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Abstract This article presents the Heisenberg–Pauli–Weyl uncertainty inequality for
the Radon transform on the Heisenberg group, which indicates that the Radon trans-
form and the Fourier transform of a nonzero function can not both be sharply localized.
The proof is mainly based on some estimates related to the heat kernel, together with
the relation between the sublaplacian and the group Fourier transform.
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1 Introduction

The classical uncertainty principle in harmonic analysis states that a nonzero function
and its Fourier transform cannot both be sharply localized. The precise quantitative
formulation of this principle is the Heisenberg inequality:

‖ f ‖42
16π2 ≤

∫
R

|x − a|2| f (x)|2dx
∫
R

|ξ − b|2| f̂ (ξ)|2dξ.

A more general form called Heisenberg–Pauli–Weyl uncertainty inequality on R
n

reads

‖ f ‖42 ≤ cn

∫
Rn

|x |2| f (x)|2dx
∫
Rn

|ξ |2| f̂ (ξ)|2dξ, (1.1)

which can also be written in the form:

‖ f ‖22 ≤ cn‖|x | f ‖2‖(−�)1/2 f ‖2,

where � denotes the Laplacian (see [4]).
By the inequality (1.1), analogues inequalities were established by Singer [14] for

the wavelet transform and by Wilczok [12] for the Gabor transform (note that those
transforms can be treated as the convolution operators). More about the history and
the relevance of the uncertainty principle we refer the readers to the survey [4], the
books [7,9], and the papers [1,2,10,11].

On the Heisenberg group Hn, Thangavelu [17] proved the following uncertainty
inequality:

√
n

(
π

2

) n+1
2 ≤ ‖|z| f ‖2‖L 1/2 f ‖2,

where L is the Heisenberg sublaplacian. Sitaram et al. [15] obtained a generalized
form for 0 ≤ γ < n + 1,

‖ f ‖22 ≤ C‖|(z, t)|γ f ‖2‖L γ /2 f ‖2.

We in [20] extended this to a full range for a, b > 0,

‖ f ‖2 ≤ C‖|(z, t)|a f ‖
b

a+b
2 ‖L b/2 f ‖

a
a+b
2 . (1.2)

We also built a similar inequality for the wavelet transform:

‖ f ‖2 ≤ C

( ∫ ∞

0

∫
Hn

|(z, t)|2a |Wφ f (z, t, ρ)|2 dzdtdρ
ρn+2

) b
a+b ‖L b/2 f ‖

a
a+b
2 ,
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whereC depends on φ and a, b > 0.Obviously, this inequality shows that the wavelet
transform and the Fourier transform of a nonzero function can not both be sharply
localized.

Now in this paperwe aim to extend theHeisenberg–Pauli–Weyl uncertainty inequal-
ity for a special singular convolution operator—HeisenbergRadon transform R,which
represents an interesting object from the point of view of both harmonic analysis and
integral geometry (see [13]). Explicitly, we shall prove the following theorem:

Theorem 1.1 For f ∈ L2(Hn), 0 ≤ a < n + 1, b ≥ 0, one has

‖ f ‖2 ≤ C‖|(z, t)|a R f ‖
b

a+b+2n
2 ‖L b/2 f ‖

a+2n
a+b+2n
2 , (1.3)

where C is a constant.

The idea that we modify the inequality (1.2) to inequality (1.3) originates from the
following Plancherel formula related to the Radon transform obtained by Geller and
Stein [5] and Strichartz [19] respectively:

‖(∂/∂t)n R f ‖22 = cn‖ f ‖22.

Themain approach of the proof of Theorem 1.1 is mainly depended on some estimates
related to the heat kernel, together with the relation between the sublaplacian and the
group Fourier transform.

2 Preliminaries

The Heisenberg group, denoted by Hn, is a nilpotent Lie group of step two whose
underlying manifold is C

n × R equipped with the group law

(z, t)(z′, t ′) =
(
z + z′, t + t ′ + 1

2
Imzz̄′

)
.

