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Abstract 

Deep neural networks have emerged, in recent years, as incredibly powerful models in machine 

learning. Despite this, theoretical understanding of neural networks are lacking, or unsatisfying. 

In this thesis, we consider two problems in the theory of neural networks, focusing on function 

approximation via feed-forward neural networks. The first part of this thesis deals with under

standing the approximation capacities of neural networks in terms of their depth. We first discuss 

this problem in the low-dimensional case, focusing on a specific class of functions, namely solu

tions to transport problems. We then move to the high-dimensional setting, a regime more relevant 

to machine learning. We look at neural networks in the frequency domain, and we offer expla

nations on why and when depth is essential to computational efficiency. In the second part of 

the thesis we look at the problem of optimization, and we discuss the optimization landscape for 

shallow neural networks, focusing on distribution-free results on the existence of spurious minima 

regions. We finish with some concluding remarks and discussing a few open questions. 
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Chapter 1 

Introduction 

Neural networks (and more generally deep learning) have emerged in recent years as an incredibly 

powerful tool to perform machine learning tasks, most notably in computer vision and natural lan

guage processing. In general, deep learning models are defined as sums and composition of simple 

blocks, given by a linear transformation followed by the application of a non-linearity. These 

models, or architectures, are defined up to the choice of some parameters, which are determined 

by training the model over a dataset of interest. Roughly speaking, this account to perform some 

gradient-descent type algorithm to find the parameters which minimize a loss function defined over 

available data. 

Despite an outstanding empirical success and a constant increase in model complexity, we are 

still far from a satisfying theoretical understanding of the performances of deep learning, even for 

fairly simple models. Classically, the theoretical questions arising in deep learning can be related 

to one of the following problems: approximation, that is to quantify how complex a model need 

to be to approximate a function of interest; optimisation, that is to understand how gradient base 

algorithms optimise the model parameters; generalization, that is to explain whether a given model 

trained on a number of samples can generalise over the whole data distribution. Notice that while 

we can define these questions separately, they are strictly related one to the other and they jointly 
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contribute the success of a model. 

The work described in this thesis considers which role certain architectural features of feed-

forward neural networks play in two of the three problems mentioned above, namely approxima

tion and optimisation. In chapters 2 and 3 we focus on the role of depth of a neural network in 

terms of approximation. In chapter 4 we focus on the role of width of a neural network in terms of 

the optimisation landscape of square loss functions evaluated over the network. More in detail, the 

thesis is structured as follows. 

1.1 Contributions and structure of the thesis 

• In chapter 2 we consider a specific case study, namely the problem of approximating para

metric transport partial differential equations (PDEs), a setting where classical reduced order 

modeling techniques are known to suffer of a slow Kolmogorov width decay, by neural net

works. We show that shallow neural networks essentially suffer the same slow decay of 

the approximation rate, while this is not necessarily the case for their deep counterpart. We 

explain how this can inspire the definition of deep versions of reduced order models, which 

enjoy approximation capabilities similar to deep neural networks. This chapter is based on 

joint work with Donsub Rim, Benjamin Peherstorfer and Joan Bruna, partially presented 

in the work [RVBP20]. With respect to the paper, we focus the presentation on the neural 

networks point of view. For this reason, we report in detail only the proofs of results regard

ing feed-forward neural networks as defined in the classical sense; these results represent an 

original contribution not present in the paper. For the proofs of results regarding classical 

(and deep) reduced order models, we provide the main ideas and intuition, and we explain 

the conceptual connection to the neural networks world. 

• In chapter 3 we establish results regarding limitations of shallow neural networks in approx

imating functions defined over an high-dimensional domain. These results mainly deal with 
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the Fourier representation of neural networks and target functions. We generalize existing
 

results, which are limited to radial functions, regarding the existence of two-hidden-layer 

neural networks which need an exponential (in input dimension) number of parameters to 

be expressed as one-hidden-layer neural networks. We further establish that this is due to 

the fact that an essentially sufficient and necessary condition on a target function to be effi

ciently approximated by shallow models is the sparsity of its Fourier representation, a prop

erty which is not necessarily satisfied by deeper models. This chapter is based on joint work 

with Joan Bruna, Samy Jelassi and Tristan Ozuch [VJOB21]. With respect to the paper, the 

sections have been expanded to increase readability, with added intuitions and details behind 

the results and extended ideas of the proofs. 

• In chapter 4, we consider the problem of describing the optimisation landscape of neural 

networks, in terms of properties amenable to descent methods. We look at global absence 

(or non-absence) of spurious valleys, which intuitively describe areas where descent meth

ods could potentially get stuck far from global minima. We look at this problem for shallow 

feed-forward neural networks and square losses, and we show that distribution-independent 

absence of spurious valleys holds, for a fixed activation function, if and only if the network 

architecture ‘fills’ the functional space defined by shallow neural networks with the same ac

tivation. This chapter is based on joint work with Joan Bruna and Afonso Bandeira [VBB19]. 

Comparison to subsequent results have been included and section 4.4 has been extended to 

offer an extended intuition of the proof idea. The final section has been reworked to offer a 

better overview of the results, also with respect to recent advancements in the area. 

• We conclude by presenting some related problems and open questions, in chapter 5. 

For sake of simplicity of the exposition and to increase readability, the detailed proofs of the 

various results have been collected in the appendices (one for each of the chapters, minus this one). 

In the rest of this introduction, we introduce the main definitions and problems we will be dealing 
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with. We also discuss relevant literature and provide a more detailed description of the contents of
 

the following chapters. 

Finally, we mention that there are other projects that the author worked on during his PhD 

[KV20, AVP21, BVB21], but that are not included or fully presented in this thesis. This is due to 

little overlap with the material presented here, and to the desire of limiting the discussion of this 

thesis to theoretical understanding of neural networks. 

1.2 Neural networks 

For L ≥ 1, an L-hidden-layer feed-forward neural network is a function 

(L+1)(x) ∈ CdL+1f : x ∈ Rd → x (1.1) 

where x(L) is defined by recursion by x(0)(x) = x, 

(L+1)(x) = A(L+1)x(k)(x) = σ(k)(A(k)x(k−1)(x)) for k ∈ [L] and x x(L)(x) , 

where 

(k) (k)
A(k) = [a | · · · |a ]T ∈ Rdk×dk−1 for k ∈ [L],1 dk 

(L+1) (L+1) ∈ CdL+1×dLA(L+1) = [a | · · · |a ]T 
1 dL+1 

  
: Rdk → Rdk σ(k)(x)

(k)(with d0 = d) and σ(k) are activation functions, that is
i 
= σi (xi) for 

some function σi 
(k) 

: R → R. A neural network is therefore a sequence of sums and compositions 

of ridge functions, that is functions of the form x  → σ(wT x). In the following, unless specified, 

we only consider neural networks (or, more simply, networks) as defined in (1.1). Most of the 

times we will deal with real-valued networks, that is A(L+1) ∈ RdL+1×dL . We say that a network 
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has activation σ if σi 
(k)
(x) = σ(x + bki ) for some bias term bki ∈ R for all k, i. The function 

x ∈ Rdk−1  → σ(k)(A(k)x) ∈ Rdk 

is called k-th hidden (or inner) layer of width dk, for k ∈ [L], while we refer to the linear function 
.defined by A(L+1) as the last (or L + 1-th) layer. We refer to the value W (f) = maxk∈[L] dk as 

width of the network f and to the vectors ai 
(k) as weights (of the k-th layer), for all k, i. A basic 

complexity measure for neural network (1.1) is given by the total number of units, or size: 

LL .
N(f) = dk . 

k=1 

Notice that this coincide with the network width if L = 1. The number of layers L(f) = L is 

also a relevant measure of complexity, which we refer to as depth. Finally, in the following we 

sometimes require a control on the value of the weights; such controls are expressed in terms of 

norm p of the weights, that is 
. 

mp(f) = max iak,iip , 
k,i 

for some p ∈ [1, ∞]. 

1.2.1 Functional spaces of shallow neural networks 

In the following, we will be looking at properties of certain classes of neural networks. In partic

ular, we will be often dealing with spaces of one-hidden-layer networks, which we also refer to as 

shallow. This is contrast with neural networks with more than one hidden layer, which we refer to 

in the following as deep. 

We denote the space of (scalar-valued) one-hidden-layer networks with at most N units by FN , 

and the space of one-hidden-layer networks with at most N units and given activation σ (resp., 

given activation σ and no bias terms) by FN
σ (resp., FN

σ,0). Notice that every one-hidden-layer 
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  N �L 
f : x ∈ Rd  → ukσ wk

T x + bk = σ(w T x + b) dπN (w, b) , 
Rd+1 

k=1 

  
Hσ 

1 = h = hσπ : π is a finite signed Radon measure on Rd+1 , 

N
v L . TfN (x) = σ(wk x + bk) . 
N 

k=1 

� 
hσπ : x ∈ Rd  → σ(w T x + b) dπ(w, b) . 

Rd+1 

network f ∈ FN
σ can be equivalently written as 

 Nwhere πN denotes the discrete signed measure πN = k=1 ukδ(wk,bk ). When the number of units 

grows to infinity, one can consider the following limit functional space 

where hσπ is defined as 

(1.2) 

The space the space Hσ 
1 is a normed space, equipped with the norm 

γ1(h) = inf iπi1 . 
π : h=hσ 

π 

(1.3)

In particular, Fσ = {hπ ∈ H1 : |supp(π)| ≤ N}. Loosely speaking, the space H1 consists of N σ σ 

functions which are efficiently approximable by one-hidden-layer neural networks (of finite width). 

Consider hσπ ∈ Hσ
1 . By linearity, we can assume, w.l.o.g., that π is non-negative. Then, we can 

write   
hσ T 
π(x) = v · E(w,b)∼π̂ σ(w x + b) , (1.4) 

where v = iπi1 and π̂ = v−1π is a probability measure. Sampling {(wk, bk)}N from π̂, one can k=1 

approximate the expectation in (1.4) as 

(1.5)
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There are many results in the literature that estabilish (typical Monte-Carlo-like) rates of conver

gence for this type of approximation, for example [BLM89, Bar93, YSW95, CB00, KB18]. In fact, 

many approximation results of an objective function by one-hidden-layer neural networks consist 

1of approximating the objective function by a function in Hσ and then sampling as in eq. (1.5).
 

1.3 Approximation theory 

A classic result about approximation by neural networks is the so-called Universal Approximation 

Theorem (UAT). It essentially states that any continuous function can be approximated by one

hidden-layer neural networks with an indefinite number of units. Several versions are available in 

the literature, see for example [Cyb89, HSW89, Hor91]; we report here the main results contained 

in [LLPS93]. 

Theorem 1.1 (UAT). Let σ : R → R be any function which is not a polynomial and with at most 

a finite number of discontinuity points; let Fσ .
 =
 N∪∞ 
=1F
σN be the space of shallow networks with
 

activation σ. Then for any K ⊂ Rd compact, any finite measure µ on K which is absolutely 

continuous with respect to the Lebesgue measure, it holds that the space Fσ is dense in C(K) 

(with respect to the L∞ norm) and in Lp
µ.
 

While this is a fundamental result, in the sense that it proves that neural networks are a reason

able class to consider to approximate generic functions, it has two main limitations. The first one 

is that it does not provide a rate of approximation, in terms of N , for any given objective function. 

The second one is that it only concerns shallow networks, and it is not clear (from this result) 

whether there is an advantage in considering deep networks. 

There is extensive literature providing approximation rates for certain classes of functions, e.g. 

[BL91, Mha96, Pin99, MM00, Yar17]; a nice review of these results is given in [GRK20]. Works 

from the 90s /early 2000s deal with approximation by shallow networks with a smooth activation 

function σ. Such works essentially state that a function f of smoothness s can be c-approximated 
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by a one-hidden-layer network with width N r c−d/s, where d is the input dimension. The follow

ing is a prototypical example of these type of results. 

Theorem 1.2 (Informal, [Mha96, MM00]). Let σ : R  → R smooth. Then, for every function 

f ∈ W s 
p ([0, 1]

d)1 and c ∈ (0, 1), there exists fN ∈ Fσ 
N such that 

if − fN ip ≤ cifip (1.6) 

for some N ; c−d/s. Moreover, this rate is optimal, in the sense that there exists f ∈ Wp
s([0, 1]d) 

such that any network g ∈ Fσ satisfying (1.6) must verify N(g) 2 c−d/s. 

More recently, with the advent of piecewise-linear activation functions, such as the ReLU 

σ(x) = x+, in practical application of neural networks, similar results have been shown for non-

smooth activation as well. 

Theorem 1.3 (Informal, [Yar17]). Let σ be the ReLU activation function. Then, for every function 

f ∈ Wp
s([0, 1]d) and c ∈ (0, 1), there exists a neural network fL,N with activation σ, depth L ; 

log 
�
1 and size N ; c−d/spolylog 

�
1 such that 

if − fL,N ip ≤ cifip . (1.7) 

Moreover, this rate is essentially optimal, in the sense that there exists f ∈ Wp
s([0, 1]d) such that 

any network fL,N satisfying (1.7) must verify N 2 c−d/s. 

Notice how these results are cursed by dimensionality: the number of units needed to obtain a 

certain approximation threshold grows exponentially with the input dimension d, unless the regu

larity of the objective function grows at least proportionally with d. Moreover, some of the cited 

1For Ω ⊂ Rd, we denote by W s(Ω) the Sobolev space of Lp(Ω) functions with derivatives up to degree s inp 
Lp(Ω). 
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results do not specify the norm of the weights of the network fL,N which achieve such rate, that is 

mp(fL,N ), which can be relevant in practical applications. 

Finally, the approximation results cited so far prescribe a specific value to the depth of the 

network, needed to obtain a certain approximation rate, for different activation functions. Never

theless, they do not provide insights on the trade-off between width and depth in approximation. 

Remark 1. It must be noticed that approximation results (positive or negative) require an activa

tion function to be fixed, or to belong to a properly defined class. Indeed, using Kolmogorov’s 

superposition theorem [Kol56] it is easy to show the following (see [Pet20] for a proof). 

Theorem 1.4. There exists a continuous activation σ : R → R and constants C > 0, k ≥ 1 integer 

such that, for every f ∈ C([−1, 1]d) and c > 0 there exists a two-hidden-layer neural network g 

with at most Cdk units such that if − gi∞ ≤ c. 

In this thesis, we think about the activation function as a generic constant-Lipschitz function, 

and we require some more specific assumptions depending on the result. 

1.3.1 Barron’s theorem 

The proofs of the approximation results cited above are essentially of two types. One type of proof 

consists in approximating the target function with some other basis function, such as polynomials 

or trigonometric polynomials, and then showing that each of these basis functions can be approx

imated by neural networks. In essence, proofs of this type show that neural networks perform as 

well as the underlying approximation procedure. The other type of proofs consists in showing that 

the target function admits an integral representation such as in (1.2); the approximation is then 

given by sampling as in (1.5). 

The approximation rates mentioned in the previous section suffer from the curse of dimen

sionality, unless the objective function is highly regular. Following the latter proof technique, and 

moving away from the Sobolev spaces considered above, in the seminal work [Bar93], Barron 
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�
v = iξi1|f̂(ξ)| dξ < ∞ , 

Rd 

24vi2inf if − fσ ≤ .N µ
fσ 
N ∈F

σ NN 

showed that, by terms of the Fourier transform, it is possible to describe a functional space for 

which approximation by shallow neural network holds at rate independent from the dimension. 

More specifically, Barron showed that if σ is some fixed sigmoidal2 activation, µ is a probability 

measure supported on [−1, 1]d and f ∈ L2(Rd) satisfies 

(1.8) 

then it holds that 

Essentially, the proof of this result consists in controlling the norm γ1 of f ( introduced in (1.3)) 

by the quantity v. Various extensions of this result have since then been proved, with different 

assumptions on the activation function, on the error measure and showing the similar bounds for 

m∞(fN ) as well; see for example the work [KB18] and references therein. Recently, a multi-layer 

version of this result has been proposed as well [BN20]. 

Condition (1.8) essentially requires the Fourier transform of \f to be integrable: this is because 

ξ · f̂(ξ) = −iF [\f ](ξ). In particular, it implies that f ∈ C1(Rd). Intuitively, one can think about 

the constant v as a sort of L1 norm: it is going to be large when f̂  is ‘spread’ in the frequency 

domain. From a neural network perspective this makes sense, as one-hidden-layer networks have 

a sparse Fourier transform (see Section 1.5); it is thus reasonable to think about condition (1.8) as 

a relaxed sparsity condition in the frequency domain. 

1.4 The depth-width tradeoff 

A critical question for the use of neural networks is the choice of the architecture. For feed-forward 

neural networks this is equivalent to: should one should use wider or deeper networks? It is well 

2That is, σ : R → R is a bounded measurable function such that limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1. 
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2x if x ∈ [0, 1/2]
 
h(x) = 2 x+ − (2x − 1) = .+ 

2 − 2x if x ∈ [1/2, 1]
 

1 1 1 
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x x x 

f 1
 (x
) 

f 2
 (x
) 

f 3
 (x
) 

0 0.5 1 0 0.5 1 0 0.5 1 

Figure 1.1: The function fL is defined as the composition of h with itself L times. The plots, from 
left to right, show the graphs of, respectively, f1 = h, f2 = h ◦ h and f3 = h ◦ h ◦ h. 

known to practitioners that depth is essential to the performances of neural networks, but how can 

we quantify this fact? 

This last question received particular interest in recent years. Consider, for example, the case 

of networks with the ReLU activation. Theorem 1.3 asks for the depth neural networks to increase 

as log 1 in order to approximate a target function up to a certain accuracy c. In this specific case, 

this is due to the difficulty of ReLU networks to approximate smooth function. Is this necessary? 

Or the same approximation rate can be obtained by a shallow model? In other terms, is it possible 

to showcase a function such that the approximation rate by shallow networks is substantially worse 

than the corresponding approximation rate by deep neural networks? 

The answer to all these questions is positive. A simple example of such function is the saw    2L 

k 1−(−1)k 

tooth function fL : [0, 1] → [0, 1] defined as the linear interpolation of the points
2L , 2

. 
k=0 

Consider the function h : [0, 1] → R defined by 

Then fL = h◦L, the composition of h with itself L times. This implies that fL can be described 

exactly by a network with O(L) units and depth O(L). Now, say that we wish to describe the 

function fL as a one-hidden-layer network; how many units are needed? Each one-hidden-layer 
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� 1 1 |fL2+2(x) − g(x)| dx ≥ . 
320 

�

� �

network, with the ReLU activation and N units, on [0, 1] is a piecewise linear function with at 

most O(N) pieces. On the other hand, fL is a piecewise linear function on [0, 1] with O(2L) 

pieces. Intuitively, this implies that the amounts of units needed to approximate the function fL 

by shallow networks (with the ReLU activation) grows exponentially with L. This idea has been 

formalized in a seminal work by Telgarsky. 

Theorem 1.5 ([Tel16]). For any L > 1, fL2+2 is a ReLU neural network of size O(L2) and depth 

O(L2), and any ReLU neural network g of depth at most L and size at most 2L satisfies 

Roughly speaking, a similar reasoning shows that a depth of the order of L r log 1 is needed to 

achieve exponentially efficient approximation by ReLU networks. Given a smooth function with 

positive curvature on a certain interval, the best approximation by piecewise linear function with 

M pieces achieves a uniform error of the order of M−2 [EEJ04]; a ReLU network with depth L 

and width N is a piecewise linear function with at most O(NL) pieces. Thus the following holds. 

Theorem 1.6 (Informal, [LS16, Yar17, SS17a]). Let f : [0, 1] → R be a non-linear sufficiently 

regular3 function. Then any ReLU network g with depth at most L and width at most N satisfies 

if − gi∞ 2 N−2L . On the other hand, for every c > 0 there exists a ReLU network of depth 

polylog 1 with polylog 1 units such that if − gi∞ ; c. 

Results on this line have been shown for different activations under different assumptions on 

the objective functions, such as polynomials [RT17], functions with a compositional structure 

[PMR+17] or piece-wise smooth function [PV18]. The result of [Tel16] has been further gener

alized using a notion of periodicity [CNPW19]. Moreover, this depth-width trade-off has been 

analyzed through different lens than approximation capabilities, such as classification capabili

3For the lower bound, it is sufficient that f ∈ C2([0, 1]). For the upper bound, it is sufficient that f is C∞([0, 1]) 
and it satisfies (n!)−1if (n)i∞ ; 1 for any n ≥ 0. 
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ties [MSS19], exact representability [ABMM16], Betti numbers [BS14], number of linear regions
 

[PMB13, MPCB14], trajectory lengths [RPK+17], globale curvature [PLR+16] or topological en

tropy [BZL20]. In essence, all these results state that networks expressivity improve exponentially 

as we increase the depth. 

1.4.1	 Efficient modeling of transport partial differential equations: a study 

case 

In chapter 2, we show a case of the aforementioned benefits of depth. We consider the problem 

of model order reduction of parametrized transport partial differential equations (PDEs). For this 

class of PDEs, standard model order reduction methods exhibits a slow convergence, making it 

difficult to use them in practice. We formally explain where such difficult stems from, generalizing 

existing lower bounds. Inspired by this fact, we look at the problem of approximating solutions 

via neural networks. We show that shallow models suffer from similar slow rates as (standard) 

reduced order models, while deep neural networks can potentially overcome this issue, thanks to 

the natural compositional structure of the solutions. Finally, we show how one can get inspiration 

from deep neural networks to define efficient deep reduced order models. 

1.5	 Curse of dimensionality and the frequency domain 

In the seminal work [ES16], Eldan and Shamir show that in high dimensions d, the trade-off 

between width and depth is even more striking, from the point of view of approximation. Eldan 

and Shamir provide an example of a function f : Rd → R such that f can be approximated by 

a two-hidden-layers neural network with N ; poly(d) units, but which requires N 2 eΩ(d) units 

to be approximated by a one-hidden-layer neural network. This phenomena is often referred to as 

depth-separation, and holds under mild assumptions on the activation function. 

The reason behind this is to attribute to the ‘shape’ of a one-hidden-layer neural network in the 
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      rSd−1 ∩ supp(F (fN )) + [−c, c]d 

; Ne−Θ(d) 

|rSd−1| 

x1 

x2 

x1 

Figure 1.2: Left: the blue lines are the support of the Fourier transform of a one-hidden-layer 
network with N = 4 units. Right: One-hidden-layer networks with few units fail to approximate 
radial functions with high energy (represented by the red shaded area). 

frequency domain. Consider a single ridge function ψw : x ∈ Rd  → σ(wT x), for some continuous 

activation σ : R → R and w ∈ Rd . It is not difficult to show that the Fourier transform4 of ψw 

satisfies 

supp(F (ψw)) = span({w}) . 

By linearity, it follows that the Fourier transform of a one-hidden-layer neural network fN with 

N units is supported on the union of N rays, as shown in Figure 1.2 (left). This implies that the 

Fourier transform of fN is sparse at high frequencies, unless N grows exponentially with d; more 

formally, it holds that 

for some given c > 0 and r > 0 large enough [ES16]. Intuitively, if the Fourier transform of a 

target function is uniformly distributed over a sphere of sufficiently large radius, then the number 

of units needed to well approximate (by shallow networks) such function grows exponentially with 

d. A prototypical example of such functions is given by radial functions f(x) = ϕ(ixi), as their 

4The Fourier transform of ψw is intended in the sense of distributions. 
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Fourier transform is also radial. Eldan and Shamir formalize this idea, by showcasing a radial
 

function which can not be approximated up to a certain accuracy by one-hidden-layer networks, 

unless the number of units in the network increases exponentially with d. Here, the approximation 

error is measured in L2, under an appropriately chosen measure with polynomial decay. Moreover, 

they show that such function can, on the other hand, be efficiently approximated by a two-hidden

layer network, where the first layer approximates the radial function x  → ixi, and the second 

layer approximates the non-linearity ϕ. 

This result has been further refined in [SS17a], and similar results have subsequently been 

shown in [Dan17a, JNS19]. All of these results deal with objective function which are (essentially) 

radial5. An open problem is to understand whether they can be extended to different classes of 

functions. 

1.5.1 Depth-separation beyond radial functions 

Roughly speaking, Barron’s result [Bar93] establish a sparsity condition on the Fourier transform 

of the objective function which is sufficient for efficient approximation by shallow networks. On 

the other hand, the result by Eldan and Shamir [ES16] suggests that such sparsity is also necessary. 

In fact, looking again at Figure 1.2, this seems quite intuitive. In chapter 3, we focus on the high-

dimensional regime and we further establish a formal understanding of approximation properties 

of neural networks by terms of Fourier representations. 

As mentioned above, existing high-dimensional depth-separation results focus on functions 

with a radial structure. The first contribution of this chapter is to extend such results to a different 

class of functions, namely functions with piece-wise oscillatory structure, by building on the proof 

strategy in [ES16]. The piece-wise structure resembles the ones encountered in ReLU networks. 

The oscillatory component of such functions needs to grow polynomially in d for the depth-

T5In fact, Daniely considers an objective function of the form f(x, y) = ϕ(x y). Although, as noticed in [SES19], 
such functions can essentially be reduced to radial ones by a polarization identity. 
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A(k) bkθ = ∪ . 

k∈[L+1] k∈[L] 

separation result to hold. We complement the depth-separation result by showing that, if the rate of
 

oscillation of the objective function is constant, then approximation by one-hidden-layer networks 

holds, uniformly over a set of constant radius, at a poly(d) rate for any fixed error threshold. The 

proof technique also sheds light on why the Fourier transform of a deep neural network is in general 

not sparse. 

As mentioned, the common theme in the proof of such approximation lower bounds is the fact 

that one-hidden-layer fail to approximate high-energy functions whose Fourier representation is 

spread in the domain. The choice of the approximation domain plays a critical role in the proof 

depth-separation results, such as the one presented in section 3.2, and represents a source of gaps 

with the approximation upper bounds that we present in section 3.3. In section 3.4 we focus on 

approximation over an approximation domain of constant radius, namely the sphere Sd−1 in di

mension d. We provide a characterization of both functions which are efficiently approximable by 

one-hidden-layer networks and of functions which are provably not, in terms of their Fourier repre

sentation. We establish conditions in terms of sparsity or spreadness of such Fourier representation, 

marking a further step in formalizing the mentioned intuition. 

1.6 Neural networks training 

In supervised learning, once a certain network architecture is fixed, the weights of a network f as 

in (1.1) are found by optimising a loss function of the form 

L(θ) = E f(Φ(X; θ), Y) 

where Φ(·; θ) denotes the function f in (1.1) for a specific choice of parameters 
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ν(L(θ) − L(θ∗))
k ≤ 

2c

The term f denotes a convex function f : RdL+1 × Rdy → [0, ∞) and the random variables X, Y 

model the data distribution. In practice, the loss function is optimized following a gradient-based 

iterative algorithm, which, in its most basic form, is given by 

θk+1 = θk − ηk · gk , (1.9) 

where gk is an approximation of \L(θk) and ηk > 0 is a step-size. These type of algorithms are 

usually referred to as gradient descent algorithms, since they consist of taking repeated steps in the 

opposite direction of the (approximate) gradient of the function at the current point, this being the 

direction of steepest descent. The general idea is that, as k → ∞, the iterate θk should approach 

θ ∗ ∈ arg min L(θ) . 
θ 

When the true gradient is used (gk = \L(θk)), the method in (1.9) is called gradient descent (GD), 

and dates back to [C+47]. Under mild assumptions on the loss function L, GD is guaranteed to 

find an c-approximate stationary point, that is a point θk such that i\L(θk)i2 ≤ c, for c > 0. 

Theorem 1.7 ([Nes98]). If the gradient \L is ν-Lipschitz and η = ν−1, then there exists 

such that θk is an c-approximate stationary point. 

When gk is a random vector such that Egk = \L(θk), the method in (1.9) is known as stochas

tic gradient descent (SGD), and dates back to [RM51]. Under suitable assumptions on the random 

vector gk, results on the line of Theorem 1.7 are known for SGD as well; see e.g. [BCN18]. In the 

case that the function L is convex, stationary points correspond to global minima; in this setting, 

the results just cited can be tightened to yield provable convergence of the iterate (1.9) to a minima 

θ∗. In fact, a great amount of analysis has been carried out in the convex setting, leading to novel 
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algorithms and accompanying theory.
 

Most algorithms used nowadays to optimize a loss function L for the case neural networks 

consists of SGD or variant of it; we refer to [BGC17] for a review. This is due to two main 

factors: (i) the simplicity and versatility of gradient descent type algorithms, (ii) their unexpected 

efficacy in optimizing complex models, most often resulting in highly non-convex loss functions. 

Nevertheless, theoretical justifications are limited. 

Many works have recently tried to explain the empirical success of gradient descent type algo

rithms at optimizing neural networks. A first line of work deals with understanding convergence 

properties of GD/SGD for generic non-convex objectives, such as convergence to approximate 

second-order stationary points (see e.g. [JNG+19] and references therein), under different as

sumption on the objective. A complementary line of works focus on understanding properties 

of the loss function, amenable to such convergence, such as characteristics of minima or saddles. 

More recently, a third line of results were published, describing at the behaviour of such algorithms 

in two different asymptotic (in the number of the parameters of the model) regimes: the mean field 

limit (see e.g. [RVE18b]) and the neural tangent kernel limit (see e.g. [JGH18]). 

A critical factor that is known to be advantageuous in practice, for training neural networks, 

is what is called over-parametrization: increasing the number of parameters allows gradient de

scent methods to reach parameters for which the error (the value of the loss function) is zero. 

Thus, different works have been devoted to understand, theoretically, how increasing the number 

of parameters affects the optimization landscape. 

From this point of view, the aforementioned asymptotic regimes represent limit cases. Roughly 

speaking, the mean field regime describes gradient descent dynamics in the space of infinite-width 

neural networks Hσ
1 , via gradient flow theory. On the other hand, the neural tangent kernel limit is 

amenable to random features methods. 
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1.6.1 The optimization landscape and over-parametrisation 

The work presented in chapter 4 falls in the second line of works mentioned above – that is, the 

body of work devoted to characterizing properties of the landscape of loss functions evaluated 

on neural networks, which may (or may not) explain the success of gradients descent method to 

optimize them, such as absence of local minima or saddles. While the focus in this case is on 

finite-width regimes (non-asymptotic), a main question studied is how over-parametrization may 

affect such properties. 

In chapter 4, we study a key topological property of the loss: the presence or absence of 

spurious valleys, defined as connected components of sub-level sets that do not include a global 

minimum. Focusing on a class of one-hidden-layer neural networks defined by smooth (but gen

erally non-linear) activation functions and on the square loss f(x, y) = ix − yi22, we identify a 

notion of intrinsic dimension and show that it provides necessary and sufficient conditions for the 

absence of spurious valleys. More concretely, if the width of the network exceeds such intrinsic 

dimension, then spurious valleys are guaranteed not to exist, independently of the data distribution. 

Conversely, if the same condition does not hold, we show that spurious valleys do exist for certain 

data distributions. The condition on the network width N that we deem responsible for this phe

nomena essentially requires that the network architecture ‘fills’ the functional space defined by the 

same, that is F
σN = F
σN+1 (where σ is a fixed activation). We explain that this can only happen, es

sentially, for discrete data distributions or polynomial activations, where the network expressivity 

is limited. This implies that square losses evaluated on generic one-hidden-layer neural networks 

provably present local minima which are ‘hard’ to escape from. 

We conclude by discussing certain sampling regimes which suggest that, although spurious val

leys may exist in general, they are confined to low risk levels and avoided with high probability on 

over-parametrised models, as the number of parameters increases. As the work of this chapter was 

done previously to recent theoretical advancements on neural networks optimization, we review 

this last section in terms of some related works, including a brief review on the aforementioned 
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asymptotic regimes, and point out some limitations of this approach.
 

1.7 Other perspectives 

There are a lot of other problems of interest in the theory of neural networks that we do not discuss 

in this thesis. While it is necessary to understand approximation and optimization properties of 

neural networks, another very important aspect is that of generalization, that we do not tackle here. 

The type of architectures considered in this thesis only include feed-forward networks; although, 

there is a huge variety of different type of neural networks being used in practice. The structure 

of the data they operate on is also another important aspect to consider. The depth separation 

problem discussed above is here tackled only from the approximation perspective; although, it 

remains important to understand whether such example offer separation in terms of learnability as 

well. Finally (but not exhaustively), in this thesis we consider networks of constant depth and we 

measure their complexity based on their size. But there is a growing use of iterative models, where 

the width is fixed and one achieves higher accuracy by increasing the depth. 

In chapter 5 we briefly discuss on some of these problems and on some related ideas. 
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Chapter 2 

The power of depth in model order 

reduction of certain transport problems 

2.1 Introduction 

Due to the outstanding success of neural networks in the machine learning field, there is recently 

been a spur in trying to use such methods in other areas of science. In particular, a number 

of authors have started to develop deep learning methods to numerically solve PDEs; see e.g. 

[HJW18, GHJVW18, BWJ19]. In this chapter we are interested in understanding the role of depth 

for approximation of solution to parametric PDEs by neural networks. 

We are interested in PDEs of first order for which traditional model reduction fails. Model 

reduction derives reduced models to obtain computationally cheap approximations of PDE solu

tions in reduced (low-dimensional) subspaces of the typically high-dimensional solution spaces 

corresponding to numerical solution methods for PDEs such as finite-element and finite-volume 

methods [HRS+16]. Model reduction methods achieve speedups compared to traditional numer

ical solution methods if the manifold induced by the solutions of the PDEs can be approximated 

well with low-dimensional subspaces. Note that the work [KPRS19] shows that deep networks 
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are at least as efficient as reduced models under certain assumptions. The Kolmogorov N -width 

of a solution manifold quantifies how well the solutions can be approximated in N -dimensional 

subspaces. Thus, if the Kolmogorov N -width of the solution manifold corresponding to a PDE 

decays slowly with the dimension N , then reduced models require potentially high-dimensional 

subspaces to provide approximate PDE solutions with acceptable accuracy. Advection-dominated 

PDEs represent a class of problems for which standard model order reduction is known to not 

be efficient, but theoretical results on the Kolmogorov N -width of such problems are limited to 

constant speed problems [OR15, GU19]. In section 2.2.1 we give a concise explanation of this 

phenomena, and show that existing theoretical results generalize to a larger class of equations. 

Deep neural networks have recently emerged as a possible alternative solution. The works 

[Wel20, LC20] make use of deep neural networks. There also has been efforts to approximate 

the solution manifold of parametric PDEs directly with deep neural networks [KPRS19, LP21, 

GPR+20], by exploiting the expressive power of neural networks for approximating solutions of 

PDEs and nonlinear functions in general [RPK19, DDF+19, SZ19]. Deep neural networks also 

have been used to compute the reduced coefficients [WHR19]. The key challenge in these ap

proaches is achieving the level of computational efficiency desired in model reduction, as these 

deep neural network constructions are more computationally expensive to evaluate or manipulate 

than the classical reduced models. 

In this chapter, we exploit the limitations of shallow neural networks for approximating the 

solution manifold of transport problems. In section 2.3, we show polynomial lower bounds for 

the approximation of the solution manifold by shallow networks. We complement this result by 

showing that deep networks can potentially overcome this issue. Finally, we show that one can 

get inspiration from the positive results for efficient approximation of solutions to linear transport 

problems by deep neural networks, to define a deep version of reduced order models, which we 

show to be exponentially efficient in section 2.3.1. 
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2.2 Reduced order models 

Model order reduction concerns the problem of providing efficiently computable and reliable so

lutions for parametrised partial differential equations, where the parameters describe certain char

acteristics of the problem. For the purpose of our exposition, we consider the case of a parametric 
.PDE defined by a spatial variable x ∈ Ω = (0, 1), a time variable t ∈ [0, tF ] (for a certain final 

time tF ) and a set of parameters µ ∈ D ⊆ RP , for some P ≥ 1. The solutions to the PDE can be 

described as a map 

u : (x, t, µ) ∈ Ω × [0, 1] ×D  → u(x; t, µ) ∈ R , 

.where u(·; t, µ) ∈ V = L2(Ω) denotes the solution to the PDE defined by the parameter µ at time 

t. We define the solution manifold as the set 

.M = {u(·; t, µ) : (t, µ) ∈ [0, tF ] × Ω} ⊂ V . (2.1) 

Computations of the solutions are in practice carried out in a reliable high-fidelity approximation 

space Vδ ⊆ V; Vδ is taken to be a linear space of finite dimension Nδ < ∞. Assuming that the 

space Vδ is spanned by some basis functions {ϕk} ⊂ V, a high-fidelity full solution can be k∈[Nδ ] 

found, of the form 
NδL 

uδ(x, t; µ) = ak(t, µ)ϕk(x) , 
k=1 

(2.2) 

with coefficients {ak(t, µ)} that depend on time and parameter. The size Nδ of the approximation 

space Vδ is chosen so that, for each (t, µ), the full solution uδ(·, t; µ) provides an approximation 

of the true solution u(·, t; µ) up to a fidelity δ > 0, that is 

iuδ(·, t; µ) − u(·, t; µ)i2 ≤ δ . 
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For a fixed Nδ, the approximate solution manifold is given by 

.Mδ = {uδ(·; t, µ) : (t, µ) ∈ [0, tF ] × D} . 

Full solutions are typically computed with finite-difference, finite-element or finite-volume meth

ods, which can be computationally expensive if a large Nδ is required to achieve the desired 

tolerance δ. Model reduction aims to construct reduced solutions in problem-dependent sub

spaces of much lower dimension M « Nδ, to reduce computational costs [HRS+16]. Model 

reduction consists of an offline stage and an online stage. During the offline stage, the basis of 

the low-dimensional subspace, the reduced space VM , is constructed. A reduced basis is typi

cally computed by collecting a finite subset Mδ = {uδ(·, tk; µk)}S of full solutions, where S k=1 

{(tk, µk)}S ⊂ [0, tF ] × D, and then computing a low-dimensional basis using, e.g., singular k=1 

value decomposition (SVD). Let {ξk}M ⊂ V be the set of the reduced-basis functions. k=1 

In the online phase, a reduced solution (or a reduced-model solution) is derived in the space 

spanned by the reduced basis, 

ML . 
uM (x, t; µ) = γk(t, µ)ξk(x). 

k=1 

(2.3) 

The coefficients {γk(t, µ)}M of the reduced solutions are obtained by solving a system of equak=1 

tions for any given (t, µ) ∈ [0, 1] × D. The reduced system is derived using the PDE. In certain 

situations, the computational complexity of solving the reduced system scales with the dimension 

of the reduced space M only and is independent of the dimension of the full solutions Nδ. If the 

dimension M of the reduced space is small compared to the dimension Nδ of the full solutions, 

then solving for the reduced solution can be computationally cheaper than solving for the full so

lution. At the same time, the dimension M of the reduced space needs to be chosen sufficiently 

large so that the reduced solution are sufficiently accurate. For a fixed reduced basis {ξk}M withk=1 
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M basis functions, we call the set of reduced solutions MM the reduced solution manifold, 

.MM = {uM (·, t; µ) : (t, µ) ∈ [0, tF ] × D} . (2.4) 

The Kolmogorov N -width [Pin12] of the reduced solution manifold provides a measure of optimal 

goodness of reduced order models for a given parametric PDE. 

