∈ N with L(ℊ) = 1 andR(ℊ) ∈ C(R2,R)
there exists x ∈ [a, b]2 such that

|(R(ℊ))(x)− f(x)| > ε. (3.65)

Moreover, note that for all ℊ ∈ N with R(ℊ) ∈ C(R2,R) and L(ℊ) = 2 it holds that

P(ℊ) =

L(ℊ)
∑

k=1

Dk(ℊ)(Dk−1(ℊ) + 1) ≥ 4 = max{1,H(ℊ)}2
2

max{1,H(ℊ)} . (3.66)

In addition, observe that for all ℊ ∈ N with R(ℊ) ∈ C(R2,R) and L(ℊ) ≥ 3 it holds that

P(ℊ) =

L(ℊ)
∑

k=1

Dk(ℊ)(Dk−1(ℊ) + 1) ≥ 2max{1,H(ℊ)} ≥ max{1,H(ℊ)}2
2

max{1,H(ℊ)} . (3.67)

This, (3.65), and (3.66) demonstrate P(f2) ≥ max{1,H(f2)}2
2

max{1,H(f2)} . Combining this with
(3.63) establishes (3.62). The proof of Proposition 3.16 is thus complete.

Proposition 3.17. Let a ∈ R, b ∈ [a,∞), d,H ∈ N, ν ∈ R
d\{0}, κ ∈ (0,∞), σ ∈ {−2κ, 2κ},

ε ∈ [0, κ), and S : N → N satisfy for all n ∈ N that

S(n) =











1 : n = 1

3 : n = 2

2n+1 + 1 : n ≥ 3,

(3.68)

let vk ∈ [a, b]d, k ∈ {1, 2, . . . , S(d)}, and f : Rd → R satisfy for all k ∈ N with 2 ≤ k ≤ S(d)
that vk = vk−1 + ν and f(vk)− f(vk−1) = σ(−1)k, and let f ∈ N satisfy for all x ∈ [a, b]d that

R(f) ∈ C(Rd,R), |f(x)−R(f)(x)| ≤ ε, and H = max{1,H(f)} (3.69)

(cf. Definitions 2.1 and 2.3). Then P(f) ≥ H2
d
H .

Proof of Proposition 3.17. Throughout this proof assume w.l.o.g. that d ≥ 3 (cf. Proposi-
tion 3.16) and let A = [a, b]d∩(∪λ∈R{λv1+(1−λ)v2}). Note that (3.69) and Lemma 3.15 (applied
with a x a, b x b, d x d, ν x ν, κ x κ, A x A, (v1, v2, . . . , v2d+1+1) x (v1, v2, . . . , vS(d)),
g x R(f), f x f in the notation of Lemma 3.15) ensure that

min

({

k ∈ N :

[

∃B1, B2, . . . , Bk ∈ C(A) :
[

(A = ∪k
i=1Bi) ∧

(∀ i ∈ {1, 2, . . . , k} : g|Bi
∈ L(Bi))

]

]}

∪ {∞}
)

≥ 2d. (3.70)

Combining this with Proposition 3.13 (applied with a x a, b x b, d x d, H x H , f x f,
A x A in the notation of Proposition 3.13) implies that

[P(f)

H

]H

≥ min

({

k ∈ N :

[

∃B1, B2, . . . , Bk ∈ C(A) :
[

(A = ∪k
i=1Bi) ∧

(∀ i ∈ {1, 2, . . . , k} : g|Bi
∈ L(Bi))

]

]}

∪ {∞}
)

≥ 2d.

(3.71)

Hence we obtain that P(f) ≥ H2
d
H . The proof of Proposition 3.17 is thus complete.

27



3.4 Oscillation properties of certain families of functions

Corollary 3.18. Let ϕ ∈ R, κ ∈ (0,∞), γ ∈ (0, 1], β ∈ [1,∞), a ∈ R, b ∈ [a+ 2πγ−1β−1,∞),
g ∈ C(R,R) satisfy for all x ∈ R that g(x) = κ sin(x + ϕ), let fd ∈ (Rd,R), d ∈ N, satisfy for
all d ∈ N, x = (x1, . . . , xd) ∈ [a, b]d that fd(x) = g

(

γβd
∏d

i=1 xi

)

, and let S : N → N satisfy for
all d ∈ N that

S(d) =











1 : d = 1

3 : d = 2

2d+1 + 1 : d ≥ 3.

(3.72)

Then there exist (νd, σd) ∈
(

Rd\{0}
)

×{−2κ, 2κ}, d ∈ N, and vk,d ∈ [a, b]d, k ∈ {1, 2, . . . , S(d)},
d ∈ N, such that

(i) it holds for all d ∈ N ∩ (1,∞), k ∈ N ∩ (1, S(d)] that vk,d = vk−1,d + νd,

(ii) it holds for all d ∈ N ∩ (1,∞), k ∈ N ∩ (1, S(d)] that fd(vk,d)− fd(vk−1,d) = (−1)kσd,

(iii) it holds for all x ∈ R, k ∈ Z that g(x+ 2kπ) = g(x) ∈ [−κ, κ], and

(iv) it holds for all x, y ∈ R that |g(x)− g(y)| ≤ κ|x− y|.

Proof of Corollary 3.18. Throughout this proof let c ∈ [a, a + 6β−1] ⊆ [a, b] satisfy β|c| ≥ 3.
Observe that for all d ∈ N, v = (α, c, c, . . . , c) ∈ [a, b]d it holds that

fd(v) = g
(

γβdα
∏d

i=2 c
)

= κ sin(αγβdcd−1 + ϕ). (3.73)

Furthermore, note that the fact that for all d ∈ N it holds that |(a+ πγ−1β−d|c|1−d)γβdcd−1 −
aγβdcd−1| = π shows that for all d ∈ N there exists α ∈ [a, a+ πγ−1β−d|c|1−d) such that

κ|sin(αγβdcd−1 + ϕ)| = κ. (3.74)

Moreover, observe that for all d ∈ N, α ∈ R, k ∈ Z with |sin(αγβdcd−1 + ϕ)| = 1 it holds that

sin((α + kπγ−1β−d|c|1−d)γβdcd−1 + ϕ) = sin(αγβdcd−1 + ϕ+ k|c|c−1π)

= (−1)k sin(αγβdcd−1 + ϕ).
(3.75)

In addition, note that the fact that for all d ∈ N∩(2,∞) it holds that S(d) ≤ 3d−12 ≤ 2βd−1|c|d−1

implies that for all d ∈ N, k ∈ {1, 2, . . . , S(d)} it holds that

a ≤ a + kπγ−1β−d|c|1−d ≤ a+ 2βd−1|c|d−1πγ−1β−d|c|1−d = a + 2πγ−1β−1 ≤ b. (3.76)

This, (3.73), (3.74), and (3.75) show that there exist vk,d ∈ Rd, k ∈ {1, 2, . . . , S(d)}, d ∈ N,
which satisfy that

(I) it holds for all d ∈ N ∩ (1,∞) that v1,1 ∈ [a, a + πγ−1β−d|c|1−d) ⊆ [a, b] and v1,d ∈
[a, a + πγ−1β−d|c|1−d)× {c}d−1 ⊆ [a, b]d,

(II) it holds for all d ∈ N∩(1,∞), k ∈ N∩(1, S(d)] that vk,d = vk−1,d+(πγ−1β−d|c|1−d, 0, 0, . . . , 0) ∈
[a, b]× {c}d−1 ⊆ [a, b]d, and
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(III) it holds for all d ∈ N that there exists σ ∈ {−κ, κ} such that for all k ∈ {1, 2, . . . , S(d)}
it holds that fd(vk,d) = σ(−1)k.

Combining item (I), item (II), and item (III) with the fact that for all x, y ∈ R, k ∈ Z it holds
that sin(x+2kπ) = sin(x) and |sin(x)−sin(y)| ≤ |x−y| establishes items (i), (ii), (iii), and (iv).
The proof of Corollary 3.18 is thus complete.

Corollary 3.19. Let ϕ ∈ R, γ, κ ∈ (0,∞), a ∈ R, b ∈ [a + πγ−1,∞), g ∈ C(R,R) satisfy
for all x ∈ R that g(x) = κ sin(x + ϕ), let fd ∈ (Rd,R), d ∈ N, satisfy for all d ∈ N,
x = (x1, . . . , xd) ∈ [a, b]d that fd(x) = g

(

γ2d
∑d

i=1 xi

)

, let S : N → N satisfy for all d ∈ N that

S(d) =











1 : d = 1

3 : d = 2

2d+1 + 1 : d ≥ 3.

(3.77)

Then there exist (νd, σd) ∈
(

Rd\{0}
)

×{−2κ, 2κ}, d ∈ N, and vk,d ∈ [a, b]d, k ∈ {1, 2, . . . , S(d)},
d ∈ N, such that

(i) it holds for all d ∈ N ∩ (1,∞), k ∈ N ∩ (1, S(d)] that vk,d = vk−1,d + νd,

(ii) it holds for all d ∈ N ∩ (1,∞), k ∈ N ∩ (1, S(d)] that fd(vk,d)− fd(vk−1,d) = (−1)kσd,

(iii) it holds for all x ∈ R, k ∈ Z that g(x+ 2kπ) = g(x) ∈ [−κ, κ], and

(iv) it holds for all x, y ∈ R that |g(x)− g(y)| ≤ κ|x− y|.

Proof of Corollary 3.19. Observe that for all d ∈ N, v = (α, α, . . . , α) ∈ [a, b]d it holds that

fd(v) = g
(

γ2d
∑d

i=1 α
)

= κ sin(γ2ddα+ ϕ). (3.78)

Furthermore, note that the fact that for all d ∈ N it holds that |γ2dda−γ2dd(a+πγ−12−dd−1)| =
π shows that for all d ∈ N there exists α ∈ [a, a+ πγ−12−dd−1) such that

|sin(γ2ddα+ ϕ)| = 1. (3.79)

Moreover, observe that for all d ∈ N, α ∈ R, k ∈ Z with |sin(γ2ddα+ ϕ)| = 1 it holds that

sin(γ2dd(α + kπγ−12−dd−1) + ϕ) = sin(γ2ddα + ϕ+ kπ) = (−1)k sin(γ2ddα + ϕ). (3.80)

In addition, note that the fact that for all d ∈ N it holds that S(d) ≤ 2dd implies that for all
d ∈ N, k ∈ {1, 2, . . . , S(d)} it holds that

a ≤ a+ kπγ−12−dd−1 ≤ a+ πγ−1 ≤ b. (3.81)

This, (3.78), (3.79), and (3.80) show that there exist vk,d ∈ Rd, k ∈ {1, 2, . . . , S(d)}, d ∈ N,
which satisfy that

(I) it holds for all d ∈ N that v1,d ∈ [a, a + πγ−12−dd−1)d ⊆ [a, b]d,
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(II) it holds for all d ∈ N ∩ (1,∞), k ∈ N ∩ (1, S(d)] that

vk,d = vk−1,d + (πγ−12−dd−1, πγ−12−dd−1, . . . , πγ−12−dd−1) ∈ [a, b]d, (3.82)

and

(III) it holds for all d ∈ N that there exists σ ∈ {−κ, κ} such that for all k ∈ {1, 2, . . . , S(d)}
it holds that fd(vk,d) = σ(−1)k.

Combining items (I), (II), and (III) with the fact that for all x, y ∈ R, k ∈ Z it holds that
sin(x + 2kπ) = sin(x) and |sin(x) − sin(y)| ≤ |x − y| establishes items (i), (ii), (iii), and (iv).
The proof of Corollary 3.19 is thus complete.

3.5 Lower bounds for approximations of specific families of oscillat-

ing functions

Lemma 3.20. Let a ∈ R, b ∈ [a,∞), d ∈ N, ε ∈ (0,∞), let h : N → N satisfy for all l ∈ N

that h(l) = max{1, l− 1}, and let f : Rd → R satisfy for all L ∈ N that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) = L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− f(x)| ≤ ε)











∪ {∞}



 ≥ h(L)2
d

h(L) (3.83)

(cf. Definitions 2.1 and 2.3). Then it holds for all L ∈ N that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− f(x)| ≤ ε)











∪ {∞}



 ≥ 2
d

h(L) (3.84)

.

Proof of Lemma 3.20. Observe that (3.83) and the fact that for all L ∈ N it holds that h(L) ≤
h(L+ 1) show that for all L ∈ N it holds that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− f(x)| ≤ ε)











∪ {∞}





= min
l∈{1,2,...,L}

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) = l) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− f(x)| ≤ ε)











∪ {∞}





≥ min
l∈{1,2,...,L}

h(l)2
d

h(l) ≥ h(1)2
d

h(L) = 2
d

h(L) .

(3.85)

The proof of Lemma 3.20 is thus complete.

Proposition 3.21. Let ϕ ∈ R, γ ∈ (0, 1], β ∈ [1,∞), a ∈ R, b ∈ [a + 2πγ−1β−1,∞),
κ ∈ (0,∞) and for every d ∈ N let fd : R

d → R satisfy for all x = (x1, . . . , xd) ∈ Rd that
fd(x) = κ sin

(

γβd
(
∏d

i=1 xi

)

+ ϕ
)

. Then it holds for all d ∈ N, H ∈ N0, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (H(f) ≤ H) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d

max{1,H} (3.86)

(cf. Definitions 2.1 and 2.3).
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Proof of Proposition 3.21. Throughout this proof let h : N → N satisfy for all L ∈ N that
h(L) = max{1, L− 1} and let Sd ∈ N, d ∈ N, satisfy for all d ∈ N∩ [3,∞) that S1 = 1, S2 = 3,
and Sd = 2d+1 + 1. Note that Corollary 3.18 (applied with ϕ x ϕ, κ x κ, γ x γ, β x β,
a x a, b x b, fd x fd, S(d) x Sd for d ∈ N in the notation of Corollary 3.18) demonstrates
that there exist (νd, σd) ∈

(

Rd\{0}
)

× {−2κ, 2κ}, d ∈ N, and vk,d ∈ [a, b]d, k ∈ {1, 2, . . . , Sd},
d ∈ N, such that

(I) it holds for all d ∈ N ∩ (1,∞), k ∈ N ∩ (1, Sd] that vk,d = vk−1,d + νd,

(II) it holds for all d ∈ N ∩ (1,∞), k ∈ N ∩ (1, Sd] that fd(vk,d)− fd(vk−1,d) = (−1)kσd,

(III) it holds for all x ∈ R, k ∈ Z that g(x+ 2kπ) = g(x) ∈ [−κ, κ], and

(IV) it holds for all x, y ∈ R that |g(x)− g(y)| ≤ κ|x− y|.

Observe that Proposition 3.17 (applied with a x a, b x b, d x d, H x h(L), L x L, ν x νd,
κ x κ, σ x σd, ε x ε, S x Sd, (v1, v2, . . . , vSd

) x (v1,d, v2,d, . . . , vSd,d), f x fd for d, L ∈ N,
ε ∈ (0, κ) in the notation of Proposition 3.17) shows that for all d, L ∈ N, ε ∈ (0, κ) it holds
that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) = L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ h(L)2
d

h(L) (3.87)

(cf. Definitions 2.1 and 2.3). This and Lemma 3.20 demonstrate that for all d, L ∈ N, ε ∈ (0, κ)
it holds that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d

h(L) . (3.88)

The proof of Proposition 3.21 is thus complete.

Proposition 3.22. Let ϕ ∈ R, γ, κ ∈ (0,∞), a ∈ R, b ∈ [a+πγ−1,∞) and for every d ∈ N let
fd : R

d → R satisfy for all x = (x1, . . . , xd) ∈ Rd that fd(x) = κ sin
(

γ2d
(
∑d

i=1 xi

)

+ϕ
)

. Then it
holds for all d ∈ N, H ∈ N0, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (H(f) ≤ H) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d

max{1,H} (3.89)

(cf. Definitions 2.1 and 2.3).

Proof of Proposition 3.22. Throughout this proof let h : N → N satisfy for all L ∈ N that
h(L) = max{1, L− 1} and let Sd ∈ N, d ∈ N, satisfy for all d ∈ N∩ [3,∞) that S1 = 1, S2 = 3,
and Sd = 2d+1 + 1. Note that Corollary 3.19 (applied with ϕ x ϕ, κ x κ, γ x γ, β x β,
a x a, b x b, fd x fd, S(d) x Sd for d ∈ N in the notation of Corollary 3.19) demonstrates
that there exist (νd, σd) ∈

(

Rd\{0}
)

× {−2κ, 2κ}, d ∈ N, and vk,d ∈ [a, b]d, k ∈ {1, 2, . . . , Sd},
d ∈ N, such that
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(I) it holds for all d ∈ N ∩ (1,∞), k ∈ N(1, Sd] that vk,d = vk−1,d + νd,

(II) it holds for all d ∈ N ∩ (1,∞), k ∈ N(1, Sd] that fd(vk,d)− fd(vk−1,d) = (−1)kσd,

(III) it holds for all x ∈ R, k ∈ Z that g(x+ 2kπ) = g(x) ∈ [−κ, κ], and

(IV) it holds for all x, y ∈ R that |g(x)− g(y)| ≤ κ|x− y|.

Observe that Proposition 3.17 (applied with a x a, b x b, d x d, H x h(L), L x L, ν x νd,
κ x κ, σ x σd, ε x ε, S x Sd, (v1, v2, . . . , vSd

) x (v1,d, v2,d, . . . , vSd,d), f x fd for d, L ∈ N,
ε ∈ (0, κ) in the notation of Proposition 3.17) shows that for all d, L ∈ N, ε ∈ (0, κ) it holds
that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) = L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ h(L)2
d

h(L) (3.90)

(cf. Definitions 2.1 and 2.3). This and Lemma 3.20 demonstrate that for all d, L ∈ N, ε ∈ (0, κ)
it holds that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d

h(L) . (3.91)

The proof of Proposition 3.22 is thus complete.

4 Upper bounds for the minimal number of ANN pa-

rameters in the approximation of certain high-dimensional

functions

In this section we establish in Corollary 4.16, Corollary 4.28, and Corollary 4.31 below suitable
upper bounds for the minimal number of parameters of ANNs to approximate the product
functions (Corollary 4.16) and certain highly oscillating functions (Corollary 4.28 and Corol-
lary 4.31) in the case where the absolute values of the parameters of the ANNs are assumed to
be uniformly bounded by 1.

Our proof of Corollary 4.16 employs the elementary result regarding the reduction of the
absolute value of the size of the parameters of an ANN without changing its realization function
in Corollary 4.4 and the essentially well known upper bounds for the minimal number of param-
eters of ANNs to approximate certain scaled product functions in Lemma 4.15. Lemma 4.15 is
an extended variant of, e.g., Beneventano et al. [3, Proposition 6.8]. Our proof of Lemma 4.15
utilizes the elementary result regarding suitable deep ANNs whose realization functions agree
with appropiate one-dimensional scaling functions in Corollary 4.6 and the essentially well
known upper bound result for the minimal number of parameters of ANNs approximating the
product functions in Lemma 4.14. Lemma 4.14 is a slightly extended variant of, e.g., Ben-
eventano et al. [3, Lemma 6.7] and our proof of Lemma 4.14 as well as the auxiliary results in
Section 4.3 are strongly inspired by the findings in Beneventano et al. [3, Section 6].
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Our proof of Corollary 4.28 employs the elementary result regarding the reduction of the
absolute value of the size of the parameters of an ANN without changing its realization func-
tion in Lemma 4.3 and the upper bounds for the minimal number of parameters of ANNs
approximating compositions of certain periodic functions and certain scaled product functions
in Lemma 4.27. Our proof of Lemma 4.27, in turn, combines Corollary 4.6 and Lemma 4.15 with
the essentially well known upper bound result for the minimal number of parameters of ANNs
approximating certain periodic functions in Lemma 4.24. Our proof of Lemma 4.24 employs
the essentially well known ANN approximation result for certain one-dimensional Lipschitz
continuous functions in Lemma 4.23 and builds up on the essentially well known properties of
sawtooth functions (suitable one-dimensional piecewise linear functions with compact support)
in Lemma 4.17 and Lemma 4.18. The results in Lemma 4.17 and Lemma 4.18 are extensions
of, e.g., Telgarsky [31, Section 2.2] and Lemma 4.23 is inspired by Beneventano et al. [3, Sub-
section 4.1].

Our proof of Corollary 4.31 employs Lemma 4.3 as well as the upper bounds for the mini-
mal number of parameters of ANNs approximating compositions of certain periodic functions
and scaled sum functions in Corollary 4.30. Our proof of Corollary 4.30, in turn, utilizes
Corollary 4.6 and Lemma 4.24.

4.1 Trade-off between the number and the size of ANN parameters

Corollary 4.1. Let f ∈ N, L ∈ N satisfy O(f) = 1 and L > L(f). Then there exists ℊ ∈ N
which satisfies that

(i) it holds that R(f) = R(ℊ),

(ii) it holds for all k ∈ N0 ∩ [0, L] that

Dk(ℊ) =











Dk(f) : k ∈ N0 ∩ [0,L(f))
2 : k ∈ N ∩ [L(f), L)
1 : k = L,

(4.1)

(iii) it holds that L(ℊ) = L, and

(iv) it holds that S0(ℊ) = max{1, S0(f)}, S1(ℊ) = 1, and S(ℊ) = max{1,S(f)}

(cf. Definitions 2.1, 2.3, and 2.13).

Proof of Corollary 4.1. Throughout this proof leth1,h2, . . . ,hL ∈ N satisfy for all k ∈ {2, 3, . . . , L}
that

h1 = I1 and hk = I1 •hk−1 (4.2)

(cf. Definitions 2.1, 2.6, and 2.8). Combining (4.2), Lemma 2.11, and Proposition 2.7 with
induction shows that

L(hL−L(f)) = L− L(f) + 1 and D(hL−L(f)) = (1, 2, 2, . . . , 2, 1) ∈ N
L−L(f)+2. (4.3)
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This, Proposition 2.10, and Lemma 2.11 imply that for all k ∈ N0 ∩ [0, L] it holds that

L(hL−L(f) • f) = L and Dk(hL−L(f) • f) =











Dk(f) : k ∈ N0 ∩ [0,L(f))
2 : k ∈ N ∩ [L(f), L)
1 : k = L.

(4.4)

Furthermore, note that Proposition 2.10 and Proposition 2.7 demonstrate that for all k ∈
N ∩ (0, L− L(f)) it holds that

(R(hk+1))(x) = (R(I1 •hk))(x) = (R(I1))((R(hk))(x)) = (R(hk))(x). (4.5)

This, Proposition 2.7, and induction ensure that for all x ∈ R it holds that

(R(hL−L(f)))(x) = (R(h1))(x) = (R(I1))(x) = x. (4.6)

Combining this and the assumption that O(f) = 1 with Proposition 2.10 implies that

(R(hL−L(f) • f))(x) = (R(hL−L(f)))((R(f))(x)) = (R(f))(x). (4.7)

Moreover, observe that (4.2), Proposition 2.17, and induction show that S1(hL−L(f) • f) = 1,

S0(hL−L(f) • f) = max{1, S0(f)}, and S(hL−L(f) • f) = max{1,S(f)}. (4.8)

Combining this, (4.4), and (4.7) establishes items (i), (ii), (iii), and (iv). The proof of Corol-
lary 4.1 is thus complete.

Corollary 4.2. Let f ∈ N, L, d ∈ N satisfy R(f) ∈ C(Rd,R) and L(f) = L (cf. Defini-
tions 2.1 and 2.3). Then there exists ℊ ∈ N such that

(i) it holds for all x ∈ Rd that (R(ℊ))(x) = 2−L(R(f))(x),

(ii) it holds that L(ℊ) = L

(iii) it holds that S(ℊ) ≤ 2−1S(f), and

(iv) it holds that D(ℊ) = D(f)

(cf. Definition 2.13).

Proof of Corollary 4.2. Throughout this proof let ℊ ∈ N satisfy for all k ∈ {1, 2, . . . , L} that

L(ℊ) = L, Wk,ℊ = 2−1Wk,f, and Bk,ℊ = 2−kBk,f, (4.9)

and let x0, y0 ∈ Rl0 , x1, y1 ∈ Rl1 , . . . , xL, yL ∈ RlL satisfy for all k ∈ {1, 2, . . . , L} that

x0 = y0, xk = R(Wk,fxk−1 + Bk,f), and yk = R(Wk,ℊyk−1 + Bk,ℊ). (4.10)

Note that (4.9) implies that

S(ℊ) ≤ 2−1S(f) and D(ℊ) = D(f). (4.11)
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Furthermore, observe that (4.10) demonstrates that for all k ∈ N ∩ (0, L) with yk = 2−kxk it
holds that

yk+1 = R(Wk+1,ℊyk + Bk+1,ℊ) = R(Wk+1,ℊ(2
−kxk) + Bk+1,ℊ)

= R(2−(k+1)(Wk+1,fxk + Bk+1,f))

= 2−(k+1)xk+1.

(4.12)

Combining this and (4.10) with induction shows that yL−1 = 2−(L−1)xL−1. Hence (2.5) and
(4.10) imply that

(R(ℊ))(x0) = WL,ℊyL−1 + BL,ℊ = WL,ℊ(2
−(L−1)xL−1) + BL,ℊ

= 2−L(WL,fxL−1 + BL,f)

= 2−L(R(f))(x0).

(4.13)

This and (4.11) establish items (i), (ii), (iii), and (iv). The proof of Corollary 4.2 is thus
complete.

Lemma 4.3. Let f ∈ N, d ∈ N satisfy R(f) ∈ C(Rd,R) (cf. Definitions 2.1 and 2.3). Then
there exists ℊ ∈ N such that

(i) it holds that R(ℊ) = R(f),

(ii) it holds that L(ℊ) = 2L(f) + 1,

(iii) it holds for all k ∈ N0 ∩ [0,L(ℊ)] that

Dk(ℊ) =



















Dk(f) : k ∈ N0 ∩ [0,L(f))
2 : k = L(f)
4 : k ∈ N ∩ (L(f),L(ℊ))
1 : k = L(ℊ),

(4.14)

(iv) it holds that P(ℊ) ≤ P(f) + DH(f)(f) + 20L(f) ≤ 2P(f) + 20L(f), and

(v) it holds that S(ℊ) ≤ max{1, 2−1S(f)}

(cf. Definition 2.13).