For (z, t) ∈ Hn , the homogeneous norm of (z, t) is given by |(z, t)| = (|z|4+|t |2)1/4.
Then the ball of radius r centered at (z, t) is defined by Br (z, t) = {(z′, t ′) ∈ Hn :
|(z, t)−1(z′, t ′)| < r}. Let Sn be the unit sphere in Hn, for a measurable function f
one has (see [3])

∫
Hn

f (z, t)dzdt =
∫
Sn

∫ ∞

0
f (rζ )r2n+1drdζ. (2.1)

Let πλ(z, t) (z = x + iy, λ ∈ R\{0}) be the Schrödinger representations acted on
ϕ ∈ L2(Rn) by

πλ(z, t)ϕ(ξ) = eiλt eiλ(x ·ξ+ 1
2 x ·y)ϕ(ξ + y).

Given a function f ∈ L1(Hn), its group Fourier transform f̂ is defined to be the
operator-valued function and
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f̂ (λ) =
∫
Hn

f (z, t)πλ(z, t)dzdt.

Let dμ(λ) = (2π)−n−1|λ|ndλ, then one has the inversion of Fourier transform

f (z, t) =
∫ ∞

−∞
tr(π∗

λ (z, t) f̂ (λ))dμ(λ)

and the Plancherel formula

‖ f ‖22 =
∫ ∞

−∞
‖ f̂ (λ)‖2HSdμ(λ).

Suppose f and g are measurable functions on Hn, then their convolution is defined
by

f ∗ g(z, t) =
∫
Hn

f ((z, t)(−w,−s))g(w, s)dwds.

It follows from the definition of the Fourier transform that f̂ ∗ g(λ) = f̂ (λ)ĝ(λ). In
addition, one has the generalized Yong inequality

‖ f ∗ g‖r ≤ ‖ f ‖p‖g‖q ,

where 1
r = 1

p + 1
q − 1.

Now consider the Heisenberg sublaplacian

L = −
n∑
j=1

(X2
j + Y 2

j ),

where X j = ∂
∂x j

+ 1
2 y j

∂
∂t ,Y j = ∂

∂y j
− 1

2 x j
∂
∂t . For the Schrödinger representations

πλ one has

π∗
λ (X j ) = iλξ j , π∗

λ (Y j ) = ∂

∂ξ j
.

So that π∗
λ (L ) = −� + λ2|ξ |2 = H(λ) is the Hermite operator. Let �α (α ∈ N

n)

stand for the normalized Hermite functions on R
n . For λ ∈ R

∗, define �λ
α(ξ) =

|λ| n4 �α(|λ| 12 ξ). Then one has

H(λ)�λ
α = (2|α| + n)|λ|�λ

α.

One important relevance of sublaplacian L is the heat semigroup defined by

(e−sL f )(z, t) = qs ∗ f (z, t),
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where qs is the heat kernel given by

qs(z, t) = cn

∫ ∞

−∞
e−iλt

(
λ

sinh λs

)n

e− 1
4 (λ coth λs)|z|2dλ

with the positive constant cn .Note that the heat kernel is aC∞ function on Hn×(0,∞)

and its Fourier transform is (see p. 86 in [18])

q̂s(λ) = e−sH(λ).

More details about the sublaplacian and the heat kernel on Heisenberg group can be
found in [16,18].

The Heisenberg Radon transform is defined by

R f (z, t) = f ∗ δ2(z, t) =
∫
Cn

f ((z, t)(w, 0))dw,

where δ2 is the Dirac delta function in second variable. This convolution operator is
an auxiliary tool for studying other operators which received much attentions in the
area of abstract harmonic analysis (see [5,6,8,13,19]).

3 Proof of the Main Result

In order to prove the main theorem, we first need some lemmas for preparation.
Throughout the paper, we will use C to denote the positive constant, which is not
necessarily same at each occurrence.

Now the following lemma is about the estimates for the differential operator T =
( i∂
∂t )

n of the heat kernel:

Lemma 3.1 The heat kernel qs(z, t) satisfies the estimate

|Tqs(z, t)| ≤ Cs−2n−1e−A|(z,t)|2/s

with some positive constants C and A. Moreover, we have

‖Tqs‖1 ≤ Cs−n and ‖Tqs‖2 ≤ Cs−(3n+1)/2.