Definition 1. The Kolmogorov N -width of a set of functions M ⊂ V is defined as 

dN (M) = inf sup inf iu − viV , 
VN u∈M v∈VN 

where the first infinimum is taken over all N -dimensional subspaces VN of V. 

When the Kolmogorov N -width of a solution manifold M (2.1) is known, the smallest possible 

dimension M of its reduced manifold M (2.4) that satisfies the estimate 

iu(·, t; µ) − uM (·, t; µ)i2 ≤ c , for all (t, µ) ∈ [0, tF ] ×D , 

for given c ∈ (0, 1), is also known. This implies that classical reduced models of the form (2.3) 

are not efficient for problems whose solution manifolds do not have a fast decaying Kolmogorov 

N -width [HRS+16]. 

2.2.1 The Kolmogorov N -width for advection problems 

While it is known that the Kolmogorov N -width decays exponentially fast for many linear coercive 

parameterized partial differential equations [BMP+12, OR15], classical reduced models fail to be 

efficient not only for hyperbolic problems but for transport-dominated problems in general. This is 

well known fact in practice, but previous theoretical results are limited to constant-speed problems 

[OR15, Wel17, GU19] and Burger’s equation [ELMV20]. In this section, we introduce the concept 
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of convective class, and we show that the Kolmogorov N -width of such a class decays at most
 

polynomially. We use this concept to provide polynomial lower bounds for a large family of linear 

advections problems. 

Definition 2. We say that a set M ⊂ V generates a 2N -ball, for N ≥ 1 integer, if there exists a 

}2Nset B2N := {φn n=1 ⊂ span(M) of linearly independent functions φn with the form 

KL 
φn = an,kun,k for some K ≥ 1, un,k ∈ M and an ∈ Rkn with iani1 ≤ 1. 

k=1 

(2.5) 

The 2N -ball B2N is said orthogonal if φ1, . . . , φ2N are orthogonal in V. We say that the set M is 

α-convective1, for some α > 0, if for any N ≥ 1 integer, M generates an 2N -ball which generates 

an orthogonal 2N -ball B� = {ϕn} with iϕniV 2 N−α for every n.2N n∈[2N ] 

Intuitively, if the solution manifold M generates 2N -balls, approximating the manifold M 

by linear subspaces of a certain finite dimension is at least as difficult as approximating each of 

such 2N -balls by finite linear subspaces of the same dimension. If such balls are orthogonal, 

such approximation rate can be controlled by the norm of the functions forming the balls; the α

convectivity notion essentially imposes that these norms decay at most polynomially. This intuition 

is formalized in the following; the proof reported below is a simplification of the one in [RVBP20], 

which holds for a more generic notion of α-convectivity. 

Proposition 2.1. Let M ⊂ V. If M generates an orthogonal 2N -ball B2N , then it holds that 

dN (M) ≥ dN (B2N ) . (2.6) 

If M is α-convective for some α > 0, this implies that dN (M) 2 N−α . 

Proof. Let B2N be a 2N -orthogonal ball generated by M and let VN be any linear subspace of V 

1This is a specific case of the full definition reported in [RVBP20], but we focus on this case here for sake of 
simplicity. 
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C C 
sup inf iφn − viV = sup inf iφ̂n − viV = √ 

v∈VN Nα v∈VN 2Nα 
n∈[2N ] n∈[2N ] 

of dimension N . It holds that B2N = {φn} , where each function φn has the form (2.5). For n∈[2N ]

any {wk}k∈[K] ⊂ VN , it holds that 

KL 
     


     

K

iun,k − wkiV ≥ |an,k|iun,k − wkiV ≥
L 

φn −
 ≥ inf iφn − viV . 
v∈VN 

sup
 an,kwk
k∈[K] k=1 k=1 V 

Since the above holds for arbitrary {wk}k∈[K] ⊂ VN , it follows that 

sup inf iu − viV ≥ sup inf iun,k − viV ≥ inf iφn − viV , 
v∈VN v∈VN v∈VNu∈M k∈[K] 

 that which implies

sup inf iu − viV ≥ sup inf iφn − viV . 
v∈VN v∈VNu∈M n∈[2N ] 

Then, equation (2.6) follows by the definition of Kolmogorov N -width. Assume now that the 

functions {φn} are orthogonal and satisfy, for some costant C > 0, iφniV ≥ CN−α for all n∈[2N ] 

n ∈ [2N ]. Let φ̂n = φn/iφniV. Then it follows 

where the last equation follows by, e.g., Lemma 4.3 in [GU19]. 

2.2.1.1 Linear advection problems 

In the rest of this chapter, we consider the following families of parametrized linear advection 

PDEs, defined by 

⎧ ⎪⎨ ⎪⎩
 

ut + c(x, t, µ)ux = 0, for (x, t) ∈ R × (0, tF ), 

u(x, 0; µ) = u0(x), for x ∈ R, 
(2.7) 
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�

�X (t; x0, µ) = c(X(t; x0, µ), t; µ), t ∈ (0, tF ) , 

X(0; x0, µ) = x0 . 

⎧ ⎪⎨ ⎪⎩
 

for each µ ∈ D, and we consider the (weak) solutions u(x, t; µ) for x ∈ Ω and t ∈ [0, tF ]. We 

make the following assumptions: 

1. The function c is analytic in the space variable x and the time variable t (but not necessarily 

in µ). More specifically, we assume that for some a, b > 0, c(·, ·; µ) is an analytic function 
.over a set R = {(w, s) ∈ C : |w − x| < a, x ∈ Ω, |t| < b} for every µ ∈ D; 

2. The function c is uniformly bounded away from zero, that is there exist ν > ι > 0 such that 

it holds 0 < ι ≤ c(x, t, µ) < ν for any (x, t, µ) ∈ R ×D; 

3. The initial condition u0 ∈ L∞(R) is sufficiently regular on the interval of interest, that is, it 

holds u0 ∈ TV([−ν, 1 + ν]) and u0 ∈ L∞([−ν, 1 + ν]). 

We will denote by Mc the solution manifold of such a parametrized PDE. One can solve for 

each solution in Mc by the method of characteristics by integrating along the characteristic curves 

[Eva98]. We will denote the characteristic curve for the initial condition x0 by X(t; x0, µ). Then 

the ODEs for the characteristic curves are 

By classical ODE theory [CL55, Chapter 1, Theorem 8.1], and thanks to the assumptions on c, 

X(t; x0, µ) (x0 ∈ Ω, µ ∈ D) is analytic with respect to the variable t ∈ (0, tF ), for tF ≤ 

min{a/ν, b}. We will write X also as a function of its initial condition, X(t, x; µ) := X(t; x, µ). 

Since c is bounded away from zero, ∂xX > 0 for t ∈ (0, tF ), ensuring that the map is strictly 

increasing function of x. Furthermore, this implies that X is analytic with respect to x [RVBP20, 

Lemma 4.3]. If we express the transformation of the domain by 

T(t,µ) : x ∈ Ω  → X(t, x; µ) 
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. 1 1 
φn(x) = l{xn−1 ≤ x ≤ xn} = (l{x ≤ xn} − l{x ≤ xn−1})

2 2

it holds that u0(T −1 (x)) = u(x, t; µ), and u0(x) = u(T(t,µ)(x), t; µ) [DL89]. Since the results (t,µ)

in the following sections do not depend on the values of the parameters in the assumptions on c 

above, we assume, for sake of simplicity, that tF = 1 and ν = 1. 

2.2.1.2 Slow decay of the Kolmogorov N -width 

In [OR15], it was proved that the solution manifold Mc is 
2
1 -convective, in the case c(·; µ) = µ 

(where D ⊂ (0, 1)) and u0(x) = l{x ≤ 0}. In fact, even for general c, it is not difficult to see why 

this is the case. The solution to the PDE is given by u(x, t; µ) = l{x ≤ X(t; 0, µ)}. Since, for a 

fixed µ, the function t  → X(t; 0, µ) is continuous and increasing, there exists 0 < a < b < 1 such 

that 

B = {x  → l{x ≤ c} : c ∈ [a, b]} ⊂ Mc. 

The set B generates orthogonal 2N -balls in the following way. For any N ≥ 1, consider a = x0 < 

· · · < x2N = b a partition of [a, b] in to 2N intervals of size (b − a)/(2N). Then the functions 

satisfy (2.5) and are orthogonal in V = L2([0, 1]). Moreover, it is easy to verify that iφniV ≥ 

N−1/2; this implies that B, and thus M, is 1
2 -convective. Thanks to Proposition 2.1, it follows that 

dN (M) ≥ N−1/2 . 

This idea can be extended to the case of u0 ∈ Cs(Ω) ∩ Cs+1(Ω \ {x0}) for some x0 ∈ Ω and 

s ≥ 0. In this case, it follows that, at time t, the (s + 1)-th derivative of the solution, ∂t
s+1 u(·, t; µ), 

has a discontinuity at the point X(t, x0; µ). The derivative ∂t
s+1 u can be approximated by linear 

combination of the solution at different time increments, using a finite difference method. Such 

approximations, at different time steps, generate 2N -balls for N ≥ 1, which can be orthogonalised 

using Gram-Schmidt; in particular, the norm of the functions composing the orthogonal 2N -balls 

can be lower bounded as ω(N s−1/2). This results is formalized in the following; for a detailed 
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proof of this result, we refer to section 4.2.1 of [RVBP20].
 

Proposition 2.2. If u0 satisfies the assumption above, then it holds that dN (Mc) 2 N−s−1/2 . 

We remark that while here we focus on a linear advection problem (2.7), similar results have 

been also shown for other linear hyperbolic problems, such as the wave equation [GU19]. For 

non-linear problems, things are potentially even worse. For example, for the Burger’s equation, 

it is possible to show that the collection of the characteristic curves themselves form a convective 

class. We refer to [RVBP20] for a proof of this fact. 

2.3 PDE modeling via neural networks 

In the work by Laakmann and Petersen [LP21] it has been shown that parametric solutions to (2.7) 

can be approximated by deep (ReLU) neural networks at a rate that is essentially the one provided 

in Theorem 1.3 (where the regularity refers to the regularity of the term c), by exploiting the 

solution formulation and the regularity of the characteristic curves. In this section we consider the 

same setup. While the work [LP21] shows upper bounds for approximation of parametric solutions 

by deep networks, we complement such results by showing lower bounds for approximation by 

shallow networks. We also discuss how, under certain assumptions, this implies a polynomial

versus-exponential separation from approximation with shallow-versus-deep networks. 

We first show that shallow neural networks suffer of similar limitations of reduced order models 

for approximation of parametric solutions. In the case of a smooth non-linear initial condition 

and ReLU networks, this follows for example from existing bounds on approximation of smooth 

functions by neural networks. Nevertheless, such results do not apply, in general, to the case of 

non-smooth initial conditions and piece-wise polynomial activation. We show that in this case, 

one can leverage the fact that the solution is a wave moving at a non-linear speed to obtain a lower 

bound. 
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In the following, we consider neural networks with (p, r, s) semi-algebraic2 activation func

tions, as defined in [Tel16]. This includes activation functions such as the ReLU σ(x) = x+ or 

the step-function σ(x) = l{x ≤ 0}. Consider the PDE (2.7) with the initial condition u0(x) = 

l{x ≤ 0}. Notice that such initial condition can be approximated at any accuracy by shallow 

networks with semi-algebraic activation and constant width. The solution u is given by 

u(x, t; µ) = u0(X
−1(x; t, µ)) = l{x ≤ X(0; t, µ)} . 

Unless the term c is constant (in all variables), it holds that the characteristic curve map (t, µ)  → 

X(t; 0, µ) is C∞ and non-linear. On the other hand any shallow network approximation of u is 

only allowed to depend on linear combinations of µ and t. Let fN ∈ FN
σ be a neural network 

: RP +2fN → R, with σ a (p, r, s) semi-algebraic activation. Then, at fixed t and µ, the function 

x ∈ Ω  → fN (x, t, µ) is a piece-wise polynomial of degree s with (at most) prN breakpoints of 

the form 

αn,j (t, µ) = wn
T (t, µ) + bn,j 

for some wn ∈ RP +1 and bn,j ∈ R, n ∈ [Nu], Nu ≤ N , and j ∈ [pr]. Let A(t, µ) = {αn,j (t, µ)}n,j 
be the set of breakpoints for a given pair (t, µ) and let 

c(t, µ) = min |X(0, t; µ) − α| . 
α∈A(t,µ)∪{0,1}

The term c(t, µ) denotes the distance between the solution breakpoint X(0, t; µ) and the closest 

point in A(t, µ) ∪ {0, 1}, at given t, µ. By definition, the network fN (·, t, µ) is a polynomial of 

2A function σ : R → R is called (p, r, s)-semi-algebraic if there exist p polynomials {qk} of degree at most k∈[p] 

r, and m triples {(pk, Gk, Lk)} where pk is a polynomial of degree at most s and Gk, Lk ⊂ [p], such that k∈[m]  m
σ(x) = k=1 pk(x) j∈Lk 

l{qj (x) < 0} j∈Gk 
l{qj (x) ≥ 0}. 
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1 

iu(·, t, µ) − fN (·; t, µ)i22 = (u(x, t, µ) − fN (x; t, µ))
2 dx 

0 
X(0,t;µ) 1 

= (1 − fN (x, t, µ))
2 dx + (fN (x, t, µ))

2 dx 
0 X(0,t;µ) 

X(0,t;µ) X(0,t;µ)+ (t,µ) 

≥ (1 − fN (x, t, µ))
2 dx + (fN (x, t, µ))

2 dx 
X(0,t;µ)− (t,µ) X(0,t;µ)(  

X(0,t;µ) X(0,t;µ)+ (t,µ) 

≥ inf (1 − p(x))2 dx + p 2(x) dx
p : deg(p)≤s X(0,t;µ)− (t,µ) X(0,t;µ) 

1 

= c(t, µ) inf (u0(x) − p(x))2 dx 2 c(t, µ) , 
p : deg(p)≤s −1 

   ≥ inf sup min X(t; 0, µ) − wk
T (t, µ) − bk,j 

1/2 
. 

w1,...,wN+1∈RP +1 
(t,µ)∈[0,1]×D k∈[N+1] 

b1,...,bN+1∈Rpr j∈[pr] 

 

    C 
inf sup inf f(x) − wk

T x − bk,j ≥ 
w1,...,wN ∈Rd 

x∈[0,1]d k∈[N ] MN3 

b1,...,bN ∈RM j∈[M ] 

degree s in the interval [X(0, t; µ) − c(t, µ), X(0, t; µ) + c(t, µ)] ⊆ [0, 1]. Then, it holds that
 

where the infimum is taken over all polynomials p : R  → R of degree at most s. Therefore, we get 

that, for any fN ∈ FN
σ , it holds 

sup ifN (·, t, µ) − u(·, t; µ)i2 ≥ 
(t,µ)∈[0,1]×D 

The sup-inf problem in the value in the lower bound above is similar to the problem of fitting the 

function (t, µ)  → X(t; 0, µ) with a piece-linear function with O(N) pieces, but slightly different; 

instead it consists of approximating such function in each point as the closest value to an ensem

ble of O(N) linear functions. If the function is smooth and non-linear, then one can apply the 

following. 

Lemma 2.3. Let f : [0, 1]d → R be a C2 function which is non linear. Then it holds that 

where C > 0 is a constant only depending on f . 
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inf sup iu(·, t; µ) − fN (·, t, µ)i2 2 
1 

. 
fN ∈Fσ (pr)1/2N3/2 

N (t,µ)∈[0,1]×D 

�

�

The proof of this result follows a similar idea to the proof of the lower bound in Theorem 1.3,
 

and it is reported in section A.1.1. The application of Lemma 2.3 then gives us the following result. 

Proposition 2.4. Assume that u0(x; µ) = l{x ≤ 0}. If the function c in (2.7) is not constant and 

σ is a (p, r, s)-semi-algebraic activation, then it holds that 

Notice that the rate obtained for the lower bound is faster than the one on the Kolmogorov 

N -width given in section 2.2.1.2 for the same PDE. A similar result can be shown for some more 

generic initial conditions u0 such that u0 ∈ Cs \ Cs+1, for s ≥ 0. We provide further details on 

extensions of Proposition to more general initial conditions 2.4 in section A.1.2. The remarkable 

fact about the above lower bound is that it holds for any semi-algebraic activation: the proof high

lights the fact that, despite of the degree of the activation, the transport map (t, µ)  → X(0, t; µ) 

can only be captured by (N ) linear functions. On the other hand, deep neural networks do not 

suffer from this limitation: the following proposition shows that approximation by deep networks 

can potentially yield exponential rates. The proof is reported in in section A.1.2. 

Proposition 2.5. Consider u0(x) = l{x ≤ 0}. Assume that the map T0 : (t, µ) ∈ [0, 1] × D  → 

X(0, t, µ) can be uniformly approximated by polynomials at an exponential rates, that is 

−ω(r)inf sup |T0(t, µ) − p(t, µ)| ≤ e , 
p ∈ PP +1 

≤r (t,µ)∈[0,1]×D

where PP +1 denotes the space of polynomials (with real coefficients) of degree at most r in P + 1 ≤r 

(real) variables. Then the solution u can be c-approximated by a neural network of depth polylog 1 

with polylog 1 units, that is there exists a network fN (with ReLU and step-function activations) of 
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size N = O logP +3 1 and depth O log 1 which verifies 

sup ifN (·, t, µ) − u(·, t; µ)iV ≤ c . 
(t,µ)∈[0,1]×D 

2.3.1 Deep reduced order models 

Given the benefits that we just discussed of deep neural networks versus their shallow counterpart 

for approximation, a possible strategy to overcome the limitations of classical reduced order mod

els is to construct a deep version of the latter. Recall that, in standard reduced order modelling, 

one express the parametric solution in the form 

ML 
uM (x, t; µ) = γk(t, µ)ξk(x) , 

k=1 

where the functions ξk are fixed elements of the space span(Mδ). Consider the case where full 

solution (2.2) to the PDE (2.7) are constructed as piecewise linear functions on an equidistant 

grid with Nδ grid points, which can be represented as a specific one-hidden-layer network whose 

weights and biases in the hidden layer are fixed. Namely, the full solutions have the form 

NδL 
uδ(x, t; µ) = wk(t, µ)σ(h

−1 x − k − 1) , 
k=1 

where σ(x) = x+ is the ReLU activation and h = 1/(Nδ −1). If the second layer weights wk(t, µ) 

belong to a low-dimensional subspace of dimension M « Nδ, then one can write 

w(t, µ) = Vγ(t, µ) 
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where V ∈ RNδ ×M has orthonormal columns and γ(t, µ) ∈ RM . This leads to reduced order 

models of the form 
ML 

uM (x, t; µ) = γk(t, µ)ξk(x) 
k=1 

where ξk(x) = Nδ vjkσ(h
−1x − j − 1). Relating to neural networks, the full solution uδ can be j=1 

written as a one-hidden-layer ReLU network 

uδ(x, t; µ) = w(t, µ)T σ(W0 x + b0) , 

where W0 = h−1(1, . . . , 1) ∈ RNδ ×1 and b0 = −(0, 1, . . . , Nδ − 1) ∈ RNδ . Here, the second layer 

weights depend on t, µ while the first does not. The reduced order model has the form 

uM (x, t; µ) = γ(t, µ)T ξ(x) 

where each ξk is a reduced activation. More generally, one could imagine to start with full deep 

solutions, that is high-fidelity approximations to the parametric solution, which have the form 

uδ(x, t; µ) = AL(σL−1(AL−1(σL−2(· · · A1(σ0(A0(x)) · · · ) (2.8) 

where each σk is a (fixed) component-wise activation function and 

Ak(z) = Wk(t, µ)z + bk(t, µ) . 

Notice how the full deep solutions define an ensemble of deep neural networks, whose weights 

∈ RNk+1×Nk , b ∈ RNk+1Wk depend on the solution parameters t, µ. For sake of simplicity, we 

consider the case where each activation is either a step-function σ(x) = l{x ≤ 0} or a ReLU 

Lσ(x) = x+. Notice that in the model (2.8), both the size Nδ = k=1 Nk and the depth Lδ = L 

depend on the fidelity δ, and are potentially very large. Assume now that the full deep solution 
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weights belong to low-dimensional spaces, that is
 

Wk(t, µ) = UkΓk(t, µ)Vk
T , bk(t, µ) = Ukck(t, µ) , 

for some Uk ∈ RNk+1×Mk+1 , Vk ∈ RNk×Mk with orthonormal columns, where 

L LL L .
M = Mk « Nk = Nδ . 

k=1 k=1 

Then, one can write 

. 
uδ(x, t; µ) = uM (x, t; µ) = BL(ξL−1(BL−1(ξL−2(· · · B1(ξ0(B0(x)) · · · ) 

where 

Bk(z) = Γk(t, µ)z + ck(t, µ) and ξk(z) = Vk
T 
+1σ(Ukz) . 

Notice that the functions ξk : RMk → RMk+1 do not depend on the parameters t, µ: we refer to 

them as reduced activations (notice that they do not necessarily operate component-wise). The 

model uδ thus define a deep-equivalent of the reduced order model previously introduced. Making 

a parallelism with the results for approximation by (standard) neural networks, one would expect 

deep reduced models to be more efficient to represent solutions. In fact, this is the case, and the 

reason lies in the compositional structure of solution u(x, t; µ) = u0(X−1(x, t; µ)) to the PDE 

(2.7). Thanks to the analyticity in the spatial variable x, the transport map x  → X(x, t; µ) can be 

represented by a (ordinary) reduced model at an exponential (in the number of basis functions) rate. 

The inverse transport map x  → X−1(x, t; µ) can then be represented by a deep reduced model by 

implementing the bisection method with a deep network of constant width. Finally, composing 

with the initial condition u0 gives a deep reduced model approximation to the solution. 

Proposition 2.6. Assume that the transport map T(t,µ) is analytic and uniformly bounded on the 
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 closed ρ-Bernstein ellipse [Tre19] for some ρ > 1. Then, for any c > 0, there exists a deep reduced 

order solution uM of depth O log 1 and size M = O log 1 such that 

sup iu(·, t; µ) − uM (·, t; µ)iV ≤ c . 
(t,µ)∈[0,1]×D 

We refer to [RVBP20] for a fully detailed proof of this result; the proof idea can be ex

tended to other types of transport PDEs, such as Burger’s equation. The reduced deep mod

els introduced here are a generalization of Manifold Approximations via Transported Subspaces 

(MATS) [RPM19], with additional hidden layers, where each layer has a low-rank representa

tion. Reduced deep models are reminiscent of the compression framework for deep networks 

that is being studied theoretically for improving generalization bounds [NBS17, AGNZ18], or be

ing utilized in practice to accelerate the performance of large networks in practical applications 

[CWT+15, NPOV15, CWZZ18]. However, the fact that a reduced deep model is a set of networks 

with a specifically designed degree of freedom, rather than a single network exhibiting low-rank 

structure in its weights, distinguishes it from the compression frameworks. 
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Chapter 3 

High-dimensional depth-separation for 

neural networks 

3.1 Introduction 

The seminal work [Bar93] provides dimension-free quadratic approximation rates by shallow net

works under a condition of sparsity of the Fourier transform. Recent works [ES16, Dan17a] sug

gest that this property is essentially necessary in order to recover polynomial approximation rates, 

by constructing examples of deep networks which are spread in direction and away from zero in 

the frequency regime, and by showing that these function can not be efficiently approximated by 

a shallow counterpart. These depth-separation phenomena occur in the high-dimensional regime, 

where approximation by neural networks of standard Sobolev spaces is cursed (section 1.3). On 

the other hand, proofs of such high-dimensional depth-separation phenomena are currently limited 

to radial functions, that is of the form f(x) = ϕ(iAx + bi2). 

In this chapter we extend the results just cited, further cementing Barron’s intuition. We de

scribe rates of approximation by one-hidden-layer networks in terms of the number of units N of 

the network, by looking at the Fourier representation of the function to be approximated. We con
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sider two types of approximation rate, inspired by the work [SES19]: (i) the rate of approximation 

is polynomial in both the input dimension d and the error estimation c, that is N r poly(d, c−1) – 

we refer to this rate of approximation as universal approximation (ii) for any fixed error threshold c, 

the number of units N needed for approximation of approximation depends at most polynomially 

on d, that is N r poly(d) for any fixed error threshold c – we refer to this rate of approximation 

as fixed-threshold approximation. We distinguish two fundamentally different regimes of approx

imation: relative to a heavy-tailed, unbounded data distribution, or relative to a concentrated dis

tribution. Whereas the former captures the most general setup, the latter is motivated by practical 

machine learning applications. 

First, we consider a class of two-hidden-layer networks exhibiting piece-wise oscillatory be

havior, namely functions of the form 

2πir (vT x + wT x+)fr,w,v : x ∈ Rd  → e . 

In section 3.2, we show that, under appropriately heavy-tailed data distributions, approximation at 

a rate N r poly(d) cannot hold (unconditionally on the weights of the approximant network), as 

long as the rate of oscillations r grows faster than d. On the other hand, fr,w,v can be universally 

approximated (that is, at a rate poly(d, c−1)) by a two-hidden-layer network with any practical 

activation of choice. The proof of this result (Theorem 3.2) extends the main idea introduced by 

the results of Eldan and Shamir [ES16] beyond the radial case. 

In section 3.3, we show that the poly(d)-oscillatory aspect and the heavy-tailed data distribu

tions are necessary in the depth-separation result mentioned above. More specifically, we show 

that any deep network, with O(1)-bounded weights and O(1)-Lipschitz activation, can be fixed-

threshold approximated by one-hidden-neural networks over a compact set of radius O(1) (The

orem 3.6). This extends an equivalent result in [SES19], from the class of radial functions to the 

one of deep neural networks with Hölder activations. 
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    f (d) − fN Ωd,∞ 
≤ c 

Aforementioned depth separation results consider functions whose Fourier representation is
 

spread in high frequencies. On the other hand, universal approximation results often require the 

function to be approximated to be, in some sense, sparse in the Fourier domain. Unfortunately, 

there are currently many gaps between these two types of results, one of them being the defi

nition of approximation domain. In order to reduce the gap between the two results above, we 

consider approximation on a fixed compact domain, namely the unit sphere Sd−1, where Fourier 

analysis can be done using spherical harmonics. We individuate two conditions on the spherical 

harmonics decomposition of a function f ∈ C(Sd−1). The first is a sparsity condition on the de

composition, which we show to be sufficient to prove universal approximation (that is, at a rate 

N r poly(d, c−1)) of f by one-hidden-layer networks. The second is a high-energy spreadness 

condition on the spherical harmonics decomposition of f , which we show to imply that universal 

approximation of f by one-hidden-layer networks cannot hold. This is the content of section 3.4, 

of which the main results are summarized in section 3.4.2. 

3.1.1 Neural network approximation rates 

We measure the approximation error between two functions f, g : Ω ⊆ Rd → C in terms of the 

L2(µ) (with respect to a probability measure or density µ) or L∞ norm. Notice that a L2 lower 

bound implies a L∞ one, and viceversa for an upper bound. The focus of this chapter is to establish 

upper and lower bounds for approximation of certain function classes by shallow neural networks, 

in high dimensions d. We distinguish two different approximation regimes of interest. 

Definition 3. We say that a sequence f (d) : Ωd ⊆ Rd → C 
d≥2 

is universally approximable by 

one-hidden-layer networks with activation σ if it is approximable at a poly(d, c−1) rate; that is if 

there exists some constants α > 0 and β > 0 such that it holds 
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    f (d) − fN Ωd,∞ 
≤ c 

for some one-hidden-layer fN ∈ FN
σ satisfying N + m∞(fN ) ≤ α(dc−1)β . 

f (d)Definition 4. We say that 
d 

is fixed-threshold approximable if for any c ∈ (0, 1) it is c

approximable at a poly(d) rate; that is if for any c > 0 there exists some constants α > 0 and 

β > 0 such that for every c > 0 it holds 

for some one-hidden-layer fN ∈ FN
σ satisfying N + m∞(fN ) ≤ αdβ . 

These approximation schemes were introduced in [SES19]. To ensure significance of the ap

proximation rates, in the following upper and lower bounds are stated for objective functions f (d) 

normalized such that if (d)i2 ≤ 1 or if (d)i∞ ≤ 1. 

3.1.2 Activation assumptions 

Finally, the results in the next sections generally hold for activations satisfying the following as

sumptions, which are satisfied by common activation such as the ReLU ReLU(x) = x+ or the 

sigmoid sigmoid(x) = (1 + e−x)
−1 [ES16]. Most of the results can be easily generalized to hold 

under less strict conditions, but we take these assumptions for sake of simplicity. 

Assumption 1. Given an activation σ : R → R, there exist constants ισ and νσ such that 

1. it is ισ-Lipschitz and σ(0) ≤ ισ; 

2. for any L-Lipschitz function f : R → R constant outside of an interval [−R, R] and any 

c > 0 there exits fN ∈ FN
σ with if − fN i∞ ≤ c such that N + w∞(fN ) ≤ νσLRc−1 . 

Notice that this assumption implies that, given a (deep) neural network f with poly(d) weights 

and activations satisfying Assumption 1, then we are always able to replace the activations in f 

by any other activation satisfying Assumption 1, by paying an at most polynomial cost. This is 

formalized in the following lemma. 
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T Tfr,w,v : x ∈ Rd  → σr v x + w x+ 

f (d)Lemma 3.1. Let : Kd ⊂ Rd → C 
d 

be neural networks with activations satisfying Assump

tion 1 and such that N(f (d)) + w∞(f (d)) + diam(K(d)) ≤ poly(d); also let σ be any activation 

f (d)function satisfying Assumption 1. Then the sequence 
d 

is universally approximable by one

hidden-layer networks with activation σ. 

3.2 A depth separation example 

Our starting point for the study of depth-separation is to consider a generic data distribution µ 

with adversarial properties against shallow approximations. In the seminal work [ES16], Eldan 

and Shamir establish an unconditional (with no restrictions on the norms of the weights of the net
−(d+1)/2work) depth-separation result by considering a density µ in Rd with tails µ(ixi2) r ixi2 

and a radial function f (d)(x) = hd(ixi2) with hd : R → R a carefully chosen oscillating function 

with compact support. The proof in [ES16] reveals the limitations of shallow neural networks at 

approximating high-dimensional functions via a powerful harmonic analysis insight, that is partic

ularly convenient in the setting of radial functions; see section 1.5. In this section, we show that 

their proof strategy can be extended to include more diverse function classes, namely those arising 

naturally from ReLU networks. Specifically, we consider networks of the form 

(3.1) 

where x+ denotes the element-wise ReLU activation, v, w ∈ Rd and σr(t) = e2πirt. We are thus 

considering a function which is piece-wise oscillatory, with constant envelope |fr,w,v(x)| = 1, 

and where the frequency of oscillations is controlled by r. The main result of this section can be 

summarized as follows. 

Theorem 3.2 (Informal). Assume that iwi2, ivi2 = Θ(1) and that r = Θ(dk) for some k ≥ 2. 

Then there exists a (low-decay) product measure µ on Rd such that the function fr,w,v is universally 
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iψi1 < 2/K . 

 

  . . . |Ωd|
τd = sup ivd + wd,S i∞ , Ωd = j ∈ [d] : rd|wd,j | ≥ γd2 and ηd = , 

S⊆[d] d 

approximable by two-hidden-layer networks but it is not fixed-threshold approximable by one

hidden-layer networks. 

3.2.1 The lower bound 

Let ψ ∈ L2(R) ∩ L1(R) with iψi2 = 1, and such that its Fourier transform ψ̂ is compactly 

supported in [−K, K], for some K > 0. Assume also that 

(3.2) 

The condition ensure that the density ψ is sufficiently spread away from zero (see Remark 3). Our 

first objective is to establish depth separation for the approximation of fr,w,v under the L2 metric 

defined by the probability density ϕ2, where ϕ : x ∈ Rd  → j
d 
=1 ψ(xj ). 

Theorem 3.3. Let f (d) = frd,wd,vd , for some rd ∈ R, wd, vd ∈ Rd. For a fixed γ > 0, define 

where wd,S ∈ Rd is defined by wd,S,i = wil{i ∈ S}. Assume that 

(i) oscillations grow polynomially, that is τd · rd = Θ(dk) for some constant k > 0; 

(ii) the vectors wd are sufficiently spread, that is ηd ≥ η for some η > 0 independent of d; 

(iii) the density ϕ2 is sufficiently spread, i.e. 2Kiψi21 < 22η . 

Then there exists a constant α ∈ (0, 1) (independent of d) such that 

· O(dk+1) .inf if (d) − fN iϕ2 
2 ,2 ≥ 1 − N · αd 

fN ∈FN 

(3.3)

Notice that this lower bound is unconditional on the weights of the neurons m∞(fN ). 
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        (ξ) ; 2−ηdiϕi1iξi−1f̂  
rd,wd,vd ∗ ϕ̂ ∞ for ξ 2 poly(d) . 

        2 
inf ifrd,wd,vd − fN iϕ2 

2 ,2 ≥ 1 − N · sup lTα · f̂  
rd,wd,vd ∗ ϕ̂ , 

fN ∈T(N ) 2α∈Sd−1 

The proof follows a similar strategy as in the work [ES16]. The approximation error can be
 

expressed in the Fourier domain as 

ifrd,wd,vd − fN iϕ2 
2 ,2 = ifrd,wd,vd · ϕ − fN · ϕi22 = if̂  

rd,wd,vd ∗ ϕ̂− f̂  
N ∗ ϕ̂i22 . 

Thanks to the assumptions, the target function frd,wd,vd satisfies a key property, namely that its 

Fourier transform has its energy sufficiently spread in the high-frequencies, after the convolution 

by ϕ̂. Such frequency spread is caused by the shattering of the first ReLU layer, which effectively 

creates Θ(2ηd) different frequencies. The piece-wise structure arising from the ReLU can be han

dled in the Fourier domain by the Hilbert transform of the function ψ, which has sufficient decay 

thanks to the assumptions. Noticing that if̂  
rd,wd,vd ∗ ϕ̂i2 = 1, this is formalized in the following. 

Lemma 3.4 (Informal). It holds that 

On the other hand, since ϕ̂ is compactly supported and the Fourier transform of a single-unit 

network is localised in a frequency ray, the Fourier transform of frd,wd,vd · ϕ is localised in a union 

of N tubes, of the form Tα = span({α}) + [−K, K]d. This implies that 

inf ifrd,wd,vd − fN i2 
ϕ2 ,2 ≥ inf ifrd,wd,vd − fN iϕ2 

2 ,2
fN ∈FN fN ∈T(N) 

where T(N) denotes the set of L2 functions such that their Fourier transform is supported on 

the union of N tubes Tα1 , . . . , TαN as above, for some arbitrary α1, . . . , αN ∈ Rd . Thanks to 

Plancherel’s identity, and since ifrd,wd,vd iϕ2 ,2 = 1, it further holds that 
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where lTα denotes the indicator function of Tα. Lemma 3.4 can then be used to show that such 

projections are exponentially (in d) small, which implies equation (B.1). The detailed proof is 

deferred to section B.1.1. 

Remark 2. Theorem 3.3 asks for two main conditions to hold. First, the magnitude of oscillations 

of the objective function (parametrised by rd) must grow at least polynomially with d, similarly to 

the assumptions in the works [ES16] and [Dan17a]. Second, the data distribution µ with density 

ϕ2 should be heavy-tailed, in order for its Fourier transform to be sufficiently localised. When 

rd does not grow fast enough with d, the energy starts piling up at the low frequencies, creating 

an important roadblock to establish approximation lower-bounds, and leaving open the possibility 

of efficient shallow approximation. Similarly, when µ concentrates too quickly, the proof strategy 

also fails, due to the fact that in that case ϕ̂ is too spread in the Fourier domain, creating full overlap 

of the energies. 

Remark 3. The admissibility condition (3.2) is necessary since η ≤ 1 by definition. Notice that 

1 = iψi22 = iψ̂i22 ≤ (2K)iψ̂i2 
∞ ≤ (2K)iψi21 

and therefore condition (3.2) can be considered as a requirement on the Fourier transform of ψ not 

being too concentrated in the origin. The choice ψ(t) = 3/2 sinc2(πt) corresponds to K = 1, 

iψi1 = 3/2 and iψi2 = 1, which verifies (3.2). In that case, from condition (ii) we need 

log2 3η > 
2 ≈ 0.79 . However, the choice ψ(t) = Csinc(πt) (the equivalent separable version of 

the of density considered in [ES16]) is not admissible, since ψ is not in L1 . The lower bound is 

optimized by finding compactly supported windows with an optimal L1 to L2 ratio of their Fourier 

transforms. 

Remark 4. The theorem considers a separable ReLU transform x  → x+, combined with a sepa

rable data distribution µ with density ϕ2. One could expect a similar lower bound to apply in the 

more general case of a layer of the form x  → (Ux + b)+, U ∈ Rd'×d , b ∈ Rd' . Such general 
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d � �I
µd(dx) = 

3
sinc4(πxk) dxk ,

2 
k=1 

    dinf fN (x) − f (d)(x) 
2 ≥ 1 − 1300N · d2 · (0.75) . 
µd,2fN ∈FN 

    1 
inf fN (x) − f (d)(x) 

µd,2 
≥ 

fN ∈FN 2 

1.3d 

N ≥ . 
104d3 

� � 

case replaces the Hilbert transform of ψ with the Fourier transform of indicators of convex poly

topes, which has been used in the context of ReLU networks to characterize spectral properties 

[RBA+19]. 

Example 1. We give an explicit example of a family of function f (d) : Rd → R which satisfy 

the assumptions of Theorem 3.3. Consider the functions 

dL 
f (d)(x) = exp 2πid2 max{0, xk} . 

k=1 

Then, if µd is the product probability measure defined by the density in Remark 3, that is 

then it holds that 

For example, this implies that 

unless 

The numbers are obtained by explicitly tracking the constant in the proof of Theorem 3.3 (see 

section B.1.1 for more details). 
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N + m∞(fN ) ≤ O d2(1+k) −3/2 i2 c such that ≤ c . ifN − frd,wd,vd ϕ2 ,2 

  

3.2.2 The upper bound 

According to the definition of neural networks we gave in section 1.2, the function fr,w,v is natu

rally a two-hidden-layer neural network. Although, while there are cases of sinusoidal activations 

being used in practice, activations such as ReLU or sigmoid are more relevant to practical appli

cations. The following theorem, proved in section B.1.2, shows that we can efficiently represent 

the function fr,w,v in the hypothesis of the Theorem 3.3 as a two-hidden-layer neural network with 

fixed activation, such as the ReLU or the sigmoid. The main technical difference with Lemma 

3.1 is that the result is proved for approximation w.r.t. the probability measure with density ϕ2 

introduced above. 