Proof of Lemma 4.3. Throughout this proof let L ∈ N satisfy L = L(f). Note that Corol-
lary 4.2 (applied with f x f, L x L, d x d in the notation of Corollary 4.2) shows that there
exists ℊ1 ∈ N which satisfies that

(I) it holds for all x ∈ Rd that (R(ℊ1))(x) = 2−L(R(f))(x),

(II) it holds that L(ℊ1) = L

(III) it holds that S(ℊ1) ≤ 2−1S(f), and

(IV) it holds that D(ℊ1) = D(f)
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(cf. Definition 2.13). Observe that Lemma 4.5 (applied with β x 1, B x 2, n x L in the
notation of Lemma 4.5) shows that there exists ℊ2 ∈ N which satisfies that

(A) it holds for all x ∈ R that (R(ℊ2))(x) = 2Lx,

(B) it holds that D(ℊ2) = (1, 4, 4, . . . , 4, 1) ∈ NL+2,

(C) it holds that S(ℊ2) = 1, and

(D) it holds that P(ℊ2) = (4L− 4)22 + (2L+ 4)2 + 1 = 20L− 7 ≤ 20L.

Note that item (I), item (A), Proposition 2.10, and Proposition 2.7 imply that for all x ∈ Rd it
holds that

(R(ℊ2 • I1 • ℊ1))(x) = [R(ℊ2) ◦ R(ℊ1)](x) = 2L
(

2−L(R(f))(x)
)

= (R(f))(x) (4.15)

(cf. Definitions 2.6 and 2.8). Furthermore, observe that item (II), item (B), Proposition 2.10,
and Proposition 2.7 demonstrate that

L(ℊ2 • I1 • ℊ1) = L(ℊ2) + L(I1) + L(ℊ1)− 2 = (L+ 1) + 2 + L− 2 = 2L+ 1. (4.16)

Combining this, item (IV), item (B), Lemma 2.11, and Proposition 2.7 ensure that for all
k ∈ N0 ∩ [0, 2L+ 1] it holds that

Dk(ℊ2 • I1 • ℊ1) =



















Dk(f) : k ∈ N0 ∩ [0, L)

2 : k = L

4 : k ∈ N ∩ (L, 2L+ 1)

1 : k = 2L+ 1.

(4.17)

This, (4.16), and the fact that DL(f) = 1 imply that

P(ℊ2 • I1 • ℊ1) =
2L+1
∑

k=1

Dk(ℊ2 • I1 • ℊ1)(Dk−1(ℊ2 • I1 • ℊ1) + 1)

=

[

L−1
∑

k=1

Dk(f)(Dk−1(f) + 1)

]

+ 2(DL−1(f) + 1) + 4(2 + 1)

+ (L− 1)(4(4 + 1)) + 1(4 + 1)

=

[

L
∑

k=1

Dk(f)(Dk−1(f) + 1)

]

+ DL−1(f) + 1 + 12 + 20L− 20 + 5

≤ P(f) + DL−1(f) + 20L ≤ 2P(f) + 20L.

(4.18)

Moreover, note that item (III), item (C), and Proposition 2.17 shows that

S(ℊ2 • I1 • ℊ1) = max{S(ℊ2),S(ℊ1)} ≤ max{1, 2−1S(f)}. (4.19)

Combining this, (4.15), (4.16), (4.17), and (4.18) establishes items (i), (ii), (iii), (iv), and (v).
The proof of Lemma 4.3 is thus complete.
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Corollary 4.4. Let f ∈ N, d ∈ N satisfy R(f) ∈ C(Rd,R) (cf. Definitions 2.1 and 2.3). Then
there exists ℊ ∈ N such that

(i) it holds that R(ℊ) = R(f),

(ii) it holds that L(ℊ) = 4L(f) + 3,

(iii) it holds for all k ∈ N0 ∩ [0,L(ℊ)] that

Dk(ℊ) =































Dk(f) : k ∈ N0 ∩ [0,L(f))
2 : k ∈ {L(f), 2L(f) + 1}
4 : k ∈ N ∩ (L(f), 2L(f) + 1)

4 : k ∈ N ∩ (2L(f) + 1,L(ℊ))
1 : k = L(ℊ),

(4.20)

(iv) it holds that P(ℊ) ≤ P(f) + DH(f)(f) + 60L(f) + 24, and

(v) it holds that S(ℊ) ≤ max{1, 2−2S(f)}

(cf. Definition 2.13).

Proof of Corollary 4.4. Observe that Lemma 4.3 (applied with f x f, d x d in the notation
of Lemma 4.3) implies that there exist ℊ ∈ N which satisfies that

(I) it holds for all x ∈ Rd that it holds that R(ℊ) = R(f),

(II) it holds that L(ℊ) = 2L(f) + 1,

(III) it holds for all k ∈ N0 ∩ [0,L(ℊ)] that

Dk(ℊ) =



















Dk(f) : k ∈ N0 ∩ [0,L(f))
2 : k = L(f)
4 : k ∈ N ∩ (L(f),L(ℊ))
1 : k = L(ℊ),

(4.21)

(IV) it holds that P(ℊ) ≤ P(f) + DH(f)(f) + 20L(f), and

(V) it holds that S(ℊ) ≤ max{1, 2−1S(f)}

(cf. Definition 2.13). Note that Lemma 4.3 (applied with f x ℊ, d x d in the notation of
Lemma 4.3) implies that there exist h ∈ N which satisfies that

(I) it holds that R(h) = R(ℊ) = R(f),

(II) it holds that L(h) = 2(2L(f) + 1) + 1 = 4L(f) + 3,

37



(III) it holds for all k ∈ N0 ∩ [0,L(h)] that

Dk(h) =







































Dk(f) : k ∈ N0 ∩ [0,L(f))
2 : k = L(f)
4 : k ∈ N ∩ (L(f), 2L(f) + 1)

2 : k = 2L(f) + 1

4 : k ∈ N ∩ (2L(f) + 1,L(h))

1 : k = L(h),

(4.22)

(IV) it holds that P(h) ≤ P(f) + DH(f)(f) + 60L(f) + 24, and

(V) it holds that S(h) ≤ max{1, 2−2S(f)}.
Observe that item (I), item (II), item (III), item (IV), and item (V) establish items (i), (ii),
(iii), (iv), and (v). The proof of Corollary 4.4 is thus complete.

4.2 One-dimensional scaling ANNs

Lemma 4.5. Let β ∈ (0,∞), B, n ∈ N. Then there exists f ∈ N such that

(i) it holds for all x ∈ R that (R(f))(x) = (Bβ)nx,

(ii) it holds that D(f) = (1, 2B, 2B, . . . , 2B, 1) ∈ Nn+2,

(iii) it holds that S0(f) = 1, S1(f) = β, and S(f) = max{1, β}, and

(iv) it holds that P(f) = (4n− 4)B2 + (2n+ 4)B + 1

(cf. Definitions 2.1, 2.3, and 2.13).

Proof of Lemma 4.5. Throughout this proof let W1 ∈ R2B×1, W2 ∈ R1×2B, W3 ∈ R2B×2B satisfy

W1 =























1
−1
1
−1
...
1
−1























, W2 =
(

β −β β −β · · · β −β
)

, and W3 = W1W2, (4.23)

and let fk ∈ N, k ∈ N, satisfy for all k ∈ N that f1 = ((W1, 0), (W2, 0)) ∈ N , and fk+1 =
fk • f1 (cf. Definitions 2.1 and 2.8). Note that (4.23) implies that for all x ∈ R it holds that

(R(f1))(x) = B(β(R(x))− β(R(−x))) = Bβx. (4.24)

This and Proposition 2.10 demonstrate that for all x ∈ R, k ∈ N with ∀ y ∈ R : (R(fk))(y) =
(Bβ)ky it holds that

(R(fk+1))(x) = (R(fk • f1))(x) = (R(fk))
(

(R(f1))(x)
)

= (R(fk))(Bβx) = (Bβ)k+1x.
(4.25)
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Combining this and (4.24) with induction ensures that for all x ∈ R it holds that

(R(fn))(x) = (Bβ)nx. (4.26)

Furthermore, observe that (2.10) and (4.23) imply that

f2 = f1 • f1 =
(

(W1, 0), (W1W2,W1 · 0 + 0), (W2, 0)
)

=
(

(W1, 0), (W3, 0), (W2, 0)
)

. (4.27)

Combining this, (2.10), and (4.23) with induction demonstrates that

fn =
(

(W1, 0), (W3, 0), (W3, 0), . . . , (W3, 0), (W2, 0)
)

∈
(

(R2B×1 × R
2B)×

(

×n−1
k=1(R

2B×2B × R
2B)

)

× (R1×2B × R
1)
)

.
(4.28)

This and (4.23) show that

S0(fn) = S0(f1) = 1, S1(fn) = S1(f1) = β, and S(fn) = S(f1) = max{1, β} (4.29)

Moreover, note that (4.28) ensures that

D(fn) = (1, 2B, 2B, . . . , 2B, 1) ∈ N
n+2. (4.30)

Hence we obtain that

P(fn) =
∑n+1

k=1 Dk(Dk−1 + 1) = 2B(1 + 1) + (n− 1)(2B(2B + 1)) + 1(2B + 1)

= 4(n− 1)B2 + (4 + 2(n− 1) + 2)B + 1

= (4n− 4)B2 + (2n+ 4)B + 1.

(4.31)

(cf. Definitions 2.2, 2.3, and 2.13). Combining this (4.26), (4.29), (4.30), and (4.28) establishes
items (i), (ii), (iii), and (iv). The proof of Lemma 4.5 is thus complete.

Corollary 4.6. Let β ∈ R\{0}, L ∈ N0 satisfy L ≥ log2(|β|). Then there exists f ∈ N such
that

(i) it holds for all x ∈ R that (R(f))(x) = βx,

(ii) it holds that D(f) = (1, 2, 2, . . . , 2, 1) ∈ NL+2,

(iii) it holds that S0(f) ≤ 1, S1(f) ≤ 2, and S(f) ≤ 2, and

(iv) it holds that P(f) ≤ 6max{L, 1}+ 1

(cf. Definitions 2.1, 2.3, and 2.13).

Proof of Corollary 4.6. Throughout this proof assume w.l.o.g. that L = min(N0∩[log2(|β|),∞))
(cf. Corollary 4.1) and |β| > 1 (otherwise consider ((β), 0) ∈ (R1×1 ×R) ⊆ N), and let ℊ2 ∈ N
satisfy

ℊ2 =
((

β
|β|

)

, 0
)

∈
(

R
1×1 × R

1
)

(4.32)

(cf. Definition 2.1). Observe that Lemma 4.5 (applied with β x |β| 1
L , n x L, B x 1 in the

notation of Lemma 4.5) shows that there exists ℊ1 ∈ N which satisfies that
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(I) it holds for all x ∈ R that (R(ℊ1))(x) = |β|x,

(II) it holds that D(ℊ1) = (1, 2, 2, . . . , 2, 1) ∈ NL+2,

(III) it holds that S0(ℊ1) = 1, S1(ℊ1) = |β| 1
L , and S(ℊ1) = |β| 1

L , and

(IV) it holds that P(ℊ1) = 6L+ 1

(cf. Definitions 2.3 and 2.13). Note that (4.32), item (II), and Lemma 2.11 demonstrate that

D(ℊ2 • ℊ1) = D(ℊ1) = (1, 2, 2, . . . , 2, 1) ∈ N
L+2 and P(ℊ2 • ℊ1) = P(ℊ1) = 6L+ 1 (4.33)

(cf. Definition 2.8). Furthermore, observe that (4.32), item (I), and Proposition 2.10 imply that
for all x ∈ R it holds that

(R(ℊ2 • ℊ1))(x) = (R(ℊ2))(R(ℊ1)(x)) =
β
|β|
(|β|x) = βx. (4.34)

Moreover, note that (2.10), (4.32), item (III), Lemma 2.16, and the fact that |β| 1
L ≤ 2 imply

that for all x ∈ R it holds that S0(ℊ2 • ℊ1) = S0(ℊ1) = 1,

S1(ℊ2 • ℊ1) =
∣

∣

β
|β|

∣

∣S1(ℊ1) ≤ 2, and S(ℊ2 • ℊ1) ≤ max{S(ℊ1), S1(ℊ2 • ℊ1)} ≤ 2.

(4.35)
Combining this and (4.33) with (4.34) establishes items (i), (ii), (iii), and (iv). The proof of
Corollary 4.6 is thus complete.

4.3 Upper bounds for approximations of product functions

Lemma 4.7. Let N ∈ N. Then there exists f ∈ N such that

(i) it holds that R(f) ∈ C(R,R),

(ii) it holds that supx∈[0,1]

∣

∣x2 − (R(f))(x)
∣

∣ ≤ 4−N−1,

(iii) it holds for all x ∈ R\[0, 1] that (R(f))(x) = R(x),

(iv) it holds for all x, y ∈ R that
∣

∣(R(f))(x)− (R(f))(y)
∣

∣ ≤ 2|x− y|,

(v) it holds that D(f) = (1, 4, 4, . . . , 4, 1) ∈ NN+2, and

(vi) it holds that S(f) ≤ 4

(cf. Definitions 2.1, 2.2, 2.3, and 2.13).

Proof of Lemma 4.7. Observe that Lemma 5.1 and Lemma 5.2 in Grohs et al. [13] proves that
there exists f ∈ N which satisfies that

(I) it holds that R(f) ∈ C(R,R),

(II) it holds that supx∈[0,1]

∣

∣x2 − (R(f))(x)
∣

∣ ≤ 4−N−1,

(III) it holds for all x ∈ R\[0, 1] that (R(f))(x) = R(x),
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(IV) it holds for all k ∈ {0, 1, . . . , 2N − 1}, x ∈
[

k
2N

, k+1
2N

)

that (R(f))(x) =
(

2N+1
2N

)

x− k2+k
22N

,

(V) it holds that D(f) = (1, 4, 4, . . . , 4, 1) ∈ NN+2, and

(VI) it holds that S(f) ≤ 4

(cf. Definitions 2.1, 2.2, 2.3, and 2.13). Note that item (I), item (III), item (IV), and the
triangle inequality ensure that for all x, y ∈ R it holds that

∣

∣(R(f))(x)− (R(f))(y)
∣

∣ ≤ max
{

1, 2
N+1−1
2N

}

|x− y| ≤ 2|x− y|. (4.36)

Combining this with items (I), (II), (III), (V), and (VI) establishes items (i), (ii), (iii), (iv),
(v), and (vi). The proof of Lemma 4.7 is thus complete.

Definition 4.8 (Ceiling of real numbers). We denote by ⌈·⌉ : R → Z the function which satisfies
for all x ∈ R that ⌈x⌉ = min(Z ∩ [x,∞)).

Lemma 4.9. Let N ∈ N, R ∈ (1,∞). Then there exists f ∈ N such that

(i) it holds that R(f) ∈ C(R,R),

(ii) it holds that supx∈[−R,R]

∣

∣x2 − (R(f))(x)
∣

∣ ≤ R24−N−1,

(iii) it holds for all x, y ∈ R that
∣

∣(R(f))(x)− (R(f))(y)
∣

∣ ≤ 2R|x− y|,

(iv) it holds that L(f) = N + ⌈log2(R)⌉ + 4,

(v) it holds for all k ∈ N0 ∩ [0,L(f)] that

Dk(f) =































1 : k = 0

2 : k ∈ N ∩ (0, 2]

4 : k ∈ N ∩ (2, N + 2]

2 : k ∈ N ∩ (N + 2, N + ⌈log2(R)⌉ + 4)

1 : k = N + ⌈log2(R)⌉+ 4,

(4.37)

and

(vi) it holds that S(f) ≤ 4

(cf. Definitions 2.1, 2.3, 2.13, and 4.8).

Proof. Throughout this proof let n ∈ N satisfy n = ⌈log2(R)⌉ and let ℊ1 ∈ N, satisfy

ℊ1 =

(((

R−1

−R−1

)

,

(

0
0

))

,
((

1 1
)

, 0
)

)

∈
((

R
2×1 × R

2
)

×
(

R
1×2 × R

))

(4.38)

(cf. Definitions 2.1 and 4.8). Furthermore, observe that Lemma 4.7 (applied with N x N in
the notation of Lemma 4.7) shows that there exists ℊ2 ∈ N which satisfies that

(I) it holds that R(ℊ2) ∈ C(R,R),
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(II) it holds that supx∈[0,1]

∣

∣x2 − (R(ℊ2))(x)
∣

∣ ≤ 4−N−1,

(III) it holds for all x ∈ R\[0, 1] that (R(ℊ2))(x) = R(x),

(IV) it holds for all x, y ∈ R that
∣

∣(R(ℊ2))(x)− (R(ℊ2))(y)
∣

∣ ≤ 2|x− y|,

(V) it holds that D(ℊ2) = (1, 4, 4, . . . , 4, 1) ∈ NN+2, and

(VI) it holds that S(ℊ2) ≤ 4

(cf. Definitions 2.2, 2.3, and 2.13). Note that Lemma 4.5 (applied with β x R
2
n , B x 1, n x n

in the notation of Lemma 4.5) shows that there exists ℊ3 ∈ N which satisfies that

(A) it holds for all x ∈ R that (R(ℊ3))(x) = R2x,

(B) it holds that D(ℊ3) = (1, 2, 2, . . . , 2, 1) ∈ N
n+2, and

(C) it holds that S0(ℊ3) = 1, S1(ℊ3) = R
2
n , and S(ℊ3) = R

2
n .

Next let f ∈ N satisfy
f = ℊ3 • I1 • ℊ2 • I1 • ℊ1 (4.39)

(cf. Definitions 2.6 and 2.8). Observe that (4.38), item (V), item (B), Proposition 2.10,
Lemma 2.11, and Proposition 2.7 demonstrate that for all k ∈ N0 ∩ [0,L(f)] it holds that

L(f) = N + n+ 4 and Dk(f) =































1 : k = 0

2 : k ∈ N ∩ (0, 2]

4 : k ∈ N ∩ (2, N + 2]

2 : k ∈ N ∩ (N + 2, N + n+ 4)

1 : k = N + n+ 4.

(4.40)

Moreover, note that (4.38), (4.39), item (A), Proposition 2.10, and Proposition 2.7 prove that
for all x ∈ R it holds that

R(f) ∈ C(R,R) and (R(f))(x) = R2
[

(R(ℊ2))
(

|x|
R

)]

. (4.41)

Combining this with item (II) demonstrates that for all x ∈ [−R,R] it holds that

|x2 − (R(f))(x)| =
∣

∣R2
[ |x|
R

]2 −R2
[

(R(ℊ2))
( |x|

R

)]∣

∣ ≤ R24−N−1. (4.42)

In addition, observe that (4.41) and item (IV) imply that for all x, y ∈ R it holds that

|(R(f))(x)− (R(f))(y)| =
∣

∣R2
[

(R(ℊ2))
( |x|

R

)]

−R2
[

(R(ℊ2))
( |y|

R

)]∣

∣

≤ 2R2
∣

∣

|x|
R
− |y|

R

∣

∣ ≤ 2R|x− y|.
(4.43)

Furthermore, note that (4.38), (4.39), item (VI), item (C), Proposition 2.18, and the fact that
1 < R ≤ 2n ensure that

S(f) ≤ max{S(ℊ3),S(ℊ2),S(ℊ1)} ≤ max
{

R
2
n , 4, 1

}

= 4. (4.44)

Combining this with (4.40), (4.41), (4.42), and (4.43), establishes items (i), (ii), (iii), (iv), (v),
and (vi). The proof of Lemma 4.9 is thus complete.
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Lemma 4.10. Let N ∈ N, R ∈ (1,∞). Then there exists f ∈ N such that

(i) it holds that R(f) ∈ C(R2,R),

(ii) it holds that supx,y∈[−R,R]

∣

∣xy − (R(f))(x, y)
∣

∣ ≤ 3R22−2N−1,

(iii) it holds for all x, y ∈ R2 that
∣

∣(R(f))(x)− (R(f))(y)
∣

∣ ≤
√
32R‖x− y‖2,

(iv) it holds that L(f) = N + ⌈log2(R)⌉ + 7,

(v) it holds for all k ∈ N0 ∩ [0,L(f)] that

Dk(f) =































2 : k = 0

6 : k ∈ N ∩ (0, 3]

12 : k ∈ N ∩ (3, N + 3]

6 : k ∈ N ∩ (N + 3, N + ⌈log2(R)⌉+ 7)

1 : k = N + ⌈log2(R)⌉ + 7,

(4.45)

and

(vi) it holds that S(f) ≤ 4

(cf. Definitions 2.1, 2.3, 2.13, 3.14, and 4.8).

Proof of Lemma 4.10. Throughout this proof let ℊ1 ∈ (R3×2 × R3) ⊆ N, ℊ3 ∈ (R1×3 × R) ⊆ N
satisfy

ℊ1 =









1 1
1 0
0 1



,





0
0
0







 and ℊ3 =
((

1
2

−1
2

−1
2

)

, 0
)

(4.46)

(cf. Definition 2.1). Observe that (4.46) ensures that

D(ℊ1) = (2, 3), D(ℊ3) = (3, 1), R(ℊ1) ∈ C(R2,R3), and R(ℊ3) ∈ C(R3,R) (4.47)

(cf. Definition 2.3). Furthermore, note that (4.46) implies that for all x, y, z ∈ R it holds that

(R(ℊ1))(x, y) = (x+ y, x, y) and (R(ℊ3))(x, y, z) =
x− y − z

2
. (4.48)

Observe that Lemma 4.9 (applied with N x N , R x 2R in the notation of Lemma 4.9) shows
that there exists ℊ2 ∈ N which satisfies that

(I) it holds that R(ℊ2) ∈ C(R,R),

(II) it holds that supx∈[−2R,2R]

∣

∣x2 − (R(ℊ2))(x)
∣

∣ ≤ R24−N ,

(III) it holds for all x, y ∈ R that
∣

∣(R(ℊ2))(x)− (R(ℊ2))(y)
∣

∣ ≤ 4R|x− y|,

(IV) it holds that L(ℊ2) = N + ⌈log2(2R)⌉+ 4,
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(V) it holds for all k ∈ N0 ∩ [0,L(ℊ2)] that

Dk(ℊ2) =































1 : k = 0

2 : k ∈ N ∩ (0, 2]

4 : k ∈ N ∩ (2, N + 2]

2 : k ∈ N ∩ (N + 2, N + ⌈log2(2R)⌉+ 4)

1 : k = N + ⌈log2(2R)⌉+ 4,

(4.49)

and

(VI) it holds that S(ℊ2) ≤ 4

(cf. Definitions 2.13 and 4.8). Next let f ∈ N satisfy

f = ℊ3 • I3 • (P3(ℊ2,ℊ2,ℊ2)) • I3 • ℊ1 (4.50)

(cf. Definitions 2.4, 2.6, and 2.8). Note that (4.47), (4.50), item (IV), Proposition 2.10, Propo-
sition 2.5, and Proposition 2.7 ensure that

L(f) = L(ℊ3) + L(I3) + L(P3(ℊ2,ℊ2,ℊ2)) + L(I3) + L(ℊ1)− 4

= 1 + 2 + L(ℊ2) + 2 + 1− 4

= N + ⌈log2(2R)⌉ + 6 = N + ⌈log2(R)⌉+ 7.

(4.51)

This, (4.47), (4.50), item (V), Lemma 2.11, Proposition 2.5, and Proposition 2.7 ensure that
for all k ∈ N0 ∩ [0,L(f)] it holds that

Dk(f) =































2 : k = 0

6 : k ∈ N ∩ (0, 3]

12 : k ∈ N ∩ (3, N + 3]

6 : k ∈ N ∩ (N + 3, N + ⌈log2(R)⌉+ 7)

1 : k = N + ⌈log2(R)⌉ + 7,

(4.52)

Next observe that (4.48), (4.50), Proposition 2.10, and Proposition 2.7 prove that for all x, y ∈ R

it holds that R(f) ∈ C(R2,R) and

(R(f))(x, y) = 1
2

[

(R(ℊ2))(x+ y)− (R(ℊ2))(x)− (R(ℊ2))(y)
]

. (4.53)

This and item (II) demonstrate that for all x, y ∈ [−R,R] it holds that

|xy − (R(f))(x, y)|
= 1

2

∣

∣(x+ y)2 − x2 − y2 − (R(ℊ2))(x+ y) + (R(ℊ2))(x) + (R(ℊ2))(y)
∣

∣

≤ 1
2
|(x+ y)2 − (R(ℊ2))(x+ y)|+ 1

2
|x2 − (R(ℊ2))(x)|+ 1

2
|y2 − (R(ℊ2))(y)|

≤ 3
2

(

R24−N
)

= 3R22−2N−1.

(4.54)
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Moreover, note that (4.53) and item (III) show that for all x1, x2, y1, y2 ∈ R it holds that

|(R(f))(x1, x2)− (R(f))(y1, y2)|
≤ 1

2

(

|(R(ℊ2))(x1 + x2)− (R(ℊ2))(y1 + y2)|
+ |(R(ℊ2))(x1)− (R(ℊ2))(y1)|+ |(R(ℊ2))(x2)− (R(ℊ2))(y2)|

)

≤ 2R
(

|(x1 + x2)− (y1 + y2)|+ |x1 − y1|+ |x2 − y2|
)

≤ 4R(|x1 − y1|+ |x2 − y2|) ≤
√
32R‖(x1 − y1, x2 − y2)‖2

(4.55)

(cf. Definition 3.14). In addition, observe that (4.46), (4.50), item (VI), Lemma 2.14, and
Proposition 2.18 imply that

S(f) = max{S(ℊ3),S(P3(ℊ2,ℊ2,ℊ2)),S(ℊ1)} = max{S(ℊ3),S(ℊ2),S(ℊ1)}
≤ max

{

1
2
, 4, 1

}

= 4.
(4.56)

This, (4.52), (4.53), (4.54), and (4.55) establish items (i), (ii), (iii), (iv), (v), and (vi). The
proof of Lemma 4.10 is thus complete.

Lemma 4.11. Let L ∈ R, d ∈ N, m1, m2, . . . , md ∈ N, let gi ∈ C(Rmi ,R), i ∈ {1, 2, . . . , d},
satisfy for all i ∈ {1, 2, . . . , d}, x, y ∈ R

mi that |gi(x) − gi(y)| ≤ L‖x − y‖2, and let f ∈
C
(

R[
∑d

i=1 mi],Rd
)

satisfy for all x = (x1, . . . , xd) ∈
(

×d
i=1R

mi
)

that f(x) = (g1(x1), g2(x2), . . . ,

gd(xd)). Then it holds for all x, y ∈ R[
∑d

i=1 mi] that

‖f(x)− f(y)‖2 ≤ L‖x− y‖2 (4.57)

(cf. Definition 3.14).