Proof It is easy to compute that

Tqs(z, t) = cn

∫ ∞

−∞
e−iλt λ2n

sinhn λs
e− 1

4 (λ coth λs)|z|2dλ

= cns
−2n−1

∫ ∞

−∞
e−iλt/s λ2n

sinhn λ
e− 1

4 (λ coth λ)|z|2/sdλ

= cns
−2n−1Ks(z, t),



1608 J. Xiao, J. He

where Ks(z, t) = K1(
z√
s
, t
s ) and

K1(z, t) =
∫ ∞

−∞
e−iλt λ2n

sinhn λ
e− 1

4 (λ coth λ)|z|2dλ.

On one hand, recall that when |λ| < 1, coth λ behaves like λ−1 and sinh λ behaves
like λ;when |λ| ≥ 1, coth λ behaves like a constant and sinh λ behaves like eλ.Hence
we have

K1(z, t) ≤ Ce−C ′|z|2
∫ ∞

−∞
λ2n

sinhn λ
dλ

≤ Ce−C ′|z|2 .

On the other hand, for the ordinary Fourier transform one has F( 1
2πa e

− |z|2
4a

) =
e−a|ζ |2 (a > 0), then

FK1(ζ, λ) = C
λn

coshn λ
e− tanh λ

λ
|ζ |2 .

Note that this function can be extended to a holomorphic function of λ in the strip
{λ − iτ : |τ | < π/2}. For |τ | ≤ π/2 − δ, FK1(ζ, λ − iτ) is integrable in (ζ, λ)

and rapidly decreasing in λ, uniformly in ζ and τ. Hence by a change of contour
integration on the plane λ − iτ we get

K1(z, t) = C
∫
Cn×R

FK1(ζ, λ − iτ)e−i
(
t (λ−iτ)+Re〈z,ζ 〉

)
dζdλ

= Ce−tτ
∫
Cn×R

FK1(ζ, λ − iτ)e−i
(
tλ+Re〈z,ζ 〉

)
dζdλ

≤ Ce−tτ
∫
Cn×R

| FK1(ζ, λ − iτ) | dζdλ

≤ Ce−tτ .

From the discussion above and the inequality (|z|4 + |t |2) 1
2 ≤ |z|2 + |t |, we obtain

that, for some positive constant C and A,

|Tqs(z, t)| ≤ Cs−2n−1e−A|(z,t)|2/s .

Now by (2.1) we have

‖Tqs‖1 ≤ C
∫
Hn

s−2n−1e− A
s |(z,t)|2dzdt

= C
∫ ∞

0
s−2n−1e− Ar2

s r2n+1dr

= Cs−n .
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Similarly we get ‖Tqs‖2 ≤ Cs−(3n+1)/2. As desired. �
Lemma 3.2 Suppose f ∈ L2(Hn). Then

‖T R( f ∗ qs)‖2 = ‖R f ∗ (Tqs)‖2.

Proof Since the Dirac delta function δ2 and the heat kernel are both radial functions,
then their convolution is commutative, i.e., qs ∗ δ2 = δ2 ∗ qs . Hence

T R( f ∗ qs) = T
(
( f ∗ qs) ∗ δ2

)
= T

(
f ∗ δ2 ∗ qs

)
= T

(
R f ∗ qs

)
= R f ∗ (Tqs).

�
Lemma 3.3 Suppose f ∈ L2(Hn). Then for 0 ≤ γ < n + 1, one has

‖R f ∗ Tqs‖2 ≤ Cs−(n+γ /2)
(∫

Hn
|(z, t)|2γ |R f (z, t)|2dzdt

)1/2

.

Proof Let Br = Br (0, 0) and set fr = f χBr , f r = f χHn\Br . Note that

‖R f ∗ (Tqs)‖2 ≤ ‖(R f )r ∗ (Tqs)‖2 + ‖(R f )r ∗ (Tqs)‖2 = A1 + A2.