Theorem 3.5. Let σ be an activation satisfying Assumption 1. Assume that there exists a constant 

k ≥ 1 such that m∞(frd,vd,wd ) ≤ O(dk) and assume that ψ is such that |ψ(x)| = O(|x|−1). Then, 

for every c > 0, there exists fN ∈ FN
σ with 

Theorems 3.3 and 3.5 therefore estabilish a depth separation result. If f (d) = frd,wd,vd are 

defined with rd, wd, vd satisfying the assumptions of both theorems (that is, they satisfy assump

tions (i)-(ii)-(iii) of Theorem 3.3 with τd · rd = Θ(dk)), then Theorem 3.3 says that f (d) 
d 

is 

not fixed-threshold approximable by one-hidden-layer networks, while Theorem 3.5 says that the 

sequence is universally approximable by two-hidden-layer networks with a fixed activation satis

fying Assumption 1. For example, the family of functions considered in Example 1 satisfies such 

assumptions. 

We thus identify two key aspects responsible for such depth separation: heavy-tailed data and 

oscillations growing with dimension. In the next sections we want to understand how necessary 

these two conditions are. The next section shows that if these two condition do not hold anymore, 

then a lower bound such as the one in Theorem 3.3 is not achievable; more specifically we show 
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. 

fσ 
inf if (d) − fN

σ iK,∞ ≤ c for some N ≤ exp O c −1−2/α log(pd/c) 
N ∈F

σ 
N 

that the objective function is fixed-threshold approximable by one-hidden-layer networks.
 

3.3 Approximation of deep networks by shallow ones 

In this section, we show that any deep neural network f (which include the target functions con

sidered in the previous section) can be approximated by shallow ones at a rate which is polynomial 

in d, as long as the rate of oscillation in the inner layers of f is constant in d and the metric is 

concentrated in a ball of constant radius. We start by reporting the result in a general form for 

two-hidden-layer networks and we discuss some consequences and extensions afterwards. 

Consider a family of two-hidden-layers neural network {f (d) : Kd ⊂ Rd → C} of the form 

f (d) : x ∈ Rd  → γd
T g Wd

T h Ud
T x ∈ C , (3.4) 

h(d) : Rpd (d) → Rodwhere h = → Rpd and g = g : Rod are, respectively, component-wise 

1-Lipschitz and (1, α)-Holder1 activation functions, and Ud ∈ Rd×pd , Wd ∈ Rpd×od , γd ∈ Cod . 

We wish to approximate f (d) by one-hidden-layer neural networks with a given activation. 

Theorem 3.6. Assume that diam(Kd) = O(1) and that the networks f (d) have f1 bounded weights, 

that is m1(f
(d)) = O(1). Then, for every activation σ satisfying Assumption 1.2 and every c ∈ 

(0, 1) it holds that 

(3.5) 

Moreover, it is possible to choose fN
σ attaining (3.5) with m∞(fN

σ ) satisfying a bound similar to 

the one on N , for example m∞(fN
σ ) ≤ (1 + N2). 

The proof is constructive and based on the following observation. Consider the case where 

rod = 1, γd = 1, pd = p and g(x) = x some positive integer r. If hk(x) = eix for all k ∈ [p], then 
1We say that a function g : R → R is (1, α)-Holder if it holds that |g(x) − g(y)| ≤ |x − y|α for all x, y ∈ R. 
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N r Θ pc −2 . 

the function f = f (d) at (3.4) has form 

for some w ∈ RN , uk ∈ Rd, where N = p. By expanding the power we can write 

that is a formulation of f as a one-hidden-layer network with activation σ1(t) = e2πit (in the 

following we refer to this type of networks as shallow Fourier networks) and a number of units that 

scales as N r. Since both polynomials and trigonometric polynomials are universal approximators, 

with well known convergence rates, in the general case one can proceed as follows. Each of the 

non-linearities applied to the first hidden layer can be approximated by a trigonometric polynomial 

at a polynomial rate on the interval of interest. Similarly, every non-linearity applied to the second 

hidden layer can be approximated by a polynomial at a linear (in the degree of the polynomial) 

rate on the interval of interest. Assuming for simplicity that both rates behave as c−1, where c > 0 

denotes the approximation error, the composition of the two approximation following the structure 

2πit)of the target network results in a shallow Fourier network (that is with activation σ1(t) = e

whose size N behaves, roughly speaking, as 

Moreover, it is also possible to control the value of the coefficients appearing in the final approx

imation. With this, we can approximate each summand in the shallow Fourier network by a one

hidden-layer network with activation σ with a controlled number of units, thanks to Assumption 

1.2. A more detailed statement and a formal proof are reported in section 3.3. 

In essence, in the Theorem 3.6, we show that it is possible to approximate a two-hidden-layer 

49
 



� � ��     L−1 
O(L)(1+ 1 )
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such that f (d) − fN ≤ c . 
2 B1

d
,∞,∞c

neural network with constant(d) oscillations at a poly(d) rate over a compact set of constant(d)
 

radius. On the other hand, it easy to show that it is also possible to obtain approximation at 

a poly(c−1) rate (see section B.3.2), for fixed d. Finally, existing results in the literature (see 

[SES19]) show that universal approximation is not possible, the counterexample being essentially 

a radial function. 

Interestingly, the upper bound in Theorem 3.6 does not depend on the number of units in the 

second layer of the objective function. This parameter is hidden in the control we impose on the 

f1 norm of the objective weights. The proof technique of this upper bound highlights how the 

difficulty of approximating at poly(d, c−1) rate stems from the high-energy of the second layer, 

which requires the shallow network used for approximation to have a (potentially) exponential (in 

d) number of directions. Notice that the lower bound in Theorem 3.3 actually tells that the function 

is not fixed-threshold approximable. High oscillations in the lower bound (3.3) essentially ensure 

that an exponential (in d) number of neurons are necessary. An open question is then whether a 

low-decaying measure is, in general, necessary for such a result to hold. 

Expanding on the proof technique above, it is possible to extend the result of Theorem 3.6 

to approximation of L-hidden-layers networks by shallow ones, which gives a rate scaling as 

exp(O(c−L log(p/c))). 

Theorem 3.7. Let f (d) as in (1.1), with O(1)-Lipschitz activations, first hidden layer width d1 = pd, 

depth Ld = L and bounded weights, that is m1(f
(d)) = O(1). Then for every c > 0 there exists a 

shallow Fourier network fN ∈ FN
σ with 

See section B.3.1 for a formal statement and its proof. While it has been shown that generic 

O(1)-Lipschitz function can not be (computably) represented by neural networks with N r poly(d) 

units [VRPS21], an interesting related follow-up conjecture is whether our result can be general
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inf fN

σ − f (d) ≤ c for some N ≤ exp O c −5 log(d/c) . 
fσ Kd,∞ 
N ∈F

σ 
N 

ized to any generic O(1)-Lipschitz function which is poly(d)-computable. Notice that this is 

dependent on the choice of the uniform norm to measure the approximation error. For example, it 

has been shown that a rate N r poly(d) is achievable for approximation in the L2 norm with the 

uniform measure [HSSVG21]. 

Finally, notice that the approximation rate shown in Theorem 3.6 and Theorem 3.7 are actually 

polynomial in the size pd of the first hidden layer of f (d) rather than in the input dimension d. 

Although, up to choosing a worse (yet constant) exponent in c, we can replace pd by d in the 

statement, by considering the function as a (L + 1)-hidden-layer network, where the first layer is 

the identity. 

3.3.1 Two cases of interest 

Theorem 3.6 allows to recover, for any fixed threshold c > 0, a poly(d) rate for the approximation 

of fr,w,v by one-hidden-layer networks and it can be seen as a generalization of Theorem 1 in 

[SES19]. This is the content of the following corollaries. 

Corollary 3.8 (Radial functions). Let f (d)(x) = ϕd(ixi2), where ϕd : [−1, 1] → R are 1

Lipschitz, and Kd = B1
d
,2. Then, for any c ∈ (0, 1) it holds that 

Moreover, fN
σ can be chosen so that m∞(fN

σ ) ≤ exp(O(c−5 log(d/c))). 

iwd (Udx)+Consider the functions f (d) : x ∈ Rd  → e
T 

for some wd ∈ Rpd , Ud ∈ Rpd×d. This is a 

more general version of the function fr,w,v considered in section 3.2. If the weights are bounded, 

that is m1(f
(d)) = O(1), then Theorem 3.6 implies the following. 

Corollary 3.9 (Shallow approximation of (3.1)). If rd = O(1) and Kd = Br
d 
d,2

, for any c ∈ (0, 1) 
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inf D∞ifNσ − f (d)iKd,∞ ≤ c for some N ≤ exp O c −2 log(pd/c) . 

fσ ∈Fσ 
N N 

it holds that
 

Moreover, fN
σ can be chosen so that m∞(fN

σ ) ≤ exp(O(c−2 log(pd/c))). 

Although the result of Corollary 3.9 is established for approximation in the uniform norm over 

the unit ball, it is not difficult to extend it to a result in L2 over a measure that concentrated over 

a compact set of constant (in d) radius, such as a normalized Gaussian. A formal statement of 

this fact, along with the proof, is reported in section B.3. Compared with the result of section 3.2, 

Corollary 3.9 implies the following. The function fw,U can be approximated, at a poly(d) rate over 

a compact set of constant radius if its weights have constant norm. On the other hand, if the norm 

of the weights grows polynomially in d, then approximation at a poly(d) rate is not possible, under 

a polynomially slow decaying measure. An open question is whether approximation at a poly(d) 

rate is possible if only one of these two conditions hold. 

3.4	 Approximation by shallow networks: a spherical harmon

ics analysis 

As already discussed, difficulties in approximating functions in high dimension by shallow net

works appear when the function has a Fourier transform spread in a (exponential) number of di

rections in (polynomial) high energy. On the other hand, the presence of only one of these two 

conditions is not enough to prevent efficient approximability. While the previous results highlight 

this, the lower bound presented in Theorem 3.3 applies to a specific choice of error measure, with 

(polynomially) slowly decaying tails. 

In this section, we aim to disentagle the role of the measure tail and understand how the Fourier 

representation can tell whether a function is efficiently approximable by a one-hidden-layer net

52
 



    �∞ �∞d
kY d

N

k,i Hd 
kspan
 =
 k=0 k=0i=1 

  

work or not. In particular, we focus on approximation results for functions defined over the (d−1)

dimensional sphere Sd−1, for which a rich literature of Fourier analysis is available. 

First, we give a sufficient condition on the target function in terms of its spherical harmonics 

decomposition to be not efficiently approximable by shallow one-hidden-layer networks. This 

condition captures a slowly decaying and sufficiently spread spherical harmonic expansion. We 

also show that certain symmetry properties imply this condition. On the other hand, one may ask 

if a reverse statement holds. In this direction, building on existing theory, we provide a sufficient 

condition for approximation by one-hidden-layer networks. 

3.4.1 Spherical harmonics decomposition 

Let d ≥ 2 and Sd−1 (S when the dimension is clear from the context) be the uniform measure over 

Sd−1. The spherical harmonics are a particular orthonormal basis for L2(S). They consists of 

where Y d is a restriction to Sd−1 of an homogeneous harmonic polynomial of degree k. Thek,i 

projection operator over Hk
d is given by 

d
kNL .Pd : f ∈ L2(S)  → fk = (f, Y d )Y d 

k k,i k,i . 
i=1 

Similarly, PI denotes the operator ⊕i∈I Pi
d, for any I ⊆ N. The function fk is referred to as the 

degree k spherical harmonic component of the function f . Since the spherical harmonic form an 

orthonormal basis of L2 , it holds that f = ∞ fk and ifi2 = ∞ ifki2 for every f ∈ L2(S),S k=0 2 k=0 2 

where i·i2 denotes the norm in L2(S). As spherical harmonics decomposition can be seen as 

a generalization of Fourier series to dimensions d ≥ 3, in the following we refer to the spherical 

harmonics decomposition of a function as its Fourier representation, interchangeably. The operator 
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  Nd 
kL 
Y d (x)Y d P d T(y) = Nd

k x yk,i k,i k 
i=1 

� � 
(2k + d − 2)(k + d − 3)! k + d (k + d)k+d d2 

Nd = = Θk kkddk!(d − 2)! kd (k + d)2 

� �   lLk/2J 2)j k−2jd − 1 (1 − x x
Pk

d(x) = k! Γ (−1)j . 
2 4j j!(k − 2j)!Γ j + d−1 

j=0 2 

      � � � � � �√ d−1 2πd/2 √ d/2π Γ (2πe)d/2 2πe 
ωd = ωd−1

2 = = Θ = Θ d .
d d dd/2−1/2Γ Γ d 
2 2 

�   
fk(x) = Nk

d f(y)Pk
d x T y dS(y) . 

Sd−1 

Pk can be associated with a kernel given by 

where 

is the dimension of Hk
d and Pk

d is the ((d − 2)/2)-Gegenbauer polynomial defined as 

Let ωd be the Lebesgue area of the sphere: 

The polynomials {(Nd)1/2P d }k≥0 form a basis of orthonormal polynomials for L2(µd), where µdk k 

is the probability measure on [−1, 1] defined by 

dµd(t) = αd(1 − t2)(d−3)/2 dt , 

√ 
where αd = ωd−1/ωd = Θ( d). Notice that, given a function f ∈ L2(S), it holds 

Moreover, if the function f only depends on a linear projection of the input, the Funk-Hecke 

formula holds. 

Theorem 3.10 (Funk-Hecke formula). For every σ : [−1, 1] → C such that x ∈ Sd−1  → σ(x1) is 
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�
T x)P dσ(w k (ξ

T x) dS(x) = λkPk
d(ξT w) 

Sd−1 

�
P d T T )−1P d T(w x)P d(v x) dS(x) = (Nd (w v)k k k k 

Sd−1 

  

. ifiq
fq,p(f) = 

ifip 

in L2(S), and for every w ∈ Sd−1, it holds that 

where λk = (σ, P k
d)µd . 

Functions of the form 

x ∈ Sd−1  → αP k
d(w T x) 

for some α ∈ R and w ∈ Sd−1, are called zonal harmonics. By the Funk-Hecke formula it follows 

that 

for any w, v ∈ Sd−1. This implies that Hk
d has an RKHS structure with kernel K given by 

. TK(v, w) = Nk
dPk

d(v w) . 

In particular, zonal harmonics actually span Hk
d . Moreover, it can be shown that there exists 

∈ Sd−1 P d T kw1, . . . , wNd such that Hk
d = span( k (wi ·) 

N d 

) [EF14, Theorem 4.13]. For these 
k i=1

facts and more details about spherical harmonics we refer to the books [AH12, DX13]. 

3.4.2 Concentration and spreadness in Hd and main results k 

Intuitively, one can say function f ∈ C(Sd−1) is concentrated over Sd−1 if there is an area Ω ⊂ Sd−1 

such that the mass of f is concentrated over Ω. On the other hand one could say that f is spread if 

it assumes non-negligible values uniformly over the sphere. The spreadness/concentration of the 

function f can be quantified by looking at ratios of the type 
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� 
Ndf∞,2(fk) ≤ k 

� 
Nd f2,1(fk) ≤ k 

for 1 ≤ p < q ≤ ∞. Since the norms above are with respect to a probability measure, it holds
 

that fq,p ≥ 1. Intuitively, the closest this ratio is to 1, the more spread is the function. On the other 

hand, the largest this ratio, the more concentrated the function is. Consider the case of a function 

fk ∈ Hk
d. Then, it holds that 

The equality is attained for functions of the type fk(x) = αP k
d(wT x) for some α ∈ C and 

w ∈ Sd−1, i.e. zonal harmonics. In this sense, zonal harmonics could be considered as the most 

concentrated functions in Hk
d. A similar inequality can be shown for the quantity f2,1: it holds that 

(3.6)

for fk ∈ Hk
d . Nevertheless, in this case, zonal harmonics do not attain equality; the inequality is 

actually not tight; a more detail discussion on this quantity is reported in section 3.4.4. 

Thanks to the Funk-Hecke formula, it holds that a one-hidden-layer fN ∈ FN , with hidden 

layer weights given by w1, . . . , wN , satisfies 

dL 
TPk

dfN = αj Pk
d(wj x) 

j=1 

for some α ∈ CN . In other words, its Fourier representation is concentrated along N directions. 

According to the remarks above, this implies that if the width N is relatively small, the Fourier 

components of the neural network fN are relatively concentrated in space. One would then ex

pect that such concentration can be used to determine whether a function can be approximated 

efficiently by a one-hidden-layer neural network or not. In the next sections, we show that this 

is indeed the case. Let f ∈ C(Sd−1); assuming that ifk 
(d)i2 r poly(d, k−1), the results can be 

informally summarized as follows: 
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� 
f∞,2(fk) ; c k · Nk

d = c k · sup f∞,2(g) for some c ∈ (0, 1) 
g∈Hd 

k 

f2,1(fk) 2 poly(d−1, k−1) Nk
d 

� 
NdP d Thk(x) = skihki2 k k (w x) 

� 

• If the spherical components of f are (exponentially) spread in f∞,2 sense, that is, for example, 

then f is provably not universally approximable by one-hidden-layer networks. 

• If the spherical components of f are (polynomially) concentrated in f2,1 sense, that is, for 

example, 

then f is universally approximable by one-hidden-layer networks. 

Notice that, on the other hand, if ifki2 decreases exponentially fast then universal approximation 

follows, and similarly if ifki2 decreases exponentially slowly then universal approximation can 

not hold. The first of the two conditions above expresses concentration of the Fourier decompo

sition, while the second expresses spreadness of the same. We notice at least two gaps between 

the two conditions. The first one is the expression of the concentration phenomena: one is with 

respect to f∞,2, while the other one is with respect to f2,1. Second, the two regimes above do not in

clude many other possible ones. For example, we suspect the existence of a regime which prevents 

universal approximability but allows for fixed-threshold one, a topic worth of future study. These 

results are properly formalized, stated and discussed in section 3.4.3 and section 3.4.4, respectively. 

3.4.3 Inapproximability of functions with spread Fourier representation 

As discussed above, one-hidden-layer functions have a zonal structure. In more detail, if h(x) = 

σ(wT x + b) for some w ∈ Sd−1 and b ∈ R, then it is easy to see that 
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�
   

  

  N NL L . TfN (x) = uif
σi,wi (x) = uiσi wi x 

i=1 i=1 

with sk ∈ {±1}. In particular, it follows that ihki∞ = |hk(±w)| = (Nd)1/2ihki2. This can be k 

interpreted by saying that the Fourier components of single neurons are most concentrated (along 

the neuron direction) in space. Therefore, it is natural to expect that functions with spread Fourier 

decomposition are difficult to approximate by neural networks. The proposition below formalizes 

this fact. The proof follows a technique similar to the one used in [Dan17a] (see Remark 5 for a 

comparison) and essentially upper bounds the scalar product between the objective function and 

the network. 

f (d)Proposition 3.11. Let 
d 

a sequence of functions such that f (d) ∈ C(Sd−1). Assume that for 

every d there exists Id ⊆ N such that 

1. It holds that if (d)i2 ≤ O(dM ) · iPId f
(d)i2 for some M > 0 ; 

2. There exists a non-negative sequence {cd,k}k∈Id such that ifk 
(d)i∞ ≤ cd,k Nk

dif (d)i2 for 
1/2 dαall k ∈ Id and such that c2 ≤ c · O(dM ) for some c ∈ (0, 1) and α > 0.k∈Id d,k 

f (d)Moreover, assume that if (d)i∞ = O(1) and if (d)i2 = Ω(d−M ) . Then the sequence is 
d>2 

not universally approximable by one-hidden-neural networks. 

Proof. Let fN : Rd → R a one-hidden-layer network defined by 

where u ∈ RN , wi ∈ Sd−1, and σi are linearly bounded activations. Thanks to Parseval’s formula, 
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ifN − f (d)i22 ≥ iPId fN − PId f
(d)i22 

NLL 
f (d)i2≥ iPId 2 − 2 ui(fσi,wi , fj 

(d))
j∈Id i=1 

NLL 1 ≥ iPId f
(d)i22 − 2 � |ui|ifj 

(d)i∞ifj
σi,wi i2 

Nd 
j∈Id i=1 j ( 1/2NL L 

f (d)i2≥ iPId − 2if (d)i2 |ui|ifσi,wi i2 c 2 
2 d,j 

i=1 j∈Id 

NL 
≥ iPId f

(d)i2 − 2 · O(dM ) · c dα if (d)i2 |ui|ifσi,wi i2 .2 

  

it holds that 

(3.7) 

i=1 

Finally, notice that it holds that 

ifσi,wi i2 ≤ 2 m∞(fN ) 

and therefore 

ifN − f (d)i22 ≥ Ω(d−2M ) − 4 · O(dM ) · c dα · m∞
2 (fN ) · N . 

This concludes the proof. 

f (d)We discuss two particular cases where the assumptions of Proposition 3.11 hold. Let 
d>2 

be a sequence of functions f (d) ∈ C(Sd−1). 

Example 2 (Constant control on f∞,2). Assume that assumption 1 in Proposition 3.11 holds with 

Id = {k ∈ N : k ≥ d2} and that if (d)i2 = Ω(d−M ) for some constant M > 0. If it holds that 

f∞,2(fk 
(d)
) ≤ f̄

¯for all k ≥ d2 for some constant f ≥ 1, then it is easy to check that Proposition 3.11 holds. 
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�. ¯
k 
(d)i2f if

cd,k = 
Nd if (d)i2k 

∞L f̄2 

c 2 ≤ = O(d3−d) .d,k Nd 
d2 

k=d2 

 
    (d) 1/2 ¯ −1/2 

f∞,2(fk,k ) ≤ f̄ · Nk
d = f · Nk

d · f ∗ 
k,k 

      �f̄ if (d)i2(d) k,k 
f ≤ · f ∗ · if (d)i2k,k k,k ∞ Nd if (d)i2k 

This condition could be thought as the spherical harmonic components of the function f (d) being 

uniformly spread for high energy (k ≥ d2). Indeed assumption 2 holds with 

since 

This is similar to the condition used in [Dan17a], discussed in the remark below. 

Remark 5. Daniely [Dan17a] showed a depth-separation result using a result similar to Proposition 

3.11. The difference in this case is that the author considers functions defined on Sd−1 × Sd−1 . 

Although, since L2(Sd−1 × Sd−1) = L2(Sd−1) ⊗ L2(Sd−1), the space L2(Sd−1 × Sd−1) admits a 

decomposition in spherical harmonics 

∞L 
L2(Sd−1 × Sd−1) = Hj

d ⊗ Hk
d . 

j,k=0 

In particular, Daniely considers functions of the type 

f (d) : (x, y) ∈ Sd−1 × Sd−1  → h(d)(x T y) 

for some h(d) ∈ C([−1, 1]). Such functions belong to ∞ 
k=0 Hk

d ⊗ Hk
d and satisfy 

where f∗ 
k,k = maxf ∈Hd

k⊗Hd
k 
f∞,2(f). The equation above resembles condition 2 in Proposition 3.11, 

since it implies that
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�� �⎡ ⎤1/22(d)L ¯ if ¯. ⎣ f k,k i2 ⎦ f 
cd = ≤ � 

Nd if (d)i2
k≥kd k Nk

d 
d 

  L NL 
ifN − f (d)i2 f (d)i2 −1 (d)≥ iPId − 2 f ∗ |ui|if i∞ifσi,wi i22 2 j,j j,j j,j 

(j,j)∈Id i=1 

  

� 
(d) kf∞,2(fk ) ≤ c · O(dM ) · Nk

d 

∞L cρd
β 

k c = . 
1 − c 

k=ρdβ 

and since 

which, for kd ≥ d2 implies that cd ; d3 2−d . The proof is then concluded by choosing Id = 

{(k, k) : k ≥ kd}, since (using the same notations as in the proof of Proposition 3.11), it holds 

which is an equivalent of formula (3.7). 

Example 3. Assume that assumption 1 in Proposition 3.11 holds with Id = k ∈ N : k ≥ ρdβ 

for some ρ > 0, β > 0 and that if (d)i2 = Ω(d−M ) for some constant M > 0. If it holds that 

for all k ≥ ρdβ for some constant M > 0, then Proposition 3.11 holds, since 

This condition could also be thought as the spherical harmonic components of the function f (d) 

being uniformly spread for high energy (k ≥ d2), although in this case the spreadness is required to 

increase exponentially, as the degree increases, with respect to the maximum spreadness achievable 

(that is (Nk
d)1/2). 

Example 4 (Invariant functions). Finally, we show that certain symmetry assumptions can imply 

energy spreadness. Consider the case of a sign-invariant function f ∈ C(Sd−1), that is such that 

f(E ◦ x) = f(x) for every E ∈ {±1}d and x ∈ Sd−1 . 
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�
ifki∞ ≤ 2 · 2−d/2 Nd 

k ifki2 . 

�
�

ifki∞ = |fk(E)| = |(fk, P )| ≤ iP i2ifki2 ≤ 2 · 2−d/2 Ndifki2 .k 

    
      inf wj 

(k) ≥ poly(d−1) . 
j∈[d] 

Lemma 3.12. Let f ∈ C(Sd−1) be a sign-invariant function. If 

ifki∞ = sup |fk(E)| 
E∈{±1}d

(3.8) 

for some k ≥ 16d2 and f is then it holds 

Proof. Notice that since f is Rademacher-symmetric, so is fk. Consider the function 

L 
P : x ∈ Sd−1  → 2−dNk

d Pk
d(ET x) . 

E∈{±1}d 

The function P satisfies iP i2 ≤ 2 · 2−d/2 Nd (see Lemma B.22). Let E ∈ {±1}d. Then it holds k 

This concludes the proof. 

Under polynomial decay of ifki2, the condition (3.8) can be relaxed to have the frequency 

w(k) ∈ [0, ∞)d such that ifki∞ = fk(w(k)) with 

Further discussion on invariant functions are reported in section 5.3. 
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  �	 � 
NL 

FReLU,0	 T 
N = f : x ∈ Sd−1  → uk wk x : u ∈ RN , wk ∈ Sd−1 . 

+ 
k=1 

        1 1T T T w x = w x + w x ,
+ 2 2 

    NL 
Fabs,0	 T = f : x ∈ Sd−1  → uk w : u ∈ RN , wk ∈ Sd−1 .N k x
 

k=1
 

�	 � 

3.4.4	 Efficient approximation under a sparsity condition of the spherical 

harmonics decomposition 

Works by Barron [Bar93, KB18] essentially show that efficient approximation holds under a spar

sity condition on the Fourier transform of the function to approximate; more specifically, for 

f ∈ L1(Rd), the rate of (uniform) approximation is controlled by the quantity iwi2|f̂(w)| dw.Rd 1

In this section we show that an equivalent control can be determined for approximation on the 

sphere, in terms of spherical harmonics decomposition. For technical reason, the result is estabil
.	  ∞Ĥd Hd Hdished for functions in = 1 ⊕ k=1 2k (which correspond to the space of function in L2 

S 

whose odd part is linear) and mainly for ReLu activation. We briefly discuss extensions to differ

ent activation functions in Remark 7. Consider the space of homogeneous one-hidden-layer neural 

networks with ReLU activations: 

Since 

every function in FN 
ReLU,0 is the sum of a linear function with an even one. In other words, 

FReLU,0 
N ⊂ Ĥd . Since any linear function belongs to F2

ReLU,0, it is equivalent to consider the 

problem of approximating even functions by homogeneous one-hidden-layer neural networks with 

activation abs(x) = |x|, that is, elements of the space 

To study this, consider the corresponding functional space (as introduced in section 1.2.1) 

.H1 = {hπ : π is a signed even Radon measure} 
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�     hπ : x ∈ Sd−1  → w T x dπ(w) . 
Sd−1 

γ1(f)
inf if − fN i∞ ≤ c 

fN ∈Fabs,0 N1/3 
N 

�     Tϕ = x T y ϕ(y) dS(y) 
Sd−1 

L (−1)1+k/2 Γ((k − 1)/2)Γ(d/2)
Tϕ = σkϕk where σk = . 

2π Γ((k + d + 1)/2)
k≥0 even 

where hπ is defined to be the function 

The space H1 is a Banach space endowed with the norm γ1(h) = infh : h=hπ iπi1. As discussed 

in the introduction, the space H1 consists of functions which are efficiently approximable by one

hidden-layer networks. More formally, the following holds. 

Theorem 3.13 ([BLM89]). Let f ∈ H1. Then it holds that 

where c > 0 is a numerical constant. Moreover, fN satisfying the bound can be chosen to satisfy 

γ1(fN ) ≤ γ1(f). 

The question of interest can now be transposed to: which functions f ∈ C(Sd−1) have a (poly

nomially) small norm γ1(f)? One way to approach this problem is by the so-called Blaschke–Levy 

operator. Consider the transformation 

for functions ϕ ∈ C(Sd−1). T can be described in terms of spherical harmonics [Rub98] as 

In particular, it holds that the functional T is an automorphism of C∞ (Sd−1) (the set of even even

function in C∞(Sd−1)) [Rub98] . Clearly, its inverse can be defined in terms of spherical harmonics 
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    γ1(ϕ) = T −1ϕ 
1 
. 

�
�
�
� �     

γ1(f) = iπi1 = sup ϕ(w) dπ(w) 
ϕ∈C(Sd−1) : IϕI∞≤1 Sd−1 

= sup ϕ(w) dπ(w) 
ϕ∈C∞ (Sd−1) : IϕI∞≤1 Sd−1 

even

= sup T (T −1ϕ)(w) dπ(w) 
ϕ∈C∞ (Sd−1) : IϕI∞≤1 Sd−1 

even

= sup w T x (T −1ϕ)(x) dS(x) dπ(w) 
ϕ∈C∞ (Sd−1) : IϕI∞≤1 Sd−1 Sd−1 

even

= sup (T −1ϕ, f) . 
ϕ∈C∞ (Sd−1) : IϕI∞≤1even

by L 
T −1 σ−1: ϕ ∈ C∞ (Sd−1)  → ϕk .even k 

k≥0 even 

The following is immediate. 

Proposition 3.14. For any ϕ ∈ C∞ (Sd−1) it holds that ϕ ∈ H1 andeven

Using these results, we can proceed similarly to the work [OWSS19] and obtain the following. 

Proposition 3.15. Let f ∈ C(Sd−1) even. It holds that f ∈ H1 if and only if 

sup (T −1ϕ, f) < ∞ . 
ϕ∈C∞ (Sd−1) : IϕI∞≤1even

(3.9) 

In this case, 

γ1(f) = sup (T −1ϕ, f) . 
ϕ∈C∞ (Sd−1) : IϕI∞≤1even

Proof. Assume first that f ∈ H1. Then f = hπ for some π even signed Radon measure. Thus 
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�
Sf (ϕ) = ϕ(w) dπ(w) 

Sd−1 

This shows one side of the statement. On the other hand, assume that
 

sup (T −1ϕ, f) < ∞ . 
ϕ∈C∞ (Sd−1) : IϕI∞≤1even

Then, the transformation 
.

Sf (ϕ) = (T −1ϕ, f) 

defines a bounded linear operator Sf : C∞ → R. Since C∞ (Sd−1) is dense in Ceven(Sd−1) (theeven even

set of even function in C(Sd−1)), Sf can be extended to a bounded linear operator on Ceven(Sd−1). 

By setting 

Sf (ϕ) = Sf (ϕeven) 

we can extend it on C(Sd−1). By the Riesz representation theorem, there exists a signed Radon 

measure π on Sd−1 such that 

for every ϕ ∈ C(Sd−1). Moreover, since Sf (ϕ) = 0 for every odd ϕ, we can assume that π is even. 

Let hπ be the function in H1 defined by π. Then it holds that 

(T −1ϕ, f) = iπi1 = (T −1ϕ, hπ) 

for every ϕ ∈ C∞ (Sd−1). Since T is an automorphism over C∞ (Sd−1), then it holds even even

(ϕ, f) = (ϕ, hπ) 

for every ϕ ∈ Ceven
∞ (Sd−1). Since f and hπ are even, this implies that f = hπ. This concludes the 

proof. 

Functions that satisfy equation (3.9) include all even functions in Cd+2(Sd−1) if d is even and 
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�         k : (x, y) ∈ Sd−1 × Sd−1  → x T w w T y dS(w) . 
Sd−1 

  .H2 = hπ : π is a signed even Radon measure with an LS 
2 density , 

all even functions in Cd+3(Sd−1) if d is odd [Wei76]. This is inline with existing results that show 

approximability by neural networks for functions whose regularity is proportional to the dimension 

d (e.g. [MM00]). 

Given f ∈ C(Sd−1) even, the condition of Proposition 3.15 is implied by the (weak) conver

gence (as N → ∞) of the series 
NL 
σ−1SN f = 2k f2k 

k=0 

to a finite signed measure π. In this case f = hπ. In particular, a stronger condition is convergence 

in L1(S). This is implied if it holds that 

L 
|σk|−1ifki1 < ∞ . 

k≥0 even

(3.10) 

Notice that, instead, the series converges in L2 
S if and only if 

L 
σ2ifki2 
k 2 < ∞ . 

k≥0 even 

This is equivalent to asking that f ∈ H2, the RKHS given by the kernel function 

Since in this case H2 can be described as 

it is clear that H1 ⊂ H2. We refer to [Bac17a] for more details about these statements. On the other 

hand, this also implies that the condition (3.10) is potentially much stronger than simply asking for 

f ∈ H1 . 
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� � �
d3/4k2|σk|−1 ≤ Θ Nd . k 

  

�   ∞L 
(d) (d) 

kM+2if (d)
Ndif i1 ≤ O kM dN · if i2 and i2 = O(dN ) .k k k k 

k=0 

  

(d) d−2 (d)
4ifk if i1 ,i2 ≤ C(d)k k 

Example 5 (Highly concentrated function). Some computations show that
 

(3.11)

Using these observations it is then straightforward to prove the following. 

Proposition 3.16. Let f (d) 
d 

a sequence of even functions in C(Sd−1). Assume that there exist 

some constant M,N > 0 constant such that 

Then the sequence f (d) 
d≥2 

is universally approximable by the space Fabs,0 .N 

Proof. By Proposition 3.14 and equation (3.11) above we get that 

L L 
γ1(f

(d)) ≤ |σk|−1if (d)i1 ≤ Θ(dN+3/4) k2+M if (d)i2 ≤ O(d3/4+2N ) .k k 
k≥0 even k≥0 even 

The application of Theorem 3.13 concludes the proof. 

The proposition above requires essentially two conditions to hold. First, that the energy of the 

functions decreases fast enough (yet polynomially in k and d). The second condition is that the 

Fourier components of the function are concentrated enough, that is they are polynomially close to 

the bound (3.6). We remark that this condition is infact pretty strong; it requires the function f to 

be band-limited. According to [DFT16], it holds that 
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� ifk 
(d)i2

Nd ≤ poly(k, d) ≤ poly(k, d)k 
d−2 
4 

k (d)ifk i1 

�

�     �     ifki1
γ1(f) = ≤ O(k2d3/4) Ndifki1 ≤ O(k2d3/4) Nd = O(k2d3/4) ,k k fk|σk| 2 

      
fk(x) = Nd 

k T P d 
k (x T ·) (w) = (σkN

d 
k )P d 

k (w T x) . 

                 L L 
1 = γ1(f) = σ−1 

k fk = Nd 
k P d 

k (w T ·) . 
k≥0 even 1 k≥0 even 1 

   

         

for some function C(d). Then f (d) would satisfy 

d−2 d−2 
2 4Since Nk

d ≥ c(d)k for some c(d), this implies that k poly(k−1) ≤ H(d) for some function 

H(d). It follows that k must satisfy k ≤ K(d) for some K(d). Although, the rate of the function 

K(d) does not follow from [DFT16]; we conjecture that K(d) behaves as a power of d. 

Example 6 (High energy zonal harmonics). The properties discussed in this section indicate that 

high-energy only does not yield not-universal-approximability. As an ‘extreme’ case, consider 
. Tthe case of a zonal harmonic f(x) = Pk

d(w x), for x, w ∈ Sd−1 where w is fixed. Notice that 

ifi∞ = 1. It holds that 

which implies universal approximability by Theorem 3.13. Similarly, polynomial combinations of 

zonal harmonics can be well approximated, as expected. 

Remark 6 (Ridge function). For a single neuron network f(x) = |wT x|, it holds ifi∞ = 1 and 

ifi2 = d−1/2. The spherical components of f are given by 

In particular, it holds 

Therefore, understanding how tight (or strong) condition (3.10)å is highly correlated with under

standing convergence of the series Nd P d(wT ·) , or equivalently, computing P d .k≥0 even k k 1 k µd,1 
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Remark 7. While the result of this section mainly concern approximation by homogeneous one

hidden-layer networks with the ReLU (or absolute value) activation, they can easily be extended to 

any other activation satisfying Assumption 1, under the same assumptions. Moreover, notice that, 

thanks to Theorem 3.13, universal approximation by FN 
ReLU,0 is equivalent to universal approxima

tion by H1 ⊕ H1 
d . 
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Chapter 4 

On the optimization landscape of 

one-hidden-layer networks 

4.1 Introduction 

As discussed in section 1.6, loss functions evaluated on neural networks represent a rich class 

of objectives for which, despite their highly-non-convexity, simple local search heuristics, such 

as SGD, are able to efficiently recover zero-error minima. In particular, this is true in the over

parametrised regime, where the number of parameters exceeds the one needed to obtain a certain 

error threshold. 

A considerable amount of literature has attempted to characterize the landscape of loss func

tions evaluated on neural networks by studying its critical points. Global optimality results have 

been obtained for architectures with linear activations [BH89, HM16, Kaw16, ZL17, LK17, YSJ18, 

LB18, Zha19, TKB19], quadratic activations [SJL17, DL18] and some more general non-linear 

activations, under appropriate regularity assumptions [SC16, NH17, FJZT17]. Negative examples 

have been shown as well, under different assumptions [SCP16, ZL17, SS17b, YSJ18]. Some other 

insights have been obtained by leveraging tools for complexity analysis of spin glasses [CHM+15] 
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and random matrix theory [PB17]. Other analysis involved studying goodness of the initializa

tion of the parameter values [DFS16, SS16, DLT+17] or other topological properties of the loss 

function, such as connectivity of sub-level sets [DVSH18, FB17, Ngu21]. Optimization land

scapes have also been studied in other contexts than neural networks, such as non-convex low rank 

problems [GJZ17], matrix completion [GLM16], problems arising in semidefinite programming 

[BVB16, BBV16] and implicit generative modeling [BALPO17]. 

The analysis in this chapter focuses mostly on the class of one-hidden-layer neural networks, 

with a hidden layer of size N , and covers both empirical and population risk landscapes. More 

specifically, we look at presence (or absence) of spurious valleys, defined as connected components 

of the sub-level sets that do not contain a global minima. We define two quantities depending on 

the functional space spanned by neural networks of different widths: the upper intrinsic dimension, 

defined as the dimension of this linear space, and the lower intrinsic dimension, defined as the 

minimum number of hidden units to describe any element of the functional space. Upper and lower 

intrinsic dimensions define only two scenarios: either (i) they are both finite, enabling positive 

results; or (ii) they are both infinite, implying the negative results. More specifically: 

• In section 4.3.1.3 we show that, for empirical risk minimization (ERM) or polynomial activa

tions, spurious valleys do not occur as long as the network is sufficiently over-parametrised. 