Proof of Lemma 4.11. Note that Beneventano et al. [3, Lemma 3.22] establishes (4.57). The
proof of Lemma 4.11 is thus complete.

Lemma 4.12. Let d,N ∈ N, R ∈ (1,∞). Then there exists f ∈ N such that

(i) it holds that R(f) ∈ C(R2d,Rd),

(ii) it holds for all x = (x1, . . . , x2d) ∈ [−R,R]2d that

‖(x1x2, x3x4, . . . , x2d−1x2d)− (R(f))(x)‖2 ≤ 3R2d
1
22−2N−1, (4.58)

(iii) it holds for all x, y ∈ R2d that
∥

∥(R(f))(x)− (R(f))(y)
∥

∥

2
≤

√
32R‖x− y‖2,

(iv) it holds that L(f) = N + ⌈log2(R)⌉ + 7,

(v) it holds for all k ∈ N0 ∩ [0,L(f)] that

Dk(f) =































2d : k = 0

6d : k ∈ N ∩ (0, 3]

12d : k ∈ N ∩ (3, N + 3]

6d : k ∈ N ∩ (N + 3, N + ⌈log2(R)⌉+ 7)

d : k = N + ⌈log2(R)⌉+ 7,

(4.59)
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(vi) it holds that P(f) = 234d2 + 49d+N(144d2 + 12d) + ⌈log2(R)⌉(36d2 + 6d), and

(vii) it holds that S(f) ≤ 4

(cf. Definitions 2.1, 2.3, 2.13, 3.14, and 4.8).

Proof of Lemma 4.12. Observe that Lemma 4.10 (applied with N x N , R x R in the notation
of Lemma 4.10) proves that there exists ℊ ∈ N which satisfies that

(I) it holds that R(ℊ) ∈ C(R2,R),

(II) it holds for all x, y ∈ R2 that |(R(ℊ))(x)− (R(ℊ))(y)| ≤
√
32R‖x− y‖2,

(III) it holds that supx,y∈[−R,R]|xy − (R(ℊ))(x, y)| ≤ 3R22−2N−1,

(IV) it holds that L(ℊ) = N + ⌈log2(R)⌉ + 7,

(V) it holds for all k ∈ N0 ∩ [0,L(ℊ)] that

Dk(ℊ) =































2 : k = 0

6 : k ∈ N ∩ (0, 3]

12 : k ∈ N ∩ (3, N + 3]

6 : k ∈ N ∩ (N + 3, N + ⌈log2(R)⌉ + 7)

1 : k = N + ⌈log2(R)⌉+ 7,

(4.60)

and

(VI) it holds that S(ℊ) ≤ 4

(cf. Definitions 2.1, 2.3, 2.13, 3.14, and 4.8). Next let f ∈ N satisfy

f = Pd(ℊ,ℊ, . . . ,ℊ) (4.61)

(cf. Definition 2.4). Note that (4.61), item (IV), item (V), and Proposition 2.5 ensure that for
all k ∈ N0 ∩ [0,L(f)] it holds that

L(f) = N + ⌈log2(R)⌉+7 and Dk(f) =































2d : k = 0

6d : k ∈ N ∩ (0, 3]

12d : k ∈ N ∩ (3, N + 3]

6d : k ∈ N ∩ (N + 3, N + ⌈log2(R)⌉+ 7)

d : k = N + ⌈log2(R)⌉+ 7.

(4.62)
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Hence we obtain that

P(f)

=

L(f)
∑

k=1

Dk(f)(Dk−1(f) + 1)

= D1(f)(D0(f) + 1) + D2(f)(D1(f) + 1) + D3(f)(D2(f) + 1) + D4(f)(D3(f) + 1)

+

[

N+3
∑

k=5

Dk(f)(Dk−1(f) + 1)

]

+ DN+4(f)(DN+3(f) + 1)

+





L(f)−1
∑

k=N+5

Dk(f)(Dk−1(f) + 1)



+ DL(f)(f)
(

DL(f)−1(f) + 1
)

= 6d(2d+ 1) + 2(6d(6d+ 1)) + 12d(6d+ 1) +

[

N+1
∑

k=3

12d(12d+ 1)

]

+ 6d(12d+ 1)

+





L(f)−1
∑

k=N+3

6d(6d+ 1)



+ d(6d+ 1)

= (12 + 72 + 72 + 72 + 6)d2 + (6 + 12 + 12 + 6 + 1)d+ (N − 1)(144d2 + 12d)

+ (L(f)−N − 3)(36d2 + 6d)

= 234d2 + 37d+ (N − 1)(144d2 + 12d) + (⌈log2(R)⌉+ 4)(36d2 + 6d)

= 234d2 + 49d+N(144d2 + 12d) + ⌈log2(R)⌉(36d2 + 6d).

(4.63)

Furthermore, observe that (4.61), item (III), and Proposition 2.5 show that for all x = (x1, . . . ,
x2d) ∈ [−R,R]2d it holds that R(f) ∈ C(R2d,Rd) and

‖(x1x2, x3x4, . . . , x2d−1x2d)− (R(f))(x)‖2

=

[

d
∑

i=1

|x2i−1x2i − (R(ℊ))(x2i−1, x2i)|2
]

1
2

≤
[

d
∑

i=1

9R42−4N−2

]
1
2

= 3R2d
1
22−2N−1.

(4.64)

Moreover, note that item (VI) and Lemma 2.14 ensure that

S(f) = S(ℊ) ≤ 4. (4.65)

Next we combine (4.61), item (II), and Proposition 2.5 with Lemma 4.11 (applied with L x√
32R, d x d, (g1, g2, . . . , gd) x (R(ℊ),R(ℊ), . . . ,R(ℊ)), f x R(f) in the notation of

Lemma 4.11) to obtain that for all x, y ∈ R
2d it holds that

‖(R(f))(x)− (R(f))(y)‖2 ≤
√
32R‖x− y‖2. (4.66)

This, (4.62), (4.63), (4.64), and (4.65) establish items (i), (ii), (iii), (iv), (v), (vi), and (vii).
The proof of Lemma 4.12 is thus complete.

Lemma 4.13. Let n ∈ N, d0, d1, . . . , dn ∈ N, L1, L2, . . . , Ln, ε1, ε2, . . . , εn ∈ [0,∞), let Di ⊆
Rdi−1 , i ∈ {1, 2, . . . , n}, be sets, for every i ∈ {1, 2, . . . , n} let fi : Di → Rdi and gi : R

di−1 → Rdi

satisfy for all x ∈ Di that
‖fi(x)− gi(x)‖2 ≤ εi, (4.67)
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and assume for all j ∈ N ∩ (0, n), x, y ∈ Rdj that

fj(Dj) ⊆ Dj+1 and ‖gj+1(x)− gj+1(y)‖2 ≤ Lj+1‖x− y‖2 (4.68)

(cf. Definition 3.14). Then it holds for all x ∈ D1 that

‖(fn ◦ fn−1 ◦ . . . ◦ f1)(x)− (gn ◦ gn−1 ◦ . . . ◦ g1)(x)‖2 ≤
n
∑

i=1

[(

n
∏

j=i+1

Lj

)

εi

]

. (4.69)

Proof of Lemma 4.13. Observe that Beneventano et al. [3, Lemma 6.5] establishes (4.69). The
proof of Lemma 4.13 is thus complete.

Lemma 4.14. Let d ∈ N, ε ∈ (0, 1), R ∈ (1,∞). Then there exists f ∈ N such that

(i) it holds that R(f) ∈ C(R(2d),R),

(ii) it holds for all x = (x1, . . . , x2d) ∈ [−R,R](2
d) that

∣

∣

∏2d

i=1 xi − (R(f))(x)
∣

∣ ≤ ε,

(iii) it holds for all x, y ∈ R(2d) that
∣

∣(R(f))(x)− (R(f))(y)
∣

∣ ≤ 2
5d
2R(2d−1)‖x− y‖2,

(iv) it holds that L(f) ≤ d2d+2 + d2d⌈log2(R)⌉ − d log2(ε)
2

,

(v) it holds that that D1(f) = 2d 3 and DH(f)(f) = 6,

(vi) it holds that P(f) ≤ 23d+10 + 23d+8⌈log2(R)⌉ − 22d+7 log2(ε), and

(vii) it holds that S(f) ≤ 4

(cf. Definitions 2.1, 2.3, 2.13, 3.14, and 4.8).

Proof of Lemma 4.14. Throughout this proof assume w.l.o.g. that d > 1, for every i ∈ {1, 2, . . . , d}
let Ni ∈ N satisfy Ni =

⌈

8d−5i
4

+(2d−1−2i−1+1) log2(R)− 1
2
log2(ε)+

1
2

⌉

, for every i ∈ {1, 2, . . . , d}
let Di ⊆ R(2d−i+1) satisfy Di =

[

−R(2i−1), R(2i−1)
](2d−i+1)

, and for every i ∈ {1, 2, . . . , d} let

pi : Di → R(2d−i) satisfy for all x = (x1, x2, . . . , x2d−i+1) ∈ Di that

pi(x) = (x1x2, x3x4, . . . , x2d−i+1−1x2d−i+1). (4.70)

Note that the fact that for all i ∈ {1, 2, . . . , d} it holds that Ni ≥ 8d−5i
4

+ (2d−1 − 2i−1 +
1) log2(R)− 1

2
log2(ε) +

1
2
and the fact that for all k ∈ N it holds that 2−k ≤ k−1 imply that for

all i ∈ {1, 2, . . . , d} it holds that

2
5d−5i

2 R(2d−2i)3R2d
1
22−2Ni−1 ≤ 2

5d−5i
2 R(2d−2i)3R2d

1
22−( 8d−5i

2
+(2d−2i+2) log2(R)−log2(ε)+1)−1

= 2−
3d
2
−2R(2d−2i)3R2d

1
2R−(2d−2i+2)ε

= 2−
3d
2
−23d

1
2 ε

≤ 2−
3d
2 d

1
2ε ≤ d−

3
2d

1
2ε = d−1ε.

(4.71)

Observe that Lemma 4.12 (applied with d x 2d−i, N x Ni, R x R(2i−1), ε x 2
5i−5d

2 R(2i−2d)d−1ε
for i ∈ {1, 2, . . . , d} in the notation of Lemma 4.12) shows that for every i ∈ {1, 2, . . . , d} there
exists hi ∈ N which satisfies that
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(I) it holds that R(hi) ∈ C
(

R(2d−i+1),R(2d−i)
)

,

(II) it holds that supx∈Di
‖pi(x)− (R(hi))(x)‖2 ≤ 3R(2i)2

d−i
2 2−2Ni−1,

(III) it holds for all x, y ∈ R(2d−i+1) that
∥

∥(R(hi))(x)− (R(hi))(y)
∥

∥

2
≤

√
32R(2i−1)‖x− y‖2,

(IV) it holds that L(hi) = Ni + ⌈2i−1 log2(R)⌉ + 7,

(V) it holds for all k ∈ N0 ∩ [0,L(hi)] that

Dk(hi) =































2d−i+1 : k = 0

2d−i+1 3 : k ∈ N ∩ (0, 3]

2d−i+2 3 : k ∈ N ∩ (3, Ni + 3]

2d−i+1 3 : k ∈ N ∩ (Ni + 3, Ni + ⌈2i−1 log2(R)⌉ + 7]

2d−i : k = Ni + ⌈2i−1 log2(R)⌉ + 7,

(4.72)

(VI) it holds that P(hi) = 22d−2i234+ 2d−i49 +Ni(2
2d−2i144+ 2d−i12) + ⌈log2(R)⌉(22d−2i36+

2d−i6), and

(VII) it holds that S(hi) ≤ 4

(cf. Definitions 2.1, 2.3, 2.13, 3.14, and 4.8). Next let f ∈ N satisfy

f = hd • I2 •hd−1 • I22 • . . . •h2 • I2d−1 •h1 (4.73)

(cf. Definitions 2.6 and 2.8). Note that (4.73), item (I), Proposition 2.10, and Proposition 2.7
ensure that

R(f) = [R(hd)] ◦ [R(hd−1)] ◦ . . . ◦ [R(h1)] ∈ C
(

R
(2d),R

)

. (4.74)

Item (III), and induction therefore imply that for all x, y ∈ R(2d) it holds that
∣

∣(R(f))(x)− (R(f))(y)
∣

∣ ≤
(
√
32
)d
R(2d−1+2d−2+...+20)‖x− y‖2

= 2
5d
2R(2d−1)‖x− y‖2.

(4.75)

Next observe that the fact that for all i ∈ {1, 2, . . . , d}, x, y ∈ [−R(2i−1), R(2i−1)] it holds that
xy ∈ [−R(2i), R(2i)] demonstrates that for all i ∈ {1, 2, . . . , d − 1} it holds that pi(Di) ⊆ Di+1.
Combining this, (4.70), (4.71), (4.73), (4.84), item (II), and item (III) with Lemma 4.13 (ap-
plied with n x d, (d0, d1, . . . , dn) x (2d, 2d−1, . . . , 20), (Li)i∈{1,2,...,n} x

(√
32R(2i−1)

)

i∈{1,2,...,d},

(εi)i∈{1,2,...,n} x
(

3R2d
1
22−2Ni−1

)

i∈{1,2,...,d}, (D1, D2, . . . , Dn) x (D1, D2, . . . , Dd), (f1, f2, . . . , fn) x
(p1, p2, . . . , pd), (g1, g2, . . . , gn) x (R(h1),R(h2), . . . ,R(hd)) in the notation of Lemma 4.13)
ensures that for all x = (x1, x2, . . . , x2d) ∈ [−R,R](2

d) it holds that
∣

∣

∣

∣

[

2d
∏

i=1

xi

]

− (R(f))(x)

∣

∣

∣

∣

=
∣

∣(pd ◦ pd−1 ◦ . . . ◦ p1)(x)−
(

[R(hd)] ◦ [R(hd−1)] ◦ . . . ◦ [R(h1)]
)

(x)
∣

∣

≤
d
∑

i=1

[(

d
∏

j=i+1

√
32R(2j−1)

)

3R2d
1
22−2Ni−1

]

=

[

d
∑

i=1

2
5d−5i

2 R(2d−2i)3R2d
1
22−2Ni−1

]

≤
[

d
∑

i=1

d−1ε

]

= ε.

(4.76)
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Furthermore, note that (4.73), item (V), and Lemma 2.11 demonstrate that

DL(f)−1(f) = DL(hd)−1(hd) = 2d−d+1 3 = 6, and D1(f) = D1(h1) = 2d 3. (4.77)

Moreover, observe that (4.73), item (VII), and Proposition 2.18 show that

S(f) ≤ max{S(h1),S(h2), . . . ,S(hd)} ≤ 4. (4.78)

In addition, note that the assumption that d ∈ N, ε ∈ (0, 1), and R ∈ [1,∞) ensure that for all
i ∈ {1, 2, . . . , d} it holds that

Ni =
⌈

8d−5i
4

+ (2d−1 − 2i−1 + 1) log2(R)− 1
2
log2(ε) +

1
2

⌉

≤ 2d+ 3
2
+ 2d−1⌈log2(R)⌉ − 1

2
log2(ε)

≤ 2d+1 + 2d−1⌈log2(R)⌉ − 1
2
log2(ε).

(4.79)

Thus, item (V) implies that for all i ∈ {1, 2, . . . , d} it holds that

P(hi) = 22d−2i234 + 2d−i49 +Ni(2
2d−2i144 + 2d−i12) + ⌈log2(R)⌉(22d−2i36 + 2d−i6)

≤ 22d−2i283 + 22d−2i156Ni + 22d−2i42⌈log2(R)⌉
≤ 22d−2i+9 + 22d−2i+8Ni + 22d−2i+6⌈log2(R)⌉
≤ 22d−2i+9 + 22d−2i+8

(

2d+1 + 2d−1⌈log2(R)⌉ − 1
2
log2(ε)

)

+ 22d−2i+6⌈log2(R)⌉
= 22d−2i+9 + 23d−2i+9 +

(

23d−2i+7 + 22d−2i+6
)

⌈log2(R)⌉ − 22d−2i+7 log2(ε)

≤ 23d−2i+10 + 23d−2i+8⌈log2(R)⌉ − 22d−2i+7 log2(ε)

= 22d−2i
(

2d+10 + 2d+8⌈log2(R)⌉ − 27 log2(ε)
)

.

(4.80)

Combining this and [3, Proposition 2.19] with the fact that
∑d−1

i=0 4
i = 4d−1

3
≤ 22d

3
shows that

P(f) ≤ 3

[

d
∑

i=1

P(hi)

]

− P(h1)−P(hd)

≤ 3

[

d
∑

i=1

22d−2i
(

2d+10 + 2d+8⌈log2(R)⌉ − 27 log2(ε)
)

]

= 3

[

d−1
∑

i=0

4i
]

(

2d+10 + 2d+8⌈log2(R)⌉ − 27 log2(ε)
)

≤ 22d
(

2d+10 + 2d+8⌈log2(R)⌉ − 27 log2(ε)
)

= 23d+10 + 23d+8⌈log2(R)⌉ − 22d+7 log2(ε).

(4.81)
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Furthermore, observe that (4.73), (4.79), item (IV), and Proposition 2.10 show that

L(f) =
[

d
∑

i=1

L(hi)

]

+

[

d−1
∑

i=1

L(I2i)
]

− 2(d− 1)

=

[

d
∑

i=1

Ni + ⌈2i−1 log2(R)⌉+ 7

]

+

[

d−1
∑

i=1

2

]

− 2(d− 1)

≤
[

d
∑

i=1

2d+1 + 2d−1⌈log2(R)⌉ − 1
2
log2(ε) + 2i−1⌈log2(R)⌉ + 7

]

≤
[

d
∑

i=1

2d+1 + 2d⌈log2(R)⌉ − 1
2
log2(ε) + 7

]

= d2d+1 + d2d⌈log2(R)⌉ − d
2
log2(ε) + 7d

≤ d2d+2 + d2d⌈log2(R)⌉ − d
2
log2(ε).

(4.82)

Combining this with (4.74), (4.75), (4.76), (4.77), (4.78), and (4.81) establishes items (i), (ii),
(iii), (iv), (v), (vi), and (vii). The proof of Lemma 4.14 is thus complete.

Lemma 4.15. Let d ∈ N, ε ∈ (0, 1), R ∈ (1,∞), γ ∈ (0, 1], β ∈ [1,∞). Then there exists
f ∈ N such that

(i) it holds that R(f) ∈ C(Rd,R),

(ii) it holds that supx=(x1,...,xd)∈[−R,R]d

∣

∣γβd
∏d

i=1 xi − (R(f))(x)
∣

∣ ≤ ε,

(iii) it holds for all x, y ∈ R
d that

∣

∣(R(f))(x)− (R(f))(y)
∣

∣ ≤
√
32d

5
2βdR2d−1‖x− y‖2,

(iv) it holds that L(f) ≤ 8d2 + 2d2⌈log2(R)⌉+ d log2(ε
−1) + d2⌈log2(β)⌉+ 2,

(v) it holds that that D1(f) ≤ 2d and DH(f)(f) = 2,

(vi) it holds that P(f) ≤ 8203d3 + 2048d3⌈log2(R)⌉ − 512d2 log2(ε) + 514d3 log2(β), and

(vii) it holds that S(f) ≤ 4

(cf. Definitions 2.1, 2.3, 2.13, 3.14, and 4.8).

Proof of Lemma 4.15. Throughout this proof assume w.l.o.g. that d > 1 (cf. Corollary 4.6), let
D ∈ N satisfy D = 2⌈log2(d)⌉, let A ∈ RD×d, B ∈ RD satisfy for all x = (x1, . . . , xd) ∈ Rd that

Ax+B = (γx1, x2, . . . , xd, 1, 1, . . . , 1), (4.83)

and let ℊ1 ∈ (RD×d × RD) ⊆ N satisfy ℊ1 = (A,B) (cf. Definitions 2.1 and 4.8). Note that
Lemma 4.14 (applied with d x ⌈log2(d)⌉, R x R, ε x εβ−d in the notation of Lemma 4.14)
ensures that there exists ℊ2 ∈ N which satisfies that

(I) it holds that R(ℊ2) ∈ C(RD,R),

(II) it holds that supx=(x1,...,xD)∈[−R,R]D

∣

∣

∏D
i=1 xi − (R(f))(x)

∣

∣ ≤ εβ−d,

(III) it holds for all x, y ∈ RD that
∣

∣(R(ℊ2))(x)− (R(ℊ2))(y)
∣

∣ ≤ D
5
2RD−1‖x− y‖2,
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(IV) it holds that L(ℊ2) ≤ 4⌈log2(d)⌉D + ⌈log2(d)⌉D⌈log2(R)⌉+ ⌈log2(d)⌉(d log2(β)−log2(ε))
2

,

(V) it holds that that D1(ℊ2) = 3D and DH(ℊ2)(ℊ2) = 6,

(VI) it holds that P(ℊ2) ≤ 210D3 + 28D3⌈log2(R)⌉ + 27D2(d log2(β)− log2(ε)), and

(VII) it holds that S(ℊ2) ≤ 4

(cf. Definitions 2.3, 2.13, and 3.14). Observe that Corollary 4.6 (applied with β x βd, L x

d⌈log2(β)⌉ in the notation of Corollary 4.6) shows that there exists ℊ3 ∈ N which satisfies that

(A) it holds for all x ∈ R that (R(ℊ3))(x) = βdx,

(B) it holds that D(ℊ3) = (1, 2, 2, . . . , 2, 1) ∈ Nd⌈log2(β)⌉+2,

(C) it holds that S0(f) ≤ 1, S1(f) ≤ 2, and S(ℊ3) ≤ 2, and

(D) it holds that P(ℊ3) ≤ 6d⌈log2(β)⌉+ 1

Note that Proposition 2.10, item (I), item (B), and the fact that R(ℊ1) ∈ C(Rd,RD) imply
that

R(ℊ3 • I1 • ℊ2 • ID • ℊ1) = [R(ℊ3)] ◦ [R(ℊ2)] ◦ [R(ℊ1)] ∈ C(Rd,R) (4.84)

(cf. Definitions 2.6 and 2.8). Furthermore, observe that item (III), item (A), (4.83), the fact
that D ≤ 2d, and the assumption that R > 1 show that for all x, y ∈ Rd it holds that

∣

∣(R(ℊ3 • I1 • ℊ2 • ID • ℊ1))(x)− (R(ℊ3 • I1 • ℊ2 • ID • ℊ1))(y)
∣

∣

=
∣

∣

(

[R(ℊ3)] ◦ [R(ℊ2)] ◦ [R(ℊ1)]
)

(x)−
(

[R(ℊ3)] ◦ [R(ℊ2)] ◦ [R(ℊ1)]
)

(y)
∣

∣

≤ βdD
5
2RD−1‖(R(ℊ1))(x)− (R(ℊ1))(y)‖2

= βdD
5
2RD−1‖Ax+B − (Ay +B)‖2

= D
5
2βdRD−1‖x− y‖2 ≤

√
32d

5
2βdR2d−1‖x− y‖2.

(4.85)

Moreover, note that (4.83) and the assumption that R > 1 ≥ γ ensure that for all x ∈ [−R,R]d

it holds that Ax+B ∈ [−R,R]D. Item (II), item (A), (4.83), and (4.84) therefore demonstrate
that for all x = (x1, . . . , xd) ∈ [−R,R]d it holds that

∣

∣

∣

∣

[

γβd
d
∏

i=1

xi

]

− (R(ℊ3 • I1 • ℊ2 • ID • ℊ1))(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

[

γβd
d
∏

i=1

xi

]

−
(

[R(ℊ3)] ◦ [R(ℊ2)] ◦ [R(ℊ1)]
)

(x)

∣

∣

∣

∣

= βd

∣

∣

∣

∣

[

1D−dγ
d
∏

i=1

xi

]

− (R(ℊ2))(γx1, x2, . . . , xd, 1, 1, . . . , 1)

∣

∣

∣

∣

≤ βdεβ−d = ε.

(4.86)

In addition, observe that (4.83), item (VII), item (C), and Proposition 2.17 imply that

S(ℊ3 • I1 • ℊ2 • ID • ℊ1) = max{S(ℊ3),S(ℊ2),S(ℊ1)} ≤ max{2, 4, 1} = 4. (4.87)
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Furthermore, note that item (IV), (4.89), Proposition 2.10, Proposition 2.7, and the fact that
max{D, 2⌈log2(d)⌉} ≤ 2d imply that

L(ℊ3 • I1 • ℊ2 • ID • ℊ1)

= L(ℊ3) + L(ℊ2) + L(ℊ1) + 4− 4

= L(ℊ3) + L(ℊ2) + 1 (4.88)

≤ (d⌈log2(β)⌉+ 1) +
(

4⌈log2(d)⌉D + ⌈log2(d)⌉D⌈log2(R)⌉+ ⌈log2(d)⌉(d log2(β)−log2(ε))
2

)

+ 1

≤ 8d2 + 2d2⌈log2(R)⌉+ log2(ε
−1)d+ d2⌈log2(β)⌉+ 2

This, Lemma 2.11, item (V), item (B), and (4.83) imply that for all k ∈ N0∩[0,L(ℊ3)+L(ℊ2)+1]
it holds that

Dk(ℊ3 • I1 • ℊ2 • ID • ℊ1) =































d : k = 0

2D : k = 1

Dk−1(ℊ2) : k ∈ N ∩ (1,L(ℊ2)]

2 : k ∈ N ∩ (L(ℊ2),L(ℊ3) + L(ℊ2) + 1)

1 : k = L(ℊ3) + L(ℊ2) + 1.