By the generalized Young inequality together with the lemmas above we get

A1 = ‖(R f )r ∗ (Tqs)‖2 ≤ ‖(R f )r‖2‖Tqs‖1
≤ Cs−nr−γ

( ∫
Hn\Br

|(z, t)|2γ |R f (z, t)|2dzdt
)1/2

and

A2 = ‖(R f )r ∗ (Tqs)‖2
≤ ‖(R f )r‖1‖Tqs‖2
≤ Cs− 3n+1

2

(∫
Hn

|(z, t)|2γ |R f (z, t)|2dzdt
)1/2(∫

Br
|(z, t)|−2γ dzdt

)1/2

.

Note that the integral
∫
Br

|(z, t)|−2γ dzdt is controlled by Cr−2γ+2n+2 as 0 ≤ γ <

n + 1. Therefore we have

‖R f ∗ (Tqs)‖2 ≤ Cs−nr−γ (1 + s− n+1
2 rn+1)

( ∫
Hn

|(z, t)|2γ |R f (z, t)|2dzdt
)1/2

.
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Choosing r = s1/2 then gives the desired estimate. �
Lemma 3.4 Suppose f ∈ L2(Hn) and 0 ≤ b ≤ 2, one has

‖ f − f ∗ qs‖2 ≤ Csb/2
( ∫

Hn
|L b/2 f (z, t)|2dzdt

)1/2

. (3.1)

Proof By the Plancherel formula we have

‖ f − f ∗ qs‖2
=

( ∫ ∞

−∞

∑
α

∥∥ f̂ (λ)
(
1 − e−s(2|α|+n)|λ|)�λ

α

∥∥2
2dμ(λ)

)1/2

=
( ∫ ∞

−∞

∑
α

∥∥ f̂ (λ)
1 − e−s(2|α|+n)|λ|

(s(2|α| + n)|λ|)b/2 (s(2|α| + n)|λ|)b/2�λ
α

∥∥2
2dμ(λ)

)1/2

.

Note that if s ≥ 1, then for b ≥ 0,

1 − e−s

sb/2
≤ 1;

if 0 < s < 1, then 1 − e−s ∼ s(s → 0+) and thus for 0 ≤ b ≤ 2,

1 − e−s

sb/2
≤ C.

Hence we get

‖ f − f ∗ qs‖2 ≤ Csb/2
( ∫ ∞

−∞

∑
α

∥∥L̂ b/2 f (λ)�λ
α

∥∥2
2dμ(λ)

)1/2

= Csb/2
( ∫

Hn
|L b/2 f (z, t)|2dzdt

)1/2

,

where we have used the fact f̂ (λ)H(λ)b/2 = L̂ b/2 f (λ) to get the last term. �
Proof of Theorem 1.1 By Lemma 3.3 and Lemma 3.4 we have

‖ f ‖2 ≤ ‖ f ∗ qs‖2 + ‖ f − f ∗ qs‖2
= ‖T R( f ∗ qs)‖2 + ‖ f − f ∗ qs‖2
= ‖R f ∗ (Tqs)‖2 + ‖ f − f ∗ qs‖2
≤ Cs−(n+γ /2)

(∫
Hn

|(z, t)|2γ |R f (z, t)|2dzdt
)1/2

+Csb/2
( ∫

Hn
|L b/2 f (z, t)|2dzdt

)1/2

.
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Minimizing the right-hand side of the last inequality we then have for 0 ≤ a <

n + 1, 0 ≤ b ≤ 2,

‖ f ‖2 ≤ C‖|(·)|a R f ‖
b

a+b+2n
2 ‖L b/2 f ‖

a+2n
a+b+2n
2 . (3.2)

Now if b > 2 and b′ ≤ 2, we have for all ε > 0,

|λ|b′

εb
′ ≤ 1 + |λ|b

εb
,

which implies that

‖L b′/2 f ‖2 ≤ εb
′ ‖ f ‖2 + εb

′−b‖L b′/2 f ‖2.

Optimizing in ε then gives the Landaw–Kolmogorov inequality:

‖L b′/2 f ‖2 ≤ C‖ f ‖1−b′/b
2 ‖L b/2 f ‖b′/b

2 .

Plugging this into (3.2) with b replaced by b′ then gives the desired result. �
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