For the case of linear and quadratic activations, our results are (up to a constant factor) tight. 

• For non-polynomial non-negative activations, for any hidden width, in section 4.4 we con

struct data distributions which yield spurious valleys with positive measure, whose value is 

arbitrarily far from the one of the global. 

• Finally, drawing on connections with random features expansions, we show that, even if 

spurious valleys may appear in general, their measure decreases as the width increases. This 

holds up to a low energy threshold, which approaches the global minimum at a rate inversely 

proportional to the hidden layer size (up to log factors). We conclude by discussing limitation 
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of this approach to analyse the behaviour of optimization mechanism in neural networks and
 

a variety of recent related results. This is the content of sections 4.5.1 and 4.5.2.
 

4.2 Spurios valleys and intrinsic dimensions of neural networks 

Let (X, Y) be two random variables. These random variables take values in Rd and Rm and 

represent the input and output data, respectively. We consider oracle square loss functions L : 

Θ → R of the form 
.

L(θ) = E[f(Φ(X; θ), Y)] (4.1) 

where f : Rm × Rm → [0, ∞) is convex in its first argument. For every θ ∈ Θ, the function 

Φ(·; θ) : Rd → Rm models the dependence of the output on the input as Y r Φ(X; θ). We 

mainly focus on one-hidden-layer neural networks Φ, i.e. Φ of the form 

Φ(x; θ) = Uσ(WT x) (4.2) 

.where θ = (U, W) ∈ Θ = Rm×N × Rd×N . Here N represents the width of the hidden layer and 

σ : RN → RN is a continuous identical element-wise activation function, that is (σ(x))i = σ(xi), 

for i ∈ [N ] and x ∈ RN . Recall that we denote the space of shallow neural networks with activation 

σ, width N and output dimension m = 1 by FN
σ ; notice that, for the matter of this chapter, the last 

row of W in (4.2) can be considered to be the bias term without loss of generality, up to re-define 

the distribution of the random variable X. 

The loss function θ  → L(θ) is (in general) a non-convex object; it may present spurious (i.e. 

non global) local minima. In this chapter, we characterize L by determining absence or presence 

of spurious valleys, as defined below. 

Definition 5. For all c ∈ R we define the sub-level set of L as ΩL(c) = {θ ∈ Θ : L(θ) ≤ c}. We 

define a spurious valley as a path-connected component of a sub-level set ΩL(c) which does not 
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contain a global minimum of the loss L(θ).
 

Since, in practice, the loss (4.1) is minimized with a gradient descent based algorithm, then 

absence of spurious valleys is a desirable property, if we wish the algorithm to converge to an op

timal parameter. It is easy to see that L(θ) not having spurious valleys is implied by the following 

property: 

P.1	 Given any initial parameter θ̃ ∈ Θ, there exists a continuous path θ : t ∈ [0, 1]  → θt ∈ Θ 

such that: 

(a)	 θ0 = θ̃; 

(b)	 θ1 ∈ arg minθ∈Θ L(θ); 

(c) The function t ∈ [0, 1]  → L(θt) is non-increasing. 

As pointed out in [FB17], this implies that L has no strict spurious (i.e. non global) local minima. 

The absence of generic (i.e. non-strict) spurious local minima is guaranteed if the path θt is such 

that the function L(θt) is strictly decreasing. For sake of clarity, we review these properties in the 

following lemma (the proof is reported in the section C.5). 

Lemma 4.1. Assume that θ  → L(θ) is a continuous function. Then, property P.1 implies absence 

of spurious valleys. In particular, this implies absence of strict spurious minima, and of (gener

ally non-strict) spurious minima if property P.1 holds with strictly decreasing paths t  → L(θt). 

Conversely, presence of spurious valleys implies existence of spurious minima. 

In the following, we prove absence of spurious valleys by proving that property P.1 holds. 

Intuitively, one should think about spurious valleys as regions of the parameter space from which 

it is impossible to ‘escape’ without ‘up-climbing’ the loss value. 

Notice that for many activation functions used in practice (such as the ReLU σ(z) = z+), the 

parameter θ determining the function Φ(·; θ) is determined up to the action of a symmetry group 
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(e.g., in the case of the ReLU, σ is a positively homogeneous function). This already prevents
 

strict minima: for any value of the parameter θ ∈ Θ there exists a (often large) manifold Uθ ⊂ Θ 

intersecting θ along which the loss function is constant. 

ERM vs population loss In the following, we consider the loss (4.1) defined for a generic distri

bution (X, Y). In case of a distribution with a finite number of atoms, this corresponds to empirical 

risk minimization (ERM), which is (usually) the regime where machine learning algorithms per

form optimization. On the other hand, for a generic data distribution, this loss is what is called 

population loss, and corresponds to the actual objective that machine learning algorithms aim to 

minimize. In our work we are interested in analyzing not only the ERM case, but more general 

population losses. While we in fact focus on highly over-parametrised neural networks, we aim to 

provide results which apply to the regime where number of data points goes to infinity before the 

number of parameters. 

4.2.1 Intrinsic dimension of shallow networks 

The main result of this chapter is to exploit that the property of absence of spurious valleys is related 
.to the complexity of the functional space Fσ = ∪N≥1FN

σ defined by the network architecture. We 

therefore define two measures of such complexity which we will use to show, respectively, positive 

and negative results in this regard. 

To simplify the discussion, we introduce some notation which we will use throughout the rest 

of the paper. Let σ : R → R be a continuous activation function. For every v ∈ Rd we denote 

ψσ,v to be the function ψσ,v : x ∈ Rd  → σ(vT x) ∈ R. Recall that we refer to each ψσ,v as a ridge 

function and that, if X is a random variable taking values in Rd, we denote by L2(X) the space 

of L2 function on Rd with respect to the probability measure induced by the random variable X. 
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R2(σ, d) = X random variable taking values in Rd : ψσ,v ∈ L2(X) for every v ∈ Rd 

Finally, we define the space 

to be the space of (d-dimensional) input data distributions for which the filter functions have finite 

second moment. 

Definition 6. Let σ be a continuous activation function and X ∈ R2(σ, d). We define1 

dim ∗ (σ, X) = dimL2(X)(Fσ) 

as the upper intrinsic dimension of the pair (σ, X). We define the level d upper intrinsic dimension 

of σ as dim ∗ (σ, d) = dim(Vσ) = sup{dim ∗ (σ, X) : X ∈ R2(σ, d)}. 

The upper intrinsic dimension dim ∗ (σ, X) defined above is therefore the dimension of the 

functional space spanned by the filter functions ψσ,v ∈ L2(X) or, equivalently, of the image of the 

map Φ : θ ∈ Θ  → Φ(·; θ) ∈ L2(X). Notice that dim ∗ (σ, X) ≤ dim(L2(X)). In particular, if the 

distribution of X is discrete, i.e. it is concentrated on a finite number of points {x1, . . . , xn} ⊂ 

Rd, then dim ∗ (σ, X) ≤ dim(L2(X)) ≤ n. Otherwise, if the distribution X is not discrete, then 

dim(L2(X)) = ∞. 

The level d upper intrinsic dimension dim ∗ (σ, d) is defined as the dimension of the functional 

linear space Fσ . We note that if X ∈ R2(σ, d) is a random variable with almost surely positive 

density with respect to the Lebesgue measure, then dim ∗ (σ, d) = dim ∗ (σ, X). 

The following lemma exhausts all the cases when the upper intrinsic dimension is not infinite. 

Lemma 4.2. Let σ be a continuous activation function and X ∈ R2(σ, d) such that dim(L2(X)) = 

1For any linear subspace V ⊆ L2(X), dimL2(X)(V ) denotes the dimension of V as a subspace of L2(X). 
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L2(X)

dim∗(σ, X) = inf N ≥ 1 : Fσ ⊆L2(X) FN
σ 

∞. If σ(z) = i
k 
=0 aiz

i is a polynomial, then 

kL n + i − 1 
dim ∗ (σ, X) ≤ 1{ai=0} = O(dk) . 

i 
i=1 

�

Otherwise (i.e. if σ is not a polynomial) it holds dim ∗ (σ, X) = ∞. 

The proof of the above lemma is based on the UAT (Theorem 1.1). We then define the lower 

intrinsic dimension, which corresponds to the concept of ‘how many hidden neurons are needed to 

represent a generic function of Fσ . 

Definition 7. Let σ be a continuous activation function and X ∈ R2(σ, d). We define2 

as the lower dimension of the pair (σ, X). We define the level d lower dimension of σ as dim∗(σ, d) = 

sup{dim∗(σ, X) : X ∈ R2(σ, d)}. 

If dim∗(σ, X) is finite, then it corresponds to the minimum number of hidden neurons which 

are needed to represent any function of Fσ with the neural network architecture (4.2). Clearly, this 

implies that 

dim∗(σ, X) ≤ dim ∗ (σ, X) 

for every continuous activation function σ and any X ∈ R2(σ, d). As with the upper intrinsic 

dimension, we note that if X ∈ R2(σ, d) is a random variable with almost surely positive density 

with respect to the Lebesgue measure, then dim∗(σ, d) = dim∗(σ, X). 

In the case of homogeneous polynomial activations σ(z) = zk with k ≥ 1 integer, the level 

d lower dimension of σ is closely related to the notion of (maximal) symmetric tensor rank. Let 

2For any subsets V, W ⊂ L2(X), we say that V ⊆L2 (X) W if V ⊆ W as subsets of L2(X) (and similar with other 
(X)

types of inclusion). We denote V 
L2

the closure of V in L2(X). We use the standard notation when it is clear from 
the context that these concepts are intended with respect to L2(X). 
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rkS

∗ (T) = min r ≥ 0 : T ∈ Sr
k(Rd) . 

1 
rkS(k, d) ≤ dim∗(σ, d) ≤ rkS(k, d) . 

2 

Sk Rd be the space of order k symmetric tensors on Rd. For any T ∈ Sk Rd , the symmetric rank 

of T is defined as rkS(T) = min p ≥ 1 : T = p uiw ⊗k for some u ∈ Rp, w1, . . . , wp ∈ Rn 
i=1 i 

[CGLM08]; let Sk
r (Rd) denote the subspace of Sk(Rd) of tensors of rank at most r. The symmetric 

border rank is defined as3 

A well-known fact is that, for k > 2, the border rank is in general only less or equal than the actual 

rank, as opposed to the matrix case k = 2. We define rkS(k, d) = max{rkS(T) : T ∈ Sk(Rd)} 

and rk ∗ (k, d) = max{rk ∗ (T) : T ∈ Sk(Rd)}. As noticed in [KTB19], Proposition 5, these two S S

values have the same asymptotic behaviour: it holds that 1
2 rkS(k, d) ≤ rk ∗ 

S(k, d) ≤ rkS(k, d). 

Lemma 4.3. Let σ(z) = zk for some integer k > 0. Then 

For the special cases σ(z) = z and σ(z) = z2, it follows, respectively, dim∗(σ, d) = 1 and 

dim∗(σ, d) = d. 

Finally, the next lemma implies that for most non-polynomial activation functions of practical 

interest, the lower intrinsic dimension dim∗(σ, d) is infinite. Let ϕ denote the univariate standard 

Gaussian density. 

Lemma 4.4. Let σ be a continuous activation function such that σ ∈ L2(ϕ) and d > 1. Then 

dim∗(σ, d) = ∞ if and only if σ is not a polynomial. 

The proof of the Lemma 4.4 is based on Hermite decomposition and on the correspondence 

between one-hidden-layer nets and symmetric tensors [MM18]. 

3Here the closure is intended with respect to the Euclidean topology. Notice that it is equivalent to consider the 
Zarisky topology, as noted in [CLQY20]. 

78
 



  

4.3 Finite intrinsic dimension and absence of spurious valleys 

In this section we provide positive results regarding absence of spurious valleys. Essentially, the 

following results state that if the width of the network matches the dimension of the functional 

space Fσ spanned by its filter functions, then no spurious valleys exist. We first provide the main 

result (Theorem 4.5) in a general form, which allows a straight-forward derivation of two cases of 

interest: empirical risk minimization (Corollary 4.6) and polynomial activations (Corollary 4.7). 

Theorem 4.5. For any continuous activation function σ and random variable X ∈ R2(σ, d) with 

finite upper intrinsic dimension dim ∗ (σ, X) < ∞, the loss function 

L(θ) = E[f(Φ(X; θ), Y)] 

for one-hidden-layer neural networks Φ(x; θ) = Uσ(WT x) admits no spurious valleys in the 

over-parametrised regime N ≥ dim ∗ (σ, X). 

Sketch of the proof. The proof consists of showing that we can construct a descent path verifying 

property P.1 starting from any parameters θ. The construction can be articulated in two main 

parts. First, we show that we can map the starting parameter θ0 = (U0, W0) to another parameter 

θ1/2 = (U1/2, W1/2) such that the functions x  → σ(wT x) form a basis of Fσ . It1/2,k
k∈[N ] 

.follows that there exists a minimal function f ∈ (Fσ)m = {(f1, . . . , fm) : fi ∈ Fσ}, i.e. 

f ∈ arg min E[f(g(X), Y)] , 
g∈(Fσ )m 

which can be represented as f = Φ(·; θ1 = (U1, W1/2)) for some U1. The second part of the 

path can be thus taken as t  → (1 − t)U1/2 + tU1: as the loss function is convex, this is a descent 

path. 
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L1 
n

L(θ) = f(Φ(xi; θ), yi) 
n 

i=1 

  

The above result can be interpreted as follows: if the network is such that any of its output units 

Φi can be chosen from the whole linear space spanned by its filter functions Fσ, then the associated 

optimization problem is such that there always exists a descent path to an optimal solution, for any 

initialization of the parameters. 

Applying the observations in section 4.2.1 describing the cases of finite intrinsic dimension, 

we immediately get the following corollaries. 

Corollary 4.6 (ERM). Consider n data points {(xi, yi)}n ⊂ Rd × Rm . For one-hidden-layer i=1 

neural networks Φ(x; θ) = Uσ(WT x), where σ is any continuous activation function, the empir

ical loss function 

admits no spurious valleys in the over-parametrized regime N ≥ n. 

Comparison with existing results This results was essentially already shown in [LSSS14]. The 

only difference with our result is that we allow for rank degeneracy in the matrix σ WT [x1| · · · |xN ] . 

However, its proof illustrates the danger of studying empirical risk minimization landscapes in 

over-parametrised regimes, since it bypasses all the geometric and algebraic properties needed in 

the population risk setting - which may be more relevant to understand the generalization properties 

of the model. 

Other works considered the landscape of empirical risk minimization for deep networks. For 

ReLU-like activations, multi-layer networks and square losses, [SC16] showed that (almost surely) 

there exists no differentiable spurious minima if one of the layer weights Wk ∈ Rdk−1×dk satisfy 

dkdk−1 ≥ N . [NH17] showed that no spurious minima occur for multilayer neural networks for a 

class of losses and activations, if one of the layers inner width exceeds the number of data points 

and the critical points verify certain non-degeneracy conditions. 

Corollary 4.7 (Polynomial activations). For one-hidden-layer neural networks Φ(x; θ) = Uσ(WT x) 
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� �kL d + i − 1 
N ≥	 1{ai = O(dk) .=0}

i 
i=1 

with polynomial activation function σ(z) = a0 + a1z + · · · + akzk, the loss function L(θ) = 

E[f(Φ(X; θ), Y)] admits no spurious valleys in the over-parametrized regime 

�

Under the hypothesis of Corollary 4.7 with N = O(dk), a generic function of Fσ , Φ(x; θ) = 

uT σ(WT x), can be also represented, for some γ = γ(θ), in the generalized linear form 

Φ(x; θ) = γT ϕ(x) 

with ϕ(x) = (xk1 · · · xkj ){1≤k1≤···≤kj ≤d,j∈[k]}. The parameters θ and γ differ for their dimensions: 

dim(γ) = O(dk) < dim(θ) = (d + 1) · O(dk) = O(dk+1) . 

One would therefore like Corollary 4.7 to hold also (at least) for p ≥ O(dk−1). In the next section 

we address this problem for the linear activation σ(z) = z and the quadratic activation σ(z) = z2 . 

4.3.1	 Improved over-parametrization bounds for homogeneous polynomial 

activations 

The over-parametrization bounds obtained in Corollary 4.7 are quite non-desiderable in practical 

applications. We show that they can in fact be improved, for the case of linear and quadratic 

networks. 

4.3.1.1	 Linear networks case 

Linear networks have been considered as a first order approximation of feed-forward multi-layers 

networks [Kaw16]. It was shown, in several works [Kaw16, FB17, YSJ18], that, for linear net
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works of any depth 

Φ(x; θ) = WL+1 · · · W1x (4.3) 

Rd1×d2with θ = (WL+1, WL, . . . , W2, W1) ∈ RdL×m × RdL−1×dL × · · · × Rd×d1 , the loss func

tion (4.1) has no spurious local minima, if mini∈[L] di ≥ min{d, m}. This corresponds exactly to 

the over-parametrization regime in Corollary 4.7, for the case of one-hidden-layer networks. The 

following theorem improves on Corollary 4.7 for the case of multi-layer linear networks, show

ing that no over-parametrisation is required in this case to avoid spurious valleys, for square loss 

functions. 

Theorem 4.8 (Linear networks). For linear neural networks (4.3) of any depth L ≥ 1 and of any 

hidden layer widths dk ≥ 1, k ∈ [L], and any input-output dimensions d, m ≥ 1, the square loss 

function L(θ) = EiΦ(X; θ) − Yi22 admits no spurious valleys. 

4.3.1.2 Quadratic networks case 

Quadratic activations σ(z) = z2 have been considered in the literature [LSSS14, DL18, SJL17] 

as second order approximation of general non-linear activations. Corollary 4.7 says that, if N ≥ 

d(d + 1)/2, the loss function (4.1) admits no spurious valleys. In the following theorem we relax 

the over-parametrisation requirement and show that N > 2d is sufficient for the statement to hold, 

in the case of square loss functions and one dimensional output (m = 1). 

Theorem 4.9 (Quadratic networks). For one-hidden-layer neural networks Φ(x; θ) = uT σ(WT x) 

with quadratic activation function σ(z) = z2 and one-dimensional output (m = 1), the square loss 

function L(θ) = E|Φ(X; θ) − Y |2 admits no spurious valleys in the over-parametrised regime 

N ≥ 2d + 1 = O(d). 

Sketch of the proof. The proof (reported in section C.2) consists in constructing a path satisfying 

property P.1 and improves upon the proof of Theorem 4.5 by leveraging the special linearized 
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structure of the network for quadratic activation. For every parameter θ = (u, W) ∈ RN × Rd×N , 

we can write 
N  N  L L 

T T TΦ(x; θ) = uk(wk x)
2 = ukwkwk , xx . 

F 
k=1 k=1 

We notice that Φ(·; θ) can also be represented by a neural network Φ(·; θ̂) with d hidden units; 

d N dindeed, if k=1 σkvkvk
T is the SVD of k=1 ukwkwk

T , then Φ(x; θ) = ( k=1 σkvkvk
T , xxT )F . 

Therefore N ≥ d is sufficient to describe any element in Fσ . A path to the symmetric matrix 

defining the optimal network is then constructed by mapping the above decomposition defined by 

the standard form of the network. 

The factor 2 in the statement is due to some technicalities in the proof, but a more involved proof 

might be able to extend the result to the regime N ≥ d. The extension of such mechanism for 

higher order tensors (appearing as a result of multiple layers or high-order polynomial activations) 

using tensor decomposition also seems possible and is of interest for future work. 

Comparison with other works The same optimization landscape has been considered in the 

works [SJL17] and [DL18]. In the first work, the authors show absence of spurious minima for the 

case of N ≥ 2d and of ERM (loss evaluated on n data points), but for fixed output layer weights; 

under some assumption on the output layer weights, the result is shown to still hold for N ≥ d, 

if d ≤ n ≤ O(d2). This last condition can be removed by considering the regularized loss with 

non-zero weight decay, as shown in [DL18]; in the same work, the authors also proved absence of 

spurious minima in the case N < d and N(N + 1) ≥ 2n for a randomly regularized loss (with 

high probability). 

By relaxing the statement to absence of spurious valleys, we showed that this holds for the 

square loss (both in population and ERM setting) and the optimisation problem over both layer 

weights if N > 2d. 
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4.3.1.3	 Lower to upper intrinsic dimension gap 

As observed in Lemma 4.3 dim∗(σ(z) = z, d) = 1 and dim∗(σ(z) = z2, d) = d for all integer 

d ≥ 1. Therefore, Theorem 4.8 and Theorem 4.9 say that, for σ(z) = zk , k ∈ [2], and m = 1, the 

square loss function L(θ) = E|Φ(X; θ) − Y |2 admits no spurious valleys in the over-parametrized 

regime N ≥ O(dim∗(σ, d)). We conjecture that this holds for any (sufficiently regular) activation 

function with finite lower intrinsic dimension. 

On the other hand, we point out that this might be due to the specific choice of the square loss 

function. In fact, it has been shown that, for generic convex losses f and linear networks, a result 

equivalent to Theorem 4.8 holds if and only if f is the square loss function [TKB19]. 

4.4	 Infinite intrinsic dimension and presence of spurious val

leys 

This section is devoted to the construction of worst-case scenarios for non-over parametrised net

works. The main result (Theorem 4.10) essentially states that, for networks with width smaller 

than the lower intrinsic dimension defined above, spurious valleys can be created by choosing ad

versarial data distributions. We then show how this implies negative results for under-parametrized 

polynomial architectures and a large variety of architectures used in practice. 

A possible way to show existence of spurious valleys is to show that there exists an open set 

U ⊂ Θ such that 

min L(θ) > min L(θ) 
θ∈U θ∈Θ 

and such that every path from a point in U1 to any global minima of L must pass through a certain 

set S ⊂ Θ verifying 

min L(θ) > max L(θ) . 
θ∈S θ∈U 
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Let’s start by considering the quadratic case σ(z) = z2, and let N ∈ [2, d − 1]. As we already 

discussed in this case there is a surjective mapping from the space of one-hidden-layer networks 

FN
σ to MN

d , the set of symmetric d × d matrices of rank at most N : for every θ = (u, W) ∈ Θ = 

RN × Rd×N , it holds that 

Φ(x; θ) = (xx T , M(θ))F ,
 

. N
where M(θ) = uiwiw
T is a continuous mapping of θ to MN

d . For any random vector i=1 i 

(X, Y ), with X ∈ R(σ, d), the loss function 

L : θ ∈ Θ  → E|Φ(X; θ) − Y |2 

can be ‘projected’ to a corresponding loss function L over MN
d , that is 

L : M ∈ Md → E|(M, XXT ) − Y |2 .N

Since the mapping θ  → M(θ) is continuous, it is equivalent to find two subset U and S of MN
d 

as above, for the projected loss L. Let Md be the set of symmetric d × d matrices with (s+,s0,s−) 

rank d − s0 and signature (s+, s−), for s+ + s− = d − s0. Clearly, a continuous path in MN
d 

from a point in Md to a point Md for some k � j must pass through Md Let= N−1.(k,0,N−k) (j,0,N−j) 

. .
L(s+,s0,s−) = minM∈Md L(M) and Lr = minM∈Mr

d L(M). Then, the existence of (X, Y )
(s+,s0,s−) 

such that 

LN−1 > L(N−1,0,1) > L(N,0,0) (4.4) 

implies the statement, since any path in Md from a local minima in Md to a global min-N (N−1,0,0) 

ima must pass through MN
d 
−1. Let X be a d-dimensional Gaussian random variable, and Y = 
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L L Ltr(A − M(N−1,1)) 
N N

λ2 
N

B = M(N−1,1) T T T T+ vkv 1 + λ2 + vkvk .k = λ1v1v vkvkN N 
k=1 k=2 k=1 

� �
L(N−1,0,1) ≤ L(B) = C1λ

2 1 + 
1 

< LN−12 N 

(A, XXT ), where A ∈ Md has the form N+1 

N+1L 
,A = λ1v1v1 

T + λ2 vkvk
T 

k=2 

√ 
for some orthonormal vectors {vk} ⊂ Rd and λ1 < 0, λ2 > 0 with |λ1| < |λ2| < N |λ1|.k∈[N+1] 

Then, it follows that 

L(M) = C1iA − Mi2 
F + C2(tr(A − M))2 

for C1 = 96 and C2 = 9. It holds that 

LN −1 ≥ C1 min iA − MiF 
2 = C1(λ1

2 + λ2
2) , 

M∈Md 
N−1 

L(N−1,0,1) ≥ C1 min iA − MiF 
2 = C1λ2

2 . 
M∈Md 

(N−1,0,1) 

The lower bound of L(N−1,0,1) is found for M = M(N−1,1) = λ1v1v
T + λ2 

N vkv
T . Let 1 k=2 k 

Notice that B ∈ Md since |λ2| < N |λ1|. Then it holds that (N−1,0,1) 

√ 
since |λ2| < N |λ1|. Similarly, it holds that 

L(N,0,0) ≥ C1 min iA − MiF 
2 = C1λ1

2 , 
M∈Md 

(N,0,0) 
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� �N+1 N+1

tr(A − M(N,0)) L λ1 
L 

C = M(N,0) T T+ vkvk = λ2 + vkvk . N N 
k=2 k=2 

�
L(N,0,0) ≤ L(C) = C1λ1

2 1 + 
1 

. 
N 

�

 
1 |λ1| 1 + < |λ2| . 
N 

N+1and the minima is found for M = M(N,0) = λ2 k=2 vkvk
T . Let 

Notice that C ∈ Md since |λ1| < |λ2| < N |λ2|. Then it holds that (N,0,0) 

Equation (4.4) thus holds if 

Therefore, choosing, for example, λ1 = −c and λ2 = 5c/4 for some c > 0 proves existence of 

spurious valleys in the loss L for the choice of random variables (X, Y ). Notice moreover, that the 

quantity that must be ‘up-climbed’ to escape a spurious valley located in a region corresponding to 

Md is quadratic in c, and therefore, arbitrarily large. (N−1,0,1) 

The proof for the general case (σ non quadratic) is based on a similar idea: an interpretation of 

lower intrinsic dimension as ‘maximal rank’; see section 4.2.1. A formal statement of our result is 

given below. 

Theorem 4.10. Consider the square loss function L(θ) = EiΦ(X; θ)−Yi2 for one-hidden-layer 

neural networks Φ(x; θ) = Uσ(Wx) with non-negative activation function σ : R → [0, ∞) such 

that σ ∈ L2(ϕ) and σ(0) = 0. If 2 ≤ N ≤ 1
2 dim∗(σ, d − 1), then there exists a random vector 

(X, Y) such that the square loss function L admits spurious valleys. In particular, for any M > 0 

large enough, the random variable Y can be chosen in such a way that there exists a (non-empty) 

open set Ω ⊂ Θ such that 

M/2 + min L(θ) ≥ sup L(θ) ≥ min L(θ) ≥ M + min L(θ) 
θ∈Ω θ∈Ω θ∈Θθ∈Ω 

(4.5)
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N ≤
 

⎧ ⎪⎪⎨ ⎪⎪⎩
 

d − 1 if k = 1
 

1 
2 rkS

∗ (2k, d − 1) if k > 1 

and any path θ : [0, 1] → Θ such that θ0 ∈ Ω and θ1 is a global minima verifies 

max L(θt) ≥ min L(θ) + M . 
t∈[0,1] θ∈Ω 

(4.6) 

Equation (4.5) in Theorem 4.10 says that any local descent algorithm, if initialized in θ0 ∈ Ω, 

at its best it will only be able to produce a final parameter value which is at least M far from 

optimality. Equation (4.6) implies that any path starting from parameter belonging to Ω must 

‘up-climb’ at least M/2 in the loss value. In the following we refer to such property, as stated 

in Theorem 4.10, by saying that the loss function has arbitrarily bad spurious valleys. Note that 

this result ensures that spurious valleys have positive Lebesgue measure, so there is a positive 

probability that gradient descent methods initialized with a measure that is absolutely continuous 

with respect to Lebesgue will get stuck in a bad local minima. The random variables (X, Y ) chosen 

in the proof of Theorem 4.10 correspond to a student-teacher scenario, where the planted solution 

has more neurons more than the network whose weights we want to optimize. 

Applying the lemmas describing the values of the lower intrinsic dimension for different acti

vation functions, we get the following corollaries. 

Corollary 4.11 (Homogeneous even degree polynomial activations). Consider the case of activa

tion σ(z) = z2k with k ≥ 1 integer. For one-hidden-layer neural networks Φ(x; θ) = Uσ(Wx), 

if d ≥ 2 and the hidden layer width satisfies 

then there exists a random variable (X, Y) such that the square loss function L(θ) = EiΦ(X; θ)− 

Yi2 has arbitrarily bad spurious valleys. 

This follows by Theorem 4.10 and Lemma 4.3, since dim∗(σ(z) = z2k, d) ≥ rk ∗ 
S(2k, d). For 
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the well known case k = 1 (symmetric matrices) it holds rkS(2, d) = d; therefore Corollary 4.11 

implies that the bound provided in Corollary 4.7 is almost (up to a factor 2) tight. Notice that our 

result is indeed in line with the results discussed in section 4.3.1.2. 

Corollary 4.12 (Spurious valleys exist in generic architectures). If d ≥ 2, for one-hidden-layer 

neural networks Φ(x; θ) = Uσ(Wx) with any hidden layer width N ≥ 1 and continuous non

negative non-polynomial activation function σ ∈ L2(ϕ) wihr σ(0) = 0, then there exists a random 

variable (X, Y) such that the square loss function L(θ) = EiΦ(X; θ) − Yi22 has arbitrarily bad 

spurious valleys. This setting includes the ReLU activation functions σ(z) = z+. 

This follows by Theorem 4.10 by observing that dim∗(σ, d) = ∞ if σ is one of the above 

activation functions. 

Discussion and comparison with previous works Several works showed existence of spurious 

minima: [SS17b] showed counterexamples under Gaussian input distributions, for N = d − 1 ∈ 

{8, . . . , 19}, using a computer-assisted proof; [SCP16] and [ZL17] provided a few numerical 

examples; [YSJ18] showed existence of spurious minima for ReLU-like activations under non-

realizability, and provided counterexamples for smooth activations. For any number of hidden 

neurons N , we give a (constructive) proof of existence of a data distribution which creates spuri

ous valleys, under the only assumption of non-negative continuous activation function. We also 

remark that while in the above works the authors proved existence of spurious local minima, we 

prove that, in fact, arbitrarily bad spurious valleys can exist, which is a stronger negative charac

terization. 

The results of this section can be interpreted as worst-case scenarios for the problem of opti

mizing (4.1). We showed that, even for simple one-hidden-layer neural network architectures with 

non-linear activation functions used in practice (such as ReLU), global optimality results can not 

hold, unless we make some assumptions on the data distributions. 
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�
f(x) = g(w)σ(w T x) dS(w) 

Sd−1 

4.5 Increasing the width 

In the previous section it was shown that whenever the number of hidden units N is below the lower 

intrinsic dimension, then one can show worst-case data distributions that yield a landscape with 

arbitrarily bad spurious valleys. A natural follow-up question is thus to consider the complexity of 

the energy landscape in a typical scenario, defined in terms of both parameter initialisation (how 

likely are descent algorithms to fall into a spurious valley?) and energy value (how deep are typical 

spurious valleys?). 

4.5.1 A sampling regime 

In a student-teacher setting, under sufficient regularity of the objective function and sufficient over-

parametrization, one can leverage idea from random features methods [RR+07] to show that as the 

network width increases, spurious valleys tend to be confined to decreasingly low loss value. In 

the following, we formalize this argument and comment on its limitations afterwards. 

Consider an oracle square loss of the form 

L(θ) = E|Φ(X; θ) − Y |2 , 

where X is a d-dimensional square integrable random variable with distribution µ, Φ(x; θ) = 

uT σ(WT x) and Y has the form Y = f(X), where f ∈ L2(X). Assume here for simplicity 

that σ is a positively homogeneous activation function, such as the ReLU σ(t) = t+. If f can be 

represented as 

for some measurable g : Sd−1 → R, then one way to find a close-to-optimal parameter θ is to 
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L 2

Ew1,...,wN L((g(W), W)) = Ew1,...,wN 

1 
ψ(wi) − Ewψ(w) ≤ 

1 
Ewiψ(w)i2 

µ,2 ,N N 
k=1 µ,2 

  
P L((g(W), W)) ≤ O(N−(1−δ)) ≥ 1 − e −Nδ 

sample first layer weights w1, . . . , wN ∼ S, and take θ = (g(W), W), where 

. 
g(W) = N−1(g(w1), . . . , g(wN )). 

If N is large enough, then this approach can work quite well; this is known as the random features 

method [RR+07]. Indeed, the average (over the sampling of w1, . . . , wN ) error satisfies 

where ψ(w) ∈ L2(µ) is defined by ψ(w) : x  → g(w)σ(wT x) and Ew denotes the expectation 

for w ∼ S. Then, by applying a concentration argument, the bound on the average error can be 

transformed in a bound on the error with high probability. For example, assume that g ∈ L∞(Sd−1), 

so that C = supw∈Sd−1 iψ(w)iµ,2 < ∞. Then, we can apply Example 6.3 from [BLM13] (Lemma 

C.12) to obtain that 

for any δ > 0, for N sufficiently large. Notice that, given an initial parameter parameter value 

θ0 = (u0, W0), one can consider the path 

θt = (tq(W0) + (1 − t)u0, W0) where q(W0) = arg min L(θ)|θ=(u,W0) . 
u∈RN 

By convexity of L, the function t ∈ [0, 1]  → L(θt) is non-increasing and it holds that 

L(θ1) ≤ L((g(W0), W0)) . 

These two remarks then imply the following statement: for any N > 0 large enough, given any 

initial parameter θ0 = (u0, W0), where the columns of W0 have been sampled (independently) 

uniformly over the sphere, there exists a path t ∈ [0, 1]  → θt such that the function t ∈ [0, 1]  → 
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L(θ1) ≤ λ if N ≥ O −λ−1 log(λδ) 

�
k : (x, y) ∈ Sd−1 × Sd−1  → (w T x)+(w T y)+ dS(w) . 

Sd−1 

L(θt) is non-increasing and 

L(θ1) ≤ O(N−1/2) 

−N1/2with probability greater or equal then 1 − e (over the parameter initialization). From the 

point of view of spurious valleys, this statement can be interpreted by saying that, as the width 

increases, large loss spurious valleys (that is such that the minimum value in the valley is far from 

the global minima value of the loss function) are restricted to small regions of the parameter space. 

Notice that this argument relies on the regularity assumption of the label variable Y . By using 

more refined arguments, one can prove an equivalent result by assuming only g ∈ L2(Sd−1). This 

is the content of the following result, which is proved in section C.4. 

Proposition 4.13. Consider an initial parameter θ0 = (u0, W0) ∈ RN ×Rd×N , where the columns 

of W0 are sampled independently uniformly over the sphere Sd−1 . Then there exists a path t ∈ 

[0, 1]  → θt such that the function t ∈ [0, 1]  → L(θt) is non-increasing and 

with probability greater or equal then 1 − δ, for every λ, δ ∈ (0, 1). 

Notice that assuming that f has the form for g ∈ L2(µ) is equivalent to say that f ∈ H2 , the +

RKHS defined by the kernel function 

In the case of µ = S, such RKHS is (up to linear terms) a subset of the functional space H1 

introduced in section 3.4.4; in fact, it admits a similar description: any f ∈ L2(S) satisfies 

.
f ∈ H2 if and only if ifi2 

H2 = inf iρi22 < ∞ ,+ 
+ ρ∈L2(S) : f =h+ 

ρ 
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 where h+ : x ∈ Sd−1  → (wT x)+ρ(w) dw. In particular in this case, an even function ρ Sd−1 

f ∈ L2(S) satisfies f ∈ H2 if and only if ifi2 = ∞ |σk|−2ifki2 < ∞ (using the notation + H2 k=0 2 
+ 

from 3.4.4); this also implies that Fσ (minus linear terms) is not contained in H2 . A similar 

characterization can be shown for generic µ, but this should suffice to convince the reader that 

Proposition 4.13 holds under a strong assumption: that the function Y = f(X) can be efficiently 

found by kernel methods. To conclude, it has been shown that it is essentially not possible to 

extend this type of analysis to the case of a ‘planted solution’ f . In [YS19], the authors show 

that, for any sufficiently large input dimension d and X standard d-dimensional Gaussian, there 

exists b ∈ R with |b| ≤ O(d2) such that, for any Y = (vT X + b)+ with ivi = d3, any network 

Φ(x; θ) = uT σ(WT x), where the columns have been sampled independently uniformly from the 

sphere, satisfies L(θ) ≥ 0.02 with probability greater than 1 − e−Θ(d) unless 

N · m∞(Φ(·; θ)) ≥ eΩ(d) . 

4.5.2 Related works 

In the previous sections, we essentially showed that one-hidden-layer neural networks are amenable 

to being optimized by descent methods if and only if the architecture ‘fills’ the corresponding func

tional space, with respect to the data distribution. For generic data distributions, this only happens 

if the expressivity of such neural networks is bounded, that correspond to the activation being a 

polynomial. We also showed that under sufficiently regular teacher-students scenario, increasing 

the number of parameters has a benign effect on the optimization landscape. Although, in these 

same regimes, the same optimization can be performed, by e.g., kernel methods, while requiring 

less parameters. Given these observations, it thus seems unlikely that qualitative descriptions of 

the optimization landscape, while insightful, can alone explain the success of neural networks opti

mization. In other words, it seems evident that the algorithms being used play an important role in 

how such landscapes are visited. During the last years, a great amount of work has been dedicated 
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  .
∂tft = − \f(θt) · \f(θt)T · dR(ft) = −Σt · dR(ft) , 

to understand such interplay. In the remaining of this section, we briefly review and comment on
 

some recent relevant results. 

4.5.2.1 Neural tangent kernel and lazy training 

Neural networks optimization can be formulated as the search for a minima θ = θ∗ of a loss 

function θ ∈ Θ  → L(θ) of the form 

L(θ) = R(f(θ)) , 

where R is a convex functional defined on some functional space F , and f(θ) ∈ F represents the 

parametric model we are trying to learn. In the limit as the step-size goes to 0, gradient descent 

defines an ODE 

θ̇ 
t = −L(θt) = −\f(θt)T · dR(ft) , (4.7) 

.where ft = f(θt), dR(ft) ∈ F denotes the differential of R in ft and \f(θt)T is the transpose of 

the Jacobian of f in θt, which defines a linear operator from F to Θ. For example, in the case of 

neural networks evaluated on a ERM loss, f(θ) ∈ Ro·n represents the o-dimensional output values 

of the network evaluated on n data points, and all the differentials are in the usual euclidean sense. 