(4.89)

Combining this, item (V), item (VI), and item (B) with the fact that D0(ℊ2) = D, and
max{4, D} ≤ 2d shows that

P(ℊ3 • I1 • ℊ2 • ID • ℊ1)

=
L(ℊ3)+L(ℊ2)+1

∑

k=1

Dk(ℊ3 • I1 • ℊ2 • ID • ℊ1)(Dk−1(ℊ3 • I1 • ℊ2 • ID • ℊ1) + 1)

= 2D(d+ 1) + D1(ℊ2)(2D0(ℊ2) + 1) +

[

L(ℊ2)−1
∑

k=2

Dk(ℊ2)(Dk−1(ℊ2) + 1)

]

+ 2D0(ℊ3)(DL(ℊ2)−1(ℊ2) + 1) +

[

L(ℊ3)
∑

k=2

Dk(ℊ3)(Dk−1(ℊ3) + 1)

]

= 2D(d+ 1) + D1(ℊ2)D0(ℊ2) +

[

L(ℊ2)
∑

k=1

Dk(ℊ2)(Dk−1(ℊ2) + 1)

]

+ (DL(ℊ2)−1(ℊ2) + 1)− 3 +

[

L(ℊ3)
∑

k=1

Dk(ℊ3)(Dk−1(ℊ3) + 1)

]

= 2D(d+ 1) + 3D2 + P(ℊ2) + 7− 3 + P(ℊ3)

≤ 2D(d+ 1) + 3D2 + 210D3 + 28D3⌈log2(R)⌉ + 27D2(d log2(β)− log2(ε))

+ 4 + 6d⌈log2(β)⌉+ 1

≤ 4d(d+ 1) + 12d2 + 213d3 + 211d3⌈log2(R)⌉ − 29d2 log2(ε) + (29d3 + 6d) log2(β)

+ 6d+ 5

≤ (2 + 1 + 6 + 213 + 2)d3 + 211d3⌈log2(R)⌉ − 29d2 log2(ε) + (29 + 2)d3 log2(β)

= 8203d3 + 2048d3⌈log2(R)⌉ − 512d2 log2(ε) + 514d3 log2(β).

(4.90)

This, (4.84), (4.85), (4.86), (4.87), (4.89), and (4.90) establish items (i), (ii), (iii), (iv), (v), (vi),
and (vii). The proof of Lemma 4.15 is thus complete.
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Corollary 4.16. Let d ∈ N, ε ∈ (0,∞), a ∈ R, b ∈ [a,∞), γ ∈ (0, 1], β ∈ [1,∞). Then there
exists f ∈ N such that

(i) it holds that R(f) ∈ C(Rd,R),

(ii) it holds that supx=(x1,...,xd)∈[a,b]d

∣

∣γβd
∏d

i=1 xi − (R(f))(x)
∣

∣ ≤ ε,

(iii) it holds that L(f) ≤ 59d2max{1, ⌈log2(|a|)⌉, ⌈log2(|b|)⌉, log2(ε−1), ⌈log2(β)⌉},

(iv) it holds that P(f) ≤ 12143d3max{1, ⌈log2(|a|)⌉, ⌈log2(|b|)⌉, log2(ε−1), ⌈log2(β)⌉}, and

(v) it holds that S(f) ≤ 1

(cf. Definitions 2.1, 2.3, 2.13, and 4.8).

Proof of Corollary 4.16. Throughout this proof assume w.l.o.g. that max{|a|, |b|} > 1 > ε let
R ∈ (1,∞) satisfy R = max{|a|, |b|}. Observe that Lemma 4.15 (applied with d x d, ε x ε,
R x R, γ x γ, β x β in the notation of Lemma 4.15) shows that there exists ℊ ∈ N which
satisfies that

(I) it holds that R(ℊ) ∈ C(Rd,R),

(II) it holds that supx=(x1,...,xd)∈[−R,R]d

∣

∣γβd
∏d

i=1 xi − (R(ℊ))(x)
∣

∣ ≤ ε,

(III) it holds that L(ℊ) = 8d2 + 2d2⌈log2(R)⌉ + log2(ε
−1)d+ d2⌈log2(β)⌉+ 2,

(IV) it holds that that DH(ℊ)(ℊ) = 2,

(V) it holds that P(ℊ) ≤ 8203d3 + 2048d3⌈log2(R)⌉ − 512d2 log2(ε) + 514d3 log2(β), and

(VI) it holds that S(ℊ) ≤ 4

Note that item (III) implies that

L(ℊ) = 8d2 + 2d2⌈log2(R)⌉ + d log2(ε
−1) + d2⌈log2(β)⌉+ 2

≤ (8 + 2 + 1 + 1 + 2)d2max{1, ⌈log2(R)⌉, log2(ε−1), ⌈log2(β)⌉}
= 14d2max{⌈log2(R)⌉, log2(ε−1), ⌈log2(β)⌉}.

(4.91)

Observe that item (IV) demonstrates that

P(ℊ) ≤ 8203d3 + 2048d3⌈log2(R)⌉ − 512d2 log2(ε) + 514d3 log2(β)

≤ (8203 + 2048 + 512 + 514)d3max{1, ⌈log2(R)⌉, log2(ε−1), ⌈log2(β)⌉}
= 11277d3max{⌈log2(R)⌉, log2(ε−1), ⌈log2(β)⌉}.

(4.92)

Combining this and (4.91) with Corollary 4.4 (applied with f x ℊ, d x d in the notation of
Corollary 4.4) shows that there exists f ∈ N which satisfies that

(A) it holds that R(f) = R(ℊ) ∈ C(Rd,R),

(B) it holds that

L(f) = 4(14d2max{⌈log2(R)⌉, log2(ε−1), ⌈log2(β)⌉}) + 3

≤ 59d2max{⌈log2(R)⌉, log2(ε−1), ⌈log2(β)⌉},
(4.93)
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(C) it holds that

P(f) ≤ (11277d3 + 2 + 840d2 + 24)max{⌈log2(R)⌉, log2(ε−1), ⌈log2(β)⌉}
= 12143d3max{⌈log2(R)⌉, log2(ε−1), ⌈log2(β)⌉},

(4.94)

and

(D) it holds that S(f) ≤ 1.

Note that item (II) and item (A) prove that for all x = (x1, . . . , xd) ∈ [a, b]d ⊆ [−R,R]d it holds
that

∣

∣γβd
d
∏

i=1

xi − (R(f))(x)
∣

∣ ≤ ε. (4.95)

Combining this with items (A), (B), (C), and (D) establishes items (I), (II), (III), (IV), and (V).
The proof of Corollary 4.16 is thus complete.

4.4 Upper bounds for approximations of periodic functions

Lemma 4.17. Let λ ∈ (0,∞) and let s : R → R satisfy for all k ∈ Z, x ∈ [2k − 1, 2k + 1) that
s(x) = 1− |x− 2k|. Then it holds for all x ∈ R that

s(2λx) = 2s(λx)− 4R
(

s(λx)− 1
2

)

(4.96)

(cf. Definition 2.2).

Proof of Lemma 4.17. Observe that the fact that for all k ∈ Z, x ∈ [2k, 2k + 1) it holds that
s(x) = x− 2k shows that for all k ∈ Z, x ∈ R with 2λx ∈ [4k, 4k + 1) it holds that

2s(λx)− 4R
(

s(λx)− 1
2

)

= 2(λx− 2k)− 4R
(

(λx− 2k)− 1
2

)

= (2λx− 4k)− 2R
(

2λx− 4k − 1
)

= 2λx− 4k

= s(2λx)

(4.97)

(cf. Definition 2.2). Furthermore, note that the fact that for all k ∈ Z, x ∈ [2k, 2k + 1),
y ∈ [2k + 1, 2k + 2) it holds that s(x) = x− 2k and s(y) = −y + 2k + 2 demonstrates that for
all k ∈ Z, x ∈ R with 2λx ∈ [4k + 1, 4k + 2) it holds that

2s(λx)− 4R
(

s(λx)− 1
2

)

= 2(λx− 2k)− 4R
(

(λx− 2k)− 1
2

)

= (2λx− 4k)− 2R
(

2λx− 4k − 1
)

= −2λx+ (4k + 2)

= s(2λx).

(4.98)

Moreover, observe that the fact that for all k ∈ Z, x ∈ [2k, 2k + 1), y ∈ [2k + 1, 2k + 2) it
holds that s(x) = x − 2k and s(y) = −y + 2k + 2 ensures that for all k ∈ Z, x ∈ R with
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2λx ∈ [4k + 2, 4k + 3) it holds that

2s(λx)− 4R
(

s(λx)− 1
2

)

= 2(−λx+ 2k + 2)− 4R
(

(−λx+ 2k + 2)− 1
2

)

= −2λx+ 4k + 4− 2R
(

−2λx+ 4k + 3
)

= 2λx− (4k + 2)

= s(2λx).

(4.99)

In addition, note that the fact that for all k ∈ Z, y ∈ [2k + 1, 2k + 2) it holds that s(y) =
−y + 2k + 2 implies that for all k ∈ Z, x ∈ R with 2λx ∈ [4k + 3, 4k + 4) it holds that

2s(λx)− 4R
(

s(λx)− 1
2

)

= 2(−λx+ 2k + 2)− 4R
(

(−λx+ 2k + 2)− 1
2

)

= −2λx+ 4k + 4− 2R
(

−2λx+ 4k + 3
)

= −2λx+ (4k + 4)

= s(2λx).

(4.100)

Combining this with (4.97), (4.98), and (4.99) ensures (4.96). The proof of Lemma 4.17 is thus
complete.

Lemma 4.18. Let B ∈ (0,∞), let s : R → R satisfy for all k ∈ Z, x ∈ [2k − 1, 2k + 1) that
s(x) = 1− |x− 2k|, let ℊ ∈

(

(R4×1 × R4)× (R1×4 × R1)
)

⊆ N satisfy

ℊ =

























1
1
1
1









,









0
0
−1
−1

















,
(

(

1 1 −2 −2
)

, 0
)









, (4.101)

and let fn ∈
(

(R4×1 × R4)× (R1×4 × R1)
)

⊆ N, n ∈ N0, satisfy for all n ∈ N that

f0 =

























2B−1

2B−1

−2B−1

−2B−1









,









0
−1
0
−1

















,
(

(

1 −2 1 −2
)

, 0
)









and fn = ℊ • fn−1 (4.102)

(cf. Definitions 2.1 and 2.8). Then

(i) it holds for all n ∈ N0, x ∈ [0, B] that (R(fn))(−x) = (R(fn))(x) = s(2n+1B−1x),

(ii) it holds for all n ∈ N, x ∈ (B,∞) that (R(fn))(−x) = (R(fn))(x) = 0,

(iii) it holds for all n ∈ N0 that D(fn) = (1, 4, 4, . . . , 4, 1) ∈ N
L(fn)+1

(iv) it holds for all n ∈ N0 that L(fn) = n + 2, and

(v) it holds for all n ∈ N0 that S(fn) ≤ max{2B−1, 2}, S0(fn) = max{2B−1, 1}, and
S1(fn) ≤ 2
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(cf. Definitions 2.3 and 2.13).

Proof of Lemma 4.18. Throughout this proof let W,W ∈ R4×4, satisfy

W = W1,gW2,g and W = W1,gW2,f0 , . (4.103)

Observe that (4.101), (4.102), and Proposition 2.10 demonstrate that for all n ∈ N it holds that

L(f0) = 2 and L(fn) = L(ℊ • fn−1) = L(ℊ) + L(fn−1)− 1 = L(fn−1) + 1. (4.104)

Hence induction establishes that for all n ∈ N0 it holds that

L(fn) = n+ 2. (4.105)

This establishes item (iv). Furthermore, note that (2.10), (4.101), (4.102), (4.103) and the fact
that W1,ℊB2,f0 + B1,ℊ = B1,ℊ demonstrate that

f1 = ℊ • f0 =
(

(W1,f0 ,B1,f0), (W,B1,ℊ), (W2,ℊ,B2,ℊ)
)

. (4.106)

This, (2.10), (4.101), (4.102), (4.103) and the fact that W1,ℊB2,ℊ + B1,ℊ = B1,ℊ demonstrate
that

f2 = ℊ • f1 =
(

(W1,f0 ,B1,f0), (W,B1,ℊ), (W,B1,ℊ), (W2,ℊ,B2,ℊ)
)

. (4.107)

Combining this, (2.10), (4.105), and (4.103) with induction demonstrates that for all n ∈
N ∩ [2,∞) it holds that

fn = ((W1,f0 ,B1,f0), (W,B1,ℊ), (W,B1,ℊ), (W,B1,ℊ), . . . , (W,B1,ℊ), (W2,ℊ,B2,ℊ))

∈
(

(R4×1 × R
4)×

(

×n
k=1(R

4×4 × R
4)
)

× (R1×4 × R
1)
)

.
(4.108)

This, (4.101), (4.105), (4.106), (4.107), and (4.108) show that for all n ∈ N0, k ∈ N0∩ [0,L(fn)]
it holds that

Dk(fn) =

{

1 : k ∈ {0,L(fn)}
4 : k ∈ N ∩ (0,L(fn)).

(4.109)

This establishes item (iii). Moreover, observe that (4.101) and the fact that for all x ∈ R it
holds that R(|x|) = R(x) +R(−x) and R(|x| − 1) = R(x − 1) +R(−x − 1) show that for all
x ∈ R it holds that

(R(f0))(x) = R(2B−1|x|+ 0)− 2R(2B−1|x| − 1) =

{

2B−1|x| : 0 ≤ |x| ≤ B
2

2− 2B−1|x| : |x| ≥ B
2

(4.110)

(cf. Definitions 2.2 and 2.3). This ensures that for all x ∈ [0, B
2
], y ∈ [B

2
, B], z ∈ R it holds that

(R(f0))(x) = s(2B−1x), (R(f0))(y) = s(2B−1y), and (R(f0))(−z) = (R(f0))(z)
(4.111)

. In addition, note that (4.101), (4.102), and Proposition 2.10 imply that for all n ∈ N, x ∈ R

it holds that

(R(fn))(x) = (R(ℊ •fn−1))(x) = (R(ℊ))((R(fn−1))(x)) and (R(ℊ))(0) = 0. (4.112)
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This shows that for all n ∈ N, x ∈ [0,∞) with (R(fn−1))(−x) = (R(fn−1))(x) it holds that

(R(fn))(−x) = (R(ℊ))((R(fn−1))(−x)) = (R(ℊ))((R(fn−1))(x)) = (R(fn))(x). (4.113)

Furthermore, observe that (4.101), (4.112), Proposition 2.10, and Lemma 4.17 (applied with
λ x 2nB−1 for n ∈ N in the notation of Lemma 4.17) ensure that for all x ∈ [0, B], n ∈ N with
(R(fn−1))(x) = s(2nB−1x) it holds that

(R(fn))(x) = (R(ℊ))((R(fn−1))(x))

= (R(ℊ))
(

s(2nB−1x)
)

= 2R(s(2nB−1x))− 4R
(

s(2nB−1x)− 1
2

)

= 2s(2nB−1x)− 4R
(

s(2nB−1x)− 1
2

)

= s(2n+1B−1x).

(4.114)

Combining this, (4.111), and (4.113) with induction establishes item (i). Moreover, note that
(4.110) and (4.112) demonstrate that for all x ∈ (B,∞) it holds that

(R(f1))(x) = (R(ℊ))((R(f0))(x)) = (R(ℊ))
(

2− 2B−1x
)

= 2R(2− 2B−1x)− 4R
(

2− 2B−1x− 1
2

)

= 0.

(4.115)

Combining this, (4.112), and (4.113) with induction establishes item (ii). In addition, observe
that (4.101), (4.103), (4.106), (4.107), and (4.108) show that for all n ∈ N0 it holds that

S0(fn) = S0(f0) = max{2B−1, 1} and S1(fn) ≤ max{S1(ℊ), S1(f0)} = 2. (4.116)

Furthermore, note that (4.101), (4.103), (4.106), (4.107), and (4.108) show that for all n ∈ N0

it holds that

S(fn) ≤ max{S(ℊ),S(f0), ‖W‖∞, ‖W‖∞} = max{2, 2B−1, 2, 2} = max{2B−1, 2} (4.117)

(cf. Definitions 2.12 and 2.13). This and (4.116) establish item (v). The proof of Lemma 4.18
is thus complete.

Proposition 4.19. Let n,N ∈ N, a, b ∈ [0, 2π], c ∈ R satisfy b = a + 4π
N+1

, let s : R → R

satisfy for all k ∈ Z, x ∈ [2k − 1, 2k + 1) that s(x) = 1− |x− 2k|, let f : R → R satisfy for all
x ∈ [0, 2π), y ∈ (−∞,−2nπ) ∪ [2nπ,∞), k ∈ Z ∩ [−2n−1, 2n−1) that

f(y) = 0 and f(x+ 2kπ) = f(x) =

{

c s
( (x−a)(N+1)

2π

)

: x ∈ [a, b]

0 : x /∈ [a, b],
(4.118)

let a,b,c ∈ R satisfy a = a− (N−1)π
N+1

, b = N−1
N+1

, and c = (N+1)c
2

, and let g : R → R satisfy for
all x ∈ R that

g(x) =

{

cR
(

s(π−1(x− a) + b)− b
)

: x ∈ [−2nπ +a, 2nπ +a]

0 : x /∈ [−2nπ +a, 2nπ +a]
(4.119)

(cf. Definition 2.2). Then f = g.
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Proof of Proposition 4.19. Observe that (4.119) and the fact that for all x ∈ [0,∞) it holds
that s(x) ≤ x imply that for all x ∈ [a, a] it holds that

g(x) = cR
(

s(π−1(x− a) + b)− b
)

= 0. (4.120)

Furthermore, note that (4.119) and the fact for all x ∈ [0, 1] it holds that s(x) = x = R(x)
demonstrates that for all x ∈

[

a, a + 2π
N+1

]

it holds that

g(x) = cR
(

s(π−1(x− a) + b)− b
)

= cR
(

s
(

π−1(x− a) + N−1
N+1

)

− N−1
N+1

)

= cR
(

π−1(x− a) + N−1
N+1

− N−1
N+1

)

=
(

2c
N+1

)

R
( (x−a)(N+1)

2π

)

= cR
(

(x−a)(N+1)
2π

)

= c s
( (x−a)(N+1)

2π

)

.

(4.121)

Moreover, observe that (4.119) and the fact for all x ∈ [1, 2] it holds that s(x) = s(2 − x) =
2 − x and the fact that for all x ∈

[

a + 2π
N+1

, b
]

it holds that π−1(x − a) ∈
[

2
N+1

, 4
N+1

]

and

b ≤ a+ (N+3)π
N+1

= a+ 2π ensure that for all x ∈
[

a+ 2π
N+1

, b
]

it holds that

g(x) = cR
(

s(π−1(x− a) + b)− b
)

= cR
(

s
(

π−1(x− a) + N−1
N+1

)

− N−1
N+1

)

= cR
(

2− π−1(x− a)− N−1
N+1

− N−1
N+1

)

= cR
(

4
N+1

− π−1(x− a)
)

=
(

2c
N+1

)

R
(

2− (x−a)(N+1)
2π

)

= cR
(

2− (x−a)(N+1)
2π

)

= c
(

2− (x−a)(N+1)
2π

)

= c s
( (x−a)(N+1)

2π

)

.

(4.122)

In addition, note that (4.119) and the fact that for all x ∈
[

4
N+1

, N+3
N+1

]

it holds that s(x+ b) ≤
s
(

N+3
N+1

)

= b show that for all x ∈ [b, 2π +a] =
[

a+ 4π
N+1

, a+ (N+3)π
N+1

]

it holds that

g(x) = cR
(

s(π−1(x− a) + b)− b
)

= 0. (4.123)

Combining this, (4.118), (4.119), (4.120), (4.121), and (4.122) with the fact that a ≤ a implies
that for all x ∈ [a, b], y ∈ [a, a) ∪ (b, 2π +a] it holds that

g(x) = c s
( (x−a)(N+1)

2π

)

= f(x) and g(y) = 0 = f(y). (4.124)

Furthermore, observe that (4.119) and the fact that for all x ∈ R, k ∈ Z it holds that s(x+2k) =
s(x) show that for all x ∈ [a, 2π +a], k ∈ Z ∩ [−2n−1, 2n−1) it holds that

g(x+ 2kπ) = cR
(

s(π−1(x−a) + 2k)− b
)

= cR
(

s(π−1(x−a))− b
)

= g(x). (4.125)
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This and (4.118) demonstrate that for all x ∈ [a,a+2π), k ∈ Z∩ [−2n−1, 2n−1) with x+2kπ ∈
[max{a, 0} − 2nπ,min{a, 0}+ 2nπ) it holds that

g(x+ 2kπ) = g(x) and f(x+ 2kπ) = f(x). (4.126)

This and (4.124) show that for all x ∈ [max{a, 0} − 2nπ,min{a, 0}+ 2nπ) it holds that

g(x) = f(x). (4.127)

Moreover, note that (4.118), (4.119), and the fact that 2π ≥ b and a ≤ a imply that for all
x ∈ R with −2nπ ≤ x ≤ a− 2nπ it holds that

f(x) = f(x+ 2nπ) = 0 = g(x). (4.128)

In addition, observe that (4.118), (4.120), (4.125), and the fact that max{a, 0} ≤ a imply that
for all x ∈ R with a− 2nπ ≤ x ≤ −2nπ it holds that

g(x) = g(x+ 2nπ) = 0 = f(x). (4.129)

Furthermore, note that (4.118), (4.119), and the fact that a ≥ b − 2π and 0 ≤ a imply that
for all x ∈ R with a+ 2nπ ≤ x ≤ 2nπ it holds that

f(x) = f(x− 2nπ) = 0 = g(x). (4.130)

Moreover, observe that (4.118), (4.120), (4.124), and the fact that 2π ≥ b imply that for all
x ∈ R with 2nπ ≤ x ≤ a+ 2nπ it holds that

g(x) = g(x− 2(2n−1 − 1)π) = 0 = f(x). (4.131)

Combining this, (4.128), (4.129), and (4.130) with (4.118) and (4.119) ensures that for all
x ∈ (−∞,max{a, 0} − 2nπ], y ∈ [min{a, 0}+ 2nπ,∞) it holds that

f(x) = g(x) = 0 = f(y) = g(y). (4.132)

This and (4.127) establish f = g. The proof of Proposition 4.19 is thus complete.

Lemma 4.20. Let n,N ∈ N, C ∈ [1,∞), a, b ∈ [0, 2π], c ∈ [−C,C] satisfy b = a + 4π
N+1

and
n ≥ 2, let s : R → R satisfy for all k ∈ Z, x ∈ [2k − 1, 2k + 1) that s(x) = 1− |x− 2k|, and let
f : R → R satisfy for all x ∈ [0, 2π), y ∈ (−∞,−2nπ) ∪ [2nπ,∞), k ∈ Z ∩ [−2n−1, 2n−1) that

f(y) = 0 and f(x+ 2kπ) = f(x) =

{

c s
( (x−a)(N+1)

2π

)

: x ∈ [a, b]

0 : x /∈ [a, b].
(4.133)

Then there exists f ∈ N such that

(i) it holds for all x ∈ R that (R(f))(x) =
(

2
C(N+1)

)

f(x),

(ii) it holds that L(f) = n+ 5,
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(iii) it holds for all k ∈ N0 ∩ [0,L(f)] that

Dk(f) =











1 : k ∈ {0, n+ 4, n+ 5}
2 : k ∈ {1, 2, 3, n+ 3}
4 : k ∈ N ∩ (3, n+ 3),

(4.134)

and

(iv) it holds that S(f) ≤ 2

(cf. Definitions 2.1, 2.3, and 2.13).

Proof of Lemma 4.20. Throughout this proof let a ∈ [−π, a], b ∈ [0, 1], c ∈ R, n ∈ N0 satisfy

a = a− (N−1)π
N+1

, b = N−1
N+1

, c = c
C
, and n = ⌈log2((N + 1)C)⌉ − 1, (4.135)

and let ℊ1 ∈
(

(R2×1 × R2) × (R1×2 × R1)
)

⊆ N and ℊ3 ∈
(

(R1×1 × R1) × (R1×1 × R1)
)

⊆ N
satisfy

ℊ1 =

(((

1
−1

)

,

(

−a2−1

a2−1

))

,
(

(

1 −1
)

,−a2−1
)

)

and ℊ3 =
(

(1,−b), (c, 0)
)

(4.136)

(cf. Definitions 2.1 and 4.8). Note that Lemma 4.18 (applied with B x 2nπ, n x n− 1 in the
notation of Lemma 4.18) implies that there exists ℊ2 ∈ N which satisfies that

(I) it holds for all x ∈ [0, 2nπ] that (R(ℊ2))(−x) = (R(ℊ2))(x) = s(2n(2nπ)−1x) = s(π−1x),

(II) it holds for all x ∈ (2nπ,∞) that (R(ℊ2))(−x) = (R(ℊ2))(x) = 0,

(III) it holds that L(ℊ2) = (n− 1) + 2,

(IV) it holds that D(ℊ2) = (1, 4, 4, . . . , 4, 1) ∈ Nn+2, and

(V) it holds that S(ℊ2) ≤ 2, S0(ℊ2) = 1, and S1(ℊ2) ≤ 2

(cf. Definitions 2.3 and 2.13). Next let f ∈ N satisfy

f = ℊ3 • I1 • ℊ2 • I1 • ℊ1. (4.137)

Observe that (4.136) ensures that for all x ∈ R it holds that S(ℊ1) ≤ π2−1 ≤ 2, D(ℊ1) =
(1, 2, 1), and

(R(ℊ1))(x) = R
(

x−a2−1
)

−R
(

−
(

x−a2−1
))

−a2−1 = x−a. (4.138)

Furthermore, note that (4.136) ensures that for all x ∈ R it holds that

S(ℊ3) ≤ 1, D(ℊ3) = (1, 1, 1), and (R(ℊ3))(x) = cR(x− b). (4.139)

Combining this and (4.138) with Proposition 2.10 and Proposition 2.7 implies that for all x ∈ R

it holds that

(R(f)(x) = ([R(ℊ3)] ◦ [R(ℊ2)] ◦ [R(ℊ1)])(x) = cR
(

(R(ℊ2))(x−a)− b
)

. (4.140)
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This and item (I) show that for all x ∈ [−2nπ +a, 2nπ +a] it holds that

(R(f))(x) = cR
(

(R(ℊ2))(x−a)− b
)

= cR
(

s(π−1x− π−1a)− b
)

= cR
(

s(π−1x− (π−1a− b))− b
)

= cR
(

s(π−1(x− a) + b)− b
)

=
(

2
(N+1)C

)( (N+1)c
2

)

R
(

s(π−1(x− a) + b)− b
)

.

(4.141)

Moreover, observe that item (II) and (4.140) demonstrate that for all x ∈ R\[−2nπ+a, 2nπ+a]
it holds that

(R(f))(x) = cR
(

(R(ℊ2))(x−a)− b
)

= cR
(

−b
)

= 0. (4.142)

Combining this, (4.133), and (4.142) with Proposition 4.19 (applied with n x n, N x N ,

a x a, b x b, c x c, f x f , a x a, b x b, c x
(N+1)c

2
, g x

(C(N+1)
2

)

R(f) in the notation
of Proposition 4.19) shows that for all x ∈ R it holds that

(R(f))(x) =
(

2
C(N+1)

)(C(N+1)
2

)

(R(f))(x) =
(

2
C(N+1)

)

f(x). (4.143)

Note that Proposition 2.10, Proposition 2.7, (4.136), and item (III), show that

L(f) = L(ℊ3) + L(ℊ2) + L(ℊ1) + 2L(I1)− 4 = 2 + (n + 1) + 2 = n + 5. (4.144)

This, (4.136), (4.137), (4.138), (4.139), item (IV), Lemma 2.11, and Proposition 2.7 demonstrate
that for all k ∈ N0 ∩ [0,L(f)] it holds that

Dk(f) =











1 : k ∈ {0, n+ 4, n+ 5}
2 : k ∈ {1, 2, n+ 3}
4 : k ∈ N ∩ (2, n+ 3).