Then it follows that 

where Σt = \f(θt) · \f(θt)T is an operator from F to itself (this is also referred to as the neural 

tangent kernel (NTK) for the case of neural networks [JGH18]). The loss Lt = L(θt) thus verifies 

∂tLt = −dR(ft)T · Σt · dR(ft) . 
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L 
√ 
1 

N

ψ(θk) ,f(θ) = 
N 

k=1 

  NL 
Σ0 =

1 \ψk(θ0 
k) · \ψk(θ0 

k)T → E \ψk(θ0
1) · \ψk(θ0

1)T ∈ Rn×n 

N 
k=1 

The operator Σt is symmetric and admits an eigen-decomposition; if, for all t, all of its eigenvalues 

are bounded from below by a positive constant λ > 0, then it follows that 

∂tLt ≤ −λidR(ft)i2 , 

which implies convergence of θt to a stationary points exponentially fast. Moreover, if the func

tional R is strongly convex, this stationary points is a global minima. Consider now the case of 

scalar-valued one-hidden-layer networks with N units, in the ERM setting. In this case we can 

write 

(4.8)

where each ψ(θk) ∈ Rn represents a unit of the network evaluated on the n data points and θk 

denotes the component of the parameter corresponding to the same unit. If the components {θk}k0 

of the initial parameters θ0 are initialized i.i.d. at random according to some fixed distribution (e.g. 

a Gaussian), as it is often done in practice, then one gets that 

as N → ∞ by the law of large numbers. If the matrix in the RHS above is positive definite, then 

one can lower bound the eigenvalues of Σ0 at finite, large enough, N , by a concentration argument. 

Under suitable assumptions on the model, one can use this fact to show that, in the dynamics 

defined by GD (4.7), the inner weights of the network do not deviate much from initialization 

(the deviation scaling as N−1/2 in N ) and the matrix Σt remains positive semi-definite. Putting 

all of this together, one gets convergence to a global minimum for N large enough, with high 

probability over initialization. A series of works estabilished this fact in detail, under different 

assumption on the model, and extending the idea to actual GD and SGD iterations [Dan17b, LL18, 

AZLL18, AZLS19, DLL+19, ADH+19, OS20]. A major drawback of these results is that they 
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NL1 
f(θ) = ψ(θk) . 

N 
k=1 

�
f(θ) = ψ(θ) dπN (θ) , 

Θ 

 

require the network size to increase polynomially in the number of data points n, which is usually
 

quite undesirable; notice that this corresponds to the case described in Corollary 4.6. In [OS20], 

the authors notice that in fact, for two layer networks with N units, in the regime N 2 npolylogn 

zero error can be achieved by the random features method outlined in section 4.5.1. 

As mentioned, this type of argument implies that the inner layer of the network do not deviate 

much from initialization. In fact, in the note [COB18], the authors point out how this is essentially 

an artifact of the N−1/2 scaling in (4.8). The authors also point out how in this regime, the GD 

dynamics (4.7) do not deviate from those of learning a linearized version of the model 

L(θ) = R(f(θ0) + \f(θ0)(θ − θ0)) , 

For this reason, the authors refer to this regime as lazy training. 

4.5.2.2 One-hidden-layer networks with infinite width: a mean-field limit 

Consider again the case of one-hidden-layer neural networks as in (4.8), but scaled as 

In this case, one can write equivalently the network as 

where πN = 1 N δθk is a probability measure. The GD dynamics (4.7) can then equivalently 
N k=1 

be defined in terms of the evolution of πN , via a gradient flow. A number of works have been 

devoted to studying the convergence of such dynamics, in the limit as N → ∞ [CB18, MMN18, 

RVE18a, SS18], which, roughly speaking, corresponds to the case of model functions varying 

in the space Hσ 
1 introduced in section 1.2.1. Numerical experiments also seem to suggest that 
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this regime seems more appropriate to describe the advantages of over-parametrization for neural 

networks optimization [COB18]. Unfortunately, while the NTK approach could be carried out for 

the case of deeper networks as well, such mean field approach is not so easily extendable beyond 

the case of one-hidden-layer networks. 

4.5.2.3 How do moderate changes in width affect the optimization landscape? 

All the approaches described so far in this section describe how the optimization landscape of 

two layer neural networks improves in the asymptotic limit N → ∞. In fact, by looking at the 

proof of Theorem 4.10, one can notice that the adversarial data distribution in section 4.4 is width-

dependent: increasing the hidden layer width (in some cases of even a single unit), under the same 

data distribution, might potentially eliminate spurious valleys. A similar observation, along with 

some analysis, has been carried out in [SYS20], for the case of ReLU activations and Gaussian 

inputs. Understanding how mild over-parametrization affects the optimization landscape, given a 

data distribution, is an important future direction of research. 
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� � � �

N1 N2 N1 N2L L L L 
T T T Tf(x) = wk x − vk x = sup tkwk x − sup tkvk x 

t∈[−1,1]N1 t∈[−1,1]N2k=1 k=1 k=1 k=1
 

N1 N2
L L 
= sup y T x : y = tkwk , t ∈ [−1, 1]N1 − sup y T x : y = tkvk , t ∈ [−1, 1]N2 . 

k=1 k=1 

Chapter 5 

Some related questions and open problems 

In this chapter we discuss a potpourri of topics that are related to some of the problems considered 

in the previous chapters. We discuss a few related results and pose a few questions. 

5.1 Approximation of convex bodies by zonoids 

. ∪N Fabs,0The problem of approximation even functions by Fabs,0 = N has a nice geometric inter

pretation. Consider an element f of Fabs,0; this has the form, for some wk, vk ∈ Rd , N1, N2 ≥ 0, 

For a compact set convex body1 K ⊂ Rd, the function 

s[K] : x ∈ Sd−1  → sup y T x 
y∈K 

1A set K ⊂ Rd is called a convex body if it is convex, compact and has non-empty interior. 
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� �

� � 

dH (K1, K2) = max max d(x, K2), max d(x, K1) . 
x∈K1 x∈K2 

is called support function of K. Thus, the space Fabs,0 consists of all those function f which can 

be expressed as the difference of support functions of two set Z+, Z−, that is 

f = s[Z+] − s[Z−] , 

where the each of the sets Z+, Z− has the form 

NL .Z(u1, . . . , uN ) = tkuk : t ∈ [−1, 1]N 

k=1 

(5.1) 

for some u1, . . . , uN ∈ Rd , N ≥ 1. Sets of the form (5.1) are known as (centrally symmetric) 

zonotopes. A zonotope is a polytope defined as sums of a finite number N of segments. Zono

topes represent a class of polytopes with certain regularity properties; in particular, a (centrally 

symmetric) polytope is a zonotope if and only if all of its faces are centrally symmetric [Sch14]. 

Elements of H1 are limit of functions in Fabs,0, and this has an equivalent geometric interpre

tations. Let hπ ∈ H1 and assume, without loss of generality, that π is a finite non-negative Radon 

measure. Then hπ is the support function of a zonoid; the inverse is also true [Sch14]. A zonoid 

is defined as a limit of zonotopes in the Hausdorff metric. For two convex bodies K1, K2, the 

Haussdorff distance is defined as 

The Haussdorf distance can also be formulated in terms of support functions, as it holds that 

dH (K1, K2) = is[K1] − s[K2]i∞ (where the infinity norm refers to the infinity norm over Sd−1). 

Therefore the problem of approximating hπ by one-hidden-layer networks of finite width can be 

interpreted as approximating the respective zonoid by zonotopes. 

Support functions of convex bodies also have a functional analysis interpretation. To each 
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  . −1ixiK = inf t > 0 : t x ∈ K . 

  

� �   
K◦ . T = x ∈ Rd : sup x y ≤ 1 = x ∈ Rd : s[K](x) ≤ 1 . 

  
ixiA = inf izi1 : x = Az, z ∈ RN , 

convex body K ⊂ Rd one can associate a norm on Rd: 

Reversely, to each norm i·i on Rd, one can associate a convex body, the respective unit ball 
.

BI·I = x ∈ Rd : ixi ≤ 1 . This relation is bijective. For each norm i·i, its dual (norm) is 

defined as the norm 
. Tixi∗ = sup x y = s[BI·I](x) . 

y∈Rd : IyI≤1 

Similarly, for any convex body K ⊂ Rd, its dual (or polar) is defined as the convex body 

y∈K 

It is easy to see that these definitions are strictly related; indeed, notice that it holds 

B◦i·iK,∗ = i·iK◦ and I·I = BI·I∗ . 

With these definition, one can interpret support functions as norms, and vice-versa: 

s[K](x) = ixiK◦ 

Consider now the following problem. Let a1, . . . , aN ∈ Rd such that iaki2 = 1 for all k, with 

N > d. Define the following norm: 

where A = [a1| · · · |aN ] ∈ Rd×N . In a compressed sensing view, this correspond to the f1 norm 

of the sparsest signal z that recover the measurement x (though, notice that, in the compressed 
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CA = x = Az : z ∈ RN , izi1 ≤ 1 . 

  

1 1 ii·i∞ − s[Z]i∞ = dH (Δd, Z) ≥ − √ . 
e d 

sensing case, one usually assume x to admit an actual sparse z such that x = Az + E, where E 

is some small error; in the general case this is not the case, and it only holds that izi0 = d). An 

interesting question is whether it is possible to efficiently approximate the norm i·iA by shallow 

models, that is, by FN 
abs,0. The norm i·iA can be expressed as the support function of a polytope: 

ixiA = s[C◦ ](x) ,A

where CA is the convex hull of the points {±a1, . . . , ±aN }, that is 

In general, C◦ is not a zonoid; in fact, since it is a polytope, it is a zonoid if and only if it is a A 

zonotope2 [Sch14, Corollary 3.5.7]. As such, it is not possible to approximate C◦ (respectively, A 

i·iA ) by zonotopes (respectively, elements of FN 
abs,0 with positive weights in the second layer). 

In some cases it is even possible to quantify the distance between the set C◦ and the class of A 

zonoid. Consider the infinity norm i·i∞ on Rd . It can be expressed in the previous notation as 

i·i∞ = i·iEd , where Ed = {±1}d is the d-dimensional hypercube (with abuse of notation, we 

indentify the set Ed with the matrix whose columns are elements of Ed). In particular, the infinity 
.norm is the support function of the cross polytope Δd = x ∈ Rd : ixi1 ≤ 1 . The following 

holds. 

Proposition 5.1. Let Z ⊂ Rd be a zonoid. Then it holds that 

A proof of Proposition 5.1 is given in section D.1.1, based on a reduction from a result in 

[HLW10]. Although, going back to general case of a convex hull CA, even if the polar C◦ isA 

2Any polytope is a a zonotope only if d = 2. 
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at positive distance from any zonoid, by the UAT (Theorem 1.1), we know that it is possible to 

approximate i·iA by difference of two zonotopes Z+, Z−. Notice that 

is[C◦ ] − (s[Z+] − s[Z−])i∞ A + Z−, Z+) .A = dH (C◦ 

Therefore, the problem can be geometrically interpreted as finding a ‘regularization’ of the poly

tope C◦ (obtained by summing it with a zonoid Z−) such that the results is a zonoid. The efficiency A 

question that we pose here is to understand whether this regulation can be made efficiently, that 

is by approximate steps using zonotopes with a poly(d) number of generating segments. We con

jecture that this is not possible in the random case (that is for a1, . . . , aN generated independently 

uniformly over the sphere Sd−1) or the case considered above of the infinity norm i·i∞. A possible 

way to proceed to prove this would be to show that the respective norms satisfy a condition such 

as in Lemma 3.12. Notice that in the case of the infinity norm i·i∞, the function of interest can 

be approximated by a (ReLU) network of size O(d) and depth lg d. Proving the above conjecture 

would then offer another example of depth separation. 

5.2 Not only approximation: learnability 

In chapter 3, we discussed examples of families of functions which can be efficiently approximated 

by two-hidden-layers networks but not from one-hidden-layer ones. Although, from a practical 

point of view, approximability is a necessary property, but not it is not sufficient. In fact, while the 

family of functions considered in section 3.2 can be approximated by two-hidden-layers networks 

with polynomial complexity, it is not clear whether this family can be learned via an algorithm 

with polynomial complexity. 

In some recent works [MSS19, MJSSS21], it has been shown that certain families of algorithms 

can efficiently learn deep networks only if such networks can be weakly approximated by shallow 
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inf if (d) − hiµd,2 ≤ 1 − 
1 

. 
h∈Fq(d) p(d) 

models: this means that the hypothesis class (shallow models) can approximate the target (deep
 

model) better than the trivial classifier, at least up to an inverse polynomial in some measure of 

complexity of the hypothesis class. Current results operate under the classification setup, and for 

different families of algorithms depending on the hypothesis and target classes; separations among 

different families of learning algorithms for deep neural networks was also shown in [AS20]. 

Inspired by such results and some questions posed in these works, we pose the following open 

questions, relating to our results in chapter 3. 

• Consider a family of two-hidden-layer networks	 f (d) : Rd → C 
d≥1 

and a family of proba

bility measures µ(d) 
d≥1 

over Rd. Assume that such functions are not weakly approximable 

by one-hidden-layer networks with polynomial width, that is, there exists no polynomial 

functions p, q : N → [1, ∞) such that 

Can such functions be learned via GD or SGD at a fixed threshold c > 0, that is, can GD or 

SGD with problem-agnostic poly(d) hyper-parameters and poly(d) iterations output a deep 

neural network h(d) satisfying 

if (d) − h(d)iµd,2 ≤ c ? 

Notice that the families of functions satisfying the hypothesis of Theorem 3.2 are not weakly 

approximable. If the answer to the questions above is negative, this would mean that, while they 

provide an example of depth separation from the approximation point of view, such families are 

not actually learnable with standard algorithms used in deep learning. 
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Nk 1

+ o(k−cd )= 
Nd |G|k 

5.3 Advantages of learning invariant functions 

Many high-dimensional machine learning problems involve highly structured data such as images, 

text, or graphs, and may exhibit invariance to certain transformations of the input data, such as 

permutations, translations or rotations, and near-invariance to small deformations. Network archi

tectures can be appropriately defined to exploit such invariances. For example, the success of deep 

convolutional architectures is often attributed in part to their ability to learn invariant representa

tions of natural signals. On the other hand, if such invariances are not imposed a priori, simple 

architectures such as shallow neural networks, may fail to provide efficient estimators to invariant 

functions, as shown in Section 3.4.3. 

In section 3.4 we looked at function approximation over the unit sphere Sd−1 through the lens 

of spherical harmonics. In the recent work [MMM21], the authors studied, for groups G acting 

on Sd−1 such as the cyclic group, the spherical harmonic decomposition for G-invariant functions, 

in the asymptotic limit of d → ∞. Roughly speaking, they showed that, considering invariant 

functions only, the size of the set of fixed degree harmonic polynomial decreases of a factor |G|−1 

when we consider invariant polynomials only. This has implications in terms of generalisation 

bounds for kernel and random features methods, which are shown to benefit from such invariance. 

In the work [BVB21], we look at a similar set-up, but in the non asymptotic regime of bounded 

d. Let Nk

d 
be the dimension of the space of degree k harmonic invariant polynomials on Sd−1 . 

Roughly speaking, we show that 

for a certain exponent fd. We find that this fact implies improvements in sample complexity by a 

factor of the order of the size of the group G when the sample size is large enough. Finally, we 

show how this analysis can be potentially extended beyond group invariance, estabilishing similar 

gains for geometrically stable functions. We refer to [BVB21] for more details. 

While the discussed analysis are limited to generalization guarantees for kernel-based methods, 
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they could potentially provide insights for related questions, such as how approximation by neural
 

networks can benefit from exploiting invariances, an important topic for future studies. 

5.4 Very deep models 

In the previous chapters, we mostly looked at neural networks of fixed depth and quantified their 

complexity in terms of their width. In contrast, one could instead consider networks whose width 

is fixed and ask whether approximation, up to a arbitrarily small accuracy, can be achieved by 

increasing the depth. For the case of ReLU networks, using the fact that such networks are piece

wise linear functions, one can show that in fact arbitrarily deep networks of constant width form a 

class of universal approximators. 

Theorem 5.2 ([HS17, Han19]). Let f : [0, 1]d → R be a continuous function. Then for every 

c ∈ (0, 1) there exists a ReLU network g of width at most d + 1 such that 

if − gi∞ ≤ c . 

The depth of the network g can be upper bounded by 2d![ωf (c)]
−d, where ωf is the modulus of 

continuity of f . Moreover, this result is optimal in terms of minimal width. 

These models are not of solely theoretical interest. The first reason is that models of increasing 

depth are being used in practice, an example being the one of residual networks [HZRS16]. More

over, there is a variety of different iterative algorithms or models, that can be recast in this form. 

Chapter 2 provides one such example: the deep reduced models described in section 2.3.1 perform 

inversion of the characteristic maps by implementing the bisection method. This part of the model 

provides a network of fixed width whose accuracy to compute the inverse is increased by adding a 

set of (fixed) layers. 

Another model that can be viewed in this way is LISTA [GL10]. Iterative Soft Thresholding 
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zA
λ (x) = argmin 

1 ix − Azi2 + λizi1
2z∈RN 

  
zA
∗ (x) = arg min izi1 : z ∈ RN , x = Az , 

�

(ISTA, [DDDM04]) is an iterative algorithm to solve the f1 sparse coding problem 

where A ∈ Rd×N is a given dictionary matrix. The relevant fact is that the k-th iteration of 

ISTA can be written as a deep (ReLU) network of depth k, where each layer performs one (same) 

iteration step. In its learnable version LISTA, the basic structure of the iteration is kept, but the 

weights can be learnt as in a standard neural network. This allows to obtain, under appropriate 

assumptions on the dictionary A, deep ReLU networks of constant width which recover a sparse 

representation of the input x, that is 

(5.2) 

up to an error c, for a depth scaling as O(log 1 ) and input signals x admitting a sparse enough 

representation [CLWY18, Theorem 2]. A more explicit construction with the same property can be 

obtained by the homotopy method [JJL17], and it can actually be shown that the network weights 

defined by it are essentially optimal [CLWY18, Theorem 1]. This can be interpreted by saying 

that deep networks can efficiently recover sparse signals (5.2); on the other hand, it is not clear 

whether this is possible for their shallow counterpart. Notice that this is related to the question 

posed in section 5.1, although it fundamentally differs in terms of domain of approximation; in 

sparse coding, one is only interested in input measurements x with a sparse underlying signal 

z ∗(x). 

Normalizing flows [TVE+10, RM15] are a family of generative models which implement a 

mapping between a reference easy-to-sample-from distribution to a target distribution. In practical 

applications, they are implemented by learning a composition of parametric elementary blocks, 

via minimizing an empirical Kullback–Leibler divergence between the reference and the target 

distribution. The elementary blocks are defined to allow efficient computations of their gradients, 
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and their composition provide a neural network model of the sought mapping. Higher accuracy 

are found by increasing the number of elementary blocks, as at the core of the procedure lies a 

measure flow converging to transport between the reference and the target distributions [TVE+10]. 

In this sense, these type of models fall in the class of network with constant width but arbitrary 

depth. 

This non-exhaustive list of examples shows that the regime of constant width and arbitrary 

depth, different from the view of neural networks of the classical UAT, represents an important 

regime to be studied and understood. 

5.4.1 A multi-level study case 

The type of models described above involve composing a (potentially parametric) basic operation, 

or layer, many times; enrolling these operations describes a deep model. Intuitively, the idea is 

that, at each step, a small portion of the target problem is learned. In some cases, one can take 

advantage of this to decompose the learning problem in a hierarchy of sub-problems in order to 

increase the overall algorithm efficiency. In this section, we briefly present an application of this 

idea to the case of Stein variational gradient descent (SVGD) [LW16], an iterative algorithm to 

compute a mapping between a reference distribution and a target one. In this sense, SVGD falls 

in the family of flows discussed above, although it operates by building layers in a RKHS, rather 

than ‘standard’ neural networks layers, via gradient based iterations. 

Consider the problem of learning a mapping between a reference distribution η on Rd (such 

as a standard Gaussian distribution) and a target Gibbs distribution µ on Rd; that is a function 

φ∗ : Rd → Rd, such that µ = φ∗ η, where φ∗ η denotes the push-forward of η3. The SVGD # #

methods constructs mappings φ(t) : Rd → Rd, for t = 1, 2, . . . , from η to a push-forward measure 

µt = φ(t)
η which increasingly approximates µ. The mapping φ(t) has the form φ(t) = φt ◦ · · · ◦ φ1,# 

3Given a (measurable) function f : Rd → Rd, the push-forward of a measure η on Rd is the measure f#η defined 
as f#η(A) = η(f−1(A)), for A ⊆ Rd measurable. 
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gt ∈ arg max − KL((I + cg)#µt−1 | η) . 
dc =0g∈H : IgIH≤1 

 

 

where each step is constructed as φt(x) = x − cgt(x) where c is a small step-size and gt is chosen 

to maximally decrease the KL divergence of the reference distribution with the target distribution, 

by solving the following functional optimization, 

Above, KL denotes the KL divergence among the two distributions, I denotes the identity mapping 

over Rd and H denotes an RKHS over Rd to which the mapping gt is set to belong. If we have 

access (up to constant) to the target distribution, then the map gt can be computed explicitely, by 

approximating the KL divergence by sampling. While it is possible to show that, under certain 

conditions, the measure µt convergences to µ as t → ∞ (see e.g. [Liu17]), a potential drawback 

of the method is that it can take a large time of iterations to converge. Each iterations involves a 

number of evaluations (equal to the number of samples used to approximate the KL) of the density 

of µ; if this density is computationally expensive to compute, the slow convergence represents a 

computational bottleneck. 

Assume now that a sequence of densities {µ(k)}k≥1 is available, such that it converges weakly 

to the target density µ as k → ∞. Each density has an associated the computational cost, so that 

it is significantly cheaper to evaluate µ(k) for low values of k rather than for large values of k. 

In this setting, a possible idea is to take advantage of the compositional structure of the mapping 

f (t) by sequentially applying SVGD on the sequence {µ(k)}k. This defines a multilevel version of 
(TL) = f (kL),(tL) ◦SVGD. The resulting approximate mapping takes the form fML · · ·◦f (k1),(t1), where 

. LTL = c=1 tc, and f (ke),(te) is constructed by taking tc steps of SVGD from the (previous levels) 

(ke)reference measure to the target measure µ . Calling ck (respectively c∞) the cost of evaluating 

µ(k) (respectively µ), the cost to construct the SVGD mapping, in the standard and the multi-level 

setting, are proportional, respectively, to c∞T and L
c=1 cke tc. 

In the case of certain Bayesian inverse problems described by parametric PDEs, a hierarchy 
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of measure {µ(k)} can be constructed by considering increasingly accurate discretizations of the 

PDE domain. An heuristic criteria to run the multilevel version of SVGD is to run it for each level 

until the empirical gradient magnitude is below a certain threshold. This allows to recover the 

same accuracy (or more) of standard SVGD while notably reducing the computational effort. This 

is shown empirically in the work [AVP21], joint with Terrence Alsup and Benjamin Peherstorfer, 

which we refer to for further details. The work also presents theoretical justifications for this fact, 

although the author did not contribute to this part. Interestingly, a similar multilevel approach does 

not seem to yield, empirically, the same advantageous results when applied to a different method 

to construct deep mappings, such as the one discussed in [Par15]. 
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c1
inf inf |f(t) − ak| ≥ . 

t∈[t0,t1] k∈[N ] 8N 

�

Appendix A 

Appendix to chapter 2 

A.1	 Proof of results on approximation by standard neural net

works 

A.1.1	 Proof of Lemma 2.3 

We prove Lemma 2.3 by showing a series of intermediate lemmas. 

Lemma A.1. Let f : [0, 1] → R be a C1 function such that c1 ≤ if i∞ ≤ c2 for some c1, c2 > 0. 

Then, for any a1, . . . , aN ∈ R there exists [t0, t1] ⊆ [0, 1] such that t1 − t0 ≥ c1(4c2N)−1 and 

Proof. Without loss of generality, we can assume that c1 ≤ f (x) ≤ c2 for all x ∈ [0, 1]. This 

implies that f is increasing and takes values in [f(0), f(1)], where 

f(1) − f(0) ≥ c1 . 

110
 



  
{αk}M +1 = {ak} ∩ [f(0), f(1)] ∪ {f(0), f(1)} .k=0 k∈[N ] 

c1
inf |f(t̄) − αk| ≥ . 

k∈[0,M+1] 4N 

c1|f(t) − αk| ≥ |f(t̄) − αk| − |f(t) − f(t̄)| ≥ − c2|t̄− t| . 
4N 

�inf inf |f (t) − ak| ≥ c . 
t∈[0,1] k∈[N ]

c 
sup inf |f(t) − akt − bk,j | ≥ . 

k∈[N ] 4NM t∈[0,1] 
j∈[M ] 

� �

Define f(0) = α0 < · · · < αM+1 = f(1) such that 

In particular, M ≤ N . There exists t̄ ∈ [0, 1] such that f(t̄) = (αk+1 + αk)/2 for some k ∈ [0,M ] 

and such that 

c1 c1¯Since f is c2-Lipschitz, for any t ∈ [t̄− , t + ], it holds 
8c2N 8c2N 

The result follows. 

Lemma A.2. Let f : [0, 1] → R be a C1 function and let a1, . . . , aN ∈ R such that 

Then, for any b1, . . . , bN ∈ RM , it holds that 

Proof. Let gk,j (t) = f(t) − akt − bk,j for t ∈ [0, 1] and k ∈ [N ], j ∈ [M ]. By assumption, it holds 

that either gk,j (t) ≥ c for all t ∈ [0, 1] or gk,j (t) ≤ −c for all t ∈ [0, 1]. This implies that gk,j is 

either strictly increasing or strictly decreasing and thus there exists only a point tk,j ∈ [0, 1] such 

that 

|gk,j (tk,j )| = min |gk,j (t)| . 
t∈[0,1]

In particular, it either holds that tk,j ∈ {0, 1} and |gk,j (tk,j )| > 0 or that |gk,j (tk,j )| = 0. Now, let 
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1 
inf |xk − t̄| ≥ . 

k∈[0,K+1] 4NM 

     
�

�

     t̄ c |gk,j (t̄)| = gk,j (tk,j ) + gk,j (t) dt ≥ |gk,j (tk,j )| + c|t̄− tk,j | ≥ . 
4NM tk,j 

��

C 
inf sup inf |f(t) − akt − bk,j | ≥ 

a1,...,aN ∈R k∈[N ] MN3 
t∈[a,b]
 

b1,...,bN ∈RM j∈[M ]
 

� �

c1 c1(b − a) 
s1 − s0 = and inf inf |g(s) − ãk| ≥ . 

4c2N s∈[s0,s1] k∈[N ] 8N 

�c1(b − a) c1(b − a)
t1 − t0 = and inf inf |f (t) − ãk| ≥ . 

4c2N t∈[t0,t1] k∈[N ] 8N 

0 = x0 < · · · < xK+1 = 1 such that 

{xk}K+1 = {tk,j } ∪ {0, 1} .k=0 k∈[N ],j∈[M ] 

In particular, K ≤ NM . Then there exists t̄ = (xk + xk+1)/2 for some k ∈ [0, K] such that 

This implies that, for any k ∈ [N ] and j ∈ [M ], it holds 

This concludes the proof. 

Lemma A.3. Let f : [a, b] → R be a C2 function such that c1 ≤ if i∞ ≤ c2 for some c2, c1 > 0. 

Then it holds that 

where C > 0 is a constant that depends only on c1,c2 and (b − a). 

4c2N 4c2NProof. Fix any a1, . . . , aN ∈ R and b1, . . . , bN ∈ RM , and let ãk = ak and b̃k = bk. 
c1(b−a) c1(b−a) 

Let g(t) = f (a + (b − a)t) for t ∈ [0, 1]. Then (b − a)c1 ≤ ig i∞ ≤ (b − a)c2. Thanks to Lemma 

A.1, there exists [s0, s1] ⊆ [0, 1] such that 

This is equivalent to say that there exists [t0, t1] ⊆ [a, b] such that 
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� c1(b − a)
inf 

t∈[0,1] 
inf 

k∈[N ]
|h (t) − ãk| ≥ 

8N 
. 

      sup inf h(t) − ãkt − ̃bk,j ≥ 
c1(b − a) 

k∈[N ] 32MN2 
t∈[0,1] 

j∈[M ] 

c1
2(b − a)2 

sup inf |f(t) − akt − bj | ≥ . 
t∈[t0,t1] k∈[N ] 128c2MN3 

j∈[M ] 

��

    sup inf f(x) − ak
T x − bk,j ≥ sup inf |fv(t) − ckt − dk,j | , 

k∈[N ],j∈[M ] k∈[N ],j∈[M ]x∈[0,1]d t∈[0,1] 

Let h(t) = f(t0 + t(t1 − t0))/(t1 − t0) for t ∈ [0, 1]. It follows that 

By Lemma A.2, it holds that 

which implies that 

This concludes the proof. 

We now conclude with the proof of Lemma 2.3. Let f : [0, 1]d → R be a C2 function which is 

non linear, and fix any a1, . . . , aN ∈ Rd and b1, . . . , bN ∈ RM . Since f is non-linear, there exists 

u ∈ (0, 1)d and v ∈ Rd such that u + tv ∈ (0, 1)d for all t ∈ [0, 1] and such that, if 

fv : t ∈ (−c, c)  → f(u + tv) 

satisfies c1 ≤ ifv i∞ ≤ c2 for some c1, c2 > 0. Then it holds that 

where ck = vT ak and dk,j = bk,j + uT ak. Applying Lemma A.3 concludes the proof. 

A.1.2 Generalizing Proposition 2.4 to different initial conditions 

In this section we consider the problem of obtaining lower bounds as in section 2.3. We start by 

discussing how, under the same set-up, a similar proof technique can yield lower bounds for differ
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X(t,x0;µ)+ (t,µ) 

iu(·, t; µ) − fN (·, t, µ)iV ≥ inf u0(X
−1(t, x; µ)) − ax − b 

2 
dx 

a,b∈R X(t,x0;µ)− (t,µ) 

X−1(X(t,x0;µ)+ (t,µ),t;µ) 

≥ inf (u0(y) − aX(t, y; µ) − b)2|∂yX(t, y; µ)| dy 
a,b∈R X−1(X(t,x0;µ)− (t,µ),t;µ)
 

x0+ν−1
 

≥ ι inf (u0(y) − aX(t, y; µ) − b)2 dy 
a,b∈R x0−ν−1 

ι 2 .
= inf u0(x0 + ν−1 z) − aX(t, x0 + ν−1 z; µ) − b dz = Γ(c; t, µ) . 
ν a,b∈R − 

ent initial conditions, and discuss a few particular cases. We also discuss how different techniques
 

can yield stronger lower bound, depending on the initial condition of the PDE. 

Consider a PDE as in (2.7), and recall that there exists ι, ν > 0 such that the function X(t, x; µ) 

satisfies 

0 < ι ≤ ∂xX(t, x; µ) ≤ ν 

for every (x, t, µ) ∈ Ω × [0, 1] × D. Consider a one-hidden-layer network fN ∈ FN
σ ; for sake of 

simplicity we consider here the case of σ being the ReLU but the following ideas can be generalized 

to semi-algebraic activations. Following the proof of Proposition 2.4, a way to proceed is to track 

the approximation of the solution over time in the transport of a point x0 ∈ Ω. Let α(t, µ) be the 

closest breakpoint of fN to X(t, x0; µ) and 

c(t, µ) = |X(t, x0; µ) − α(t, µ)| . 

Consider the component of the error in the interval 

I(t, µ) = [X(t, x0; µ) − c(t, µ), X(t, x0; µ) + c(t, µ)] ; 

we have 

Proceeding as in the proof of Proposition 2.4, we then obtain the following.
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sup iu(·, t; µ) − fN (·, t, µ)iV ≥ Γ(N−3) 

1/2 
. 

(t,µ)∈[0,1]×D 

� �

�� �

�

Γ(c; t, µ) = inf (l{z ≤ 0} − az − aX(t, x0; µ) − b)2 dz 
a,b − 

= inf (l{z ≤ 0} − az − b)2 dz 2 c . 
a,b − 

� �

�

  
� �

�

  
Γ(c; t, µ) = 

ι 
inf u0(x0 + ν−1 z) − a · a(t, µ) · ν−1 · z − a · a(t, µ)x0 − a · b(t, µ) − b 

2 
dz 

ν a,b −
 

= inf u0(x0 + ν−1 z) − az − b 
2 
dz = Γ(c) .
 

a,b − 

.Lemma A.4. Let Γ(c) = inft∈[0,1],µ∈D Γ(c; t, µ). Then it holds that 

In some cases, the leading behaviour of Γ around the origin can be computed explicitly. This is 

indeed what allows the proof of Proposition 2.4 to carry over. In this case, if u0(x) = l{x ≤ x0}, 

it holds that 

u0(X
−1(t, x; µ)) = u0(x + x0 − X(t, x0; µ)) 

Therefore, it is equivalent to consider X(t, x; µ) = x + X(t, x0; µ) − x0 (which gives ι = ν = 1). 

In this case one gets that 

For different initial conditions, one recovers the same results in the case that the transport map is 

linear in the spatial variable, that is X(t, x; µ) = a(t, µ)x + b(t, µ). Notice that it equivalent to 

ask that the term c in the PDE is a linear function of x. In this case it holds 

Depending on the choice of u0, Γ(c) can be shown to yield different rates as c → 0. The following 

corollaries are two examples of this. 

Corollary A.5. If u0 ∈ Cs−1(Ω) \ Cs(Ω) is a piece-wise polynomial of degree s, with a break 

point in x0 ∈ Ω, then Γ(c) 2 c2s+1 . 
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Γ(c; t, µ) = inf (αzs + p(z) − az − b)2 dz + (βzs + p(z) − az − b)2 dz 
a,b − 0 

0 

≥ inf (αzs − q(z))2 dz + (βzs + p(z) − q(z))2 dz , 
q:deg(q)<s − 0 

��
�

�

��
�

� � �
0 

Γ(c; t, µ) ≥ c inf (αcs z s − q(z))2 dz + (βcs z s + p(z) − q(z))2 dz 
q:deg(q)<s − 0 

0 
2s+1 2 2 = c inf (αzs − q(z)) dz + (βzs + p(z) − q(z)) dz . 

q:deg(q)<s − 0 

� �

Proof. By assumption, there exist α, β ∈ R, α �= β, and a polynomial p of degree s − 1 such that 

where the infimum in the last equation is taken over all polynomials of degree at most s − 1. Using 

the change of variables z = cu, we get 

This concludes the proof. 

Corollary A.6. If the function u0 is C3 and not affine in a neighborhood of x0, then Γ(c) 2 c5 . 

Proof. This follows by applying Corollary C.3 in [PV18]. 

sNotice that nevertheless, if Γ(c) ; c for some s > 8/3, a stronger lower bound holds (of the 

order of N−4), if the resulting solution is C3 non-linear in a region of the domain Ω × [0, 1] × D. 

We further remark that the lower bound in [PV18] can be improved, for low dimensions (d ≤ 3). 

This lower bound thus applies to all piece-wise C3 smooth functions. We prove this in Section 

A.1.2.1. Moreover, similar lower bounds apply to solutions of other transport problems, such as 

the wave equation or certain linear transport equations with spatially dependent speed. We provide 

examples of this in Section A.1.2.2. 

A.1.2.1 Enhanced lower bounds for smooth functions 

We start by showing the following lemma. 
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Q̊N,i �K T∩ x : ai x = bi = ∅d i=1 

  
        . d N,i n = i ∈ [0, N − 1] : f ∩ ˚ .Qd = ∅ 

  
 

Lemma A.7. Consider K hyperplanes aTi y = bi, i ∈ [K], in Rd, for d ≤ 3. Then there exist at 
. d ik ik +1least one d-dimensional cube of the form QN,i = , for i ∈ [0, N − 1]d such that d k=1 N N 

as long as 

K ≤ cdN − 1 , 

where cd ∈ (0, 1] is a constant only depending on d. 

Proof. This is obvious for d = 1, with c1 = 1. For the case d ≥ 2, consider a cube a split of [0, 1]d 

in with a (N, d)-grid: 

[0, 1]d = 
� 

i∈�0,N−1�d Q
N,i 
d . 

. TGiven an hyperplane f = x : a x = b , we wish to count the number of cubes QN,i 
d intercepted 

by the line: 

�

Let’s consider the case d = 2 first; in this case hyperplanes are lines. We claim that in this case 

n ≤ 2N − 1. Assume, w.l.o.g., that a1a2 < 0 (the line is thus an increasing function in the first 

k k+1coordinate). Let tk be the number of cubes that the line intercepts in the stripe 
N , N × [0, 1], 

N−1for k ∈ [0, N − 1]. Clearly, n = i=0 tk. In particular, the cubes intercepted in the k-th stripe are 

given by 
N,(k,j)

Q̊2 

for ak ≤ j ≤ bk, with tk = ck − bk + 1. Moreover, since the line is increasing, we know that 

bk ≥ ck−1, for k ∈ [N − 1], which implies tk ≤ ck − ck−1 +1. Finally, notice that ck ≤ N − 1 and 
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. d QN,ink = i ∈ [0, N − 1] : fk ∩ ˚ = ∅3

 
        . N,(k,i,0)

t3 
k = i ∈ [0, N − 1] : f3 ∩ Q̊3 = ∅ , 

  

 
       1 . N,(0,i,k)

tk = i ∈ [0, N − 1] : f1 ∩ Q̊3 = ∅ . 
 
  

bk ≥ 0. It follows that 

NL−1 N−1 N−1L L 
n = tk = (ck − bk + 1) ≤ c0 − b0 + (ck − ck−1) + N = cN−1 − b0 + N ≤ 2N − 1 . 

k=0 k=0 k=1 

(N,i)By an union bound, it follows that K lines intercept at most K(2N − 1) cubes Q̊2 . Therefore, 

the thesis holds as long as 

K(2N − 1) < N2 , 

that implies the thesis with c2 = 
2
1 . Finally, let’s consider the case d = 3; in this case hyperplanes 

.are planes. Let fk = f ∩ {x : xk = 0} and 

�

for k ∈ [3]. Assume, w.l.o.g., that a1a2 < 0 and a3a2 < 0 (the lines f3 and f1 are thus increasing 

functions in the first and third coordinate, respectively). By before, we know that nk ≤ 2N − 1. 

NSimilarly to before, we can write n3 = k=1 tk
3 , where 

�

k k+1In particular, the cubes intercepted in the k-th 2-d stripe , × [0, 1] × {0} by the line f3 are
N N 

given by 
N,(k,j,0)

Q̊3 

3 3 N t1for b3 
k ≤ j ≤ ck, with tk 

3 = ck − b3 
k + 1. In the same way, we can write n1 = k=1 k, where 

�

k k+1In particular, the cubes intercepted in the k-th 2-d stripe {0} × [0, 1] × , by the line f1 are
N N 
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    N−1 N−1 N−1 N −1LL LL 
1 3 1 3 n = ck + c − b1 − b3 + 1 = tk + t − 1i k i i 

i=0 k=0 i=0 k=0 

= N(n1 + n3 − N) ≤ N(3N − 2) . 