(4.145)

In addition, observe that (4.135), (4.136), (4.137), (4.139), item (V), and Proposition 2.18 show
that

S(f) ≤ max{S(ℊ3),S(ℊ2),S(ℊ1)} ≤ max{1, 2, 2} = 2. (4.146)

Combining this, (4.143), (4.144), and (4.145), establishes items (i), (ii), and (iii). The proof of
Lemma 4.20 is thus complete.

Lemma 4.21. Let n,N ∈ N ∩ (1,∞), C ∈ [1,∞), λ ∈ [−2, 2], let s : R → R satisfy for all
k ∈ Z, x ∈ [2k−1, 2k+1) that s(x) = 1−|x−2k|, for every j ∈ {1, 2, . . . , N} let aj, bj ∈ [0, 2π],
cj ∈ [−C,C] satisfy bj = aj +

4π
N+1

, and for every j ∈ {1, 2, . . . , N} let fj : R → R satisfy for
all x ∈ [0, 2π), y ∈ (−∞,−2nπ) ∪ [2nπ,∞), k ∈ Z ∩ [−2n−1, 2n−1), that

fj(y) = 0 and fj(x+ 2kπ) = fj(x) =

{

cjs
(

(x−aj)(N+1)

2π

)

: x ∈ [aj , bj ]

0 : x /∈ [aj , bj ].
(4.147)

Then there exists f ∈ N such that
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(i) it holds for all x ∈ R that (R(f))(x) = λ+
∑N

j=1 fj(x),

(ii) it holds that L(f) ≤ n + log2(C) + 9,

(iii) it holds that D0(f) = DL(f)(f) = 1, D1(f) = 2N , and DH(f)(f) = 2,

(iv) it holds that P(f) ≤ (24 + 18n+ 5 log2(C))N2, and

(v) it holds that S(f) ≤ 2

(cf. Definitions 2.1, 2.3, and 2.13).

Proof of Lemma 4.21. Throughout this proof let n, B ∈ N, β ∈ (0, 2] satisfy

n = min{N ∩ [log2(C),∞)}, B =

⌈

(

N+1
2

)

1
n

⌉

, and β = B−1
(

C(N+1)
2

)

1
n
, (4.148)

and let ℊ1,ℊ2,ℊ4 ∈ N satisfy ℊ4 = ((1), λ) ∈ (R1×1 × R1),

ℊ1 =





















1
1
...
1











, 0











∈ (RN×1 × R
N), and ℊ2 =

((

1 1 · · · 1
)

, 0
)

∈ (R1×N × R
1) (4.149)

(cf. Definitions 2.1 and 4.8). Note that Lemma 4.20 (applied with n x n, N x N , C x C,
a x aj , b x bj , c x cj, f x fj for j ∈ {1, 2, . . . , N} in the notation of Lemma 4.20) implies
that there exist f1,f2, . . . ,fN ∈ N such that

(I) it holds for all j ∈ {1, 2, . . . , N}, x ∈ R that (R(fj))(x) =
(

2
C(N+1)

)

fj(x),

(II) it holds for all j ∈ {1, 2, . . . , N} that L(fj) = n+ 5,

(III) it holds for all j ∈ {1, 2, . . . , N} that for all k ∈ N0 ∩ [0,L(fj)] that

Dk(fj) =











1 : k ∈ {0, n+ 4, n+ 5}
2 : k ∈ {1, 2, n+ 3}
4 : k ∈ N ∩ (2, n+ 3),

(4.150)

and

(IV) it holds for all j ∈ {1, 2, . . . , N} that S(fj) ≤ 2

(cf. Definitions 2.3 and 2.13). Furthermore, observe that Lemma 4.5 (applied with β x β,
B x B, n x n in the notation of Lemma 4.5) demonstrates that there exists ℊ3 ∈ N which
satisfies that

(A) it holds for all x ∈ R that (R(ℊ3))(x) =
C(N+1)x

2
,

(B) it holds that D(ℊ3) = (1, 2B, 2B, . . . , 2B, 1) ∈ Nn+2,
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(C) it holds that S0(ℊ3) ≤ 1, S1(ℊ3) ≤ 2, and S(ℊ3) ≤ 2, and

(D) it holds that P(ℊ3) = (4n− 4)B2 + (2n+ 4)B + 1.

Next let h ∈ N satisfy

h = ℊ4 • I1 • ℊ3 • ℊ2 • IN • (PN(f1,f2, . . . ,fN)) • IN • ℊ1 (4.151)

(cf. Definitions 2.4, 2.6, and 2.8). Note that (4.149), (4.151), Proposition 2.10, and Proposi-
tion 2.5 imply that for all x ∈ R it holds that

(R(h))(x)

= ([R(ℊ4)] ◦ [R(ℊ3)] ◦ [R(ℊ2)] ◦ [R(PN(f1,f2, . . . ,fN))])((R(ℊ1))(x))

= ([R(ℊ4)] ◦ [R(ℊ3)] ◦ [R(ℊ2)] ◦ [R(PN(f1,f2, . . . ,fN))])(x, x, . . . , x)

= ([R(ℊ4)] ◦ [R(ℊ3)] ◦ [R(ℊ2)])
(

(R(PN(f1,f2, . . . ,fN)))(x, x, . . . , x)
)

= ([R(ℊ4)] ◦ [R(ℊ3)] ◦ [R(ℊ2)])
(

(R(f1))(x), (R(f2))(x), . . . , (R(fN ))(x)
)

= ([R(ℊ4)] ◦ [R(ℊ3)])
(

∑N
j=1(R(fj))(x)

)

= (R(ℊ4))
(

(

C(N+1)
2

)
∑N

j=1

(

2
C(N+1)

)

fj(x)
)

= λ+
∑N

j=1 fj(x).

(4.152)

Observe that (4.149), (4.151), item (II), item (B), Proposition 2.10, and Proposition 2.5 ensure
that

L(h) = L(ℊ4) + L(ℊ3) + L(ℊ2) + L(PN(f1,f2, . . . ,fN)) + L(ℊ1) + 3L(I1)− 7

= 1 + L(ℊ3) + 1 + L(f1) + 1 + 6− 7

= (n+ 5) + (n+ 1) + 2 ≤ n+ log2(C) + 9.

(4.153)

Note that item (II), item (III), and Proposition 2.5 imply that for all k ∈ N0∩ [0, n+5] it holds
that

Dk(PN(f1,f2, . . . ,fN)) =











N : k ∈ {0, n+ 4, n+ 5}
2N : k ∈ {1, 2, n+ 3}
4N : k ∈ N ∩ (2, n+ 3).

(4.154)

Combining this, (4.151), (4.153), item (B), Lemma 2.11, and Proposition 2.7 with the fact that
D(ℊ1) = (1, N), D(ℊ2) = (N, 1), and D(ℊ4) = (1, 1) ensures that for all k ∈ N0 ∩ [0, n+n+8]
it holds that

Dk(h) =







































1 : k ∈ {0, n+n+ 8}
2N : k ∈ {1, 2, 3, n+ 4, n+ 6}
4N : k ∈ N ∩ (3, n+ 4)

N : k ∈ {n+ 5}
2B : k ∈ N ∩ (n + 6, n+n+ 7)

2 : k = n +n+ 7.

(4.155)
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This and the fact that B ≤
⌈

N+1
2

⌉

≤ N demonstrates that

P(h) =
n+n+8
∑

k=1

Dk(f)(Dk−1(f) + 1)

= 2N(1 + 1) + 2(2N(2N + 1)) + 4N(2N + 1) +

[

n+3
∑

k=5

4N(4N + 1)

]

+ 2N(4N + 1) +N(2N + 1) + 2N(N + 1) + 2B(2N + 1)

+

[

n+1
∑

k=3

2B(2B + 1)

]

+ 2(2B + 1) + 1(2 + 1)

= 28N2 + 17N + 2BN + 4B + 5 + (n− 1)(16N2 + 4N) + (n− 1)(4B2 + 2B)

≤ 30N2 + 21N + 5 + (n− 1)(16N2 + 4N) + (n− 1)(4N2 + 2N)

≤ 14N2 + 17N + 5 + n(16N2 + 4N) + log2(C)(4N2 + 2N)

≤ (24 + 18n+ 5 log2(C))N2.

(4.156)

Moreover, observe that (4.149), (4.151), item (IV), item (C), Lemma 2.16, Lemma 2.14, and
Proposition 2.18 show that

S(h)

≤ max{S(ℊ4),S(ℊ3 • ℊ2),S(PN(f1,f2, . . . ,fN)),S(ℊ1)}
= max{S(ℊ4),S(ℊ3),S(ℊ2), S0(ℊ3)(S1(ℊ2) + 1),S(f1),S(f2), . . . ,S(fN ),S(ℊ1)}
≤ max{λ, 2, 1, 2, 2, 2, . . . , 2, 1} = 2.

(4.157)

Combining this, (4.152), (4.153), (4.155), and (4.156) establishes items (i), (ii), (iii), (iv),
and (v). The proof of Lemma 4.21 is thus complete.

Lemma 4.22. Let ε ∈ (0, 1), n,N ∈ N satisfy ε(N + 1) ≥ 2π, let s : R → R satisfy for all
k ∈ Z, x ∈ [2k − 1, 2k + 1) that s(x) = 1− |x− 2k|, for every j ∈ N0 ∩ [0, N + 1] let cj =

2jπ
N+1

,
let g : R → R satisfy for all x, y ∈ R, k ∈ Z that

|g(0)| ≤ 2, g(x+ 2kπ) = g(x), and |g(x)− g(y)| ≤ |x− y|, (4.158)

for every j ∈ {1, 2, . . . , N} let fj : R → R satisfy for all x ∈ [0, 2π), y ∈ (−∞,−2nπ)∪[2nπ,∞),
k ∈ Z ∩ [−2n−1, 2n−1) that fj(y) = 0 and

fj(x+ 2kπ) = fj(x) =

{

(g(cj)− g(0))s
( (x−cj−1)(N+1)

2π

)

: x ∈ [cj−1, cj+1]

0 : x /∈ [cj−1, cj+1],
(4.159)

and let F : R → R satisfy for all x ∈ R that

F (x) = g(0) +

N
∑

j=1

fj(x). (4.160)

Then
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(i) it holds that supx∈[−2nπ,2nπ]|g(x)− F (x)| ≤ ε and

(ii) it holds for all x, y ∈ R that |F (x)− F (y)| ≤ |x− y|.
Proof of Lemma 4.22. Note that (4.159) and (4.160) imply that for all x ∈ (2nπ,∞) it holds
that

F (−x) = g(0) = F (x). (4.161)

Furthermore, observe that (4.159) and the fact that s(0) = 0 = s(2) show that for all j ∈
{1, 2, . . . , N} it holds that

fj(cj−1) = (g(cj)− g(0))s(0) = 0 = (g(cj)− g(0))s(2) = fj(cj+1). (4.162)

This, (4.159), (4.160), and the fact that for all x ∈ [0, 1] it holds that s(x) = x imply that for
all x ∈

[

c0, c1
]

it holds that

F (x) = g(0) +

N
∑

k=1

fk(x) = g(0) + f1(x) = g(0) + (g(c1)− g(0))s

(

(x− c0)(N + 1)

2π

)

= g(0) + (g(c1)− g(0))

(

(N + 1)x

2π

)

.

(4.163)

Moreover, note that (4.159), (4.160), (4.162), and the fact that for all x ∈ [1, 2] it holds that
s(x) = 2− x imply that for all x ∈

[

cN , cN+1

]

it holds that

F (x) = g(0) +

N
∑

k=1

fk(x) =g(0) + fN(x)

=g(0) + (g(cN)− g(0))s

(

(x− cN−1)(N + 1)

2π

)

=g(0) + (g(cN)− g(0))

(

2− (x− cN−1)(N + 1)

2π

)

.

(4.164)

In addition, observe that (4.159), (4.160), (4.162), and the fact that for all x ∈ [0, 1] it holds
that s(x) = x and s(x + 1) = 2 − (x + 1) ensure that for all j ∈ N ∩ (1, N ], x ∈

[

cj−1, cj
]

it
holds that

F (x) = g(0) +
N
∑

k=1

fk(x)

= g(0) + fj−1(x) + fj(x)

= g(0) + (g(cj−1)− g(0))s

(

(x− cj−2)(N + 1)

2π

)

+ (g(cj)− g(0))s

(

(x− cj−1)(N + 1)

2π

)

= g(0) + (g(cj−1)− g(0))

(

2− (x− cj−2)(N + 1)

2π

)

+ (g(cj)− g(0))

(

(x− cj−1)(N + 1)

2π

)

.

(4.165)
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Combining this and (4.163) with (4.164) implies that for all j ∈ {1, 2, . . . , N + 1} it holds that

F |[cj−1,cj ] ∈ L
([

cj−1, cj
])

(4.166)

(cf. Definition 3.5). Furthermore, note that (4.159), (4.160), (4.162), and the fact that s(1) = 1
ensure that for all j ∈ {1, 2, . . . , N} it holds that

F (cj) = g(0) +
N
∑

k=1

fk(cj) = g(0) + fj(cj) = g(0) + (g(cj)− g(0))s(1) = g(cj). (4.167)

This, (4.163), (4.164), (4.165), (4.166), and the fact that F (0) = g(0) and F (2π) = g(0) = g(2π)
demonstrate that for all j ∈ {1, 2, . . . , N + 1}, x ∈

[

cj−1, cj
]

it holds that

F (x) =

(

2jπ − (N + 1)x

2π

)

F (cj) +

(

(N + 1)x− 2(j − 1)π

2π

)

F (cj−1). (4.168)

Combining this and (4.167) with the assumption that for all x, y ∈ R it holds that |g(x)−g(y)| ≤
|x−y| and ε(N +1) ≥ 2π demonstrates that for all j ∈ {1, 2, . . . , N +1}, x ∈

[

cj−1, cj
]

it holds
that

|g(x)− F (x)| =
∣

∣

∣
g(x)−

(

2jπ−(N+1)x
2π

)

F (cj)−
(

(N+1)x−2(j−1)π
2π

)

F (cj−1)
∣

∣

∣

=
∣

∣

∣

(

2jπ−(N+1)x
2π

)

(g(x)− F (cj)) +
(

(N+1)x−2(j−1)π
2π

)

(g(x)− F (cj−1))
∣

∣

∣

=
∣

∣

∣

(

2jπ−(N+1)x
2π

)

(g(x)− g(cj)) +
(

(N+1)x−2(j−1)π
2π

)

(g(x)− g(cj−1))
∣

∣

∣

≤
∣

∣

∣

(

2jπ−(N+1)x
2π

)

(x− cj)
∣

∣

∣
+
∣

∣

∣

(

(N+1)x−2(j−1)π
2π

)

(x− cj−1)
∣

∣

∣

≤
∣

∣

∣

(

2jπ−(N+1)x
2π

)

2π
N+1

∣

∣

∣
+
∣

∣

∣

(

(N+1)x−2(j−1)π
2π

)

2π
N+1

∣

∣

∣
= 2π

N+1
≤ ε.

(4.169)

Moreover, observe that that (4.166), (4.167), and the assumption that for all j ∈ {1, 2, . . . , N},
x, y ∈ R it holds that |g(x) − g(y)| ≤ |x − y| ensure that for all x, y ∈ [0, 2π] = [c0, cN+1] it
holds that

|F (x)− F (y)| ≤ |x− y| max
j∈{1,2,...,N+1}

g(cj)− g(cj−1)

cj − cj−1

≤ |x− y|. (4.170)

Combining this and (4.161) with (4.169) and the fact that for all x ∈ [0, 2π], k ∈ Z ∩
[−2n−1, 2n−1) it holds that g(x + 2kπ) = g(x) and F (x + 2kπ) = F (x) establishes items (i)
and (ii). The proof of Lemma 4.22 is thus complete.

Lemma 4.23. Let ε ∈ (0, 1), N ∈ N, C ∈ [1,∞) satisfy ε(N + 1) ≥ 2π and let g : R → R

satisfy for all x, y ∈ R, k ∈ Z that |g(0)| ∈ [−2, 2], g(x + 2kπ) = g(x) ∈ [−C,C], and
|g(x)− g(y)| ≤ |x− y|. Then there exists f ∈ N such that

(i) it holds that L(f) = 6,

(ii) it holds it holds that D(f) = (1, 2, 2N + 3, 2, 2, 2, 1),

(iii) it holds for all x, y ∈ R that
∣

∣(R(f))(x)− (R(f))(y)
∣

∣ ≤ |x− y|,
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(iv) it holds that supx∈[−2π,2π]

∣

∣g(x)− (R(f))(x)
∣

∣ ≤ ε,

(v) it holds for all x ∈ [2π,∞) that (R(f))(−x) = (R(f))(x) = g(0),

(vi) it holds that S(f) ≤ 2, and

(vii) it holds that P(f) ≤ 4N2

(cf. Definitions 2.1, 2.3, and 2.13).

Proof of Lemma 4.23. Throughout this proof let M ∈ N, d ∈ (0, ε] satisfy M = 2N + 2 and
d = 4π

M
, let ξ0, ξ1, . . . , ξM ∈ [−2π, 2π], α0, α1, . . . , αM ∈ [−2, 2] satisfy for all k ∈ N0 ∩ [0,M ]

that

ξk = kd− 2π and αk =
g(ξmin{k+1,M})− g(ξk)

d
− g(ξk)− g(ξmax{k−1,0})

d
, (4.171)

and let ℊ1 ∈
(

(R(M+1)×1 × RM+1)× (R1×(M+1) × R1)
)

⊆ N satisfy

ℊ1 =































4−1

4−1

...
4−1











,











4−1ξ0
4−1ξ1
...

4−1ξM





















,
((

α0 α1 · · · αM

)

, 4−1g(0)
)











(4.172)

(cf. Definition 2.1). Note that Corollary 4.6 (applied with β x 4, L x 2 in the notation of
Corollary 4.6) ensures that there exists ℊ2 ∈ N which satisfies that

(I) it holds for all x ∈ R that (R(ℊ2))(x) = 4x,

(II) it holds that D(ℊ2) = (1, 2, 2, 1) ∈ N4, and

(III) it holds that S(ℊ2) ≤ 2

(cf. Definitions 2.3 and 2.13). Next let f ∈ N satisfy

f = ℊ2 • I1 • ℊ1 • I1 (4.173)

(cf. Definitions 2.6 and 2.8). Observe that Proposition 2.10, Proposition 2.7, and (4.173)
demonstrate that

L(f) = L(ℊ1) + L(ℊ2) + 2L(I1)− 3 = 2 + 3 + 4− 3 = 6. (4.174)

Note that (4.172) shows that for all x ∈ R it holds that

(R(ℊ1))(x) =
g(0)
4

+

M
∑

k=0

αkR
(

x
4
− ξk

4

)

= 4−1

[

g(0) +

M
∑

k=0

αkR(x− ξk)

]

(4.175)

(cf. Definition 2.2). This and (4.171) demonstrate that for all x ∈ (−∞, ξ0] it holds that

(R(ℊ1))(x) =
g(0)

4
=

g(ξ0)

4
and (R(ℊ1))(ξ1) =

g(0) + α0R(ξ1 − ξ0)

4
=

g(ξ1)

4
. (4.176)
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Furthermore, observe that (4.171), and (4.180) imply that for all k ∈ N0∩[0,M) with (R(ℊ1))(ξk) =
g(ξk)
4

it holds that

(R(ℊ1))(ξk+1) = 4−1

[

g(0) +
k

∑

j=0

αjR(ξk+1 − ξj)

]

= 4−1

[

g(0) +

[

k
∑

j=0

αjR(ξk − ξj)

]

+ d

[

k
∑

j=0

αj

]]

= (R(ℊ1))(ξk) + 4−1[g(ξk+1)− g(ξk)]

=
g(ξk+1)

4
.

(4.177)

Moreover, note that (4.171), and (4.180) show that for all x ∈ [ξM ,∞) it holds that

(R(ℊ1))(x) = 4−1

[

g(0) +

M
∑

j=0

αjR(x− ξj)

]

= 4−1

[

g(0) +

[

M
∑

j=0

αjR(ξM − ξj)

]

+ (x− ξM)

[

M
∑

j=0

αj

]]

= (R(ℊ1))(ξM).

(4.178)

Combining this, (4.176), and (4.177) with induction ensures that for all k ∈ N0 ∩ [0,M ],
x ∈ (−∞, ξ0], y ∈ [ξM ,∞) it holds that

(R(ℊ1))(ξk) =
g(ξk)

4
, (R(ℊ1))(x) =

g(ξ0)

4
, and (R(ℊ1))(y) =

g(ξM)

4
. (4.179)

Observe that Proposition 2.10, Proposition 2.7, (4.172), and (4.173) show that for all x ∈ R it
holds that

(R(f))(x) = (R(ℊ2))
(

R(ℊ1)(x)
)

= 4(R(ℊ1))(x) (4.180)

Hence (4.180) demonstrates that for all k ∈ {1, 2, . . . ,M}, x ∈ [ξk−1, ξk] it holds that

(R(f))(x) = g(0) +

M
∑

j=0

αjR(x− ξj) = g(0) +

k−1
∑

j=0

αj(x− ξj). (4.181)

This, (4.179), (4.180), and the fact that g(ξ0) = g(0) = g(ξM) show that for all k ∈ {1, 2, . . . ,M},
x ∈ [2π,∞) it holds that

R(f)|[ξk−1,ξk] ∈ L([ξk−1, ξk]) and (R(f))(x) = g(0) = (R(f))(−x) (4.182)

(cf. Definition 3.5). Combining this and (4.179) with (4.180) implies that for all k ∈ {1, 2, . . . ,M},
x ∈ [ξk−1, ξk] it holds that

(R(f))(x) =
(

ξk−x
ξk−ξk−1

)

(R(f))(ξk) +
(

x−ξk−1

ξk−ξk−1

)

(R(f))(ξk−1)

=
(

ξk−x
ξk−ξk−1

)

g(ξk) +
(

x−ξk−1

ξk−ξk−1

)

g(ξk−1).
(4.183)

69



This ensures that for all k ∈ {1, 2, . . . ,M}, x ∈ [ξk−1, ξk] it holds that

|(R(f))(x)− g(x)| =
∣

∣

∣

(

ξk−x
ξk−ξk−1

)

g(ξk) +
(

x−ξk−1

ξk−ξk−1

)

g(ξk−1)− g(x)
∣

∣

∣

=
∣

∣

∣

(

ξk−x
ξk−ξk−1

)

(g(ξk)− g(x)) +
(

x−ξk−1

ξk−ξk−1

)

(g(ξk−1)− g(x))
∣

∣

∣

≤
(

ξk−x
ξk−ξk−1

)

|g(ξk)− g(x)|+
(

x−ξk−1

ξk−ξk−1

)

|g(ξk−1)− g(x)|

≤
(

ξk−x
ξk−ξk−1

)

|ξk − x| +
(

x−ξk−1

ξk−ξk−1

)

|x− ξk−1|
≤ |ξk − ξk−1| = d ≤ ε

(4.184)

In addition, note that (4.182) and (4.183) imply that for all x, y ∈ R it holds that

|(R(f))(x)− (R(f))(y)| ≤ |x− y| max
k∈{1,2,...,M}

g(ξk)− g(ξk−1)

ξk − ξk−1

≤ |x− y|. (4.185)

Furthermore, observe that Lemma 2.11, Proposition 2.7, item (II), (4.172), and (4.173) show
that

D(f) = (1, 2,M + 1, 2, 2, 2, 1) ∈ N
7. (4.186)

This and the fact that M = 2N + 2 and N ≥ 2π − 1 > 5 demonstrate that

P(f) =

6
∑

k=0

Dk(f)(Dk−1(f) + 1)

= 2(1 + 1) + (M + 1)(2 + 1) + 2(M + 1 + 1) + 2(2(2 + 1)) + 1(2 + 1)

= 26 + 5M = 36 + 10N ≤ 4N2.

(4.187)

Moreover, note that Proposition 2.17, item (III), (4.171), (4.172), and (4.173) imply that

S(f) = max{S(ℊ2),S(ℊ1 • I1)} = max{S(ℊ2),S(ℊ1), 1} ≤ max
{

2, 2π
4
, 2, 1

}

= 2. (4.188)

Combining this, (4.174), (4.182), (4.184), and (4.186) with (4.187) establishes items (i), (ii),
(iii), (iv), (v), (vi), and (vii). The proof of Lemma 4.23 is thus complete.

Lemma 4.24. Let ε ∈ (0, 1), n,N ∈ N, C ∈ [1,∞) satisfy ε(N + 1) ≥ 2π and let g : R → R

satisfy for all x, y ∈ R, k ∈ Z that |g(0)| ≤ 2, g(x+2kπ) = g(x) ∈ [−C,C], and |g(x)−g(y)| ≤
|x− y|. Then there exists f ∈ N such that

(i) it holds that L(f) ≤ n + log2(C) + 9,

(ii) it holds it holds that D0(f) = DL(f)(f) = 1, D1(f) ≤ 2N , and DH(f)(f) = 2,

(iii) it holds for all x, y ∈ R that
∣

∣(R(f))(x)− (R(f))(y)
∣

∣ ≤ |x− y|,

(iv) it holds that supx∈[−2nπ,2nπ]

∣

∣g(x)− (R(f))(x)
∣

∣ ≤ ε,

(v) it holds for all x ∈ [2nπ,∞) that (R(f))(−x) = (R(f))(x) = g(0),

(vi) it holds that S(f) ≤ 2, and
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(vii) it holds that P(f) ≤ (24 + 18n+ 5 log2(C))N2

(cf. Definitions 2.1, 2.3, and 2.13).