�

  
∪N . �N Tfi = x ∈ [0, 1]d : wi x = −bi ,i=1 i=1 

given by 
N,(0,j,k)

Q̊3 

N,(i,j,k)for b1 ≤ j ≤ c1, with t1 = c1 − b1 + 1. It follows that the cubes Q̊ intercepted by the plane k k k k k 3 

f are given by 
1 3+c

Q̊
N,(i,j,k) 
3 . 

c∪N−1 ∪N−1 
i=0 k=0 ∪
 ik

1 3j=b +bk i 

It follows that 

Therefore, the thesis holds as long as 

KN(3N − 2) < N3 , 

that implies the thesis with c3 = 
3
1 . 

Remark 8. We believe that a similar proof should show the theorem for general d ≥ 1, with 

cd = d−1 . 

Using the above lemma, the following is immediate. Let σ be the ReLU activation and FN
σ be 

the space of one-hidden-layer neural networks with at most N units and activation σ.
 

Corollary A.8. Let d ≤ 3. For any fN ∈ FN
σ and f∞ ball B ⊂ Rd of radius c > 0, there exists an
 

f∞ ball QN ⊂ Rd of radius d−1c(N + 1)−1 such that fN |QN is linear.
 

Proof. Clearly, we only need to show this for B1 = [0, 1]d . Given fN as defined before, fN is
 

piece-wise linear with linear regions divided by the lines
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�Id ij ij + 1 
Q = , ,

K K 
j=1 

�

2 N− d −2 
pinf if − fN ip . 

fN ∈Fσ 
N 

d 
pinf if − hiBN ,p 2 rN 

+2 
, 

g:Rd→R affine 

where {wi, bi}N are the hidden layer weights of fN . By the previous lemma, we deduce that we i=1 

can find a cube 

with ij ∈ [0, N − 1] and K = d−1(N + 1), such that f |Q is linear. 

We conclude by combining the above lemma with the proof of Proposition C.5 in [PV18]. 

Proposition A.9. Let f : [0, 1]d → R C3 non-linear, for d ≤ 3, and let p ∈ (0, ∞). Then it holds 

that 

Proof. Let fN ∈ FN
σ . By Corollary A.8, it holds that there exists a ball BN of radius rN r N−1 

such that 

if − fN i[0,1]d,p 2 inf if − hiBN ,p . 
g:Rd→R affine 

The proof of Proposition C.5 in [PV18] implies that 

which concludes the proof. 

The above proposition immediately implies, that for the solution u to the PDE 2.7, for C3 initial 

conditions, depending on a scalar parameter µ ∈ D = [0, 1] (P = 1), one has 

inf sup iu(·, t; µ) − fN (·, t, µ)iV ≥ inf iu − fN i[0,1]3 ,2 2 N−7/2 . 
fN ∈Fσ fN ∈Fσ 

N (t,µ)∈[0,1]×D N 

We remark that the lower bound above may potentially be even improved, by showing a lower 

bound directly for the L∞ ⊗ V norm, rather then the overall L2 norm. Clearly, the lower bound 

extends to the case of u0 being piece-wise C3, since we can restrict ourselves to the a domain 

120
 



� � � � � �
. i − 1 i j − 1 j k − 1 k 

Q = ∪2M 
= ∪2M 

, × , × , .i,j,k=1Qijk i,j,k=1 2M 2M 2M 2M 2M 2M 

  

where u is C3. Finally, the lower bound might be further improved, by using the following lemma, 

which we conjecture to hold, inspired by the work [Bra98]. 

Lemma A.10. Consider a uniform grid in the cube Q = [0, 1]3 of size 2−M , 

Given N hyperplanes in R3, the maximum number of cubes Qijk that intersect at least one of them 

is upper bounded (up to multiplicative constants) by 

N · 2M lg M . 

A.1.2.2 Lower bounds for other transport PDEs 

It is easy to see that similar lower bound can be obtained for other types of transport PDEs. Here, 

we show two examples of this. In the following, let σ : R → R be a semi-algebraic activation. 

Example 7 (linear advection equation with constant transport speed). Consider the PDE defined by 

⎧ 

ut + µ(x · u)x = 0, for (x, t) ∈ Ω × (0, 1), ⎪⎪⎪⎪⎪⎨ 
u(x, 0; µ) = u0(x; µ), for x ∈ Ω,⎪⎪⎪⎪⎪⎩ u(0, t; µ) = u0(0; µ), 

where µ ∈ D = [0, 1] and u0(x) = l{x ≤ 0.5}. The solution to this PDE is given by u(x, t µ) = 

−µt −µt −µt
l µte u0(e x) = e x ≤ 1

2 e . By a proof equivalent to the one of Proposition 2.4, it follows 

that 

inf sup iu(·, t; µ) − fN (·, t, µ)iV 2 N−3/2 . 
fN ∈Fσ 

N (t,µ)∈[0,1]×D 
(A.1)

Example 8 (wave equation). Consider the wave equation considered in [GU19], that is the PDE 
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� �

  
            

1 2 
iu0(· − T̂ (t, µ)) − u(·, t; µ)i2 = u0(x − T̂ (t, µ)) − u0(x − T0(t, µ)) dx 

0 

ˆ≤ T (t, µ) − T0(t, µ) 

ˆ≤ T (t, µ) − T0,r(t, µ) + |T0,r(t, µ) − T0(t, µ)| ≤ 2c 2 . 

given by 

⎧ 
utt − µ 2 · uxx = 0, for (x, t) ∈ (−1, 1) × (0, 1), 

u(x, 0; µ) = l{x ≤ 0} − l{x > 0}, for x ∈ Ω, 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 
ut(x, 0; µ) = 0, for x ∈ Ω, 

ut(−1, t; µ) = 0, 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ ut(1, t; µ) = −1. 

where µ ∈ D = [0, 1]. The solution to this PDE is given by 

u(x, t; µ) = l{x < −µt} − l{x ≥ µt} . 

Once again, we can recast the proof of Proposition 2.4 to show the lower bound (A.1) for this 

solution, where in this case V = L2 
[−1,1]. 

A.1.3 Proof of Proposition 2.5 

The proof is a straight-forward application Theorem 9 from [LS16]. Let c ∈ (0, 0.1]. By hypothe

sis, the function T0 can be uniformly c2-approximated by a polynomial T0,r of degree r = O(log 1 ). 

Then, by [LS16, Theorem 9], T0,r can be uniformly c2-approximated by a shallow network (with 

ReLU and step function activations) T̂0 of size O(rP +2 log r ) and depth O(r + log 1 ). It follows 

that, for any (t, µ) ∈ [0, 1] ×D, it holds 
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�

�

.By construction, fN (x, t, µ) = u0(x − T̂ (t, µ)) is a network of size O(logP +3 1 ) and depth 

O(log 1 ). 
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Appendix B 

Appendix to chapter 3 

B.1 Proofs of depth-separation results 

B.1.1 Proof of Theorem 3.3 

The proof of the lower bound follows the same strategy as [ES16]. For sake of simplicity in the 

following we remove the dimension d from the following notations: wd = w and vd = v. In the 

following we always assume d ≥ 3. Let S ⊆ [d] a subset and let IS be the truncated identity matrix 

defined as 

L 
;IS := eses . 

s∈S 

Moreover, define the function HS (x) as 

I I .
HS (x) = 1xi>0 1xj ≤0 . 

i:i∈S j:j∈[d]\S 
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� �

 �  

  
− fi2 21−2ηKiψi2 d 

inf ifrd,w,v ϕ ≥ 1 − N 1 O(d · τd · rd) , 
f∈FN 

�
.igi2 = |g(x)|2ϕ2(x) dxϕ 

Rd 

Lastly, for a subset S ⊆ [d], let vS := v + IS w and define the function σr,S (x) := σr(vS
T x). 

Therefore, the expression of frd,w,v can be rewritten as: 

L L 
frd,w,v(x) = gS (x) = HS (x)σrd,S (x) 

S⊆[d] S⊆[d] 

where gS (x) := HS (x)σrd,S (x). Let the space of N -units one-hidden-layer networks be 

NL 
FN = fN : x ∈ Rr  → σk(a Tk x) : ak ∈ Rd, σk are 1-Lipschitz activations . 

k=1 

Assume that 

(A1) it holds that τd · rd ≥ βdk for some constant k ≥ 1; 

(A2) it holds that η > log2 iψi1 K/2 

Then, for large enough d, it holds 

(B.1)

where we denote 

for g ∈ L2 
ϕ2 . In particular, if N r poly(d), then the error (B.1) tends to 1 as d → ∞. 

{fTo show equation (B.1), we proceed as follows. Let F = fϕ : f ∈ F1}, and denote by 

F := ϕ �· frd,w,v = f̂  
rd,w,v ∗ ϕ̂. Since ϕ̂ has compact support in [−K, K]d and the Fourier transform 

of a one-unit shallow network f(x) = σ(xT a) has support in the line {ξ : ξ = αa, α ∈ R}, it 

follows that any function in F is supported in a tube T = {ξ : ξ = αa + [−K, K]d, α ∈ R} of 

radius K. For each tube T of radius K, we consider TT = {φ ∈ L2 : supp(φ) ⊆ T } and 

.
κ = sup iPTT (F )i2 , 

T tube of radius K 

125
 



 

  
κ2 ≤ iψi1221−2ηK 

d 
O(d · τd · rd) . 

where PTT (F ) = argminh∈TT 
ih − F i22 . We claim that 

inf ifrd,w,v − fiϕ 
2 ≥ 1 − Nκ2 . 

f∈FN 

(B.2)

Indeed, given f ∈ FN , denote by T1, . . . TN the associated N tubes, and by TT1,...TN = k∈[N ] TTk 

the corresponding subspace spanned by TTk , k ∈ [N ]. Then, by using the isometry of the Fourier 

transform, we have that 

inf if − frd,w,vi2 = inf i fϕ fϕ − F i22
f∈FN f ∈FN 

≥ inf inf ih − F i22
T1,...TN h∈TT1,...TN 

= inf iPTT1,...TN 
(F ) − F i22 

T1,...TN 

= inf (iF i22 − iPTT1,...TN 
(F )i22) . 

T1,...TN 

(B.3)

Now, observe that supT1,...,TN 
iPTT1,...TN 

(F )i22 ≤ N supT iPTT (F )i22 . Equation (B.3) therefore 

becomes 

inf if − frd,w,vi2 
ϕ ≥ iF i22 − N sup iPTT (F )i22 , 

f∈FN T 

which proves (B.2) by plugging in the definition of κ and recalling that iF i22 = ifrd,w,vi2 
ϕ = 1 by 

Parseval. To establish (B.1), it is therefore sufficient to prove that 

(B.4) 

The rest of the proof will be devoted to establishing a sufficiently sharp upper bound for iPTT (F )i2. 

Observe that PTT (F ) is simply obtained by setting to zero all frequencies of F outside T . We start 

by computing an upper bound on |F (ξ)|. We claim the following. 
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L dIiϕi1 2K |F (ξ)| ≤ min 1, . 
2d π(|ξj − ξS,j | − K)+

S⊆[d] j=1 

� �

    

  
D(ξ) ≤ CK,γ 2

d(1−η) min 1, 2K(π(iξi∞ − rdτd − K)+)
−1 , 

 �  

� �
_ __ _ _ __ _ D(ξ)2dξ = D(ξ)2dξ + D(ξ)2dξ . 

T T ∩{IξI∞≤2τdrd} T ∩{IξI∞>2τdrd} 

t1 t2 

�

Lemma B.1. It holds that
 

. . d 2KLet D(ξ) = DS (ξ), with DS (ξ) = min 1, , so that from Lemma S j=1 π(|ξj −ξS,j |−K)+ 

B.1 we have 

|F (ξ)| ≤ 2−diϕi1D(ξ) . (B.6) 

Recall that τd = supS∈[d] ivSi∞. Given ξ non-zero, we claim the following. 

Lemma B.2. It holds that 

(B.7) 

8Kwhere CK,γ = 2 exp 
πγ . 

Now, pick any arbitrary non-zero direction ν such that iνi∞ = 1. Let 

T = {ξ : inf iξ − ανi∞ ≤ K} 
α∈R 

(B.8)

denote the tube of radius K in the direction ν. It holds that 

In order to control the two terms t1 and t2, we use the following lemma to upper bound the measure 

of a f∞-cylinder. 

Lemma B.3. Let T be an f∞-tube of radius K as defined in (B.8). If µ denotes the d-dimensional 
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µ T ∩ [−R, R]d ≤ 8e 2(d − 1)(K + R)(2K)d−1 . 

� �
g(u)du , 

T ∩{IξI∞>R} 

∞ 

g(iξi∞) dξ ≤ 4e 2(d − 1)(2K)d−1 

R−K(2+3/(d−1)) 

  2C2 22d(1−η)+(d−1)Kd−1(d − 1)(K + 2τdrd)t1 ≤ 8e K,γ 

d ≤ D(1) · d · (τdrd) 22(1−η)+1K K,γ 

  �
  

  

d2π−2C2 d 22(1−η)+1K −2t2 ≤ 8e K,γ (u − τdrd − K) du 
2τdrd−K(2+3/(d−1)) 

d 22(1−η)+1K −1= 8e 2π−2KC2 d 
(τdrd − 3K(1 + 1/(d − 1)))K,γ 

(2) 
22(1−η)+1K≤ DK,γ · d · d 

, 

Lebesgue measure, then
 

(B.10) 

(B.11) 

Moreover, if g : R → R is in L1(R) and non-increasing, then 

as long as R > K(2 + 3/(d − 1)). 

From (B.7) and (B.10), the first term of (B.9) can be bounded as 

(B.12)

for D(1) 
= 16e2K−1C2 and d large enough, such that 2τdrd ≥ K. Similarly, using (B.11), the K,γ K,γ 

second term t2 in turn can be bounded as 

(B.13) 

2π−2C2for D(2) 
= 16e and and d large enough, such that τdrd ≥ 10K. Thus, collecting (B.12)K,γ K,γ 
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�
    

  
|F (ξ)|2dξ ≤ iϕi2 · 2−2d(t1 + t2)1 

T 

d (1) (2)
21−2ηK≤ d · iϕi2 D τdrd + D1 K,γ K,γ 

21−2ηK≤ DK,γ · d · iϕi21 
d 
max(1, τdrd) , 

� �  � 
8K. (1) (2) 

π−2 + K−1DK,γ = D + D = 32 exp 2 + .K,γ K,γ πγ 

�   
iPTT (F )i22 = |F (ξ)|2dξ ≤ DK,γ · (d · τd · rd) · iψi21 2

1−2ηK 
d 
, 

T 

  L L 
f̂  
rd,w,v(ξ) = ĤS ∗ σ̂rd,S (ξ) = ĤS (ξ − rdvS ) . 

S⊆[d] S⊆[d] 

and (B.13) and using (B.6), we obtain
 

where 

It follows that 

as long as d ≥ [β−1 max(1, 10K)]
1/k (where β and k satisfy τdrd ≥ βdk). We have just established 

(B.4), and this concludes the proof of the theorem. In the remaining part of this section we prove 

the auxiliary lemmas used above. 

Proof of Lemma B.1. We start by computing f̂  
rd,w,v. From the definition of σr, it follows that 

σ̂r,S (ξ) = δ(ξ − rvS ) , 

which combined with the definition of H yields 
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� �
�

L 
F (ξ) = f̂  

rd,w,v(ν)ϕ̂(ξ − ν) dν = ĤS (ν − ξS )ϕ̂(ξ − ν) dν 
Rd Rd 

S⊆[d] L 
= ĤS (ν)ϕ̂(ξ − ξS − ν) dν . 

S⊆[d] _ Rd __ _
. 
=FS (ξ−ξS ) 

� � dI 
2iπξT 

FS(ξ) = ĤS (ν)ϕ̂(ξ − ν)dν = HS (x)e 
xϕ(x)dx = Fj (ξj ) 

j=1 

�
Fj (t) = l{cj x > 0}e 2iπtxψ(x) dx , 

R 

�
1 1 |Fj (t)| ≤ |ψ(u)|du = iψi1 for all t , 
2 2R 

     
�      ˆ1 K ψ(τ) 2Kiψi1|Fj (t)| = dτ ≤ for |t| > K , 

2π t − τ (2π)(|t| − K)−K 

.Let ξS = rdvS . It holds that 

(B.14) 

We can now bound each term FS separately. It holds that 

(B.15) 

where 

(B.16) 

with cj = ±1. Assume without loss of generality that cj = 1. Observe that Fj = Q̌, where 

Q(u) = l{u > 0}ψ(u) . 

Since ψ ∈ L1(R) and its Fourier transform ψ̂ has compact support in [−K, K], it holds that 

ˆ|ψ̂(τ)| ≤ iψi1 for τ ∈ [−K, K] and ψ(τ) = 0 for |τ | > K . (B.17) 

On the one hand, since ψ is even, it holds, by directly bounding (B.16), that 

and from (B.17) and the Hilbert transform of Q we deduce on the other hand that 
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� �
iψi1 2K |Fj (t)| ≤ min 1, . 
2 π(|t| − K)+ 

� �
L
 

|F (ξ)| ≤ |FS (ξ − ξS )|
S⊆[d] 

dIL
iϕi1 2K
 ≤
 min 1, ,

2d π(|ξj − ξS,j | − K)+

S⊆[d] j=1 

� �

|ξS,j − ξS ' ,j | = 

⎧ ⎪⎨ ⎪⎩
 

rd|wj | if j ∈ (S ∪ S ) \ (S ∩ S ) 
. 

0 otherwise
 

� � �

�n(ξS − ξS ' , γd
2) = d(S ∩ Ωd, S ∩ Ωd) . 

� � � �
� �γd2 γd2 

n ξ − ξS, + n ξ − ξS ' , ≥ d(S ∩ Ω, S ∩ Ω) for all ξ and S . (B.21)= S 
2 2 

so that it follows that 

(B.18)

Thus, from equations (B.14), (B.15) and (B.18) it follows that 

which proves Lemma B.1. 

Proof of Lemma B.2. Let define for any ξ ∈ Rd and λ > 0 

. 
n(ξ, λ) = |{j ∈ [d] : |ξj | > λ}| . 

Recall that vS = v + IS w and ξS = rdvS . Observe that ξS − ξS ' = rd(IS − IS ' )w, so 

(B.19) 

If d(S, S ) denotes the Hamming distance between two subsets S, S , then for all S, S , the follow

ing holds. 

Lemma B.4. It holds that 

(B.20) 

This immediately implies that 

�
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�
  −n(ξ−ξS ,γd

2/2)
DS (ξ) ≤ π(γd2/2 − K)/(2K) for all S and ξ . 

�d(S ∩ Ωd, S ∩ Ωd) 
n(ξ − ξS , γd

2/2) ≥ for all S = Sξ 
∗ 

2 

�

  
� �  

� � �

L 
D(ξ) = DS∗ (ξ) + DS (ξ)ξ 

=S∗S ξ L|Ωd| L 
≤ DS∗ (ξ) + π(γd2/2 − K)/(2K) 

−s/2 

ξ 

s=1 S : d(S∩Ωd,S
∗∩Ωd)=sξ L|Ωd| |Ωd| −s/2≤ DS∗ (ξ) + 2d−|Ωd| π(γd2/2 − K)/(2K)

ξ s 
s=1 

|Ωd| 

≤ 1 + 2d−|Ωd| 1 + 
1 

π(γd2/2 − K)/(2K) 

≤ CK,γ 2
d(1−η) 

   �  

Indeed, if that was not the case, applying the triangle inequality coordinate-wise would contradict
 

equation (B.20). The first upper bound is obtained by first noticing that, for d > 2 K/γ, it holds
 

Now, defining Sξ 
∗ = arg minS⊆[d] n(ξ − ξS , γd2/2), from (B.21) it follows that 

�

and thus, for d > 2 K/γ, it holds 

�

(B.22) 

since |{S : d(S ∩ Ωd, S
∗ ∩ Ωd) = s}| ≤ 2d−|Ωd| |Ωd| . The term CK,γ is a constant that depends ξ s 

8Konly on K and γ; in particular, we can choose CK,γ = 2 exp 
πγ . The second upper bound is 

obtained using the above argument as follows. Let qξ = arg maxj |ξj |. Since iξS i∞ ≤ rdτd for 

132
 



� �
� �

L I2K 2K 
D(ξ) ≤ · min 1,

π(|ξqξ − ξS,qξ | − K)+ π(|ξj − ξS,j | − K)+
S⊆[d] j=qξ L I 

≤ 2K(π(iξi∞ − τdrd − K)+)
−1 min 1, 

2K 
π(|ξj − ξS,j | − K)+

S⊆[d] j=qξ 

· 2d(1−η)≤ CK,γ 2K(π(iξi∞ − τdrd − K)+)
−1 

�d((S ∩ Ωd) \ {qξ}, (S ∩ Ωd) \ {qξ}) 
n(ξ̌ − ξ̌S , γd

2/2) ≥ for all S = Sξ 
∗ 

2 

�

�

�

� �

any S ⊆ [d], it holds that
 

�

�

(B.23) 

by noticing that the argument leading to (B.22) can now be repeated for the (d − 1)-dimensional 

vector ξ̌ = (ξ1, . . . , ξqξ−1, ξqξ+1, . . . ξd), so that 

�

which proves (B.23) and concludes the proof of Lemma B.2. 

Proof of Lemma B.4. In fact, it holds that the two sets A1 := {j ∈ [d] : |ξS,j − ξS ' ,j | ≥ γd2} and 

A2 := {j ∈ [d] : j ∈ (S ∩ Ωd)\(S ∩ Ωd)} are equal. Let j ∈ A1. Then |ξS,j − ξS ' ,j | > γd2 . 

Since this quantity is nonzero, equation (B.19) indicates that therefore j ∈ S\S without loss of 

generality. Moreover, |ξS,j − ξS ' ,j | = rd|wj | which implies that rd|wj | > γd2 and j ∈ Ωd. We 

conclude that j ∈ (S ∩ Ωd)\(S ∩ Ωd) which implies that j ∈ A2. Now, let j ∈ A2. Then, without 

loss of generality, j ∈ (S ∩ Ωd)\(S ∩ Ωd). Then, it holds r|wj | > γd2 since j ∈ S\S according 

to (B.19) and |ξS,j − ξS ' ,j | = rd|wj |. Combining these two facts, it follows that |ξS,j − ξS ' ,j | > γd2 

which means that j ∈ A2. 

Proof of Lemma B.3. Let 

TR(ν) = T (ν) ∩ [−R, R]d 

= {ξ : inf sup |ξj − ανj | ≤ K and iξi∞ ≤ R} . 
α∈R j∈[d] 
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�

  l(K+R)/sJ
 
TR(ν) ⊆ jsν + [−ϑK, ϑK]d . 

j=−l(K+R)/sJ 

�     �l(K+R)/sJ
 � �d . s s 
SR = jsν + − 1 + K, 1 + K 

K K 
j=−l(K+R)/sJ 

. K + R dl(s) = 4 (2(K + s)) . 
s 

� �d 

TR(ν) ≤ (K + R)Kd−1(d − 1) 1 + 
1 ≤ (K + R)(d − 1)Kd−1 e 2 ,

d − 1 

  
 
T>R(ν) ⊆ jsν + [−(K + s), (K + s)]d , 

j≥l R−K J 
s 

The aim is to upper bound the volume of TR(ν) for any ν. Assume, without loss of generality, that 

iνi∞ = 1. The cut-off tube TR(ν) can be covered with f∞-balls of radius K = ϑK centered 

along the ray defined by ν, that is 

(B.24) 

Now, we optimize both the sampling rate s ∈ (0, K) and the radius ratio ϑ ≥ 1 while satisfying 

(B.24). Given s, let us first compute the smallest admissible ϑ. Any x ∈ TR(ν) satisfies 

ix − (j + y)sνi∞ ≤ K 

for some j ∈ N and |y| < 1. This implies that ix − jsνi∞ ≤ K + ys ≤ K + s. Therefore an 

admissible ϑ is given by the solution of K + s = ϑK, that is ϑ = 1 + sK−1. Now, the volume of 

is upper bounded by 

Minimizing over s gives s = K . Therefore, for all ν ∈ Rd, it holds 
d−1 

which proves (B.10). Equation (B.11) is established analogously. Let T>R(ν) = T (ν)∩{ξ : iξi∞ > R}. 

Then we have that 
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� �

�
�
�

L 
g(iξi∞) dξ ≤ g(iξi∞) dξ 

T>R(ν) Iξ−jsνI∞≤K+s |j|≥l R−K J 
s L 

≤ 2(2(K + s))d g(js − (K + s)) 
j≥l R−K J 

s L js−(K+s) 

≤ 2(2(K + s))d 1 
g(u) du 

s (j−1)s−(K+s)
j≥l R−K J 

s 

2(2(K + s))d ∞ 

≤ g(u) du 
s R−K−2s−(K+s) 

2e2(d − 1)(2K)d ∞ 

≤ g(u) du . 
K R−K(2+3/(d−1)) 

     
     

NL 2Qr 
sup σr(t) − αkσ(t − βk) ≤ 
|t|≤Q N 

k=1 

     
     

NL 
αkσ(t − βk) ≤ 1 + 2Qr/N for t ∈ R . 

k=1 

    NL 
T TfN (x) = αkσ rd vd x + wd x+ − βk 

k=1 

where we set s = K/(d − 1). Since g is non-increasing, it follows that
 

This establishes (B.11) and concludes the proof. 

B.1.2 Proof of Theorem 3.5 

The proof consists in approximating the activation σr using Assumption 1.2 on σ. Since σr is 

(2πr)-Lipschitz, we obtain that there exists, for any r,Q > 0, αk, βk ∈ R such that over the 

interval [−Q, Q] it holds 

as well as 

Let fN ∈ FN
σ be defined as 
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�
� �

� �
� �   

� �

(frd,wd,vd (x) − fN (x))
2ϕ(x)2 dx = 

Rd 

= (frd,wd,vd (x) − fN (x))
2ϕ(x)2 dx + (frd,wd,vd (x) − fN (x))

2ϕ(x)2 dx 
IxI∞≤Q̃d IxI∞>Q̃d 

4Q2 
drd 

2 Qdrd 
2 

≤ iϕ · lBd i2 + 4 1 + (iϕi2 − iϕ · lBd i2)2 2 2N2 Q̃d,∞ Q̃d,∞N 

4Q̃2γ2 2 2 
d d rd Qdrd 

Q−1)d≤ iϕi22 + 4 1 + 1 − (1 − α ˜dN2 N 

4Q̃2γ2 2 
d d rd Q−1≤ iϕi22 N2 

+ 16αd ˜d , 

� 1/3 

Q̃d = 2αd 
N
2

2 

, 
rdγd 

2 

�

� �2/3
dγdrdifr,w,v − fi2 

ϕ ; ,
N 

Now, let γd = ivdi1 + iwdi and ˜ Qd ˜
1 Qd =  γ

, so that by definition when ixi∞ ≤ Qd 
d 

it holds that 

|vd
T x + wd

T x+| ≤ Qd . 

The approximation error can be decomposed as follows: 

˜since |ψ(x)|2 ≤ α|x|−2/2 for some α > 0, as long as Q̃d > α and N > rdQd. Optimizing this 

upper bound with respect to Q̃d gives 

which results in 

as long as N > αrdγd. This concludes the proof. 
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    c 
sup γT ρ2(Wρ1(Ux)) − γT ρ2(WB σ(Ax + c)) ≤ 
x∈K 2 

   c 
sup γT ρ2(Wy) − γT E σ(Dy + f) ≤ 

2y∈K1 

 

B.2 Proofs of poly(d) upper bounds 

B.2.1 Proof of Lemma 3.1 

We show this for the case L(f (d)) = 2, but the proof it is analogous for the other cases. The 

function f (d) has the form 

f (d)(x) = γd
T ρ2(Wdρ1(Udx)) 

(d) (d)where ρ1 , ρ2 are component-wise activations satisfying Assumption 1, and γd ∈ Rqd , W ∈ 

Rqd×pd , U ∈ Rpd×d, with 

pd, qd, iγi∞, iWiF,∞, iUiF,∞ ≤ poly(d) . 

, B ∈ Rpd×Npd , c ∈ RNpdThanks to Assumption 1.2, there exists A ∈ RNpd×d such that 

and 

N, ici∞, iBiF,∞, iAiF,∞ ≤ c −1 · poly(d) . 

Let K1 = {Bσ(Ax + c) : x ∈ K}; it holds diam(K1) ≤ poly(d). Similarly as before, we get 

, E ∈ Rqd×Mqd , f ∈ RMqdthat there exists D ∈ RMqd×pd such that 

and 

M, ifi∞, iEiF,∞, iDiF,∞ ≤ c −1 · poly(d) . 
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� �
b − a 

sup |f(t) − pn(t)| ≤ 6 ω . 
2nt∈[−r,r]

 
�

� �
n 

bn,i(t) = ti(1 − t)n−i 

i 

= ET γ, ˜By calling γ̃ W = DWB and Ũ = UA, we get that 

. 
g σ(x) = γ̃T σ(W̃σ(Ũx + c) + f) 

satisfies the statement of the theorem. 

B.2.2 Preliminary lemmas 

The first lemma is a known results in approximation theory. 

Lemma B.5. (Jackson’s Theorem, Theorem 1.4 in [Riv81]) Let f : [a, b] → R with modulus of 

continuity ω. Then there exists a polynomial pn(t) = n
k=0 pkt

k , pk ∈ R, such that 

The next lemma yields a worst approximation rate but allows us to control the coefficients of 

the polynomial. It is a small modification of Lemma 4 in [SES19]. 

Lemma B.6. Let f : [−r, r] → R (1, α)-Holder. Then for any c > 0 there exists a polynomial  1  
n 4 α rpn(t) = rkt

k , rk ∈ R, of degree n =
α 

such that k=0 1+ 2 
α

sup |f(t) − pn(t)| ≤ c . 
t∈[−r,r]

Moreover, pn can be chosen such that |rk| ≤ 2nrα−k , k ∈ [n], and |r0| ≤ rα + |f(0)|. 

Proof. Notice that we can assume f(0) = 0 without loss of generality. Define g(t) = f(r(2t − 1)) 

for t ∈ [0, 1] and notice that g is ((2r)α, α)-Holder. Also, define the n Bernstein polynomial bn,i, 

i ∈ [0, n], as 
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� �Ln i 
gn(t) = g bn,i(t) . 

n 
i=0 

    � �        � �    
�

    � �    
�

Ln i |gn(t) − g(t)| ≤ bn,i(t) g(t) − g 
n 

i=0 L Li i 
= bn,i(t) g(t) − g + bn,i(t) g(t) − g 

n n 
i : | i −t|<� i : | i −t|≥ 

n n L rα 

≤ c α + 2r α bn,i(t) ≤ c α + 
2 
. 

2nc
i : | i −t|≥ 

n 

αr
n ≥ . 

2c2+α   

α4α 
1 
r

n ≥ . 
1+ 

α 
2 

c

� � � �Ln n i 
pn(t) = (2r)−n g (t + r)i(t − r)n−i . 

i n 
i=0 

for t ∈ [0, 1]. Notice that they form a partition of unity. We define
 

We have that 

rIn particular 
2n� 

α ≤ cα if2 

If we define pn(t) = gn 2
t
r + 1

2 , then we have that 

sup |f(t) − pn(t)| ≤ c 
x∈[−r,r]

if 

Finally, we want to upper bound the coefficients of pn. Notice that we have 
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� �   � �   Ln n i 
(t + r)n α−n(t + r)n(2r)−n g ≤ r . 

i n 
i=0 

  

� �

 

2 2 2 
sup |g(t) − qn(t)| ≤ ω 2 + ω(π) − log ω . 

π n nt∈[−π,π]

� �� � ��

� π1 |bk| ≤ |g(t)| dt . 
2π −π

n−1 j n−1LL L1 n − |k|ikt ikt qn(t) = ĝke = ĝke 
n n 

j=0 k=−j k=−(n−1) 

� π 

ĝk =
1 

g(t)e −ikt dt . 
2π −π 

It follows that the coefficients of pn can be bounded by those of 

Let rk the k-th coefficients of rα−n(t + r)n. Then 

nα−n α−kn−k ≤ 2n rk = r r r . 
k 

This concludes the proof. 

B.2.3 Approximation by shallow Fourier neural networks 

We start by reporting a known result. 

Lemma B.7. Let g : [−π, π] → R 2π-periodic with modulus of continuity ω. Then there exists a 

trigonometric polynomial qn(t) = k
n 
=−n bke

ikt , bk ∈ C, with real values (i.e. qn(t) ∈ R for all 

t ∈ [−π, π]), such that 

Moreover, it holds that 

Proof. The polinomyal qn is given by the Fejer sum of the Fourier series of g, that is 

where 
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ikt + ˆĝke g−ke 

−ikt = 2Re ĝke 
ikt 

 
  log n 

sup |f(x) − qn(x)| ≤ 3 1 + 2L2 r 2 

nx∈[−r,r]

  

  

⎧ ⎪⎪⎪⎪⎪⎪⎨ 
L(x + r) + f(−r) if x ∈ −r − c 

2L , −r 

g̃(x) = f(x) if x ∈ [−r, r]⎪⎪⎪⎪⎪⎪⎩L(x − r) + f(r) if x ∈ r, r + c 
2L   

� �
2Lr + c 

g(x) = g̃ x . 
2Lπ 

The proof of the upper bound can be found in [Bur59], Theorem 18. Finally, notice that qn is 

real-valued since 

because ĝ−k = ĝk since g takes values in R. 

The above result immediately implies a convergence rate for univariate approximation by shal

2πit).low Fourier networks (that is, with activation σ1(t) = e

Lemma B.8. Let f : [−r, r] → R be L-Lipschitz. Then there exists a real-valued Fourier shallow 

n iwk tnetwork qn(t) = k=−n bke , bk ∈ C, wk ∈ R, such that 

for any n ≥ 2. Moreover qn can be chosen such that |wk| ≤ π|k| and |bk| ≤ ifi∞ for any
r 

k ∈ [−n, n]. 

Proof. Assume, w.l.o.g., that f(r) ≤ f(−r) (otherwise we can consider f(−x) in place of f(x)). 

First, we want to transform f into a 2-pi periodic function on [−π, π]. To do this we consider g̃

defined as 

where c = f(−r) − f(r). Notice that g̃ is L-Lipschitz and 2 r + 
2
c
L -periodic. Finally, let g : 

[−π, π] → R defined as 
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2Lr + c 2Lr 
f = ≤ . 

2π π 

 

  
4f 2f 

sup |g(x) − rn(x)| ≤ 2 + fπ − log
πn n 

log n 
x∈[−π,π]

≤ 3 1 + 2L2 r 2 

n 

� �

    � �        � �    L L 
sup f(x) − rn x ≤ sup g̃(x) − rn x = sup |g(x) − rn(x)|

f fx∈[−r,r] x∈[−r− c ,r+ c ] x∈[−π,π]
2L 2L 

  LN NL 
i(wk x+bk) ibk iwk x i0T x uke 

T 
+ b = uke e 

T 
+ b · e 

k=1 k=1 

We have that g is 2π-periodic and f-Lipschitz for
 

Therefore, we can apply Lemma B.7 to g. This gives us a (real-valued) trigonometric polynomial 

rn(t) = n ikt such that =−n bke

for n ≥ 2. Since 

the thesis follows. 

To conclude we make some remarks about shallow Fourier networks. Note that a generic 

shallow Fourier network fN with N units can be represented as 

NL 
kf(x) = uke 

iwT x . 
k=1 

(B.25) 

Indeed we have that 

for any b, bk ∈ C. Let FN
f be the space of networks as in equation (B.25). Notice that a universal 

approximation theorem holds for shallow Fourier networks as well. This is because the univer

sal approximation theorem holds for shallow networks with activation σ(t) = cos(t) and since 
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� �
n + k − 1 

. 
k  

� � � �     
� �� �  

n
k 

nL k L I pj
iwj x pj iwj xfk(x) = uj e 

T 
= uj e 

T 

p1, . . . , pnj=1 p1+···+pn =k j=1 L I npj i( j=1 pj wj )k 
n

T 
x = u e .jp1, . . . , pn 

p1+···+pn =k j=1 

    
f : x ∈ Rd  → γT g WT h UT x ∈ C , 

cos(t) = (eit + e−it)/2, the thesis follows. Finally, the following lemma will be used in the proof 

of Theorem 3.6. 

Lemma B.9. If f is a (real-valued) shallow Fourier neural network, then so is fk, for k non

negative integer. Moreover, if f has n units, then the number of units of fk is upper bounded 

by 

n iwj xProof. Let f(x) = j=1 uj e 
T 

be a shallow Fourier neural network. Then, by the multinomial 

formula, we have that 

Clearly, if f is real-valued, so is fk. Finally notice that by the formula above, the number of units 

of fk is upper bounded by |{(p1, . . . , pn) : p1 + · · · + pn = k}|. 

B.2.4 poly(d) upper bounds for two-hidden-layers networks 

Consider a two-hidden-layers neural network f defined as 

where h : Rp → Rp and g : Ro → Ro are, respectively, component-wise 1-Lipschitz and (1, α)

Holder activation functions, and U ∈ Rd×p, W ∈ Rp×o , γ ∈ Co. We wish to approximate f with 

a one-hidden-layer neural network with a given activation σ satisfying Assumption 1.2, for some 

constant νσ > 0. We start by proving a result for approximation by shallow Fourier networks at a 

poly(d) rate. 
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     f − fN
f ≤ c 

K,∞ 

 

�� � �� � � α�11 1 iγi2iWi2 
1 ∞(1 + 2C2)29 · 4
 2 · 16
 α1 c
α α 

and
 m =
 α 
1 2iγi1 

iγi
 + M
n =
 ,
2 21+c
α c
 α 

      C = sup iUT xi∞ and M = sup WT h UT x ∞ 
. 

x∈K x∈K 

    �� � �  
T sup vν x 

x∈K 
≤ πmn and |bν | ≤ 2iγi1

(
 α1 
αc
 

(4npHiWiF,∞)m1 + + M
 
2iγi1 

Proposition B.10. Let K ⊂ Rd be a compact set. There exist fN ∈ FN
f such that 

with 
NL 

f f iv
N (x) = bν e 

T
ν x ,
 

ν=1 

for 

N = (2np + 1)m 

with 

where we denoted 

Moreover fN
f can be chosen such that it holds 

(B.26) 

where H = supx∈[−C,C]d ih(x)i∞.
 

Proof. Let qn
j given by Lemma B.8 to approximate hj over [−C, C] and
 

pL 
(n) j T q (x) = wk,j q (uj x)k n

j=1 
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pL 
(n) T j T T qk (x) − wk h UT x ≤ |wk,j | qn(uj x) − hj (uj x)
 

j=1
 

log n .≤ 3iWi∞ 1 + 2C2 = iWi∞(1 + 2C2)cn 
n 

                    (n) (n) T T . 
q (x) ≤ q (x) − w h UT x + w h UT x ≤ iWi∞(1 + 2C2)cn + M = L . k k k k 

 

      
                

oL 
T k (n)|f(x) − fn,m(x)| ≤ |γk| gk(wk h(U

T x)) − pm(q (x))k 
k=1
o oL L 

T n (n) k (n)≤ |γk| gk(w h(UT x)) − gk(q (x)) + |γk| gk(q (x)) − p (q (x))k k k m k 
k=1 k=1

α 
T (n)≤ iγi1 sup wk h(U

T x) − qk (x) + iγi1cm 
k∈[o] 

≤ iγi1iWiα c α + iγi1cm .∞(1 + 2C2)α n 

c iγi1iWiα 
∞(1 + 2C2)α cn

α ≤ 
2 

1 
9 · 4α iγi2iWi∞2 (1 + 2C2)

2 

n ≥ 1
2 . 
cα 

for k ∈ [o]. We have that
 

for x ∈ K. It holds that qk 
(n) is a real-valued shallow Fourier network with (2n − 1)p terms and 

first layers weights given by πk uj for k ∈ [−(n − 1), n − 1]. Moreover, it holds that 
C 

k m βkLet pm(t) = h=0 ht
h given by Corollary 3 to approximate gk over the interval [−L, L] and cm 

the relative error. Let then 
oL 

fn,m(x) = γkpm
k (qk

n(x)) . 
k=1 

It holds that 

It holds that 

as long as 

(B.27) 
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c iγi1cm ≤ 
2
 

� � � �   1
1
 

12iγi
 α 12iγi
 α 

iWi∞(1 + 2C2)cn 
1
 1
 m ≥ L
 + M
=
 .
 

c c  
  1
1
 

2 · 16
 2 · 16
1
 1
α α α 
Lα =
 iWi∞(1 + 2C2)cn 

α 
1
 

α 
1
m ≥
 iγi
 iγi
 + M
2
 

c
1+
2
 
α

1+c
 α 

  
    |βk| ≤ max 2mLα−k, Lα + |g(0)| ≤ 2m(1 + Lα) + |g(0)| 

= 2m 1 + iWi∞(1 + 2C2)cn + M 
α 

+ |g(0)| . 

� � � �  � � � �(

1
 1
1
 

12iγi
 2iγi1 
α αc
 1
 

α1
 .
 m ≥
 + M = 6
 1 + M
 
2iγi1c
 c
 

α 

� � 1
 
 α1
 
2 · 16
 α1
α c
 iγi
α 

1
m ≥
 + M
 
1+c

2
 
α 2iγi1 

 

Similarly 

as long as
 

k m βkMoreover, by Lemma B.6, pm(t) = h=0 ht
h can be chosen with 

such that its coefficients βh
k , k ∈ [m], are bounded by 

Notice that we can assume g(0) = 0 without loss of generality. Therefore 

sup|f(x) − fn,m(x)| ≤ c 
x∈K

as long as (B.27) holds and 

(B.28)


If we further assume that
 

(
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    � �
�

� 
α1 1 � � 1 αα α αIγI1 2�γ�1 

+M 

1 +
 


 
1 
α1+ 2·16 

1+ 2 
α 

c
 
βh
k ≤ 2 + M
 

2iγi1 

�  �� � (

� � � �Lm (2n − 1)p + k − 1 (2n − 1)p + m 
N = = 

k m 
k=0 

1 
= ((2n − 1)p + k + m) · · · ((2n − 1)p + 1) 
m!


≤ ((2n − 1)p + 1)m .
 

p n−1L L πk 
sk,j uj

C 
j=1 k=−(n−1)   

    π(n − 1) 
vν
T x ≤ m max|uj

T x| ≤ mnπ . 
C j∈[p] 

we can also assume that 

for k ∈ [m]. Finally, notice that, by Lemma B.9, fn,m is a shallow Fourier neural network with 

number of units upper bounded by 

Therefore, it holds that 

inf
 
fN ∈Ff

N 

sup 
x∈K

|f(x) − fN (x)| ≤ c 

as long as 

N ≥ (2np + 1)m 

with n and m given by (B.27) and (B.28) respectively. Finally, notice that the first layer weights of 

fn,m are given by 

p n−1over all non-negative integers sk,j such that sk,j ≤ m. Therefore, if j=1 k=−(n−1) 

NL 
ivT

ν xfn,m(x) = bν e ,
 
ν=1 

then 
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� �   Lh 
o

j sl,jbν = γkβh
k wk,j (qn)l s 

k=1 

  

    (qj )l ≤ sup |hj (t)| .n
t∈[−C,C]

      C = sup iUT xi∞ , M = sup WT h UT x ∞ 
and H = sup ih(x)i∞ . 

x∈K x∈K x∈[−C,C]d 

�� � �  (
1 α 

16πνσ c α 

N ≤ iγi1mn(4np + 1)2m(HiWiF,∞)m 1 + + M , 
c 2iγi1 

On the other hand, the coefficients bk have the form 

p n−1 jfor all non-negative integers s = (sl,j )l,j such that j=1 l=−(n−1) sl,j = h ≤ m, where (qn)l 

denotes the l-th coefficients of qn
j . By Lemma B.7, we know that 

Therefore 

oL 
|bν | ≤ ((2n − 1)p)h sup |hj (t)|sl,j |γk||βk||wk,j |sl,j 

h
t∈[−C,C] k=1 

≤ [(2n − 1)pH iWiF,∞]miγi1iβiF,∞ . 

This concludes the proof. 

We can now conclude with a detailed version of Theorem 3.6. 

Theorem B.11. Let K be a compact set and 

It holds that 

inf if(x) − fσ (x)i ≤ c N K,∞
f σ ∈Fσ 
N N 

(B.29)

for some 
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�� � �
1 

1 
α 

α1 
α αiγi2iWi2 

1 ∞(1 + 2C2)29 · 4
 2 · 16
 c

and
 m =
 α 

1 2iγi1 
iγi
 + M
 .
n =
 2 21+c
α c
 α 

1 

    

4V BN 
n ≤ cσ 

c 

        c c 
f c T f s T sup (x) − cos(vk x) ≤ and sup (x) − sin(vk x) ≤ . 

x∈K
k 4NB x∈K

k 4NB 

where
 

Moreover, it is possible to choose fN
σ attaining (B.29) with m∞(fN

σ ) satisfying a bound similar to 

the one on N , for example m∞(fN
σ ) ≤ (1 + N2). 

Proof. Let fN given by Proposition B.10 such that 

c 
sup|f(x) − fN (x)| ≤ . 
x∈K 2 

We know that 
NL 

fN (x) = bke 
ivT

k x = fN
c (x) + ifN

s (x)
 
k=1 

where 
N NL L 

fN
c (x) = bk cos(vk

T x) and fN
s (x) = bk sin(vk

T x) 
k=1 k=1 

and |bk| ≤ B and vk
T x ≤ V for x ∈ K, where B and V are given by (B.26). Using the 

assumption on σ, we know that, for each k ∈ [N ], there exist shallow networks fk
c and fk

s with 

activation σ and number of units 

such that 
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N NL L 

f c T f s T sup|fN (x) − fN (x)| ≤ sup bk k (x) − cos(wk x) + sup bk k (x) − sin(wk x) 
x∈K x∈K x∈K

k=1 k=1 

N NL L 
f c f s≤ |bk| sup (x) − cos(wk

T x) + |bk| sup (x) − sin(wk
T x)k k 

k=1 x∈K 
k=1 x∈K 

c c c ≤ NB + NB = 
4NB 4NB 2 

   

8cσN ≤ · V · B · N . 
c 

    

Letting fN (x) = N bkf
c(x) + i N bkf

s(x) it holds that k=1 k k=1 k 

which implies that 

sup|fN (x) − f(x)| ≤ c . 
x∈K

Moreover notice that we can assume that all second layer weights of fN are real; indeed, if this 

is not the case, one can replace them by the real part, and upper bound above can only decrease. 

Finally, we have that the number of units of fN is given by 

Applying Proposition B.10 concludes the proof. 

B.3 Proofs of special cases 

B.3.0.1 Radial functions 

√ 
Let f(x) = ϕ(ixi) with ϕ 1-Lipschitz. Then it holds that f(x) = g(1T h(x)) where g(t) = ϕ( t) 

and h : Rd → Rd is defined as hi(x) = x2 
i . Clearly, supx∈Bd ixi∞ = 1, supx∈Bd 1T h(x) = 

1,2 1,2 

supx∈Bd ixi2 = 1 and supx∈[−1,1]d ih(x)i∞ = supx∈[−1,1]|x|
2 = 1. Moreover, i1i1 = d and g is 

1,2 

(1, 1/2)-Holder. Then, by applying Theorem B.11, we get the following. 
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� � �
d3 �

α 
5 (2+ ) 

(4 + c)2 

N ≤ νσα · d2 · α + 1 
c10 c4 

� �  �( α ( +2rIwI1IUIp,∞) 
νσβ 4pβ 2 �2 

N ≤ · (2 + c + 2riwi1iUip,∞)2 · riwi∞iUip,∞ + 1 
6 2c c

  

Corollary B.12 (Radial functions). It holds that
 

inf ifNσ − fiB1
d
,2,∞ ≤ c 

fσ ∈Fσ 
N N 

for some 

where α > 0 is a numerical constant. 

B.3.0.2 Shallow approximation of (3.1) 

iwT (Ux)Consider fw,U : x ∈ Rd  → e + for some w ∈ Rp, U ∈ Rp×d. Then Theorem B.11 implies 

the following. 

Corollary B.13 (Approximation of (3.1) by shallow networks). It holds that 

inf ifw,U − fN
σ iBd ,∞ ≤ c 

fσ r,p
N ∈F

σ 
N 

for some 

where β = αiwi2 · 1 + 2r2iUi2 2 and α is a numerical constant. 1 p,∞ 

B.3.0.3 Approximation bounds under the Gaussian metric 

For sake of simplicity in this section we consider approximation bounds for the function of interest 

iwT (Ux)+fw,U : x ∈ Rd  → e 
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inf E|fw,U(X) − fN (X)|2 

ffN ∈FN 

1 
2 

  .if − giσ,2 = E|f(X) − g(X)|2 
1 
2 . 

  √
 
P iXi2 ≥ σ d + t ≤ e − 

2t
2σ2 . 

  
n = 

36 
δ2 

iwi2 
1 1 + r 2iUi2 

2,∞ 
2 and m ≥ 

16 
δ3 

(δ + 2riwi1iUi2,∞) . 

for some w ∈ Rp, U = [u1| · · · |up]
T ∈ Rp×d . Notice that the following results can be naturally 

extended to any three-layer network target. We are interested in upper bounding the error 

where the expectation is taken over X ∼ N(0, σ2I). For sake of simplicity of notation, we denote 

√ 
It is a well known fact that Gaussian vectors concentrates in a ball of radius d. We recall a 

quantitative version of this fact in the following. 

Lemma B.14. Let X ∼ N(0, σ2I) a d-dimensional Gaussian vector. Then it holds that 

Thanks to Proposition B.10, the following holds. 

Lemma B.15. Let r > 0. Then it holds that 

inf 
fN ∈Ff 

N 

ifN − fw,UiBd 
r,2,∞ ≤ δ (B.30) 

as long as 

N ≥ (2np + 1)m 

where 

Moreover, under the same assumption, we can also assume that the function fN that satisfies (B.30) 
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� � � �K(1+( log p 

1 d )
s
)(1+ 

�
1 
s )(1+IwI1s ) 

N ≥ Kp 1 + (1 + iwis 
1) cs 

− dt
2 

2ifN − fw,Ui2,σ ≤ δ + e (1 + ifN i∞) 

�   � 1 (δ+2rc)
72p 2 2 2 δ3 

N ≥ c 1 + r + 1 . 
δ2 

also satisfies
 

ifN i∞ ≤ N(2 + δ + 2riwi1iUi2,∞)(4npriwi∞iUi2,∞)m . 

Thanks to these two lemmas, the following proposition follows. 

Proposition B.16. Let σ = d−1/2 and assume that iUi2,∞ ≤ 1. Then it holds 

inf ifN − fw,Uiσ,2 ≤ c	 
ffN ∈FN 

(B.31)

as long as 

where K > 0 and s ≥ 1 are some numerical constant. 

Proof. Let c = iwi1. First, notice that ifw,Ui∞ = 1. Let χr(x) = l{ixi2 ≤ r} and fN given 

by Lemma B.15 for a certain δ > 0. Then it holds that 

ifN − fw,Uiσ,2	 ≤ i(fN − fw,U)(1 − χr)iσ,2 + i(fN − fw,U)χriσ,2 

≤ ifN − fw,UiBd + P (ixi2 > r)(ifN i∞ + ifw,Ui∞) . 
r,2,∞ 

If r = 1 + t for t > 0, it follows 

as long as 
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�       
  

16 (δ+2rc) 1672p δ3 pr (δ+2r)2 2 δ32 2 3 2ifN i∞ ≤ (2 + δ + 2rc) c 1 + r + 1 144 c 1 + r 
δ2 δ2 

32 (δ+2rω)p δ3 
≤ (2 + δ + 2rω) 144 

δ2 
ω3 r(1 + r 2)2 + 1 

�

�

    �

  �

256 ( +2ω+2ωt)p 2 �3 
ifN i∞ ≤ (4ω + c + 2ωt) 576 ω3(1 + t) 1 + (1 + t)2 + 1 

2c
K ( +ω+ωt) 

≤ K(c + ω + ωt) K
p
ω2t5 + 1 �3 

. 
2c

− dt
2 c 

2e (1 + ifN i∞) ≤ 
2 

�   �
�

  dt2 K p c − log(1 + K(c + ω + ωt)) − 
3 
(c + ω + ωt) log K 

2 
ω2t5 + 1 + log ≥ 0 . 

2 c c 2 

  p pω2 pω2 √ 
log K ω2t5 + 1 ≤ log 1 + K + 5 log t ≤ log 1 + K + 5 t 

c2 c2 c2 

� � � �

Moreover, one can assume
 

where ω = max(1, c). Let δ = 
2 . If t ≥ 1, it holds that 

In the equation above above and in the following, K denotes a (large enough) numerical constant. 

Therefore 

(B.32)

as long as 

dt2 p K ( +ω+ωt) c − log 1 + K(c + ω + ωt) K 
2 
ω2t5 + 1 �3 

+ log ≥ 0 . 
2 c 2 

Since log(1 + Csα) ≤ log(1 + C) + α log(s) if s ≥ 1, C > 0 and α > 0, the above is implied by 

Since 

log(1 + K(c + ω + ωt)) ≤ K(c + ω + ωt) 

and 
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dt2 

− α − βt1/2 − γt − ηt3/2 ≥ 0 
2 

� �

� �
K pω2 c 

α = K(c + ω) + 
3 
(c + ω) log 1 + K 

2 
− log > 0 , 

c c 2 
K 

β = 
3 
(c + ω) > 0 , 

c
K pω2 

γ = Kωt + 
3 
ω log 1 + K 

2 
> 0 , 

c c

K 
η = ωt > 0 . 

c3 

� �2
α + β + γ + η 

t ≥ 1 + 4 . 
d 

� � � � �
�
� ��

K⎛ ⎞ +c 
2 

d4 �3 1+(α+β+γ+η )
Kp α + β + γ + η 2 

N ≥ ⎝ (1 + c)2 1 + 4 + 1 ⎠ . 
c2 d 

equation (B.32) holds if 

where 

It follows that eq. (B.32) holds if 

It follows that the error bound (B.31) holds as long as 

The thesis follows. 

B.3.1 Extension to generic L-layers networks 

The results presented in the previous section can be generalized to hold for approximating generic 

multi-layer neural networks. In this section we present an analogous result to Theorem 3.6 for this 

more general case. Consider a multi-layer neural network f defined as 

f : x ∈ Rd → x(L)(x) ∈ C 
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(L+1)x(k)(x) = σ(k)(A(k)x(k−1)(x)) for k ∈ [L] and x(L+1)(x) = a

T 
x(L)(x) , 

� � � � L−1 
CL(1+ 1 )1 � 

N ≥ 2LC 1 + d12c

where x(L) is defined by recursion by x(0)(x) = x, 

where A(k) = [a1
(k)| · · · |a(k)

]T ∈ Rdk×dk−1 for k ∈ [L] (with d0 = d), a(L+1) ∈ CdL and σ(k) :dk 

Rdk 1→ Rdk are 
6 -Lipschitz component-wise activation functions and verify σk(0) = 0 for k ∈ [L]. 

In the following we also assume that iA(k)i∞ ≤ 1 for k ∈ [L] and iaL+1i1 ≤ 1. Note that these 

assumption can easily be relaxed, but we adopt them here for sake of simplicity. 

Proposition B.17. Let f as above. It holds that 

inf if − fN iBd ≤ c 
1,∞,∞ 

fN ∈Ff 
N 

as long as 

where C is a numerical constant. 

Before proving the above proposition, we prove two preliminary lemmas. 

Lemma B.18. Let W = {wc} ⊂ Rd and h : Rd → Rp such that hj is a shallow Fourier c∈[K] 

neural networks with first layer weights given by W , for all j ∈ [p]. Consider q : Rp → Rm of the 

form 

q(x) = Bσ(x) 

where σ : Rp → Rp is a component-wise polynomial activation function of degree at most D and 
.

B ∈ Cm×p. Then there exists V ⊂ Rd finite such that f = q ◦ h is such that fj is a Fourier neural 

nets with first layer weights given by V for each j ∈ [p] and such that 

|V| ≤ (2K)D . 
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� �lp D p D KL L L L L 
iwν

T xfj (x) = bjk αk,l(hk(x))
l = bjk αk,l βk,ν e . 

k=1 l=0 k=1 l=0 ν=1 

� � � �DL K + l − 1 K + D 
= ≤ (K + 1)D ≤ (2K)D . 

l D 
l=0 

  y(k)(x) = p k (A(k)y(k−1)(x)) for k ∈ [L]Nk 

T(L+1)(x) = (L+1) (L)(x)y a y

�

 

Proof. The functions fj have the form 

By Lemma B.9, we see that each fj is a Fourier neural network with the same set of first layer 

weights of size at most 

This concludes the proof. 

Lemma B.19. Consider the same assumption as Proposition B.17. Then, there exists a polynomial 

(L+1)(x) ∈ CfN1,...,NL : x ∈ Rd → y

given by the recursion y(0)(x) = x, 

where pN
k 

k 
are component-wise polynomial activation functions of degree Nk, such that 

if − fN1,...,NL iB1
d
,∞,∞ ≤ c (B.33) 

as long as Nk ≥ L + (L − 1) for k ∈ [L]. In particular, f is a polynomial of degree L
k=1 Nk. 

Proof. We can show this by induction over L. First, consider the case L = 1. By Lemma B.5, for 
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      (1) (1) (1)
pN,j ((ai )T x) − σj ((aj )

T x) ≤ 
N 
1 

      
    (2))T pN (A

(1) (2))T σ(1)(A(1) 1 
(a x) − (a x) ≤ . 

N 

      (L−1)
x (x) − f j (x) ≤ δj N1,...,NL−1 

      (L)
(aj )T fN1,...,NL−1 (x) ≤ 1 + δ , 

      1 + δ(L) (L) (L)
pN,j ((aj )T fN1,...,NL−1 (x)) − σj ((aj )T fN1,...,NL−1 (x)) ≤ . 

N 

each j ∈ [d1], there exist polynomials pN,j : R → R of degree N which verify 

(1)
)Tsince (ai x ≤ 1 by assumption. Since ia(2)i1 ≤ 1, it follows that 

This implies the thesis for the case L = 1. Now consider the induction step, that is, assume that, 

for every δ > 0 and j, there exists a certain f j such that N1,...,NL−1 

as long as Nk ≥ L−1 + (L − 2) for k ∈ [L − 1]. Notice that this implies that 
δ 

dL−1where fN1,...,NL−1 = (fN
1 
1,...,NL−1 

, . . . , fN1,...,NL−1 
). Therefore for each j ∈ [dL], by Lemma B.5, 

there exist polynomials pN,j of degree N such that 

Let then fN1,...,NL−1,N be defined as 

NL 
(L+1) (L)

fN1,...,NL−1,N (x) = aj pN,j ((aj )T fN1,...,NL−1 (x)) . 
j=1 
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TfN1,...,NL−1,N (x) − f(x) ≤ fN1,...,NL−1,N (x) − aL+1σ

L+1 fN1,...,NL−1,N (x) 

T σL+1+ aL+1 fN1,...,NL−1,N (x) − f(x) 

1 + δ ≤ + δ . 
N 

�

1 + L−1 c L 
N ≥ L = + (L − 1) . 

c
L 

      (1) (1) (1)
σ ((a )T x) − qN1,j ((a )T x) ≤ √ 

C 
j j j N1 

    (A(1)qN1 x) ≤ 1 .∞ 

Since ia(L+1)i1 ≤ 1, it holds that 

If δ = L
L 
−1 c then equation (B.33) holds as long as 

This concludes the proof of the lemma. 

Proof of Proposition B.17. It holds that 

f(x) = g(σ(1)(A(1)x)) 

where g is a (L − 1)-hidden-layers neural network with input dimension d1. By Lemma B.7, for 

every δ > 0 and j ∈ [d1], there exists Fourier networks qN1,j (x) with 2N1 − 1 units such that 

where C > 0 is a numerical constant. Notice that this implies that, for N1 ≥ 4C2, it holds 

Now, we can approximate g with a polynomial neural network gNL,...,N2 as given by Lemma B.19. 
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�

 
�

 
  �L 

k=2 NkN = 2LN1d1	 

      T(L+1) L A(L) L−1 2	 (A(2)gNL,...,N2 (x) = a g g A(L−1) · · · gN2 
x)NL NL−1 

In particular, for any δ > 0, there exist gNL,...,N2 such that 

sup |gNL,...,N2 (x) − g(x)| ≤ δ 
x∈[−1,1]d

as long as Nk ≥ L−1 + (L − 2) for k ∈ [2, L]. It follows that 
δ 

gNL,...,N2 (qN1 (A
1 x)) − f(x) ≤ δ + √	 

C
. 

N1 

(A(1)Let fN (x) = gNL,...,N2 (qN1 x)). By choosing δ = c/2, it holds that 

sup |fN (x) − f(x)| ≤ c 
x∈[−1,1]d

≥ 2L−1	 4as long as Nk + (L − 2) for k ∈ [2, L] and N1 ≥ C2 1 + . We claim that fN is a 

Fourier network with at most 

2 

(B.34) 

units. We can prove this by induction over L ≥ 2. Remember that gNL,...,N2 is is the form 

kwhere gNk 
is a component-wise polynomial of degree at most Nk, for k ∈ [2, L]. We start by the 

(A(1)case L = 2. Notice that each component of A(2)qN1 x) is a Fourier network with the same 

set of first layer weights, of size at most (2N − 1)d1. Then, by Lemma B.18, we have that each 

component of 

f2 = 
. 
A(3) 2 (A(2) (A(1)(x) g	 x))N2,N1 N2 

qN1 
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    �L−1 NL �L 
k=2 Nk

k=2 k=2 Nk2 · 2L−2(2N1 − 1)d1 = 2NL 2(L−2) 
�L−1 Nk ((2N1 − 1)d1) 

is a Fourier network with the same set of first layer weights of size at most 

(2(2N1 − 1)d1)
N2 . 

Finally, consider the induction step. By the assumption hypothesis, the function 

fL−1 = 
. 
A(L) L−1 (A(L−1) 2 (A(2) (A(1)

NL−1,...,N1 
(x) gNL−1 

· · · g qN1 x)))N2 

is such that each component is a Fourier network with the same set of first layer weights of size at 

most �L−1 
k=2 Nk2L−2(2N1 − 1)d1 . 

Then, by Lemma B.18, the function 

T(L+1) L (fL−1fN (x) = a g (x))NL NL−1,...,N1 

is a Fourier network with at most 

which implies equation (B.34). Plugging in the lower bounds on Nk in terms of c, the thesis 

follows. 

B.3.2 Fixed-dimension approximation 

The results of Section 3.3 on fixed-threshold approximation can be complemented by the following 

result on fixed-dimension approximation. The proposition below is a straight-forward generaliza

tion of Theorem 3 in [SES19]. 

161
 



�       ∈ Sd−1 P d TN(d, k, c) = sup N ≥ 1 : ∃ w1, . . . , wN : sup k wi wj ≤ c 
i=j 

�

�     d 
N(d, k, c) ≥ sup N ≥ 1 : ∃ w1, . . . , wN ∈ Sd−1 : sup wi

T wj ≤ 1 − 
i kc4/d 
=j 

 �

  

Proposition B.20. Let σ be an activation satisfying Assumption 1. Then there exists a constant 

β > 0 such that for any f : B1
d
,2 → C 1-Lipschitz function and c > 0 there exists a network 

fN ∈ FN
σ such that 

if − fN iBd ≤ c 
1,∞,∞ 

−6for some N ≤ 2 + βd7(βc−1)
d 
c . 

Proof. The result is proved by noticing that the proof of Theorem 3 in [SES19] actually holds for 

any function f as in the statement. Moreover, using Assumption 1, fN can also be chosen so that 

an equivalent bound holds for m∞(fN ). 

B.4	 Proofs related to spherical harmonics analysis of shallow 

networks 

B.4.1	 Low-coherence zonal harmonics frames 

In this section, we wish to quantify how much incoherent can a frame composed of zonal harmonics 

be. More specifically, we wish to find a lower bound for 

�

for c ∈ (0, 1). 

Lemma B.21. It holds that 

�

for k > d ≥ 5 and 
k
d d/4 ≤ c < 1. 
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    � �� �(d−2)/2
1 d − 1 4 

Pk
d(t) ≤ √ Γ 

π 2 k(1 − t2) 

  x−1x 
Γ(x) ≤ 

2 

    � � � �
� � � � � �

(d−3)/2 (d−2)/2
1 d − 1 4 

Pk
d(t) ≤ √ 

π 4 k(1 − t2) 
−1/2 (d−2)/2 (d−2)/2

1 d d d ≤ √ ≤ 
π 4 k(1 − t2) k(1 − t2) 

    
d 4/d≤ c 

k(1 − t2) 

 
d |t| ≤ 1 − . 

kc4/d 

�     �

Proof. We recall that it holds
 

for d ≥ 2 and t ∈ (−1, 1) (cfr. eq. (2.117) in [AH12]) and that 

for x ≥ 2. Therefore it holds that 

for d ≥ 5 and |t| < 1. In particular, for c ∈ (0, 1), it holds that P d(t) ≤ c ifk 

that is if 

The thesis follows. 

Define 

N(d, δ) = sup N ≥ 1 : ∃ w1, . . . , wN ∈ Sd−1 : sup wi
T wj ≤ δ 

i�=j 
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�  
d 

N(d, k, c) ≥ N d, 1 − . 
kc4/d 

�

� � � �
d

1 {wi}Ni=1 = c ∈ ±√ : c1 > 0 
d 

    2 
max wi

T wj = 1 − . 
i d=j 

� �
2 ≥ 2d−1N d, 1 − . 
d 

  
≥ 2d−1N d, k, 2−d . 

�

for δ ∈ (0, 1). The previous lemma says that
 

Example 9. Taking 

(B.35)

it holds that N = 2d−1 and 

�

Therefore 

Taking c = 2−d, it holds that, if k ≥ 8d2, then 

Using this fact it is possible to explicitly construct a high energy sparse function. 

Lemma B.22. Take k ≥ 16d2 even and let 

2d−1L 
ˆ (Nd)1/2P d TP (x) = βd k k (wi x) 

i=1 

with βd = 2(2d + 2)−1/2 and wi as in equation (B.35). Then iP̂i2 = Θd(1) and it is exponentially 

spread, that is f∞,2(P̂ ) ≤ Od(2
−d/2) Nk

d . 
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( L 
2d−1 TiP̂i2 = β2 + P d wi wj2 d k 

i=j 

2 
2d−1 22d−2 − 2d−1 2−d≤ + 

2d−1 + 1 
2 

= 2d−1 + 2d−2 − 2−1 ≤ 3 
2d−1 + 1 

    
  

2 
2d−1 − 22d−2 − 2d−1 2−diP̂i2 ≥2 2d−1 + 1 

2 
= 2d−1 − 2d−2 + 2−1 ≥ 1 . 

2d−1 + 1 

    2d−1L 
)1/2 TiP̂i∞ ≤ βd(Nk

d sup Pk
d(wi x) . 

x∈Sd−1 
i=1 

        
�   �

�   �

2d−1L L 
sup Pk

d(wi
T x) =

1 
sup Pk

d(x T E)
 
x∈Sd−1 2
 

i=1 x∈Sd−1, x>0 
E∈{±d−1/2}d 

(d−2)/2L1 1 ≤ 1 + sup
2 x∈Sd−1 , x>0 √ 16d 1 − |xT E|2 

E∈{±d−1/2}d : |1T E|< d 

(d−2)/2 
1 1 2d−1 − 1 ≤ 1 + (2d − 2) ≤ 1 + 

4d−2 
≤ 2 . 

2 16d 1 − d−
d 
1 

Proof. It holds that
 

�

and that 

On the other hand, it holds that 

By definition of the vectors {wi}2
d−1 

, it holds i=1 

This proves the claim. 
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Appendix C 

Appendix to chapter 4 

In this appendix we make use of the following notation. For any random variables X and Y with 

values in Rd and Rm respectively, we denote ΣX = E XXT and ΣXY = E XYT . For every 

integer d ≥ 1, we denote by GL(d), O(d) and SO(d), respectively, the general linear group, the 

orthogonal group and the special orthogonal group of real d × d matrices. I denotes the identity 

matrix and e1, . . . , en the standard basis in Rd . 

C.1 Proofs of result on intrinsic dimension 

C.1.1 Proof of Lemma 4.2 

If σ is a polynomial of any degree k, then it holds that dim ∗ (σ, d) < ∞. Indeed, let σ(z) = 

a0 + a1z + · · · + akzk, for some ai ∈ R. If I = {i ∈ [0, d] : ai �= 0}, then 

LL . βFσ ⊆ RI [x] = {x  → αβx : αβ ∈ R} . 
k∈I |β|=k 
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� �
It follows that
 

kL d + i − 1 
dim ∗ (σ, d) = dim(Fσ) ≤ dim(RI [x]) = = O(dk) .1{ai=0}

i 
i=0 

�

This proves one implication. We prove the other one by contradiction. Assume now that σ is not 

a polynomial and that dim(Fσ) = q < ∞. Thanks to Theorem 1.1, for every continuous function 

g : Rd → R, any compact set K ⊂ Rd, and any ε > 0 there exist h ∈ Fσ such that 

sup |h(x) − g(x)| < ε . 
x∈K 

(C.1) 

Now, let g : Rd → R be a continuous function supported on a compact set C ⊂ Rd . We call 

Cc(Rd) the set of the real-valued continuous functions from Rd with compact support. Thanks to 

(C.1), we can find a sequence of compact sets {Km}m≥1 of Rd such that 

C ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km ⊆ · · · ⊆ ∪∞ Km = Rd 
m=1

and a sequence of functions {hm}m≥1 ⊂ Fσ such that 

ig − hmlKm iL2(X) = i(g − hm)lKm iL2(X) < 2−m 

In particular this implies that 

iL2(X) < 21−min{n,m} → 0ihnlKn − hmlKm 

as n, m → ∞, i.e. {hm }m≥1 is a Cauchy sequence in L2(X) and therefore it admits a limit lKm 

limm→∞ hmlKm = g ∈ L2(X). Since dim(Vσ) = q < ∞, there exists w1, . . . , wq ∈ Rn such that 

every h ∈ Fσ can be written as 

h(x) = u T γ(x) 
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2∞ NL L 

σ2 ⊗kE|Φ(X; θ)|2 = ˆ uiw ,k i 
k=1 i=1 F 

 

  NLL2(X)
min r ≥ 0 : Φ(·; θ) ∈ Fσ ≥ rk ∗ uiw ⊗k 

r S i 
i=1 

� �

for some u ∈ Rq, where γ(x) = (σ(w1 
T x), . . . , σ(wT x)). Let {um}m≥1 ⊂ Rq such that hm(x) = q 

uT γ(x). Thanks to the above calculations, we know that the sequence {ihmlK iL2(X)}m≥1 ism

bounded for any arbitrary compact set K ⊆ Rd. Since 

ihmlK i2 = u T Mum ,L2(X) m

where M = E γ(X)γ(X)T 
l{X∈K} ∈ Rq×q, this implies that the sequence {um}m≥1 is bounded 

(unless g = 0). Therefore (up to extracting a sub-sequence) we can assume that it has a limit 

u ∈ Rq. If we call h ∈ Fσ the function defined as h(x) = uT γ(x), it is easy to check (from 

the above calculations) that h = g in L2(X). This shows that Cc(Rn) ⊆ Fσ, which in turn 

implies that Fσ is dense in L2(X) (since Cc(Rn) is dense in L2(X)). But this is impossible, since 

dim(Fσ) = q < ∞ = dim(L2(X)). Therefore, it must hold dim(Fσ) = ∞. 

C.1.2 Proof of Lemma 4.3 and Lemma 4.4 

Assume that σ ∈ L2 
ϕ is a continuous activation (any polynomial σ satisfies this) and let X ∼ 

N(0, I) be a standard Gaussian random variable. Then, we can write σ(z) = ∞ 
k=0 σ̂khk(z), 

where hk is the degree-k Hermite polynomial. It follows that, for θ = (u, W), 

as shown in Lemma 1 in [MM18]. It follows that 
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� �

for all k such that σ̂k �= 0. This implies that 

dim∗(σ, d) ≥ sup rkS
∗ (k, d) 

k≥0 : σ̂k=0�

which implies that 

dim∗(σ, d) ≥ rk ∗ 
S(k, d) ≥ 

1
rkS(k, d)

2 

for any σ polynomial of degree k, and that 

dim∗(σ, d) = ∞ 

for any σ ∈ L2 
ϕ non-polynomial, thanks to Lemma C.10. For σ(z) = zk, it is also easy to see that 

NL 
dim∗(σ, d) ≤ rkS uiwi 

⊗k ≤ rkS(k, d) 
k=1 

C.2 Proofs of results regarding absence of spurious valleys 

C.2.1 Proof of Theorem 4.5 

First, notice that, under the assumptions of Theorem 4.5, the same optimal neural networks Φi(·; θ) 

could also be obtained using a generalized linear model, where the representation function has the 

linear form Φi(x; θ) = (θi, ϕ(x)), for some parameter independent function ϕ : Rn → Rdim ∗ (σ,X). 

The main difference between the two models is that the former requires the choice of a non-linear 

activation function σ, while the latter implies the choice of a kernel functions. This is the content 

of the following lemma. 

Lemma C.1. Let σ : R → R be a continuous function and let X ∈ R2(σ, n). Let Fσ denoteX 

the embedding of Fσ in L2 , and assume that Fσ is finite dimensional. Then there exists a scalar X X 
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product (·, ·) on Fσ and a map x ∈ Rn  → ϕ(x) ∈ Fσ such that X X 

(ψσ,w, ϕ(x)) = ψσ,w(x) = σ(w T x) (C.2) 

for all w ∈ Rn. Moreover, the function w ∈ Rn  → ψσ,w X∈ Fσ is continuous. 

Proof. For sake of simplicity, in the following we write ψw for ψσ,w and F for Fσ . Let ψw1 , . . . , ψwqX

be a basis of F . If ψw = q αiψwi and ψv = q βj ψwj , then we can define a scalar product i=1 j=1 

on F as 
qL .(ψw, ψv) = αiβi . 

i=1 

If we define the map x ∈ Rn  → ϕ(x) ∈ F as 

qL 
ϕ(x) = ψwi (x)ψwi , 

i=1 

then property (C.2) follows directly by the definition of the function ψw. Moreover, we can choose 

x1, . . . , xq such that ϕ(x1), . . . , ϕ(xq) is a basis of F . Now we need to show that, for i ∈ [q], the 
. map w  → (ψw, ψwi ) is continuous. Let M be the matrix M = (ψwj (xi))ij ∈ Rq×q and z(w) be 

.the vector z(w) = (ψw(xi))i ∈ Rq. Then (ψw, ψwi ) = (M−1z(w))i, which is continuous in w. 

This shows that the map w ∈ Rn  → ψw ∈ F is continuous. 

The non-trivial fact captured by Theorem 4.5 is the following: when the capacity of network is 

large enough to match a generalized linear model, but still finite, then the problem of optimizing 

the loss function (4.1), which is in general a highly non-convex object, satisfies an interesting 

optimization property in view of the local descent algorithms which are used to solve it in practice. 

Proof of Theorem 4.5. Thanks to Lemma C.1, there exist two continuous maps ϕ, ψ : Rn → 

Rq r Fσ , with q = dim ∗ T x) = (ψ(w), ϕ(x)) for every w, x ∈ Rn. ThereX (σ, X), such that σ(w

fore, every one-hidden-layer neural network Φ(x; θ) = Uσ(WT x) can be written as Φ(x; θ) = 
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U[ψ(W)]T ϕ(x), where, if W ∈ Rd×N , then ψ(W) ∈ Rq×N (that is ψ is applied row-wise). 

The proof of the theorem consists in exploiting the above ‘linearized’ representation of Φ to 

show that property P.1 holds (remind that this is equivalent to saying that the loss function has no 

˜spurious valleys). Given an initial parameter θ̃ = ( Ũ, W), we want to construct a continuous path 

t ∈ [0, 1]  → θt = (Ut, Wt), such that the function t ∈ [0, 1]  → L(θt) is non-increasing and such 

that θ0 = θ̃, θ1 ∈ arg minθ L(θ), where L(θ) = E[f(Φ(X; θ), Y)]. The construction of such a 

path can be articulated in two main steps. 

Step 1. The first part of the path consist showing that we can assume that rk(ψ(W̃)) = q without 

loss of generality. Let w1, . . . , wN ∈ Rd be the columns of ˜ W)) = r < q W; suppose that rk(ψ( ˜

(otherwise there is nothing to show) and that ψ(wi1 ), . . . , ψ(wir ) are linearly independent. Denote 

I = {i1, . . . , ir}, J = [N ] \ I = {j1, . . . , jN−r} and u1, . . . , uN the columns of Ũ. For j ∈ J , we 

can write 
rL 

ψ(wj ) = a kj ψ(wik ) for some a kj ∈ R . 
k=1 

If we define U1 such that (denoting u1,i the i-th column of U1) 

N−rL 
u1,i = ui + ak

i ujk for i ∈ I, u1,j = 0 for j ∈ J 
k=1 

˜ Ũ ˜ ˜then U1W = W. The path t ∈ [0, 1/2]  → θt = (2t U1 + (1 − 2t)Ũ, W) leaves the network un

changed, i.e. Φ(·; θ̃) = Φ(·; θt) for t ∈ [0, 1/2]. At this point, we can select w1,j1 , . . . , w1,jN−r ∈ 

Rn such that the matrix W1 with columns w1,i = wi for i ∈ I and w1,j for j ∈ J , verifies 

rk(ψ(W1)) = q. Notice that the existence of such vectors w1,jk , k ∈ [p − r], is guaranteed by 

the definition of q = dim ∗ (σ, X). The path t ∈ [1/2, 1]  → θt W)= (U1, (2t − 1)W1 + (2 − 2t) ˜

leaves the network unchanged, i.e. Φ(·; θ0) = Φ(·; θt) for t ∈ [0, 1]. The new parameter value 

θ1 = (U1, W1) satisfies rk(ψ(W1)) = q. 
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Step 2. By step 1, we can assume that rk( ˜ = q. Since the network has the form Φ(x; θ)W) = 

Rm×pU[ψ(W)]T ϕ(x) and since the function f is convex, there exists U∗ ∈ such that θ = 

(U∗ , W) ∈ arg minθ L(θ).˜ The proof is therefore concluded by selecting the path t ∈ [0, 1]  → 

˜θt = (tU∗ + (1 − t)Ũ, W). 