Proof of Lemma 4.24. Throughout this proof assume w.l.o.g. that n ≥ 2 (cf. Lemma 4.23),
let s : R → R satisfy for all k ∈ Z, x ∈ [2k − 1, 2k + 1) that s(x) = 1 − |x − 2k|, for every
j ∈ {0, 1, . . . , N + 1} let cj =

2jπ
N+1

, and for every j ∈ {1, 2, . . . , N} let fj : R → R satisfy for all
x ∈ [0, 2π), y ∈ (−∞,−2nπ) ∪ [2nπ,∞), k ∈ Z ∩ [−2n−1, 2n−1) that

f(y) = 0 and fj(x+2kπ) = fj(x) =

{

g(cj)s
(

(x−cj−1)(N+1)

2π

)

: x ∈ [cj−1, cj+1]

0 : x /∈ [cj−1, cj+1]
(4.189)

Observe that Lemma 4.21 (applied with n x n, N x N , C x C, λ x g(0), aj x cj−1,
bj x cj+1, cj x g(cj), fj x fj for j ∈ {1, 2, . . . , N} in the notation of Lemma 4.21) implies
that there exists f ∈ N which satisfies that

(I) it holds for all x ∈ R that (R(f))(x) = g(0) +
∑N

j=1 fj(x),

(II) it holds that L(f) ≤ n+ log2(C) + 9,

(III) it holds that D0(f) = DL(f)(f) = 1, D1(f) = 2N , and DH(f)(f) = 2,

(IV) it holds that P(f) ≤ (24 + 18n+ 5 log2(C))N2, and

(V) it holds that S(f) ≤ 2

(cf. Definitions 2.1, 2.3, and 2.13). Note that item (I) and Lemma 4.22 (applied with ε x ε,
n x n, N x N , cj x g(cj), fj x fj , F x R(f) for j ∈ {1, 2, . . . , N} in the notation of
Lemma 4.22) imply that for all x ∈ [−2nπ, 2nπ], y, z ∈ R it holds that

|g(x)− (R(f))(x)| ≤ ε and |(R(f))(y)− (R(f))(z)| ≤ |y − z|. (4.190)

Combining this and the fact that R(f) ∈ C(R,R) with items (I), (II), (III), (IV), and (V)
establishes items (i), (ii), (iii), (iv), (v), (vi), and (vii). The proof of Lemma 4.24 is thus
complete.

Corollary 4.25. Let R ∈ (0,∞), γ ∈ (0, 1], β ∈ [1,∞), ε ∈ (0, 1) and let g : R → R satisfy
for all x, y ∈ R, k ∈ Z that |g(0)| ≤ 2, g(x + 2kπ) = g(x), and |g(x)− g(y)| ≤ |x − y|. Then
there exists f ∈ N such that

(i) it holds that R(f) ∈ C(R,R),

(ii) it holds that supx∈[−R,R]

∣

∣g(γβx)− (R(f))(x)
∣

∣ ≤ ε,

(iii) it holds that DH(f)(f) = 2,

(iv) it holds that L(f) ≤ 16max{1, ⌈log2(β)⌉, ⌈log2(R)⌉},

(v) it holds that P(f) ≤ 4584max{1, ⌈log2(R)⌉, ⌈log2(β)⌉}ε−2, and

(vi) it holds that S(f) ≤ 2
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(cf. Definition 4.8).

Proof of Corollary 4.25. Throughout this proof assume w.l.o.g. that R ≥ 2. Observe that
Lemma 4.24 (applied with ε x ε, n x ⌈log2(βR)⌉, N x

⌈

2π
ε

⌉

− 1, C x 6, g x g in the
notation of Lemma 4.24) shows that there exists ℊ2 ∈ N which satisfies that

(I) it holds for all k ∈ {0, 1, . . . ,L(ℊ2)} that L(ℊ2) ≤ ⌈log2(βR)⌉+ 12,

(II) it holds it holds that D0(ℊ2) = DL(ℊ2)(ℊ2) = 1, D1(ℊ2) ≤ 14ε−1, and DH(ℊ2)(ℊ2) = 2,

(III) it holds that supx∈[−βR,βR]

∣

∣g(x)− (R(ℊ2))(x)
∣

∣ ≤ ε,

(IV) it holds that S(ℊ2) ≤ 2, and

(V) it holds that P(ℊ2) ≤ (24 + 18⌈log2(βR)⌉+ 15)
(

2πε−1
)2 ≤ 2280⌈log2(βR)⌉ε−2

(cf. Definitions 2.1, 2.3, 2.13, and 4.8). Note that Corollary 4.6 (applied with β x γβ, L x

⌈log2(γβ)⌉ in the notation of Corollary 4.6) demonstrates that there exists ℊ1 ∈ N which
satisfies that

(A) it holds for all x ∈ R that (R(ℊ1))(x) = γβx,

(B) it holds that D(ℊ1) = (1, 2, 2, . . . , 2, 1) ∈ N⌈log2(γβ)⌉+2, and

(C) it holds that S(ℊ1) ≤ 2.

Observe that Proposition 2.10, Proposition 2.17, item (II), and item (B) imply that

R(ℊ2 • I1 • ℊ1) = [R(ℊ2)] ◦ [R(ℊ1)] ∈ C(R,R) (4.191)

(cf. Definitions 2.6 and 2.8). This, item (III), item (A), and the fact that ∀ x ∈ [−R,R] : γβx ∈
[−βR, βR] prove that for all x ∈ [−R,R] it holds that

|g(γβx)− (R(ℊ2 • I1 • ℊ1))(x)| = |g(γβx)− (R(ℊ2))(γβx)| ≤ ε (4.192)

Note that Proposition 2.10, Proposition 2.17, item (I), item (B), and the assumption that γ ≤ 1
imply that

L(ℊ2 • I1 • ℊ1) = L(ℊ2) + L(ℊ1) ≤ (⌈log2(γβ)⌉+ 1) + (⌈log2(βR)⌉+ 12)

≤ 16max{1, ⌈log2(β)⌉, ⌈log2(R)⌉}. (4.193)

This, Lemma 2.11, and item (V) imply that for all k ∈ N0 ∩ [0,L(ℊ2) + L(ℊ1)] it holds that

Dk(ℊ2 • I1 • ℊ1) =











1 : k = 0

2 : k ∈ N ∩ (0,L(ℊ1)]

Dk−L(ℊ1)(ℊ2) : k ∈ N ∩ (L(ℊ1),L(ℊ2) + L(ℊ1)].

(4.194)
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Hence item (II) and (4.193) show that

P(ℊ2 • I1 • ℊ1)

=
L(ℊ2)+L(ℊ1)

∑

k=1

Dk(ℊ2 • I1 • ℊ1)(Dk−1(ℊ2 • I1 • ℊ1) + 1)

= 2(1 + 1) +

[

L(ℊ1)
∑

k=2

2(2 + 1)

]

+ D1(ℊ2)(2 + 1) +

[

L(ℊ2)
∑

k=2

Dk(ℊ2)(Dk−1(ℊ2) + 1)

]

= 4 + 6(L(ℊ1)− 1) + D1(ℊ2) +

[

L(ℊ2)
∑

k=1

Dk(ℊ2)(Dk−1(ℊ2) + 1)

]

≤ 4 + 6⌈log2(γβ)⌉+ 14ε−1 + P(ℊ2)

≤ 4 + 6⌈log2(β)⌉+ 14ε−1 + 2280⌈log2(βR)⌉ε−2

≤ (4 + 6 + 14 + 4560)max{1, ⌈log2(R)⌉, ⌈log2(β)⌉}ε−2

= 4584max{1, ⌈log2(R)⌉, ⌈log2(β)⌉}ε−2.

(4.195)

Furthermore, observe that Proposition 2.17, item (IV), and item (C) demonstrate that

S(ℊ2 • I1 • ℊ1) = max{S(ℊ2),S(ℊ1)} ≤ max{2, 2} = 2. (4.196)

This, (4.191), (4.192), (4.193), (4.194), and (4.195) establish items (i), (ii), (iii), (iv), (v),
and (vi). The proof of Corollary 4.25 is thus complete.

4.5 Upper bounds for approximations of compositions of periodic

and product functions

Lemma 4.26. Let d ∈ N, ε ∈ (0, 1), R ∈ (0,∞), γ ∈ (0, 1], β ∈ [1,∞), g ∈ C(R,R) satisfy
for all x, y ∈ R, k ∈ Z that |g(0)| ≤ 2, g(x + 2kπ) = g(x), and |g(x)− g(y)| ≤ |x − y|. Then
there exists f ∈ N such that

(i) it holds that R(f) ∈ C(Rd,R),

(ii) it holds that supx=(x1,...,xd)∈[−R,R]d

∣

∣g
(

γβd
∏d

i=1 xi

)

−R(f)(x)
∣

∣ ≤ ε,

(iii) it holds that DH(f)(f) = 2,

(iv) it holds that L(f) ≤ 16max{1, ⌈log2(R)⌉, ⌈log2(β)⌉}d2 log2(ε−1),

(v) it holds that P(f) ≤ 12781max{1, ⌈log2(R)⌉, log2(β)}d3ε−2, and

(vi) it holds that S(f) ≤ 4

(cf. Definitions 2.1, 2.3, 2.13, and 4.8).

Proof of Lemma 4.26. Throughout this proof assume w.l.o.g. that R ≥ 2 and d > 1 (cf. Corol-
lary 4.25), let n,N ∈ N satisfy n = ⌈d log2(βR)⌉− 1 and N = ⌈4π

ε
⌉− 1. Note that Lemma 4.15

(applied with d x d, ε x
ε
2
, R x R, γ x γ, β x β in the notation of Lemma 4.15) ensures

that there exists ℊ1 ∈ N which satisfies that
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(I) it holds that R(ℊ1) ∈ C(Rd,R),

(II) it holds that supx=(x1,...,xd)∈[−R,R]d

∣

∣γβd
∏d

i=1 xi − (R(ℊ1))(x)
∣

∣ ≤ ε
2
,

(III) it holds that L(ℊ1) = 8d2 + 2d2⌈log2(R)⌉+ d(log2(ε
−1) + 1) + d2⌈log2(β)⌉+ 2,

(IV) it holds that that D1(ℊ1) ≤ 2d and DH(ℊ1)(ℊ1) = 2,

(V) it holds that P(ℊ1) ≤ 8203d3 + 2048d3⌈log2(R)⌉ + 512d2(log2(ε
−1) + 1) + 514d3 log2(β),

and

(VI) it holds that S(ℊ1) ≤ 4

(cf. Definitions 2.1, 2.3, 2.13, and 4.8). Furthermore, observe that the fact that supx∈R|g(x)| ≤
λ+π ≤ 6 and Lemma 4.24 (applied with ε x ε

2
, n x n, N x N , C x 6, g x g in the notation

of Lemma 4.24) ensure that there exists ℊ2 ∈ N which satisfies that

(A) it holds that L(ℊ2) ≤ n+ log2(6) + 9 ≤ n+ 12,

(B) it holds it holds that D0(ℊ2) = DL(ℊ2)(ℊ2) = 1, D1(ℊ2) ≤ 2N , and DH(ℊ2)(ℊ2) = 2,

(C) it holds for all x, y ∈ R that
∣

∣(R(ℊ2))(x)− (R(ℊ2))(y)
∣

∣ ≤ |x− y|,

(D) it holds that supx∈[−2nπ,2nπ]

∣

∣g(x)− (R(ℊ2))(x)
∣

∣ ≤ ε
2
,

(E) it holds for all x ∈ [2nπ,∞) that (R(ℊ2))(−x) = (R(ℊ2))(x) = g(0),

(F) it holds that S(ℊ2) ≤ 2, and

(G) it holds that P(ℊ2) ≤ (24 + 18n+ 5 log2(6))N
2 ≤ (39 + 18n)N2.

Next let f ∈ N satisfy
f = ℊ2 • I1 • ℊ1 (4.197)

(cf. Definitions 2.6 and 2.8). Note that (4.197), item (III), item (A), Proposition 2.10, Propo-
sition 2.7, and the fact that n ≤ d⌈log2(βR)⌉ ≤ 2dmax{⌈log2(β)⌉, ⌈log2(R)⌉} show that

L(f)
= L(ℊ2) + L(I1) + L(ℊ1)− 2

= L(ℊ2) + L(ℊ1)

= (n + 12) +
(

8d2 + 2d2⌈log2(R)⌉+ d(log2(ε
−1) + 1) + d2⌈log2(β)⌉+ 2

)

≤ (d⌈log2(βR)⌉+ 12) +
(

8d2 + 2d2⌈log2(R)⌉ + d log2(ε
−1) + d+ d2⌈log2(β)⌉+ 2

)

≤ (d+ 12 + 8d2 + 2d2 + d+ d+ d2 + 2)max{1, ⌈log2(R)⌉, log2(ε−1), ⌈log2(β)⌉}
= (11d2 + 3d+ 14)max{⌈log2(R)⌉, log2(ε−1), ⌈log2(β)⌉}
≤ 16d2max{⌈log2(R)⌉, log2(ε−1), ⌈log2(β)⌉}
≤ 16max{⌈log2(R)⌉, ⌈log2(β)⌉}d2 log2(ε−1).

(4.198)

This, (4.197), item (I), item (A), and Lemma 2.11 imply that it holds that DH(f)(f) = 2 and

D(f)

= (D0(ℊ1),D1(ℊ1), . . . ,DH(ℊ1)(ℊ1), 2DL(ℊ1)(ℊ1),D1(ℊ2),D2(ℊ2), . . . ,DL(ℊ2)(ℊ2)). (4.199)
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Observe that (4.197), Proposition 2.10, and Proposition 2.7 ensure that for all x ∈ Rd it holds
that

(R(f))(x) = ([R(ℊ2)] ◦ [R(ℊ1)])(x) = (R(ℊ2))((R(ℊ1))(x)). (4.200)

This, item (II), item (C), item (D), and the fact that for all x1, x2, . . . , xd ∈ [−R,R] it holds
that |γβd

∏d
i=1 xi| ≤ (βR)d ≤ 2d log2(βR)−1π ≤ 2nπ show that for all x = (x1, . . . , xd) ∈ [−R,R]d

it holds that
∣

∣

∣

∣

g
(

γβd
d
∏

i=1

xi

)

−R(f)(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

g
(

γβd
d
∏

i=1

xi

)

− (R(ℊ2))((R(ℊ1))(x))

∣

∣

∣

∣

(4.201)

=

∣

∣

∣

∣

g
(

γβd
d
∏

i=1

xi

)

− (R(ℊ2))
(

γβd
d
∏

i=1

xi

)

+ (R(ℊ2))
(

γβd
d
∏

i=1

xi

)

− (R(ℊ2))((R(ℊ1))(x))

∣

∣

∣

∣

≤
∣

∣

∣

∣

g
(

γβd
d
∏

i=1

xi

)

− (R(ℊ2))
(

γβd
d
∏

i=1

xi

)

∣

∣

∣

∣

+

∣

∣

∣

∣

(R(ℊ2))
(

γβd
d
∏

i=1

xi

)

− (R(ℊ2))((R(ℊ1))(x))

∣

∣

∣

∣

≤ ε

2
+
∣

∣γβd
d
∏

i=1

xi − (R(ℊ1))(x)
∣

∣ ≤ ε

2
+

ε

2
= ε.

Note that (4.199), item (A), item (B), item (IV), and the fact that DL(ℊ1)(ℊ1) = D0(ℊ2)
demonstrate that

P(f) =

L(f)
∑

k=1

Dk(f)(Dk−1(f) + 1)

=





L(ℊ1)−1
∑

k=1

Dk(ℊ1)(Dk−1(ℊ1) + 1)



+ 2DL(ℊ1)(ℊ1)(DL(ℊ1)−1(ℊ1) + 1)

+ D1(ℊ2)(2D0(ℊ2) + 1) +





L(ℊ2)
∑

k=2

Dk(ℊ2)(Dk−1(ℊ2) + 1)





=





L(ℊ1)
∑

k=1

Dk(ℊ1)(Dk−1(ℊ1) + 1)



+ DL(ℊ1)(ℊ1)(DL(ℊ1)−1(ℊ1) + 1)

+ D1(ℊ2)D0(ℊ2) +





L(ℊ2)
∑

k=1

Dk(ℊ2)(Dk−1(ℊ2) + 1)





≤ P(ℊ1) + 1(2 + 1) + 2N + P(ℊ2).

(4.202)

Combining this, item (V) and item (G) with the fact that for all x ∈ (0, 1) it holds that
− log2(x) ≤ x−2 and π2 ≤ 10 with the assumption that ε ∈ (0, 1), R > 1, d ≥ 2, n ≤
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max{d log2(R), 1}, and N ≤ 4π
ε
proves that

P(f) ≤ P(ℊ1) + P(ℊ2) + 3 + 2N

≤
(

8203d3 + 2048d3⌈log2(R)⌉+ 512d2(log2(ε
−1) + 1) + 514d3 log2(β)

)

+
(

(18n+ 39)N2
)

+ 3 + 2N

≤ 8203d3 + 2048d3⌈log2(R)⌉+ 512d2 log2(ε
−1) + 512d2 + 514d3 log2(β)

+ (18max{d log2(βR), 1}+ 39)16π2ε−2 + 3 + 8πε−1

≤ 8203d3 + 2048d3⌈log2(R)⌉+ 512d2 log2(ε
−1) + 512d2 + 514d3 log2(β)

+ (36max{log2(R), log2(β), 1}d+ 39)160ε−2 + 3 + 24ε−1

= 8203d3 + 2048d3⌈log2(R)⌉ + 512d2 log2(ε
−1) + 512d2 + 514d3 log2(β)

+ 2880max{log2(R), log2(β)}dε−2 + 6240ε−2 + 3 + 24ε−1

=
(

8203d3 + 2048d3 + 512d2 + 512d2 + 514d3

+ 2880d+ 6240 + 3 + 24
)

max{⌈log2(R)⌉, log2(β)}ε−2

≤
(

10765d3 + 1024d2 + 2880d+ 6267
)

max{⌈log2(R)⌉, log2(β)}ε−2

≤
(

10765 + 512 + 720 + 784
)

d3max{⌈log2(R)⌉, log2(β)}ε−2

≤ 12781d3max{⌈log2(R)⌉, log2(β)}ε−2.

(4.203)

Moreover, observe that item (VI), item (F), and Proposition 2.17 show that

S(f) = max{S(ℊ2),S(ℊ1)} ≤ max{2, 4} = 4. (4.204)

Combining this, (4.199), and (4.203) with (4.201) establishes items (i), (ii), (iii), (iv), (v),
and (vi). The proof of Lemma 4.26 is thus complete.

Lemma 4.27. Let d ∈ N, κ,R ∈ (0,∞), ε ∈ (0, κ), γ ∈ (0, 1], β ∈ [1,∞) g ∈ C(R,R) satisfy
for all x, y ∈ R, k ∈ Z that |g(0)| ≤ 2κ, g(x+ 2kπ) = g(x), and |g(x)− g(y)| ≤ κ|x− y|. Then
there exists f ∈ N such that

(i) it holds that R(f) ∈ C(Rd,R),

(ii) it holds that supx=(x1,...,xd)∈[−R,R]d

∣

∣g
(

γβd
∏d

i=1 xi

)

−R(f)(x)
∣

∣ ≤ ε,

(iii) it holds that DH(f)(f) = 2,

(iv) it holds that P(f) ≤ 12802max{1, ⌈log2(R)⌉, log2(β)}max{1, κ3}d3ε−2,

(v) it holds that L(f) ≤ 19max{1, ⌈log2(R)⌉, ⌈log2(β)⌉}max{1, κ2}d2ε−1, and

(vi) it holds that S(f) ≤ 4

(cf. Definitions 2.1, 2.3, 2.13, and 4.8).

Proof of Lemma 4.27. Throughout this proof assume w.l.o.g. that κ ≥ 2, let L ∈ N satisfy
L = ⌈log2(κ)⌉, and let f ∈ C(R,R) satisfy for all x ∈ R that f(x) = κ−1g(x). Note that
Lemma 4.26 (applied with d x d, ε x

ε
κ
, R x R, γ x γ, β x β, g x f in the notation of

Lemma 4.26) demonstrates that there exists ℊ1 ∈ N which satisfies that
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(I) it holds that R(ℊ1) ∈ C(Rd,R),

(II) it holds that supx=(x1,...,xd)∈[−R,R]d

∣

∣f
(

γβd
∏d

i=1 xi

)

−R(ℊ1)(x)
∣

∣ ≤ ε
κ
,

(III) it holds that DH(ℊ1)(ℊ1) = 2,

(IV) it holds that L(ℊ1) ≤ 16max{1, ⌈log2(R)⌉, ⌈log2(β)⌉}d2 log2(κε−1),

(V) it holds that P(ℊ1) ≤ 12781max{1, ⌈log2(R)⌉, log2(β)}d3κ2ε−2, and

(VI) it holds that S(ℊ1) ≤ 4

(cf. Definitions 2.1, 2.3, 2.13, and 4.8). Nobs that Corollary 4.6 (applied with β x κ, L x L
in the notation of Corollary 4.6) shows that there exists ℊ2 ∈ N which satisfies that

(A) it holds for all x ∈ R that (R(ℊ2))(x) = κx,

(B) it holds that D(ℊ2) = (1, 2, 2, . . . , 2, 1) ∈ NL+2, and

(C) it holds that S(ℊ2) ≤ 2.

Observe that item (II), item (A), Proposition 2.10, and Proposition 2.7 demonstrate that for
all x = (x1, . . . , xd) ∈ [−R,R]d it holds that R(ℊ2 • I1 • ℊ1) ∈ C(Rd,R) and

|(R(ℊ2 • I1 • ℊ1))(x)− g
(

γβd
∏d

i=1 xi

)

| = |([R(ℊ2)] ◦ [R(ℊ1)])(x)− g
(

γβd∏d
i=1 xi

)

|
= κ|(R(ℊ1))(x)− f

(

γβd∏d
i=1 xi

)

| ≤ ε.
(4.205)

Note that item (IV), item (B), Proposition 2.10, and Proposition 2.7 imply

L(ℊ2 • I1 • ℊ1) = L(ℊ2) + 2 + L(ℊ1)− 2

= L(ℊ1) + L+ 1

≤ 16max{1, ⌈log2(R)⌉, ⌈log2(β)⌉}d2 log2(κε−1) + ⌈log2(κ)⌉+ 1

≤ 16max{1, ⌈log2(R)⌉, ⌈log2(β)⌉}d2κε−1 + κ + 2

≤ 16max{1, ⌈log2(R)⌉, ⌈log2(β)⌉}d2κε−1 + κ2ε−1 + 2κε−1

≤ 19max{1, ⌈log2(R)⌉, ⌈log2(β)⌉}max{1, κ2}d2ε−1

(4.206)

Observe that item (I), item (IV), item (B), and Proposition 2.10 hence imply that for all
k ∈ N0 ∩ [0,L(ℊ2 • I1 • ℊ1)] it holds that

Dk(ℊ2 • I1 • ℊ1) =











Dk(ℊ1) : k ∈ N0 ∩ [0,L(ℊ1))

2 : k ∈ N ∩ [L(ℊ1),L(ℊ1) + L+ 1)

1 : k = L(ℊ1) + L+ 1.

(4.207)
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This and item (III) show that

P(ℊ2 • I1 • ℊ1) =

L(ℊ2•I1•ℊ1)
∑

k=1

Dk(ℊ2 • I1 • ℊ1)(Dk−1(ℊ2 • I1 • ℊ1) + 1)

=





L(ℊ1)−1
∑

k=1

Dk(ℊ1)(Dk−1(ℊ1) + 1)



+





L(ℊ1)+L
∑

k=L(ℊ1)

2(2 + 1)



+ 1(2 + 1)

= P(ℊ1) + 6(L+ 1) + 3

≤ 12781max{1, ⌈log2(R)⌉, log2(β)}d3κ2ε−2 + 6(⌈log2(κ)⌉+ 1) + 3

≤ 12796max{1, ⌈log2(R)⌉, log2(β)}d3κ2ε−2 + 6κ

≤ 12796max{1, ⌈log2(R)⌉, log2(β)}d3κ2ε−2 + 6κ3ε−2

≤ 12802max{1, ⌈log2(R)⌉, log2(β)}max{κ3, 1}d3ε−2.

(4.208)

Furthermore, note that item (VI), item (C), and Proposition 2.17 demonstrate that

S(ℊ2 • I1 • ℊ1) = max{S(ℊ2),S(ℊ1)} = max{2, 4} = 4. (4.209)

Combining this, (4.206), (4.207), and (4.208) establishes items (i), (ii), (iii), (iv), (v), and (vi).
The proof of Lemma 4.27 is thus complete.

Corollary 4.28. Let a ∈ R, b ∈ [a,∞), d ∈ N, κ,R, c ∈ (0,∞), ε ∈ (0, κ), γ ∈ (0, 1],
β ∈ [1,∞) satisfy R = ⌈log2(max{2, |a|, |b|, β})⌉ and c ≥ 13968Rmax{1, κ3}, let g : R → R

satisfy for all x, y ∈ R, k ∈ Z that |g(0)| ≤ 2κ, g(x+2kπ) = g(x), and |g(x)− g(y)| ≤ κ|x− y|,
and let f : Rd → R satisfy for all x = (x1, . . . , xd) ∈ [a, b]d that f(x) = g

(

γβd
∏d

i=1 xi

)

(cf.
Definition 4.8). Then

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ cd2ε−1) ∧
(S(f) ≤ 1) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− f(x)| ≤ ε)











∪ {∞}



 ≤ cd3ε−2 (4.210)

(cf. Definitions 2.1, 2.3, and 2.13).

Proof of Corollary 4.28. Throughout this proof assume w.l.o.g. that max{|a|, |b|} > 0 and let
c ∈ [1,∞) satisfy c = Rmax{1, κ3}. Observe that Lemma 4.27 (applied with d x d, R x

max{|a|, |b|}, κ x κ, ε x ε, γ x γ in the notation of Lemma 4.27) shows that there exists
ℊ ∈ N which satisfies that

(i) it holds that R(ℊ) ∈ C(Rd,R),

(ii) it holds that supx∈[a,b]d

∣

∣(R(ℊ))(x)− f(x)
∣

∣ ≤ ε,

(iii) it holds that DH(ℊ)(ℊ) = 2,

(iv) it holds that L(ℊ) ≤ 19cd2ε−1 ,

(v) it holds that P(ℊ) ≤ 12802cd3ε−2, and

(vi) it holds that S(ℊ) ≤ 4
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(cf. Definitions 2.1, 2.3, and 2.13). Note that Lemma 4.3 (applied with d x d, f x ℊ in the
notation of Lemma 4.3) hence demonstrates that there exists h ∈ N which satisfies that

(I) it holds that R(h) ∈ C(Rd,R),

(II) it holds that supx∈[a,b]d

∣

∣(R(h))(x)− f(x)
∣

∣ ≤ ε,

(III) it holds that DH(h)(h) = 4,

(IV) it holds that L(h) ≤ 2(19cd2ε−1) + 1 ≤ 39cd2ε−1,

(V) it holds that P(h) ≤ 12802cd3ε−2 + 2 + 20(19cd2ε−1) ≤ 13184cd3ε−2, and

(VI) it holds that S(h) ≤ 2.