This shows that property P.1 holds and therefore it proves the theorem. 

C.2.2 Proof of Theorem 4.8 

The first step for proving Theorem 4.8 consists in extending the result of Theorem 4.5 to the case 

of one-hidden-layer linear neural networks Φ(x; θ) = UWT x with U ∈ Rm×N , W ∈ Rd×N with 

N < d and square loss functions L(θ) = EiΦ(X; θ) − Yi2. We start by pointing out a symmetry 

property of this type of networks: for every G ∈ GL(N) it holds that 

Φ(x; (U, W)) = UWT x = (UG−1)(WGT )T x = Φ(x; (UG−1 , WGT )) . 

This means that the map θ  → Φ(·; θ) is defined up to an action of the group GL(N) over the 

parameter space Θ = Rm×N × RN×d; the same remark holds for the loss function L(θ). We can 

therefore think about the loss function as defined over the topological quotient Θ/GL(N). We 

denote the orbit of an element θ = (U, W) ∈ Θ as 

[θ] = [U, W] = {G · θ = (UG−1 , WGT ) : G ∈ GL(N)} . 

If g is a real-valued function defined on Θ such that g(G·θ) = g(θ) for all G ∈ GL(N) and θ ∈ Θ, 

then one can equivalently consider g as defined on Θ/GL(N) as g([θ]) = g(θ); for simplicity we 

denote g[θ] = g([θ]). This is exactly the case for the loss function L(θ). In the proof of Theorem 

˜4.5, we describe how to construct a path from an initial parameter value θ̃ = ( Ũ, W) to a parameter 
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value θ1 = (Q(W1), W1), with rk(W1) = N and Q : Rd×N → Rm×N the function defined by 

Q(W) = ΣYXW(WT ΣXW)† ∈ arg min L(θ)|θ=(U,W) 
U 

(see Lemma C.11). Therefore, let θ̃ = (Q( ˜ ˜ W) = N , be an initial parameter. W), W) with rk( ˜

Since an optimal parameter is given by θ = (Q(W), W) for some W, we seek for a path in 

the form θt = (Q(Wt), Wt) with rk(Wt) = N for all t ∈ [0, 1]. This path must be such that 

t  → L(θt) is non-increasing. If we assume that ΣX = I, it holds 

L(θt) = tr(ΣY) − tr(MPWt ) 

where M is a positive semi-definite matrix and, for every matrix W, PW denotes the orthogonal 

projection on space spanned by the columns of W, that is PW = (WW†)T (see Lemma C.11). 

Therefore it is equivalent for the path θt = (q(Wt), Wt) to be such that the function 

.
t ∈ [0, 1]  → f(Wt) = tr(MPWt ) 

is non-decreasing. In particular, the function f is defined up to the action of the group GL(N) on 

Θ. Since we look for Wt of rank N , we can consider f as defined on G(N, d), the Grassmanian 

of N dimensional linear subspaces of Rd . The proof below for the linear one-hidden-layer case 

is articulated as follows. We first construct a path [Wt] ∈ G(N, d) such that [W0] = W], [W1][ ˜

maximizes f and such that the function t ∈ [0, 1]  → f [Wt] is non-decreasing (Lemma C.2). We 

then show that such a path can be lifted to a corresponding path Wt ∈ RN×d (Lemma C.3). Finally, 

we show that we can drop the assumption ΣX = I and the result still holds (Lemma C.4). 

Lemma C.2. Let [ ˜ = Then there exists a continuous path W] ∈ G(N, d) and assume ΣX I. 

t ∈ [0, 1]  → [Wt] ∈ G(N, d) such that [W0] = [ W̃], [W1] maximizes f and such that the function 

t ∈ [0, 1]  → f [Wt] is non-decreasing. 
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Proof. While it is geometrically intuitive that the results should hold, we derive a constructive
 

proof. We start by noticing that if [W] ∈ G(d, N) and w1, . . . , wN is an orthonormal basis of 

[W], then 
NL 

f [W] = wi
T Mwi . 

i=1 

(C.3) 

TMoreover, if M = d σivj v is the SVD of M, where σ1 ≥ · · · ≥ σd ≥ 0, then (C.3) can be 

written as 
d NL L 

f [W] = σj (vj , wi)2 . 
j=1 i=1 

j=1 j 

.In particular the maximum of f is obtained for [W] = [V] = [v1, . . . , vN ] (with some abuse of 

notation, we identify a subspace with one of its basis). To prove the result is therefore sufficient to 

show a path [Wt] from any [W0] = [ W̃] to [W1] = [V], such that the function t ∈ [0, 1]  → f [Wt] 

is non-decreasing. To do this we construct a finite sequence of paths 

[Wt
i] such that [W0

i ] = [Wi−1] and [W1
i ] = [Wi] 

for i ∈ [N ], with [W0] = [ W̃], [WN ] = [V] and 

i−1 i−1Wi = [v1, . . . , vi, wi+1, . . . , wN ] for i ∈ [N ] , 

j j j jwhere w = v1, . . . , w = vj , wj+1, . . . , w is an orthonormal basis of [Wj ], for j ∈ [0, N ].1 j N 

Moreover, the paths [Wt
i] are such that the functions t ∈ [0, 1]  → f [Wt

i] are non-decreasing. Such 

paths are defined as follows. Let i ∈ [0, N − 1] and consider 

i i i i[Wi] = [w1 = v1, . . . , wi = vi, wi+1, . . . , wN ] . 
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PWi vi+1 if PWi vi+1 = 0IPWi vi+1Ii u =
 

⎧ ⎪⎪⎨ ⎪⎪⎩
 
i+1 . 

iw o.w.i+1 

� � i 
i i vi+1 − µi+1ui+1 u (t) = (1 − (1 − µi+1)t)u + 1 − (1 − (1 − µi+1)t)2 · i+1 i+1 

1 − µ2 
i+1 

We define
 

�

Then we complete v1, . . . , vi, ui
i 
+1 to an orthonormal basis of [Wi]: 

i i v1, . . . , vi, ui+1, . . . , u .N 

i+1 iWe call wj = uj for j ∈ [i + 2, N ] and we define 

i+1 i+1 i+1[Wi+1] = [v1, . . . , vi, w = vi+1, wi+2, . . . , w ]i+1 N 

The path [Wt
i] is then obtained by moving ui

i+1 to vi+1 on a geodesic on the unit sphere Sd−1 ⊂ Rd , 

i.e. 

[Wi+1 i i i] = [v1, . . . , vi, u i+2, . . . , ut i+1(t), u N ] . 

where we defined 

for µi+1 = [ui
i 
+1]

T vi+1. The fact that the function t ∈ [0, 1]  → f [Wt
i+1] is non-decreasing can be 

proved by noticing that 

Ld
f [Wi+1] − f [Wi] = σj (u i (t), vj )2 

t i+1

j=i+1 

and by showing that the derivative of the RHS is greater or equal than 0. This concludes the proof 

of the lemma. 

W ∈ Rd×NLemma C.3. Let ˜ and assume ΣX = I. Then there exists a continuous path t ∈ 
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∈ Rd×N ˜[0, 1]  → Wt such that W0 = W, W1 maximizes f and such that the function t ∈ 

[0, 1]  → f(Wt) is non-decreasing. 

Proof. The only thing we need to prove in this case is that we can lift the paths [Wt
i] ∈ G(N, d) 

from the proof of Lemma C.2 to continuous paths Wt
i ∈ Rd×N . We first notice that if the basis 

i i i i i i{w1, . . . , w } and {w1, . . . , wi, ui+1, . . . , u } are defined as above, then we can assume (up to N N 

changing some signs) that they have all the same orientation, for all i ∈ [0, N ]. Therefore we can 

∈ Rd×N i i ∈ Rd×Ndefine the matrices Wi with columns w1, . . . , wN and the matrices Ui with 

i i i icolmuns w1, . . . , wi, ui+1, . . . , uN , for i ∈ [0, N ]. The paths Wt
i+1 are defined in the same way 

as in the proof of Lemma C.2. Notice that such paths go from W0 
i+1 = Ui to W1 

i+1 = Wi+1. It 

remains to construct paths from Wi to Ui. Consider the matrix 

Oi = Ui[Wi]T ∈ SO(d) . 

Notice that OiWi = Ui . In particular there exist Ai real skew-symmetric such that Oi = eA
i . 

Therefore the paths t ∈ [0, 1]  → Ui = etA
i 
Wi go from Ui = Wi to Ui = Ui. Moreover f(Ui)t 0 1 t

is constant in t (since the underlying linear subspace does not change). The only thing that remains 

to prove is that, given the matrix ˜ with columns w1, . . . , wN , there is a path from W ∈ Rd×N 

˜ Now, W0 was chosen as a matrix with orthonormal columns such that [ ˜W to W0 . W] = [W0]. 

˜ ˜Therefore if W = UΛO is the SVD of W with U = W0 , Λ = diag(σ1, . . . , σN ) ∈ RN×N (with 

σi > 0, i ∈ [N ]) and O ∈ SO(N), there exists A real skew-symmetric such that O = eA. Thus 

the path t ∈ [0, 1]  → Wt = W0Λ1−te(1−t)A is a path between W0 = ˜ = . ThisW and W1 W0 

concludes the proof of the lemma. 

Lemma C.4. Lemma C.3 holds even if we drop the assumption ΣX = I. 

Proof. For sake of simplicity we distinguish two cases.
 

Case 1: rk(ΣX) = d. Let K = (ΣX)
1/2 . X = K−1X is such that Σ ̃ = I. Therefore, if
 Then ˜ X 
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t ∈ [0, 1]  → θt = (Ut, Wt) is the path given by Lemma C.3 for the case X = X̃, the sought path 

(for X = X) is given by t ∈ [0, 1]  → (Ut, K−T Wt). 

Case 2: rk(ΣX) < n. In this case, if r = rk(ΣX), X belongs to a r-dimensional subspace 

of Rd (a.s.), call it V . If O ∈ Rd×r is a matrix with an orthonormal basis of V as columns, 

then OOT X = X (a.s.), and, if X̃ = OT X then X̃ ∈ Rr and rk(Σ ̃ ) = r. Therefore, if X

t ∈ [0, 1]  → θt = (Ut, Wt) is the path given by case 1 for X = X̃, the sought path (for X = X) 

is given by t ∈ [0, 1]  → (Ut, OWtO). 

This concludes the proof of non-existence of spurious valleys for the square loss function of 

linear one-hidden-layer neural networks Φ(x; θ) = UWT x. The fact that such proof does not 

require any assumptions on the dimensions of the layers d, N, m neither on the rank of the initial 

layers, allows us to prove non-existence of spurious valleys for the square loss function of linear 

neural networks of any depth L ≥ 1: 

Φ(x; θ) = WL
T 
+1 · · · W1 

T x (C.4) 

We start by proving a simple lemma. 

˜ ˜ ˜Lemma C.5. Let Ũ = M1 · · · Mn, where Ũ ∈ Rr0×rn and Mi ∈ Rri−1×ri . Suppose that t ∈ 

[0, 1]  → Ut is a given continuous path between U0 = Ũ and another matrix U1 ∈ Rr0×rn . If 

˜ri ≥ min{r0, rn} for all i, then there exist continuous paths Mt
i such that Mi 

0 = Mi and such that 

Ut = Mt 
1 . . . Mn

t . 

Proof. The statement can be proved by induction. If n = 1 there is nothing to prove. Assume 

now (by induction) that it holds for all decompositions of U0 with size less than n. Let r = rh = 

mini∈[n−1] ri and assume (without loss of generality) that rn = min{r0, rn}. We want to describe 

two paths t ∈ [0, 1]  → Vt ∈ Rr0×r , t ∈ [0, 1]  → Wt ∈ Rr×rn such that Ut = VtWt and 

M̃1 ˜ ˜ ˜Mh Mh+1 MnV0 = · · · , W0 = · · · . By operating as in step 1 in the proof of Theorem 4.5, 
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we can assume rk(W0) = rn. Moreover (up to adding a linear path in Vt) we can assume that 

V0 = U0W0
†. We can then define Vt = UtW0 

† and Wt = W0 for t ∈ (0, 1]. We thus factorized 

Ut as Ut = VtWt. By induction, we can assume that we can factorize Vt = M1 
t · · · Mh

t and 

= Mh+1Wt t · · · Mt
n. This concludes the proof. 

We can now conclude the proof of Theorem 4.8. 

Proof of Theorem 4.8. Consider a linear network Φ(x; θ) as in (C.4), where 

Wk ∈ Rdk−1×dk for k ∈ [L + 1] 

We select ds = mini∈[L] dk. Then the network can be written as 

W2W1 ˆ WTΦ(x; θ) = ˆ ˆ x where Ŵ2 = WL
T 
+1 · · · Ws

T 
+1, W1 = Ws

T · · · 1 (C.5) 

˜Now we want to prove property that given an initial parameter θ̃ = ( ˜ W1), there exists WL+1, . . . , 

a continuous path θt = (WL+1,t, . . . , W1,t) such that L(θt) is non-increasing and such that θ0 = θ̃

˜ ˜and L(θ1) = minθ L(θ). If we call Ŵi , i = 1, 2, the matrices defined in (C.5) for θ = θ, then 

by Lemma C.4 there exists a path ( ˆ t , ˆ t ) satisfying the above. Thanks to Lemma C.5, we can W2 W1 

decompose 

ˆ WT ˆ = WTW2 = WT · · · W1 · · · WT 
t K+1,t s+1,t, t s,t 1,t 

in a continuous way. Since ds was to chosen as the minimum, it also holds that 

min L(θ) = min L(θ) 
ˆ θ=(WL+1 ,...,W1)θ=(Ŵ2 ,W1) 

Therefore this is a suitable path and this concludes the proof of the theorem. 
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C.2.3 Proof of Theorem 4.9
 

˜Proof of Theorem 4.9. Let θ̃ = (ũ, W) be a starting parameter value. We aim to construct a 

continuous path t ∈ [0, 1]  → θt ∈ Θ starting in θ0 = θ̃ and such that L(θ1) = minθ L(θ) and 

such that the function t ∈ [0, 1]  → L(θt) is non-increasing. Such a path can be constructed in two 

steps. 

N d )TT ∗ ∗ ∗Step 1. Let A = ũkw̃kw̃ and let ukw (w be the SVD of A. We define the k=1 k k=1 k k

∗ ∗ ∗ ∗parameters value θ∗ = (u , W∗) where u = (u1, . . . , u d, 0, . . . , 0) ∈ RN and W∗ is the d × N 

matrix with columns wi 
∗ for i ∈ [d] and 0 for i ∈ [d +1, N ]. The first step consists in continuously 

˜ ∗mapping θ̃ = (ũ, W) to θ∗ = (u , W∗) with a path θt such that L(θt) is constant; the construction 

of such a path is detailed in Lemma C.6. 

Step 2. As noticed above, the network can be written as Φ(x; θ) = uT σ(WT x) = (A, M)F , 

where A = N ukwkw
T and M = xxT . The square loss L(θ) is convex in the parameter 

ū = (0, . . . , 0, ū1, . . . , ūd) and W be the d × N matrix with columns 0 for i ∈ [N − d] and w̄i for 

k=1 k 

A. Be Ā a minima of L as function of A and let d ūkw̄kw̄i=1 k 
T be the SVD of Ā; also let 

¯

˜i ∈ [N − d + 1, N ]. By the previous step we can assume that the initial parameter θ̃ = (ũ, W) is 

¯such that ũi = 0 and w̃i = 0 for i ∈ [d+1, N ]. Then the path θt = (1−t)(u, W)+t(ū, W) verifies 

property P.1. This indeed follows from the fact that Φ(x; θt) = (1 − t)(A, M)F + t(Ā, M)F and 

from the convexity of the loss L as function of A. 

This shows that property P.1 holds and so it concludes the proof of Theorem 4.9. 

To conclude the proof we just need to prove the following lemmas. 

Lemma C.6. Let θ = (u, W) be an initial parameter and θ∗ = (u ∗ , W∗) be as in step 1 of the 

proof of Theorem 4.9. Then there exists a continuous path θt from θ to θ∗ such that the loss L(θt) 

is constant (as a function of t). 
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Proof. Notice that we can assume u ∈ {−1, 0, 1}p. This can be done simply scaling (continuously) 

each column wk of W by |uk|. Assume first that u ∈ {±1}N . The general case (uk = 0 for 

some k) is addressed in Remark 9. The sought path θt can be constructed by iterating two steps 

(a finite amount of times). First we select a column wk and construct a continuous path that maps 

this column to one of the wi 
∗; then we orthogonalize (with respect to such wi 

∗) the rest of the 

columns wj , j �= k. These two steps are performed so that A never changes and therefore the loss 

is constant. The first step is described in Lemma C.7, while the second is detailed in Lemma C.8. 

∗ ∗ ∗At this point the parameter θ = (u, W) verifies ui = ui , wi = w and wj ∈ (span({w }))⊥ fori i 

j �= k. In particular it holds that 

d NL L 
∗ ∗ ∗ T uj wj (wj )

T = ukwkwk . 
j=1 j=1 
j j=k=i � �

Therefore, an induction step applied on the reduced parameter values 

u−k = (u1, . . . , u�k, . . . , uN ) 

and W−k = P[w1| . . . |wfk| . . . |wN ], where P = d ej (w ∗)T ∈ R(d−1)×d, concludes the j=1,j � j=i 

proof. The fact that the non-zero components of u and W coincide with the first d is not necessary, 

but we can clearly assume it to hold without loss of generality. 

Lemma C.7. The first step described in the Proof of Lemma C.6 can be performed when N > 2d. 

Proof. Let E+ = {k ∈ [N ] : uk = 1}, E− = {k ∈ [N ] : uk = −1} and N+ = |E+|, N− = |E−|. 

Accordingly we define 

∈ Rd×N+ ∈ Rd×N−W+ = [wk]k∈E+ and W− = [wk]k∈E− . 
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Notice that then we can write
 

A = W+W
T − W−W

T 
+ − . 

The main step of the proof is to observe that A (and therefore the loss) is invariant to the action 

of orthogonal matrices Q+ ∈ SO(N+) and Q− ∈ SO(N−). So, if Q+(t) (resp. Q−(t)) is a 

continuous paths in SO(N+) (resp. in SO(N−)) starting at the identity, acting on W as 

. .
W+(t) = W+Q+(t), W−(t) = W−Q−(t) , 

we have that 

A = W+(t)W+(t)
T − W−(t)W−(t)

T 

is constant for all t. Now, since N = N+ + N− > 2d, it follows that either N+ > d or N− > d. 

Assume without loss of generality that N+ > d. Since N+ > d, we can rotate the subspace 

generated by the rows of W+ so that its first column is 0. That is, there exist h ∈ Rp+ non-zero 

such that W+h = 0 and ihi2 = 1. It then suffices to choose a path Q(t) in SO(p+) whose first 

column equals h at t = 1. It follows that W+Q(1) has a first column equal to 0. We then set the 

corresponding u1 = 0, which does not change the loss, and finally set w1 to the desired eigenvector 

∗ w1. 

Lemma C.8. Assume that after the step in Lemma C.7, the first column of W+ (resp. W−) is 

given by wi 
∗. Then we can map all the other columns of W to be orthogonal to wi 

∗, while keeping 

A constant. 

Proof. To simplify the notation we assume, without loss of generality, that wi 
∗ = w1 

∗ and that 

W = [w ∗|w2| · · · |wN ] .1
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At 1

∗ (w1
∗ )T = u1,t w
 

N
L 
1 ∗ ∗ 1 ∗ ∗ T T+ uk (1 − t)2(w )2 w (w )T + (1 − t)w w̃k(w )T + w w̃ + w̃kw̃k 1 1 k 1 1 k k 

k=2 

⎡ ⎤ 

at⎢ 
= V ∗ 

bT
t ⎥⎦ (V ∗ )T , 

bt 

At ⎣ 
A2:d,2:d 

 

Now we want to construct a path 

ut = (u1,t, u2, . . . , uN ) 

Wt = [w1
∗|w2,t| · · · |wN,t] 

such that w2,1, . . . , wN,1 ∈ (span({w ∗}))⊥. To do this we simply take 1

. T ∗ ∗ wk,t = wk − t(wk w1)w1 . 

TIf At = N uk,twk,tw , we can show that there exists a choice of u1,t such that At = A for all k=1 k,t

t ∈ [0, 1]. It holds that 

1 . T ∗ 1 ∗where w = wk w and w̃k = wk − wkw . In particular k 1 1

∗ ∗ 1where V∗ = [w1, · · · , w ] ∈ O(d). Since N ukw w̃k = 0, it follows that d k=2 k 

NL 
bt = (1 − t) ukwk 

1 w̃k = 0 for all t ∈ [0, 1] . 
k=2 

If we take 
NL 

u1,t = λ1 − (1 − t)2 uk(wk
1)2 , 

k=2 
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it holds that 
NL 

at = u1,t + (1 − t)2 uk(wk
1)2 = λ1 for all t ∈ [0, 1] . 

k=2 

Therefore, At = A constant. This concludes the proof of the lemma. 

Remark 9. In the proof of Lemma C.6, we assumed that (after rescaling) u ∈ {±1}N . In general, 

it could be that uk = 0 for some k. In this case we can first map the corresponding vectors wk to 

0 and the map such uk to 1, without affecting the loss. 

C.3 Proofs of results regarding existence of spurious valleys 

C.3.1 Proof of Theorem 4.10 

We consider here the case m = 1, but the same proof can be extended to the case m > 1. We start 

by proving the following fact. 

Lemma C.9. Let σ : R  → R continuous and X ∈ R(σ, d). Define the spaces 

Fσ,+ . = {Φ(·; θ) : θ ∈ [0, ∞)N × Rd×N } ⊆ L2 
N X 

for N ≥ 1. If it holds that 

Fσ,+ ⊆ Fσ,+ (C.6)R+1 R 

for some R ≥ 1, then 2R ≥ dim∗(σ, X). 

Proof. Assume that equation (C.6) holds for a certain R > 0. Then, for every k ≥ 1, it holds that 

Fσ,+ ⊆ Fσ,+ 
k R 
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k 
k 

Fσ,+ Fσ,+ −Fσ,+Fσ = −Fσ,+ ⊆k j k−j R R 
j=0 j=0 

= Fσ,+ −Fσ,+ ⊆ Fσ,+ 
R R R −FR

σ,+ ⊆ F2
σ
R . 

 

  

This can be shown by induction over k, starting from k = R. Then, it holds that, for all k ≥ 1,
 

Since this holds for every k ≥ 1, then Fσ ⊆ F2
σ
R, which implies the thesis. 

We can now complete the proof of Theorem 4.10. We start by properly choosing a random 

¯ ¯vector (X, Y). Let X ∈ R2(σ, d − 1) a (d − 1) dimensional random variable and Xd ∈ R2(σ, 1) 

a one dimensional random variable. We consider X̃ = ZX̄, Xd = (1 − Z)X̄d and X = ( X̃, Xd), 

¯ ¯where Z ∼ Ber(1/2) and X, Xd, Z are independent. By hypothesis, N ≤ 2−1dim∗(σ, X̃). By 

S Fσ,+Lemma C.9, this implies that Fσ,+ . The random variable Y is taken to be Y = g1(X) −N N−1

g2(X), where g2 = βψσ,v ∈ Fσ,+ , β > 0, v = ed, and g1 = N αiψσ,vi ∈ Fσ,+ , α ∈ (0, ∞)N ,1 i=1 N 

vi ∈ (span({ed}))⊥ , i ∈ [N ], is such that 

inf E|f(X) − g1(X)|2 = c > 0 . 
f ∈Fσ,+ 

N −1 

We define 

F(
σ
N−1,1) = f = f1 − f2 : f1 ∈ Fσ,+ , f2 ∈ F1 

σ,+ .N−1

Notice that, for every path θ : t ∈ [0, 1]  → θt ∈ Θ such that Φ(·; θ0) ∈ FN
σ,+ and Φ(·; θ1) ∈ 

Fσ , there exists t0 ∈ (0, 1) such that Φ(·; θt0 ) ∈ Fσ,+ Consider the lifted square loss (N−1,1) N−1. 

function L : FN
σ → [0, ∞) defined as 

L(f) = E|f(X) − g(X)|2 for f ∈ Fσ .N 
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L(N−1,0) = min E|f(X) − g1(X)|2 + 2 min {E[f(X)g2(X)]} + E|g2(X)|2 

σ,+ σ,+f∈F f ∈FN−1 N −1

≥ c + L(N,0) 

  
L(N,0) = min E|f(X) − g1(X)|2 + 2 min {E[f(X)g2(X)]} + E|g2(X)|2 

σ,+ σ,+f∈F f ∈FN N 

≥ β2 E|ψσ,v(Xd)|2 . 

M + mini∈[N ] α
2 
i E|ψσ,vi (X)|2 

c ≥ M and β2 ≥ .
E|ψσ,v(Xd)|2 

We want to show that
 

. . .
L(N−1,0) = min L(f) > L(N,0) = min L(f) > L(N−1,1) = min L(f) . 

σ,+ σ,+ f∈Fσ 
f∈F f ∈F (N−1,1)N−1 N 

It holds that 

and that 

Finally, it holds that 

L(N−1,1) ≤ min αi 
2 E|ψσ,vi (X)|2 . 

i∈[N ] 

Given M > 0, up to multiply g1 by a positive constant, there exists β > 0 such that 

To finish the proof, consider U = {θ = (u, W) ∈ Θ : u ∈ (0, ∞)N } and θ∗ ∈ U such that 

L(θ ∗ ) = min L(θ) . 
θ∈U 

Then, (by continuity of L) there exists a neighborhood θ∗ ∈ Ω ⊂ U such that supθ∈Ω L(θ) ≤ 

L(θ∗) + M/2. The set Ω then verifies the statement of the theorem. 
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�
k(x, y) = ψw(x)ψw(y) dS(w) . 

W 

� � �

� � �

 

C.4 Proofs for Section 4.5.1 

C.4.1 Proof of Theorem 

If we denote by dµ the probability distribution of X and S the uniform measure over Sd, the 

continuous function 

ψ : (w, x) ∈ Sd × Rd  → ψw(x) = σ(w T x) 

belongs to L2(S ⊗ µ). We consider the kernel associated with the neural network architecture 

(C.7) 

The above defines a continuous symmetric, positive semi-definite kernel k, along with H2, the 

RKHS associated, and the integral operator Σ : L2(µ) → H2 ⊆ L2(µ) defined as 

f  → Σf : x  → f(y)k(x, y) dµ(y) . 
Rd 

The operator Σ admits a spectral decomposition in L2(µ): Σek = λkek for an orthonormal basis 

{ek} of L2(µ) and non-increasing sequence of non-negative eigenvalues {λk}k≥1. Moreover the k≥1 

RKHS H2 is dense in L2(µ) (see Lemma C.13), which is equivalent to have λk > 0 for all k ≥ 1. 

The expectation in (C.7) provides a singular value decomposition for Σ in terms of functions in 

L2(S). Indeed, given g ∈ L2(S), the linear operator T : L2(S) → L2(µ) defined as 

g  → Tg : x  → g(w)ψw(x) dS(w) 
Sd 

satisfies Σ = TT ∗ . It follows that there exists an orthonormal basis of L2(S), {fk}k≥1 such that 
1/2 ∞ 1/2

Tfk = λk ek and therefore ψw = k=1 λk fk(w)ek. Finally, it can be shown [Bac17a] that in 
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�

�

NL1 
kW(x, y) = σ((x, wi))σ((y, wi)) ,

N 
i=1 

fact H2 = Im(T ), and thus H2 consists of functions f that can be written, for some g ∈ L2(S) as 

f(x) = g(w)ψw(x)dS(w) = (g, ψ(·, x))L2(Sn,dS) for x ∈ Rd . 
Sd 

For an account of these properties, we refer to Bach [Bac17b]. Thanks to the density of H2 in 

L2(µ), we can assume, without loss of generality, that 

f ∗ (x) = g ∗ (w)ψw(x)dS(w) , 
Sd 

for some g ∗ ∈ L2(S). Now, given an initial set of first layer weights w1, . . . , wN ∈ Sn sampled 

i.i.d. from S, and W = [w1, . . . , wN ], we define the empirical kernel 

which in turn defines an empirical RKHS H2 Keeping the first layer weights fixed and opti-W. 

mizing the output layer weights thus gives us the ability to find a function f ∗ ∈ H2 that best W W 

approximates f ∗: 
.if ∗ − f ∗ i = min if − f ∗ i = R(W) .W L2(µ) L2(µ)

f ∈H2 
W 

Given an initial parameter parameter value θ̃ = (˜ ˜ b in W) as in the u, W) (here we incorporated ˜ ˜

statement, consider the path 

˜θt = (tq(W̃) + (1 − t)ũ, W) q( ˜ L(θ)|θ=(u, ˜where W) = arg min W) . 
u∈RN 

By convexity of L, the function t ∈ [0, 1]  → L(θt) is non-increasing and it holds that 

L(θ1) ≤ R(X, Y ) + R(W̃) . 
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d(λ) = max E ϕw(X)((Σ + λI)−1ψw)(X) 

w∈Sd
 

∞ ∞
L L 
= max 

λk 
fk(w)2 ≤ λ−1 max λkfk(w)2 = λ−1 maxiψwiL2 

2(µ) . 
w∈Sd λk + λ w∈Sd w∈Sd 

k=1 k=1 

�

Applying Proposition 1 from Bach [Bac17b], it holds that
 

R(W) ≤ 4λ if p ≥ 5d(λ) log(16d(λ)/δ) 

with probability greater or equal than 1 − δ, where 

This concludes the proof. 

C.5 Useful lemmas 

Lemma 4.1. Be θ  → L(θ) a continuous function. Then, property P.1 implies absence of spurious 

valleys. In particular, this implies absence of strict spurious minima, and of (generally non-strict) 

spurious minima if property P.1 holds with strictly decreasing paths t  → L(θt). Conversely, 

presence of spurious valleys implies existence of spurious minima. 

Proof. Assume that property P.1 holds. Consider any value c > 0 such that ΩL(c) is non-empty 

and let U be a path-connected component of ΩL(c). Given a point θ ∈ U there exists a path from 

θ satisfying property P.1. This means that U contains a global minima, and therefore it can not 

be a spurious valley. Similarly, assume that property P.1 holds with strictly decreasing paths and 

that the function L admits a strict local minima. This means that there exists a point θ0 such that 

minθ L(θ) < L(θ0) < L(θ) for all θ in B (θ), for some c > 0. But this implies that for any path 

t ∈ [0, 1]  → θt it holds L(θt) > L(θ0) for some t > 0 sufficiently small, a contradiction. To see 

the last point, assume that there exist spurious valleys and consider U a path-connected component 

of ΩL(c) for some c > 0. Then θ∗ ∈ arg minθ L(θ) is a spurious minima. 
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Lemma C.10. Let k, d be positive integers such that k ≥ 2(d − 1). Then it holds that
 

rkS(k, d) ≥ (1 + r)d−1 

where r = lk/(2(d − 1))J. 

Proof. Let k, d and r as in the statement. Every element of Sk(Rd) is in one-to-one correspondence 

with a homogeneous polynomials of degree k over Rd. It has been shown in [LT10], Theorem 1.1, 

that the tensor corresponding to the polynomial 

dI . k−(d−1)r
πr(x) = x1 · x rj 

j=2 

has border rank equal to (1 + r)d−1, if k − (d − 1)r ≥ (d − 1)r. Although, the notion of border 

rank considered in [LT10] is over the complex field. Since we are interested in the corresponding 

notion over the real field, we get the inequality of the statement in place of equality. 

Lemma C.11. Consider the optimization problem 

arg min f(W) where f(W) = EiWX − Yi2 

W∈Rm×d 

for two square integrable random variables X and Y with values in Rd and Rm respectively. Then 

one solution to (C.11) is given by 

X .W = ΣYXΣ
† 

Similarly, one solution to the optimization problem 

arg min f(U; W) where f(U; W) = EiUWX − Yi2 

U∈Rm×p 
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for any W ∈ Rp×d is given by 

.
U = Q(W) = ΣYXW

T (WΣXW
T )† . 

Assuming that ΣX is invertible, the minimal value obtained by f(U; W) is given by 

f(Q(W); W) = tr(ΣY) − tr((WK)†(WK)M) (C.8) 

1/2 dwhere K = ΣX and M = K−1ΣXYΣYXK
−1 . If M = i=1 ninivi

T is the SVD of M, the 

p∧d Tquantity (C.8) is minimized over W for (WK)†(WK) = i=1 nini . 

Proof. The first part of the lemma can be shown by writing problem (C.11) as 

arg min f(W) where f(W) = tr(WΣXW
T ) − 2 tr(ΣYXW

T ) 
W∈Rm×d 

and by taking W as a stationary point of the above f(W). Using this fact, one minima of the 

function f(U; W) is given by 

U = ΣYXW(ΣWX)† = ΣYXW
T (WΣXW

T )† . 
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�     

     
�Ln √ 

−(t− v)2/(2v)P Xi > t ≤ e . 
i=1 

Now assume that ΣX is invertible; let K = (ΣX)
1/2 and M = K−1ΣXYΣYXK

−1. Then it holds 

f(Q(W); W) = tr(Q(W)WΣXW
T Q(W)T ) − 2 tr(ΣYXW

T Q(W)T ) + tr(ΣY) 

= tr(ΣYXW
T (WΣXW

T )†WΣXW
T (WΣXW

T )†WΣXY) 

− 2 tr(ΣYXW
T (WΣXW

T )†WΣXY) + tr(ΣY) 

= − tr(ΣYXW
T (WΣXW

T )†WΣXY) + tr(ΣY) 

= − tr(M(WK)T ((WK)(WK)T )†(WK)) + tr(ΣY) 

= tr(ΣY) − tr((WK)†(WK)M) . 

Finally, we notice that the matrix (WK)†(WK) is the orthogonal projection on the space spanned 

by the rows of WK, which we denote by P(WK)T . In particular P(WK)T has the form P(WK)T = 

r viv
T for some {v1, . . . , vr} ⊂ Rd orthonormal vectors and r ≤ p ∧ d. Therefore, minimize i=1 i 

f(Q(W); W) over W it is equivalent to maximize the quantity 

rL 
vi
T Mvi 

i=1 

over the sets of v1, . . . , vr orthonormal vectors of Rd , r ≤ p ∧ n. Clearly, this is for v1 = 

n1, . . . , vp∧n = np∧n. This concludes the proof of the lemma. 

Lemma C.12. Let X1, . . . , Xn be independent zero-mean random variable taking values in a sep

arable Hilbert space such that iXii ≤ ci with probability one and denote v = i
n 
=1 ci 

2. Then, for 

all t ≥ v, it holds 

Proof. The proof can be found in [BLM13], Example 6.3. 

Lemma C.13. Consider σ : R → R a positively homogeneous activation function. Let X be 

a random variable taking values in Rd and let H2 ⊂ L2(X) be the RKHS defined by the kernel 
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�

� � � �
ψw(x)

2 dS(w) dµ(x) = ixi22 ψw(x/ixi2)2 dS(w) dµ(x) 
Rd Sd−1 Rd Sd−1 

≤ EiXi22 max ψw(y)
2 

w,y∈Sd−1 

� �

  
� �� �

function
 

k : (x, y) ∈ Rd × Rd  → σ(w T x)σ(w T y) dS(w) . 
Sd−1 

Then H2 is dense in L2(X). 

∈ Rd TProof. Let µ denote the distribution of X and ψw : x → σ(w x). First, note that the 

function x ∈ Rd  → k(x, x) is in L1(µ). Indeed 

This implies that H2 ⊆ L2(µ). Now, we would like to show that Fσ is dense in H2, where 

kL 
Vσ = uiψwi : u ∈ Rd , w1, . . . , wk ∈ Sd−1, k ≥ 1 

i=1 

It suffices to show that, for every w ∈ Sd−1, there exists a sequence {fn}n≥1 ⊂ H2 such that fn → 

.
ψw in L2(X). Choose gk ∈ L2(S) such that supp(gk) ⊆ B1/k(w) = {v ∈ Sd−1 : iv−wi ≤ 1/k}, 

Sd−1 g(v) dS(v) = 1 and gk ≥ 0, and define fk ∈ H2 as fk(x) = Sd−1 gk(v)ψv(x) dS(x). Then 

2 

i2ifk − ψw = gk(v)(ψv(x) − ψw(x)) dS(v) dµ(x)µ,2 
Rd Sd−1 

≤ EiXi22 max (ψv(y) − ψw(y))
2 → 0 

v∈B
1/k,2d (w) 

y∈Sd−1 

as k → ∞. This shows that Fσ is contained in H2. As shown in the proof of Lemma 4.2, it holds 

that Fσ is dense in L2(µ). This implies the statement of the lemma. 
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.
δd = inf{δ > 0 : ∃ Z ∈ Z : Δd ⊆ Z ⊆ (1 + δ)Δd} , 

1 
rd = sup{r > 0 : Br ⊂ Δd} = √ , 

d 

Rd = inf{R > 0 : Δd ⊂ BR} = 1 . 

Appendix D 

Appendix to chapter 5 

D.1 Proofs 

D.1.1 Proof of Proposition 5.1 

Let Z be the class of (centrally symmetric) zonoids in Rd. As observed in [BLM89], it holds that 

rdδd ≤ cd ≤ Rdδd . 

where 

Notice that, if Δd ⊆ Z ⊆ (1 + δ)Δd, then 

Vol(Δd) ≤ Vol(Z) ≤ Vol((1 + δ)Δd) = (1 + δ)dVol(Δd) , 
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Vol(Z)
(1 + δ)d ≥ . 

Vol(Δd) 

� � ��  ( 
1 

1 Vol(Z) d 

cd ≥ √ inf : Z ∈ Z+ , Δd ⊆ Z − 1 . 
d Vol(Δd) 

� �
Vol(Z) d! 

inf : Z ∈ Z+ , Δd ⊆ Z ≥ ,
Vol(Δd) maxdet(d) 

  
� �  
� �
� �

 

(
 
1
 

1 d! d 

cd ≥ √ − 1 
dd/2d⎡ 

1 ⎤ 
1 √ 

dd+1/2 12d+11 e 2π d ⎣ ⎦≥ √ − 1 
ddd/2d e

1 + −1
d(12d+1) 2d= √ d 

1
2 2

1 
d e 

1 

(2π) 
1 

− 1 
d (√ 
1 d 1 1 ≥ √ − 1 = − √ . 
d e e d 

which implies that 

Putting these observations together, we get that 

It was proven in [HLW10] that 

.where maxdet(d) = max det(H) : H ∈ {±1}d×d ≤ d 2 
d 
. It follows that 

Notice that this bound is in fact vacuous for d ≤ 7, while a priori it should only be for d ≤ 2. 
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