Observe that Lemma 4.3 (applied with d x d, f x h in the notation of Lemma 4.3) therefore
implies that there exists f ∈ N which satisfies that

(A) it holds that R(f) ∈ C(Rd,R),

(B) it holds that supx∈[a,b]d

∣

∣(R(f))(x)− f(x)
∣

∣ ≤ ε,

(C) it holds that L(f) ≤ 2(39cd2ε−1) + 1 ≤ 79cd2ε−1,

(D) it holds that P(f) ≤ 13184cd3ε−2 + 4 + 20(39cd2ε−1) ≤ 13968cd3ε−2, and

(E) it holds that S(f) ≤ 1.

Hence we obtain (4.210). The proof of Corollary 4.28 is thus complete.

4.6 Upper bounds for approximations of certain smooth and bounded

functions

Lemma 4.29. Let a ∈ R, b ∈ [a,∞), d ∈ N, γ ∈ (0,∞), ε ∈ (0, 1), g ∈ C(R,R) satisfy for all
x, y ∈ R, k ∈ Z that |g(0)| ≤ 2, g(x + 2kπ) = g(x), and |g(x) − g(y)| ≤ |x − y|. Then there
exists f ∈ N such that

(i) it holds that R(f) ∈ C(Rd,R),

(ii) it holds that supx=(x1,...,xd)∈[a,b]d

∣

∣g
(

γ2d
∑d

i=1 xi

)

− (R(f))(x)
∣

∣ ≤ ε,

(iii) it holds that D1(f) = DH(f)(f) = 2,

(iv) it holds that L(f) ≤ 15d⌈log2(max{1, γ}max{2, |a|, |b|})⌉,

(v) it holds that P(f) ≤ 2304⌈log2(max{1, γ}max{2, |a|, |b|})⌉dε−2, and

(vi) it holds that S(f) ≤ 2

(cf. Definitions 2.1, 2.3, 2.13, and 4.8).

79



Proof of Lemma 4.29. Throughout this proof assume w.l.o.g. that d > 1 (cf. Corollary 4.25),
let n,N ∈ N satisfy n = 2d⌈log2(max{1, γ}max{2, |a|, |b|})⌉ and N = ⌈2π

ε
⌉−1, and let ℊ1 ∈ N

satisfy

ℊ1 =
((

1 1 · · · 1
)

, 0
)

∈ (R1×d × R
1) (4.211)

(cf. Definitions 2.1 and 4.8). Note that Corollary 4.6 (applied with β x γ2d, L x d +
⌈log2(max{1, γ})⌉ in the notation of Corollary 4.6) shows that there exists ℊ2 ∈ N which
satisfies that

(I) it holds for all x ∈ R that (R(ℊ2))(x) = γ2dx,

(II) it holds that D(ℊ2) = (1, 2, 2, . . . , 2, 1) ∈ N
d+⌈log2(max{1,γ})⌉+2,

(III) it holds that S0(ℊ2) = 1, S1(ℊ2) = 2, and S(ℊ2) = 2, and

(IV) it holds that P(ℊ2) = 6(d+ ⌈log2(max{1, γ})⌉) + 1.

(cf. Definitions 2.3 and 2.13). Furthermore, observe that the fact that supx∈R|g(x)| ≤ λ+π ≤ 6
and Lemma 4.24 (applied with ε x ε, n x n, N x N , C x 6, g x g in the notation of
Lemma 4.24) ensure that there exists ℊ3 ∈ N which satisfies that

(A) it holds that L(ℊ3) ≤ n+ log2(6) + 9 ≤ n+ 12 and

(B) it holds it holds that D0(ℊ3) = DL(ℊ3)(ℊ3) = 1, D1(ℊ3) ≤ 2N , and DH(ℊ3)(ℊ3) = 2,

(C) it holds for all x, y ∈ R that
∣

∣(R(ℊ3))(x)− (R(ℊ3))(y)
∣

∣ ≤ |x− y|,

(D) it holds that supx∈[−2nπ,2nπ]

∣

∣g(x)− (R(ℊ3))(x)
∣

∣ ≤ ε,

(E) it holds for all x ∈ [2nπ,∞) that (R(ℊ3))(−x) = (R(ℊ3))(x) = g(0),

(F) it holds that S(ℊ3) ≤ 2, and

(G) it holds that P(ℊ3) ≤ (24 + 18n+ 5 log2(6))N
2 ≤ (18n+ 39)N2.

Next let f ∈ N satisfy
f = ℊ3 • I1 • ℊ2 • ℊ1 (4.212)

(cf. Definitions 2.6 and 2.8). Note that (4.211), (4.212), item (II), item (A), Proposition 2.10,
and Proposition 2.7 show that

L(f) = L(ℊ3) + L(I1) + L(ℊ2) + L(ℊ1)− 3

= L(ℊ3) + L(ℊ2)

= (n+ 12) + (d+ ⌈log2(max{1, γ})⌉+ 1)

= d+ 2d⌈log2(max{1, γ}max{2, |a|, |b|})⌉+ ⌈log2(max{1, γ})⌉+ 13

≤ (3d+ 1 + 13)⌈log2(max{1, γ}max{2, |a|, |b|})⌉
≤ 10d⌈log2(max{1, γ}max{2, |a|, |b|})⌉.

(4.213)

80



Observe that (4.197), (4.211), item (I), Proposition 2.10, and Proposition 2.7 ensure that for
all x = (x1, . . . , xd) ∈ Rd it holds that

(R(f))(x) = ([R(ℊ3)] ◦ [R(ℊ2)] ◦ [R(ℊ1)])(x) = ([R(ℊ3)] ◦ [R(ℊ2)])
( d
∑

i=1

xi

)

= (R(ℊ3))
(

γ2d
d
∑

i=1

xi

)

.

(4.214)

This, item (D), and the fact that for all x1, x2, . . . , xd ∈ [a, b] it holds that |γ2d
∑d

i=1 xi| ≤
γd2dmax{2, |a|, |b|} ≤ 22d⌈log2(max{1,γ}max{2,|a|,|b|})⌉π = 2nπ imply that for all x = (x1, . . . , xd) ∈
[a, b]d it holds that

∣

∣

∣

∣

g
(

γ2d
d
∑

i=1

xi

)

− (R(f))(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

g
(

γ2d
d
∑

i=1

xi

)

− (R(ℊ3))
(

2d
d
∑

i=1

xi

)

∣

∣

∣

∣

≤ ε. (4.215)

Moreover, note that (4.211), (4.212), (4.213), item (I), item (A), and Lemma 2.11 imply that
for all k ∈ N0 ∩ [0,L(f)] it holds that

Dk(f) =



















d : k = 0

Dk(ℊ2) : k ∈ N ∩ (0,L(ℊ2))

2 : k = L(ℊ2)

Dk−L(ℊ2)(ℊ3) : k ∈ N ∩ (L(ℊ2),L(f)].

(4.216)

This, item (II), and item (B) ensure that

P(f)

=

L(f)
∑

k=1

Dk(f)(Dk−1(f) + 1)

= D1(ℊ2)(d+ 1) +





L(ℊ2)−1
∑

k=2

Dk(ℊ2)(Dk−1(ℊ2) + 1)



+ 2(DL(ℊ2)−1(ℊ2) + 1)

+ D1(ℊ3)(2 + 1) +





L(ℊ3)
∑

k=2

Dk(ℊ3)(Dk−1(ℊ3) + 1)





= D1(ℊ2)(d− 1) +





L(ℊ2)
∑

k=1

Dk(ℊ2)(Dk−1(ℊ2) + 1)



+ DL(ℊ2)−1(ℊ2) + 1

+ D1(ℊ3) +





L(ℊ3)
∑

k=1

Dk(ℊ3)(Dk−1(ℊ3) + 1)





≤ 2d− 2 + P(ℊ2) + 3 + 2N + P(ℊ3) = P(ℊ2) + P(ℊ3) + 2N + 2d+ 1.

(4.217)

Combining this, item (IV), and item (G) with the fact that for all x ∈ (0, 1) it holds that
− log2(x) ≤ x−2 and π2 ≤ 10 with the assumption that n = 2d⌈log2(max{1, γ}max{2, |a|, |b|})⌉,
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ε ∈ (0, 1), d ≥ 2, and N ≤ 2π
ε
demonstrates that

P(f)

≤ P(ℊ2) + P(ℊ3) + 2N + 2d+ 1

≤ (6(d+ ⌈log2(max{1, γ})⌉) + 1) + (18n+ 39)N2 + 2N + 2d+ 1

≤ (18n+ 39)4π2ε−2 + 6⌈log2(max{1, γ})⌉+ 4πε−1 + 8d+ 2

≤ ((18n+ 39)40 + 6⌈log2(max{1, γ})⌉+ 13 + 8d+ 2)ε−2

= (1440d⌈log2(max{1, γ}max{2, |a|, |b|})⌉ + 6⌈log2(max{1, γ})⌉+ 8d+ 1575)ε−2

≤ (1440d⌈log2(max{1, γ}max{2, |a|, |b|})⌉+ 3d⌈log2(max{1, γ})⌉+ 8d+ 788d)ε−2

≤ (1440 + 3 + 8 + 788)⌈log2(max{1, γ}max{2, |a|, |b|})⌉dε−2

= 2239⌈log2(max{1, γ}max{2, |a|, |b|})⌉dε−2.

(4.218)

In addition, observe that (4.211), (4.212), item (III), item (F), Lemma 2.16, and Proposi-
tion 2.17 show that

S(f) = max{S(ℊ3),S(ℊ2 • ℊ1)} ≤ max{S(ℊ3),S(ℊ2),S(ℊ1), S0(ℊ2)(S1(ℊ1) + 1)}
≤ max{2, 2, 1, 1(1 + 1)} = 2.

(4.219)

Combining this with (4.213), (4.216), (4.218), and (4.215) establishes items (i), (ii), (iii), (iv),
(v), and (vi). The proof of Lemma 4.29 is thus complete.

Corollary 4.30. Let a ∈ R, b ∈ [a,∞), d ∈ N, γ, κ ∈ (0,∞), ε ∈ (0, κ), g ∈ C(R,R) satisfy
for all x, y ∈ R, k ∈ Z that |g(0)| ≤ 2κ, g(x+ 2kπ) = g(x), and |g(x)− g(y)| ≤ κ|x− y|. Then
there exists f ∈ N such that

(i) it holds that R(f) ∈ C(Rd,R),

(ii) it holds that supx=(x1,...,xd)∈[a,b]d

∣

∣g
(

γ2d
∑d

i=1 xi

)

− (R(f))(x)
∣

∣ ≤ ε,

(iii) it holds that DH(f)(f) = 2,

(iv) it holds that L(f) ≤ 22⌈log2(max{1, γ}max{2, |a|, |b|})⌉max{κ, 1}d,

(v) it holds that P(f) ≤ 2316⌈log2(max{1, γ}max{2, |a|, |b|})⌉max{κ3, 1}d, and

(vi) it holds that S(f) ≤ 2

(cf. Definitions 2.1, 2.3, 2.13, and 4.8).

Proof of Corollary 4.30. Throughout this proof let n,R ∈ N, f ∈ C(R,R) satisfy for all x ∈ R

that n = ⌈log2(max{κ, 2})⌉, R = ⌈log2(max{1, γ}max{2, |a|, |b|})⌉, and f(x) = κ−1g(x) (cf.
Definition 4.8). Note that Lemma 4.29 (applied with a x a, b x b, d x d, γ x γ, ε x

ε
κ
,

g x f in the notation of Lemma 4.29) shows that there exists ℊ1 ∈ N which satisfies that

(I) it holds that R(ℊ1) ∈ C(Rd,R),

(II) it holds that supx=(x1,...,xd)∈[a,b]d

∣

∣f
(

γ2d
∑d

i=1 xi

)

− (R(ℊ1))(x)
∣

∣ ≤ ε
κ
,
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(III) it holds that D1(ℊ1) = DH(ℊ1)(ℊ1) = 2,

(IV) it holds that L(ℊ1) ≤ 15Rd,

(V) it holds that P(ℊ1) ≤ 2304Rκ2dε−2, and

(VI) it holds that S(ℊ1) ≤ 2

(cf. Definitions 2.1, 2.3, and 2.13). Observe that Corollary 4.6 (applied with β x κ, L x n in
the notation of Corollary 4.6) and the fact that κ ≤ 2n show that there exists ℊ2 ∈ N which
satisfies that

(A) it holds for all x ∈ R that (R(ℊ2))(x) = κx,

(B) it holds that D(ℊ2) = (1, 2, 2, . . . , 2, 1) ∈ Nn+2,

(C) it holds that S0(ℊ2) = 1 and S(ℊ2) = max
{

1, κ
1
n

}

≤ 2, and

(D) it holds that P(ℊ2) = 6n+ 1.

Note that item (I), item (B), Proposition 2.10, and Proposition 2.7 ensure that

R(ℊ2 • I1 • ℊ1) ∈ C(Rd,R) and L(ℊ2 • I1 • ℊ1) = L(ℊ2) + L(ℊ1) (4.220)

(cf. Definitions 2.6 and 2.8). Combining this with item (IV), item (B), and the fact that for all
x ∈ [2,∞) it holds that ⌈log2(x)⌉ ≤ log2(x) + 1 ≤ x implies that

L(ℊ2 • I1 •ℊ1) = L(ℊ2)+L(ℊ1) ≤ 15Rd+6⌈log2(max{κ, 2})⌉+1 ≤ 22Rmax{κ, 1}d. (4.221)

Furthermore, observe that item (II), item (A), Proposition 2.10, and Proposition 2.7 demon-
strate that for all x = (x1, . . . , xd) ∈ [a, b]d it holds that

∣

∣

∣

∣

g
(

γ2d
d
∑

i=1

xi

)

− (R(ℊ2 • I1 • ℊ1))(x)

∣

∣

∣

∣

= κ

∣

∣

∣

∣

f
(

γ2d
d
∑

i=1

xi

)

− (R(ℊ1))(x)

∣

∣

∣

∣

≤ ε. (4.222)

Moreover, note that item (VI), item (C), Proposition 2.17, and the fact that κ
1
n ≤ 2 show that

S(ℊ2 • I1 • ℊ1) ≤ max{S(ℊ2),S(ℊ1)} ≤ max
{

κ
1
n , 2

}

= 2. (4.223)

In addition, observe that (4.221), item (B), Lemma 2.11, and Proposition 2.7 imply that for all
k ∈ N0 ∩ [0,L(ℊ2 • I1 • ℊ1)] it holds that

Dk(ℊ2 • I1 • ℊ1) =











Dk(ℊ1) : k ∈ N0 ∩ [0,L(ℊ1))

2 : k ∈ N ∩ [L(ℊ1),L(ℊ1) + L(ℊ2))

1 : k = L(ℊ1) + L(ℊ2).

(4.224)
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Combining this, item (III), and item (V) with [3, Proposition 2.19] and the fact that for all
x ∈ [2,∞) it holds that ⌈log2(x)⌉ ≤ log2(x) + 1 ≤ x ensures that

P(ℊ2 • I1 •ℊ1)

=

L(ℊ2•I1•ℊ1)
∑

k=1

Dk(ℊ2 • I1 • ℊ1)(Dk−1(ℊ2 • I1 • ℊ1) + 1)

=





L(ℊ1)−1
∑

k=1

Dk(ℊ1)(Dk−1(ℊ1) + 1)



+ 2(DL(ℊ1)−1(ℊ1) + 1) +





L(ℊ2)−1
∑

k=1

2(2 + 1)



+ 1(2 + 1)

=





L(ℊ1)
∑

k=1

Dk(ℊ1)(Dk−1(ℊ1) + 1)



+ DL(ℊ1)−1(ℊ1) + 1 + 6(L(ℊ2)− 1) + 3

= P(ℊ1) + 6(L(ℊ2)− 1) + 6 (4.225)

≤ 2304Rκ2dε−2 + 6n+ 6

= 2304Rκ2dε−2 + 6max{⌈log2(κ)⌉, 1}+ 6

≤ 2310Rκ2dε−2 + 6max{κ, 1}
≤ 2316Rmax{κ3, 1}dε−2.

This, (4.220), (4.221), (4.222), (4.223), and (4.224) establish items (i), (ii), (iii), (iv), (v),
and (vi). The proof of Corollary 4.30 is thus complete.

Corollary 4.31. Let a ∈ R, b ∈ [a,∞), d ∈ N c, γ, κ ∈ (0,∞), ε ∈ (0, κ) satisfy c ≥
4634max{κ3, 1}⌈log2(max{1, γ}max{2, |a|, |b|})⌉, and let g : R → R satisfy for all x, y ∈ R,
k ∈ Z that |g(0)| ≤ 2κ, g(x + 2kπ) = g(x), and |g(x) − g(y)| ≤ κ|x − y|. Then there exists
f ∈ N such that

(i) it holds that R(f) ∈ C(Rd,R),

(ii) it holds that supx=(x1,...,xd)∈[a,b]d

∣

∣g
(

γ2d
∑d

i=1 xi

)

− (R(f))(x)
∣

∣ ≤ ε,

(iii) it holds that L(f) ≤ cd,

(iv) it holds that P(f) ≤ cd2ε−2, and

(v) it holds that S(f) ≤ 1

(cf. Definitions 2.1, 2.3, 2.13, and 4.8).

Proof of Corollary 4.31. Throughout this proof let c = 2316⌈log2(max{1, γ}max{2, |a|, |b|})⌉ ∈
N. Note that Corollary 4.30 (applied with a x a, b x b, d x d, κ x κ, ε x ε in the notation
of Corollary 4.30) shows that there exists ℊ ∈ N which satisfies that

(I) it holds that R(ℊ) ∈ C(Rd,R),

(II) it holds that supx=(x1,...,xd)∈[a,b]d

∣

∣g
(

γ2d
∑d

i=1 xi

)

− (R(ℊ))(x)
∣

∣ ≤ ε,

(III) it holds that DH(ℊ)(ℊ) = 2,
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(IV) it holds that L(ℊ) ≤ 20−1max{κ, 1}cd,

(V) it holds that P(ℊ) ≤ max{κ3, 1}cdε−2, and

(VI) it holds that S(ℊ) ≤ 2

(cf. Definitions 2.1, 2.3, 2.13, and 4.8). This, the fact that max{κ, 1} ≤ max{κ3, 1}min{ε−2, 1},
and Lemma 4.3 (applied with f x ℊ, d x d in the notation of Lemma 4.3) show that there
exists f ∈ N which satisfies that

(A) it holds that R(f) ∈ C(Rd,R),

(B) it holds that supx=(x1,...,xd)∈[a,b]d

∣

∣g
(

γ2d
∑d

i=1 xi

)

− (R(f))(x)
∣

∣ ≤ ε,

(C) it holds that L(f) ≤ 2(20−1max{κ, 1}cd) + 1 ≤ cd,

(D) it holds that

P(f) ≤ max{κ3, 1}cdε−2 + 2+max{κ, 1}cd ≤ max{κ3, 1}(2c+ 2)dε−2 ≤ cdε−2, (4.226)

and

(E) it holds that S(f) ≤ 1.

Observe that items (A), (B), (C), (D), and (E) establish items (i), (ii), (iii), (iv), and (v). The
proof of Corollary 4.31 is thus complete.
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5 Lower and upper bounds for the minimal number of

ANN parameters in the approximation of certain high-

dimensional functions

In this section we establish in Theorem 5.1, Theorem 5.2, Theorem 5.9, and Corollary 5.10 below
that certain families of functions can be approximated without the curse of dimensionality by
deep ANNs but neither by shallow nor insufficiently deep ANNs.

Specifically, Theorem 5.1 proves that the plane vanilla product functions can neither be
approximated without the curse of dimensionality by means of shallow ANNs nor insufficiently
deep ANNs if the absolute values of the ANN parameters are polynomially bounded in the
input dimension but can be approximated without the curse of dimensionality by sufficiently
deep ANNs even if the absolute values of the ANN parameters are assumed to be uniformly
bounded by 1. Our proof of Theorem 5.1 employs

• the lower bound result for the minimal number of parameters of ANNs to approximate
the product functions in Corollary 3.4 and

• the upper bound result for the minimal number of parameters of ANNs to approximate
the product functions in Corollary 4.16.

Note that Theorem 1.4 in the introduction is a direct consequence of Theorem 5.1.
Theorem 5.2 proves that compositions of certain periodic functions and certain scaled prod-

uct functions can neither be approximated without the curse of dimensionality by means of
shallow ANNs nor insufficiently deep ANNs even if the ANN parameters may be arbitrarily
large but can be approximated without the curse of dimensionality by sufficiently deep ANNs
even if the absolute values of the ANN parameters are assumed to be uniformly bounded by 1.
Our proof of Theorem 5.2 employs

• the lower bound result for the minimal number of parameters of ANNs to approximate
the considered compositions in Proposition 3.21 and

• the upper bound result for the minimal number of parameters of ANNs to approximate
the considered compositions in Corollary 4.28.

Observe that Theorem 1.3 in the introduction follows immediatly from Theorem 5.2.
Theorem 5.9 proves that compositions of certain periodic functions and certain scaled sum

functions can neither be approximated without the curse of dimensionality by means of shallow
ANNs nor insufficiently deep ANNs even if the ANN parameters may be arbitrarily large but
can be approximated without the curse of dimensionality by sufficiently deep ANNs even if the
absolute values of the ANN parameters are assumed to be uniformly bounded by 1. Our proof
of Theorem 5.9 employs

• the lower bound result for the minimal number of parameters of ANNs to approximate
the considered compositions in Proposition 3.22 and

• the upper bound result for the minimal number of parameters of ANNs to approximate
the considered compositions in Corollary 4.31.
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Theorem 5.9 and the elementary result regarding multidimensional localizing functions in Corol-
lary 5.8 imply Corollary 5.10. Corollary 5.10 establishes the existence of smooth and uniformly
globally bounded functions with compact support which can neither be approximated without
the curse of dimensionality by means of shallow ANNs nor insufficiently deep ANNs even if the
ANN parameters may be arbitrarily large but which can be approximated without the curse of
dimensionality by sufficiently deep ANNs even if the absolute values of the ANN parameters
are assumed to be uniformly bounded by 1. Note that Theorem 1.2 in the introduction is a
direct consequence of Corollary 5.10.

5.1 ANN approximations regarding high-dimensional product func-
tions

Theorem 5.1. Let a ∈ R, b ∈ (a,∞) satisfy max{|a|, |b|} ≥ 2 and for every d ∈ N let
fd : R

d → R satisfy for all x = (x1, . . . , xd) ∈ Rd that fd(x) =
∏d

i=1 xi. Then

(i) it holds for all c ∈ [1,∞), d, L ∈ N, ε ∈ (0, 1) that

min























p ∈ N :









∃f ∈ N : (P(f) = p)∧
(L(f) ≤ L) ∧ (S(f) ≤ cdc) ∧

(R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)























∪ {∞}









≥ (4cL)−3c2
d
2L (5.1)

and

(ii) it holds for all c ∈
[

216 ln(max{|a|, |b|}),∞
)

, d ∈ N, ε ∈ (0, 1/2) that

min























p ∈ N :









∃f ∈ N : (P(f) = p) ∧
(L(f) ≤ cd2|ln(ε)|) ∧

(S(f) ≤ 1) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)























∪ {∞}









≤ cd3|ln(ε)| (5.2)

(cf. Definitions 2.1, 2.3, and 2.13).

Proof of Theorem 5.1. Observe that Corollary 3.4 (applied with a x a, b x b, c x c, ε x ε,
d x d, L x L, f x fd for c ∈ [1,∞), d, L ∈ N, ε ∈ (0, 1] in the notation of Corollary 3.4)
demonstrates that for all c ∈ [1,∞), d, L ∈ N, ε ∈ (0, 1] it holds that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(S(f) ≤ cdc) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ (4cL)−3c2
d
2L (5.3)

(cf. Definitions 2.1, 2.3, and 2.13). Hence we obtain item (i). Note that Corollary 4.16 (applied
with d x d, ε x ε, a x a, b x b, γ x 1, β x 1 for d ∈ N, ε ∈ (0, 1/2) in the notation of
Corollary 4.16) shows that for all c ∈

[

ln(2)−212143 ln(max{|a|, |b|}),∞
)

, d ∈ N, ε ∈ (0, 1/2)
there exists f ∈ N such that

(I) it holds that R(f) ∈ C(Rd,R),

87



(II) it holds that supx=(x1,...,xd)∈[a,b]d

∣

∣

∣

∏d
i=1 xi − (R(f))(x)

∣

∣

∣
≤ ε,

(III) it holds that L(f) ≤ cd2|ln(ε)|,

(IV) it holds that P(f) ≤ cd3|ln(ε)|, and

(V) it holds that S(f) ≤ 1

Observe that items (I), (II), (III), (IV), and (V) establish item (ii). The proof of Theorem 5.1
is thus complete.

Theorem 5.2. Let ϕ ∈ R, γ ∈ (0, 1], β ∈ [1,∞), a ∈ R, b ∈ [a + 2πβ−1,∞), c, κ ∈ (0,∞)
satisfy c ≥ 13968⌈log2(max{2, |a|, |b|, β})⌉max{1, κ3} and for every d ∈ N let fd : R

d → R

satisfy for all x = (x1, . . . , xd) ∈ Rd that fd(x) = κ sin
(

γβd
(
∏d

i=1 xi

)

+ ϕ
)

. Then

(i) it holds for all d, L ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d

max{1,L−1}

(5.4)

and

(ii) it holds for all d ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ cd2ε−1) ∧
(S(f) ≤ 1) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≤ cd3ε−2

(5.5)

(cf. Definitions 2.1, 2.3, 2.13, and 4.8).

Proof of Theorem 5.2. Throughout this proof let g : R → R satisfy for all x ∈ R that g(x) =
κ sin(x+ϕ). Note that Corollary 4.28 (applied with a x a, b x b, d x d, κ x κ, c x c, ε x ε,
γ x γ, g x g, f x fd for d ∈ N, ε ∈ (0, κ) in the notation of Corollary 4.28) implies that for
all d ∈ N, ε ∈ (0, κ) it holds that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ cd2ε−1) ∧
(S(f) ≤ 1) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≤ cd3ε−2. (5.6)

Furthermore, observe that Proposition 3.21 (applied with ϕ x ϕ, γ x γ, β x β, a x a, b x b,
κ x κ, fd x fd for d ∈ N in the notation of Proposition 3.21) shows that for all d, L ∈ N,
ε ∈ (0, κ) it holds that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d

max{1,L−1} . (5.7)

This and (5.6) establish items (i) and (ii). The proof of Theorem 5.2 is thus complete.
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Corollary 5.3. Let a ∈ R, b ∈ (a,∞), κ ∈ (0,∞) and for every d ∈ N let fd : R
d → R satisfy

for all x = (x1, . . . , xd) ∈ Rd that fd(x) = κ sin
(

( 2π
b−a

)d
(
∏d

i=1 xi

))

. Then there exists c ∈ R such
that

(i) it holds for all d, L ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d
L (5.8)

and

(ii) it holds for all d ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ cd2ε−1) ∧
(S(f) ≤ 1) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≤ cd3ε−2

(5.9)

(cf. Definitions 2.1, 2.3, and 2.13).

Proof of Corollary 5.3. Note that Theorem 5.2 (applied with ϕ x 0, γ x 1, β x
2π
b−a

, a x a,
b x b, κ x κ, fd x fd for d ∈ N in the notation of Theorem 5.2) shows items (i) and (ii). The
proof of Corollary 5.3 is thus complete.

5.2 Localizing functions

Lemma 5.4. Let f : R → R satisfy for all x ∈ R that

f(x) =

{

0 : x ≤ 0

e−
1
x : x > 0.

(5.10)

Then

(i) it holds that f ∈ C∞(R,R).

(ii) it holds for all x ∈ R that |f ′(x)| ≤ 1 and

Proof of Lemma 5.4. Observe that (5.10) ensures that

lim
hց0

f(h)− f(0)

h
= lim

hց0

1

he
1
h

= 0 = lim
hր0

f(h)− f(0)

h
. (5.11)

Combining this with (5.10) demonstrates that for all x ∈ R it holds that

f ∈ C1(R, [0, 1]) and f ′(x) =

{

0 : x ≤ 0
1
x2 e

− 1
x : x > 0.

(5.12)
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This ensures that

lim
hց0

f ′(h)− f ′(0)

h
= lim

hց0

1

h3e
1
h

= 0 = lim
hր0

f ′(h)− f ′(0)

h
. (5.13)

Furthermore, note that the chain and the product rule ensure that for all g ∈ C1(R, [0, 1]),

x ∈ (0,∞) with ∀ y ∈ (0,∞) : g(y) = 1
y2
e−

1
y it holds that

g′(x) = − 2
x3 e

− 1
x + 1

x4 e
− 1

x =
(

1
x
− 2

)

1
x3 e

− 1
x . (5.14)

Combining this, (5.12), and (5.13) shows that

sup
x∈R

|f ′(x)| =
∣

∣f ′
(

1
2

)∣

∣ = 4e−2 ≤ 1. (5.15)

This establishes item (ii). Moreover, observe that for all n ∈ N with

∃ p ∈ Z[X ] ∀ x ∈ R : f (n)(x) =

{

0 : x ≤ 0

p
(

1
x

)

e−
1
x : x > 0

(5.16)

it holds that

lim
hց0

f (n)(h)− f (n)(0)

h
= lim

hց0

p
(

1
h

)

he
1
h

= 0 = lim
hր0

f (n)(h)− f (n)(0)

h
. (5.17)

In addition, note that for all p ∈ Z[X ], g ∈ C1(R, [0, 1]), x ∈ (0,∞) with ∀ y ∈ (0,∞) : g(y) =

p( 1
y
)e−

1
y it holds that

g′(x) = − 1
x2p

′
(

1
x

)

e−
1
x + p

(

1
x

)

1
x2 e

− 1
x =

(

p
(

1
x

)

1
x2 − 1

x2p
′
(

1
x

))

e−
1
x . (5.18)

Combining this, (5.10), (5.12), and (5.17) with the fact that for all p ∈ Z[X ] it holds that
p′ ∈ Z[X ] and induction ensures that for all n ∈ N0 there exists p ∈ Z[X ] such that for all
x ∈ R it holds that

f (n) ∈ C1(R,R) and f (n)(x) =

{

0 : x ≤ 0

p
(

1
x

)

e−
1
x : x > 0.

(5.19)

This establishes item (i). The proof of Lemma 5.4 is thus complete.

Lemma 5.5. Let δ ∈ (0,∞). Then there exists ϕ ∈ C∞(R, [0, 1]) such that

(i) it holds for all x ∈ (−∞, 0] that ϕ(x) = 0,

(ii) it holds for all x ∈ (0, δ) that ϕ(x) ∈ (0, 1),

(iii) it holds for all x ∈ [δ,∞) that ϕ(x) = 1, and

(iv) it holds for all x ∈ R that |ϕ′(x)| ≤ 48
δ
.
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Proof of Lemma 5.4. Throughout this proof let f : R → R and ϕ : R → R satisfy for all x ∈ R

that

f(x) =

{

0 : x ≤ 0

e−
δ
x : x > 0

and ϕ(x) =
f(x)

f(x) + f(δ − x)
. (5.20)

Observe that (5.20), Lemma 5.4, and the fact that for all x ∈ R it holds that f(x)+ f(δ−x) ≥
f
(

δ
2

)

= e−2 ≥
(

4
11

)2
= 16

121
≥ 1

8
show that for all x ∈ (0, δ) it holds that

2f(δ) ≥ f(x) + f(δ − x) ≥ 1
8

and ϕ ∈ C∞(R,R). (5.21)

Furthermore, note that Lemma 5.4, (5.20), and the chain rule demonstrate that for all x ∈ R

it holds that
|f ′(x)| ≤ 1

δ
. (5.22)

Moreover, observe that (5.20) ensures that for all x ∈ (−∞, 0] it holds that

ϕ(x) =
f(x)

f(x) + f(δ − x)
=

0

0 + e−
δ

δ−x

= 0. (5.23)

In addition, note that (5.20) shows that for all x ∈ (0, δ) it holds that

0 =
0

e−
δ
x + e−

δ
−x

<
e−

δ
x

e−
δ
x + e−

δ
δ−x

= ϕ(x) =
e−

δ
x

e−
δ
x + e−

δ
δ−x

<
e−

δ
x

e−
δ
x

= 1. (5.24)

Furthermore, observe that (5.20) demonstrates that for all x ∈ [δ,∞) it holds that

ϕ(x) =
f(x)

f(x) + f(δ − x)
=

e−
δ
x

e−
δ
x + 0

= 1. (5.25)

Moreover, note that (5.20), (5.21), (5.22), Lemma 5.4, the quotient rule, and the fact that
e−1 ≤ 10

27
ensure that for all x ∈ (0, δ) it holds that

|ϕ′(x)| =
∣

∣

∣

∣

f ′(x)(f(x) + f(δ − x))− (f ′(x)− f ′(δ − x))f(x)

(f(x) + f(δ − x))2

∣

∣

∣

∣

=

∣

∣

∣

∣

f ′(x)f(δ − x) + f ′(δ − x)f(x)

(f(x) + f(δ − x))2

∣

∣

∣

∣

≤ |f ′(x)f(δ − x)| + |f ′(δ − x)f(x)|
(f(x) + f(δ − x))2

≤ 82

δ
(|f(δ − x)|+ |f(x)|) ≤ 64(2f(δ))

δ
= 128e−1

δ
≤ 1280

27δ
≤ 48

δ
.

(5.26)

This, (5.21), (5.23), (5.24), and (5.25) establish items (i), (ii), (iii), and (iv). The proof of
Lemma 5.5 is thus complete.

Lemma 5.6. Let a ∈ R, b ∈ (a,∞), δ ∈ (0,∞). Then there exists ϕ ∈ C∞(R, [0, 1]) such that

(i) it holds for all x ∈ (−∞, a− δ] ∪ [b+ δ,∞) that ϕ(x) = 0,

(ii) it holds for all x ∈ (a− δ, a) ∪ (b, b+ δ) that ϕ(x) ∈ (0, 1),
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(iii) it holds for all x ∈ [a, b] that ϕ(x) = 1, and

(iv) it holds for all x ∈ R that |ϕ′(x)| ≤ 48
δ
.

Proof of Lemma 5.6. Observe that Lemma 5.5 shows that there exists f ∈ C∞(R, [0, 1]) which
satisfies that

(I) it holds for all x ∈ (−∞, 0] that f(x) = 0,

(II) it holds for all x ∈ (0, δ) that f(x) ∈ (0, 1),

(III) it holds for all x ∈ [δ,∞) that f(x) = 1, and

(IV) it holds for all x ∈ R that |f ′(x)| ≤ 48
δ
.

Next let ϕ : R → [0, 1] satisfy for all x ∈ R that

ϕ(x) =

{

f(x− a + δ) : x < a

f(b− x+ δ) : x ≥ a
. (5.27)

Note that (5.27) and item (I) demonstrate that for all x ∈ (−∞, a− δ], y ∈ [b+ δ,∞) it holds
that

ϕ(x) = f(x− a+ δ) = 0 and ϕ(y) = f(b− x+ δ) = 0. (5.28)

Furthermore, observe that (5.27) and item (II) show that for all x ∈ (a− δ, a), y ∈ (b, b+ δ) it
holds that

ϕ(x) = f(x− a+ δ) ∈ (0, 1) and ϕ(y) = f(b− x+ δ) ∈ (0, 1). (5.29)

Moreover, note that (5.27) and item (III) imply that for all x ∈ [a, b] it holds that

ϕ(x) = f(b− x+ δ) = 1. (5.30)

In addition, observe that (5.27), item (III), and the fact that for all k ∈ N0 it holds that f ∈
C∞(R, [0, 1]) and (−1)kf (k)(b− a+ δ) = f (k)(δ) show that for all k ∈ N0 with ϕ ∈ Ck(R, [0, 1]),
∀ x ∈ (−∞, a) : ϕ(k)(x) = f (k)(x − a + δ), and ∀ x ∈ [a,∞) : ϕ(k)(x) = (−1)kf (k)(b − x + δ) it
holds that

lim
hր0

ϕ(k)(a+ h)− ϕ(k)(a)

h
= lim

hր0

f (k)(h+ δ)− (−1)kf (k)(b− a + δ)

h

= lim
hր0

f (k)(δ + h)− f (k)(δ)

h

= f (k+1)(δ)

= (−1)k+1f (k+1)(b− a + δ)

= lim
hց0

ϕ(k)(a + h)− ϕ(k)(a)

h
.

(5.31)

Combining this, (5.27), and the fact that limxրa ϕ(x) = 1 = limxցa ϕ(x) with induction ensures
that for all x ∈ (−∞, a), y ∈ [a,∞) it holds that

ϕ ∈ C∞(R, [0, 1]), ϕ′(x) = f ′(x− a + δ) and ϕ′(y) = −f ′(b− y + δ). (5.32)
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Hence item (IV) demonstrates that for all x ∈ R it holds that

|ϕ′(x)| ≤ max{|f ′(x− a + δ)|, |f ′(b− x+ δ)|} ≤ 48
δ
. (5.33)

This, (5.28), (5.29), (5.30), and (5.32) establish items (i), (ii), (iii), and (iv). The proof of
Lemma 5.6 is thus complete.

Lemma 5.7. Let a ∈ R, b ∈ (a,∞), δ ∈ (0,∞), d ∈ N. Then there exists ϕ ∈ C∞(Rd, [0, 1])
such that

(i) it holds for all x ∈ R
d\(a− δ, b+ δ)d that ϕ(x) = 0,

(ii) it holds for all x ∈ [a, b]d that ϕ(x) = 1, and

(iii) it holds for all x, y ∈ Rd that |ϕ(x)− ϕ(y)| ≤ 48d
δ
‖x− y‖2

(cf. Definition 3.14).

Proof of Lemma 5.7. Note that Lemma 5.6 (applied with a x a, b x b, δ x δ in the notation
of Lemma 5.6) shows that there exists f ∈ C∞(R, [0, 1]) which satisfies that

(I) it holds for all x ∈ (−∞, a− δ] ∪ [b+ δ,∞) that f(x) = 0,

(II) it holds for all x ∈ (a− δ, a) ∪ (b, b+ δ) that f(x) ∈ (0, 1),

(III) it holds for all x ∈ [a, b] that f(x) = 1, and

(IV) it holds for all x ∈ R that |f ′(x)| ≤ 48
δ
.

Next let ϕ ∈ C∞(Rd, [0, 1]) satisfy for all x = (x1, . . . , xd) ∈ Rd that

ϕ(x) =
∏d

i=1 f(xi). (5.34)

Observe that (5.34) and item (I) demonstrate that for all x = (x1, . . . , xd) ∈ Rd\(a− δ, b+ δ)d

it holds that
ϕ(x) =

∏d
i=1 f(xi) = 0. (5.35)

Furthermore, note that (5.34) and item (III) demonstrate that for all x = (x1, . . . , xd) ∈ [a, b]d

it holds that
ϕ(x) =

∏d
i=1 f(xi) =

∏d
i=1 1 = 1. (5.36)

Moreover, observe that (5.34), item (IV), and the fact that f ∈ C∞(R, [0, 1]) imply that for all
x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R

d it holds that

|ϕ(x)− ϕ(y)| =
∣

∣

∣

[

∏d
i=1 f(xi)

]

−
[

∏d
i=1 f(yi)

]∣

∣

∣

=
∣

∣

∣

∑d
j=1

([

∏j−1
i=1 f(yi)

][

∏d
i=j f(xi)

]

−
[

∏j
i=1 f(yi)

][

∏d
i=j+1 f(xi)

])∣

∣

∣

=
∣

∣

∣

∑d
j=1(f(xj)− f(yj))

[

∏j−1
i=1 f(yi)

][

∏d
i=j+1 f(xi)

]∣

∣

∣

≤
∑d

j=1|f(xj)− f(yj)|
[

∏j−1
i=1 |f(yi)|

][

∏d
i=j+1|f(xi)|

]

≤
∑d

j=1|f(xj)− f(yj)| ≤
∑d

j=1
48
δ
|xj − yj| ≤ 48d

δ
‖x− y‖2.

(5.37)

Combining this, (5.35), and (5.36) establishes items (i), (ii), and (iii). The proof of Lemma 5.7
is thus complete.
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Corollary 5.8. Let a ∈ R, b ∈ (a,∞), d ∈ N, κ, δ, L ∈ (0,∞) and g ∈ C∞(Rd,R) satisfy
for all x, y ∈ [a − δ, b + δ]d that |g(x) − g(y)| ≤ L‖x − y‖2 and |g(x)| ≤ κ. Then there exists
f ∈ C∞(Rd,R) such that

(i) it holds for all x ∈ [a, b]d that f(x) = g(x),

(ii) it holds for all x ∈ Rd that |f(x)| ≤ κ
(

1[a−δ,b+δ]d(x)
)

, and

(iii) it holds for all x, y ∈ Rd that |f(x)− f(y)| ≤ (48κd
δ

+ L)‖x− y‖2

(cf. Definition 3.14).

Proof of Corollary 5.8. Note that Lemma 5.7 (applied with a x a, b x b, d x d, δ x δ in the
notation of Lemma 5.7) shows that there exists ϕ ∈ C∞(Rd, [0, 1]) which satisfies that

(I) it holds for all x ∈ Rd\(a− δ, b+ δ)d that ϕ(x) = 0,

(II) it holds for all x ∈ [a, b]d that ϕ(x) = 1, and

(III) it holds for all x, y ∈ Rd that |ϕ(x)− ϕ(y)| ≤ 48d
δ
‖x− y‖2.

Next let f ∈ C∞(Rd,R) satisfy for all x ∈ Rd that

f(x) = ϕ(x)g(x). (5.38)

Observe that (5.38) and item (I) ensure that for all x ∈ Rd\(a− δ, b+ δ)d it holds that

f(x) = ϕ(x)g(x) = 0. (5.39)

Furthermore, note that (5.38) and item (II) ensure that for all x ∈ [a, b]d it holds that

f(x) = ϕ(x)g(x) = g(x). (5.40)

Moreover, observe that (5.38), item (III), and the fact that ϕ ∈ C∞(Rd, [0, 1]) imply that for
all x, y ∈ R

d it holds that |f(x)| ≤ κ and

|f(x)− f(y)| = |ϕ(x)g(x)− ϕ(y)g(y)|
≤ |ϕ(x)g(x)− ϕ(y)g(x)|+ |ϕ(y)g(x)− ϕ(y)g(y)|
≤ |ϕ(x)− ϕ(y)||g(x)|+ |ϕ(y)||g(x)− g(y)|
≤ 48κd

δ
‖x− y‖2 + L‖x− y‖2 ≤ (48κd

δ
+ L)‖x− y‖2.

(5.41)

Combining this, (5.38), (5.39), and (5.40) establishes items (i), (ii), and (iii). The proof of
Corollary 5.8 is thus complete.
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5.3 ANN approximations for classes of smooth and bounded func-

tions

Theorem 5.9. Let ϕ ∈ R, γ, κ ∈ (0,∞), a ∈ R, b ∈ [a + πγ−1,∞), c ∈ (0,∞) satisfy
c ≥ 4634⌈log2(max{1, γ}max{|a|, |b|, 2})⌉max{κ3, 1} and for every d ∈ N let fd : R

d → R

satisfy for all x = (x1, . . . , xd) ∈ Rd that fd(x) = κ sin
(

γ2d
(
∑d

i=1 xi

)

+ ϕ
)

. Then

(i) it holds for all d, L ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d

max{1,L−1}

(5.42)

and

(ii) it holds for all d ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ cd) ∧
(S(f) ≤ 1) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≤ cd2ε−2 (5.43)

(cf. Definitions 2.1, 2.3, 2.13, and 4.8).

Proof of Theorem 5.9. Throughout this proof let g : R → R satisfy for all x ∈ R that g(x) =
κ sin(x + ϕ). Note that Corollary 4.31 (applied with a x a, b x b, d x d, κ x κ, ε x ε,
γ x γ, c x c, g x g for d ∈ N, ε ∈ (0, κ) in the notation of Corollary 4.31) implies that for all
d ∈ N, ε ∈ (0, κ) it holds that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ cd) ∧
(S(f) ≤ 1) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≤ cd2ε−2. (5.44)

Furthermore, observe that Proposition 3.22 (applied with ϕ x ϕ, κ x κ, γ x γ, a x a, b x b,
fd x fd for d ∈ N in the notation of Proposition 3.22) shows that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d

max{1,L−1} . (5.45)

This and (5.44) establish items (i) and (ii). The proof of Theorem 5.9 is thus complete.

Corollary 5.10. Let a ∈ R, b ∈ (a,∞), κ, δ ∈ (0,∞). Then there exist c ∈ R and fd ∈
C∞(Rd,R), d ∈ N, with ∀ d ∈ N, x ∈ Rd : |fd(x)| ≤ κ1[a−δ,b+δ]d(x) such that

(i) it holds for all d, L ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d
L (5.46)

and
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(ii) it holds for all d ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ cd) ∧
(S(f) ≤ 1) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≤ cd2ε−2 (5.47)

(cf. Definitions 2.1, 2.3, and 2.13).

Proof of Corollary 5.10. Throughout this proof let gd ∈ C∞(Rd,R), d ∈ N, satisfy for all d ∈ N,
x = (x1, . . . , xd) ∈ Rd that

gd(x) = κ sin
(

2dπ
b−a

(
∑d

i=1 xi

))

. (5.48)

Note that Corollary 5.8 (applied with a x a, b x b, d x d, κ x κ, δ x δ, g x gd for d ∈ N in
the notation of Corollary 5.8) shows that there exist fd ∈ C∞(Rd,R), d ∈ N, which satisfy that

(I) it holds for all d ∈ N, x = (x1, . . . , xd) ∈ [a, b]d that fd(x) = κ sin
(

2dπ
b−a

(
∑d

i=1 xi

))

, and

(II) it holds for all d ∈ N, x ∈ Rd that |fd(x)| ≤ κ
(

1[a−δ,b+δ]d(x)
)

.

Observe that item (I), the fact that for all L ∈ N it hods that max{L − 1, 1} ≤ L and
Theorem 5.9 (applied with ϕ x 0, γ x

π
b−a

, a x a, b x b, κ x κ, fd x fd for d ∈ N in the
notation of Theorem 5.9) show that there exists c ∈ R such that

(A) it holds for all d, L ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d
L (5.49)

and

(B) it holds for all d ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ cd) ∧
(S(f) ≤ 1) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≤ cd2ε−2 (5.50)

Combining item (I), item (II), item (A), and item (B) establishes item (i) and item (ii). The
proof of Corollary 5.10 is thus complete.

Corollary 5.11. Let κ ∈ (0,∞). Then there exist c ∈ (0,∞) and fd ∈ C∞(Rd,R), d ∈ N, with
compact support such that for all d ∈ N, x, y ∈ Rd it holds that |fd(x)| ≤ κ, |fd(x) − fd(y)| ≤
2κd‖x− y‖2, and
(i) it holds for all d, L ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[−2d,2d]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d

max{1,L−1}

(5.51)

and
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(ii) it holds for all d ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ cd) ∧
(S(f) ≤ 1) ∧ (R(f) ∈ C(Rd,R)) ∧

(supx∈[−2d,2d]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≤ cd2ε−2 (5.52)

(cf. Definitions 2.1, 2.3, 2.13, and 3.14).

Proof of Corollary 5.11. Throughout this proof let gd ∈ C∞(Rd,R), d ∈ N, satisfy for all d ∈ N,
x = (x1, . . . , xd) ∈ Rd that

gd(x) = κ sin
(
∑d

i=1 xi

)

. (5.53)

Note that (5.53) shows that for all d ∈ N, x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd it holds that

|gd(x)− gd(y)| = |κ sin
(
∑d

i=1 xi

)

− κ sin
(
∑d

i=1 yi
)

|
= κ|sin

(
∑d

i=1 xi

)

− sin
(
∑d

i=1 yi
)

|
≤ κ|

(
∑d

i=1 xi

)

−
(
∑d

i=1 yi
)

|
= κ|

(
∑d

i=1 xi

)

−
(
∑d

i=1 yi
)

|
≤ κd‖x− y‖2

(5.54)

(cf. Definition 3.14). This and Corollary 5.8 (applied with a x −2d, b x 2d, d x d, κ x κ,
δ x 48, L x κd, g x gd for d ∈ N in the notation of Corollary 5.8) shows that there exist
fd ∈ C∞(Rd,R), d ∈ N, which satisfy that

(I) it holds for all d ∈ N, x = (x1, . . . , xd) ∈ [−2d, 2d]d that fd(x) = κ sin
((
∑d

i=1 xi

)

+ ϕ
)

,

(II) it holds for all d ∈ N, x ∈ R
d that |fd(x)| ≤ κ

(

1[−2d−48,2d+48]d(x)
)

, and

(III) it holds for all d ∈ N, x, y ∈ Rd that |fd(x)− fd(y)| ≤ 2κd‖x− y‖2.
Observe that item (I), the fact that for all L ∈ N it hods that max{L − 1, 1} ≤ L and
Theorem 5.9 (applied with ϕ x 0, γ x 2−d, a x −2d, b x 2d, κ x κ, fd x fd for d ∈ N in
the notation of Theorem 5.9) show that there exists c ∈ R such that

(A) it holds for all d, L ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ L) ∧
(R(f) ∈ C(Rd,R)) ∧

(supx∈[−2d,2d]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≥ 2
d

max{1,L−1}

(5.55)

and

(B) it holds for all d ∈ N, ε ∈ (0, κ) that

min











p ∈ N :





∃f ∈ N : (P(f) = p) ∧ (L(f) ≤ cd) ∧
(S(f) ≤ 1) ∧ (R(f) ∈ C(Rd,R)) ∧

(supx∈[−2d,2d]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



 ≤ cd2ε−2 (5.56)

(cf. Definitions 2.1, 2.3, and 2.13). Combining item (II), item (III), item (A), and item (B)
establishes items (i) and (ii). The proof of Corollary 5.11 is thus complete.
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5.4 Necessity of depth for ANN aproximations with respect to com-

putational capacities

Corollary 5.12. Let a ∈ R, b ∈ [a + 7,∞), for every d ∈ N let fd : R
d → R satisfy for all

x = (x1, . . . , xd) ∈ Rd that fd(x) = sin
(
∏d

i=1 xi

)

, and let cost : N × [0,∞]2 → R satisfy for all
d ∈ N, L, ε ∈ [0,∞] that

cost(d, L, ε) = inf











c ∈ R :





∃f ∈ N : (max{1, ln(S(f))}P(f) = c)∧
(L(f) ≤ L) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− fd(x)| ≤ ε)











∪ {∞}



. (5.57)

Then there exists c ∈ (0,∞) such that for all d, L ∈ N, ε ∈ (0, 1) it holds that

cost(d, L, ε) ≥ 2
d
L and cost(d, cd2ε−1, ε) ≤ cd3ε−2. (5.58)

Proof of Corollary 5.12. Note that Theorem 5.2 (applied with ϕ x 0, γ x 1, β x 1, a x a,
b x b, κ x 1, fd x fd for d ∈ N in the notation of Theorem 5.2) shows (5.58). The proof of
Corollary 5.12 is thus complete.

Corollary 5.13. Let a ∈ R, b ∈ [a+ 4,∞) and let cost : (∪d∈NC(Rd,R))× [0,∞]2 → R satisfy
for all d ∈ N, f ∈ C(Rd,R), L, ε ∈ [0,∞] that

cost(f, L, ε) = inf











c ∈ R :





∃f ∈ N : (max{1, ln(S(f))}P(f) = c)∧
(L(f) ≤ L) ∧ (R(f) ∈ C(Rd,R)) ∧
(supx∈[a,b]d|(R(f))(x)− f(x)| ≤ ε)











∪ {∞}



. (5.59)

Then there exist c ∈ (0,∞) and infinitely often differentiable fd : R
d → R, d ∈ N, with compact

support and supd∈N supx∈Rd|fd(x)| ≤ 1 such that for all d, L ∈ N, ε ∈ (0, 1) it holds that

cost(fd, L, ε) ≥ 2
d
L and cost(fd, cd, ε) ≤ cd2ε−2. (5.60)

Proof of Corollary 5.13. Observe that Theorem 5.9 (applied with ϕ x 0, γ x 1, a x a, b x b,
κ x 1 in the notation of Theorem 5.9) shows (5.60). The proof of Corollary 5.13 is thus
complete.
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